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Abstract. In this work, our focus is on obtaining approximate analytic
solutions for the Kudryashov-Sinelshchikov equation using the reduced
differential transform method. This equation describes nonlinear waves in
gas-liquid mixtures, with a specific emphasis on the impact of heat trans-
fer and viscosity. The results present a theoretical basis of the numerical
scheme and manifest its efficiency with different types of numerical ex-
amples, from solitary wave solutions to the soliton wave solutions as well
as to the rational soliton solutions. This proposed scheme is backed by the
calculated absolute error norms and illustrated results and is proven to be
efficient in solving both linear and nonlinear problems of similar natures.
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1. INTRODUCTION

Solitary and periodic waves frequently appear in mixtures governed by nonlinear partial
differential equations (PDEs), including the KdV-mKdV equation, the KdV-Burgers equa-
tion, the BBM-Burgers equation, etc. Nowadays, the Traveling wave solutions of such
problems have attracted the attention of many researchers. Numerous efforts are under-
way to address a variety of nonlinear phenomena. The authors have also addressed sim-
ilar model problems in their previous works [1, 2, 6, 7, 10, 11]. In the current work, we
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focus on Kudryashov-Sinelshchikov equation which is particularly used to model the be-
havior of pressure waves in liquid-gas mixtures, taking into account viscosity and ther-
mal expansion. While studying the physical and biological aspects of the ocean, we en-
counter physical models described by nonlinear partial differential equations (PDEs) that
support a broad range of solitary wave solutions. Among these nonlinear PDE models, the
Kudryashov-Sinelshchikov equation stands out. It was initially proposed by Kudryashov
and Sinelshchikov to describe pressure waves in a liquid mixture and gas bubbles [12].

Recently, Ali and Maneea presented a new technique focusing on the Kudryashov-Sinelshc-
hikov (KS) equation and its variants. They assess different numerical methods, and show-
cases numerical results that affirm the method’s precision. It highlights the efficiency of
technique used for nonlinear fractional PDEs and its potential applications in biological
systems and boundary value problems [5].

In order to find exact and approximate solutions, the Kudryashov-Sinelshchikov equation
has recently been studied and solved using a variety of analytical, numerical and semi-
analytical methods, including the residual power series method and the homotopy analysis
method [4]. Using a radial basis function, Gupta and Ray numerically solved the fractional
Kudryashov-Sinelshchikov problem. The approximate solution is in good agreement with
the exact solution and achieves good accuracy [8]. Chen Yue et al. solve the fractional
Kudryashov-Sinelshchikov equation using a modified Khater approach [18]. With the use
of similarity reductions and the invariant subspace technique, Prakash employed Lie sym-
metry analysis to obtain many exact solutions [15].

In this work, authors analyzes nonlinear waves in a mixture of liquid and gas bubbles,
focusing on the effects of viscosity and heat transfer on pressure wave propagation. The
findings emphasize the importance of understanding wave dynamics in bubbly liquids, with
implications for applications such as medical ultrasound imaging and insights into wave be-
havior influenced by thermal and viscous interactions.

In the present paper, we discuss the mathematical properties of the KS equation, which can
be found in the literature [9, 13, 14, 16, 17]. Unlike exact solutions, there are very few
numerical schemes documented. Therefore, our work focuses on developing a numerical
scheme for the Kudryashov-Sinelshchikov equation. In Section 3, we discuss the applica-
tion of the differential transform technique and the two-dimensional reduced differential
transform method for solving the equation, respectively. The outcomes of the proposed
schemes are presented in Section 4. The final section includes our concluding remarks,
followed by a list of references used in this work.

2. MATHEMATICAL MODELLING

Taking into account heat transfer and the viscosity of the liquid, a general partial differential
equation describing pressure waves in a mixture of liquid and gas bubbles was introduced

as
@—F u%+@+ uép—u —n@@—u@—é u% =0, 21D
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where 7, €, k, 1, d are constants playing a significant role with each term. w is a density
modeling viscosity and heat transfer [14]. In particular if e = k = v = § = 0, it will give
rise to KdV equation. When e = k = § = 0, it is called KdV-Burgers equation as discussed
earlier. In the present work, we will consider Kudryashov-Sinelshchikov equation in the
form

0? 0?
ut—l—au —1—6 <uag§>m+ou$a;; =0, 2.2)
where «, 8, v and 0 = —3+y are arbitrary nonzero and real parameters.

