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Abstract. This paper introduces a novel fractional-order integral trans-
form within the field of fractional calculus and applies it to the solu-
tion of fractional burger’s equation with different fractional differential
operator. In this study, we apply the newly proposed transform to sev-
eral fractional differential, including Caputo, Caputo-Fabrizio, Riemann-
Liouville, New Fractional Derivative and Atangana-Baleanu operators in
both the Riemann-Liouville and Caputo senses. For varying values of
ϕα(s), ψ(s) and γ(t), the over 200 existing integral transforms and frac-
tional integral transforms can be considered special cases of the proposed
transform when applied to the aforementioned derivatives. This suggests
the versatility and applicability of our newly introduced fractional-order
integral transform within the broader context of fractional calculus, engi-
neering and physics. The analytical solution of Fractional order Viscous
Burger’s equation with different differential and integral operators are also
discussed.
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1. INTRODUCTION

The credit of being the father of classical calculus goes to two famous mathematician
known as Isaac Newton and Gottfried Wilhelm Leibniz. But Leibniz is also a pioneer
of fractional calculus (FC). On September 30, 1965, he wrote a letter to L’Hospital and
asked about the half order derivative, which led to the formation of FC. However, oth-
er than fractional order the field can converge to complex order also. Initially, FC faced
some challenges in its promotion due to lack of knowledge about its practical application
in real world’s problems. Even Leibniz himself doesn’t propose any work on fractional
calculus.[34] But with the passage of time, mathematician keep working on it and made
many fractional differential and integral operators along with formation of functions and
integral transformations. After that in 19th century along with many other researcher, Leib-
niz, Eular, Fourier, Laplace, Liouville, Riemann, Grunwald, Letnikov, and Hamdard are
few names who worked on FC and presented their definitions.[36] Liouville was the one
who give two definition, but the most important paper was given by Riemann who came
after Liouville. The bulk of scientific domains have seen FC use during the 20th century.
In 20th century, not only FC field progressed rather first conference and book on it is pub-
lished where many uses of FC came in view using some famous differential operators like
Riemann-Liouville, Caputo, Caputo-Fabrizio and many others.

The RL derivative,[41] which includes both Lacroix’s and Liouville’s formulas, is a
generalization of Cauchy’s integral function. The Riemann-Liouville fractional derivative
has the drawback that it does not have a fixed base point; instead, the base point varies from
function to function. The RL derivative converges to Lacroix’s formula when the base point
is zero and to Liouville’s when the base point (lower bound) is zero [6]. The Riemann-
Liouville fractional derivative was improved by Caputo in 1967, and he then provided a
new fractional derivative with a single exponential-type kernel. The only shortcoming of
the Caputo derivative is the singularity issue.

In 2015, Caputo and Fabrizio altered the Caputo derivative’s singularity problem. They
provided a brand-new definition devoid of a single (exponential type) kernel [16]. Atangana
and Baleanu further alter the exponential kernel by applying the non-singular and non-
local derivatives of the one-parameter Mittag-Leffler functions. Both Riemann-Liouville
and Caputo senses of the Atangana-Baleanu derivative are provided in [6, 34]. Jassim and
Hussein further updated the Liouville-Caputo derivative by presenting a New Fractional
Derivative (NFD) without a singular kernel and with order α ≥ 0. They employed an
exponential-type kernel, and this NFD has an advantage over the other derivative in that it
converges to classical calculus more quickly [16].

Calculus, often known as the mathematics of change, is the study of change and is
concerned with limits, differentiation, and integration. In the classical calculus, the deriv-
ative has an important geometric interpretation; namely, it is associated with the concept
of tangent, in opposition to what occurs in the case of FC.[36] The 300-year-old subject of
fractional calculus can be considered as an old as well as, as a novel field because it serves
as a testing ground for various transformations and differential and integral operators and
due to its inadequacy of a exact limit boundary that gives the exact results of the differential
or integral problem just like classical calculus.
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The FC era spans the 18th and 19th centuries. Numerous transformations of the Laplace
type are performed, which is helpful in solving integral and differential equations of various
types and orders [34]. These transforms offer an alternative to integration by simplifying
complex equations into straightforward algebraic ones. In this study, a novel fractional-
order integral transform is suggested. The bulk of scientific domains have seen FC use dur-
ing the 20th century. FC has applications outside of mathematics, physics, and engineering,
including in the areas of medical, engineering, physics, economics, demographics, finance,
signal processing, artificial intelligence, robotics and electrical circuits [42, 6, 16, 10].
The new fractional integral operator introduced by [49]. This operator is helpful for rela-
tionship between weighted extended Cebysev version and Polya-Szego type inequalities.
The iterative Elzaki transform method was introduced by [40] for the solution of nonlinear
fractional Fishers model. The analytical solution of Burgers fluid with a fractional deriva-
tives model analyzed through a rotating annulus [17].

Integral transformation is the easiest, simplest, and most effective mathematical tech-
nique and plays an important role in modeling real-world problems. They are used in a
wide range of fields like medical and other sciences,engineering, technology, commerce,
finance, economics, etc., and are mostly used to convert complex differential equations into
easily solvable algebraic equations. Likewise, integral transforms are widely used to solve
mathematical models like cancer models, tumor growth models, chemical reaction models,
decay problems, health science models, and traffic flow models.

FIGURE 1. Represents the flow chart of our contributions and paper structure.

In this study, we provide a generalized integral transform that takes into account both
fractional and integer orders. The main characteristic of this transform is that it may be used
as a special instance of our suggested method for almost all existing integral transforms
belonging to the Laplace family of integral transforms. We demonstrate how our transform
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is applied to fractional derivatives. We also go over the specific instances that our suggested
transforms produce in the form of derivatives of already-existing transforms. Moreover, we
border its use to fractional viscous Burger’s equation by applying it with six well known
fractional differential operators. Burger’s equation attract the attention of researchers for
many years and has its application in many field and mathematical models like Traffic
flow, fluid mechanics, nonlinear wave propagation, gas dynamic, heat conduction, financial
mathematics, mathematical physics, applied sciences and engineering.

1.1. Motivation. In the domain of fractional calculus and integral transforms, existing in-
tegral transforms such as the Laplace, Fourier, and Sumudu transforms have shown signifi-
cant utility. However, none of these provide a unified framework capable of simultaneously
addressing both integer-order and fractional-order transforms across various fractional op-
erators. This lack of generality limits their applicability, especially when dealing with
complex mathematical models involving diverse types of fractional derivatives.

To address these limitations, we propose a highly generalized integral transform de-
rived from the Laplace transform family. This new transform offers a unified structure that
encompasses and extends over 200 known fractional differential transforms.

The main contributions and highlights of our work are as follows:

• Our proposed transform encapsulates a wide range of fractional differential trans-
forms as special cases, depending on the choice of kernel functions ϕα(s), γ(t)
and ψ(s).

• We demonstrate the application of the transform in solving the fractional viscous
Burgers’ equation using various well-established fractional derivatives.

• We have extensively applied these proposed transforms to fractional viscous Burg-
er’s equation using well-known fractional derivatives.

• The transform is successfully applied to fractional operators such as Caputo, Caputo-
Fabrizio, Riemann-Liouville, Atangana-Baleanu (in both Riemann-Liouville and
Caputo senses), and the New Fractional Derivative.

• Our approach provides a consistent and unified methodology for analyzing frac-
tional models, extending the versatility and applicability of integral transforms in
the field.

The contributions of our work and the structure of our paper are depicted in a flow chart,
illustrated in Figure 1. This visualization provides a concise overview of the main aspects
of our research and the organization of the paper.

2. NEW INTEGRAL TRANSFORM

In this section, we introduce the most comprehensive integral transform, encompass-
ing nearly all existing integral transforms within the Laplace transform family as well as
fractional-order integral transforms.
Let f(t) be an integrable function defined for all t ≥ 0, γ(t) is a polynomial, ϕα(s) ̸= 0
and ψ(s) is a positive real function. Then, the new integral transform is defined as follows
[48]:

S{f(t); s} = F (s) = ϕα(s)

∫ ∞

0

γ(t)e−ψ(s)t f(t)dt. (2. 1)
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Provided that the integral exists for some ψ(s) and the inverse of the transform is the
original function f(t) = S−1{F (s)}. After applying the proposed transform to some
functions, results are summarized in Table 1.

TABLE 1. Shows the results of some functions after applying the new transform.

Function f(t) = S−1F (s) New integral transform F (s) = S{f(t); s}
c cϕ

α(s)
ψ(s)

lf(t) lF (s)

tn Γ(n+ 1) ϕα(s)
ψn+1(s)

ext ϕα(s)
ψ(s)−x

f ′(t) ψ(s)F (s)− ϕα(s)f(0)

f (n) ψn(s)F (s)− ϕα(s)
∑n−1
k=0 ψ

n−k−1(s)fk(0)∫ t
0
f(w)dw 1

ψ(s)F (s)

[xf1(t) + yf2(t)] [xF1(s) + yF2(s)]
f1(t) ∗ f2(t) 1

ϕα(s)F1(s)F2(s)

3. THE SOLUTION OF FRACTIONAL VISCOUS BURGER’S EQUATION WITH
FRACTIONAL DIFFERENTIAL OPERATORS

In this section, the solution of fractional Burger’s equation with different fractional dif-
ferential operator is presented. The proposed linear transform in combination with adomian
decomposition method is used to get the exact solution.

3.1. The solution of Burger’s equation with Caputo fractional operator. We consider
the fractional viscous Burgers’ equation, where the viscosity coefficient is assumed to be
1 for simplicity. The model is defined over a one-dimensional spatial domain and does
not include any external force terms. The function y(x, t) is assumed to be sufficiently
smooth (i.e., continuously differentiable where necessary) to permit the application of both
analytical and numerical methods. The equation is given by [16]:

0D
α
t y(x, t) + yyx = yxx y(x, 0) = x, (3. 2)

where y is velocity field, t is the time and x is the spatial coordinates. Now, consider
equation ( 3. 2 ) with Caputo fractional derivative, it becomes

C
0 D

α
t y(x, t) + yyx = yxx y(x, 0) = x. (3. 3)

The Caputo fractional derivative for n = 1 is

C
0 D

α
t y(x, t) =

1

Γ(1− α)

∫ t

a

(t− y)−αf ′(t). (3. 4)

After putting ( 3. 4 ) in ( 3. 3 ) and applying the proposed transform

S
{ 1

Γ(1− α)

∫ t

a

(t− y)−αy′(x, t)
}
− S{yyx} = S{yxx}.
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By using the integral and transform properties, it becomes
1

Γ(1− α)
S{(t)−αy′(x, t)} = S{yxx − yyx}.

Using properties from Table 1 simplifies as,

1

Γ(1− α)ϕα(s)

[ϕα(s)Γ(1− α)

ψ1−α(s)
{ψ(s)S{y(x, t)} − ϕα(s)u(x, 0)}

]
= S{yxx − yyx}.

After using IC, the above equation takes the form

S{y(x, t)} =
ϕα(s)

ψ(s)
x+

1

ψα(s)
S{yxx − yyx}.

After applying the inverse transform on both sides

y(x, t) = xS−1
{ϕα(s)
ψ(s)

}
+ S−1

{ 1

ψα(s)
S{yxx − yyx}

}
.

Using properties of inverse transform

y(x, t) = x+ S−1
{ 1

ψα(s)
S{yxx − yyx}

}
.

Using decomposition series we have, y(x, t) =
∑∞
n=0 yn(x, t), where nonlinear term can

be decomposed as,

Ny(x, t) = An(y) = An(y0 + y1 + y2, ..., yn) =
1

n!

dn

dλn
[N(

∞∑
k=0

λkyk)]λ=0, n = 0, 1, 2, . . .

