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Abstract. In this note, we show that there is no Fibonacci number that
can be expressed as a concatenation of three Fibonacci or Lucas numbers
under a certain constraint. That is, we solve to the Diophantine equations

Fn = 10d+lFm1 + 10lFm2 + Fm3

and
Fn = 10d+lLm1

+ 10lLm2
+ Lm3

in non-negative integers (n,m1,m2,m3) with m2 ≤ m1, where d and l
represent the number of digits of the (Fm2 , Lm2) and (Fm3 , Lm3), respec-
tively. Moreover, we give these equations as a problem to the researchers
without the constraint m2 ≤ m1.
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1. INTRODUCTION

Let (Fn)n≥2 and (Ln)n≥2 be the Fibonacci and Lucas sequences given by the recur-
rence relations Fn = Fn−1 + Fn−2 and Ln = Ln−1 + Ln−2 with the initial conditions,
F0 = 0, F1 = 1, L0 = 2, L1 = 1, respectively. Binet formulas for these numbers are

Fn =
αn − βn

√
5

and Ln = αn + βn,

where α =
1 +

√
5

2
and β =

1−
√
5

2
. It can be proved that

αn−2 ≤ Fn ≤ αn−1 for n ≥ 1, (1. 1)

and
αn−1 ≤ Ln ≤ 2αn for n ≥ 0 (1. 2)

by induction. In mathematical terms, concatenation refers to the process of sequentially
joining two or more objects (typically numbers or integer sequences). In this process, the

603



Fibonacci numbers which are concatenation of three Fibonacci or Lucas numbers 604

objects are added in order, resulting in a new object. For example, the concatenation of
the numbers a and b is represented as ab. Diophantine equations involving concatenation
are among the popular topics in recent times. In [3], the authors considered Diophantine
equations with concatenations of members of binary recurrences. In this study, the authors
also dealt with the Diophantine equation

Fk = FmFn = 10dFm + Fn

in non-negative integers with m > 0, where d denotes the number of digits of Fn. In [1],
Alan solved the Diophantine equations

Fn = 10dLm + Lk and Ln = 10dFm + Fk

in non-negative integers. In [2], the investigators coped with the Diophantine equations

Fn = 10dFm + Lk and Fn = 10dLm + Fk

in non-negative integers. Here d denotes the number of digits of the Lk and Fk. Moreover,
similar papers on Padovan and Perrin numbers can be found in [4] and [8]. Triple con-
catenation is a more general form of binary concatenation. Thus, we consider extending
this to the problem of finding Fibonacci numbers as the concatenation of three Fibonacci
sequences. That is, we tackle the Diophantine equations

Fn = Fm1
Fm2

Fm3
= 10d+lFm1

+ 10lFm2
+ Fm3

(1. 3)

and
Fn = Lm1

Lm2
Lm3

= 10d+lLm1
+ 10lLm2

+ Lm3
(1. 4)

in non-negative integers (n,m1,m2,m3) with m2 ≤ m1, where d and l represent the
number of digits of the (Fm2

, Lm2
) and (Fm3

, Lm3
), respectively. In triple concatenation,

unlike binary concatenation, while the equations were desired to be reordered three times,
due to some difficulties during the operations, a restriction was imposed, and the equations
were reordered only twice.

The investigation of such Diophantine equations offers significant insights into the in-
herent structural properties of number theory. In particular, problems involving concate-
nations of well-established recursive sequences such as the Fibonacci and Lucas numbers
present both rich theoretical challenges and notable computational interest. These types of
problems are not only relevant within pure mathematics but also hold potential applications
in various domains, including pattern recognition, the distribution of prime numbers, digi-
tal sequence analysis, and cryptographic systems. Moreover, research into the digit-based
behavior of recursive sequences contributes to the development of novel techniques for
uncovering intricate relationships among integers. Accordingly, the triple concatenation-
based Diophantine equations examined in this study are expected to enrich the existing
number theory literature and provide valuable perspectives for addressing broader mathe-
matical inquiries.

