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Abstract. The investigation and modelling of the co-infection of Buruli
ulcer and Cholera are examined in this paper. We develop the model based
on the current literature on the co-infection of these illnesses. The paper
starts by discussing the submodels at the equilibrium points and outlining
the mathematical characteristics of the solution. The underlying condi-
tions are obtained, and the local and global stabilities of the fixed points
of the sub-models are inspected. Whignis less than one, it is demon-
strated that the sub-models are both globally and locally stable, demon-
strating the stability of the state in the absence of infection. In addition,
the co-infection model is analyzed concerning the parani@jeand the
co-infection model's disease-free state is locally stable under the stated
condition. We also investigate the control problem with five distinct con-
trol variables. Pontryagin’s maximal principle provides precise mathemat-
ical conclusions about the optimality system. This also helps find the best
way to keep both diseases from spreading. We lastly conducted numerical
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tests with different sets of parameter values, and the mddiaanalytical
results are verified via simulations. The study’s findingggast that the
best strategy to reduce infections is to put all prevergatieasures into
place at once.

AMS (MOS) Subject Classification Codes: 93D05; 34C60; 37M05
Key Words: Epidemic models; Stability theory; Simulation; Lyapunowgtion.

1. INTRODUCTION

Any medical condition brought on by pathogens, includingtbaa, viruses, fungi, para-
sites, or aberrant proteins called prions, is referred tanagsfectious disease. People have
had to face the difficulties these illnesses provide througtistory. There is a greater
chance of illnesses spreading quickly and turning into@pids as societies become more
linked. As a result, illnesses including influenza, dengawef, chickenpox, and tuberculo-
sis (TB) have increased.

It has been shown that malaria is one of the deadliest ilbs®esancient accounts date
its origin to 2700 BC in China [8]. An unidentified infectioagent caused the Plague of
Athens, which is acknowledged as the first pandemic everrdented. When they fled
the Spartan army in 430 B.C., around one-third of the popufgerished from this virus
[18]. More recently, leprosy created major problems in Perin the eleventh century,
and the deadly Black Death shocked the globe in the fouttematitury with its infectious
illness outbreaks. Thirty to sixty percentof the Europeapysation perished as a result
of the Black Death. The Russian Flu, which struck betweerD18&1 1890, killed over
360,000 people worldwide, more than the World War | influeepalemic. By the end
of 1918, over 25 million people had died from a severe stréiSpanish influenza [37].
The human immunodeficiency virus (HIV) caused the AIDS pamdewhich was first
recognized in 1981 as the 20th century’s final significanteamc. More than 32 million
people have died from HIV/AIDS during the previous 40 yeansd the disease is still
considered a pandemic. WHO verified 574 deaths through ledyaa among the 1,599
reported MERS-CoV cases in 2003 [20]. The SARS-associaszhavirus (SARS-CoV)
virus is the cause of the illness. SARS-CoV most likely sihit animals before spreading
to people, according to health professionals; howevergxhet source is still being looked
into. The first pandemic of the twenty-first century was httréd to swine influenza and
was proclaimed by the World Health Organization (WHO) in 2(00]. In December
2019, Wuhan, China, first identified COVID-19, a novel condnss disease that affects
humans. Since the 1918 influenza pandemic, this was the Sipttiificant epidemic. The
virus quickly spread to other regions of the world, and byt8eyper 2021, COVID-19
was known to have caused over 200 million confirmed casesardids million recorded
fatalities.

An infectious disease not only causes illnesses and deatladdo generates significant
economic consequences; for instance, the foot-and-masglask outbreak in the UK re-
sulted in losses exceeding 3 billion [36]. Additionallyceadary effects such as bat deaths
in North America caused annual losses in agriculture amiogitid USD 3.7 billion [7].
There is a major long-term influence on the transmission fettious diseases due to the
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growing global market and greater international trave] [Diseases like the swine flu and
the Zika virus are major health concerns in many developatgpns. Mosquitoes carrying
the Zika virus are the main vector of infection; there is eutly little scientific knowledge
of this virus and no effective therapy [44]. As of August 8220there have been three
fatalities from 20 recorded cases of leptospirosis in thedLarea of the United Republic
of Tanzania. Devastating effects of the Ebola virus havenlseen in West Africa, where
it has caused hemorrhagic fever, a severe condition know#bals viral sickness. Since it
was discovered in 1976, millions of people have died fror tiius, and its consequences
are still felt today [43]. Since 2017, there has been a pergi®utbreak of cholera in So-
malia. There were 7,796 cases of cholera reported betweemdal and July 10, 2022;
tragically, 37 of those cases resulted in death (casetfatalio: 0.5%).

Mathematical modeling reduces real-world problems tdgitéorward formulae [34].
When used in the context of infectious illnesses, it helps wimprehension, epidemic
prediction, and the creation of control plans. Acquiringl anastering this multidisci-
plinary ability is essential for resolving a wide range afuiss [10]. Using a combination
of methods, epidemic modeling, examines the spread andvioeltd infectious diseases
[5]. The severity of epidemics drives mathematicians ariotesearchers to work on
managing and comprehending the dynamics of infectiousadese The earliest formal
mathematical analysis of epidemics dates back to Berrogitoundbreaking work on
measles in the mid-1800s [6]; this work was later recastgudifferential equations [9].
Louis Pasteur made significant advances in the mid-1800 #fve causes and prevention
of illness. William Hamer's work at the beginning of the 2@éntury greatly advanced
mathematical modeling, and Sir Ronald Ross is recognizéiteaf®under of contemporary
mathematical epidemiology. The first age-structured lirgademic model was created
by Kermack and McKendrick [16]. During the HIV epidemics bét1980s, mathematical
modeling of infectious illnesses gained popularity, réaglin the creation, evaluation, and
use of several models to investigate the transmission eadis These days, mathematical
epidemiology is widely discussed in research publicati@msl modeling makes a major
contribution to both public health and mathematics ([14,219 35]).