So the equation takes the form

y0(x, t) +
∞∑
n=1

yn(x, t) = x+ S−1
{ 1

ψα(s)
S{

∞∑
n=0

ynxx −
∞∑
n=0

An(y)}
}
.

This implies

y0(x, t) = x.

So, a recursive relation is defined as

yk+1(x, t) = S−1
{ 1

ψα(s)
S{ykxx −Ak(y)}

}
, k ≥ 0, (3. 5)

For k = 1, put k = 0 in ( 3. 5 ), we have

y1(x, t) = S−1
{ 1

ψα(s)
S{y0xx − y0y0(x)}

}
.

After putting the value of y0(x, t) = x, in above equation, we have

y1(x, t) = −x tα

Γ(α+ 1)
.

For k = 2, put k = 1 in ( 3. 5 ), we have

y2(x, t) = S−1
{ 1

ψα(s)
S{y1xx − (y0y1x + y0xy1)}

}
.
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After simplifying the above equation

y2(x, t) = 2x
tα

Γ(2α+ 1)
.

The solution of the equation ( 3. 2 ) with Caputo fractional derivative is

yC(x, t) = x
(
1− tα

Γ(α+ 1)
+ 2

tα

Γ(2α+ 1)
+ . . .

)
. (3. 6)

3.2. The solution of Burger’s equation with Caputo-Fabrizio fractional operator. Here,
we present the the solution of Burger’s equation ( 3. 2 ) with Caputo-Fabrizio fractional
derivative

CFC
0 Dα

t y(x, t) + yyx = yxx, y(x, 0) = x. (3. 7)

After apply transform on ( 3. 7 ), it bocomes

S{CFC0 Dα
t y(x, t)}+ S{yyx} = S{yxx}, y(x, 0) = x.

By using IC and after simplification

L(α)

(1− α)ψ(s) + α

{
ψ(s)S{y(x, t)} − ϕα(s)x

}
= S{yxx − yyx},

where L(α) is a normalization function, such that L(0) = L(1) = 1.

ψ(s)S{y(x, t)} − ϕα(s)x = ((1− α)ψ(s) + α)S{yxx − yyx}.
This implies

S{y(x, t)} =
ϕα(s)

ψ(s)
x+

(1− α)ψ(s) + α

ψ(s)
S{yxx − yyx}.

After applying the inverse transform

y(x, t) = x+ S−1
{ (1− α)ψ(s) + α

ψ(s)
S{yxx − yyx}

}
.

Using decomposition series we have

y0(x, t) +
∞∑
n=1

yn(x, t) = x+ S−1
{ (1− α)ψ(s) + α

ψ(s)
S{

∞∑
n=0

ynxx −
∞∑
n=0

An(y)}
}
.

This implies

y0(x, t) = x.

A recursive relation is defined as

yk+1(x, t) = S−1
{ (1− α)ψ(s) + α

ψ(s)
S{ykxx −Ak(y)}

}
, k ≥ 0, (3. 8)

For k = 1, put k = 0 in ( 3. 8 ), we have

y1(x, t) = S−1
{ (1− α)ψ(s) + α

ψ(s)
S{y0xx − y0y0x}

}
.

After putting the value of y0(x, t) = x, in above equation, we have

y1(x, t) = −x(1− α+ αt).
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For k = 2, put k = 1 in ( 3. 8 ), we have

y2(x, t) = S−1
{ (1− α)ψ(s) + α

ψ(s)
S{y1xx − (y0y1x + y0xy1)}

}
.

After simplification

y2(x, t) = x(2− 4α+ 2α2 + (4α− 4α2)t+ α2t2).

The solution of the equation ( 3. 2 ) with Caputo-Fabrizio fractional operator is

yCFC(x, t) = x((2− 3α+ 2α2) + (3α− 4α2)t+ α2t2 + . . .). (3. 9)

3.3. The solution of Burger’s equation with new fractional operator. Here, we present
the the solution of Burger’s equation ( 3. 2 ) with new fractional derivative

M
a D

α
t y(x, t) + yyx = yxx, y(x, 0) = x, (3. 10)

The new fractional derivative for n = 1 is

M
a D

α
t y(x, t) =Mα

∫ t

a

y′(x, t)e−Mα(τ−t)dt, 0 < α ≤ 1, (3. 11)

where Mα is the function of α, and Mα = Γ2(1− α), such that limα−→nMα = ∞. After
putting ( 3. 11 ) in ( 3. 10 ) and apply transform, it becomes

S
{
Mα

∫ t

a

y′(x, t)e−Mα(τ−t)dt
}
+ S{yyx} = S{yxx}.

After applying the properties of integral and simplify

Γ2(1− α)S{y′(x, t)e−Γ2(1−α)(t)} = S{yxx − yyx}.
Using properties from Table1, results is

Γ2(1− α)
1

ϕα(s)

{(
ψ(s)S{y(x, t)} − ϕα(s)y(x, 0)

) ϕα(s)

ψ(s) + Γ2(1− α)

}
= S{yxx − yyx},

After using the IC and simplify

Γ2(1− α)

ψ(s) + Γ2(1− α)

{
ψ(s)S{y(x, t)} − ϕα(s)x

}
= S{yxx − yyx}.

This implies

S{y(x, t)} =
ϕα(s)

ψ(s)
x+

1

ψ(s)

ψ(s) + Γ2(1− α)

Γ2(1− α)
S{yxx − yyx}.

After applying the inverse transform

y(x, t) = x+ S−1
{ψ(s) + Γ2(1− α)

ψ(s)Γ2(1− α)
S{yxx − yyx}

}
.

By using decomposition series, we get

Σ∞
n=0yn(x, t) = x+ S−1

{ψ(s) + Γ2(1− α)

ψ(s)Γ2(1− α)
S{Σ∞

n=0ynxx − Σ∞
n=0An(y)}

}
,

y0(x, t) + Σ∞
n=1yn(x, t) = x+ S−1

{ψ(s) + Γ2(1− α)

ψ(s)Γ2(1− α)
S{Σ∞

n=0ynxx − Σ∞
n=0An(y)}

}
.
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This implies

y0(x, t) = x.

A recursive relation is defined as

yk+1(x, t) = x+ S−1
{ψ(s) + Γ2(1− α)

ψ(s)Γ2(1− α)
S{ykxx −Ak(y)}

}
, k ≥ 0, (3. 12)

For k = 1, put k = 0 in ( 3. 12 ), we have

y1(x, t) = S−1
{ψ(s) + Γ2(1− α)

ψ(s)Γ2(1− α)
S{y0xx − y0y0x}

}
.

After putting the value of y0(x, t) = x, in above equation, we have

y1(x, t) = −x
( 1

Γ2(1− α)
+ t

)
.

For k = 2, put k = 1 in ( 3. 12 ), we have

y2(x, t) = S−1
{ψ(s) + Γ2(1− α)

ψ(s)Γ2(1− α)
S{y1xx − (y0y1x + y0xy1)}

}
.

After simplification, we get

y2(x, t) = x
( 2

Γ2(1− α)
+ 4

t

Γ2(1− α)
+ t2

)
.

The solution of the equation ( 3. 2 ) with new fractional operator is

yNFD(x, t) = x
(
1 +

1

Γ2(1− α)
+
( 4

Γ2(1− α)
− 1

)
t+ t2 + . . .

)
. (3. 13)

3.4. The solution of Burger’s equation with Atangana-Baleanu fractional derivative
in Caputo sense. Now, consider equation ( 3. 2 ) with Atangana-Baleanu fractional deriv-
ative in Caputo sense, then equation become

ABC
0 Dα

t y(x, t) + yyx = yxx, y(x, 0) = x, (3. 14)

After applying the proposed transform on ( 3. 14 ), we have

S{ABC0 Dα
t y(x, t)}+ S{yyx} = S{yxx}.

After using the IC and simplify

L(α)

(1− α)ψα(s) + α

(
ψα(s)S{y(x, t)} − ϕα(s)ψα−1y(x, 0)

)
= S{yxx − yyx}.

where L(α) is a normalization function, such that L(0) = L(1) = 1. After simplification
we have

S{y(x, t)} = x+
(
1− α+

α

ψα(s)

)
S{yxx − yyx}.

After applying the inverse transform

y(x, t) = x+ S−1
{(

1− α+
α

ψα(s)

)
S{yxx − yyx}

}
.
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Using decomposition series, we get

Σ∞
n=0yn(x, t) = x+ S−1

{(
1− α+

α

ψα(s)

)
S{Σ∞

n=0ynxx − Σ∞
n=0An(y)}

}
,

y0(x, t) + Σ∞
n=1yn(x, t) = x+ S−1

{(
1− α+

α

ψα(s)

)
S{Σ∞

n=0ynxx − Σ∞
n=0An(y)}

}
.

This implies

y0(x, t) = x.

A recursive relation is defined as

yk+1(x, t) = S−1
{(

1− α+
α

ψα(s)

)
S{ykxx −Ak(y)}

}
, k ≥ 0. (3. 15)

For k = 1, put k = 0 in ( 3. 15 ), we have

y1(x, t) = S−1
{(

1− α+
α

ψα(s)

)
S{y0xx − y0y0x}

}
.

After putting the value of y0(x, t) = x, in above equation, we have

y1(x, t) = −x
(
1− α+ α

tα

Γ(α+ 1)

)
.

For k = 2, put k = 1 in ( 3. 15 ), we have

y2(x, t) = S−1
{(

(1− α) +
α

ψα(s)

)
S{y1xx − (y0y1x + y0xy1)}

}
.

After simplification, we have

y2(x, t) = x
(
2− 4α+ 2α2 + (4α− 4α2)

tα

Γ(α+ 1)
+ α2 t2α

Γ(2α+ 1)

)
.

The solution of the equation ( 3. 2 ) with Atangana-Baleanu fractional derivative in Caputo
sense is

yABC(x, t) = x
(
(2− 3α+ 2α2) + (3α− 4α2)

tα

Γ(α+ 1)
+ α2 t2α

Γ(2α+ 1)
+ ...

)
.(3. 16)

When α = 1, the approximate solution of equations ( 3. 6 ),( 3. 9 ),( 3. 13 ), and ( 3. 16 ) is

y(x, t) = x(1− t+ t2 + ...).

The exact solution of the Equations ( 3. 6 ),( 3. 9 ),( 3. 13 ), and ( 3. 16 ) is

y(x, t) =
x

1 + t
.

3.5. The solution of Burger’s equation with Riemann-Liouville fractional derivative.
Now, consider equation ( 3. 2 ) with Riemann-Liouville fractional derivative, it becomes

RL
0 Dα

t y(x, t) + yyx = yxx, y(x, 0) = x. (3. 17)

Consider n = 1 in ( 3. 17 ), with lower base a = 0, equation takes the form

RL
0 Dα

t y(t) =
d

dx
{0I1−αt y(t)},
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and
d

dx
{0I1−αt y(t)} =

1

Γ(1− α)

d

dt

∫ ∞

0

(t− T )−αy(x, T )dT.

This implies

RL
0 Dα

t y(t) =
1

Γ(1− α)

d

dt

∫ ∞

0

(t− T )−αy(x, T )dT, (3. 18)

After putting ( 3. 18 ) in ( 3. 17 ), and applying the proposed transform

1

Γ(1− α)
S
{ d

dt

∫ ∞

0

(t− T )−αy(x, T )dT
}
= S{yxx − yyx}.

Using integral property, we have

S
{ 1

Γ(1− α)

d

dt

(
(t)−αy(x, t)

)}
= S{yxx − yyx}, (3. 19)

Using properties of transform from Table1, simplifies as

1

Γ(1− α)

d

dt

(
(t)−αy(x, t)

)
= S{yxx − yyx}.

