
Punjab University Journal of Mathematics (2024), 56(1-2),31-50
https://doi.org/10.52280/pujm.2024.56(1-2)04

On Comparing Rhombus Oxide and Silicate Networks via Zagreb Connection Indices

Aqsa Sattar and Muhammad Javaid
Department of Mathematics,

University of Management and Technology, Lahore Pakistan,
Email: sattaraqsa47@gmail.com, muhammad.javaid@umt.edu.pk

Received:  09 October, 2023 / Accepted: 24 May, 2024 / Published online: 01 June, 2024

Abstract. A topological index (TI) is a number that describes the topology of a chemical
structure. TIs can describe numerous chemical and physical properties of chemical com-
pounds, such as melting and freezing points, strain energy, stability, temperature, volume,
density, and pressure. TIs are classified into several categories, including degree-based TIs,
distance-based TIs, and connection number-based TIs. Wiener developed the first distance-
based TI. After that, he developed the first degree-based TI for calculating the π-electron
energy of molecules. These indices are regarded as the most important TIs for preserving
the psychochemical features of chemical compounds. Recently, connection number-based
TIs have been researched, which are more efficient than distance and degree-based TIs.
Connection-based TIs can predict the physical and chemical properties of molecular struc-
tures more efficiently than degree or distance-based descriptors. In this paper, we compute
the connection number-based TIs for the two most significant types of chemical structures:
rhombus silicate and rhombus oxide. In the end, to evaluate the effectiveness of these struc-
tures in predicting psycho-chemical attributes, we compare them based on their computed
results. These findings are novel and make significant contributions to providing knowledge
to understand the deep topology of these critical structures.

AMS (MOS) Subject Classification Codes: 05C0; 05C92
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1. INTRODUCTION

Cheminformatics represents an emerging interdisciplinary field that melds disciplines namely, information 
science, mathematics, and chemistry. Within the domain of chemistry, graph theory has found widespread 
utility. Specifically, chemical graph theory, a  subfield of  mathematical chemistry, employs graph theory to 
quantitatively describe chemical phenomena. Over recent decades, extensive research endeavors have been 
dedicated to this area, culminating in a profound influence on the broader landscape of chemical sciences.
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Central to this discipline are topological indices (TIs), numerical values linked to chemical structures,
which purport to elucidate associations between a compound’s structure and various physico-chemical prop-
erties, chemical reactivity, or even biological activity. At its core, the foundation of topological indices rests
on the transformation of a molecular graph into a numerical representation that encapsulates the graph’s
topology. Our investigation delves into unraveling the intricate relationships between a chemical compound’s
structural attributes, its characteristics, and its bioactivity through molecular modeling. Molecular descriptors
play a pivotal role in essential domains such as chemistry and pharmacology. It is worth noting that topologi-
cal indices have emerged as critical tools in solving QSAR and QSPR [20]. A number, a polynomial, a series
of integers, or a matrix that represents the entire graph can be used to identify a graph, and each of these
representations aims to be specifically defined for that graph. A topological index is a numerical value that
describes the topology of a graph and is unaffected by graph automorphism. Topological indices (TIs) have a
vast span of applicability in various other fields of science. They are helpful in predicting the chemical prop-
erties of molecular chemical structures such as freezing point, boiling point, volume, density, stability, and
strain energy. TIs can be divided into several broad categories, including degree-based TIs, distance-based
TIs, polynomial-based TIs, and connection number (CN) based TIs. Among these categories, CN-based TIs
are of tremendous significance and are particularly important in chemical graph theory and chemistry.

Wiener [21] developed the first distance-based TI in 1947 to investigate the boiling point of paraffin. Fur-
thermore, Gutman and Trinajstic [9] proposed the first degree-based TI to test the total π-electron energy of
an alternative hydrocarbon in 1972. Gutman et al. [8] investigated the concept of second-degree-based TI in
1975. Furtula and Gutman [7] pioneered the concept of the third ZI. Nikolic [15] later introduced the con-
cept of modified first ZI in 2003. Dhanalakshmi et al. [5] proposed the concept of multiplicative ZI. These
traditional ZI have been widely used in the field of cheminformatics [1, 4].
Nowadays, the researchers are working on CN-based TIs. A CN is a count of the vertices that are two dis-
tances apart from a given vertex. Instead of degree-based ZIs, Zagreb connection indices (ZCI) have a wider
range of applicability in determining the physical and chemical properties of chemical substances. According
to scientists, ZCIs provide a better platform for measuring chemical attributes such as melting and freezing
points, strain energy, stability, temperature, volume, density, and pressure of molecular chemical structures
than other classical ZIs. After the development of ZCIs, researchers started utilizing these indices in com-
prehending the properties of molecular structures. Sattar et al. [16, 17, 18] worked on computing the ZCIs
of different chemical structures. Ali and Trinnajstic, [3] initiated ZCIs and investigated their applicability on
octane isomers. Fatima et al. [6] computed ZCIs of some chemical structures. In addition, Ali et al. [2]
discovered modified CN-based ZIs of T-sum graphs. Javaid et al. [11] developed CN-based ZIs for various
wheel graphs. For more results, readers are referred to [22, 23, 24]. Javaid and Sattar [12] calculated ZCIs of
metal-organic frameworks. For more details about rhombus oxide and silicate [19, 13, 14].
In this research article, we compute the first, second, and third ZCI. Further, we compute modified first,
second, and third ZCI. FZCI, modified SZCI, and modified third ZCI of two significant types of chemi-
cal structures, namely, rhombus oxide (RHOX) and rhombus silicate (RHSL) network. This manuscript is
structured as; section 2 of this research article includes some basic definitions and formulas that are used to
compute the main results. Section 3 summarizes the main findings for the rhombus silicate network. We
compute the ZCIs for the rhombus oxide network in section 4. Section 5 presents a comparison of the com-
puted TIs of RHSL and RHOX networks and between these networks and covers the concluding remarks.
List of Acronyms used in this paper is given in Table 1.



