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Abstract. In this work, we investigate the existence and uniqueness of
Atangana-Baleanu solutions in Caputo sense fractional differential equa-
tions. The existence results are based on Monch’s fixed point theorem.
The idea of uniqueness is investigated using the Banach contraction prin-
ciple. Furthermore, a practical example of the results of solutions that
include various fractional orders is provided to validate the theoretical in-
sights provided in this paper.
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1. INTRODUCTION

In recent decades, fractional differential equations (FDEs)have been used in many di-
verse domains, including chemistry, physics, engineering, control theory, aerodynamics,
complex media electrodynamics, control of dynamical systems, and more. FDEs are con-
sequently receiving a lot of attention and importance. We encourage readers to (see [4, 5,
6,7, 13, 14, 15, 16, 17, 23, 28, 29]) and the references therein for more information. The
main factor contributing to the popularity of fractional calculus, which considers the inher-
ited characteristics of many materials and processes, is the nonlocal nature of the fractional
order operators.

The study of existence and uniqueness for fractional order differential equations has
gained significant attention due to their applications in various fields see [9, 10, 12, 33].
Unlike classical differential equations, fractional order models incorporate non-local be-
havior and memory effects, leading to richer dynamics and complex solutions. Establish-
ing the existence and uniqueness of solutions for these equations is crucial, as it ensures
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that the models accurately describe real-world phenomena without ambiguity. Recent ad-
vancements in fractional calculus have facilitated the development of robust mathematical
frameworks that address these challenges, paving the way for more reliable modeling ap-
proaches. As a result, understanding these properties not only enhances theoretical insights
but also aids in practical applications where fractional order models are applied. For more
information (see [3, 2, 22] )

The ABC-fractional derivative (FD) with multiple conditions has received increased at-
tention from numerous researchers in a variety of fields in recent years for more detail (see
[9, 19, 26, 32]). The following nonsingularity, sometimes referred to as non-locality of
the kernel, that gain the generalized Mittag- Leffler function, are familiar with the AB-FD.
Atangana and Koca, two of the most recent researchers on ABC-deriative s, discover chaos
in a basic nonlinear system with AB-FDs [3]. The AB-fractional neutral integro- differ-
ntial equations were thoroughly examined by Ravichandran et al. [23]. Sene specifically
addressed the AB-deriative for Stokes’ first problem for heated flat plates [32]. A dynam-
ical system using the Atangana-Baleanu FD was modeled and simulated by Owolabi [27].
The application of fractional neutral deriative is the subject of extensive investigation. A
coupled system of nonlinear neutral FDEs was examined by Liu et al. [22]. The fractional
of neutral DEs with infinite delay was investigated by Zhou et al. [34].

The measure of noncompactness (MNC ) together with fixed point theorems(FPT) for
example Darbo [11], Monch [25] and Sadovski [30] is an effective tool for studying dif-
ferential or integral equations. MNCs are particularly important in nonlinear analysis. The
researchers are frequently employed in differential and integral equations, operator theory,
and Banach space geometry. Since 1970, there have been several research presented on
the subject and its various uses. Kuratowski [21] pioneered the notion of MNC, whose per-
formed an essential role in fixed point theory. Afterwards, Darbo [11] utilized Kuratowski’s
MNC to extend Schauder’s FPT.

Some recent contributions on FDEs involving ABC-FDs can be found in the following
articles For instance, in [1], The BVP of AB-Caputo FD, presented by Abdeljawad is also
one of the recent problems through which the higher fractional orders are addressed:

ABCDngg(T) +q(r,¢(1)), T€J=][a,T], 9e€(1,2],
¢(a) =¢(T) =0.

AB-Caputo fractional IVP is one of the studied problems by Jarad et al. [18], and has the
form:

ABCDg+g(T) = f(r,5(7)), Te€J=][a,T], 9€(0,1],
s(a) = <a-

Muhammad and Rafeeq investigate the existence and unique solution of the nonlinear dif-
ferential equation to the Atangana-Baleanu fractional derivative in the sense of Caputo with
the initial periodic condition in [26].