To comprehend the transmission of infectious diseasesnmitbpulations, epidemic
models are indispensable instruments [16, 28]. The palitfiof these models is signifi-
cantly influenced by the degree of realism that is implengnt® their design. This does
not suggest that a single model should encompass everytiabteffect; rather, it should
concentrate on simplifying the representation of the ma@tmanisms while preserving
the major factors that affect disease transmission. Netesh, caution must be exercised
when employing epidemic models to forecast real-world pheena [33, 22]. The SIR
model is a conventional compartmental framework commonipleyed to elucidate sev-
eral facets of epidemiological diseases [14, 27]; it is ey adept at representing the
dynamics of illnesses such as measles, chickenpox, mumgsubella [4]. On the other
hand, fractional calculus has become a powerful technigueddel a wide range of epi-
demic diseases. Itis more accurate than traditional methbchpturing complex dynamics
of the infectious diseases. Standard mathematical mdutisise integer-order derivatives,
even when the models are not linear, often have trouble expéahow many real-world
epidemics behave in a way that makes sense. In recent yestiphal calculus has gotten
a lot of attention as a more realistic way to model epidemécsahse it can include memory
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effects and genetic properties (see, for example, [30]is fitethod has worked especially
well for solving problems related to long-term disease dyitca and strange diffusion pro-
cesses [24]. Besides fractional differential equatiogsearchers used stochastic and delay
differential equations to better understand the hiddemetspf infectious disease using a
realistic approach of modeling.

The 19th-century identification of cholera, an epidemiaigtt on by the Vibrio cholera
bacteria, is attributed to John Snow. It is quite common inc&f especially in Sub-Saharan
areas; the earliest cases were reported from Guinea in Vilgsa f25]. Every year, cholera
strikes 35 million people, mostly in Asian and African reged42]. Tainted food and water
supplies are the main sources of its spread. Mycobactericenans, the source of another
well-known illness, Buruli ulcer (BU), is primarily foundhitropical areas; over 80% of
cases have been documented from West African countrigsiding Ghana, Benin, and
Cameroon [15, 11, 2]. To treat a BU infection, it is importémfind it early and treat it
with antibiotics like streptomycin and rifampicin for atlt eight weeks [41]. To optimize
tactics for reducing the spread of cholera, control measareintegrated into a model [13]
in [23]. Cholera and Buruli ulcer co-infection is common isia and Sub-Saharan Africa,
particularly in Ghana, where artisanal mining causes cha@idemics because of fixed
water bodies and poor hygiene [26]. The goal of this study igdin a thorough under-
standing of the co-infection of cholera and Buruli ulcerprablem that has received less
attention than other illnesses. A comprehensive undatstgrof both ilinesses is neces-
sary in developing nations, especially in West Africa anébAsxamining their dynamics
together can provide additional insights into their ceettfon. Zhao et al. [45] investigated
the co-dynamics of Buruli ulcer and cholera, developingR §pe of model, and the de-
tailed mathematical analysis of the sub-models was rigglyomvestigated. While this
work significantly contributes to the existing literatune the co-dynamics of infections, it
fails to consider the latent stage associated with Burgieul The novelty of the present
work is that it considers the latent stage of Buruli Ulcer ahadies its co-dynamics with
Cholera. Further, the proposed study focusing on forrmgadind studying the stability of
a susceptible-exposed-infected-recovered (SEIR) epaeradel, and the application of
different control strategies to minimize the spread of bnflction within the population.
We intend to include individuals that are exposed to BU in eliog) as a separate compart-
ment. This will change majority of the dynamics pertaininghie existing model as well
as close to the reality. Further, we intend to extend therobptoblem and see the effect
of latent compartment on the entire control program.

The rest of the manuscript is organized as follows. Sectigne®ents the model for-
mulation and stability analysis of the co-infected modelib&quently, dynamics of the
sub-models are explored using the respective basic regtiodunumbers. In Section 4,
control variables are considered, and an optimal contrablpm is formulated utilizing
the Pontryagin maximum principle. Section 5 includes nucaésimulations of the co-
infection model, both with and without control problemsrifsgng analytical results and
thoroughly investigating the effectiveness of the contnelasures. Finally, Section 6 con-
cludes the work and suggests future research directions.
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2. MODEL FORMULATION

In this section, we intend to formulate a mathematical mddekhe co-infection of
Cholera and Buruli ulcer epidemics and will present the llacal global stability results
for the equilibria of the underlying sub-models. To formeléhe model, we shall denote
the total human population by, and it is divided further into susceptible humags the
people who have been expose to Buruli ulcer onligjsthe people who have been infected
with Buruli ulcer only I,; the people infected with Cholera only; people infected with
Cholera and Buruli ulcer botl,, ; the people recovered only from Buruli ulc&,; the
people recovered from the Cholera infectiip; and the recovered individuals both from
the the Cholera and Buruli ulceri%,_.. ThusNy, = Sy, + I+ 1.+ Dy, + Ep + Ry + R +
Ry, . We useN,, to represent the population of vectors and will divide trepplation into
infected water bugs and susceptible, respectively dertég andl,, with N, = S, +1,,.
The probability of getting infected with cholera is denot®ds,, wheres, = %, here
B denotes the bacteria density, the rate of ingestian is

Other parameters of the model along with the descriptioa®atlined in Table 1.

TABLE 1. Parameters and its interpretations.

Parameter Description

T The rate of recruitment of the healthy individuals.

The recruitment rate of water bugs.

Caution regarding immunity and recovery rates in individuafected with Buruli ulcer.
Caution about immunity and recovery rates in individuafe@&d by cholera.
Advisory on the immunity status among co-affected indiaidu

L Natural death rate in humans

Lhp the death rate of Bacteria

Br the Buruli ulcer transmission probability.

B TThe chances of water bugs becoming affacted with Buruéulc

the death related Buruli ulcer

Among co-infected buruli ulcer related death .

the death related Cholera .

Among co-infected the Cholera death rate.

the human contact rate with mycobacterium ulcerans.