2. PRELIMINARIES

Baker’s method is a technique commonly used in Diophantine equations and number
theory, particularly for solving exponential Diophantine equations. The method is named
after the mathematician A.D. Baker and is considered a powerful tool for finding solutions
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to certain types of equations in number theory. Now let’s give some definitions and lemmas.
The logarithmic height of an algebraic number η is defined as

h(η) =
1

d

(
log a0 +

d
i=1 log

(
max

{
|η(i)|, 1

}))
, (2. 5)

where a0 is the leading coefficient of the minimal polynomial of η and d is the degree of η
over Q and the

(
η(i)
)
1≤i≤d

are conjugates of η over Q. Let η and γ be algebraic numbers.
Then, the following properties hold (see [7]):

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ),

h(ηm) = |m|h(η).
Now, we give the result of Matveev [6], which is one of our main tools.

Lemma 2.1. Let γ1, γ2, ..., γt be nonzero elements of a real algebraic number field K of
degree D, b1, b2, ..., bt are rational integers and

Λ := γb1
1 · · · γbt

t − 1

is nonzero. Then

log |Λ| > −1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1A2...At,

where

Ai ≥ max {Dh(γi), | log γi|, 0.16} for all i = 1, ..., t and B ≥ max {|b1|, ..., |bt|} .

The following two lemmas are given in [5] and [10]. Let θ be a real number. Set
||θ|| = min {|θ − n| : n ∈ Z}.

Lemma 2.2. Let M be a positive integer and p/q be a convergent of the continued fraction
of the irrational number γ, such that q > 6M . Let A,B, µ be some real numbers with
A > 0 and B > 1. If ϵ := ||µq|| − M ||γq|| > 0, then there exists no solution to the
inequality

0 < |nγ − r + µ| < AB−w,

in positive integers n, r, and w with

n ≤ M and w ≥ log(Aq/ϵ)

logB
.

Lemma 2.3. Let s,Λ ∈ R. If 0 < s < 1 and |Λ| < s, then

|log(1 + Λ)| < − log(1− s)

s
· |Λ|

and
|Λ| < s

1− e−s
·
∣∣eΛ − 1

∣∣ .
Continued fractions play an important role in number theory and mathematical analysis.

They are a powerful tool in defining irrational numbers and studying their relationships with
rational numbers. They are also used in solving certain types of Diophantine equations and
in numerical approximation problems. The following lemma which can be found in [9]
will be used later.
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Lemma 2.4. Let x be a real number and x = [a0; a1, a2, a3, ...] and p, q ∈ Z. If∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2

then p
q is a convergent of the continued fraction of x. Furthermore, if M and n are non-

negative integers such that qn > M , then∣∣∣∣x− p

q

∣∣∣∣ > 1

(b+ 2)q2
,

where b := max {ai : i = 0, 1, 2, ..., n} .

Now, we give the following two lemmas that determine the relationships among the
variables in the equations ( 1. 3 ) and ( 1. 4 ).

Lemma 2.5. Assume that the equation ( 1. 3 ) holds. Then, we have that the inequalities

(a) d < m2+3
4 ,

(b) l < m3+3
4 ,

(c) Fm2
< 10d < 10Fm2

,
(d) Fm3

< 10l < 10Fm3
,

(e) m1 +m2 +m3 − 5 < n < m1 +m2 +m3 + 9,
(f) n−m3 ≥ 6.

Proof. (a) We write d = ⌊log10 Fm2
⌋+1 since d is the number of digits of Fm2

. Then, we
find

d = ⌊log10 Fm2⌋+ 1 ≤ log10 Fm2 + 1 ≤ log10 α
m2−1 + 1 <

m2 + 3

4
.

So, it follows that d < m2+3
4 . Here, we have used that log10 α < 0.25.

(b) It is proved similarly to proof of Lemma 2.5 (a).
(c) We note that d = ⌊log10 Fm2

⌋+ 1 since d is the number of digits of Fm2
. Then, we

obtain
Fm2

= 10log10 Fm2 < 10d ≤ 10log10 Fm2+1 < 10Fm2
.

