
Punjab University Journal of Mathematics (2024), 56(1-2),15-30
https://doi.org/10.52280/pujm.2024.56(1-2)03

Exponentiated Power Inverse Lomax Distribution with Applications.

Shamshad Ur Rasool a, S P Ahmad b

a,bDepartment of Statistics, University of Kashmir, Srinagar, Jammu and Kashmir, India.
aEmail: shamshad.stscholar@kashmiruniversity.net

bEmail: sprvz@yahoo.com

Received:22 March, 2023 / Accepted:26 April, 2024 / Published online: 01 June, 2024.

Abstract: The manuscript presents a novel distribution derived from the
exponentiation technique called the Exponentiated Power Inverse Lomax
Distribution (EPILD), which offers a generalized approach to the inverse
Lomax distribution. To show the importance of the EPILD, we establish
various mathematical properties including survival function, hazard rate,
order statistics, entropy measures, r-th moment, and generating functions.
To obtain the parameter estimates for the proposed model, we employed
the maximum likelihood estimation(MLE) approach. The adaptability of
the new model is evaluated by comparing it with well-known distributions
using real-life data sets. In addition to real-life data sets, the flexibility of
the model is also shown via a simulation study. We apply goodness of fit
statistics, various model selection criteria, and graphical tools to examine
the adequacy of the EPILD.
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1. INTRODUCTION

Various fields such as insurance and engineering have already identified multiple useful
probability distributions. Nevertheless, the generalization of these distributions remains an
ongoing pursuit, prompting the creation of several fresh models that are more adaptable
than the distributions employed as baseline models. The Lomax distribution has an in-
verse version referred to as the Inverse Lomax Distribution(ILD), which has been studied
and proved to be particularly flexible in situations when the non-monotonicity of the failure
rate has been realized. Many authors studied various forms of ILD like Bayesian analysis of
inverse Lomax distribution using approximation techniques proposed by Jan and Ahmad,
[10]. Using a two-component mixture inverse Lomax model, Rahman et al [15]. predicted
future-ordered observations using a predictive model and a Bayesian framework. There
have been numerous attempts to expand new families of distributions. For findings on this

15



16 Shamshad Ur Rasool, S P Ahmad

subject, see β family of the distributions by [3], exponentiated technique for the Weibull lo-
max distribution by [7], power Lomax distribution introduced by[8], power transformation
applied on Burr Type X Distribution by [20], new innovative techniques recently proposed
by [12], by [16], a new family of KIES distribution by [2], mixture of two distributions see
[19]. In this paper, our interest is to use the exponentiation technique presented by [17].
The exploration of the EPILD encompasses the following objectives: (i) deriving the
EPILD model;(ii) The main factor supporting the construction of the exponentiated power
inverse Lomax distribution is the fact that the hazard rate of the EPILD exhibits a vari-
ety of complex shapes, such as constant, increasing-decreasing, decreasing-increasing, etc,
which avoids the restrictions of the inverse Lomax distribution. (iii) elucidating mathe-
matical properties, including quantile function, raw and central moments, order statistics,
reliability measures, generating functions and entropy measures; (iv) assessing the preci-
sion of maximum likelihood estimators through simulation studies; (v) demonstrating the
potential and utility of the EPILD; (vi) serving as a primary alternative model to existing
ones and for modeling real data; (vii) providing superior model fits compared to other clas-
sical models; and (viii) drawing empirical inferences from goodness-of-fit statistics and
graphical tools.
The contents of the article are structured as follows. Section 2 describes the model, EPILD.
In section 3, reliability analysis which includes survival function, hazard rate, and reverse
hazard rate. Also, graphical plots of hazard rate functions are added. Section 4, encom-
passes the statistical characteristics of EPILD. In section 5, generating functions like the
moment generating function, characteristics function, and cumulant functions of the EPLID
are elaborated. Section 6, the random number generation via quantile function. In section
7 and section 8, order statistics and information measures are discussed. In section 9, we
address the maximum likelihood estimation for the EPILD parameters. In Section 10, a
simulation is carried out to evaluate the precision of the maximum likelihood estimators.
In Section 11, we consider an application to elucidate the potentiality and utility of the
EPILD model. In Section 12, we conclude the article.