3. BASIC DEFINITIONS
In this section, we introduce basic definitions related to differential transformation.
3.1. 1D-Differential transform method. If u(t) € R can be expressed as a Taylor se-

ries about the fixed point ¢y, then u(t) can be represented as the sum of its Taylor series
expansion.

u(t) = i u® (to) (t — to)F. 3. 3)

k!
k=0

If u, (£) = Y70, u! ;,to) (t — to)¥, is the n-partial sums of a Taylor series equation ( 3. 3
), then

up(t) = zn: u® (o) (t —to)* + Ry (t). (3.4

k!
k=0

Here, w, (t) represents the n-th polynomial for u(¢), and R, (¢) stands for the remainder
term. Now, if we define the differential transform function U (k) as

k
U(k) = ;[ddj@]t_to, (3.5)
where k£ = 0,1, 2, ... then Eq. ( 3. 3) is reduced to
Z U (k) (t — to)", 3. 6)
and the n-partial sums of series expansion becomes
ZU )t —to)* + R (t). (3.7)
For simplicity, let’s assume ¢y = 0. Then, Eq. ( 3. 7) is reduced to

un(t) = Z U(k)t" 4+ R, (). (3. 8)
k=0

Upon examining the definition above, it becomes evident that the roots of the differential
transform method are embedded within the Taylor series expansion.
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TABLE 1. The core operations within the one-dimensional DTM

Original Function Transformed Function

w(t)—uyglt +o(t) W (k) =U (k) £V (k)

w(t) = Lt W (k) = &Emly (g 4 m)

w(t) =u (t) v (t) W(k)y=U(k)*V(k)=SF_ U@V (k-r)
w(z) = 2" Wk)=5(k-—m)=1q g oti;uﬁse

w(t) = et W(k):*ki’z

w (t) = sin (at + B) W(k):%;sin(%+ﬁ)

w (t) = cos (at + B) W(k):‘]"c—,cos(%'Jrﬁ)

3.2. 2D-Differential transform method. We denote w(x,t) as w(z,t) = f(z)g(t). Uti-
lizing the properties of the 1D-DTM, it can be expressed as:

= iiW(i,j)xitj. (3.9
i=0 j=0

Letting W (7, j) = F'(¢)G(j) denote the spectrum of w(x, t), the spectrum function for the
analytical function w(x, t) is given by:

Wi(x) = E a—kw(ac t) (3. 10)
S T 7 P '

as reduced transformed function whose inverse transform is defined as

ZWk (t—to)". 3.11)
From Eqgs. (3. 10 ) and (3. 11 ), we get
. 1[0k

=Y —|=— t t —to)*. 3.12
v =3 ven] a-w) 612

Thus, it becomes evident that the reduced differential transform technique is derived from
the 2D differential transform technique.

TABLE 2. The core operations within the two-dimensional RDTM

Original Function Transformed Function

w (z,t) _u(z t) £ v (z,t) Wi () = Ui (z) £ Vi (x)

w(z,t) = atu(l t) Wi (z) = dek (2)

w(z,t) = 8tu(r t) Wi (2) = (k+ 1) Ug41 (z)

w (xz,t) = d‘;:{;zgu (z,t) Wi (z) = (k%b)' ddrr Ukts (x)

w(z,t) =u(z,t)v(z,t) Wi, (x):E, o Ur () Vi ()

w(z,t) =u(z, t)v(z,t)z(z,t) Wi (2) = ZF_ ZhZ5 Uy (I)V (%) Z—r—s ()
w(z,t) =z™t" Wi (z) = 'c'”é (k—n)= o k=n

0 otherwise

4. NUMERICAL APPLICATIONS

This section is dedicated to presenting test problems, aiming to illustrate the effectiveness
of the technique. Absolute error norms are computed to validate the accuracy of the pro-
posed method.
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4.1. Solitary wave solutions. The solitary wave solution of Eq. ( 2. 2 ) is provided by [3]

u (x,t) = Asech? [B (x — ct)],
where A is amplitude, B is inverse width, ¢ is velocity and