(d) It is proved similarly to proof of Lemma 2.5 (c).
(e) Using Lemma 2.5 (c),(d) and considering the inequality ( 1. 1 ), we can write

αn−2 ≤ Fn < 100Fm2Fm3Fm1 + 10Fm3Fm2 + Fm3 < αm1+m2+m3+7

and

αn−1 ≥ Fn > Fm3
Fm2

Fm1
+ Fm3

Fm2
+ Fm3

> Fm1
Fm2

Fm3
> αm1+m2+m3−6.

Thus, we get m1 +m2 +m3 − 5 < n < m1 +m2 +m3 + 9.
(f) Taking into account the inequality

Fn > 10Fm3Fm1 + Fm3Fm2 + Fm3 ≥ 12Fm3 ,

we obtain that n−m3 ≥ 6. □

Lemma 2.6. Assume that the equation ( 1. 4 ) holds. Then, we have that the inequalities
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(a) d < m2+6
4 ,

(b) l < m3+6
4 ,

(c) Lm2
< 10d < 10Lm2

,
(d) Lm3

< 10l < 10Lm3
,

(e) m1 +m2 +m3 − 2 < n < m1 +m2 +m3 + 16,
(f) n−m3 ≥ 7.

Proof. One can prove it similarly to the proof of the Lemma 2.5. □

3. MAIN THEOREMS

Before stating the Theorem 3.1, let us note the following. If m1 = 0 in the equation ( 1.
3 ) then we have Fn = Fm2

Fm3
. This equation was also solved in [3]. Moreover, since the

values of F1 and F2 are the same, we assume that m1 ≥ 2 in the equation ( 1. 3 ).

Theorem 3.1. Let d and l be the number of digits of the Fm2
and Fm3

. The Diophantine
equation

Fn = Fm1
Fm2

Fm3
= 10d+lFm1

+ 10lFm2
+ Fm3

has no solution in non-negative integers (n,m1,m2,m3) with m1 ≥ 2 and m2 ≤ m1.

Proof. To initiate the proof of the theorem, we first derive a lower bound for n. Fn has at
least three digits since m1 ≥ 2 and m2,m3 ≥ 0. Thus, we can take n ≥ 12 for m1 ≥ 2
and m2,m3 ≥ 0. Using the equation ( 1. 3 ) and Binet formula for Fibonacci numbers, we
get

αn − 10d+lαm1 = βn − 10d+lβm1 +
√
510lFm2 +

√
5Fm3 .

Multiplying both sides of the above equality by 1
10d+lαm1

and taking the absolute value, we
obtain∣∣∣∣αn−m1

10d+l
− 1

∣∣∣∣ ≤ |β|n

10d+lαm1
+

1

α2m1
+

√
5Fm2

10dαm1
+

√
5Fm3

10d+lαm1
<

2.85

αm1
. (3. 6)

Here, we consider n ≥ 12,m1 ≥ 2, d, l ≥ 1, and Lemma 2.5(c),(d). Now, let us apply
Lemma 2.1 with (γ1, b1) := (α, n−m1) and (γ2, b2) := (10,−(d+ l)). Note that D = 2.
Let Λ1 := αn−m1

10d+l − 1. Assume that Λ1 = 0. Then αn−m1 = 10d+l, which is not
possible. Because αn−m1 is not rational for n−m1 > 0. Therefore, Λ1 ̸= 0. In addition,
since h(γ1) = h(α) = logα

2 and h(γ2) = h(10) = log 10, we can say A1 := 0.49
and A2 := 4.61. From Lemma 2.5(a),(b),(e), we get

d+ l <
m2 +m3 + 6

4
<

n−m1 + 11

4
< n−m1 + 3 ≤ n+ 1

for m1 ≥ 2. By recalling B ≥ max {|n−m1|, | − (d+ l)|} and using the above inequal-
ity, we can choose B := n + 1. Thence, the inequality ( 3. 6 ) and Lemma 2.1, imply
that

2.85 · α−m1 > |Λ1| > exp (T · (1 + log(n+ 1))) ,

where T = −1.4 · 305 · 24.5 · 22 · (1+ log 2) · 0.49 · 4.61. When the logarithm of the above
inequality in base e is taken from both sides and multiplied by −1, this inequality covert
to

m1 logα < 1.18 · 1010 · (1 + log(n+ 1)) + log(2.85). (3. 7)
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We rearrange the equation ( 1. 3 ) as

αn −
√
510d+lFm1

−
√
510lFm2

− αm3 = βn − βm3

i.e.,
αn(1− αm3−n)−

√
510l(10dFm1

+ Fm2
) = βn − βm3 .