The contribution to the aquatic due to cholera infected

Modification of the parameter

The recuperation of individuals affected by Buruli ulcer.

the affected individuals recovery of Cholera.

the co-infected individuals recovery rate

Individuals who exclusively recovered from co-infectioitmwBuruli ulcer.
the Level of Ingestion

In water the concentration of Mycobacterium ulcerans .

e 3
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The following system of differential equations descrilesdynamics of the coinfection
of both BU and cholera:

ds
cTth =7h + Ry + VR. + ORye — (Budy + 1) Sh — pnSh,
dE
ditb = BnlvSh — (@ + pn)Ep — B1Ey,
dl
ditb =aby — Bily — (n + pn + k)1,
dl,
dt - BlSh - Bh,IvIc - (U + Hh + Z)I(h
dDbc
i Brnlvle + B1(Iy + Ey) — (0 + pon, + v + @) Dye,
dR,
— =01y — (& + )Ry + (1 6) Dy, (2. 1)
dR,.
T ol. — (¥ + pp)Re + (1 — €)(1 — 0)Dye,
dRy.
db = 5Dbc - (9 + }L},)Rbc,
t
dB
— =w(l, Dye) — up B,
g = WUetpDye) —
ds,
dt =Ty — BU(IZ; + Dbc)Sv - ,LL'USIM
dl,
E = BU(Ib + Db(,')Sv - /LvIv-

In the subsequent section, we will present the well-posesiogthe model.

2.1. Positivity and Boundedness of Solution.In order to guarantee that the solution with
positive initial conditions remain positive for all> 0, it is imperative to confirm that all
state variables remain nonnegative for system ( 2. 1). Thhanfimg theorem is established

in a manner analogous to that of [31, 32]. Any soluti@, Ey, Iy, I, Dy, Ry, R, Ry, B, Sy, 1)
of system (2. 1) remain positive for a set of positive initiahditions and all time > 0.

Proof. To check the positivity o5}, let us assume that all other state variables are non-
negative for all timet. Further, let assume tha{,(0) > 0 and later on at time,, at
crosseg—axis for becoming negative, that iS(¢;) = 0. However, by looking into the
first equation of model ( 2. 1), we can write

ds

dTh”f:tl = 7h 4+ ¢Ry + VR, + ORye > 0.
This shows that as soon the cur¥g reacht—axis, the curve is going back to the positive
cone of the solution space and hence cannot be negativeoVe ftre positivity ofE;, we

will follow a similar argument. LetE,(¢2) = 0, then
dE,
dt

Here again, the positivity of;, is ensured. It is very simple to show the positivity of the

remaining variables and hence we omitted its proof. All ifedlassolution of the system (

llt=t, = BrlvSh > 0.
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2. 1) are bounded and enter the region

ZzZ= {(Sl'mEb;Ib7IC7DbC7RbaRC7RbC7B7SvaI'U) € R}Fl : Nh < ﬂ /\Nv < Trv} .
Hh Mo

Proof. By adding those equations of model ( 2. 1) which describe yimaahics of human
population, we get the following equation

dNy,
dt} =TH — /LhNh — ((5 + 'Y)Dbc — UJIC.
From the above relation, we can write
dNy,
— 2 <7 — uphV,
dt > Th MhIVh,

and by solving this differential inequality, we havé,(t) < :—; The boundedness of
bacteria populatio is trivial from the boundedness &f and D,.. Likewise, by adding
equations of model (2. 1) concerning vectors populationhaxe
dNy,
dt
which leads taV,(¢) < = ensuring the boundedness of soluti§nand/, and hence the
result.

= Ty — Nvaa

3. RESULTS ON THE DYNAMICAL ANALYSIS

We will provide a comprehensive examination of the whole eldater on and initially,
the sub-models will be investigated for stability purpos@sir analysis commences with
the sub-model related to cholera. The sub-model for Chatederived by considering
equations related to Cholera only and ignoring other mtati Thus, in the following
subsection, we will consider the sub-model for Cholera.

3.1. Cholera sub-model. By considering the model’ equations that govern the dynamic

of the Cholera are given by the following submodel:

s
dt

dl,
y B1Sh — (0 + pn + )1,
@3.2)

=7 + YR — B1Sh — pnSh,

dR.

dt =ol.— (¢ + /“L)Rca
dB

E = OJIC - /LbB

Next, we will explore the mathematical characteristics dgdamical aspects of the
cholera sub-model.

The disease-free equilibrium of the sub-model ( 3. 2) ismive the following equilib-
rium state:

E.o= (S}, IR, B") = (%,07070). 3. 3)
h
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The basic reproduction number for the sub-model ( 3. 2 ) isutaled as follows.
Firstly, we have to consider the infected claskeand B from the sub-model (3. 2). Then
we follows the standard procedure of next-generation mggé] and will form two matrix
from these infected classes. One of these two matricesavitein linear and the other will
assumes the non-linear terms as:

F= o Vo (0t st
0 ’ —wl, + B’

L(t)
B(t)

in such a way thaffl—f = F — V wherex = ( ) Next, we compute the Jacobian

matrices forF’ andV as:
0 (k+B)(2S),—BzSy) 0 kzSp+BzSy, —BzSyp(2S,—BzS})
JE) =1, S = JF) =, e :

Considering the disease-free equilibrium (DFE) given iiatien ( 3. 3 ), we have the
Jacobian matrices fdr at the DFE as follows:

0 zﬂ'h,
F = Hh
=y ).
becauses);, = % andB = 0.

Similarly, we calculate the Jacobian matrix férst the DFE as:
J(V):<U+Mh+€ 0>.
—w e

Let A = J(F)andB = J(V). Then, one can find the inverse Bf denoted a3 !,
as:

plo_ Y (/‘b 0 ) .
po(o + pn +£) w o+ pptl
Next, we have to calculate the producB—, that is:
ZTpW ZTpW
AB = (T G X
/LbX 0 0 ’

whereX = (o + up + £). To make the process simpler, we shall defihne- AB~!. The
eigenvalues fo€ are found by solving the equation ¢€t— A1) = 0, that is:

ZMThW )\ ZTh
det((%ﬂb% mjﬁb)) =0.

By solving the above relation for, we get

ZThW
-A -A)=0
(Wb ~ ~MN=0
or
A=0 or A=
K+ pn + pp X
Thus, the basic reproduction numidét,_ ) for the Cholera sub-model is given by
ZThpW

c

Kppp(o + pn +0)
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In the subsequent theorem, we shall prove the local stabilithe DFE for the Cholera
sub-model (3. 2). The DFE,, of the Cholera sub-model ( 3. 2) is locally asymptotically
stable (LAS) ifRy, < 1, and unstable foR., > 1.