This implies

S{y(x, t)} =
1

ψα(s)
S{yxx − yyx}.

After applying the inverse transform, we have

y(x, t) = S−1
{ 1

ψα(s)
S{yxx − yyx}

}
.

Using decomposition series, we get

Σ∞
n=0yn(x, t) = S−1

{ 1

ψα(s)
S{Σ∞

n=0ynxx − Σ∞
n=0An(y)}

}
,

y0(x, t) + Σ∞
n=1yn(x, t) = S−1

{ 1

ψα(s)
S{Σ∞

n=0ynxx − Σ∞
n=0An(y)}

}
.

This implies

y0(x, t) = 0.

Similarly, we have

y1(x, t) = y2(x, t) = y3(x, t) = ... = 0. (3. 20)

3.6. The solution of Burger’s equation with Atangana-Baleanu fractional derivative
in Riemann-Liouville sense. Now, consider equation ( 3. 2 ) with Atangana-Baleanu
fractional derivative in Riemann-Liouville sense, it becomes

ABR
0 Dα

t y(x, t) + yyx = yxx, y(x, 0) = x, (3. 21)

After applying the transform on ( 3. 21 )

L(α)

(1− α)ψα(s) + α

(
ψα(s)S{y(x, t)}

)
= S{yxx − yyx},
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where L(α) is a normalization function, such that L(0) = L(1) = 1.

1

(1− α)ψα(s) + α

(
ψα(s)S{y(x, t)}

)
= S{yxx − yyx}.

After simplification, we have

S{y(x, t)} =
(
(1− α) +

α

ψα(s)

)
S{yxx − yyx}.

After applying the inverse transform, the above equation takes the form

S{y(x, t)} = S−1
{(

(1− α) +
α

ψα(s)

)
S{yxx − yyx}

}
.

Using decomposition series, we get

Σ∞
n=0yn(x, t) = S−1

{(
(1− α) +

α

ψα(s)

)
S{Σ∞

n=0ynxx − Σ∞
n=0An(y)}

}
,

y0(x, t) + Σ∞
n=1yn(x, t) = S−1

{(
(1− α) +

α

ψα(s)

)
S{Σ∞

n=0ynxx − Σ∞
n=0An(y)}

}
.

This implies

y0(x, t) = 0.

Similarly, we have

y1(x, t) = y2(x, t) = y3(x, t) = ... = 0. (3. 22)

Hence the approximate and exact solution of equations ( 3. 20 ) and ( 3. 22 ) is 0.

4. INTEGRAL TRANSFORM AND FRACTIONAL DERIVATIVES

In this section, we will present the applications of the proposed transform on different
types of fractional derivatives, such as Caputo, Caputo-Fabrizio, Riemann-Liouville, New
Fractional Derivative, Atangana-Baleanu in the Caputo sense, and Atangana-Baleanu in the
Riemann-Liouville sense. We also present the special cases of the proposed transform.

4.1. Proposed Integral Transform on Caputo Derivative. The Caputo derivative is the
most common fractional derivative and was introduced by Michele Caputo [7] in 1967. The
general form of the Caputo fractional derivative is defined as

C
aD

α
t y(t) =

1

Γ(n− α)

∫ t

a

(t− T )n−α−1f (n)(T ). (4. 23)

where n is the smallest integer, n > α, α ≥ 0, is a real number, a ∈ (−∞, t), t > y, y ∈
Hn(a, b) and a > b. Here, we will apply the proposed transform to the Caputo fractional
derivative and derive the general formula.

Theorem 4.2. If C0 D
α
t y(t) is a Caputo derivative, then the proposed transform on the

Caputo derivative is ψα(s)S{y(t)} − ϕα(s)
∑n−1
k=0 ψ

α−k−1(s)yk(0).
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Proof. After applying the proposed transform ( 2. 1 ) on the Caputo derivative defined in (
4. 23 ) and by using the properties from Table 1, we get

S{C0 Dα
t y(t)} =

1

Γ(n− α)

1

ϕα(s)

[(Γ(n− α)ϕα(s)

ψn−α(s)

)(
ψn(s)Y (s)

−ϕα(s)
n−1∑
k=0

ψn−k−1(s)yk(0)
)]
.

After simplification, we get

S{C0 Dα
t y(t)} =

1

ψn−α(s)

{
ψn(s)Y (s)− ϕα(s)

n−1∑
k=0

ψn−k−1(s)yk(0)
}
,

S{C0 Dα
t y(t)} = ψα−n+n(s)Y (s)− ϕα(s)

n−1∑
k=0

ψα−n+n−k−1(s)yk(0).

This can be written as

S{C0 Dα
t y(t)} = ψα(s)S{y(t)} − ϕα(s)

n−1∑
k=0

ψα−k−1(s)yk(0). (4. 24)

This is the general form after applying the integral transform to the Caputo fractional de-
rivative. �

Proposition 4.3. If ϕα(s) = 1
s and ψ(s) = 1

s in equation ( 4. 24 ), then the proposed
transform on the Caputo derivative converges to s−αS{y(t)} −

∑n−1
k=0 s

k−αyk(0), where
S{y(t)}, is Sumudu transform.

Proof. We can easily verify the above result using ϕα(s) = 1
s and ψ(s) = 1

s in equation (
4. 24 )

S{C0 Dα
t y(t)} =

(1
s

)α
S{y(t)} − 1

s

n−1∑
k=0

(1
s

)α−k−1

(s)yk(0),

S{C0 Dα
t y(t)} = s−αS{y(t)} −

n−1∑
k=0

(1
s

)α−k
(s)yk(0).

Or equivalently,

S{C0 Dα
t y(t)} = s−αS{y(t)} −

n−1∑
k=0

sk−α(s)yk(0). (4. 25)

Equation( 4. 25 ) is equivalent to the results of Caputo derivative after applying Sumudu
transform. �

4.3.1. Special cases of proposed transform via Caputo derivative. Here, we will present
the special cases of the proposed integral transform via the Caputo derivative. These special
cases are generated from the result of the proposed transform ( 4. 24 ) for different values
of ϕα(s), ψ(s) and γ(t) = 1. These cases are,
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(1) For ϕα(s) = 1 and ψ(s) = s, transform gives sαL{y(t)} −
∑n−1
k=0 s

α−k−1yk(0),
where L{y(t)} is Laplace transform [39].

(2) For ϕα(s) = 1
v andψ(s) = v, new transform gives vαA{y(t)}−

∑n−1
k=0 v

α−k−2yk(0),
where A{y(t)} is Aboodh transform [2].

(3) For ϕα(s) = p2 and ψ(s) = 1
p , yields p−αA{y(t)} −

∑n−1
k=0 p

k−α+3yk(0), where
A{y(t)} is Anuj transform [23].

(4) For ϕα(s) = v and ψ(s) = 1
v , produces v−αE{y(t)} −

∑n−1
k=0 v

k−α+2yk(0),
where E{y(t)} is Elzaki transform [11].

(5) For ϕα(s) = 1
φ(s) and ψ(s) = φ2(s), it gives

φ2α(s)EF{y(t)} −
∑n−1
k=0 φ

2α−2k−3(s)yk(0), where EF{y(t)} is Emad-Falih
transform [22].

(6) For ϕα(s) = 1
u and ψ(s) = 1

u2 , transform gives
u−2αT{y(t)} −

∑n−1
k=0 u

2k−2α+1yk(0), where T{y(t)} is Tarig transform [12].
(7) For ϕα(s) = sm and ψ(s) = sn, transform corresponding to

snαG{y(t)} −
∑n−1
k=0 s

nα−nk+m−nyk(0), where G{y(t)} is G-transform[4].

(8) For ϕα(s) = s
v and ψ(s) = s

v i, transform results in the
(
si
v

)α
HY {y(t)} −

s
v

∑n−1
k=0

(
si
v

)α−k−1

yk(0), where HY {y(t)} is HY transform [37].
(9) For ϕα(s) = p(s) and ψ(s) = q(s), transform results in the qα(s)J{y(t)} −

p(s)
∑n−1
k=0 q

α−k−1(s)yk(0), where J{y(t)} is Jafari transform [15].
(10) For ϕα(s) = 1 and ψ(s) = 1

v , transform yields the
v−αK{y(t)} −

∑n−1
k=0 v

k−α+1yk(0), where K{y(t)} is Kamal transform [43].
(11) For ϕα(s) = 1 and ψ(s) = 1

v2 , new transform gives
v−2αKF{y(t)}−

∑n−1
k=0 v

2k−2α+2yk(0), whereKF{y(t)} is Kashuri-Fundo trans-
form [19].

(12) For ϕα(s) = s3 and ψ(s) = 1
s2 , transform corresponding to s−2αKT{y(t)} −∑n−1

k=0 s
2k−2α+5yk(0), where KT{y(t)} is Kharrat-Toma transform[21].

(13) For ϕα(s) = p andψ(s) = 1
p , transform results in the p−αET{y(t)}−

∑n−1
k=0 p

k−α+2yk(0),
where ET{y(t)} is Elzaki-Tarig transform [32].

(14) For ϕα(s) = v and ψ(s) = vα, transform yields the
v2αKU{y(t)} −

∑n−1
k=0 v

α−αk+1yk(0), where KU{y(t)} is Kushare transform
[25].

(15) For ϕα(s) = v andψ(s) = v, transform results in the vαMG{y(t)}−
∑n−1
k=0 v

α−kyk(0),
where MG{y(t)} is Mahgoub transform [27].

(16) For ϕα(s) = v2 and ψ(s) = v, transform yields the
vαM{y(t)} −

∑n−1
k=0 v

α−k+1yk(0), where M{y(t)} is Mohand transform [28].
(17) For ϕα(s) = 1

u and ψ(s) = s
u , transform corresponding to(

s
u

)α
RG{y(t)}−

∑n−1
k=0

sα−k−1

uα−k yk(0), whereRG{y(t)} is Ramdan-Group trans-
form [45].

(18) For ϕα(s) = 1
u and ψ(s) = s

u , transform results in(
s
u

)α
N{y(t)} −

∑n−1
k=0

sα−k−1

uα−k yk(0), where N{y(t)} is N-transform [20].
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(19) For ϕα(s) = σ
ε andψ(s) = σ

ε , our new transform gives
(
σ
ε

)α
R{y(t)}−

∑n−1
k=0

(
σ
ε

)α−k
yk(0),

where R{y(t)} is Rishi transform [24].
(20) For ϕα(s) = 1

vβ
and ψ(s) = vα, transform corresponding to v2αS{y(t)} −∑n−1

k=0 v
α−αk−βyk(0), where S{y(t)} is Sadik transform [44].

(21) For ϕα(s) = 1
v2 andψ(s) = 1

v , transform gives v−αSa{y(t)}−
∑n−1
k=0 v

k−α−1yk(0),
where Sa{y(t)} is Sawi transform [29].

(22) For ϕα(s) = 1 and ψ(s) = s
u , transform corresponding to

(
s
u

)α
Sh{y(t)} −∑n−1

k=0

(
s
u

)α−k−1

yk(0), where Sh{y(t)} is Shehu transform [30].

(23) For ϕα(s) = 1
v and ψ(s) = vα, transform yields

v2αSo{y(t)} −
∑n−1
k=0 v

α−αk−1yk(0), where So{y(t)} is Soham transform [38].
(24) For ϕα(s) = s and ψ(s) = s, our new transform gives

sαLC{y(t)} −
∑n−1
k=0 s

α−kyk(0), where LC{y(t)} is Laplace-Carson transform
[31].