On Comparing Rhombus Oxide and Silicate Networks via Zagreb Connection Indices 33

TABLE 1. List of Acronyms

Name Acronyms
Zagreb connection index ZCI
Topological index TI
Connection numbers CN
First Zagreb Connection Index FZCI
Second Zagreb Connection Index SZCI
Third Zagreb Connection Index SZCI

2. NOTATIONS AND PRELIMINARIES

Here, we present some important basic definitions which help to understand the concept of this article. Let
P = (H(P ),L(P )) be a graph, where H(P ) be the vertex set and L(P ) be the edge set. The first Zagreb
index (FZI) defined im [9] is given by

Ẑ1(P ) =
∑

h∈H(P )

(degP (h))
2.

We can also rewrite the above equation as

Ẑ1(P ) =
∑

hf∈L(P )

(degP (h) + degP (f)),

where degP (h) and degP (f) represents the degree of the vertex h and f , respectively.

The second Zagreb index (SZI) defined by Gutman and Rusic [8] is given below

Ẑ2(P ) =
∑

hf∈L(P )

(degP (h)× degP (f)),

where degP (h) and degP (f) represent the degree of the vertex h and f , respectively.

The first Zagreb connection index (FZCI) and second Zagreb connection index (SZCI) defined by Ali and
Trinajstic [3] can be defined as

ẐC1(P ) =
∑

h∈H(P )

($P (h))
2, (2. 1)

ẐC2(P ) =
∑

hf∈L(P )

($P (h)×$P (f)), (2. 2)

where $P (h) and $P (f) indicate the connection number (CN) of the vertex h and f , respectively.
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For a graph P, the modified ZCIs is given below

ẐC∗1(P ) =
∑

hf∈L(P )

($P (h) +$P (f)) =
∑

h∈H(P )

( ˆdegP(h)$P (h)), (2. 3)

ẐC∗2(P ) =
∑

hf∈L(P )

[degP (h)$P (f) + degP (f)$P (h)] , (2. 4)

ẐC∗3(P ) =
∑

hf∈L(P )

[degP (h)$P (h) + degP (f)$P (f)] . (2. 5)

These modified ZCIs, proposed by Ali [3] and Ali et al. [2], are known as the modified FZCI, modified SZCI
and modified TZCI respectively.

Now, we look at how to create RHSL and RHOX networks in this part. By far, the most exciting min-
eral class is silicate. Metal carbonates and metal oxides are fused with sand to form these networks. All
silicates contain the SiO4 tetrahedron as a fundamental unit. In chemistry, the vertices in the corners of the
SiO4 tetrahedron represent oxygen ions, whereas the vertices in the middle represent silicon ions. In graph
theory, the corner vertices are termed oxygen nodes, whereas the center vertices are termed silicon nodes.
By assembling the tetrahedron silicate in various ways, new silicate structures may be created. Similarly,
diverse silicate structures create unique silicate networks. Figure 3, depicts the RHSL network of dimension
3, i.e., RHSL(3). By deleting the silicon ions from the RHSL network, we obtained the RHOX network
as depicted in Figure 6. In the present study, we denote the RHSL and RHOX networks of dimension s by
RHSL(s) and RHOX(s). In general, the total count of vertices and edges in RHSL(s) are 5s2 + 2s and
12s2, respectively. Further, the total count of vertices and edges inRHOX(s) network are 3s2+2s and 6s2,
respectively. Now, we move towards the main results of this paper.

3. ZCIS OF RHSL NETWORK

In this section, we calculate the ZCIs for RHSL networks. Let P = RHSL(s), be a molecular graph
RHSL network, where s ≥ 2 is the dimension of the network. In Figure 1, Figure 2 and Figure 3, we
represent the molecular graph of P = (H,L) of RHSL(s) for s = 2, 3, 4 by labeling the vertices with the
their CNs. For this, let us define the partitions of the vertices which are based on the CNs of the vertices.
From Figure 3, we can see that there are six vertex-based partitions as given below.

H5 = {h ∈ H(P ) : $(h) = 5},
H6 = {h ∈ H(P ) : $(h) = 6},
H9 = {h ∈ H(P ) : $(h) = 9},
H12 = {h ∈ H(P ) : $(h) = 12},
H15 = {h ∈ H(P ) : $(h) = 15},
H18 = {h ∈ H(P ) : $(h) = 18},

The total number of vertices in each partitions are given in Table 2. Adding all the vertices of each
partition gives the total number of vertices of RHSL(s) network. Similarly, we define the edge partitions.
From Figure 3, we can see that there are thirteen edge-based partitions as given below.