Proof. To prove the local asymptotic stability of the DEE_, we shall assume each class
of sub-model ( 3. 2) and will partially differentiate it with.r.t S, I., R., B to find the
Jacobean matrix as follows:

—[in 0 (] -
—/ — ZTh
A= 0 A= 0 wn | 3. 5)
0 0 =¥ — pn 0
0 w 0 —
The characteristic equation for mattikcan be obtained as
det(A — M) =0.
By using matrixA and the identity matrix{, we have
—pn 0 (@ — 1000
0 ——0c 0 ETh 01 0 0
det mEhn | — ) =0.
‘ 0 0 - O 0010
0 w 0 — 00 01

Expanding the determinant, we have the following equation

TR (WX + wip + wpn)) = 0.
K

h

A+ pr) (A L+ 0+ pp) A+ ) (A + 9 + pp) —

By simplification and rearranging the terms, we get

A+ pn) A+ 4 1) (A2 + Ay + (0 + 0 + pn) (1 = Roe)) = 0,
A+ ) A+ ¢+ ) (A2 + 201 + @) = 0, (3.6)
where®, = £+ o + pp + pp @and®s = pp(L+ o + pp)(1 — Roe).
It can be seen from equation ( 3. 6 ) that= —pu; and\s = —¢ — uy, are negative,

while the quadratic equationg + \®; +®, = 0 will give two other negative roots depends

on Ry.. Itis clear from the definitions ob; that the the coefficienb; > 0 and®, > 0

whenRy. < 1. Therefore, according to Descartes rule of sign®,ifand®, are positive

co-efficient of equation + A\, + @, = 0, then there does not exist any positive real root.
Now for negative real roots, we will replaceby —\ in the given equation as:

(A2 + @1 (-A) + By =0 = A2 \D; + ¢y = 0. (3.7)

Here, we consider the sign alterations from positive to tiegand again, by Descartes
rules of signs, two negative real roots exist. In case of tegative roots, our theorem is
proved as all of the four eigenvalues of the variational matre negative.

In case of zero negative real root of the underlying quadeatuation, roots are complex
because complex are always in conjugate form. In this casscdbtes rule guaranteed that
the real parts are negative. Hence, all of the eigenvaluesegative or complex with
negative real parts. Thus, by following [39] (Theorem 3tB DFE of sub-model ( 3. 2
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) is locally asymptotically stable under the conditionff, < 1. If Ry, < 1 and¥ = 0,
then the DFEE),, of the cholera-only model is globally asymptotically s&bl

Proof. To prove the theorem, we will define the Lyapunov functiorhia following form:
h

In the function L(t),m; for i = 1,2, 3 represent constant that will be chosen later. Diffren-
tiate the function(¢) w.r.t time, we get

dL(t) St dS,  dl,  dB
g - Si;,,) at Mgy T
m
= ?;(Sh = Sp)(pnSy + YR — B1Sh — pnSn) + ma(B1Sh, — X11e) + ma(wle — upB),

mi

S, (Sh — Si)?un +
+ m3(wl. — uwB),
- _ml%z(sh — Si)? + mipRe — mi By Sh —
—moXi1l. + mswl. —maupB.

mi

S, (Sh = S;)(WRe — B1Sh) + ma(B1Sh, — X11.)

m
?:SZZZ’RC + m1.S;, B1 + mafi1Sh

Since we assumed that= 0, so the above relation becomes:

dL(t
76[1(5 ) = 7m1%Z(Sh*SZ)Q*mlﬂ1SthmlS;:ﬂlﬁLmQBlSh*mQXl[c+m3ch*m3,ubB'

By choosing the constants; = ms, the above relation becomes:

dL(t
% = —ml%(Sh — 52 4+ myS; B — meX 11, + mawl, — mauyB. (3.9
h

Next, we setnsw = moX; and considering the relation

maw

—mo X 1. + I. = +pp +O)(———— — 1)1, 3.10
moAq maw m?(g Hh )(m2(0+ﬂh+€) ) ( )
and by assuming
Ms _ _Th= 3. 11)
ma  KUpUh
relation ( 3. 10 ) becomes
mampzW
—me X 1.+ I. = + pp + 4 -1 1,
adile T malo ¥ san +4) (m2((wb/th)0 + pn + ) )
= mo(o+ pn +L£)(Ro — 1) L. (3.12)

By putting the above relation in place of terms on the lefglation ( 3. 9 ), we get

dL(t
% = —ml%Z(Sh—S;)Z—l-mlS;;Bl +m2(0+,uh -‘rf)(RQ—l)Ic—mg/LbB. (3 13)
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Now, keeping in mind the value ¢f; and considering the terms, S} 51 — msuy B as

x < 1 *
mlshmfmgubB = m(mlSthfmgubB(ﬁJrB)),
. B
= ;i;7§“”15hz nmubn)A—Ai;j§wmubB

In the above relation, the terms?z (m1S;z — maupk) = 0 by using (3. 11) and
m1 = ms. Thus, we can write

zB
Sf—- —
m hli—f—B

We can write ( 3. 13) if we use relation (3. 14 ) as

B
B = ——— B. 3. 14
ms i PR ( )

dL(t)
dt Sh

Clearly, the right hand side of ( 3. 15 ) is negative onlyRif, < 1 and hence by the
LiapunovLasalle theorem [12] (p. 296), we can say that thE BRglobally asymptotically
stable only ifRy, < 1 and¥ = 0, and unstable otherwise and hence the theorem.

B
= —m " (Sh — S5)2 +ma(o + pun + 0)(Ro, — 1)1, — mm3ﬂb3- (3. 15)

3.2. The BU sub-model. To analyze the dynamics of BU, we will consider the model
equations that govern the dynamics of the Buruli ulcer wizigd given by the following
sub-model;

% = mh + @Ry + —BnLuSh — 1t Sh,

% = Bnl,Sh — (a + pn) Ey — B1Ey,

% =By, — (n+ p+ k)L,

& (3. 16)
— =l - (¢ + pn) Ry,

djtv — 0 — BolySy — inSe,

% = BolySy — v,

Next, we will explore the mathematical characterizationd dynamical aspects of the
Buruli ulcer sub model.