(25) For ϕα(s) = 1
s and ψ(s) = 1

s , our new transform corresponding to
s−αS{y(t)} −

∑n−1
k=0 s

k−αyk(0), where S{y(t)} is Samudu transform [47].
(26) For ϕα(s) = s and ψ(s) = s2, our transform yields

s2αAJ{y(t)} −
∑n−1
k=0 s

2α−2k−1yk(0), where AJ{y(t)} is Pourreza transform
[3].

(27) For ϕα(s) = 1 and ψ(s) = s
1
α , transform corresponding to

sAL{y(t)}−
∑n−1
k=0 s

1− k
α− 1

α yk(0), whereAL{y(t)} is α-Laplace transform [35].
(28) For ϕα(s) = s

u and ψ(s) = s
u , transform gives(

s
u

)α
Na{y(t)} −

∑n−1
k=0

(
s
u

)α−k
yk(0), where Na{y(t)} is Natural transform

[20].
(29) For ϕα(s) = 1

q3 and ψ(s) = q, new transform corresponds to qαGu{y(t)} −∑n−1
k=0 q

α−k−4yk(0), where Gu{y(t)} is Gupta transform [13].
(30) For ϕα(s) = p5 and ψ(s) = p, our transform produce the result pαDV {y(t)} −∑n−1

k=0 p
α−k+4yk(0), where DV {y(t)} is Dinesh-Verma transform [46].

(31) For ϕα(s) = s andψ(s) = s, transform results in sαRa{y(t)}−
∑n−1
k=0 s

α−kyk(0),
where Ra{y(t)} is Raj transform [18].

(32) For ϕα(s) = 1
u andψ(s) = 1

us , new transform gives (us)−αAS{y(t)}−
∑n−1
k=0

uk−α

sα−k−1 y
k(0),

where AS{y(t)} is Abaoub-Skheam transform [1].
(33) For ϕα(s) = u andψ(s) = u, our new transform yields uαJT{y(t)}−

∑n−1
k=0 u

α−kyk(0),
where JT{y(t)} is Jabber-Tawfiq transform [14].

(34) For ϕα(s) = 1 andψ(s) = 1
u , new transform results in u−αY {y(t)}−

∑n−1
k=0 u

k−α+1yk(0),
where Y {y(t)} is Yang transform [9].
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4.4. Proposed Integral Transform on Caputo-Fabrizio derivative in Caputo sense. In
2015, Caputo and Fabrizio [8] introduced new fractional derivative called the Caputo-
Fabrizio fractional derivative. Let y ∈ H1(a, b), a < b, α ∈ (0, 1], then the Caputo-
Fabrizio fractional derivative is defined as

CFC
a Dα

t y(t) =
L(α)

1− α

∫ t

a

y′(t)e(
−α(t−T )

1−α )dT, (4. 26)

where L(α) is a normalization function, such that L(0) = L(1) = 1.

Theorem 4.5. If CFC0 Dα
t y(t) is a Caputo-Fabrizio derivative in the Caputo sense, then

the proposed transform on the Caputo-Fabrizio derivative is L(α)
(1−α)ψ(s)+α (ψ(s)S{y(t)} −

ϕα(s)y(0)).

Proof. After applying the proposed transform ( 2. 1 ) on the Caputo-Fabrizio derivative
defined in ( 4. 26 ) and using properties from Table 1, we have

S{CFC0 Dα
t y(t)} =

L(α)

(1− α)ϕα(s)

[{ ϕα(s)

ψ(s) + ( α
1−α )

}{
ψ(s)Y (s)− ϕα(s)y(0)

}]
.

After simplification

S{CFC0 Dα
t y(t)} =

L(α)

(1− α)

{ 1
(1−α)ψ(s)+α

1−α

}{
ψ(s)Y (s)− ϕα(s)y(0)

}
.

This implies that

S{CFC0 Dα
t y(t)} =

L(α)

(1− α)ψ(s) + α

{
ψ(s)S{y(t)} − ϕα(s)y(0)

}
. (4. 27)

After using the integral transform on the Caputo-Fabrizio derivative, this is the general
form. �

Proposition 4.6. If ϕα(s) = 1
s and ψ(s) = 1

s in equation ( 4. 27 ), then the proposed

transform on the Caputo-Fabrizio derivative converges to L(α)
(1−α)+sα

(
S{y(t)} − y(0)

)
,

where S{y(t)}, is Sumudu transform.

Proof. We can easily verify the above result using ϕα(s) = 1
s and ψ(s) = 1

s in equation (
4. 27 )

S{CFC0 Dα
t y(t)} =

L(α)

(1− α)(1s ) + α

{1

s
S{y(t)} − 1

s
y(0)

}
,

S{CFC0 Dα
t y(t)} =

sL(α)

(1− α) + sα

1

s

{
S{y(t)} − y(0)

}
.

Equivalently,

S{CFC0 Dα
t y(t)} =

L(α)

(1− α) + sα

{
S{y(t)} − y(0)

}
. (4. 28)

Equation( 4. 28 ) is equivalent to the results of Caputo-Fabrizio derivative after applying
Sumudu transform. �
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4.6.1. Special cases of proposed transform via Caputo-Fabrizio derivative. We will show
that the existing integral transforms via Caputo-Fabrizio are the special cases of the result
of the proposed transform ( 4. 27 ) for different values of ϕα(s), ψ(s) and γ(t) = 1. These
cases are given as

(1) For ϕα(s) = 1 and ψ(s) = s, transform gives L(α)
(1−α)s+α

(
sL{y(t)}−y(0)

)
, where

L{y(t)} is Laplace transform [39].
(2) For ϕα(s) = 1

v and ψ(s) = v, new transform gives L(α)
(1−α)v+α

(
vA{y(t)} −

v−1y(0)
)

, where A{y(t)} is Aboodh transform [2].

(3) For ϕα(s) = p2 and ψ(s) = 1
p , yields L(α)

(1−α)+pα

(
A{y(t)} − p3y(0)

)
, where

A{y(t)} is Anuj transform [23].
(4) For ϕα(s) = v and ψ(s) = 1

v , produces L(α)
(1−α)+vα

(
E{y(t)} − v2y(0)

)
where

E{y(t)} is Elzaki transform [11].
(5) For ϕα(s) = 1

φ(s) and ψ(s) = φ2(s), it gives L(α)
(1−α)φ2(s)+α

(
φ2(s)EF{y(t)} −

φ−1(s)y(0)
)

where EF{y(t)} is Emad-Falih transform [22].

(6) For ϕα(s) = 1
u and ψ(s) = 1

u2 , transform gives L(α)
(1−α)+u2α

(
T{y(t)} − uy(0)

)
where T{y(t)} is Tarig transform [12].

(7) For ϕα(s) = sm and ψ(s) = sn, transform corresponding to
L(α)

(1−α)sn+α

(
snG{y(t)} − smy(0)

)
where G{y(t)} is G-transform [4].

(8) For ϕα(s) = s
v and ψ(s) = s

v i, transform results in the
L(α)

(1−α)si+vα

(
siHY {y(t)} − sy(0)

)
where HY{y(t)} is HY-transform [37].

(9) For ϕα(s) = p(s) and ψ(s) = q(s), transform results in the
L(α)

(1−α)q(s)+α

(
q(s)J{y(t)} − p(s)y(0)

)
, where J{y(t)} is Jafari transform [15].

(10) For ϕα(s) = 1 and ψ(s) = 1
v , transform yields the L(α)

(1−α)+vα

(
K{y(t)}− vy(0)

)
,

where K{y(t)} is Kamal transform [43].
(11) For ϕα(s) = 1 andψ(s) = 1

v2 , new transform gives L(α)
(1−α)v−2+α

(
v−2KF{y(t)}−

y(0)
)

, where KF{y(t)} is Kushari-Fundo transform [19].

(12) For ϕα(s) = s3 and ψ(s) = 1
s2 , transform corresponding to

L(α)
(1−α)+s2α

(
KT{y(t)} − s5y(0)

)
, where KT{y(t)} is Kharrat-Toma transform

[21].
(13) For ϕα(s) = p and ψ(s) = 1

p , transform results in the L(α)
(1−α)+pα

(
ET{y(t)} −

p2y(0)
)

, where ET{y(t)} is Elzaki-Tarig transform [32].

(14) For ϕα(s) = v and ψ(s) = vα, transform yields the L(α)
(1−α)vα+α

(
vαKU{y(t)} −

vy(0)
)

, where KU{y(t)} is Kushare transform [25].



A Generalized Fractional Integral Transform for Solutions of Fractional Burger’s Equation 632

(15) For ϕα(s) = v and ψ(s) = v, transform results in the L(α)
(1−α)v+α

(
vMG{y(t)} −

vy(0)
)

, where MG{y(t)} is Mahgoub transform [27].

(16) For ϕα(s) = v2 and ψ(s) = v, transform yields the L(α)
(1−α)v+α

(
vM{y(t)} −

v2y(0)
)

, where M{y(t)} is Mohand transform [28].

(17) For ϕα(s) = 1
u and ψ(s) = s

u , transform corresponding to
L(α)

(1−α)s+uα

(
sRG{y(t)} − y(0)

)
, where RG{y(t)} is Ramdan Group transform

[45].
(18) For ϕα(s) = 1

u and ψ(s) = s
u , transform results in L(α)

(1−α)s+uα

(
sN{y(t)}−y(0)

)
,

where N{y(t)} is N-transform [20].
(19) For ϕα(s) = σ

ε and ψ(s) = σ
ε , our new transform gives

L(α)
(1−α)σ+εα

(
σR{y(t)} − σy(0)

)
where R{y(t)} is Rishi transform [24].

(20) For ϕα(s) = 1
vα and ψ(s) = vα, transform corresponding to

L(α)
(1−α)vα+α

(
vαS{y(t)} − v−αy(0)

)
, where S{y(t)} is Sadik transform [44].

(21) For ϕα(s) = 1
v2 and ψ(s) = 1

v , transform gives L(α)
(1−α)v+αv2

(
vSa{y(t)} − y(0)

)
where Sa{y(t)} is Sawi transform [29].

(22) For ϕα(s) = 1 and ψ(s) = s
u , transform corresponding to

L(α)
(1−α)s+uα

(
sSh{y(t)} − uy(0)

)
where Sh{y(t)}, is Shehu transform [30].

(23) For ϕα(s) = 1
v and ψ(s) = vα, transform yields

L(α)
(1−α)vα+1+vα

(
vα+1So{y(t)} − y(0)

)
, where So{y(t)} is Soham transform [38].

(24) For ϕα(s) = s and ψ(s) = s, our new transform gives
L(α)

(1−α)s+α

(
sLC{y(t)} − sy(0)

)
, where LC{y(t)} is Laplace-Carson transform

[31].
(25) For ϕα(s) = 1

s and ψ(s) = 1
s , our new transform corresponding to

L(α)
(1−α)+sα

(
S{y(t)} − y(0)

)
, where S{y(t)} is Samudu transform [47].

(26) For ϕα(s) = s and ψ(s) = s2, our transform yields L(α)
(1−α)s2+α

(
s2AJ{y(t)} −

sy(0)
)

, where AJ{y(t)} is Pourreza transform [3].

(27) For ϕα(s) = 1 and ψ(s) = s
1
α , transform corresponding to

L(α)

(1−α)s
1
α +α

(
s

1
αAL{y(t)} − y(0)

)
, where AL{y(t)} is α-Laplace transform [35].