ABCDox(t) = f(t,x(t), teJ=1[0,T], ac(1,2],
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with
x(0) = z(T).
2(0) = [ x(s)ds
Motivated and inspired by the above works, we discuss the existence and uniqueness of
solutions to the ABC-FDEs which has the form:

§'(€) +1PY DIS(6) = @(€,5(¢)), €€ J=0,0], Ie(1,2] (1.1

with the boundary condition

$(0) = 0., Lo
3(0) = [ S(s)ds 0

where 4BC D, is Atangana-Baleanu in Caputo sense FDEs of order J, with @ : J xR —

R, is continuous where R is Banach space. integrating nonlocal and volatile situations. The
Hausdorff MNC and the Monch-FPT are used for establishing our findings. The structure
of this paper is as follows: We provide some definitions, notations, and initial concepts in
section 2. Our primary findings on the existence of solutions to aforementioned problem
are described in section 3, and section 4 provides an example demonstrating the practical
use of the enhanced conditions.

This study advances the understanding of fractional calculus by establishing existence
and uniqueness results for the Atangana-Baleanu fractional differential equations (AB-
FDEj5) in the Caputo sense, utilizing Monch’s fixed point theorem and the Banach contrac-
tion principle. The paper highlights the unique properties of the Atangana-Baleanu deriv-
ative, which incorporates nonlocality, offering a fresh perspective compared to traditional
fractional derivatives. By demonstrating solutions through practical examples, the research
underscores the applicability of AB-FDEs in modeling real-world phenomena across vari-
ous fields, including engineering and physics.

2. NOTATIONS AND PRELIMINARIES

Here we recollect some definitions and lemmas that are basic and needed at various
places in this work.
Let f be a continuous function and C'(J,R) be a the Banach space with the supermom
norm

S]] = sup{[S(©)]:€ € T}
Let L;(J, R) be the Banach space of measurable functions S : J — R which are Bochner
integrable, equipped with the norm

H%MZL§@%

AC*(J,R) refers to the set of functions S : J — R whose first deriative is absolutely
continuous.In addition, for a provided set of functions ¥ : J — R, let us indicate by

() ={(&): v eThEe,
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and
U(J)={P() v eV, ce T}

Definition 2.1. [8] Ler 1 € (0,1],%" € H'(a,b) where a < b, then AB-derivative in the
Caputo sense is defined as

§
@PeDim)e) = L% [ ()

(6 —s)?
_J]_—J‘| ds.

Where B(3) a normalizing positive function satisfying B(0) = B(J) = 1 and Ej7 is the
Mittag-Leffler function described by

PV
Es(p) = JZ:(:) NOES) Re(1) >0, peC.

Definition 2.2. [8] The fractional integral associated with the new FD with non-local ker-
nel (AB fractional integral) is defined as:

AB [l —1—_3@ 73 ‘ — ) e (s)ds

Theorem 2.3. [1] Let m € N and Assume that @(x) defined on [a,bland I € (m,m + 1].
Then we have

(1) (PPRDF AR (@(8)) = w(6)

@) (AR[ABRDI)((¢)) = @ (&) — St L@ (¢ — )y
3) (AR[I ABCDI)(m(€)) = &(€) — Xr L@ (¢ — o)

Lemma 2.4. [1] The solution of the below problem
(a7 D'@)(€) = w(©).
is given by

_ _ _ 3 _ 13
@(§) %(a)+%’(a)(§a)+3é_j1)/a w(s)dHB(Jj—l)lF(J)/a (€—s) " w(s)ds.

Where 1 € (1,2] and w € C(J, R) with w(a) = 0.

Theorem 2.5. ( Banach contraction mapping).
Let H be a Banach space. If Z : H — H is a contraction, then Z has a unique fixed point
in H.

Theorem 2.6. [25](Monch’s Fixed Point Theorem).
Let 7 be a non empty bounded closed and convex subset of a Banach space E such that
0 € T and let A be a continuous mapping of 7 into itself. If the implication

U = convA(D), or = A(T)U{0} = u(¥) =0,

holds for every subset ¥ of 7, then A has at least one fixed point.
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Definition 2.7. Let F' be a Banach space and D p, the bounded subset of F' The Kuratowski
MNC is defined by the mapping p: Dp — [0, 00).

k
p(w) =inf{e > 0:w C U w; and diam(w;) < €}; where w € Dp,
j=1

Important properties satisfies the MNC

(1) p(w) =0 < wis compact (w is relatively compact),
2 p(w) = p(w),

B) wCz= pw) <
@) p(w+2) < p(w)
) plew) < [efp(w),
(6) p(conv(w)) = p(w),

Where convA and w are called the convex hull and the closure of the bounded set w,
respectively.