After performing the necessary calculations, we obtain∣∣∣∣∣1−
√
510l(10dFm1 + Fm2)

αn(1− αm3−n)

∣∣∣∣∣ ≤ 1

αn

∣∣∣∣ 1

1− αm3−n

∣∣∣∣ · ( 1

αn
+

1

αm3

)

≤ 1.07

αn
(3. 8)

for n−m3 ≥ 6,m3 ≥ 0, and n ≥ 12. To applying Lemma 2.1, we take

(γ1, b1) := (α,−n) , (γ2, b2) := (10, l) , (γ3, b3) :=

(√
5(10dFm1

+ Fm2
)

1− αm3−n
, 1

)
.

The number field containing γ1, γ2, and γ3 is K = Q(
√
5) and so D = 2. We show that

Λ2 := 1−
√
510l(10dFm1

+ Fm2
)

αn(1− αm3−n)

is nonzero. Suppose that Λ2 = 0. Then

αn − αm3 =
√
510l(10dFm1

+ Fm2
).

Conjugating in Q(
√
5) gives us

βn − βm3 = −
√
510l(10dFm1

+ Fm2
).

These imply that Ln = Lm3 , which leads to a contradiction. From Lemma 2.5(a),(e), we
get

h(γ3) = h

(√
5(10dFm1

+ Fm2
)

1− αm3−n

)
≤ h(

√
5) + d · h(10) + h (Fm1

) + h (Fm2
) + (n−m3)h (α) + 2 log 2

<
log 80

2
+

(
m2 + 3

4

)
log 10 + 2(m1 − 1)

logα

2
+ (n−m3)

logα

2

<
log 80

2
+ 5

(
m1 + 3

4

)
logα+ (m1 − 1) logα+ (2m1 + 9)

logα

2

< 5.68 + 3.25m1 logα,

where we have used that m2 ≤ m1. So, we can choose A1 := 0.49, A2 := 4.61, and
A3 := 11.36 + 6.5m1 logα. Lemma 2.5(b),(f) tell us

l <
m3 + 3

4
≤ n− 6 + 3

4
< n

and so we can say B := n. In that case, using ( 3. 8 ) and Lemma 2.1, we obtain

1.07 · α−n > |Λ2| > exp (R · (1 + log n) (11.36 + 6.5m1 logα))
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i.e.,

n logα− log 1.07 < 2.2 · 1012 · (1 + log n) (11.36 + 6.5m1 logα) , (3. 9)

where R = −1.4 · 306 · 34.5 · 22 · (1 + log 2) · 0.49 · 4.61. Using the inequalities ( 3. 7 )
and ( 3. 9 ), we get n < 1.42 · 1027. Now, we only need to lower the bound. Let

z1 := (n−m1) logα− (d+ l) log 10

and Λ1 := ez1 − 1. For m1 ≥ 3, we have

|Λ1| = |ez1 − 1| < 2.85 · α−m1 < 0.7

from ( 3. 6 ). To applying Lemma 2.3, we can choose s := 0.7. So,

|(n−m1) logα− (d+ l) log 10| < − log 0.3

0.7
· 2.85
αm1

< 4.91 · α−m1

i.e.,

0 <

∣∣∣∣ logαlog 10
− d+ l

(n−m1)

∣∣∣∣ < 2.14

(n−m1) · αm1
. (3. 10)

Suppose that m1 ≥ 142. Then, we can write

αm1

4.28
> 1.1 · 1029 > n > n−m1

and so we have ∣∣∣∣ logαlog 10
− d+ l

(n−m1)

∣∣∣∣ < 2.14

(n−m1) · αm1
<

1

2(n−m1)2
.

It follows from Lemma 2.4 that the rational number d+l
n−m1

is a convergent to γ = logα
log 10 .

Now let [a0; a1, a2, ...] be the continued fraction expansion of γ and let
pr
qr

be its r-th

convergent and d+l
n−m1

=
pt
qt

for some t. Then we have q54 > 2 · 1027 > n > n − m1.