(28) For ϕα(s) = s
u and ψ(s) = s

u , transform gives L(α)
(1−α)s+uα

(
sNa{y(t)} − sy(0)

)
,

where Na{y(t)} is Natural transform [20].
(29) For ϕα(s) = 1

q3 andψ(s) = q, new transform corresponds to L(α)
(1−α)q+α

(
qG{y(t)}−

q−3y(0)
)

, where G{y(t)} is Gupta transform [13].
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(30) For ϕα(s) = p5 and ψ(s) = p, our transform produce the result
L(α)

(1−α)p+α

(
pDV {y(t)} − p5y(0)

)
, where DV{y(t)} is Dinesh-Verma transform

[46].
(31) For ϕα(s) = s and ψ(s) = s, transform results in L(α)

(1−α)s+α

(
sRa{y(t)}− sy(0)

)
where Ra{y(t)} is Raj transform [18].

(32) For ϕα(s) = 1
u and ψ(s) = 1

us , new transform gives L(α)
(1−α)+usα

(
AS{y(t)} −

sy(0)
)

, where AS{y(t)} is Abaoub-Skheam transform [1].

(33) For ϕα(s) = u and ψ(s) = u, our new transform yields L(α)
(1−α)u+α

(
uJT{y(t)} −

uy(0)
)

, where JT{y(t)} is Jabber-Tawfiq transform [14].

(34) For ϕα(s) = 1 and ψ(s) = 1
u , new transform results in L(α)

(1−α)+uα

(
Y {y(t)} −

uy(0)
)

, where Y{y(t)} is Yang transform [9].

4.7. Proposed Integral Transform on Riemann-Liouville derivative. In 1832, Rieman
and Liouville [41] presented the fractional derivative. The Riemann-Liouville derivative is
defined as

RL
a Dα

t y(t) =
dn

dtn
{aIn−αt y(t)}. (4. 29)

Theorem 4.8. If RL0 Dα
t y(t) is the Riemann-Liouville derivative, the proposed transform

on the Riemann-Liouville derivative gives ψα(s)S{y(t)} − ϕα(s)Σn−1
k=0ψ

k(s)Dα−k−1(0).

Proof. Let, S{yn(t)} = ψn(s)Y (s)−ϕα(s)Σn−1
k=0ψ

k(s)yn−k−1(0), y(s) = {0In−αt }y(t)
while Y (s) = S{y(t)} then, with the proposed transform ( 2. 1 ) on the Riemann-Liouville
derivative defined in ( 4. 29 ), we have

S
{ dn

dxn
{0In−αt y(t)}

}
= ψn(s)S{0In−αt y(t)} − ϕα(s)Σn−1

k=0ψ
k(s)

dn−k−1

dtn−k−1
{0In−αt y(0)}.

This implies

S
{ dn

dtn
{0In−αt y(t)}

}
= ψn(s){ψα−n(s)Y (s)} − ϕα(s)Σn−1

k=0ψ
k(s)

dn−k−1

dtn−k−1
Dα−ny(0).

This can be written as

S
{ dn

dtn
{0In−αt y(t)}

}
= ψα(s)S{y(t)} − ϕα(s)Σn−1

k=0ψ
k(s)Dα−k−1(0).(4. 30)

When the Riemann-Liouville derivative is transformed integrally, this is the general form
that results. �

Proposition 4.9. If ϕα(s) = 1
s and ψ(s) = 1

s in equation ( 4. 30 ), then the pro-
posed transform on the Riemann-Liouville fractional derivative converges to s−αS{y(t)}−
Σn−1
k=0s

−k−1Dα−k−1(0), where S{y(t)}, is Sumudu transform.
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Proof. We can easily verify the above result using ϕα(s) = 1
s and ψ(s) = 1

s in equation (
4. 30 )

S
{ dn

dtn
{0In−αt y(t)}

}
=

(1
s

)α
S{y(t)} − 1

s
Σn−1
k=0

(1
s

)k
Dα−k−1(0),

S
{ dn

dtn
{0In−αt y(t)}

}
= s−αS{y(t)} − Σn−1

k=0

(1
s

)k+1

Dα−k−1(0).

Equivalently,

S
{ dn

dtn
{0In−αt y(t)}

}
= s−αS{y(t)} − Σn−1

k=0s
−k−1Dα−k−1(0). (4. 31)

Equation( 4. 31 ) is equivalent to the results of Riemann-Liouville fractional derivative
after applying Sumudu transform. �

4.9.1. Special cases of proposed transform via Riemann-Liouville Fractional derivative.
The Riemann-Liouville fractional derivative forms of existing integral transforms are gen-
erated by using the different values of ϕα(s), ψ(s) and γ(t) = 1 in ( 4. 30 ). These cases
are

(1) For ϕα(s) = 1 and ψ(s) = s, transform gives sαL{y(t)} − Σn−1
k=0s

kDα−k−1(0),
where L{y(t)} is Laplace transform [39].

(2) For ϕα(s) = 1
v and ψ(s) = v, new transform gives

vαA{y(t)} − Σn−1
k=0v

k−1Dα−k−1(0), where A{y(t)} is Aboodh transform [2].
(3) For ϕα(s) = p2 and ψ(s) = 1

p , yields p−αA{y(t)} − Σn−1
k=0p

2−kDα−k−1(0),
where A{y(t)} is Anuj transform [23].

(4) For ϕα(s) = v and ψ(s) = 1
v , produces v−αE{y(t)} − Σn−1

k=0v
1−kDα−k−1(0),

where E{y(t)} is Elzaki transform [11].
(5) For ϕα(s) = 1

φ(s) and ψ(s) = φ2(s), it gives
φ2α(s)EF{y(t)} − Σn−1

k=0φ
2k−1(s)Dα−k−1(0), where EF{y(t)} is Emad-Falih

transform [22].
(6) For ϕα(s) = 1

u and ψ(s) = 1
u2 , transform gives

u−2αT{y(t)}−Σn−1
k=0u

−2k−1Dα−k−1(0), where T{y(t)} is Tarig transform [12].
(7) For ϕα(s) = sm and ψ(s) = sn, transform corresponding to

snαG{y(t)} − Σn−1
k=0s

nk+mDα−k−1(0), where G{y(t)} is G-transform [4].
(8) For ϕα(s) = s

v and ψ(s) = s
v i, transform results in the(

si
v

)α
HY {y(t)} − Σn−1

k=0

(
s
v

)k+1

ikDα−k−1(0), where HY {y(t)} is HY trans-
form [37].

(9) For ϕα(s) = p(s) and ψ(s) = q(s), transform results in the
qα(s)J{y(t)} − p(s)Σn−1

k=0q
k(s)Dα−k−1(0), where J{y(t)} is Jafari transform

[15].
(10) For ϕα(s) = 1 and ψ(s) = 1

v , transform yields the
v−αK{y(t)} − Σn−1

k=0v
−kDα−k−1(0), where K{y(t)} is Kamal transform [43].

(11) For ϕα(s) = 1 and ψ(s) = 1
v2 , new transform gives

v−2αKF{y(t)}−Σn−1
k=0v

−2kDα−k−1(0), whereKF{y(t)} is Kushuri-Fundo trans-
form [19].
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(12) For ϕα(s) = s3 and ψ(s) = 1
s2 , transform corresponding to

s−2αKT{y(t)} − Σn−1
k=0s

−2k+3Dα−k−1(0), where KT{y(t)} is Kharrat-Toma
transform [21].

(13) For ϕα(s) = p andψ(s) = 1
p , transform results in the p−αET{y(t)}−Σn−1

k=0p
−k+1Dα−k−1(0),

where ET{y(t)} is Elzaki-Tarig transform [32].
(14) For ϕα(s) = v and ψ(s) = vα, transform yields the

v2αKU{y(t)} − Σn−1
k=0v

αk+1Dα−k−1(0), where KU{y(t)} gives Kushare trans-
form [25].

(15) For ϕα(s) = v andψ(s) = v, transform results in the vαMG{y(t)}−Σn−1
k=0v

k+1Dα−k−1(0),
where MG{y(t)} is Mahgoub transform [27].

(16) For ϕα(s) = v2 and ψ(s) = v, transform yields the
vαM{y(t)}−Σn−1

k=0v
k+2Dα−k−1(0), where M{y(t)} is Mohand transform [28].

(17) For ϕα(s) = 1
u and ψ(s) = s

u , transform corresponding to(
s
u

)α
RG{y(t)} − Σn−1

k=0
sk

uk+1D
α−k−1(0), where RG{y(t)} is Ramdan Group

transform [45].
(18) For ϕα(s) = 1

u and ψ(s) = s
u , transform results in(

s
u

)α
N{y(t)} − Σn−1

k=0
sk

uk+1D
α−k−1(0), where N{y(t)} is N-transform [20].

(19) For ϕα(s) = σ
ε andψ(s) = σ

ε , our new transform gives
(
σ
ε

)α
R{y(t)}−Σn−1

k=0

(
σ
ε

)k+1

Dα−k−1(0),
where R{y(t)} is Rishi transform [24].

(20) For ϕα(s) = 1
vβ

and ψ(s) = vα, transform corresponding to v2αS{y(t)} −
Σn−1
k=0v

αk−βDα−k−1(0), where S{y(t)} is Sadik transform [44].
(21) For ϕα(s) = 1

v2 and ψ(s) = 1
v , transform gives

v−αSa{y(t)}−Σn−1
k=0v

−k−2Dα−k−1(0), where Sa{y(t)} is Sawi transform [29].
(22) For ϕα(s) = 1 and ψ(s) = s

u , transform corresponding to(
s
u

)α
Sh{y(t)} − Σn−1

k=0

(
s
u

)k
Dα−k−1(0), where Sh{y(t)} is Shehu transform

[30].
(23) For ϕα(s) = 1

v and ψ(s) = vα, transform yields
v2αSo{y(t)}−Σn−1

k=0v
αk−1Dα−k−1(0), where So{y(t)} is Soham transform [38].

(24) For ϕα(s) = s and ψ(s) = s, our new transform gives
sαLC{y(t)} −Σn−1

k=0s
k+1Dα−k−1(0), where LC{y(t)} is Laplace-Carson trans-

form [31].
(25) For ϕα(s) = 1

s and ψ(s) = 1
s , our new transform corresponding to s−αS{y(t)}−

Σn−1
k=0s

−k−1Dα−k−1(0), where S{y(t)} is Samudu transform [47].
(26) For ϕα(s) = s and ψ(s) = s2, our transform yields

s2αAJ{y(t)} − Σn−1
k=0s

2k+1Dα−k−1(0), where AJ{y(t)} is Pourreza transform
[3].

(27) For ϕα(s) = 1 andψ(s) = s
1
α , transform corresponding to sAL{y(t)}−Σn−1

k=0s
k
αDα−k−1(0),

where AL{y(t)} is α-Laplace transform [35].
(28) For ϕα(s) = s

u and ψ(s) = s
u , transform gives(

s
u

)α
Na{y(t)}−Σn−1

k=0

(
s
u

)k+1

Dα−k−1(0), whereNa{y(t)} is Natural-transform
[20].
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(29) For ϕα(s) = 1
q3 and ψ(s) = q, new transform corresponds to qαG{y(t)} −

Σn−1
k=0q

k−3Dα−k−1(0), where G{y(t)} is Gupta transform [13].
(30) For ϕα(s) = p5 and ψ(s) = p, our transform produce the result pαDV {y(t)} −

Σn−1
k=0p

k+5Dα−k−1(0), where DV {y(t)} is Dinesh-Verma transform [46].
(31) For ϕα(s) = s andψ(s) = s, transform results in sαRa{y(t)}−Σn−1

k=0s
k+1Dα−k−1(0),

where Ra{y(t)} is Raj transform [18].
(32) For ϕα(s) = 1

u andψ(s) = 1
us , new transform gives (us)−αAS{y(t)}−Σn−1

k=0(s)
−k(u)−k−1Dα−k−1(0),

where AS{y(t)} is Abaoub-Skheam transform [1].
(33) For ϕα(s) = u andψ(s) = u, our new transform yields uαJT{y(t)}−Σn−1

k=0u
k+1Dα−k−1(0),

where JT{y(t)} is Jabber-Tawfiq transform [14].
(34) For ϕα(s) = 1 andψ(s) = 1

u , new transform results in u−αY {y(t)}−Σn−1
k=0u

−kDα−k−1(0),
where Y {y(t)} is Yang transform [9].