A= 3"{/";6 B:%,c:ﬁ/ﬁﬂ.
a — k2u2y 2
Here, o, 3, 7, k and p > 0 are arbitrary constants. We have Eq. ( 2. 2 ) with
u (x,0) = Asech? [Bz].
After applying reduced differential transform technique to Eq. ( 2. 2 ), we get

k

(k1) Ui (0) 4 03U (0 %Uk_,« (x)
: S .
+(y+o ZO d— kar (x)
&3 b &3
+B=Uk (1) +9D_Ur (2) 75Uy () =0,

and using the given condition ( 4. 15 ), we have

Up (z) = Asech? [Bz],

Ui () = AB (—9B*B + A (o — 4B*(Ty + 20))
+ (-8B*B+ A (a+4B*(2y 4 0))) cosh[2Bz]
+B?Bcosh[4Bz]) sech®[Bz|tanh[Bz],

Us (z) = AB?sech®|Bz](32B*3?
+16B°3 (—63B*B + 5A (a + 4B*(2y + 0))) sech®[Ba]
+2 (1680B*5? — 16AB?B (11a + 250B%y + 98B%0)
+3A42 (a +4B%*(2y + 0)) (o + 4B*(57 + 20)) ) sech”[Bz]
— (2520B*8* — 6AB”B (49a + 20B* (1667 + 570))
+A? (70® + 4B*a (157 + 530)
+16B* (574+* + 403y0 + 700?)))sech®[Bz]
+6AB? (—36BB(607 + 190) + A (3c(277 + 80)
+4B” (843+* 4 51570 + 770?)))sech®[ Bx]
—132A?B*(3y + 0)(31y + To)sech'’[Bz]),

4. 13)

4. 14)

4. 15)

(4. 16)

4. 17)

4. 18)

4. 19)
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Proceeding in a similar manner, we derive the subsequent terms. Substituting these into the
inverse DTM, the Poisson series form yields the approximate solution for Eq. ( 2. 2 ):

Us (z,t) = Ug () + Uy (2) t + Uy (z) 12, (4. 20)

Us (z,t) = Asech’[Bz] (1 + 32B%*3* + Bt (—Bt (2520B* 3>
—6AB?B (49a + 20B*(1667 + 570)) + A? (7a® + 4B*a(157y + 530)
+16B* (574+” + 403y0 + 700%)))sech®[Ba]
+6ABt (—36B?B(607 + 190) + A (3c(277 + 80)
+4B? (8437 + 51570 + T70?) ) )sech®[ Bz
—132A%B%t(3y 4 0)(31y + 70)sech'’[Bz] + 8 B ftanh[ Bx]
+2Bsech*(Bz] (t (1680B*3? — 16 AB*S (11 + 250B%y + 98B%0)
+3A% (a + 4B*(2y + 0)) (a + 4B*(5v + 20))) — 6AB(3y + o)tanh[Bz])
+2sech®[Bz] (8B%3 (—63B?B + 5A (a + 4B*(2y + 0)))

+ (-12B*B+ A (a + 4B*(2y + 0)) ) tanh[Bz]) ) ),
. 21)

which matches exactly with the is the first three terms of analytical result (4. 13 ).

The paramaters are chosen as a = 2, § = 1,y = 0.1, kK = 1, and p = 0.5. Subsequently,
the algorithm continues to run until time ¢ = 5. Table 3 presents the errors of the N-
approximate solution obtained from RDTM and the analytical solution, denoted as u— U,
at various N for specific points within the intervals —15 < x < 15 at selected time steps. In
Fig. 1, 2— approximate solution are plotted as 3D and 2D, respectively. The absolute errors
for N —approximate solitary wave solutions of Eq. ( 2. 2 ') are drawn as two dimensional in
Fig. 2 at time ¢ = 1. Then, the absolute errors for /N —approximate solitary wave solutions
of Eq. (2. 2) are depicted as three dimensional in Fig. 3 at 0 < ¢ < 5. Table 3, Fig. 2 and
Fig. 3 verify the proposed technique as the number of terms are expanded in the series.