Definition 2.8. A map @ : J x E — FE is called Caratheodory if

(@) & — @(&, x) is measurable for each x: € E.
(b) x — @(&, x) is continuous for almost £ € J.

Lemma 2.9. Let k be a bounded, closed and convex subset of the Banach space C(Z*, E*).
And if Qy

be a continuous function on Z* X Z* and a function @ : Z* X E* — E*, which meets
the requirements of Caratheodory conditions, and assume that there 3 z € L'(Z*,Ry)
such that, for each ¢ € Z* and each bounded set w C E*, if U is an equicontinuous subset
of K, then

w({ [ e ozt senassen}) < [anes@umis

2.10. Assumptions. In this study, we make several critical assumptions regarding the
function and the solutions to our boundary value problem:

1. Continuity: The function (¢, 3(€)) is assumed to be continuous over the domain
J x R. This continuity is fundamental for applying fixed-point theorems and ensuring the
existence of solutions.

2. Boundedness: We assume that the solutions (&) are bounded within the interval .J.
This boundedness allows us to utilize Banach’s fixed-point theorem effectively.

3.Regularity: The first derivative J(¢) is assumed to be absolutely continuous over the
interval J, which is necessary for defining the Atangana-Baleanu derivative in the Caputo
sense.

4. Lipschitz Condition: We assume that the nonlinear term (&, 3(€)) satisfies a
Lipschitz condition with respect to the second variable. This condition is essential for
proving the uniqueness of solutions via contraction mapping principles.

These assumptions are based on previous literature and are standard in the analysis of
fractional differential equations, ensuring the robustness of our findings.
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3. MAIN RESULTS

This section focuses on to establishing formulae of solutions to the boundary value is-
sue (1. 1)-( 1. 2). We utilize Monch’s FPT establish the existence and Banach’s FPT to
demonstrate the uniqueness of our result.

To prove the main results, we require to the next assumptions:
(H1) There 3 a constant € > 0, such that |&@ (&, S(€))| < Qe.
(H2) There 3 constants M, @ > 0, such that

(€, 31(6)) — @€, 32(6))] < M|S1 — S,

and Q = supgc ; |[@(&,0)|], for every £ € J.
(H3) Assume @ : J x R — R and St J — R are satisfies the Caratheodory conditions,
(H4) For each ¢ € J, and S € R, there exist z € L'(J, R, ), such that

& (& SN < 2(&)IIS]]-
(HS) For each ¢ € J and each bounded set w C R, we have

hli%l+ w(@w(Jen x w)) < z(&)p(w), where Jej, = [€ — h, & N J,

where 11 is the Kuratowski MNC and J¢ ,, = [ — I, £].

Lemma 3.1. For any $(¢) € C(J,R), then the BVP (1. 1 )-( 1. 2 ) has a solution

1-2 1-1) s
©=5a=0°®* sz ora=nc /, (©

— )72 — (0 — )3 S(s)ds

%
&

i 6@3@3 —s—1)ds i U@s@g 5 — ) — (5 — )G ds
e |, eSO s s+ g [ S SENG -5~ © -9
-1

— 5)172S(s)ds

3
- BA-1Tr3-1 /0 (€
2-1 ¢ s -1 3 s
B0, TS g [, €05 e S

Proof. Applying the AR-fractional integral operator of order J from 0 to £ on both sides of
fractional differential equations ( 1. 1)

ARIIDG () + 4RI ABC DI §(6) = AR e (e, 5(€), 1(S(£))),

+

Applying theorem (??thm2.3), we get
3(€) = 3(0) +£37(0) = RIS + M Lw (€ 3(9),

_ _ _ _ _ ¢ )
36 =30 +€3(0) - 55186 - = . € 970

I - ¢ 5

0

&
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To find 3(0) and §’(0), we apply the boundary condition ( 1. 2).
Since ¥/(0) = 0. Hence