4.10. Proposed Integral Transform on New Fractional Derivative (NFD). In 2022, Jas-
sim and Hussein [16] introduced a New Fractional Derivative (NFD). The NFD converges
faster to the classical calculus. In this section, the general form after applying the proposed
transform to NFD is presented. The NFD is defined as

M
a D

α
t y(t) =Mα

∫ t

a

y(n)(τ)e−Mα(t−T )dT, n− 1 < α ≤ n, (4. 32)

where Mα is the function of α, such that limα−→nMα = ∞.

Theorem 4.11. If M0 D
α
t y(t) is the NFD, then the proposed transform gives

Mα

ψ(s)+Mα

{
ψn(s)S{y(t)} − ϕα(s)Σn−1

k=0ψ
k(s)yn−k−1(0)

}
.

Proof. After applying the proposed transform ( 2. 1 ) on NFD defined in ( 4. 32 ) and using
properties from Table 1, we have

S{M0 Dα
t y(t)} = Mα

1

ϕα(s)

{
S{y(n)(t)}S{e−Mα(t)}

}
.

This implies

S{M0 Dα
t y(t)} =

Mα

ϕα(s)

{
ψn(s)Y (s)− ϕα(s)Σn−1

k=0ψ
k(s)yn−k−1(0)

}{ ϕα(s)

ψ(s) +Mα

}
.

After simplification, we get

S{M0 Dα
t y(t)} =

Mα

ψ(s) +Mα

{
ψn(s)S{y(t)} − ϕα(s)Σn−1

k=0ψ
k(s)yn−k−1(0)

}
.(4. 33)

Once the integral transform has been applied to the new fractional derivative, this is the
general form. �

Proposition 4.12. If ϕα(s) = 1
s and ψ(s) = 1

s in equation ( 4. 33 ), then the proposed

transform on the NFD converges to Mα

s−1+Mα

{
s−nS{y(t)} − Σn−1

k=0s
−k−1yn−k−1(0)

}
,

where S{y(t)}, is Sumudu transform.
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Proof. We can easily verify the above result using ϕα(s) = 1
s and ψ(s) = 1

s in equation (
4. 33 )

S{M0 Dα
t y(t)} =

Mα(
1
s

)
+Mα

{(1
s

)n
S{y(t)} − 1

s
Σn−1
k=0

(1
s

)k
yn−k−1(0)

}
,

S{M0 Dα
t y(t)} =

Mα

s−1 +Mα

{
s−nS{y(t)} − Σn−1

k=0

(1
s

)k+1

yn−k−1(0)
}
.

Or equivalently,

S{M0 Dα
t y(t)} =

Mα

s−1 +Mα

{
s−nS{y(t)} − Σn−1

k=0s
−k−1yn−k−1(0)

}
. (4. 34)

Equation( 4. 34 ) is equivalent to the results of NFD after applying Sumudu transform. �

4.12.1. Special cases of proposed transform via New Fractional Derivative. The NFD
forms of many existing integral transforms are generated after substituting the different
values of ϕα(s), ψ(s) and γ(t) = 1 in ( 4. 33 ). These cases are

(1) For ϕα(s) = 1 andψ(s) = s, transform gives Mα

s+Mα

{
snL{y(t)}−Σn−1

k=0s
kyn−k−1(0)

}
,

where L{y(t)} is Laplace transform [39].
(2) For ϕα(s) = 1

v andψ(s) = v, new transform gives Mα

v+Mα

{
vnA{y(t)}}−Σn−1

k=0v
k−1yn−k−1(0)

}
,

where A{y(t)} is Aboodh transform [2].
(3) For ϕα(s) = p2 andψ(s) = 1

p , yields Mα

1+pMα

{
p1−nA{y(t)}}−Σn−1

k=0p
3−kyn−k−1(0)

}
,

where A{y(t)} is Anuj transform [23].
(4) For ϕα(s) = v andψ(s) = 1

v , produces Mα

1+vMα

{
v1−nE{y(t)}−Σn−1

k=0v
2−kyn−k−1(0)

}
,

where E{y(t)} is Elzaki transform [11].
(5) For ϕα(s) = 1

φ(s) and ψ(s) = φ2(s), it gives
Mα

φ2(s)+Mα

{
φ2n−1(s)EF{y(t)} − Σn−1

k=0φ
2k−1(s)yn−k−1(0)

}
, where EF{y(t)}

is Emad-Falih transform [22].
(6) For ϕα(s) = 1

u and ψ(s) = 1
u2 , transform gives Mα

1+u2Mα

{
u2−2nT{y(t)} −

Σn−1
k=0u

1−2kyn−k−1(0)
}

, where T{y(t)} is Tarig transform [12].
(7) For ϕα(s) = sm and ψ(s) = sn, transform corresponding to

Mα

sn+Mα

{
s2nG{y(t)} − Σn−1

k=0s
nk+myn−k−1(0)

}
, where G{y(t)} is G-transform

[4].
(8) For ϕα(s) = s

v and ψ(s) = s
v i, transform results in the(

Mα

si+vMα

{
(si)n

vn−1HY {y(t)} − Σn−1
k=0s

k+1( iv )
kyn−k−1(0)

}
, where HY {y(t)} is

HY transform [37].
(9) For ϕα(s) = p(s) and ψ(s) = q(s), transform results in the

Mα

q(s)+Mα

{
qn(s)J{y(t)} − p(s)Σn−1

k=0q
k(s)yn−k−1(0)

}
, where J{y(t)} is Jafari

transform [15].
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(10) For ϕα(s) = 1 and ψ(s) = 1
v , transform yields the Mα

v−1+Mα

{
v−nK{y(t)} −

Σn−1
k=0v

−kyn−k−1(0)
}

, where K{y(t)} is Kamal transform [43].

(11) For ϕα(s) = 1 and ψ(s) = 1
v2 , new transform gives

Mα

v−2+Mα

{
v−2nKF{y(t)}−Σn−1

k=0v
−2kyn−k−1(0)

}
, whereKF{y(t)} is Kashuri-

Fundo transform [19].
(12) For ϕα(s) = s3 and ψ(s) = 1

s2 , transform corresponding to
Mα

s−2+Mα

{
s−2nKT{y(t)}−Σn−1

k=0s
3−2kyn−k−1(0)

}
, whereKT{y(t)} is Kharrat-

Toma transform [21].
(13) For ϕα(s) = p and ψ(s) = 1

p , transform results in the
Mα

p−1+Mα

{
p−nET{y(t)} − Σn−1

k=0p
1−kyn−k−1(0)

}
, where ET{y(t)} is Elzaki-

Tarig transform [32].
(14) For ϕα(s) = v and ψ(s) = vα, transform yields the

Mα

vα+Mα

{
vαnKU{y(t)}−Σn−1

k=0v
1+αkyn−k−1(0)

}
, where KU{y(t)} is Kushare

transform [25].
(15) For ϕα(s) = v and ψ(s) = v, transform results in the

Mα

v+Mα

{
vnMG{y(t)} − Σn−1

k=0v
1+kyn−k−1(0)

}
, where MG{y(t)} is Mahgoub

transform [27].
(16) For ϕα(s) = v2 and ψ(s) = v, transform yields the

Mα

v+Mα

{
vnM{y(t)} − Σn−1

k=0v
k+2yn−k−1(0)

}
, where M{y(t)} is Mohand trans-

form [28].
(17) For ϕα(s) = 1

u and ψ(s) = s
u , transform corresponding to

Mα

s+uMα

{
sn

un−1RG{y(t)} − Σn−1
k=0(

s
u )
kyn−k−1(0)

}
, where RG{y(t)} is Ramdan

Group transform [45].
(18) For ϕα(s) = 1

u and ψ(s) = s
u , transform results in

Mα

s+uMα

{
sn

un−1N{y(t)} − Σn−1
k=0(

s
u )
kyn−k−1(0)

}
, where N{y(t)} is N-transform

[20].
(19) For ϕα(s) = σ

ε and ψ(s) = σ
ε , our new transform gives

Mα

σ+εMα

{
σn

εn−1R{y(t)} − Σn−1
k=0

σ1+k

εk
yn−k−1(0)

}
, where R{y(t)} is Rishi trans-

form [24].
(20) For ϕα(s) = 1

vβ
andψ(s) = vα, transform corresponding to Mα

vα+Mα

{
vnαS{y(t)}−

Σn−1
k=0v

αk−βyn−k−1(0)
}

, where S{y(t)} is Sadik transform [44].

(21) For ϕα(s) = 1
v2 andψ(s) = 1

v , transform gives Mα

v−1+Mα

{
v−nSa{y(t)}−Σn−1

k=0v
−k−2yn−k−1(0)

}
,

where Sa{y(t)} is Sawi transform [29].
(22) For ϕα(s) = 1 and ψ(s) = s

u , transform corresponding to
Mα

s+uMα

{
sn

un−1Sh{y(t)}−Σn−1
k=0

sk

uk−1 y
n−k−1(0)

}
, where Sh{y(t)} is Shehu-transform

[30].
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(23) For ϕα(s) = 1
v andψ(s) = vα, transform yields Mα

vα+Mα

{
vαnSo{y(t)}−Σn−1

k=0v
αk−1yn−k−1(0)

}
where So{y(t)}, is Soham transform [38].

(24) For ϕα(s) = s and ψ(s) = s, our new transform gives Mα

s+Mα

{
snLC{y(t)} −

Σn−1
k=0s

k+1yn−k−1(0)
}

, where LC{y(t)} is Laplace-Carson transform [31].

(25) For ϕα(s) = 1
s and ψ(s) = 1

s , our new transform corresponding to
Mα

s−1+Mα

{
s−nS{y(t)}−Σn−1

k=0s
−k−1yn−k−1(0)

}
, where S{y(t)} is Sumudu trans-

form [47].
(26) For ϕα(s) = s and ψ(s) = s2, our transform yields Mα

s2+Mα

{
s2nAJ{y(t)} −

Σn−1
k=0s

2k+1yn−k−1(0)
}

, where AJ{y(t)} is Pourreza transform [3].

(27) For ϕα(s) = 1 and ψ(s) = s
1
α , transform corresponding to

Mα

s
1
α +Mα

{
s

n
αAL{y(t)} − Σn−1

k=0s
k
α yn−k−1(0)

}
, where AL{y(t)} is α-transform

[35].
(28) For ϕα(s) = s

u andψ(s) = s
u , transform gives Mα

s+uMα

{
sn

un−1N{y(t)}−Σn−1
k=0

sk+1

uk yn−k−1(0)
}

,
where Na{y(t)} is Natural transform [20].

(29) For ϕα(s) = 1
q3 and ψ(s) = q, new transform corresponds to Mα

q+Mα

{
qnG{y(t)}−

Σn−1
k=0q

k−3yn−k−1(0)
}

, where G{y(t)} is Gupta transform [13].