If we assume that a random variable X follows the Inverse Lomax distribution(ILD) ,
then we can express its probability density function(pdf) and cumulative distribution func-
tion(cdf) as

f(x;ω, β) =
ωβ

x2

(
1 +

β

x

)−(1+ω)
; x > 0, ω > 0, β > 0 (1. 1)

F (x;ω, β) =

(
1 +

β

x

)−ω
; x > 0, ω > 0, β > 0 (1. 2)

The pdf and cdf of Power inverse Lomax distribution as studied by [6] are expressed as
follows,

f(x;β, ω, τ) = τωβxωτ−1 (β + xτ )
−(ω+1)

; x > 0, β > 0, ω > 0, τ > 0 (1. 3)

F (x;β, ω, τ) =

(
1 +

β

xτ

)−ω
; x > 0, β > 0, ω > 0, τ > 0 (1. 4)
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2. EXPONENTIATED POWER INVERSE LOMAX DISTRIBUTION (EPILD)

The EPILD is constructed from the power inverse Lomax distribution by using the ex-
ponentiation technique given as

Fe(x) = [F (x)]
α
; α > 0

Using the equation ( 1. 4 ),the cdf of the model is given by

Fe(x) =

[(
1 +

β

xτ

)−ω]α
(2. 5)

Differentiating equation ( 2. 5 ) will yield the pdf of EPILD given as

fe(x) = αβτωx−(τ+1)

(
1 +

β

xτ

)−(ωα+1)

; x > 0, α > 0, β > 0, ω > 0, τ > 0 (2. 6)

Special cases: The important sub-cases of EPILD are presented in here

• For α =1, the EPILD model can be simplified to the three parametric Power inverse
Lomax distribution.

• For τ = α =1 ,the EPILD model can be simplified to the two parametric inverse
Lomax distribution.

• For τ = α =β=1 ,the EPILD model can be simplified to the one parametric inverse
Lomax distribution

3. RELIABILITY ANALYSIS OF EPILD

3.1. Survival function. The survival function for EPILD is given as

SEPILD(x) = 1−

[(
1 +

β

xτ

)−ω]α
(3. 7)

3.2. Hazard Rate. Hazard function, force of mortality, and failure rate are other names
for hazard rate which is given by

h(x;α, β, τ, ω) =
αβτωx−(τ+1)

(
1 + β

xτ

)−(ωα+1)

1−
[(

1 + β
xτ

)−ω]α (3. 8)

3.3. Reverse Hazard function. Using equation ( 2. 5 ) and ( 2. 6 ) , the reverse hazard
function for the EPILD is obtained as

hr(x;α, β, τ, ω) =
αβτωx−(τ+1)

(
1 + β

xτ

)−(ωα+1)

[(
1 + β

xτ

)−ω]α (3. 9)
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3.4. Plots of the EPILD Density and Hazard Rate Functions. We generate plots of the
probability density function (pdf), cumulative distributive function (cdf), and hazard rate
function for various parameter values of the EPILD model. The probability density func-
tion of the EPILD exhibits diverse characteristics, including symmetrical, right-skewed,
and left-skewed as shown in Figure 1. Additionally, the hazard rate function can illus-
trate shapes such as modified bathtub, decreasing, increasing, and increasing-decreasing-
increasing, as depicted in Figure 2. Hence, the EPILD offers considerable flexibility and is
well-suited for analyzing a wide range of datasets.
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FIGURE 1. Graphs illustrating the pdf and cdf of EPILD are plotted for
varying parameter values.

4. STATISTICAL CHARACTERISTICS OF EPILD

The relevant measures that are connected to the formulated model are discussed here.

4.1. Raw Moments. The rthmoment of the EPILD about origin µ
′

r

µ
′

r = E(xr) =

∞∫
0

xrfe(x, α, β, τ, ω)dx

µ
′

r =

∞∫
0

xrαβτωx−(τ+1)

(
1 +

β

xθ

)−(ωα+1)

dx



Exponentiated Power Inverse Lomax Distribution with Applications. 19

0 2 4 6 8 10

0.
0

1.
0

2.
0

x

h(
x)

α = 1,  β = 0.3,  ω = 0.5,  τ = 1

0 2 4 6 8 10

0.
0

1.
0

2.
0

x

h(
x)

α = 5,  β = 1.2,  ω = 3.7,  τ = 3

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
4

0.
00

8

x

h(
x)

α = 3.5,  β = 3.4,  ω = 1.2,  τ = 1.7

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

x

h(
x)

α = 1,  β = 1,  ω = 0.9,  τ = 1.5

FIGURE 2. Multiple graphs depicting the Hazard rate function of
EPILD are presented, with each plot displaying varying parameter val-
ues.

