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Abstract. In this study, the W-Bertrand curves lying on the Q3 are ex-
amined and the notion of γ−Bertrand curves( and α−Bertrand curves,
β−Bertrand curves, y−Bertrand curves, respectively). Also, the Bertrand
pair {γ,Γ} in terms of their curvature functions are obtained, and the nec-
essary and sufficient conditions for the W-Bertrand curves are expressed
using the asymptotic orthonormal frame in Q3. Furthermore, the helix
curve is characterized in terms of curvature according to the condition of
being W-Bertrand curve pair.
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1. INTRODUCTION

As it is well-know in differential geometry, space curves, associated curves, curves at
one of its corresponding points where one of the Frenet vectors of one curve overlaps one of
the other curve’s Frenet vectors are known as Bertrand curves. That is to say that the curves
will have the common principal normal, the Bertrand curve is a curve that shares the normal
line with another curve. The curves play an important role in the theory of curves. On this
occasion, to this day, a lot of mathematicians have worked on Bertrand curves, [3, 7, 8, 11,
15, 17, 19, 20]. In [16, 18], the authors studied the cylindrical spirals and Bertrand curves
as curves on ruled surfaces. In [1, 10], the authors studied on different non-null curves
in the null cone. In [2], the notion of the involute-evolute curves for the curves lying the
surfaces in Minkowski 3-space E3

1 was examined by the authors. In [6], Gluck investigated
the Bertrand curves in En. In [5, 9, 14], the authors gave mathematical characterizations
on some special curves, Smarandache curves, null slant helix, Legendre curves. In [12, 13],
the cone curves and cone curvature function etc were studied by the authors. Also, they
gave their representations and some examples of cone curves in Minkowski space. In
[4, 21] many researchers examined Bertrand curves and their topological and geometrical
properties and characterizations in Minkowski spacetime.
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In this paper, by using asymptotic orthonormal frame {γ, α, β, y} of the curve γ ex-
pressing the notation of a W -Bertrand curve which the spacelike vector field W is given
by

W (s) = c1(s)γ(s) + c2(s)α(s) + c3(s)β(s) + c4(s)y(s), (1.1)
where c1(s), c2(s), c3(s), c4(s) are differentiable functions that satisfy the equality c2(s)

2+
2c1(s)c4(s) + c3(s)

2 = 1 and one finds the necessary and sufficient conditions of these
curves in lightlike cone 3-space to be W -Bertrand curves. Furthermore, giving some char-
acterizations of γ−Bertrand curves, α−Bertrand curves, β−Bertrand curves, y−Bertrand
curves, respectively.

2. NOTATIONS AND PRELIMINARIES

The k-dimensional pseudo-Euclidean space Ek
q is given with the metric

d(A,B) =

k−q∑
i=1

aibi −
m∑

j=m−q+1

ajbj ,

where A = (a1, a2, ..., ak), B = (b1, b2,..., bk) ∈ Ek
q , Ek

q is a flat pseudo-Riemannian
manifold of signature (k − q, q), [13, 15].

Let M be a submanifold of Ek
q . If a pseudo-Riemannian metric m on M is induced the

pseudo-Riemannian metric m of Ek
q then M is said to be timelike(respectively, spacelike,

degenerate) submanifold of Ek
q .

The pseudo-Riemannian null cone is given by

Qn
q (γ0, d) = {γ ∈ En+1

q : m(γ − γ0, γ − γ0) = 0},

where a fixed point in Ek
q is γ0 and d > 0 is a constant, [13, 15]. Qn

q (γ0) is a degenerate
hyper-surface in En+1

q . Qn
q (γ0) is said to be as pseudo-Riemannian space form. The point

γ0 is called the center of Qn
q (γ0, d). If γ0 = 0 and q = 1, one expresses Qn

1 (0) by Qn and
it is said to be the lightlike cone, [13, 15].