L(5,5) = {hf ∈ L(P ) : $(h) = 5, $(f) = 5},
L(5,6) = {hf ∈ L(P ) : $(h) = 5, $(f) = 6}
L(5,12) = {hf ∈ L(P ) : $(h) = 5, $(f) = 12}



On Comparing Rhombus Oxide and Silicate Networks via Zagreb Connection Indices 35

15

15 18

9

18

15 18 18 18

9 12 15 15 15

9 9

5

12

9

15 15 155

15

12 9

15

15 9

5

12 5

9

6

12

12

12 12

12

12

12 12 9

9

699

9

9

9 9

FIGURE 1. RHSL(3) along with the CN each vertex.
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FIGURE 2. RHSL(4) along with the CN each vertex

L(6,12) = {hf ∈ L(P ) : $(h) = 6, $(f) = 12},
L(9,9) = {hf ∈ L(P ) : $(h) = 9, $(f) = 9},
L(9,12) = {hf ∈ L(P ) : $(h) = 9, $(f) = 12},
L(9,15) = {hf ∈ L(P ) : $(h) = 9, $(f) = 15},
L(12,12) = {hf ∈ L(P ) : $(h) = 12, $(f) = 12},
L(12,15) = {hf ∈ L(P ) : $(h) = 12, $(f) = 15},
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FIGURE 3. RHSL(5) along with the CN each vertex

TABLE 2. Total number of vertices in each partition

H$(h) |H$(h)|
H5 4
H6 2
H9 8s− 8
H12 2s2 − 4s+ 6
H15 8s− 12
H18 3s2 − 10s+ 8

L(12,18) = {hf ∈ L(P ) : $(h) = 12, $(f) = 18},

L(15,15) = {hf ∈ L(P ) : $(h) = 15, $(f) = 15},

L(15,18) = {hf ∈ L(P ) : $(h) = 15, $(f) = 18},

L(18,18) = {hf ∈ L(P ) : $(h) = 18, $(f) = 18}.

The cardinalities of above partitioned edge are given in Table 3.

Theorem 3.1. Let P be a molecular graph of RHSL network. Then FZCI is given by

ẐC1(P ) = 1260s2 − 1368s+ 280.
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TABLE 3. Count of CN-based classified edges of P

L(h,f) |L(h,f)|
L(5,5) 2
L(5,6) 4
L(5,12) 4
L(6,12) 2
L(9,9) 4s− 4
L(9,12) 8
L(9,15) 16s− 24
L(12,12) 2
L(12,15) 8s− 4
L(12,18) 6s2 − 20s+ 16
L(15,15) 8s− 14
L(15,18) 8s− 16
L(18,18) 6s2 − 24s+ 24

Proof: By using Table 2 and Equation 2. 1 , we get

ẐC1(P ) =
∑

h∈H(P )

($P (h))
2,

= |H5|($P (h))
2 + |H6|($P (h))

2 + |H9|($P (h))
2

+ |H12|($P (h))
2 + |H15|($P (h))

2 + |H18|($P (h))
2,

= 4(5)2 + 2(6)2 + (8s− 8)(9)2 + (2s2 − 4s+ 6)(12)2

+ (8s− 12)(15)2 + (3s2 − 10s+ 8)(18)2,

= 172 + (648s− 648) + (288s2 − 576s+ 864) + (1800s− 2700)

+ (972s2 − 3240s+ 2592),

= 1260s2 − 1368s+ 280.

Theorem 3.2. Let P be a molecular graph of RHSL network. Then SZCI is given by

ẐC2(P ) = 3240s2 − 4212s+ 1184.
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Proof: By using Table 3 and Equation 2. 2 , we get

ẐC2(P ) =
∑

hf∈L(P )

($P (h)×$P (f)),

= |L(5,5)|($P (h)×$P (f)) + |L(5,6)|($P (h)×$P (f)) + |L(5,12)|($P (h)×$P (f))

+ |L(6,12)|($P (h)×$P (f)) + |L(9,9)|($P (h)×$P (f)) + |L(9,12)|($P (h)×$P (f))

+ |L(9,15)|($P (h)×$P (f)) + |L(12,12)|($P (h)×$P (f)) + |L(12,15)|($P (h)×$P (f))

+ |L(12,18)|($P (h)×$P (f)) + |L(15,15)|($P (h)×$P (f)) + |L(15,18)|($P (h)×$P (f))

+ |L(18,18)|($P (h)×$P (f)),

= 2(5× 5) + 4(5× 6) + 4(5× 12) + 2(6× 12) + (4s− 4)(9× 9)

+ 8(9× 12) + (16s− 24)(9× 15) + 2(12× 12) + (8s− 4)(12× 15)

+ (6s2 − 20s+ 16)(12× 18) + (8s− 14)(15× 15) + (8s− 16)(15× 18)

+ (6s2 − 24s+ 24)(18× 18),

= 2(25) + 4(30) + 4(60) + 2(72) + (4s− 4)(81) + 8(108)

+ (16s− 24)(135) + 2(144) + (8s− 4)(180) + (6s2 − 20s+ 16)(216)

+ (8s− 14)(225) + (8s− 16)(270) + (6s2 − 24s+ 24)(324),

= 1706 + (324s− 324) + (2160s− 3240) + (1440s− 720)

+ (1296s2 − 4320s+ 3456) + (1800s− 3150) + (2160s− 4320)

+ (1944s2 − 7776s+ 7776),

= 3240s2 − 4212s+ 1184.