Uy fxt)
1.0E

Ar

Us it} 06f

0.4

04t

0.2r

FIGURE 1. 2—approximate solution for solitary wave solution of Eq. (
2.2)witha=2,=1,y=0.1,k=1,and p = 0.5.
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TABLE 3. Calculating the errors for the /N-approximate solitary wave
solutions of Eq. (2. 2 ) under the conditions « = 2, 8 = 1, v = 0.1,
k=1,and p = 0.5.

z 3 lu(z,t) — Us (z,t)] |u(z,t) — Us (z,1)] |u(z,t) —Us (2, t)]
—15.00 0.10 3.421457 x 10 ° 1.803474 x 10 1! 7.533557 x 10 %
—12.50 0.25 1.811225 x 1077 2.337145 x 107° 2.329880 x 101!
—10.00 0.50 4.623841 x 107° 1.098268 x 10~7 1.778989 x 1079
—7.50 0.75 4.049229 x 107° 9.261687 x 107 9.934641 x 10~°
—5.00 1.00 7.006494 x 10~° 1.083204 x 107° 1.163533 x 107°
—2.50 1.50 2.004236 x 1073 1.857150 x 104 1.124277 x 107°

0.00 2.00 1.299918 x 10~2 1.299918 x 1073 3.333081 x 10~°
2.50 2.50 1.122572 x 1072 1.087055 x 1073 2.591817 x 10™4
5.00 3.00 3.039990 x 104 1.295289 x 1073 3.236481 x 10~4
7.50 3.50 4.590416 x 1072 3.810729 x 104 5.347095 x 10~°
10.00 4.00 2.941583 x 1073 5.179452 x 104 6.080790 x 10~°
12.50 4.50 1.368788 x 1073 2.988510 x 107% 5.106108 x 107°
15.00 5.00 5.714126 x 10~ 1.414762 x 104 2.828821 x 107°
Julty— U ot Jubt) - Us et
Boe1pt g x10f
B.xf10 B.%x10°
PRonE | a7t |
2107 2x10°
e N Yy A U B S V=
-15 =10 -5 a a 10 15 -15 =10 -5 0 5 10 15
|uit) - Ug (x5t |
10"
4%
I‘l !
25107
| | “
-15 -10 -5 i} ) 10 15

FIGURE 2. The absolute errors for N —approximate solitary wave solu-
tions of Eq. (2. 2)witha=2,86=1,7v=0.1,kx =1,and u = 0.5 at
t=1

4.2. Soliton wave solutions. Analytical solution of Eq. (2. 2) is given by [3]

48b2bg:‘€26€2 bom(w—4b0525t)

u(@,t)=— o 4.22)
(a — 4bok2y) (—1 + bobae2Vbor(z—4bor?B1))
where 0 = —3~. We take Eq. ( 2. 2) subject to initial condition
48Dyb3 K2 B2V bore
u(z,0) = — 2" e (4. 23)

(o — 4bor2y) (=1 + bobye2VBorz)?’
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upEti - U ) uit) - L et)

FIGURE 3. The absolute errors for N —approximate solitary wave solu-
tions of Eq. (2. 2)witha=2,6=1,y=0.1,k =1, and 4 = 0.5.

Thus, by applying the DTM on Eq. ( 2. 2 ), we get the recurrence relation as

k
d
(k+1) Upt1 () + « Z::O Ur (2) o Uk-r (2)
"o 42
— —Ui_ 4. 24
+(’y+a);0dIUr (x) deUk () 4.24)
d3 k d3
+B-—5Uk (v) +7 g Ur (2) 25Uk (2) =0,
with initial value
4 2,2 2/ bokx
Uo (z) = — Bbabor” e (4. 25)

(o — 4bgK2y) (—1 + bobzez\/%’“)w
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the first two terms from the recurrence relation ( 4. 24 ) are obtained as

384e2wm\/b052/€5b7/2b2
Ui () = 0 —a + by (4K
! ( ) (Oé — 4’}%}260) 2 (*1 —+ e2Trv b"bobg) 7 ( 0 ( 4

te2anvhop, (3a + by (1252(117 +do) + 2orVho bg( ~ 2%

+bo (85291 + 300) + €2VP0by (=20 + by (85 (917 +300) (4.26)

+e2envbop, (3a + b (12,@2(117 +4o)