Let En+2
1 be the (n + 2)-Minkowski space and Qn+1 be the null cone in En+2

1 . A
vector w ̸= 0 in En+2

1 is called spacelike, timelike or null, if ⟨w,w⟩ > 0, ⟨w,w⟩ < 0
or ⟨w,w⟩ = 0, respectively. A frame field {e1, e2, ..., en+1, en+2} on En+2

1 is called as
asymptotic orthonormal frame field, if

⟨en+1, en+1⟩ = ⟨en+2, en+2⟩ = 0, ⟨en+1, en+2⟩ = 1,

⟨en+1, ei⟩ = ⟨en+2, ei⟩ = 0, ⟨ei, ej⟩ = δij , i, j = 1, 2, ..., n

[15]. Let the curve γ : I −→ Qn+1 ⊂ En+1
1 , v −→ γ(v) ∈ Qn+1 be a regular curve in

Qn+1 and γ′(v) = dγ(v)
dt , for ∀v ∈ I ⊂ R, [13, 15].

Definition 2.1. A curve γ(v) in En+2
1 is said to be a Frenet curve, for ∀v ∈ I , the vec-

tor fields γ(v), γ′(v), γ′′(v), ..., γ(n)(v), γ(n+1)(v) are linearly independent and the vector
fields γ(v), γ′(v), γ′′(v), ..., γ(n)(v), γ(n+1)(v), γ(n+2)(v) are linearly dependent, and the
vector fields. Since ⟨γ, γ⟩ = 0 and ⟨γ, dγ⟩ = 0, dγ(v) is spacelike. Then, according to arc
length s of the curve γ(v) can be written by

ds2 = ⟨dγ(v), dγ(v)⟩ , [15].
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If the arc length s of the curve γ(t) = γ(v(s)) is used, then γ′(s) = dγ
ds is a spacelike

unit tangent vector field of the curve γ(s). Hence, we select the vector y(s), the spacelike
normal space of the curve γ(s) is denoted as V n−1. Then,

⟨γ(s), y(s)⟩ = 1, ⟨γ(s), γ(s)⟩ = ⟨y(s), y(s)⟩ = ⟨γ′(s), y(s)⟩ = 0,

V n−1 = {span{γ, y, γ′}}⊥, spanR{γ, y, γ′, V n−1} = En+2
1

are satisfied, [13, 15].

Remark 2.2. For any asymptotic orthonormal frame {γ, α, β, y} of the curve γ : I −→
Q3 ⊂ E4

1 with

⟨γ, γ⟩ = ⟨y, y⟩ = ⟨γ, α⟩ = ⟨γ, β⟩ = ⟨y, α⟩ = ⟨y, β⟩ = ⟨α, β⟩ = 0; (2.1a)

⟨γ, y⟩ = ⟨α, α⟩ = ⟨β, β⟩ = 1 (2.1b)

β ∈ V 1 = {span{γ, y, α}}⊥, spanR{γ, y, α, V 1} = E3
1

and hence, the Frenet equations are given by

γ′(s) = α(s)

α′(s) = κ(s)γ(s)− y(s)

β′(s) = τ(s)γ(s) (2.2)

y′(s) = −κ(s)α(s)− τ(s)β(s),

where κ, τ are cone curvatures of the curve γ(s) in Q3 ⊂ E4
1 , [13].

3. THE SPACELIKE W−BERTRAND PAIR CURVES IN THE LIGHTLIKE CONE Q3

Let γ(s) and Γ(s∗) lying fully on Q3 be the arc length parameter curves. The asymp-
totic orthonormal frames of γ(s) and Γ(s∗) are given by {γ, α, β, y} and {Γ, α∗, β∗, y∗}
with curvatures κ, τ and κ∗, τ∗, respectively. If there exists a corresponding relationship
between the curves γ and Γ such that, at the corresponding points of the curves, the as-
ymptotic orthonormal frame element β coincides with the asymptotic orthonormal frame
element β∗ of Γ, then γ is said to be as Bertrand curve, and Γ is a Bertrand partner curve
of γ. Then, the pair {γ,Γ} is said to be a Bertrand pair.