_ J1-2 (:l —_ 1) 13 - 23 ¢ ) -
B(I-1) ©- B(J—I)F(J—l)/o (§—s) %(S)dﬁm/o @(s,3(s))ds

-1y Dl G
m/{) (& =) T Ve(s, (s))ds,

To find 3(0), we have

&

+

S(05) =5 1-2 5 3-1) . e
Jw%ﬂﬂn+BainoU—Boinnjinl;w—sfAx@@
_ 1) ~ B o )
s [t B [0 - 90 Va8
(1 1-2 |\ & (3-1) 5 e
d&(—Eajﬂv—wm—B@iDH}4JA<o_y S(s)ds

21 © (s G _ @3-y U'_ A-1)=(. &
+B(:l—l)/o w(s’\s(s))ds+B(J—1)F(J)/o (6 =) @(s,3(s))ds,

¥ s = 300 + 22 [*s -1 [P geng
/o S(s)ds = 3(0)(0) + B(J—l)/o S(s)ds — BA-DTA=1) /o (G — 5) 3 VS(s)ds

_ 8 _ . — S} _ .
+ 2—1 w(s,3(s))(0 — s)ds + B(J(j—l)ll)“(:l)/o @ (s, 3(5))(0 — s)ds,

To isolate(foU 3(s)ds), we can rearrange:

1-2 Oc—\ — 3(0)7 2-1 [0 3 '
<1B(:[—1)>/0 J(g)dg_J(O)UJrB(j_l)/o @(s,3(s))(0 — s)ds

3-1) 5 & a-1) 5 - .
_B(Jfl)l“(]—l)/o (6 —5) )"dSer/o @ (s, 3(5)) (0 — 5)ds,

J— U . . —
J0)(1-T) = B _(jl)rl(g ) /O (0 = 5)772 — (0 — 5) 3 D)S(s)ds

27_367 & o &U, = N ST R
B(.'Ifl)/o @(s,3(8))(0 — s 1)dS+B(J—1)F(j)/O (5, 3(5))((0 = s)? = (B —s) )ds

Let ¢ = (1 — U) then we obtain

A0 O T (6 =D
 BE e . TS ONE o - (6= s,
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_9 _ 5o ' i
0= B?J—Qn%@ " Ba —(31 1)— i | (@57 = G983
—S— S @ o) — (5 —
C/ (5 3( 1)d *B C/ ) — (O
( ¢ 25 2—-1 & _
B B(J—l)r(: 1)/ (€= “(5>ds+ﬂ/ @ (s, 3(s))(s)

d-1

+ = /5(5 - s)(j_l)ﬁ'(s S(s))ds
B(I-1)ra Jo 7 ’

O

In the first result, the uniqueness theorem is proved using the Banach contraction prin-
ciple, and the existence of solutions for the BVP ( 1. 1)-( 1. 2) is proven using the Mnch
FPT.

For the sake of convenience, we set the notation:

1 1-2 1 63-1) 1 vaE-n
0= 5E) TTA-0¢ T ATA=1)¢ Ta=-1| BA=1)
C2-3e6%-1)  13-1)0+@3+1)3-1)  2-1 (I-1) ol
h= [ 2¢03-1 i I'(3+2)¢ e Ty | BA- )

Theorem 3.2. Assume that @ : J X R — R is continuous and satisfies (H1)-(H2). If
MM < 1.
Then the boundary value problem (??eqal.l1)-(??eqal.2) has a unique solution.