Thus, t ∈ {0, 1, 2, ..., 53}. Furthermore, b = max{ai|i = 0, 1, 2, ..., 53} = 106. By
Lemma 2.4, we get∣∣∣∣γ − pt

qt

∣∣∣∣ > 1

(b+ 2)(n−m1)2
=

1

108 · (n−m1)2
.

Thus, we obtain
2.14

α142
≥ 2.14

αm1
>

1

108 · (n−m1)
>

1

216× 1027
,

which is a contradiction. That is, m1 ≤ 141. Using the inequalities ( 3. 9 ) and m1 ≤ 141,
we get n < 8.27 ·1016. When we reduce again the upper bound of n, we find that m1 ≤ 97
and n < 5.7 · 1016. Put

z2 := l log 10− n logα+ log

(√
5(10dFm1

+ Fm2
)

1− αm3−n

)
.

From ( 3. 8 ), it is seen that

|Λ2| = |1− ez2 | < (1.07) · α−n < 0.004



Fibonacci numbers which are concatenation of three Fibonacci or Lucas numbers 610

for n ≥ 12. According to Lemma 2.3, we can choose s := 0.004, and so we get∣∣∣∣∣l log 10− n logα+ log

(√
5(10dFm1

+ Fm2
)

1− αm3−n

)∣∣∣∣∣ < − log(0.996)

0.004
· 1.07
αn

<
1.08

αn

i.e.,

0 <

∣∣∣∣∣∣∣l
log 10

logα
− n+

log
(√

5(10dFm1
+Fm2

)

1−αm3−n

)
logα

∣∣∣∣∣∣∣ < 2.25 · α−n. (3. 11)

Now, we can use Lemma 2.2 with

γ :=
log 10

logα
, µ :=

log
(√

5(10dFm1
+Fm2

)

1−αm3−n

)
logα

,A := 2.25, B := α,w := n

and l < n < M := 5.7 · 1016. Let p/q be a convergent of the continued fraction of the γ.
We find that q45 > 6M for γ and compute

ϵ := ||µq45|| −M ||γq45|| > 4.47 · 10−8

for 2 ≤ m2 ≤ m1 ≤ 97, 6 ≤ n −m3 < m1 +m2 + 9, and 1 ≤ d < m2+3
4 . A computer

program tells us that the value of log(Aq45/ϵ)
logB is less than 142.27. According to Lemma

2.2 we can say n ≤ 142 and so m3 ≤ 135. Finally, we find that there is no Fibonacci
number that is a concatenation of three Fibonacci numbers for 2 ≤ m2 ≤ m1 ≤ 97, 0 ≤
m3 ≤ 135, and 12 ≤ n ≤ 142. □

Theorem 3.2. Let d and l be the number of digits of the Lm2
and Lm3

. The Diophantine
equation

Fn = Lm1Lm2Lm3 = 10d+lLm1 + 10lLm2 + Lm3

has no solution in non-negative integers (n,m1,m2,m3) with m2 ≤ m1.

Proof. Since m1,m2,m3 ≥ 0, Fn has at least three digits and so we can take n ≥ 12.
From the equation ( 1. 4 ), we can write

αn −
√
510d+lαm1 = βn +

√
510d+lβm1 +

√
510lLm2 +

√
5Lm3 .

After appropriate rearrangement, we obtain∣∣∣∣ αn−m1

√
510d+l

− 1

∣∣∣∣ ≤ |β|n√
510d+lαm1

+
1

α2m1
+

Lm2

10dαm1
+

Lm3

10d+lαm1
<

2.11

αm1
. (3. 12)

To apply Lemma 2.1 we choose

(γ1, b1) := (α, n−m1) , (γ2, b2) := (10,−(d+ l)) , (γ3, b3) :=
(√

5,−1
)

.