The disease-free equilibrium for the Buruli ulcer sub-mdd&. 16 ) is given by the
following relation

By, = (S}, B}, If, R, S5, 17) = <’”’,o,o,o,”“,o>. (3.17)
Hh Ho
The basic reproduction numbgéRy, ) for the sub-model ( 3. 16 ) is calculated by fol-
lowing the standard next-generation approach [38] andvengby:

\//.Lh Oé’l? +aup + ok + pupn + /-lh + Hh’f)aﬁvﬂ-vﬁhﬂ-h

Ro, =
pn(an + app + ok + ) + g+ k)

(3. 18)

b
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About the local asymptotic behavior of the sub-model ( 3. 1% have the following
result: The DFEE} defined by ( 3. 17 ) of the BU only model is locally asymptotigal
stable ifRg, < 1.

Proof. To prove the local analysis of the DFE ( 3. 17 ), we have to usdittearization
approach [39] (Theorem 3.3). For this, we need to calculagacobian matrix which is
as follows

—pn 0 0 ¢ 0 —Bn
0 —Q — Up 0 0 0 ﬁh%
A= 0 «a e Bl VRl 0 0
10 0 U —¢o—pwn 0 0
0 0 —Tub 0 —py 0
Ty Bo —
The characteristic equation gf is given by
det(A — \I) =0,
or
—pn = A 0 0 ¢ 0 —Bn =
0 —a ==X 0 0 0 Bp 2
0 @ —N—p—Kk—=A 0 0 0
det 0 0 n —¢ —pp — A 0 0
0 0 _/Bv% 0 — My — A 0
0 0 ﬁv% 0 0 —Hv A
)

By expanding the determinant, we get the following charéstie polynomial:

(= N = A = = W) (= = N = = = N =

+”hﬂhm) —0. (3. 20)
Hh Moy
The first three eigenvalues are clearly negative, thatiiss —pn, Ao = —u,, andAg =

—¢ — pp. The rest of the eigenvalues can be calculated by simpéjfgind rearranging the
terms as:
— Oy — ORIy — QR fLy — O [y — RNy — [ o — BRRHe — My — ALy
— Mty — Mefly — N2y — anX — app X — ar — aX? — ppnh — pi X
— BN — A2 = N2 — N2up — A2k — X3+ w =0,
Hh oy
or

N N2+ AUy 4 (o + ) () + pn 4+ 5) (1 — R%) = 0.
For the sake of simplicity, we can write
A2 N2 4+ ATy + U5 = 0. (3. 21)

=0.
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Here
Uy =K+ 2un + 1+ a+ py,
Wy = kpup + 15 + N + apn + an + Kty + 2t + Nty + aply, (3. 22)
U = (@ + pn)(n + pn + 6) (1 — Ry).

As mentioned above, three of the eigenvalues of the vanialtimatrix are negative and the
rest of three can be checked from the roots of equation ( 3. Zthe coefficientV; > 0,

¥y > 0,and¥; > 0whenR,, < 1 (as can be checked from relations (3. 22 )). According
to Descartes rule of signs,if; 1) ands are the positive co-efficients of equation ( 3. 21
) then there dos not exist any positive real root to the eqnatience the solutions to the
corresponding cubic equation are negative.

Thus, all the eigenvalues of the Jacobean matrix are negatigrefor, the DFE of the
BU sub-model ( 3. 16 ) is locally asymptotically stable wheg) < 1 and unstable oth-
erwise and hence the result. The DEk, of the Buruli only model ( 3. 16 ) is globally
asymptotically stable iRy, < 1 and¥ = 0 and unstable otherwise.

Proof. For proving the global stability of the underlying equililom point, we consider the
Lyapunov function defined by
* * Sh * * SU
V(t) = al Sn—S;, —S; log o +bly+cEy+d| Sy, — S, — S, log o +el,. (3.23)
h

v

Differentiating the above functioW (¢) w.r.t ¢, we get

d . d * * Sh * * &
%V(t) = %(G(Sh Sy — S;log SZ) + bl + cEy + d(S, — S — S, log S;ﬁ) +el,),
— _ S;: ! / / _ ﬁ l /
= a(l )Sh+blb+CEB+d( )Sv‘l'elv.
Sh Sy
By using system ( 3. 16 ) in the above relation, we have
/ Sh - S}t
V't) = a S, Y(7h + PRy + —BrlySh — pnSh) + b(aBy — (n+ p + &) 1p)
(So = S7)
+C(/BthSh - (Oé + ,uh)Eb) - ﬁlEb) + d(T)(ﬂ'v - 61)Ibsv - ,u’USU)
+e(5'uIbSv - ,U/vIv)v
a
= E(Sh — Si)(unSy + PRy — BrlySp — unSh) + b(aEy — (n+ p+ £)Iy) + c(BrlySh
d
_(a + Nh)Eb - ﬁlEb) + ?(Sv - S;)(st;z - BvIbSv - ,LL’US’U) + 6(5vIbSv - /1471-[71)7
a a
= *SL:(Sh - S5)(Sh = Sy) + 57(5" — Sp)(@Ry — Bty Sp) + b(aEy — (n+ p+ K)1y)

d
+C(/Bhlvsh - (Oé + ,Uh)Eb - /BlEb) + Si(sw - S:)(NU(S:; - Sv) - /BvIbSv)

+e(6'u-[bsv - ,U/v—[v)-
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By simplification and rearranging the terms, we have

Sih(sh — SEY @Ry — BrlySh) + b(aBy — (n+ p+ £)1)
d

d
+c(BnlySh — (@ + pn) By — B1Ep) — S*MU(SU — 557 - 57(811 — S3)Bu IS,
+e(5v-[b5v - ,U/v-[v)»
_ _i _Q*)\2

V() = —Sihuh(sh—s;pu

2 S (®Ry — BrluSh) — —S5(®Ry, — BulySh) + b(aE,
S}L Sh
d

—(m+p+r)Iy) + c(BrlySn — (4 pn)Ey — B1Ey) — S*Mv(sv - S5)?

d d
_75’0(/871[1)51)) + 73:(6011)511) + e(/BUIbS’U - ,uuju)

S Sy
Since, we assumed th@t= 0, so the above relation becomes
a a
V(t)/ = —thuh(sh — S;:)Q - aﬁthSh) + thS;ﬁLﬂthSh + b(aEb - (’17 +u+ H)Ib)

d
+C(5hlvsh - (a + ,uh)Eb - 51Eb> - ?Mv(sv - S;;)Q - d(/BvIbS'u)

d
+575:(ﬂvfbsy) + e(ﬁvIbSv — /J,UIU).