Put
(
1 + β

xτ

)−ωα
= z and upon further simplification , we obtain the rthmoment of the

EPILD about origin µ
′

r as

µ
′

r = ωαβ
r
τ ×B

(
1− r

τ
, λα+

r

τ

)
; r < τ (4. 10)

where B
(
1− r

τ , ωα+ r
τ

)
represents the beta functions of second type.

4.2. Central Moments (EPILD).

µ2 =

[
ωαβ

2
τ ×B

(
τ − 2

τ
,
2 + αλτ

τ

)]
−
[
ωαβ

1
τ ×B

(
τ − 1

τ
,
1 + αωτ

τ

)]2
(4. 11)

The equation ( 4. 11 ) represents the variance of EPILD.

µ3 = ωαβ
3
τ ×B

(
τ − 3

τ
,
3 + αωτ

τ

)
− 3ωαβ

2
τ ×B

(
τ − 2

τ
,
2 + αωτ

τ

)
ωαβ

1
τ ×B

(
τ − 1

τ
,
1 + αωτ

τ

)
+2

(
ωαβ

1
τ ×B

(
τ − 1

τ
,
1 + αωτ

τ

))3

(4. 12)
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µ4 = ωαβ
4
τ ×B

(
τ − 4

τ
,
4 + αωτ

τ

)
− 4ωαβ

3
τ ×B

(
τ − 3

τ
,
3 + αωτ

τ

)
ωαβ

1
τ ×B

(
τ − 1

τ
,
1 + αωτ

τ

)
+6ωαβ

2
τ ×B

(
τ − 2

τ
,
2 + αωτ

τ

)[
ωαβ

1
τ ×B

(
τ − 1

τ
,
1 + αωτ

τ

)]2
−3
[
ωαβ

1
τ ×B

(
τ − 1

τ
,
1 + αωτ

τ

)]4
(4. 13)

As a result, these equations may be used to calculate the skewness measure and kurtosis.

5. GENERATING FUNCTIONS OF EPILD

The following theorem provides the MGF for the EPILD distribution.

Theorem 5.1. We can obtain the moment generating function MX(t) for the EPILD dis-
tribution if we assume that X follows this distribution. The expression is

Mx(t) =

∞∑
r=0

tr

r!
ωαβ

r
τ ×B

(
1− r

τ
, ωα+

r

τ

)
(5. 14)

Proof: By definition

Mx(t) =

∞∫
0

etxfe(x)dx

Using the series representation of etx, we have

∞∑
r=0

tr

r!

∞∫
0

xrfe(x;α, β, τ, ω)dx

Using equation ( 4. 10 ) we obtain the M.G.F for EPILD as

Mx(t) =
∞∑
r=0

tr

r!
ωαβ

r
τ ×B

(
1− r

τ
, ωα+

r

τ

)
(5. 15)

5.2. Characteristic Function. The characteristic function for EPILD distribution is given
in the following theorem.

Theorem 5.3. We can obtain the Characteristic Function for the EPILD distribution if we
assume that X follows this distribution. The expression obtained is

φX(t) =

∞∑
r=0

(it)r

r!
ωαβ

r
τ ×B

(
1− r

τ
, ωα+

r

τ

)
(5. 16)

Proof: The characteristic function for the EPILD can be obtained using the relation
φX(t) =Mx(it)
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5.4. Cumulant Function. The cumulant function for the EPILD can be obtained using
the relation kx(t) = logMx(t)

kx(t) = log

[ ∞∑
r=0

tr

r!
ωαβ

r
τ ×B

(
1− r

τ
, ωα+

r

τ

)]
(5. 17)

6. QUANTILES OF EPILD

Let X represent the random variable whose pdf is specified in equation ( 2. 6 ). By
definition we have, F [Q(u)] = u =⇒ Q(u) = F−1(u)
For the EPILD it is

Q(u) = β
1
τ

[
u
−1
ωα − 1

]−1
τ

(6. 18)

Therefore, using the aforementioned calculation, one may get the quantiles of EPILD.
Since it is generally known that standard measures of skewness and kurtosis have limi-
tations when moments are absent for any distribution. To address these issues, the quantile
measures can be used to study the examination of the variability of skewness and kurtosis.