In this section, for the a unit speed curve γ(s) =
∫ s

0
W (t)dt which is called the integral

curve of W (s), by thinking the asymptotic orthonormal frame {γ, α, β, y} and using the
equation given by (1.1), defining the spacelike W -Bertrand curves and some characteriza-
tions of these curves in Q3 are given according to the vector fields γ, α, β, y respectively.

Theorem 3.1. Let the spacelike vector field be W (s) = c1(s)γ(s)+c2(s)α(s)+c3(s)β(s)+
c4(s)y(s); let γ(s) =

∫ s

0
W (t)dt be the integral curve of W (s) and Γ : I −→ Q3 ⊂ E4

1

be spacelike Bertrand curves with arc length parameter s and cone curvatures κ, τ and
κ∗, τ∗, respectively. If {γ,Γ} is a Bertrand pair and the curve γ is a W -Bertrand curve
the following conditions are satisfied

1) For c3 (s) = 0 the distance function d is constant.
2) For c3 (s) ̸= 0 the distance function is given as

d = |λ (s)| =
∫

c3 (s) ds.
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3) The cone curvatures of the curve Γ are given as

κ∗ (s∗) =
2 (κδ2 + δ′4) (δ

′
3 − δ2) + (δ4 + δ′2 − κδ3)

2
+ τ2δ23

−2c4 (s) (c1 (s) + λ(s)τ(s)) + c22 (s)

τ∗ (s∗) =

√
2 (σ′

1 + κσ2 + τσ3) (σ
′
4 − σ2)

+ (σ1 + σ′
2 − κσ4)

2
+ (σ′

3 − σ4τ)
2 − 4ϕ2κ∗2√

2c4 (s) (c1 (s) + λ(s)τ(s)) + c22 (s)

where c1(s), c2(s), c3(s), c4(s) are differential functions and

ϕ =
√
2c4 (s) (c1 (s) + λ(s)τ(s)) + c22 (s); ci ∈ C∞;

δ1 =

√
2c4 (c1 + λτ)

ϕ
; δ2 =

c2
ϕ
; δ3 =

c4
ϕ
; δ4 =

δ1
2δ2

;

σ1 =
κδ2 + δ′4

ϕ
;σ2 =

δ4 + δ′2 − κδ3
ϕ

;σ3 =
−τδ3
ϕ

;σ4 =
δ′3 − δ2

ϕ
.

Proof. Let the spacelike curves γ,Γ : I −→ Q3 ⊂ E4
1 be Bertrand pair. Then, they can

associate pseudo orthonormal frames {γ, α, β, y} and {Γ, α∗, β∗, y∗}, respectively. From
definition, for a spacelike Bertrand pair {γ,Γ} in Q3, the position vector can be written as

Γ(s∗(s)) = γ(s) + λ(s)β(s), (3.1a)

or

Γ(s∗(s)) =

∫ s

0

(c1γ + c2α+ c3β + c4y) dt+ λ(s)β(s), (3.1b)

where γ(s) =
∫ s

0
W (t)dt and λ; ci ∈ C∞. Also, from (3.1a) the distance between the

curves γ and Γ is obtained as

d(γ,Γ) = ∥λ(s)β(s)∥ = |λ(s)| .
By taking derivative of (3.1) with respect to s and applying frenet formulae (2.2), one

obtains

α∗ ds
∗

ds
= (c1 + λ(s)τ(s))γ(s) + c2α(s) + (c3 + λ′(s))β(s) + c4y(s). (3.2)

Bertrand curves are a pair of curves that have a common principal normal vector at any
point, since {γ,Γ} is a Bertrand pair and by taking the inner product β to the both side of
(3.2) and by using (2.2), one gets

c3 (s) + λ′(s) = 0 ⇒ λ (s) = −
∫

c3 (s) ds, (3.3)

then if c3 (s) = 0 one has λ =constant. Here, by substituting the equation (3.3) in the
equation (3.2), one gets

α∗(s∗)
ds∗

ds
= (c1 + λ(s)τ(s))γ(s) + c2α(s) + c4y(s). (3.4)