Upon choosing the constant terms in the above equation as

a = ¢ 15;6h =6,
= M(L d= %_
n+pn+ K K
Utilizing these constants and the valueRy,, we get
' Sp — S)? Sy — S3)?
V(t) = —uiuv% - Nvﬂ'hﬂh% — phpio (@ + pa)(1 — Rog)Eb-

HereV (t) < 0 whenR,, < 1. Thus, by the LiapunovLasalle theorem [12] (p. 296), the
disease free equilibriuri,o of the Buruli ulcer model ( 3. 16 ) is globally asymptotically
stable under the conditioRy, < 1 andy = 0.

3.3. Thy dynamics of the Buruli ulcer and Cholera co-infection malel. The disease
free equilibrium(Ey.;,) for model (2. 1) is given by
Eoa, = (S5, By I Dy, Ry, RY, Ry, B, S5, T3 = (Zh,o,o,o,o,o,o,o,o, Z) .
h v
(3. 25)
To calculate the threshold parameter for this model, wed thied the infected classes from
model (2. 1) (that isEy, I, Dy, B, I,,) and will obtain the basic reproduction number
(by following [38]) as:

Rope = max Vin(an + apn + ak + i + i, + k) B B 2THW
Obc — ,
pn(am + apin + ak 4+ ppn + (15 + pak) Kpntts (o + pn + 0)
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The local analysis of the model is presented in the followtimgprem. The disease free
equilibriumE,, of the coinfection model (2. 1) is locally asymptoticallpbte if By, <
1.

Proof. Here again, for proving the local stability of the DFE of thederlying model, we
shall utilize the linearization approach. For this, we det tollowing variational matrix
(sayK:

— [ 0 0 0 0 [ [ [ 7,:/—;)
— By 2
0 —(a+ ) 0 0 0 0 0 0 0
B

0 a =(n+ pn + K) 0 0 0 0 0 0
0
0 0 0 —(o+pn+10) 0 0 0 0 p
0
0 0 0 0 -0+ pr+v+w) 0 0 0 0
0

k=| 0 0 n 0 e(1-96) —(¢+ pn) 0 0 0
0
0 0 0 o (1—e)(1-10) 0 —( + pp) 0 0
0
0 0 0 0 1) 0 0 —(0+ pn) 0
0
0 0 0 w wp 0 0 0 — Ly
0
0 0 751‘:;—’(1 0 7;3”% 0 0 0 0
0
0 0 317;— 0 ;31,:; 0 0 0 0

~

Next, the characteristic equation is given @y — A\I) = 0 and the eigenvalues are
obtained by expanding the determinant and it was numeyipatived that all of the eigen-
values are negative or complex with negative real parts whgn < 1. By referring to the
approach of [39] (Theorem 3.3), this proves the theorem.

4. OPTIMAL CONTROL THEORY

We utilize the principles of optimal control theory in comtien to system (2. 1)
by incorporating specific controls that can assist in elatiitg infection from individuals
affected by both cholera and Buruli ulcer. We will apply trenByagins Maximum Prin-
ciple on the control system in achieving the required caoaét By including the control
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variables into the proposed system, we obtain the contstésyas follows:

dih =7h + @Ry + Y Re + ORpe — (1 — u1)(Bulvsn) — (1 — u2)B1.Sh — pnSh,
% = (1 —u1)BrlySh — (a4 pn)Ep — B1Ey,

% = aby — (1 —u2)B1ly — (uzn + pn + k)1,

% = (1 =u218n — (1 —u1Bplple — (ugo + pp + )1,
dld)tbc = (1 —w1)Brlole + (1 —u2)B1ly + B1Ep — (us6 + pp, + v + @) Dye,
% = uznly — (¢ + pn) Ry 4 €(1 — u50) Dy,

e — a0l — (4 )R+ (1= )1 — ush) D,

dgtbc = u56Dpc — (0 + pn)Roe,

%} = (L —u2)w(le + pDyc) — 1y B,

diu =my — (1 = u1)Bv(Lp + Dpe) Sy — poSus

ddjtu = (1 —u1)Bo(ILp + Dpc) Sy — piv L.

(4. 26)
The objective function for the system described in equatidn26 ) is as follows:

T 5
J(ui(t)) = / (erdy + cole + csDye + ealy + cs By + Y Ajui(t))dt. (4. 27)
0 i=1

Our objective in this control problem is to minimize the Géral infected, coinfected, and
Buruli ulcer infected individuals, as well as water bugssiag the Buruli ulcer. Addition-
ally, our aim is to minimize the associated expenses relatgrevention and treatment
measures. The associated control variables with the metpons are as follows. The
controlsuy (t) anduq(t) describe the actions to stop the spread of both cholera and BU
infections. The third contraks(¢) represents the management of individuals with cholera
infection and satisfie8 < us < g¢o, heregs represents the drug’s effectiveness in treating
individuals infected with cholera. The treatment for irndivals infected with BU denoted
by u4(t), designed to manage BU-infected individuals and satisfiesu, < g3, where
g3 represents the drug’s effectiveness in treating indiMsluath BU infection. The fifth
control us (t) is examined here to address the management of both BU aner@hol
fected individuals while adhering to the constraink us < g4, Wheregs represents the
drug effectiveness employed for treating individuals atéel with cholera and BU. All of
the control functions are assumed to be Lebesgue integiafi¢ions and bounded. The
final time for the control program is represented®yand the variables; and A; (where
1 ranges froml to 5) represent the weights and cost factors. Our goal is to fieagtimal
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control values:;,us, u$,u;, anduf, such that

Uj

The essential requirement that an optimal solution must milebe derived by using the
Pontryagin’s Maximum Principle. This principle convert&q 4. 26 )-(4. 27 ) into a
type of a problem of minimizing point-wise a Hamiltonian Hithvregard to the controls
uy, Uz, u3, ug andus. The Hamiltonian is defined by:

H =c1Ep + coly + c3l; + caDye + c51, + Arug + Agus + Azus + Agug + Asus
+ Ng, {mn + ¢Ry + YR + ORpe — (1 — u1)(Brlypsn) — (1 — u2)B1Sh — unSn}
+ Np {(1 = 1) BuloSh — (o + pn) By — B1Ep}