Here, D = 2 and Λ1 := αn−m1√
510d+l

̸= 0. Also, we can say A1 := 0.49, A2 := 4.61,

and A3 := 1.61, since h(γ1) = logα
2 , h(γ2) = log 10, and h(γ3) = log 5

2 . We choose
B := n+ 4. Because Lemma 2.6(a),(b),(e) show that

d+ l <
m2 +m3 + 12

4
<

n−m1 + 14

4
< n−m1 + 4 ≤ n+ 4
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for m1 ≥ 0. Thus, considering ( 3. 12 ) and Lemma 2.1, we obtain

2.11 · α−m1 > |Λ1| > exp (R · (1 + log(n+ 4)) · 1.61) ,

where R = −1.4 · 306 · 34.5 · 22 · (1+ log 2) · 0.49 · 4.61. By a straightforward calculation,
it follows that

m1 logα− log 2.11 < 3.53 · 1012 · (1 + log(n+ 4). (3. 13)

We rearrange the equation ( 1. 4 ) as

αn(1−
√
5αm3−n)−

√
510l(10dLm1 + Lm2) = βn +

√
5βm3

and so ∣∣∣∣∣1−
√
510l(10dLm1

+ Lm2
)

αn(1−
√
5αm3−n)

∣∣∣∣∣ ≤ 1

αn

∣∣∣∣ 1

1−
√
5αm3−n

∣∣∣∣ ·
(

1

αn
+

√
5

αm3

)

≤ 2.43

αn
(3. 14)

for n−m3 ≥ 7,m3 ≥ 0 and n ≥ 12. We take the notation of Lemma 2.1, as

(γ1, b1) := (α,−n) , (γ2, b2) := (10, l) , (γ3, b3) :=

(√
5 · (10dLm1

+ Lm2
)

1−
√
5αm3−n

, 1

)
and

Λ2 := 1−
√
510l(10dLm1

+ Lm2
)

αn(1−
√
5αm3−n)

.

It is easy to show that Λ2 is nonzero. The numbers γ1, γ2, γ3 ∈K = Q(
√
5) and so D = 2.

Furthermore, we find that

l <
m3 + 6

4
<

n− 1

4
< n,

and

h(γ3) = h

(√
5 · (10dLm1 + Lm2)

1−
√
5αm3−n

)
≤ 2h(

√
5) + d · h(10) + h (Lm1

) + h (Lm2
) + (n−m3)h (α) + 4 log 2

< log 80 +

(
m2 + 6

4

)
log 10 + 2m1

logα

2
+ (n−m3)

logα

2

< log 80 + 5

(
m1 + 6

4

)
logα+m1 logα+ (2m1 + 16)

logα

2

< 11.85 + 3.25m1 logα,

by Lemma 2.6(a),(b),(e),(f) with m2 ≤ m1. So, we can choose B := n,A1 := 0.49, A2 :=
4.61, and A3 := 23.7 + 6.5m1 logα. By using ( 3. 14 ) and Lemma 2.1, we obtain

2.43 · α−n > |Λ2| > exp (T · (1 + log n) (23.7 + 6.5m1 logα))

i.e.,

n logα− log(2.43) < 2.2 · 1012 · (1 + log n) (23.7 + 6.5m1 logα) . (3. 15)
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The inequalities ( 3. 13 ) and ( 3. 15 ), follow that n < 5.06 · 1029. Let

z1 := (n−m1) logα− (d+ l) log 10− log
√
5.

From ( 3. 12 ), we can write

|Λ1| = |ez1 − 1| < 2.11

αm1
< 0.81

for m1 ≥ 2. Choosing s := 0.81, we get

| (n−m1) logα− (d+ l) log 10− log
√
5| < − log(0.19)

0.81
· 2.11
αm1

<
4.33

αm1

i.e.,

0 <

∣∣∣∣∣(n−m1)
logα

log 10
− (d+ l)− log

√
5

log 10

∣∣∣∣∣ < 1.89 · α−m1 (3. 16)

by Lemma 2.3. Now, we can use Lemma 2.2. Put

γ :=
logα

log 10
/∈ Q, µ := − log

√
5

log 10
, A := 1.89, B := α,w := m1

and n −m1 < n < M := 5.06 · 1029. Considering p/q be a convergent of the continued
fraction of the γ, we compute that q61 > 6M and ϵ > 0.02. Hence, the inequality ( 3. 16 )
has a solution for

m1 <
log (Aq61/ϵ)

logB
< 157.92.