Theorem 3.3. Let P be a molecular graph of RHSL network. Then modified FZCI is given by

ẐC∗1(P ) = 396s2 − 288s+ 24.
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Proof: By using Table 3 and Equation 2. 3 , we get

ẐC∗1(P ) =
∑

hf∈L(P )

($P (h) +$P (f)) ,

= |L(5,5)|($P (h) +$P (f)) + |L(5,6)|($P (h) +$P (f)) + |L(5,12)|($P (h) +$P (f))

+ |L(6,12)|($P (h) +$P (f)) + |L(9,9)|($P (h) +$P (f)) + |L(9,12)|($P (h) +$P (f))

+ |L(9,15)|($P (h) +$P (f)) + |L(12,12)|($P (h) +$P (f)) + |L(12,15)|($P (h) +$P (f))

+ |L(12,18)|($P (h) +$P (f)) + |L(15,15)|($P (h) +$P (f)) + |L(15,18)|($P (h) +$P (f))

+ |L(18,18)|($P (h) +$P (f)),

= 2(5 + 5) + 4(5 + 6) + 4(5 + 12) + 2(6 + 12) + (4s− 4)(9 + 9)

+ 8(9 + 12) + (16s− 24)(9 + 15) + 2(12 + 12) + (8s− 4)(12 + 15)

+ (6s2 − 20s+ 16)(12 + 18) + (8s− 14)(15 + 15) + (8s− 16)(15 + 18)

+ (6s2 − 24s+ 24)(18 + 18),

= 2(10) + 4(11) + 4(17) + 2(18) + (4s− 4)(18) + 8(21) + (16s− 24)(24)

+ 2(24) + (8s− 4)(27) + (6s2 − 20s+ 16)(30) + (8s− 14)(30)

+ (8s− 16)(33) + (6s2 − 24s+ 24)(36),

= 384 + (72s− 72) + (384s− 576) + (216s− 108) + (180s2 − 600s+ 480)

+ (240s− 420) + (264s− 528) + (216s2 − 864s+ 864),

= 396s2 − 288s+ 24.

Next, we compute modified SZCI and modified TZCI. For this, we define the partitions of edges on the
basis of CNs and degrees. From Figure 3, we obtain following partitions.

L(3,3)(5,5) = {hf ∈ L(P ) : deg(h) = 3 $(h) = 5, deg(f) = 3 $(f) = 5},
L(3,3)(5,6) = {hf ∈ L(P ) : deg(h) = 3 $(h) = 5, deg(f) = 3 $(f) = 6},
L(3,3)(9,9) = {hf ∈ L(P ) : deg(h) = 3 $(h) = 9, deg(f) = 3 $(f) = 9},
L(3,6)(5,12) = {hf ∈ L(P ) : deg(h) = 3 $(h) = 5, deg(f) = 6 $(f) = 12},
L(3,6)(6,12) = {hf ∈ L(P ) : deg(h) = 3 $(h) = 6, deg(f) = 6 $(f) = 12},
L(3,6)(9,12) = {hf ∈ L(P ) : deg(h) = 3 $(h) = 9, deg(f) = 6 $(f) = 12},
L(3,6)(9,15) = {hf ∈ L(P ) : deg(h) = 3 $(h) = 9, deg(f) = 6 $(f) = 15},
L(3,6)(12,12) = {hf ∈ L(P ) : deg(h) = 3 $(h) = 12, deg(f) = 6 $(f) = 12},
L(3,6)(12,15) = {hf ∈ L(P ) : deg(h) = 3 $(h) = 12, deg(f) = 6 $(f) = 15},
L(3,6)(12,18) = {hf ∈ L(P ) : deg(h) = 3 $(h) = 12, deg(f) = 6 $(f) = 18},
L(6,6)(12,15) = {hf ∈ L(P ) : deg(h) = 6 $(h) = 12, deg(f) = 6 $(f) = 15},
L(6,6)(15,15) = {hf ∈ L(P ) : deg(h) = 6 $(h) = 15, deg(f) = 6 $(f) = 15},
L(6,6)(15,18) = {hf ∈ L(P ) : deg(h) = 6 $(h) = 15, deg(f) = 6 $(f) = 18},
L(6,6)(18,18) = {hf ∈ L(P ) : deg(h) = 6 $(h) = 18, deg(f) = 6 $(f) = 18},

The total number of edges in each partitions are given in Table 4.
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TABLE 4. Total number of edges in each partitions

L(deg(h),deg(f))($(h),$(f)) |L(deg(h),deg(f))($(h),$(f))|
L(3,3)(5,5) 2
L(3,3)(5,6) 4
L(3,3)(9,9) 4s− 4
L(3,6)(5,12) 4
L(3,6)(6,12) 2
L(3,6)(9,12) 8
L(3,6)(9,15) 16s− 24
L(3,6)(12,12) 2
L(3,6)(12,15) 8s− 12
L(3,6)(12,18) 6s2 − 20s+ 16
L(6,6)(12,15) 8
L(6,6)(15,15) 8s− 14
L(6,6)(15,18) 8s− 16
L(6,6)(18,18) 6s2 − 24s+ 24

Theorem 3.3. Let P be a molecular graph of RHSL network. Then modified SZCI is given by

ẐC∗2(P ) = 2052s2 − 1944s+ 348.