Also, if one takes the inner product of previous equation with itself, one obtains

ϕ =
ds∗

ds
=
√
2c4 (s) (c1 (s) + λ(s)τ(s)) + c22 (s). (3.5)
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Then, one assumes that

δ1 =

√
2c4 (c1 + λ(s)τ(s))

ϕ
; δ2 =

c2
ϕ
; δ3 =

c4
ϕ
; δ4 =

δ1
2δ2

(3.6)

and one can write
α∗(s∗) = δ4γ(s) + δ2α(s) + δ3y(s). (3.7)

By differentiating the equation (3.7) with respect to s and from (2.2) one gets

(κ∗Γ− y∗)
ds∗

ds
= (κδ2 + δ′4) γ + (δ4 + δ′2 − κδ3)α+ (−τδ3)β + (δ′3 − δ2) y. (3.8)

If one takes the inner product of (3.8) with itself, one can write the following equation

−2κ∗
(
ds∗

ds

)2

= 2 (κδ2 + δ′4) (δ
′
3 − δ2) + (δ4 + δ′2 − κδ3)

2
+ τ2δ23 (3.9)

and by substituting (3.5) in the equation (3.9) one writes the curvature as

κ∗ =
2 (κδ2 + δ′4) (δ

′
3 − δ2) + (δ4 + δ′2 − κδ3)

2
+ τ2δ23

−2 (2c4 (c1 + λτ) + c22)
. (3.10)

From (3.8) if one denotes

σ1 =
κδ2 + δ′4

ϕ
;σ2 =

δ4 + δ′2 − κδ3
ϕ

;σ3 =
−τδ3
ϕ

;σ4 =
δ′3 − δ2

ϕ
, (3.11)

one has
κ∗Γ− y∗ = σ1γ + σ2α+ σ3β + σ4y. (3.12)

Also, by differentiating (3.12) with respect to s and using (2.2) one gets

(2κ∗α∗ + κ∗′Γ + τ∗β∗)
ds∗

ds
= (σ′

1 + κσ2 + τσ3) γ + (σ1 + σ′
2 − κσ4)α

+(σ′
3 − σ4τ)β + (−σ2 + σ′

4) y. (3.13)

If one denotes

ξ1 =
σ′
1 + κσ2 + τσ3

ϕ
; ξ2 =

σ1 + σ′
2 − κσ4

ϕ
; (3.14a)

ξ3 =
σ′
3 − σ4τ

ϕ
; ξ4 =

−σ2 + σ′
4

ϕ
, (3.14b)

one can write
2κ∗α∗ + κ∗′Γ + τ∗β∗ = ξ1γ + ξ2α+ ξ3β + ξ4y. (3.15)

Furthermore, if one takes the inner product of (3.15) with itself, one has

4κ∗2 + τ∗2 = 2ξ1ξ4 + ξ22 + ξ23 ,

then one gets

τ∗ =
√
2ξ1ξ4 + ξ22 + ξ23 − 4κ∗2. (3.16)

□
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Theorem 3.2. Let {γ,Γ} be a Bertrand pair and let γ,Γ : I −→ Q3 ⊂ E4
1 be space-

like Bertrand curves with arc length parameter s and non-zero curvatures κ, τ and κ∗, τ∗

respectively. Then, if the curve γ is a W -Bertrand curve the following conditions holds:
1) If the curve γ is a γ−Bertrand curve, the following equations are satisfied

λ(s) = constant; τ (s) = −c1 (s)

λ
.

2) If the curve γ is an α−Bertrand curve, λ =constant and the curvatures of the curve
Γ are given as

κ∗ (s∗) =

(
λ
τ(s)

c22

)2

− 2

c22 (s)

(
κ+ λ

d

ds

(
τ(s)

c2(s)

))
;

τ∗ (s∗) = ±

√
1

c22

(
(A′

2 + κA1) (−A1 +A′
3)

+ (A2 − κA3 +A′
1)

2
+ τ2A2

3

)
− 4κ∗2,

where A2 =
(
κ+ λ d

ds

(
τ(s)
c2(s)

))
1
c2
;A1 = λτ(s)

c22
;A3 = −1

c2
; s∗ =

∫
c2(s)ds.