7. ORDER STATISTICS OF EPILD

This section is dedicated to the order statistics related to the EPILD.Suppose we have a
random sample x(1), x(2), x(3), . . . , x(n) derived from the EPILD, withX(t;n) representing
the tth order statistics. Therefore, by definition

f(t;n)(x) =
n!

(t− 1)!(n− t)!
[Fe(x;α, β, τ, ω)]

t−1
[1− Fe(x;α, β, τ, ω)]n−t fe(x;α, β, τ, ω)

(7. 19)

F(t;n)(x) =

n∑
j=t

(
n

j

)
[Fe(x;α, β, τ, ω)]

j
[1− Fe(x;α, β, τ, ω)]n−j (7. 20)

Using equation ( 2. 5 ) and equation ( 2. 6 ) in equation ( 7. 19 ) and equation ( 7. 20 ), the
expressions of the tth ordered statistics for the EPILD is derived as

f(t;n)(x) =
n!

(t− 1)!(n− t)!

[(
1 +

β

xτ

)−ωα]t−1

×

[
1−

(
1 +

β

xτ

)−ωα]n−t
αβτωx−(τ+1)

(
1 +

β

xτ

)−(ωα+1)

(7. 21)

F(t;n)(x) =

n∑
j=t

(
n

j

)[(
1 +

β

xτ

)−ωα]j [
1−

(
1 +

β

xτ

)−ωα]n−j
(7. 22)
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8. INFORMATION MEASURE OF EPILD

In this section we derive the expression for Renyi entropy of EPILD

Theorem 8.1. The Renyi entropy for the EPILD is obtained as

Ir(x) =
1

(1− δ)
ln

[
(ωα)δτ δ−1β

1−δ
τ B

(
δ

τ
− 1

τ
+ δ, ωαδ +

1

τ
− δ

τ

)]
Proof: By definition, Renyi entropy is given as

Ir(x) =
1

(1− δ)
ln

∫ ∞
0

f(x)
δ
dx

Using the equation ( 2. 6 ) and substituting the (1 + β
xτ ) = t and upon further simplifi-

cation, we obtain the Renyi entropy for the EPILD expressed as

Ir(x) =
1

(1− δ)
ln

[
(ωα)δτ δ−1β

1−δ
τ B

(
δ

τ
− 1

τ
+ δ, ωαδ +

1

τ
− δ

τ

)]
(8. 23)

Theorem 8.2. The Tsallis entropy for the EPILD is expressed as

It(x) =
1

(δ − 1)

[
1− (ωα)δτ δ−1β

1−δ
τ B

(
δ

τ
− 1

τ
+ δ, ωαδ +

1

τ
− δ

τ

)]
Proof: The Tsallis entropy for the EPILD distribution is defined as

It(x) =
1

(δ − 1)

[
1−

∫ ∞
−∞

fe(x)
δ
dx

]
; δ > 0, δ 6= 1 (8. 24)

using the equation ( 2. 6 ) and substituting the (1+ β
xτ ) = t and upon further simplification,

we obtain the Tsallis entropy for the EPILD expressed as

It(x) =
1

(δ − 1)

[
1− (ωα)δτ δ−1β

1−δ
τ B

(
δ

τ
− 1

τ
+ δ, ωαδ +

1

τ
− δ

τ

)]
(8. 25)

9. ESTIMATION OF PARAMETERS

9.1. Maximum Likelihood Estimation(MLE). Assuming a random sample of n obser-
vations say x1, x2, x3, . . . , xn taken from the EPILD and possessing the pdf given in ( 2.
6 ). Consequently, the logarithm likelihood function of EPILD is calculated for n observa-
tions as,

log l = n logα+n log τ+n logω+n log β+(ωατ−1)
n∑
i=1

log(xi)−(ωα+1)

n∑
i=1

log(β+xτi )