—e2Vbo (o — 42y b2)>)))))>)>

2zk+/bo 33,815

s ()= 1 47;206; e f e’;ﬁi’gw — ( (a— 4yx%b) 2
_ge2ev/Bop (—a+ 4%%2()0) (a+ 4K2(89y + 300)bo) ba
—3eterViopZ(— o? — 8ar?(1223y + 4080)by
+16x (503972 + 25440 + 28802) b3 ) b3
—48¢0mVhop3 (o® — 4k (5457 + 1810)by
+16k* (400072 + 226970 + 31202) b2) b
—6e5er Voot (—210% + 8k2by (Ta(63 + 200)
+2r2 (142995+° + 803600 + 10896052) by) ) b
—24e1075Vh0p3 (702 + 8k%by (Ta(170y + 570) 4.27)
+2r7 (5852592 + 3246670 + 43200°) by) ) b3
—6e127VBopl (2102 + 8k2by (Ta(63y + 2007)
+2r> (142995+° + 803600 + 10896057) by) ) b
—48etrnVbopT (a? — 4ar® (5457 + 1810)by
+165% (400072 + 226970 + 31202) b2) D]
_361615\/5138( —a? — 8ak?(1223y + 4080)by
+16k* (503992 + 25440 + 28802 b2) b
—de 8VBoRd (o 4 4y (o + 4K%(897 + 300)b) b

—eQOmmbéo (a — 4’752190) 2b%o) .

Continuing in the same way, we get other terms using the ( 4. 24 ). Putting these in inverse
DTM, the approximate solution of Eq. ( 2. 2) are:
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Us (x,t) = Uy (x) + Uy (z) t + Us (2) 12, (4. 28)

48¢27V b0 322D, (7( T )2
(c — dyr2bg) ® (—1 + e2om/bopyhy) 12 L A0 T TR0

(=1 e Pobghy ) 10+ 3262828 - (o — dywbo)?

U2 (l’,t) =

—4e27 Vb, (—a 4 4yk2bg) (a + 42(89 + 300)bg ) b
—3etorVhop2 (—a? — 8ak?(1223y + 4080)by

+16" (503972 + 25440 + 28807) b)) b3
—48¢55Vh0p3 (0% — 4ak® (545 + 1810)by

+16r* (40007* + 22690 + 31202) b3) b3
,Gemmbg( — 21a” + 8k%by (T (637 + 200)

+2r> (142995+° + 803600 + 1089605°) by) ) b
_2461096%\/558 (7a2 + 8k2bg (Ta (1707 + 570)

+2k” (58525v° + 324660 + 432007) by) ) b
—6et2oVEopl (2102 + 8k2by (Ta(63 + 2007)

+2k2 (14299572 + 8036070 + 1089652 bo) )b (4. 29)
—48e14e VT (0% — 4ar? (545 + 1810)by

+16r* (40007 + 226970 + 31207 b2 b5
7361693#;\/%[)3( — a? — 8ak?(1223y + 4080)b,

+16x" (50397* + 25440 + 28807) b ) b3

— 4187V (v 4 dyk®ho) (a + 4K2 (89 + 300)bo ) b
_ezozn\/%béo (a _ 4’Y’€Qbo) Qb%())

+8t653bg/2 (o — 4vK7bo) (—1 + 62mmbob2) 5

(—a + bo (47#52 + 2 VP0b, (3 + by (1262(11y + 40)
+e2VB0py (20 + by (8K2(91 + 300)

te2enVbop, (—2a + by (8x2(917 + 300)

+e2mVP0by (30 + by (1267 (117 + 40)

— Y% (0 = 49°h0) 12)))))))))))-

which matches with the first three terms of analytical result ( 4. 22 ).
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The computations run up to time ¢ = 5 by taking the parameters as « = —0.3, § =
—-0.1, v = —0.7, kK = 0.5, by = 0.5, and by = —0.1. Table 4 displays the errors of
the N-approximate solution derived from RDTM, represented as u — Un. These errors
are provided for different values of N at selected time steps, showcasing the comparison
between the approximate solution and the exact solution within the intervals —10 < z <
15. In Fig. 4, 2—approximate solutions are plotted as 3D and 2D, respectively. The absolute
errors for N —approximate soliton wave solutions of Eq. ( 2. 2 ) are illustrated as two
dimensional in Fig. 5 at time ¢t = 1. Then, the absolute errors for N —approximate soliton
wave solutions of Eq. (2. 2 ) are drawn as three dimensional in Fig. 6 at 0 < ¢t < 5.
Observing Table 4, Fig. 5, and Fig. 6, it is evident that the error diminishes with an
increase in the number of terms included in the series.