Proof. Define the operator Y : C(J,R) — C(J,R) as the following

en = B?J_Qng“” B fl_l -1 </ (6 - 90 3(s)ds
C/Oaw ,3(5))(0 — s — 1)ds
J F)CI C/ O —s)! = (0 -9 V)ds
" B@ —(Jl)r(;_n/o (6 = 7 2S(s)ds + s / (s, 3

d-1 ¢ Do &
+m/o (€ — 5) I Va(s,3(s))ds,

We must demonstrate that Y is a solution of the boundary value problem (??eqal.l)-
(??eqal.22 with a fixed poigt on Og,. First, we demonstrate that YO,, C ©g4,, where,
O4, = {S € C(JR) : ||S]| < do}. For & € B4, The operator T is bounded set in

s)(j_l))ds
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C(J,R). For any dy > 0, then for each £ € J, we have

& 1-2 & _1 1)\ &
(190 = | 575536 + 5=T7 —14/ — )0 D)3(s)ds
213 5
JrB(J—l)C ; @(s,3(s))(0 — 5 —1)ds
J F)(J C/ 5,3()) (B — sy = (T —5)FV)ds
(J 1) - S(s
T BO-1Id- 1)/(5_8)J B /w S
N ¢
+B§]JQD[}5—@@”wusw»m,
SB?:[ 2)|I<‘I|+ ”“” C/ \ 5)3- ”‘ds
] C/ —s—1)|@(s, (S))*@(80|d8+ C/ —s—1)|@(s,0)|ds
+7§/ U—s - U—s)(Jfl)) | (s, 3(s)) — @(s,0)|ds
s [ =5 ) (5,0l ds
( —1)|Id|| ¢ 2
+B(.'I—1)F(J 0 /(f—sJ ds| + BA-1D /|ws0|ds
d-1) ¢ 1 & _
/ |@(s, 80)|d8+m/0 (€ — )T Va(s, S(s)) — @(s,0)|ds

7(:[ ‘ J Uws s
+3071W@%4(£ (5. 0)ds.
1-2 & IR ey 2-DM|IS|| :
<sa-p Pt 5a—ora-1e ((J—l)+3>+ BA 1) <26>
2-)Q (v* . @-DMS|| (B 67
T BA-1)C < 2 6) T BE- D) <J+1 +J>

A-HM|Q| (O 67 (-1 6E-Y (2 -1)Q0
! ( ) B 1>< )*

BA- )T \I+1 " T ) T Ba-vra-n\a-n) T BE-1

C-I)MISIG | A-yMIS| (T | @a-nQ (&
TTBA-y) T BO-OrQ) (:) T BRI (:)
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1-2 1 5E-1) 1] sen
S\gan fra-oe tora—ne Tra-n | sa=p Pl
@-NER-T) [(@-1)0H  a-137\ . . a-n] 1 -
" 20 ((3+ prae T oarme ) O TP DTy | g @ T MISID:
_|3-2 1 63 -1) L1 vaE-n p
Sl tra-ne Tora-uc fra-o|Ba-n®
2-126%-1) IA-1)0+@-1) 2-1 (3-1) o
M e T+ o trary| Baon @t M),
< odo + V1 Mdo + Q2),
1(Y$))(€)]] < Podo + 91 Mdg + 91Q2), < do,
V102
do > T 3.3)
Therefore, YO, C O4,. Now to show that T is a contraction mapping, let 3y, 3o € Oy,
and forall £ € J.
& & 1-2 5 &
[(TS1)(€) — (TS2)(E)] < m”ﬂ(@ — 329
(1-1) R N IETNT
T BA-Hra-1¢ /0 (G =)™ = (B =9 )I0(s) = Sa(0)lds
2 *J o g _ & _ & (J - 1) ¢ J-2&
+ BA—1¢ /, (O — s—1)|@(s,S1(s)) — @(s, S2(s))|ds — BE- Dra 1) /0 (€ — 5)372G (s)ds
@-1 O 1 -1\~ ( & o &
+ B(J—l)F(J)C/o (=50 —(0-59) ! )@ (s, S1(s)) — @(s, S2(s))|ds

_ 3 _ _ _ 3 _
g | 15, 31060) = ws Salolds + s [ 6= 95 (s 81(6) - (s, Salo)s,

_ B B “DIS = § 5(3-1) 5] 2 DM =& 1'52 .
12 g G DS - Sl (U L, 2oDMIE S (B

+

= BA-D) BO-yra-nc\a-ntT BA-1)C 2

(1= DIIS: Sl <U<“>> LA DM|IS, -S| (6”1 63)