(9. 26)
Partially differentiating ( 9. 26 ), we have

∂ log l

∂τ
=
n

τ
+ (ωα)

n∑
i=1

log(xi)− (ωα+ 1)

n∑
i=1

xτi log(xi)

β + xτi

(9. 27)
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∂ log l

∂ω
=
n

ω
+ (ατ)

n∑
i=1

log(xi)− α
n∑
i=1

log(β + xτi )

(9. 28)

∂ log l

∂β
=
n

β
− (ωα+ 1)

n∑
i=1

1

(β + xτi )

(9. 29)

∂ log l

∂α
=
n

α
+ (ωτ)

n∑
i=1

log(xi)− ω
n∑
i=1

log(β + xτi )

(9. 30)

The maximum likelihood estimators are given by the solution of the equation system given
by the formulas in expressions ( 9. 27 ), ( 9. 28 ), ( 9. 29 ), and ( 9. 30 ) and made equal to
zero. To solve these equations and estimate the parameters, we will use R software.

10. SIMULATION ILLUSTRATION

This section examines the efficiency of the MLEs of EPILD. Using R Software, a simu-
lation study was carried out to illustrate the behavior of MLEs while randomly generating
different sample sizes from EPILD by using the quantile function expressed in equation (
6. 18 ). There are 1000 iterations of the process. Various combinations of parameters are
chosen as (3,1.5,1.5,2.4), (3.5,2, 1.5,2.4), and (3.5, 2, 1.7,2.6) . The MLE values and the
empirical MSEs associated with each situation were calculated and presented in Table 1,
Table 2, and Table 3 to report the research findings. The estimates are deemed stable and
closely approximate the actual parameter values. Further, in all scenarios, the MSE drops
as the sample size increases

TABLE 1. Simulation findings of the EPILD with parameter combina-
tion set as (α = 3, β = 1.5, τ = 1.5, ω = 2.4)

Sample MLE MSE
n α̂ β̂ τ̂ ω̂ α̂ β̂ τ̂ ω̂

30 3.891 1.166 1.404 3.476 2.250 0.174 0.0726 1.223

50 3.526 1.2913 1.583 3.051 0.782 0.083 0.0441 0.4644

100 3.364 1.426 1.56 2.855 0.376 0.012 0.017 0.2146

200 3.251 1.43 1.531 2.711 0.151 0.004 0.0060 0.1027

300 3.235 1.472 1.514 2.690 0.055 0.001 0.0015 0.092
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TABLE 2. simulation findings of EPILD with parameter combination set
as (α = 3.5, β = 2, τ = 1.5, ω = 2.4)

Sample MLE MSE
n α̂ β̂ τ̂ ω̂ α̂ β̂ τ̂ ω̂

30 4.5174 9.386 1.467 4.0866 11.982 54.650 0.0943 2.9344

50 4.138 3.175 1.495 3.366 3.324 1.262 0.0691 1.003

100 3.293 3.116 1.498 2.120 0.2085 1.254 0.0084 0.0864

200 3.3602 2.449 1.5075 2.2075 0.1070 0.2063 0.0047 0.0416

300 3.601 2.007 1.5021 2.555 0.1046 0.0010 0.0027 0.0252

TABLE 3. Simulation findings of EPILD model with parameter combi-
nation set as (α = 3.5, β = 2, τ = 1.7, ω = 2.6)

Sample MLE MSE
n α̂ β̂ τ̂ ω̂ α̂ β̂ τ̂ ω̂

30 4.2821 5.566 1.8653 3.9585 9.3597 12.8048 0.1521 1.9305

50 4.2321 4.9457 1.7935 3.7059 4.349 8.8145 0.1372 1.360

100 4.0217 2.5845 1.753 3.296 3.0118 0.3546 0.0157 0.497

200 3.724 2.577 1.722 2.896 0.427 0.260 0.001 0.098

300 3.514 2.4039 1.719 2.635 0.382 0.169 0.007 0.007

11. APPLICATION

Using two actual data sets from the environmental and medical fields, we demonstrate
the utility of the EPILD distribution in this section.

• Data set First : [9] collected the first set of data and was also presented by [13].
It comprises of thirty consecutive readings for March precipitation in Minneapo-
lis/St. Paul (in inches).