3) If the curve γ is a β−Bertrand curve, the following equations are satisfied

λ(s) = −
∫

c3(s)ds; τ(s) = 0; c3(s) ∈ C∞.

4) If the curve γ is a y−Bertrand curve, the following equations are satisfied

λ(s) = constant; τ(s) = 0,

where c1(s), c2(s), c3(s), c4(s) are differential functions.

Proof. Case 1: Assume that c1 ̸= 0 and c2, c3, c4 = 0. Then, one can write a γ−Bertrand
curve as

Γ(s∗(s)) =

∫ s

0

c1 (t) γ (t) dt+ λ(s)β(s), (3.17)

where λ; c1 ∈ C∞. By taking derivative of (3.17) with respect to s and applying (2.2), one
obtains

α∗ ds
∗

ds
= (c1 + λ(s)τ(s))γ(s) + λ′(s)β(s), (3.18)

since {γ,Γ} is a Bertrand pair and by taking the inner product β to the both side of (3.18)
and by using (2.2), one gets

λ′(s) = 0, (3.19)

which λ =constant. Here, by substituting the equation (3.19) in the equation (3.18), one
gets

α∗(s∗)
ds∗

ds
= (c1 (s) + λ(s)τ(s))γ(s). (3.20)

Also, if one takes the inner product of previous equation with itself, since ⟨γ(s), γ(s)⟩ =
0, one gets ds∗

ds = 0 and one can write

c1 (s) + λτ(s) = 0 ⇒ τ(s) = −c1 (s)

λ
. (3.21)
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Case 2: Assume that c2 ̸= 0 and c1, c3, c4 = 0. Then, one can write an α−Bertrand
curve as

Γ(s∗(s)) =

∫ s

0

c2 (t)α (t) dt+ λ(s)β(s), (3.22)

where λ; c2 ∈ C∞. By taking derivative of (3.22) with respect to s and applying Frenet
formulae (2.2), one obtains

α∗ ds
∗

ds
= c2 (s)α(s) + λ′(s)β(s) + λ(s)τ(s)γ(s), (3.23)

since {γ,Γ} is a Bertrand pair and by taking the inner product β to the both side of (3.23)
and by applying (2.2), one gets λ′(s) = 0 which λ =constant. Here, by substituting λ in
the equation (3.23), one gets

α∗(s∗)
ds∗

ds
= c2α(s) + λ(s)τ(s)γ(s). (3.24)

Also, if one takes the inner product of previous equation with itself, since ⟨α, α⟩ =
1, ⟨γ, γ⟩ = 0, one gets

ds∗

ds
= c2 (s) ⇒ s∗ =

∫
c2(s)ds

and then one can write

α∗(s∗) = α(s) +
λτ(s)

c2(s)
γ(s). (3.25)

By differentiating the equation (3.25) with respect to s and from (2.2) one has

κ∗Γ− y∗ = A1α+A2γ +A3y, (3.26)

where A2 =
(
κ+ λ d

ds

(
τ(s)
c2(s)

))
1
c2
;A1 = λτ(s)

c22
;A3 = −1

c2
. If one takes the inner product

of (3.26) with itself, one gets

κ∗ (s∗) =

(
λ
τ(s)

c22

)2

− 2

c22 (s)

(
κ+ λ

d

ds

(
τ(s)

c2(s)

))
. (3.27)

By differentiating the equation (3.26) with respect to s and from (2.2) one gets

κ∗′Γ + 2κ∗α∗ + τ∗β∗ = C1γ + C2α+ C3β + C4y, (3.28)

where C1 =
A′

2+κA1

c2
, C2 =

A2−κA3+A′
1

c2
, C3 = −τA3

c2
, C4 =

−A1+A′
3

c2
and one takes the

inner product of (3.28) with itself, one gets

4κ∗2 + τ∗2 =
1

c22

(
(A′

2 + κA1) (−A1 +A′
3)