BA-1)Ta@-n \@-1 BA- T \J+1 ' T

+

(3 - DM][S1 - S| (z‘sm . (£)3> L 2-DM|S -5, 3 )M]IS) ~ S| (UJ)
BA_Dr@¢ \I+1 '3 BA-1) BI-1T() T
- 1-2 1 53-1) 1 (ST
S\5an Tra-ne tara- e Tra-n | sa—n o~

(J-1)

. . 1
A+ Drac T ara) ) +O-0A-D)+ T3y

BA-1)

. l(z-:)(;?? — D) . ((J— DG (T- 1)

M|y — S|,
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o] 3= 1 6(3-1) 1 5E-D ;

a0 Tra—ne T @ra-nc T Ta-n| BA-1™
2-1D@6*-1) JA-1)0+@FP-1) 2-3 (3A-1) O

i [ 20031 I3+2)¢ o1+ rd+1)| BA- 1)Md0’

< Dol|S1 — S| + D M||S1 — S,

1(YS31)(€) = (YS2) ()] < (Yo + 91 M)[[S1 — S|

If (99 + 91 M) < 1. Then T is a contraction according to Banach’s contraction theorem
and so it has only one fixed point, which is which is a unique solution of the boundary value
problem (??eqal.1)-(??eqal.2). O

Theorem 3.3. Assume that the conditions (H3), (H4) and (HS) are satisfied. If
(19() + 19192) < 1.

Then the exist at least one solution for the boundary value problem (??eqal.1)-(??eqal.2)
on J.

Proof. Consider the operator Y : C(J,R) — C(J, R) defined by

(1-1) 5

J—2
O+ 3= pra-ne /,

T(3)(6) = BE-D (B =)' = (B = )T )3(s)ds

&

T P - ' HEY SO SR

e, TS0 s = Nds+ g [ @ S - 97 - (G- 9
(a-1) ¢ - 2-1 [¢_ o

& ¢ — ) V(5. 3(s))ds

 Ba e [, €9 Ve Seds

Let ©,, = {3 € C(J,R) : ||S]| < do, dy > 0}, be a closed bounded convex ball in F,
with Qo = supeeyz(§). We shall show that T satisfies the assumptions of Ménch’s FPT.
The proof will be given in three steps.
Stepl. We show that T is continuous.

)
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Let 3, be a sequence such that 3,, — g, in C(J,R) for each ¢ € J.

(TS)(E) = (TR € ——2—[15a(6) = SO

B(I-1)
(371) 5 o - .
I-)ra-1 C/ (B =572 = (6= )T NISuls) — (s)llds

C/ — 5= Dl[&(s, Suls)) — (s, 5(5)) lds

)T () g/ — ) )|@ (s, S (s)) — @ (s, 3(s)) |ds
- B(J a1)r(; 1)/0 (€= s 72(ISn(s) — S(s)||ds
£ —
B Jl)/o & (s, Sn(s)) — @ (s, S(s))|ds

d-1

+/E(§ 8) @ V[@ (s, Suls)) — @ (s, 3(s))l|ds
BI-1I@) Jo " ’ ’

-2 5 5 (3= DIIS.(6) = SE© (G-  §
< =5 SO+ 55 Trg e <(31)+3>

2-1 (6 .\, _,. =~ .
+ m <2 - U) (&, Sn(€)) — @ (&, S
J+1 i
§<§5++1+ ) (5, 8(s)) — (5, (5)]
U:H G s s sE-1 = =
27]6 _ & (371) 61 = & C_\
*BE= >|\ @(€,3n(€) — @ (& S(©))] B Te) ( 3 > 1@ (€, Sn(€)) — @, )],

- J—2+ L 63a-1) L1
=5y TTE@-1¢ T Qra@-n¢ Ta-o
2-J(26%-1) J3-1
2C('53—1 T

Since, f and y are of Caratheodory type functions, then by the Lebesgue dominated con-
vergence theorem we have

1(B30)(€) = (X)) = 0 as n — o,
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Step 2. T maps O, into itself. Let S € O, by (H4), we have for each & € J

|<r§><5>||s232)|§|+ ”J” C/\ 6 @D as
e / — 5 Dl(s, () lds
- m / (@~ 5~ (@ = )37 leo(s, 3(5))Ids
_ & §
B0 [ e