TABLE 4. Calculating the errors for the N-approximate soliton wave
solutions of Eq. ( 2. 2 ) under the conditions &« = —0.3, § = —0.1,
v=—-0.7,k=0.5,by = 0.5, and by = —0.1.

x

t

[u(z,t) — Us (x, ¢)]

lu(z,t) — Us (z,1)]

[u(z,t) — U (,t)]

—10.00 0.10 3.754290 x 10~ 12 3.316141 x 10~ '° 2.493665 x 10~ 1
—7.50 0.25 3.429394 x 10710 7.544369 x 10713 1.320125 x 1071
—5.00 0.50 1.579499 x 1078 6.809826 x 10711 2.290911 x 10713
—2.50 1.00 6.607382 x 10~ 7 4.984779 x 107° 2.379720 x 10711
0.00 2.00 1.315241 x 107° 7.175303 x 1078 7.278341 x 1077
2.50 2.50 1.489075 x 10~ 2.976294 x 1076 8.430426 x 1078
5.00 3.00 2.691813 x 104 7.045310 x 10~ 5.186909 x 10~ 7
7.50 3.50 9.186402 x 10~ 6.043706 x 10~° 2.891235 x 10~7
10.00 4.00 7.034321 x 10~° 1.761287 x 10~° 1.135005 x 1078
12.50 4.50 2.146755 x 10~° 8.209124 x 107 2.375126 x 1078
15.00 5.00 5.196413 x 10~ 2.298583 x 10~7 8.046319 x 10~°

U b

Uy ()~

-30p \-’/

FIGURE 4. 2—approximate solution for soliton wave solution of Eq. ( 2.
2)ywitha = -03, 8 = —-0.1,y = -0.7, Kk = 0.5, bp = 0.5, and
by = —0.1.

4.3. Soliton rational solutions. The exact solution of Eq. ( 2. 2) is given by [3]

B 2b1q1 B~
brgryeltne — (bogy — bigo) ebi*At

u(z,t) = (4. 30)
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|ulxty -t (%1 |uixd - L (k1)
=
12:10°%F .
) 1ax10Tf
5|
[l 15%107
i
810 12%107 F
-6 |
Bx10ft . g aqntl
ax10”® 610k
210 3108
y !, Vv e fr | .I' A = S
10 -5 [ 5 10 15 21D -5 0 5 10 15
| U] - Lig 1)
24x10°F
2x10°F
16x%10°
I
12x40°%
81070
410"
. I P X
-10 -5 0 5 10 15

FIGURE 5. The absolute errors for N —approximate soliton wave solu-
tions of Eq. (2. 2 ) witha = —0.3, 8 = —0.1, v = —0.7, Kk = 0.5,
bp =0.5,and by = —0.1 att = 1.

where 0 = —37. We have the Eq. ( 2. 2 ) with condition

B 2b1q1 B
biqiyebise — (boqr — biqo)

u(z,0) =

4. 31)

After implementing the reduced DTM on Eq. ( 2. 2 ), We get the recurrence relation

equation

b d

(k+ 1) Ukpa (2) + 0 ) Ur (2) = Upr ()

and the corresponding initial value is

2b1q1 BePrr®

Up (z) = — ,
0 (@) bigiyetrs® — (boqr — biqo)

Using the given initial guess, the first two terms of Uy () are obtained as

(4. 32)

4. 33)
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Uit - Ly nt)

uixtt - Us fxt)

FIGURE 6. The absolute errors for N —approximate soliton wave solu-
tions of Eq. (2. 2) witha = —0.3, 8 = —0.1, v = —0.7, kK = 0.5,
b() = 05, and b2 = —0.1.

Uy 1)
0.7r

06F
DAt
0.4r
0.3

odf

o1t

FIGURE 7. 2—approximate solution for soliton rational solution of Eq. (
2.2)witha = —0.075,8=—-0.1,v=0.3, k = 1,09 = —1, by = 0.5,
qo =0.4and ¢; = —1.