+ (A2 − κA3 +A′
1)

2
+ τ2A2

3

)
or one has

τ∗ (s∗) = ±

√
1

c22

(
(A′

2 + κA1) (−A1 +A′
3)

+ (A2 − κA3 +A′
1)

2
+ τ2A2

3

)
− 4κ∗2. (3.29)

Case 3: Assume that c3 ̸= 0 and c1, c2, c4 = 0. Then, one can write a β−Bertrand curve
as

Γ(s∗(s)) =

∫ s

0

c3 (t)β (t) dt+ λ(s)β(s), (3.30)
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where λ; c3 ∈ C∞. By taking derivative of (3.30) with respect to s and by using (2.2), one
obtains

α∗ ds
∗

ds
= (c3 + λ′)β + λτγ, (3.31)

since {γ,Γ} is a Bertrand pair and by taking the inner product β to the both side of (3.31)
and from (2.2), one gets c3(s) + λ′ = 0 which λ(s) = −

∫
c3(s)ds. Here, by substituting

λ(s) in the equation (3.31), one gets

α∗(s∗)
ds∗

ds
= λ (s) τγ. (3.32)

Also, by taking the inner product the equation (3.32) with itself, since ⟨γ, γ⟩ = 0, one
gets ds∗

ds = 0, and since λ ̸= 0, one obtains τ(s) = 0.
Case 4: Assume that c4 ̸= 0 and c1, c2, c3 = 0. Then, one can write a y−Bertrand curve

as

Γ(s∗(s)) =

∫ s

0

c4 (t) y (t) dt+ λ(s)β(s), (3.33)

where λ, c4 ∈ C∞. By taking derivative of (3.33) with respect to s and applying (2.2), one
obtains

α∗ ds
∗

ds
= c4y + λ′β + λτγ, (3.34)

since {γ,Γ} is a Bertrand pair and by taking the inner product β to the both side of (3.34)
and from (2.2), one gets λ′ = 0 which λ =constant. Here, substituting λ in the equation
(3.34), one gets

α∗(s∗)
ds∗

ds
= c4y + λτγ. (3.35)

Also, if we take the inner product (3.15) with itself, since ⟨y, γ⟩ = 1, one gets(
ds∗

ds

)2

= 2λc4 (s) τ (s) ⇒ s∗ =

∫ √
2λc4 (s) τ (s)ds, (3.36)

by differentiating (3.35) with respect to s and from (2.2), one has

(κ∗Γ− y∗)

(
ds∗

ds

)2

+ α∗ d
2s∗

ds2
= λτ ′γ + (−τc4)β + (λτ − κc4)α+ c′4y, (3.37)

by taking the inner product of (3.37) with β, since c4 (s) ̸= 0 one can write τ(s) = 0. □

Theorem 3.3. Let {γ(s),Γ(s∗)} be a unit speed spacelike Bertrand pair in Q3 and let θ
be angle between γ and Γ for the cone curvatures κ, τ ̸= 0 and κ∗, τ∗ ̸= 0, respectively. If
Γ is a helix curve, then the following statements hold:

i) For the γ−Bertrand curve the following equations are satisfied

θ(s) = 2 arctan(a1e
a2s) or θ (s) = −

∫
κ (s) ds;

κ (s) = a3
cos θ (s)

θ (s)

(
dθ (s)

ds
+ 1

)
.



A research on space-like Bertrand curve pair in 3D lightlike cone 365

ii) For the α−Bertrand curve the following equations are satisfied

θ(s) = 2 arctan(a1e
a2s); κ (s) =

a3
θ (s)

(
dθ (s)

ds
+ 1

)
cos θ − c2(s)

bθ(s)
;

τ(s) =
b̃

λ

(
dθ (s)

ds
+ κ (s)

)
sin θ,

where ai, b̃, b ∈ R0 and c2(s) is differential function.
iii) For the β−Bertrand curve there is no helix curve Γ.
iv) For the y−Bertrand curve there is no helix curve Γ.