Proof: By using Table 4 and Equation 2. 4 , we get

ẐC∗2(P ) =
∑

hf∈L(P )

[degP (h)$(f) + deg(f)$(h)] ,

= |L(3,3)(5,5)| [deg(h)$(f) + deg(f)$(h)] + |L(3,3)(5,6)| [deg(h)$(f) + deg(f)$(h)]

+|L(3,3)(9,9)| [deg(h)$(f) + deg(f)$(h)] + |L(3,6)(5,12)| [deg(h)$(f) + deg(f)$(h)]

+|L(3,6)(6,12)| [deg(h)$(f) + deg(f)$(h)] + |L(3,6)(9,12)| [deg(h)$(f) + deg(f)$(h)]

+|L(3,6)(9,15)| [deg(h)$(f) + deg(f)$(h)] + |L(3,6)(12,12)| [deg(h)$(f) + deg(f)$(h)]

+|L(3,6)(12,15)| [deg(h)$(f) + deg(f)$(h)] + |L(3,6)(12,18)| [deg(h)$(f) + deg(f)$(h)]

+|L(6,6)(12,15)| [deg(h)$(f) + deg(f)$(h)] + |L(6,6)(15,15)| [deg(h)$(f) + deg(f)$(h)]

+|L(6,6)(15,18)| [deg(h)$(f) + deg(f)$(h)] + |L(6,6)(18,18)| [deg(h)$(f) + deg(f)$(h)] ,

= 2 [(3)(5) + (3)(5)] + 4 [(3)(6) + (3)(5)] + (4s− 4) [(3)(9) + (3)(9)] + (4) [(3)(12) + (6)(5)]

+2 [(3)(12) + (6)(6)] + 8 [(3)(12) + (6)(9)] + (16s− 24) [(3)(15) + (6)(9)] + (2)[(3)(12) + (6)(12)]

+(8s− 12) [(3)(15) + (6)(12)] + (6s2 − 20s+ 16) [(3)(18) + (6)(12)] + (8) [(6)(15) + (6)(12)]

+(8s− 14) [(6)(15) + (6)(15)] + (8s− 16) [(6)(18) + (6)(15)] + (6s2 − 24s+ 24) [(6)(18) + (6)(18)] ,

= 2 [15 + 15] + 4 [18 + 15] + (4s− 4) [27 + 27] + (4) [36 + 30] + 2 [36 + 36]

+8 [36 + 54] + (16s− 24) [45 + 54] + (2) [36 + 72] + (8s− 12) [45 + 72]

+(6s2 − 20s+ 16) [54 + 72] + (8) [90 + 72] + (8s− 14) [90 + 90]

+(8s− 16) [108 + 90] + (6s2 − 24s+ 24) [108 + 108] ,

= 2 [30] + 4 [33] + (4s− 4) [54] + (4) [66] + 2 [72] + 8 [90] + (16s− 24) [99]
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+(2) [108] + (8s− 12) [117] + (6s2 − 20s+ 16) [126] + (8) [162]

+(8s− 14) [180] + (8s− 16) [198] + (6s2 − 24s+ 24) [216] ,

= 2832 + (216s− 216) + (1584s− 2376) + (936s− 1404) + (756s2 − 2520s+ 2016)

+(1440s− 2520) + (1584s− 3168) + (1296s2 − 5184s+ 5184),

= 2052s2 − 1944s+ 348.

Theorem 3.4. Let P be a molecular graph of RHSL network. Then modified TZCI is given by

ẐC∗3(P ) = 2160s2 − 1944s+ 288.

Proof: By using Table 4 and Equation 2. 5 , we get

ẐC∗3(P ) =
∑

hf∈L(P )

[deg(h)$(h) + deg(f)$(f)] ,

= |L(3,3)(5,5)| [deg(h)$(h) + deg(f)$(f)] + |L(3,3)(5,6)| [deg(h)$(h) + deg(f)$(f)]

+|L(3,3)(9,9)| [deg(h)$(h) + deg(f)$(f)] + |L(3,6)(5,12)| [deg(h)$(h) + deg(f)$(f)]

+|L(3,6)(6,12)| [deg(h)$(h) + deg(f)$(f)] + |L(3,6)(9,12)| [deg(h)$(h) + deg(f)$(f)]

+|L(3,6)(9,15)| [deg(h)$(h) + deg(f)$(f)] + |L(3,6)(12,12)| [deg(h)$(h) + deg(f)$(f)]

+|L(3,6)(12,15)| [deg(h)$(h) + deg(f)$(f)] + |L(3,6)(12,18)| [deg(h)$(h) + deg(f)$(f)]

+|L(6,6)(12,15)| [deg(h)$(h) + deg(f)$(f)] + |L(6,6)(15,15)| [deg(h)$(h) + deg(f)$(f)]

+|L(6,6)(15,18)| [deg(h)$(h) + deg(f)$(f)] + |L(6,6)(18,18)| [deg(h)$(h) + deg(f)$(f)] ,

= 2 [(3)(5) + (3)(5)] + 4 [(3)(5) + (3)(6)] + (4s− 4) [(3)(9) + (3)(9)] + (4) [(3)(5) + (6)(12)]

+2 [(3)(6) + (6)(12)] + 8 [(3)(9) + (6)(12)] + (16s− 24) [(3)(9) + (6)(15)] + (2)
[
(3)(12)+

(6)(12)
]
+ (8s− 12) [(3)(12) + (6)(15)] + (6s2 − 20s+ 16) [(3)(12) + (6)(18)] + (8)

[(6)(12) + (6)(15)] + (8s− 14) [(6)(15) + (6)(15)] + (8s− 16) [(6)(15) + (6)(18)]

+(6s2 − 24s+ 24) [(6)(18) + (6)(18)]

= 2 [15 + 15] + 4 [15 + 18] + (4s− 4) [27 + 27] + (4) [15 + 72] + 2 [18 + 72]