(30) For ϕα(s) = p5 and ψ(s) = p, our transform produce the result
Mα

p+Mα

{
pnDV {y(t)}−Σn−1

k=0p
k+5yn−k−1(0)

}
, whereDV {y(t)} is Dinesh-Verma

transform [46].
(31) For ϕα(s) = s andψ(s) = s, transform results in Mα

s+Mα

{
snRa{y(t)}−Σn−1

k=0s
k+1yn−k−1(0)

}
,

where Ra{y(t)} is Raj transform [18].
(32) For ϕα(s) = 1

u and ψ(s) = 1
us , new transform gives

Mα

(us)−1+Mα

{
(us)−nAS{y(t)} − Σn−1

k=0u
−k−1s−kyn−k−1(0)

}
, where AS{y(t)}

is Abaoub-Skheam transform [1].
(33) For ϕα(s) = u and ψ(s) = u, our new transform yields Mα

u+Mα

{
unJT{y(t)} −

Σn−1
k=0u

k+1yn−k−1(0)
}

, where JT{y(t)} is Jabber-Tawfiq transform [14].

(34) For ϕα(s) = 1 and ψ(s) = 1
u , new transform results in Mα

u−1+Mα

{
u−nY {y(t)} −

Σn−1
k=0u

−kyn−k−1(0)
}

, where Y {y(t)} is Yang transform [9].
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4.13. Proposed Integral Transform on Atangana-Baleanu Derivative in Caputo sense.
Let f ∈ H1(a, b), a < b, α ∈ (0, 1], then the Atangana-Baleanu [5] in Caputo sense is
given as

ABC
a Dα

t y(t) =
L(α)

1− α

∫ t

a

y′(T )Eα

(
− α

(t− T )α

1− α

)
dT. (4. 35)

where Eα
(
− α (t−T )α

1−α

)
dT =

∑∞
m=o

−α(t−T )mα

1−α

Γ(mα+1) and L(α) is a normalization function,
such that L(0) = L(1) = 1.

Theorem 4.14. If ABC0 Dα
t y(t) is the Atangana-Baleanu derivative in the Caputo sense,

then S{ABCa Dα
t y(t)} gives L(α)

(1−α)ψα(s)+α

(
ψα(s)S{y(t)} − ϕα(s)ψα−1y(0)

)
.

Proof. After applying the proposed transform ( 2. 1 ) on the Atangana-Baleanu derivative
defined in ( 4. 35 ), we have

S{ABC0 Dα
t y(t)} =

L(α)

(1− α)

1

ϕα(s)

{(
ψ(s)Y (s)− ϕα(s)y(0)

)
ϕα(s)

( ψα−1(s)

ψα(s)−
(

−α
1−α

))}.
After simplification, we get

S{ABC0 Dα
t y(t)} =

L(α)

(1− α)

{(
ψ(s)Y (s)− ϕα(s)y(0)

)( ψα−1(s)
(1−α)ψα(s)+α

(1−α)

)}
.

This implies

S{ABC0 Dα
t y(t)} =

L(α)

(1− α)ψα(s) + α

(
ψα(s)S{y(t)} − ϕα(s)ψα−1y(0)

)
. (4. 36)

�
Proposition 4.15. If ϕα(s) = 1

s and ψ(s) = 1
s in equation ( 4. 36 ), then the proposed

transform on the Atangana-Baleanu derivative in Caputo sense converges to L(α)
(1−α)+αsα

(
S{y(t)}−

y(0)}
)

, where S{y(t)}, is Sumudu transform.

Proof. We can easily verify the above result using ϕα(s) = 1
s and ψ(s) = 1

s in equation (
4. 36 )

S{ABC0 Dα
t y(t)} =

L(α)

(1− α)
(

1
s

)α
+ α

((1
s

)α
S{y(t)} −

(1
s

)(1
s

)α−1

y(0)
)
,

S{ABC0 Dα
t y(t)} =

sαL(α)

(1− α) + αsα

(1
s

)α(
S{y(t)} − y(0)

)
.

Or equivalently,

S{ABC0 Dα
t y(t)} =

L(α)

(1− α) + αsα

(
S{y(t)} − y(0)}

)
. (4. 37)

Equation( 4. 37 ) is equivalent to the results of Atangana-Baleanu derivative in Caputo
sense after applying Sumudu transform. �
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4.15.1. Special cases of proposed transform via Atangana-Baleanu derivative in Caputo
sense. When different values of ϕα(s), ψ(s) and γ(t) = 1 are substituted in ( 4. 36 ),
the Atangana-Baleanu derivative in Caputo forms of many existing integral transforms is
produced. These unique instances are

(1) For ϕα(s) = 1 andψ(s) = s, transform gives L(α)
(1−α)sα+α

(
sαL{y(t)}−sα−1y(0)

)
,

where L{y(t)} is Laplace transform [39].
(2) For ϕα(s) = 1

v and ψ(s) = v, new transform gives
L(α)

(1−α)vα+α

(
vαA{y(t)} − vα−2y(0)

)
, where A{y(t)} is Aboodh transform [2].

(3) For ϕα(s) = p2 and ψ(s) = 1
p , yields L(α)

(1−α)p−α+α

(
p−αA{y(t)} − p−α+3y(0)

)
,

where A{y(t)} is Anuj transform [23].
(4) For ϕα(s) = v andψ(s) = 1

v , produces L(α)
(1−α)v−α+α

(
v−αE{y(t)}−v−α+2y(0)

)
,

where E{y(t)} is Elzaki transform [11].
(5) For ϕα(s) = 1

φ(s) and ψ(s) = φ2(s), it gives
L(α)

(1−α)φ2α(s)+α

(
φ2α(s)EF{y(t)} − φ2α−3(s)y(0)

)
, where EF{y(t)} is Emad-

Falih transform [22].
(6) For ϕα(s) = 1

u and ψ(s) = 1
u2 , transform gives

L(α)
(1−α)u−2α+α

(
u−2αT{y(t)−u−2α+1y(0)

)
, where T{y(t)} is Tarig transform[12].

(7) For ϕα(s) = sm and ψ(s) = sn, transform corresponding to
L(α)

(1−α)snα+α

(
snαG{y(t)} − snα+m−ny(0)

)
, where G{y(t)} is G-transform [4].

(8) For ϕα(s) = s
v and ψ(s) = s

v i, transform results in the
L(α)

(1−α)(si)α+vαα

(
(si)αHY {y(t)}−sαiα−1

)
y(0)

)
, whereHY {y(t)} is HY trans-

form [37].
(9) For ϕα(s) = p(s) and ψ(s) = q(s), transform results in the

L(α)
(1−α)qα(s)+α

(
qα(s)J{y(t)} − p(s)qα−1(s)y(0)

)
, where J{y(t)} is Jafari trans-

form [15].
(10) For ϕα(s) = 1 and ψ(s) = 1

v , transform yields the
L(α)

(1−α)v−α+α

(
v−αK{y(t)} − v−α+1y(0)

)
, where K{y(t)} is Kamal transform

[43].
(11) For ϕα(s) = 1 and ψ(s) = 1

v2 , new transform gives
L(α)

(1−α)v−2α+α

(
v−2αKF{y(t)}−v−2α+2y(0)

)
, whereKF{y(t)} is Kashuri-Fundo

transform [19].
(12) For ϕα(s) = s3 and ψ(s) = 1

s2 , transform corresponding to
L(α)

(1−α)s−2α+α

(
s−2αKT{y(t)}−s−2α+5y(0)

)
, whereKT{y(t)} is Kharrat-Toma

transform [21].
(13) For ϕα(s) = p and ψ(s) = 1

p , transform results in the
L(α)

(1−α)p−α+α

(
p−αET{y(t)}−p−α+2y(0)

)
, whereET{y(t)} is Elzaki-Tarig trans-

form [32].
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(14) For ϕα(s) = v and ψ(s) = vα, transform yields the
L(α)

(1−α)v2α+α

(
v2αKU{y(t)}−vα+1y(0)

)
, whereKU{y(t)} is Kushare transform

[25].
(15) For ϕα(s) = v and ψ(s) = v, transform results in the

L(α)
(1−α)vα+α

(
vαMG{y(t)} − vαy(0)

)
, where MG{y(t)} is Mahgoub transform

[27].
(16) For ϕα(s) = v2 and ψ(s) = v, transform yields the

L(α)
(1−α)vα+α

(
vαM{y(t)}−vα+1y(0)

)
, whereM{y(t)} is Mohand transform [28].

(17) For ϕα(s) = 1
u and ψ(s) = s

u , transform corresponding to
L(α)

(1−α)sα+uαα

(
sαRG{y(t)} − sα

uα+1 y(0)
)

, where RG{y(t)} is Ramdan Group
transform [45].

(18) For ϕα(s) = 1
u and ψ(s) = s

u , transform results in
L(α)

(1−α)sα+uαα

(
sαN{y(t)} − sα

uα+1 y(0)
)

, where N{y(t)} is N-transform [20].
(19) For ϕα(s) = σ

ε and ψ(s) = σ
ε , our new transform gives

L(α)
(1−α)σα+εαα

(
σαR{y(t)} − σαy(0)

)
, where R{y(t)} is Rishi transform [24].

(20) For ϕα(s) = 1
vα and ψ(s) = vα, transform corresponding to

L(α)
(1−α)v2α+α

(
v2αS{y(t)} − vα−αy(0)

)
, where S{y(t)} is Sadik transform [44].

(21) For ϕα(s) = 1
v2 and ψ(s) = 1

v , transform gives
L(α)

(1−α)v−α+α

(
v−αSa{y(t)} − v−α−1y(0)

)
, where Sa{y(t)} is Sawi transform

[29].
(22) For ϕα(s) = 1 and ψ(s) = s

u , transform corresponding to
L(α)

(1−α)sα+uαα

(
sαSh{y(t)}− u

s1−α y(0)
)

, where Sh{y(t)} is Shehu transform [30].

(23) For ϕα(s) = 1
v and ψ(s) = vα, transform yields

L(α)
(1−α)v2α+α

(
v2αSo{y(t)} − vα−1y(0)

)
, where So{y(t)} is Soham transform

[38].
(24) For ϕα(s) = s and ψ(s) = s, our new transform gives

L(α)
(1−α)sα+α

(
sαLC{y(t)} − sαy(0)}

)
, where LC{y(t)} is Laplace-Carson trans-

form [31].
(25) For ϕα(s) = 1

s and ψ(s) = 1
s , our new transform corresponding to

L(α)
(1−α)+αsα

(
S{y(t)} − y(0)}

)
, where S{y(t)} gives Sumudu transform [47].

(26) For ϕα(s) = s and ψ(s) = s2, our transform yields
L(α)

(1−α)s2α+α

(
s2αAJ{y(t)}−s2α−1y(0)

)
, where AJ{y(t)} is Pourreza transform

[3].
(27) For ϕα(s) = 1 and ψ(s) = s

1
α , transform corresponding to

L(α)
(1−α)s+α

(
sAL{y(t)} − s1−

1
α y(0)

)
, where AL{y(t)} is α-transform [35].

(28) For ϕα(s) = s
u and ψ(s) = s

u , transform gives
L(α)

(1−α)sα+uαα

(
sαN{y(t)}− sαy(0)

)
, where Na{y(t)} is Natural transform [20].
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(29) For ϕα(s) = 1
q3 and ψ(s) = q, new transform corresponds to

L(α)
(1−α)qα+α

(
qαG{y(t)} − qα−4y(0)

)
, where G{y(t)} is Gupta transform [13].

(30) For ϕα(s) = p5 and ψ(s) = p, our transform produce the result
L(α)

(1−α)pα+α

(
pαDV {y(t)}−pα+4y(0)

)
, whereDV {y(t)} is Dinesh-Verma trans-

form [46].
(31) For ϕα(s) = s and ψ(s) = s, transform results in

L(α)
(1−α)sα+α

(
sαRa{y(t)} − sαy(0)

)
, where Ra{y(t)} is Raj transform [18].