So, m1 ≤ 157. If we consider m1 ≤ 157 and the inequality ( 3. 15 ) together, we obtain
n < 9.44 · 1016. Taking M := 9.44 · 1016 and running once more the reduction cycle on
the inequality ( 3. 16 ), we have that m1 ≤ 93 and n < 5.7 · 1016. Now, let

z2 := l log 10− n logα+ log

(√
5(10dLm1 + Lm2)

1−
√
5αm3−n

)
.

From ( 3. 14 ), it is seen that

|Λ2| = |1− ez2 | < (2.43) · α−n < 0.008

for n ≥ 12. In that case, using Lemma 2.3, we get∣∣∣∣∣l log 10− n logα+ log

(√
5(10dLm1

+ Lm2
)

1−
√
5αm3−n

)∣∣∣∣∣ < − log(0.992)

0.008
· 2.43
αn

< 2.44 · α−n,

i.e.,

0 <

∣∣∣∣∣∣∣l
log 10

logα
− n+

log
(√

5(10dLm1+Lm2 )

1−
√
5αm3−n

)
logα

∣∣∣∣∣∣∣ < 5.08 · α−n. (3. 17)
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Put

γ :=
log 10

logα
, µ :=

log
(√

5(10dLm1
+Lm2

)

1−
√
5αm3−n

)
logα

,A := 5.08, B := α,w := n,

and l < n < M := 5.7 · 1016. We find that q47 > 6M and

ϵ := ||µq47|| −M ||γq47|| > 6.12 · 1012

for 0 ≤ m2 ≤ m1 ≤ 93, 7 ≤ n − m3 < m1 + m2 + 16, and 1 ≤ d < m2+6
4 . Thus,

according to Lemma 2.2 we see that

n ≤ log(Aq47/ϵ)

logB
< 142.58

Therefore, n ≤ 142. A computer program gives us that there is no Fibonacci number that
is concatenation of three Lucas numbers for 0 ≤ m2 ≤ m1 ≤ 93, 0 ≤ m3 ≤ 135, and
12 ≤ n ≤ 142. □

4. CONCLUSION AND CONJECTURE

In this study, we have demonstrated that the Diophantine equations ( 1. 3 ) and ( 1.
4 ), which involve the concatenation of three Fibonacci and Lucas numbers respectively,
do not admit any solutions under the constraint m2 ≤ m1. This result builds on earlier
works that focused on binary concatenations, extending the scope of investigation to ternary
cases. The addition of this third term introduces new structural complexity, offering a
more comprehensive perspective on how recurrence sequences behave under digit-based
transformations.

Under the imposed constraint, exhaustive computational checks within the range 2 ≤
m1 ≤ 100, 0 ≤ m2,m3 ≤ 100 and 12 ≤ n ≤ 142 yielded only a limited number of
solutions. Specifically, for equation ( 1. 3 ), the only solution found is

(Fn, Fm1 , Fm2 , Fm3) = (233, 2, 3, 3)

while for equation ( 1. 4 ), a small set of solutions was obtained

(Fn, Lm1
, Lm2

, Lm3
) ∈

{
(144, 1, 4, 4) , (233, 2, 3, 3) ,
(377, 3, 7, 7) , (4181, 4, 18, 1)

}
.

These sparse results highlight the rarity and structural rigidity of such concatenation-based
representations within linear recurrence sequences.

However, when the condition m2 ≤ m1 is removed, additional isolated solutions emerge.
Despite this, a complete characterization of all such solutions remains elusive. The lack of
a general theoretical framework for analyzing the unrestricted forms of equations ( 1. 3 )
and ( 1. 4 ) points to a deeper open problem in the interplay between recurrence sequences
and digital concatenation. Developing such a framework could be an important direction
for future research.

Furthermore, this line of inquiry can be naturally extended to other well-known recursive
sequences, such as the Padovan, Perrin, and Tribonacci numbers. Investigating whether
similar concatenation-based Diophantine equations exhibit solution patterns in those se-
quences could uncover new structural analogies and deepen our understanding of recur-
rence relations and digital representations. We leave the full resolution of these broader
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problems as an open question, inviting further exploration in both theoretical and compu-
tational number theory.
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