+8 [27 + 72] + (16s− 24) [27 + 90] + (2) [36 + 72] + (8s− 12) [36 + 90]

+(6s2 − 20s+ 16) [36 + 108] + (8) [72 + 90] + (8s− 14) [90 + 90] + (8s− 16) [90 + 108]

+(6s2 − 24s+ 24) [108 + 108] ,

= 2 [30] + 4 [33] + (4s− 4) [54] + (4) [87] + 2 [90] + 8 [99] + (16s− 24)

[117] + (2) [108] + (8s− 12) [126] + (6s2 − 20s+ 16) [144] + (8) [162]

+(8s− 14) [180] + (8s− 16) [198] + (6s2 − 24s+ 24) [216] ,

= 3024 + (216s− 216) + (1872s− 2808) + (1008s− 1512) + (864s2 − 2880s+ 2304)

+(1440s− 2520) + (1584s− 3168) + (1296s2 − 5184s+ 5184),

= 2160s2 − 1944s+ 288.
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4. ZCIS OF RHOX NETWORK

In this section, we calculate the ZCIs for the RHOX network. Let P = RHOX(s), be a molecular graph
RHOX network, where s ≥ 2 is the dimension of the network. In Figure 4, Figure 5 and Figure 6, we
represent the molecular graph of P = (H,L) of RHOX(s) for s = 2, 3, 4 by labeling the vertices with the
their CNs. For this, let us define the partitions of the vertices which are based on the CNs of the vertices.
From Figure 6, we can see that there are five vertex-based partitions as given below.
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H4 = {h ∈ H(P ) : $(h) = 5},
H6 = {h ∈ H(P ) : $(h) = 6},
H8 = {h ∈ H(P ) : $(h) = 9},
H10 = {h ∈ H(P ) : $(h) = 12},
H12 = {h ∈ H(P ) : $(h) = 15},

The total number of vertices in each partitions are given in Table 5. By adding all the vertices of each partition

TABLE 5. Total number of vertices in each partition

H$(h) |H$(h)|
H4 4
H6 4s− 4
H8 4
H10 8s− 12
H12 3s2 − 10s+ 8

gives the total number of vertices of ZNOX(s) network. In the similar way, we define the edge partitions.
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From Figure 3, we can see that there are thirteen edge based partitions as given below.

L(4,4) = {hf ∈ L(P ) : $(h) = 4, $(f) = 4},
L(4,8) = {hf ∈ L(P ) : $(h) = 4, $(f) = 8}
L(6,8) = {hf ∈ L(P ) : $(h) = 6, $(f) = 8},
L(6,10) = {hf ∈ L(P ) : $(h) = 6, $(f) = 10}
L(8,10) = {hf ∈ L(P ) : $(h) = 8, $(f) = 10},
L(10,10) = {hf ∈ L(P ) : $(h) = 10, $(f) = 10},
L(10,12) = {hf ∈ L(P ) : $(h) = 10, $(f) = 12},
L(12,12) = {hf ∈ L(P ) : $(h) = 12, $(f) = 12},

The total count of the above classified vertices are given in Table 6.

TABLE 6. Count of CN-based classified vertices of P

L(h,f) |L(h,f)|
L(4,4) 2
L(4,8) 4
L(6,8) 4
L(6,10) 8s-12
L(8,10) 8
L(10,10) 8s-14
L(10,12) 8s− 16
L(12,12) 6s2 − 24s+ 24

Theorem 4.1. Let P be a molecular graph of RHOX network. Then FZCI is given by

ẐC1(P ) = 432s2 − 496s+ 128.

Proof: By using Table 5 and Equation 2. 1 , we get

ẐC1(P ) =
∑

h∈H(P )

($P (h))
2,

= |H4|($P (h))
2 + |H6|($P (h))

2 + |H8|($P (h))
2

+ |H10|($P (h))
2 + |H12|($P (h))

2,

= 4(4)2 + (4s− 4)(6)2 + 4(8)2 + (8s− 12)(10)2

+ (3s2 − 10s+ 8)(12)2,

= 4(16) + (4s− 4)(36) + 4(64) + (8s− 12)(100) + (3s2 − 10s+ 8)(144),

= 320 + (144s− 144) + (800s− 1200) + (432s2 − 1440s+ 1152),

= 432s2 − 496s+ 128.
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Theorem 4.2. Let P be a molecular graph of RHOX network. Then SZCI is given by

ẐC2(P ) = 864s2 − 1216s+ 408.

Proof: By using Table 6 and Equation 2. 2 , we get

ẐC2(P ) =
∑

hf∈L(P )

($P (h)×$P (f)),

= |L(4,4)|($P (h)×$P (f)) + |L(4,8)|($P (h)×$P (f)) + |L(6,8)|($P (h)×$P (f))

+ |L(6,10)|($P (h)×$P (f)) + |L(8,10)|($P (h)×$P (f)) + |L(10,10)|($P (h)×$P (f))

+ |L(10,12)|($P (h)×$P (f)) + |L(12,12)|($P (h)×$P (f)),

= 2(4× 4) + 4(4× 8) + 4(6× 8) + (8s− 12)(6× 10) + 8(8× 10) + (8s− 14)(10× 10)

+ (8s− 16)(10× 12) + (6s2 − 24s+ 24)(12× 12),

= 2(16) + 4(32) + 4(48) + (8s− 12)(60) + 8(80) + (8s− 14)(100)

+ (8s− 16)(120) + (6s2 − 24s+ 24)(144),

= 992 + (480s− 720) + (800s− 1400) + (960s− 1920) + (864s2 − 3456s+ 3456),

= 864s2 − 1216s+ 408.