• Data set Second : The data set corresponding to remission times (in months) of a
random sample of 128 bladder cancer patients reported first by [11]

The application of the suggested model to actual data sets is highlighted here. This section
demonstrates the significance and superiority of EPILD by utilizing two actual data sets.
To check the superiority and the flexibility of EPILD, we compare it with some known
well competitive models which are mentioned as ILD(Inverse Lomax Distribution) and
LD(Lomax Distribution). Performance comparing methods used to select the best distribu-
tion among compared models. These criteria select the superior distribution as the one with
the lowest values of Akaike information criteria (AIC), HannanQuinn information criteria
(HQIC), and Akaike information criteria Corrected (AICC) . The model with the highest
p- value and the lowest KS value is regarded as the superior and best-fitted model.



Exponentiated Power Inverse Lomax Distribution with Applications. 25

TABLE 4. MLE’s of EPILD and compared distributions with corre-
sponding standard error (given in parenthesis) for data set first.

Model β̂ ω̂ α̂ τ̂

EPILD 11.088 0.708 0.7411 3.646
(21.863 ) ( 39.278) (53.2041) ( 1.383)

ILD 98.742 0.011
(146.489) ( 0.017)

LD 65305.779 109371.804
(11863.828 ) ( 303.255)

TABLE 5. Comparison of EPILD and compared distributions ( data set first)

Model -2l̂ AIC AICC HQIC K-S p-value
EPILD 77.232 85.232 86.832 87.02547 0.064 0.9997

ILD 92.693 96.693 97.137 97.589 0.255 0.0503

LD 90.949 94.949 95.393 95.845 0.2352 0.0722

TABLE 6. MLE’s of EPILD and compared distributions with corre-
sponding standard error (given in parenthesis) for data set second.

Model β̂ ω̂ α̂ τ̂

EPILD 124.997 0.600 0.976 2.172
(137.077 ) ( 39.055) (63.515) ( 0.322)

ILD 2.002 2.462
(0.631) ( 0.593)

LD 13.865 120.342
(15.168 ) ( 140.674)

TABLE 7. Comparison of EPILD and compared distributions (data set second)

Model -2l̂ AIC AICC HQIC K-S p-value
EPILD 819.3958 827.3958 827.7210 832.031 0.0322 0.9994

ILD 849.351 853.3514 853.447 855.6690 0.1184 0.0549

LD 827.665 831.6658 831.7618 833.9834 0.0967 0.1821

Results shown in Table 5 and 7 reveals that EPILD is having a smallest value of AIC
,HQIC and AICC as compared to other competing models (Lomax and Inverse Lomax)and
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thus outperforms the models of inverse Lomax distribution and Lomax distribution.The
results are further supported by Figures (3), (4) ,(5) ,(6) and (7).

12. CONCLUSION

The primary contribution of this manuscript is the suggestion of an adaptable general-
ization of the inverse Lomax distribution that may be used in place of the classical inverse
Lomax in many situations. In this regard, we employ the exponentiation approach and pro-
vide the EPILD , a novel probability model. We explain some of its important features and
derive parameters through a reasonably effective estimation method. The incorporation of
two actual data sets serves as a practical example of how EPILD might be applied. The sug-
gested model’s performance in comparison to other well-established models is evaluated
using the goodness of fit measure. The results obtained demonstrate a positive outcome, in-
dicating that the EPILD model outperforms other competing models for the provided data
sets.

Declaration of Competing Interest
The authors declare no conflict of interest.

Funding
The authors received no funding for this study.



Exponentiated Power Inverse Lomax Distribution with Applications. 27

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 (i)

x

R
el

ia
bi

lit
y 

F
un

ct
io

n

Empirical Reliability Function

Fitted Reliability Function of EPILD

 Reliability Function ILD

 Reliability Function LD

FIGURE 3. (i)For the first data set, the fitted EPILD reliability func-
tion and the empirical reliability function along with competitive models
(Inverse Lomax distribution(ILD) and Lomax distribution(LD) are pre-
sented.
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FIGURE 4. (ii)For the second data set, the fitted EPILD reliability
function and the empirical reliability function along with competitive
models(Inverse Lomax distribution(ILD) and Lomax distribution(LD)
are presented.
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FIGURE 5. P-P Plot of the EPILD model for the both data set.
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