26771 32 kb3qy (b1go — boqi)
72 (—bogr + b1 (qo + €1 q1)) P
+e2mhhy (—da+ K2 (Ty + 20)b2) ¢ (bigo — boaqr) (4. 34)
—e"™ (20 + &2 (Ty + 20)b3) q1 (b1go — bogr) *
+76b1 (b1go — boqr) 3)’

Uy (z) = (—e3mblb% (20 + 'yHQb%) q
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FIGURE 8. The absolute errors for /N —approximate soliton wave solu-
tions of Eq. (2. 2) with @« = —0.075, 8 = —0.1, v = 0.3, Kk = 1,
bp = —1,b1 = 0.5, g =04andgy = —latt=1.

"1 B2 k*biqu (bigo — boqr)
73 (=boq1 + b1 (go + e=rb1gy))®

(156”61 aqo + (1162mbla - 57/@%3) q1) —bibigh (120629%61 o’qn

U2 (l’) = —

(— 126271 025 ¢ + 4L abgbig®

+8e7P1 g (22621%10{ — 157m2b(2)) qoq1 + (56641%1&2

+12¢%2Rb1 a/~c2(107 + 30)()(2) + 72/14b3) qf) + b2biqt (12062Mb1a2q3
12621 (2262Mb1a - 257&26(2)) geqL+ (168@4“’” a?

+60e27701 omQ(lOfy + 3U)b§ + 77254b3) qoq?

ettt (24641”171 a? 4 4e2%h ou-cz(ll’y + a)bg — 5’)%4(197 + 40)b8) qf)
—bobiq} (GOegx“blaQqé + 16”10 (1162mbla - 25’m26§) gq

+3 (56643%1)10[2 + 40€*""" ak? (10 + 30)bg + 772/14198) qoqi

+2e7701 (2464Mb1 o 4+ 8¢* 1 qic® (117 + o)bg — 15yk* (197 + 4cr)bg) q0qs
+e27rb (7464”‘!’1&2 —12e*""1 ak? (227 + To)bg + 3" (34372

+12070 + 802) b3)gt) — K2bobSq? (7120e“b1a7q8 +5(12* o (10 + 30)
+7’yznzbg)ng1 + 4e%rh (4627““’1 a(lly+o0) — 257&2(197 + 40)bg qeqt
—ge2erb (662”1’1(1(227 +70) — 5k (34372 + 120v0 + 802) bg) @
—4%rt (662mbla(7’y +30) + 12 (29719° + 128470 + 1360°) bﬁ) woq
fetonbe (1662mbla(5’y +0) + K (2971’72 + 1284~0 + 13602) bg) qf)

+b5q3 (12623”“]1 g + 4" a (1162Mb1a — 757/{%3) qaq
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+ (5664Mb1a2 + 12062mb1a52(10'y + 30)b§ + 35’y2f<;4b8> qg’qf

43e%Rb1 (864”“’1042 + 862x”b1an2(11’y + a)bg — 257,%4(197 + 40)bé) qwd
P! (464”%}’1042 1 36e2Erh om2(22’y + 70)1)3

—15k" (3437 + 12070 + 807) by) qogi — € (4641“171042
+126*"" ai® (T + 30)bg + k* (29719 + 128470 + 13607) bé) @
+xbY (qo — ez”blql) (WZQS — 2”15 (477 + 100) g g1 4 €7 (935’y2
+34070 + 2407) gaqi — 4€** (5099° + 23670 + 2807) goqi

tetenbs (935fy2 + 3400 + 2402) a@qt — 2¢” P (47 4 100)qoq;
+66“b172q?) + K bobiar (— 7770 + 306”1 v(19y + 40) g1
—15e2rb1 (34372 + 120v0 + 802) qaq?

+4e*7 1 (29719 + 128440 + 1360°) o gl

—3e**0 (29717 + 1284~0 + 13607) ¢3qi

+6e°701 (343’y2 + 120y0 + 802) qoq; — 5e%7" 1~ (19 + 40)qf)
+/€2b1q1( —20e""" arygs + 3 (462“1’104(107 +30) + 77252193) @
e (4621%101(117 +0)— 75’yn2(197 + 40)bg) qaq?

6”7 (2637 (22 + To) — 5r” (3437° + 12070 + 807) b3) gbgr
—6e>"1 (28> (T + 30) + K2 (29717 + 12840 + 1360°) b3) q5q1
+e* 7 (16> 5y + o) + 3x7 (29714 + 128470 + 13607) b3 ) qoq?
Pt (4e2“b1m + 352 (34392 + 12070 + 807) b?)) q?))