Theorem 4.3. Let P be a molecular graph of RHOX network. Then modified FZCI is given by

ẐC∗1(P ) = 144s2 − 83s+ 16.

Proof: By using Table 6 and Equation 2. 3 , we get

ẐC∗1(P ) =
∑

hf∈L(P )

($P (h) +$P (f)) ,

= |L(4,4)|($P (h) +$P (f)) + |L(4,8)|($P (h) +$P (f)) + |L(6,8)|($P (h) +$P (f))

+ |L(6,10)|($P (h) +$P (f)) + |L(8,10)|($P (h) +$P (f)) + |L(10,10)|($P (h) +$P (f))

+ |L(10,12)|($P (h) +$P (f)) + |L(12,12)|($P (h) +$P (f)),

= 2(4 + 4) + 4(4 + 8) + 4(6 + 8) + (8s− 12)(6 + 10) + 8(8 + 10) + (8s− 14)(10 + 10)

+ (8s− 16)(10 + 12) + (6s2 − 24s+ 24)(12 + 12),

= 2(8) + 4(12) + 4(14) + (8s− 12)(16) + 8(18) + (8s− 14)(20)

+ (8s− 16)(22) + (6s2 − 24s+ 24)(24),

= 264 + (128s− 192) + (160s− 280) + (176s− 352) + (144s2 − 547s+ 576),

= 144s2 − 83s+ 16.

Next, we compute modified SZCI and modified TZCI. For this we define the partitions of edges on the basis of CNs and degrees. From
Figure 6, we obtain following partitions.

L(2,2)(4,4) = {hf ∈ L(P ) : deg(h) = 2$(h) = 4, deg(f) = 2$(f) = 4},

L(2,4)(4,8) = {hf ∈ L(P ) : deg(h) = 2$(h) = 4, deg(f) = 4$(f) = 8},
L(2,4)(6,8) = {hf ∈ L(P ) : deg(h) = 2$(h) = 6, deg(f) = 4$(f) = 8},
L(2,4)(6,10) = {hf ∈ L(P ) : deg(h) = 2$(h) = 6, deg(f) = 4$(f) = 10},
L(4,4)(8,10) = {hf ∈ L(P ) : deg(h) = 4$(h) = 8, deg(f) = 4$(f) = 10},
L(4,4)(10,10) = {hf ∈ L(P ) : deg(h) = 4$(h) = 10, deg(f) = 4$(f) = 10},
L(4,4)(10,12) = {hf ∈ L(P ) : deg(h) = 4$(h) = 10, deg(f) = 4$(f) = 12},
L(4,4)(12,12) = {hf ∈ L(P ) : deg(h) = 4$(h) = 12, deg(f) = 4$(f) = 12}.

The total number of edges in each partitions are given in Table 7.
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TABLE 7. Total number of edges in each partitions

L(deg(h),deg(f))($(h),$(f)) |L(deg(h),deg(f))($(h),$(f))|
L(2,2)(4,4) 2
L(2,4)(4,8) 2
L(2,4)(6,8) 4
L(2,4)(6,10) 8s-12
L(4,4)(8,10) 8
L(4,4)(10,10) 8s-14
L(4,4)(10,12) 8s-16
L(4,4)(12,12) 6s2 − 24s+ 24

Theorem 4.4. Let P be a molecular graph of RHOX network. Then modified SZCI is given by

ẐC∗2(P ) = 576s2 − 608s+ 80.

Proof: By using Table 4 and Equation 2. 4 , we get

ẐC∗2(P ) =
∑

hf∈L(P )

[deg(h)$(f) + deg(f)$(h)] ,

= |L(2,2)(4,4)| [deg(h)$(f) + deg(f)$(h)] + |L(2,4)(4,8)| [deg(h)$(f) + deg(f)$(h)]

+|L(2,4)(6,8)| [deg(h)$(f) + deg(f)$(h)] + |L(2,4)(6,10)| [deg(h)$(f) + deg(f)$(h)]

+|L(4,4)(8,10)| [deg(h)$(f) + deg(f)$(h)] + |L(4,4)(10,10)| [deg(h)$(f) + deg(f)$(h)]

+|L(4,4)(10,12)| [deg(h)$(f) + deg(f)$(h)] + |L(4,4)(12,12)| [deg(h)$(f) + deg(f)$(h)] ,

= 2 [(2)(4) + (2)(4)] + 2 [(2)(8) + (4)(4)] + 4 [(2)(8) + (4)(6)] + (8s− 12) [(2)(10) + (4)(6)]

+8 [(4)(10) + (4)(8)] + (8s− 14) [(4)(10) + (4)(10)] + (8s− 16) [(4)(12) + (4)(10)]

+(6s2 − 24s+ 24) [(4)(12) + (4)(12)] ,

= 2 [8 + 8] + 2 [16 + 16] + 4 [16 + 24] + (8s− 12) [20 + 24] + 8 [40 + 32]

+(8s− 14) [40 + 40] + (8s− 16)2 [48 + 40] + (6s2 − 24s+ 24) [48 + 48] ,

= 2 [16] + 2 [32] + 4 [40] + (8s− 12) [44] + 8 [72] + (8s− 14) [80] + (8s− 16) [88]

+(6s2 − 24s+ 24) [96] ,

= 832 + (352s− 528) + (640s− 1120) + (704s− 1408) + (576s2 − 2304s+ 2304),

= 576s2 − 608s+ 80.