Proof. Suppose that the pair {γ,Γ} is a spacelike W−Bertrand pair. Then, one says that
Γ ∈ Sp{γ, α, y}. Also, the position vector of Γ satisfies

Γ(s∗) = m
−−→
γ(s) + n

−−→
α(s) + p

−−→
y(s);m,n, p ∈ R+

0 .

Suppose that let Γ be a helix curve with s∗ parameter. Hence, one can write the curve Γ
as

Γ(s∗) = b̃ cos θ
−−→
γ(s) + b̃ sin θ

−−→
α(s) + bθ

−−→
y(s), (3.38)

where θ (s) is the angle between the vectors Γ and γ. By taking derivative of previous
equation with respect to s and applying (2.2), one gets

α∗ ds
∗

ds
=

(
b̃
d (cos θ)

ds
+ b̃κ sin θ

)
−→γ +

(
b̃
d (sin θ)

ds
+ b̃ cos θ − bκθ

)
−→α

− (bτθ)
−→
β +

(
b
dθ

ds
− b̃ sin θ

)
−→y , (3.39)

from (3.2) and (3.39), one writes the following equations

b̃
d (cos θ)

ds
+ b̃κ sin θ = c1 (s) + λ(s)τ(s); (3.40a)

b̃
d (sin θ)

ds
+ b̃ cos θ − κbθ = c2(s); (3.40b)

−bτθ(s) = c3(s) + λ′(s); (3.40c)

b
dθ

ds
− b̃ sin θ = c4(s). (3.40d)

By using (3.40), one obtains the following cases;
1) If the curve γ is a γ−Bertrand curve, one can write c1 (s) ̸= 0, c2, c3, c4 = 0 and from

theorem 2, by using the equations λ(s) =constant, τ (s) = − c1(s)
λ . Then, from (3.40d) one

gets

b
dθ

ds
= b̃ sin θ ⇒ θ(s) = 2 arctan(a1e

a2s); ai ∈ R. (3.41)

From (3.40b), since c2 = 0 one has

κ (s) =
a3
θ (s)

cos θ

(
dθ (s)

ds
+ 1

)
. (3.42)

From (3.40c), since τ, θ(s) ̸= 0 one get b = 0. Then, the helix curve Γ is written as

Γ = b̃ cos θ−→γ + b̃ sin θ−→α . (3.43)
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Also, from (3.40a) one obtain the following equation

θ (s) = −
∫

κ (s) ds. (3.44)

2) If the curve γ is an α−Bertrand curve, one can write c2 (s) ̸= 0, c1, c3, c4 = 0,
λ(s) =constant. Then, from (3.40d) one gets the equation (3.41). From (3.40b), since
c2 ̸= 0 one has

κ (s) =
a3
θ (s)

(
dθ (s)

ds
+ 1

)
cos θ − c2(s)

bθ(s)
. (3.45)

From (3.40c), since τ, θ(s) ̸= 0 one get b = 0. Then, the helix curve Γ is obtained as
(3.43). Also, from (3.40a) one obtains the following equation

τ(s) =
b̃

λ

(
dθ (s)

ds
+ κ (s)

)
sin θ. (3.46)

3) If the curve γ is a β−Bertrand curve, one can write c3 (s) ̸= 0, c1, c2, c4, τ(s) =
0, λ(s) = −

∫
c3(s)ds. Then, for the helix curve Γ one has τ(s) ̸= 0. Therefore, there is

no helix curve Γ with a β−Bertrand curve for the pair {γ,Γ}.
4) If the curve γ is an y−Bertrand curve, one can write c4 (s) ̸= 0, c1, c2, c3, τ(s) =

0, λ(s) =constant. Then, for the helix curve Γ one has τ(s) ̸= 0. Hence, there is no helix
curve Γ with a y−Bertrand curve. □

Theorem 3.4. Let γ : I −→ Q3 ⊂ E4
1 be a curve with arc length parameter s, for the

cone curvature function τ, κ in the lightlike cone, then the following differential equations
are satisfied

1) For the differential equation γ′′ = κγ − γ′′′, the following conditions hold:
a) If κ = 0, γ(s) = c1 + c2s+ c3e

−s.
b) If κ ̸= 0,

γ(s) = c1e
k3
1s + c4e

− k3
1
2 s cos

(
( 3
√
ω +

1

9 3
√
ω

− 1

3
)

√
3

2

)
s,

where k31 = 3
√
ω + 1

9 3
√
ω
− 1

3 ;ω =
√
27κ2−4κ
6
√
3

− 2−27κ
54 .