(32) For ϕα(s) = 1
u and ψ(s) = 1

us , new transform gives
L(α)

(1−α)(us)−α+α

(
(us)−αAS{y(t)} − s−α+1

uα y(0)
)

, where AS{y(t)} is Abaoub-
Skheam transform [1].

(33) For ϕα(s) = u and ψ(s) = u, our new transform yields
L(α)

(1−α)uα+α

(
uαJT{y(t)}−uαy(0)

)
, where JT{y(t)} is Jabber-Tawfiq transform

[14].
(34) For ϕα(s) = 1 and ψ(s) = 1

u , new transform results in
L(α)

(1−α)u−α+α

(
u−αY {y(t)}−u−α+1y(0)

)
, where Y {y(t)} is Yang transform [9].

4.16. Proposed Integral Transform on Atangana-Baleanu derivative in Riemann Li-
ouville sense. Let f ∈ H1(a, b), a < b, α ∈ (0, 1], then the Atangana-Baleanu derivative
[5] in Riemann-Liouville sense is given as

ABR
a Dα

t y(t) =
L(α)

1− α

d

dt

∫ t

a

y(T )Eα

(
− α

(t− T )α

1− α

)
dT, (4. 38)

where Eα
(
− α (t−T )α

1−α (t − T )α
)
dT =

∑∞
m=o

−α (t−T )mα

1−α

Γ(mα+1) and L(α) is a normalization
function, such that L(0) = L(1) = 1.

Theorem 4.17. If ABR0 Dα
t y(t) is the Atangana-Baleanu derivative in the Riemann-Liouville

sense, then S{ABR0 Dα
t y(t)} gives L(α)

(1−α)ψα(s)+α

(
ψα(s)S{y(t)}

)
.

Proof. After applying the proposed transform ( 2. 1 ) on the Atangana-Baleanu derivative
in Riemann-Liouville defined in ( 4. 38 ), we have

S
{ABR
0

Dα
t y(t)

}
=

L(α)

1− α
S
{ d

dt

[
y(t)Eα

(
− α

tα

1− α

)]}
.

This implies

S
{ABR
0

Dα
t y(t)

}
=

L(α)

1− α

[
ψ(s)S

{
y(t)Eα

(
− α

tα

1− α

)}
− ϕα(s)S{y(0)Eα(0)}

]
.

By using the properties of Mittag Leffler [39], we have

S
{ABR
0

Dα
t y(t)

}
=

L(α)

1− α

[
ψ(s)

{ 1

ϕα(s)
Y (s)

( ψα−1(s)
(1−α)ψα(s)+α

1−α

ϕα(s)
)}]

.
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After simplification, we get

S
{ABR
a

Dα
t y(t)

}
=

L(α)

(1− α)ψα(s) + α

(
ψα(s)Y (s)

)
.

This can be written as

S
{ABR
a

Dα
t y(t)

}
=

L(α)

(1− α)ψα(s) + α

(
ψα(s)S{y(t)}

)
. (4. 39)

�
Proposition 4.18. If ϕα(s) = 1

s and ψ(s) = 1
s in equation ( 4. 39 ), then the proposed

transform on the Atangana-Baleanu derivative in Riemann Liouville sense converges to
L(α)

(1−α)+αsα

(
S{y(t)}

)
, where S{y(t)}, is Sumudu transform.

Proof. We can easily verify the above result using ϕα(s) = 1
s and ψ(s) = 1

s in equation (
4. 39 )

S
{ABR
a

Dα
t y(t)

}
=

L(α)

(1− α)
(

1
s

)α
+ α

((1
s

)α
S{y(t)}

)
,

S{ABR0 Dα
t y(t)} =

sαL(α)

(1− α) + αsα

(1
s

)α(
S{y(t)}

)
.

Or equivalently,

S
{ABR
a

Dα
t y(t)

}
=

L(α)

(1− α) + αsα

(
S{y(t)}

)
. (4. 40)

Equation( 4. 40 ) is equivalent to the results of Atangana-Baleanu derivative in Riemann
Liouville sense after applying Sumudu transform. �
4.18.1. Special cases of proposed transform via Atangana-Baleanu derivative in Rie-
mann Liouville sense. Many current integral transforms can be converted into their Atangana-
Baleanu derivatives by substituting alternative values for ϕα(s), ψ(s) and γ(t) = 1 in ( 4.
39 ). These unique situations are

(1) Forψ(s) = s, transform gives L(α)
(1−α)sα+α

(
sαL{y(t)}

)
, whereL{y(t)} is Laplace

transform [39].
(2) For ψ(s) = v, new transform gives L(α)

(1−α)vα+α

(
vαA{y(t)}

)
, where A{y(t)} is

Aboodh transform [2].
(3) For ψ(s) = 1

p , yields L(α)
(1−α)p−α+α

(
p−αA{y(t)}

)
, where A{y(t)} is Anuj trans-

form [23].
(4) For ψ(s) = 1

v , produces L(α)
(1−α)v−α+α

(
v−αE{y(t)}

)
, where E{y(t)} is Elzaki

transform [11].
(5) For ψ(s) = φ2(s), it gives L(α)

(1−α)φ2α(s)+α

(
φ2α(s)EF{y(t)}

)
, where EF{y(t)}

is Emad-Falih transform [22].
(6) For ψ(s) = 1

u2 , transform gives L(α)
(1−α)u−2α+α

(
u−2αT{y(t)

)
, where T{y(t)} is

Tarig transform [12].
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(7) For ψ(s) = sn, transform corresponding to L(α)
(1−α)snα+α

(
snαG{y(t)}

)
, where

G{y(t)} is G-transform [4].
(8) For ψ(s) = s

v i, transform results in the L(α)
(1−α)siα+vαα

(
(si)αHY {y(t)}

)
, where

HY {y(t)} is HY transform [37].
(9) For ψ(s) = q(s), transform results in the L(α)

(1−α)qα(s)+α

(
qα(s)J{y(t)}

)
, where

J{y(t)} is Jafari transform [15].
(10) For ψ(s) = 1

v , transform yields the L(α)
(1−α)v−α+α

(
v−αK{y(t)}

)
, where K{y(t)}

is Kamal transform [43].
(11) Forψ(s) = 1

v2 , new transform gives L(α)
(1−α)v−2α+α

(
v−2αKF{y(t)}

)
, whereKF{y(t)}

is Kashuri-Fundo transform [19].
(12) Forψ(s) = 1

s2 , transform corresponding to L(α)
(1−α)s−2α+α

(
s−2αKT{y(t)}

)
, where

KT{y(t)} is Kharrat-Toma transform [21].
(13) Forψ(s) = 1

p , transform results in the L(α)
(1−α)p−α+α

(
p−αET{y(t)}

)
, whereET{y(t)}

is Elzaki-Tarig transform [32].
(14) Forψ(s) = vα, transform yields the L(α)

(1−α)v2α+α

(
v2αKU{y(t)}

)
, whereKU{y(t)}

is Kushare transform [25].
(15) Forψ(s) = v, transform results in the L(α)

(1−α)vα+α

(
vαMG{y(t)}

)
, whereMG{y(t)}

is Mahgoub transform [27].
(16) For ψ(s) = v, transform yields the L(α)

(1−α)vα+α

(
vαM{y(t)}

)
, where M{y(t)} is

Mohand transform [28].
(17) For ψ(s) = s

u , transform corresponding to L(α)
(1−α)sα+uαα

(
sαRG{y(t)}}

)
, where

RG{y(t)} is Ramdan Group transform [45].
(18) For ψ(s) = s

u , transform results in L(α)
(1−α)sα+uαα

(
sαN{y(t)}}

)
, where N{y(t)}

is N-transform [20].
(19) Forψ(s) = σ

ε , our new transform gives L(α)
(1−α)σα+εαα

(
σαR{y(t)}

)
, whereR{y(t)}

is Rishi transform [24].
(20) For ψ(s) = vα, transform corresponding to L(α)

(1−α)v2α+α

(
v2αS{y(t)}

)
, where

S{y(t)} is Sadik transform [44].
(21) For ψ(s) = 1

v , transform gives L(α)
(1−α)v−α+α

(
v−αSa{y(t)}

)
, where Sa{y(t)} is

Sawi transform [29].
(22) For ψ(s) = s

u , transform corresponding to L(α)
(1−α)sα+uαα

(
sαSh{y(t)}

)
, where

Sh{y(t)} is Shehu-transform [30].
(23) For ψ(s) = vα, transform yields L(α)

(1−α)v2α+α

(
v2αSo{y(t)}

)
, where So{y(t)} is

Soham transform [38].
(24) Forψ(s) = s, our new transform gives L(α)

(1−α)sα+α

(
sαLC{y(t)}

)
, whereLC{y(t)}

is Laplace-Carson transform [31].
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(25) For ψ(s) = 1
s , our new transform corresponding to L(α)

(1−α)+αsα

(
S{y(t)}

)
, where

S{y(t)} is Sumudu transform [47].
(26) Forψ(s) = s2, our transform yields L(α)

(1−α)s2α+α

(
s2αAJ{y(t)}

)
whereAJ{y(t)},

is Pourreza transform [3].
(27) Forψ(s) = s

1
α , transform corresponding to L(α)

(1−α)s+α

(
sAL{y(t)}

)
, whereAL{y(t)}

is α-transform [35].
(28) For ψ(s) = s

u , transform gives L(α)
(1−α)sα+uαα

(
sαN{y(t)}

)
, where Na{y(t)} is

Natural transform [20].
(29) For ψ(s) = q, new transform corresponds to L(α)

(1−α)qα+α

(
qαG{y(t)}

)
, where

G{y(t)} is Gupta transform [13].
(30) For ψ(s) = p, our transform produce the result L(α)

(1−α)pα+α

(
pαDV {y(t)}

)
, where

DV {y(t)} is Dinesh-Verma transform [46].
(31) For ψ(s) = s, transform results in L(α)

(1−α)sα+α

(
sαRa{y(t)}

)
, where Ra{y(t)} is

Raj transform [18].
(32) For ψ(s) = 1

us , new transform gives L(α)
(1−α)(us)−α+α

(
(us)−αAS{y(t)}

)
, where

AS{y(t)} is Abaoub-Skheam transform [1].
(33) Forψ(s) = u, our new transform yields L(α)

(1−α)uα+α

(
uαJT{y(t)}

)
, where JT{y(t)}

is Jabber-Tawfiq transform [14].
(34) Forψ(s) = 1

u , new transform results in L(α)
(1−α)u−α+α

(
u−αY {y(t)}

)
, where Y {y(t)}

is Yang transform [9].

5. CONCLUSIONS

In this paper, we introduced the fractional integral transform and applied it to One-
Dimensional Fractional Viscous Burger’s Equation. The nonlinear integer order PDE known
as Burger’s equation remains successful in gaining the attention of many researcher for
many years due to its wide range of applications in mathematics, physics and engineer-
ing. But in our paper, we provide the exact solution of fractional Burger’s equation using
(proposed) transform decomposition method, and solution of this particular equation via
all other Laplace family integral transforms can also be a special case of the solution via
our proposed transform.

Our innovative approach encompasses over 200 distinct fractional differential trans-
forms, all of which serve as specific instances derived from our foundational transforms.
In our paper, we apply the proposed transform to a few fractional differential operators like
Caputo, Caputo-Fabrizio, Riemann-Liouville,New Fractional Derivative, and Atangana-
Baleanu in the Riemann-Liouville and Caputo senses. We also presented the other trans-
forms as special cases of our proposed transform. It has been shown that for different
values of ϕα(s), γ(t) and ψ(s) other integral transforms are special cases of the proposed
transform.
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