Theorem 4.5. Let P be a molecular graph of RHOX network. Then modified TZCI is given by

ẐC∗3(P ) = 576s2 − 544s+ 16.
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Proof: By using Table 4 and Equation 2. 5 , we get

ẐC∗3(P ) =
∑

hf∈L(P )

[deg(h)$(h) + deg(f)$(f)] ,

= |L(2,2)(4,4)| [deg(h)$(h) + deg(f)$(f)] + |L(2,4)(4,8)| [deg(h)$(h) + deg(f)$(f)]

+ |L(2,4)(6,8)| [deg(h)$(h) + deg(f)$(f)] + |L(2,4)(6,10)| [deg(h)$(h) + deg(f)$(f)]

+ |L(4,4)(8,10)| [deg(h)$(h) + deg(f)$(f)] + |L(4,4)(10,10)| [deg(h)$(h) + deg(f)$(f)]

+ |L(4,4)(10,12)| [deg(h)$(h) + deg(f)$(f)] + |L(4,4)(12,12)| [deg(h)$(h) + deg(f)$(f)] ,

= 2 [(2)(4) + (2)(4)] + 2 [(2)(4) + (4)(8)] + 4 [(2)(6) + (4)(8)]

+ (8s− 12) [(2)(6) + (4)(10)] + 8 [(4)(8) + (4)(10)] + (8s− 14) [(4)(10) + (4)(10)]

+ (8s− 16) [(4)(10) + (4)(12)] + (6s2 − 24s+ 24) [(4)(12) + (4)(12)] ,

= 2 [8 + 8] + 2 [8 + 32] + 4 [12 + 32] + (8s− 12) [12 + 40] + 8 [32 + 40]

+ (8s− 14) [40 + 40] + (8s− 16) [40 + 48] + (6s2 − 24s+ 24) [48 + 48] ,

= 2 [16] + 2 [40] + 4 [44] + (8s− 12) [52] + 8 [72]

+ (8s− 14) [80] + (8s− 16) [88] + (6s2 − 24s+ 24) [96] ,

= 864 + (416s− 624) + (640s− 1120) + (704s− 1408) + (576s2 − 2304s+ 2304),

= 576s2 − 544s+ 16.

5. COMPARATIVE ANALYSIS

In this part, we individually compare the results of all the calculated ZCIs for the rhombus silicate and rhombus oxide networks
using line graphs. In sections 3 and 4, we have computed the general results of the RHSL and RHOX in terms of s where s is the
dimension. In Table 8 and Table 9 we have computed the values of ZCIs of RHSL and RHOX network for s = 1, 2, 3 · · · 8, respectively.
In Figure 7, we have taken the values of s along the horizontal axis and the computed values of the indices along the vertical axis. From
Figure 7, it is clear that SZCI attains the higher values for the RHSL network. Similarly in Figure 8, we can see that again SZCI attains
the higher values for RHOX network.

TABLE 8. Computed values of ZCIs for s = 1, 2, 3, · · · , 10

ZCIs s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10

FZCI 172 2584 7516 14968 24940 37432 52444 69976 90028 112600
SZCI 212 5720 17708 36176 61124 92552 130460 174848 225716 283064
Modified FZCI 132 1032 2724 5208 8484 12552 17412 23064 29508 36744
Modified SZCI 456 4668 12984 25404 41928 62556 87288 116124 149064 186108
Modified SZCI 504 5040 13896 27072 44568 66384 92520 122976 157752 196848

TABLE 9. Computed values of ZCIs for s = 1, 2, 3, · · · , 10

ZCIs s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10

FZCI 64 864 2528 5056 8448 12704 17824 23808 30656 38368
SZCI 56 1432 4536 9368 15928 24216 34232 45976 59448 74648
Modified FZCI 77 426 1063 1988 3201 4702 6491 8568 10933 13586
Modified SZCI 48 1168 3440 6864 11440 17168 24048 32080 41264 51600
Modified SZCI 48 1232 3568 7056 11696 17488 24432 32528 41776 52176

From Figure 7 and Figure 8, it can be seen that SZCI has the maximum values for RHSL and RHOX networks. In Figure 9, we
compare the RHSL and RHOX networks.

From Figure 9, it is clear that the computed values of SZCI for the RHSL network show a clear difference with the increasing values
of s than that of RHOX network.
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FIGURE 7. Comparison of the TIs of the rhombus silicate network.
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FIGURE 8. Comparison of the TIs of the rhombus oxide network.

6. CONCLUSION

A topological index (TI) is a numerical value that characterizes the topology of a chemical structure. Zagreb connection indices are
newly introduced indices that are widely utilized in defining the properties of chemical structures. In this paper, we have computed ZCIs
of two significant chemical structures, namely, rhombus silicate and rhombus oxide network. We have calculated FZCI, SZCI, Modified
FZCI, Modified SZCI, and Modified TZCI of rhombus silicate and rhombus oxide networks. Furthermore, we have compared these
structures based on their calculated general results. These findings are novel and contribute to majoring in network science and provide
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FIGURE 9. Comparison of RHSL and RHOX network.

a foundation for understanding the deep topology of these critical networks. Moreover, these findings are eye-opening for the scientists
on how these networks may be built and how good are their topological features.
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