2) For the equation γ′′′ = τγ, if τ ̸= 0, γ(s) = (a1 + a2s+ a3s
2)e

3
√
τs.

3) For the equation γ′′′′ = −κγ′ − τγ′′, the following conditions are satisfied
a) If κ2

22 + τ3

33 < 0,

γ = c0 + c1e
t11s + c5e

− t11
2 s

(
cos(

( 3
√
ω − τ

3 3
√
ω
)
√
3

2
)s

)
,

where ω =
√
27κ2+4τ3

6
√
3

− κ
2 .

b) If κ = τ = 0, γ(s) = η0 + η1s+ η2s
2 + η3s

3, where ci, ηi ∈ R+
0 .

Proof. From (2.2), one can write the following equations

γ′′ = κγ − γ′′′ (3.47)

γ′′′ = τγ (3.48)
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γ′′′′ = −κγ′ − τγ′′. (3.49)

By solving the equation (3.47), one obtains following cases;
a) If κ = 0, one obtains

γ(s) = c1 + c2s+ c3e
−s.ci ∈ R.

b) If κ ̸= 0, by solving differential equation, one can write following equations,

k31 = 3
√
ω +

1

9 3
√
ω

− 1

3
; k32,3 = k31(−

1

2
∓ i

√
3

2
),

where ω =
√
27κ2−4κ
6
√
3

− 2−27κ
54 and from previous equations, one gets

γ(s) = c1e
k3
1s + c4e

− k3
1
2 s cos

(
( 3
√
ω +

1

9 3
√
ω

− 1

3
)

√
3

2

)
s; ci ∈ R0.

By solving equation (3.48), for τ ̸= 0 one gets

γ(s) = (a1 + a2s+ a3s
2)e

3
√

τ(s)s,

and by solving equation (3.49), the following cases can written;
a) If κ2

22 + τ3

33 < 0, one obtains

t10 = 0; t11 = 3
√
ω − τ

3 3
√
ω
; t12,3 =

(
3
√
ω − τ

3 3
√
ω

)
(
−1

2
± i

√
3

2
)

from previous equations, one has

γ = c0 + c1e
t11s + c5e

− t11
2 s

(
cos(( 3

√
ω − τ

3 3
√
ω
)

√
3

2
)s

)
.

where ω =
√
27κ2+4τ3

6
√
3

− κ
2 .

b) If κ = τ = 0, one writes

γ(s) = η0 + η1s+ η2s
2 + η3s

3; ηi ∈ R+.

□

4. CONCLUSION

In this paper, the W−Bertrand curves for curves lying on the Q3 are examined and
some certain results of describing the W−Bertrand pair {γ,Γ} due to differentiable func-
tions are presented in detail. As a first instance, it is given that the conditions of being
the W−Bertrand pair {γ,Γ} according to asymptotic orthonormal frame in 3D lightlike
cone. Also, an arbitrary helix curve in terms of their curvature functions are characterized
satisfying condition the W−Bertrand curve. This study will accompany the scientists who
will conduct new studies on similar subjects as a basic resource since it is one of the im-
portant studies on this subject. This study will be a resource for scientists who will work
on new topics on similar subjects, as the work done on this subject in lightlike cone space
is important and different. The fact that the work is in the four-dimension will allow us to
think and interpret some physical concepts within this space.
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[8] H.H. Hacısalihoğlu, Diferansiyel Geometri, İnönü Üniversitesi Fen-Edebiyat Fakültesi Yayınları, 1983.
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