(4. 35)

Continuing in this manner, we can deduce the remaining terms of the recurrence relation (
4. 32). Substituting these terms into the inverse DTM, the approximate solution is obtained

as

Us (z,t) = Uy (x) + Uy (2) t + Uy (z) 2,

(4. 36)
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TABLE 5. Calculating the errors for the N-approximate soliton rational
solutions of Eq. ( 2. 2 ) under the conditions « = —0.075, 3 = —0.1,
vy=03,k=1,by=—-1,b; =0.5,90 =04 and ¢; = —1.

T t [u(z,t) — Us (z,t)] [u(z,t) — Us (z,t)] [u(z,t) — Uy (z,t)]
—15.00 0.10 2.000549 x 10~ 0 1.999844 x 10 ° 1.999844 x 10 ™©
—12.50 0.25 6.118709 x 10~° 6.115434 x 10~° 6.115435 x 10~°
—10.00 0.50 1.485167 x 107 1.484704 x 107 1.484707 x 10~7
—7.50 0.75 2.573567 x 1078 2.573727 x 10~° 2.573706 x 10~°
—5.00 1.00 3.353397 x 107° 3.351634 x 107° 3.351655 x 107°
—2.50 1.50 2.893326 x 107 2.893442 x 107% 2.893217 x 107*

0.00 2.00 4.056308 x 1074 4.054906 x 104 4.054886 x 10~4
2.50 2.50 7.052504 x 104 7.026420 x 10~4 7.030204 x 10~4
5.00 3.00 3.772943 x 107% 3.792805 x 107 3.789540 x 10™*
7.50 3.50 6.498536 x 107° 6.485422 x 107° 6.490473 x 107°
10.00 4.00 7.336962 x 106 7.459426 x 1076 7.451839 x 107
12.50 4.50 6.780834 x 107 7.399809 x 1077 7.388150 x 1077
15.00 5.00 4.535004 x 10~8 6.961987 x 108 6.925285 x 108

uixt) - U et

Uit =ty (i)

uix - Ug i)

FIGURE 9. The absolute errors for N —approximate soliton wave solu-
tions of Eq. (2. 2) with @« = —0.075, 8 = —0.1, v = 0.3, Kk = 1,
b() = —1, bl = 05, qo = 0.4 and q1 = —1.

€21 B ¢y 2 b 8
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( —12e®™"**102p5 g7 + 4e™ " abgby ¢° (156”blaqo

+ (1162Mbla - 57/&263) ql) — babiqt (120621Hb1 g5

+8e% 1 (2262”6104 - 15’7&%3) qoq1 + (566““’%)12
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which matches with the first three terms of the analytical solution (4. 30 ).

The artificial interval is chosen as [—15,15] and the calculation is done up time t = 5
with a = —0.075, 8 = —=0.1,y = 03,k = 1, by = —1, by = 0.5, g = 0.4 and
q1 = —1. The errors of the N-approximate solutions obtained from RDTM, denoted as
u — Uy, for various values of N are presented in Table 5 at selected time steps, comparing
the approximate solution with the exact solution. In Fig. 7, 2—approximate solutions
are showed as 3D and 2D, respectively. The absolute errors for /N —approximate soliton
rational solutions of Eq. ( 2. 2 ) are depicted as two dimensional in Fig. 8 at time ¢ = 1.
Then, the absolute errors for N —approximate soliton rational solutions of Eq. ( 2. 2 ) are
illusrated as three dimensional in Fig. 3 at 0 < ¢ < 5. Table 5, Fig. 8, and Fig. 9 illustrate
that the approximate solution remains nearly constant with an increase in the number of
terms included in the series.

5. CONCLUSION

In this work, we developed a numerical scheme for the Kudryashov-Sinelshchikov equa-
tion using the reduced differential transform method. Such analysis provides a theoretical
basis of the numerical scheme and can work practically with a number of the numerical
examples, including those of rational soliton solution, solitary wave solution and soliton
wave solution by the proposed approach. Moreover, this approach has been shown for
the effectiveness in solving those linear and nonlinear problems related to the same types
from the calculated absolute error norms and results. The accuracy and reliability of the
proposed scheme are guaranteed by the results obtained.
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