+ Nr{aEy — (1 —u2)B1ly — (usn + pn + k) In}

+ Ni (1 —u2)B1Sh — (1 —wr Bp oI — (ugo + pup + €)1}

+ Np, {(1 —w1)Bplul. + (1 — uz)B1ly + B1Ey — (us6 + pu, + v + @)Dy}
+ Ng,{usnly — (¢ + pn) Ry + (1 — us6) Dpe }

+ Nr {ugole — (¥ + pp)Re + (1 — €)(1 — u50) Dy

+ Ng,, {u58Dpe — (0 + pp)Roc}

+ Np{(1 — u2)w(le + pDsc) — B}

+ Ny {my — (1 —u1)Bv(Iy + Dpc)Sy — phySu}

+ NIU{(]- - ul)ﬁv(Ib + Dbc)Sv - /1471[71}'
(4. 29)

Here the Variableg\fsh, NEz,v N]b, N[c, NDbc’ Nva NRcv NRbC’ Npg, NSv and NIU
denotes the associated adjoint variable. The system ofnadiquations can be obtained
by applying the appropriate partial differentiations oé tHamiltonian equation ( 4. 29)
with respect to the state variables. The optimal controlades given byu;, uj, u3,
uj ui and the state variablesy,, Iy, I., I., Dy.,Rp, R Ry, B, Sy, and I, minimizing
J(u1,ug,us, uq, us) over the admissible control set, the adjoint variablesrgive Ng, ,
NEb: N[b, NIC: NDbc' NRb, NRC- NRLC'NB’ NSU andNI,U satisfies

N; H '
—% = 887, wherei stand for the state variable,

with the transversality conditions

Ns, (T) = Ng,(T) = N1,(T) = N; (T) = Np, .(T) = Np(T) = 0,
Ng,(T) = Ng.(T) = Ng, (T) = N, (T) = N, (T) = 0,
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and the characterization of the optimal control are given by

I Sh(Ng, — N, I,I.(Np, — N S (Iy + Dype)(N;, — N,
W= min{l,max(O,ﬁl Sn(Ne, — Nsy) + Bulole(Np,, — Ni.) + BoSs(Ly + Dye) (N1, s,,))}7
Ay
BZS)I(NjchSh) BZIb(NDbanIb)
+ +w(le + pDpe) N,
uy = min{l,max (07 ~+B ot B Ue & pDsc) N5 ,
Ay
Iy(N;, — N,
uy = min{l,max(O,nb(leb)>}, (4. 31)
Az
I.(N;. — N,
uy = min{l,maX(O,nc( L R“)>},
Ay
0Dyp.(N N 0Dy NyeNg, — (1 — )0 Dy N,
ug = min{Lmax(O, be(Npy. + Nrye) + € Z belVr, — (1 =)0D% RC)}.
5

Proof. By employing the Pontryagin’s Maximum Principle to the Hioriian equation
and relevant state variables of the control system in caiom with the optimality system,
we can derive the set of adjoint equations. Upon calculaimhreorganization, we arrive
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at the adjoint system as follows:
dNg,

Bz
pri (1 = u1)Brly(Ns, — Ng,) + (1 —U2)K+73(NS;L Nr,),
dNg, Bz Bz
7 = Cl"‘(a"_:uh"_ +B)NEb Nlba k+ B Dycs
dNp Bz
dtb = —co+(1— ug)ﬁ n B(NIb — Np,.) —usnNg, + (1 — u1)5,5,(Ns, — N1,)
+(usn + pn + &)Ny,,
dN,
dtIc = 763+(17U1)[3h17)(N[C 7NDbc) U4O'NR +(U4O’+,Uzh+€) I. *W(l*Ug)NB,
dN
# = —cy+ (us6 + pn + v + @) Dye — e(1 — us8) N, — (1 — €)(1 — us0)Ng, — us0Np,,
—(1 = ug)wpNp + (1 — u1)B,S,(Ns, — N1,), 4. 32)
dN,
dfb = (¢+,Uh>NRb - (ZSNSh,
dN,
o = (04 m)Nr. —¢Ns,.
dN,
% = (¢+ ,uh)NRbc - aNSm

dNB Rz

o = G 7U2)Sh( +B) 5(Ns, — Np,)+ (1 — )IbW(NIb ~ Np,.)
+( JrB) 5 Eo(Ng, — Np,.) + N,
d];[f” = (1 —w)Bu(lp + Dye)(Ns, — Np,.) + 1 Ns, ,
dl(;:flu = —c5+ (1 —u1)BrnSh(Ns, — Ng,) + (1 —u1)Brl.(Ny, — Np,,) + po N1, .

Next, by applying the condltlorg— 0, we have the desired characterization of the
control variables (4. 31). In the next part, we will presemtnerical solution of the model
that will validates the analytical results obtained thusdad will support the obtained
optimum model. Further, we shall derive strategies that eminimizing the severity of
the diseases within the population.

5. NUMERICAL SIMULATION

In this section, we will simulate the behavior of the propbsgathematical model that
will explain and predict the behavior of the underlying dymeal systems. For simulating
the proposed model, we use fourth order Runge- Kutta (RK4hoakto get the numerical
solution of the model and of the optimal control system. Ithis most commonly used
method to find the solution of differential equation. Algbm of the RK4 method for a
first order differential equatiop’ = f(x,y), y(zo) = yo is given below:

Yn = Yn— 1+6(/€1+2k2+2k3+k4)
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where

kl = h.f (xn—layn—l)v

1 1
ko = hf (xnl + ihvynfl + 2k1> )

1 1
k3 = h.f (xn—l + §h7yn—1 + 2k2> )
ky=hf (xn—l +hyyn—1+ k3) .

We use the above algorithm of RK4 and simulated the model bgidering different
values of the parameters in subsequent examples.

Example 5.1(Numerical simulation of model ( 3. 2) for(Ry < 1)).

According to Theorems (3.1) and (3.1) ,(iRy < 1), then the model will be locally
as well as globally asymptotically stable, which means thatdisease will be eliminated
from the population. As a result, we have chosen the follgvifitial condition:

((Sh(1),1.(1), R.(1), B(10)) = (100, 30, 100, 30))

. Other values of the parameters are given in Table (2). Ukiage values, the graphical
representation of the proposed model compartmental-wig&vén in Figure 1.

Parameter Value Parameter Value

™ 0.252 0 0.055
m 0.005 o 0.006
1 0.0035 w 0.051
¢ 0.009 B 0.005
2 0.0001111 & 0.007

TABLE 2. Parameter and their numerical value used in the numerical
simulation of sub-model ( 3. 16)
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Example 5.2(Simulations of model (3. 16 ) forRy < 1).

According to Theorems (3.2) and (3.2) Af < 1, then the model will be locally as well
as globally asymptotically stable, which means that theafie will be eliminated from the
population. As a result, we can choose the following valueth® parameters in below
Table with initial condition:

(Sn(1), Ey(1), I,(1), Ry(1), S, (1), I,(1)) = (100, 100, 30, 100, 30, 40).

Using these values, the graphical representation of thpogexl model compartmental-wise
are given in Figure 2.
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Parameter value Parameter value

T 0.25 o 0.55
h 0.0005 n 0.6
T 0.95 Ly 0.0519
51 0.05 B 0.04
By 0.013 10) 0.007
K 0.07

TABLE 3. Parameter and their numerical value used in the numerical
simulation of sub-model (3. 16)

Example 5.3(Numerical solution of the model ( 2. 1) forR, < 1).

According to Theorem (3.3) , iRy < 1, then the model will be locally asymptotically
stable, which means that the disease will be eliminated ttwrpopulation. As a result,
we can choose the following values of the parameters givéraie (4) with the initial
condition:

(Sh,(l)v Eb(l)a Ib(l)v Ic(1>7 Dbc(l)v Rb(1)7 Rc(1)7 Rbc(l)a B(l)a Sv(1)7 IU(I)) (5 33)
= (100, 10, 20, 20, 15,12, 14,13, 12, 13, 12). (5. 34)

Using these values, the graphical representation of theogexl model compartmental-
wise is given below.

Parameter Value Parameter Value
T 0.00025 Ty 0.0095

10) 0.007 P 0.005
0 0.06 Ih 0.05
hp 0.051 Bn 0.004
Be 0.0015 K 0.004
® 0.0005 ~ 0.0009
14 0.0005 € 0.0001
0 0.00001 7 0.00001
p 0.0007 B1 0.005
o 0.006 o 0.0002
w 0.0070 Ly 0.0051
% 0.007

TABLE 4. Parameter and their numerical value used in the numerical
simulation of model (2. 1)
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5.4. Numerical simulation on the optimal control problem. In this example, we numer-
ically solve the optimality system (4. 26 ) and the proposedehwithout control by using

the RK4 method and assess several control strategies bagkdiosensitivity to the sys-
tem. The initial values of the control are calculated andojiigmality condition is changed
for subsequent iterations by solving the state system fahtfaough time and the adjoint
system backward in time. Our aim is to minimize the numbentddted individuals with

either BU or Cholera or both and also to minimize the relativst with the prevention
program. The sample solutions of both models are plottedarstibsequent figures.

We can see from figure 5a, without the control variable theufaifpns of susceptible
people decreases with time but when we apply the controdbkzithen the populations
of susceptible people increases with time. One can notm®a ffigure 5b, the control
variable effect on infected water bug is negligible i.e withthe control variable and with
control variable the population of the infected water buglimost same. We see from
figure 5c¢ that the control variable effect on susceptibleswhtig is negligible i.e without
the control variable and with control variable the popwlatof the susceptible water bug
is almost same. It can be observed from Figure 5d that wittlmitontrol variable the
population of bacteria populations increases with timevihegn we apply the control then
the bacteria populations decreases with time. Figure S5gesighat the control variable
effect on recovers people from both bururli ulcer and clolemegligible i.e without the
control variable and with control variable the populatidrite recovers people from both
bururli ulcer and cholera almost same. We see that from tbeeafigure 5f, without the
control variable the populations of recover peoples froml@ta increases with time but
when we apply the control variable then the populations obver peoples from cholera
slightly more increases with time.

We see that from the above figure 6a, without the control égithe populations of
recover peoples from Buruli ulcer decreases with time bugmwive apply the control vari-
able then the populations of recover peoples from Burukugdightly less decreases with
time. we see that from the above figure 6b, without the conaolble the populations
of infected peoples from both Buruli ulcer and cholera dases with time but when we
apply the control variable then the populations of infeqtedples from both Buruli ulcer
and cholera slightly more decreases with time. We see tbat the above figure 6¢, with-
out the control variable the populations of infected pesgtem cholera increases with
time but when we apply the control variable then the popaoitetiof infected peoples from
cholera decreases and approach to zero with time. We sefdhathe above figure 6d,
without the control variable the populations of infectedples from Buruli ulcer decreases
with time but when we apply the control variable then the pafions of infected peoples
from Buruli ulcer slightly more decreases with time.
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FIGURE5. The plot shows the dynamic behavior of the solution compo-
nents of the control and without control models for a givero§@aram-

eter values.
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FIGURE 7. The time evolution of the control variables.

In the graph 7, we have plotted the control variables andyitechics were shown as
the time evolves. Some of the control variables attain theimmam and minimum while
others are changing with time.

6. CONCLUSION

In our current study, we thoroughly investigated the coadyits of cholera and Buruli
ulcer by employing the tools of mathematical modeling. Weatively modeled and ana-
lyzed the Cholera and Buruli ulcer infections, individyadind when they occur together,
via evolutionary differential equations. We investigatbd sub-models related to Cholera
and Buruli ulcer, and obtained the mathematical resultsitthe persistence and extinction
of the infections. We analyzed the local and global behavidthe sub-models when the
value of Ry is less than 1. We found that these sub-models exhibit &tadilfixed points
both locally and globally under certain conditions. Furthere, we explored the model
for the co-infection and discuss its stability in the locahse wherRj is less than 1. We
formulate optimal control problems, considering five diffiet control variables to manage
Cholera and Buruli ulcer infections, and their co-infento We provided a detailed nec-
essary conditions about the optimum system. To verify ditallyresults and to see the
effectiveness of the control variables, we performed nigaksimulations, considering
various combinations of parameters.

In the future research work, the authors intend to extenddea of co-infection of
these two disease into fractional modeling by following tleacepts of [3]. The authors
have also a keen interest in the modeling of the novel gronesgarch area of diabetes and
glucose-insulin interaction models keeping in view thedostadies like [1, 29]. Further, the
researcher can conduct similar co-dynamic studies foemifft infectious diseases using
age-structured models.
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