BA-1rd-1
_ 3 B
S C k) / (€ - 5)53 Dles(s, $(s)lds,

_ 3 _
+ 21 /0|zﬁ(s,§(s))|ds

+ BA-1)

B(II - 1ra
-2 1 63-1) 1 6a-n
IO < z;(: b T TE— e TOra-ne T ra-n| Ba-n®
-J26%-1) JA-1D0+FP-1) 2-1 (3-1) (OF
20031 N L(I+2)¢ o1 rd+1| BA-1 (Mdo),
H(XS) (O] < (o + D1 M)do < do,
which implies that ||(TS)(€)|] < do.
Step3. Show that T'(0,) is equicontinuous. By Step 2, it is clear that T'(04,) C C(J,R)
is bounded. Let &,& € J, & < & and S € Oy, then
S} S 1-2 5 -1 & 1-2|1&
1009)(€2) ~ (TS)E] < g 37196 = 5660 + gy . (& 97 8()lds
213 &2 - =
+ B(:Il)/gl (s, S(s))ds
(-1 & A-D5(e &
eyl ICRE OO
d-1 & - -2y &
T BE-DIE-1) /o (& =7 = & =) [S(e)lds

_ &1 _
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1-2 3 d-1 s EPYEN 2-1 [& -
SBG—U““”M&”+BG—DNL%%L(&ﬁJ%ﬂNQM+BQ—U/I“ML%m
(:[ _ 1) &2 . -
ey e N A ROAR RG]
_ &1 ~
* B@ _(Jl)pl(; —1) /o (62— 5)" 2 = (& — 52| ds[|S(9) ]

(62 = )77 = (& = )0 dsMIS(€)

(I-1) &
T BE- 1)r(3)/0

1-2 1Sl

+ g~ OMISOI+ g it g € - 6

e

+ ol (16 - 60501~ (65 - (6)5)

3-1)  M[S©)
BA-Ora) 3

+ (It &7 - li&P - @)

1-2 5 5 23]l

21 20-1) MJS©)
+ B(:I 1) (52 - gl)MH‘S( )|| + B(:l — 1)F(j) 3 (52 - 51)3
+ o'%g”])m§W*%waw*w
@-1  MSE© (& &)
BA-1r@ 1 ’

As & — &7, the right-hand side of the above inequality tends to zero. Then Yy is equicon-
tinuous.

Finally, we indicate that the association holds.:

Assume that ¥ be a subset of ©dg such that ¥ = conv(Y(¥) U 0). W is bounded and
equicontinuous, and this implies that the function ¥ — v (&) = u(W¢)) is continuous on J.
By (H4), and the properties of the measure ; we have for each £ € J.

v(§) < p((T(P)(E) U0) < u(T(T)(8))
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J-2 _ 3-1) 5 B ' ) )
SRR R (5))+B<J—1)r(:—1></0 (6= Y72 = (B = )@ D)p((B(s))ds

(€

21 P I -1 ® B (6 o)D) I

+B(_-,_1)</0 ©—s 1)«z(s)zdsu((\lf(s))ds+BC‘_I)FC‘)C/0 (G =87 = (6 =) I V)adsp((¥(s))ds
— § B ¢ -

- 50 %;&1) |t = 72w s + s [ adsn(us)as

7(:[_1) ‘ — )3 245 U (s))ds
+ 5 | (€= (s

BA-1T
a2 1 BE-1) L
<Pl &e *ra—ne T @ra-ue T rE-1| BA-1
q 23262 -1) JA-DO+ (-1 2-1 (I-1) (68
el | — s T(J+2)C 51 TA+1) | BA-1)’

[v]] < (Do + 91Q)[|v]].
This means that

[[][(1 = (Fo + 9192)) <0,
Butis assumed that (9 +112) < 1, which implies that ||v|| = 0, thatis ¥(¢) = 0 for each
¢ € J, and then U(¢) is relatively compact in R. Now, Ascoli-Arzela theorem is applied
then, we obtain W is relatively compact in ©4,. Applying now Theorem (??monch), we

conclude that the operator T has a fixed point which is a solution of the problem ( 1. 1 )-(
1.2). a

4. EXAMPLES
In this section we take an example to illustrate our results.

Example 4.1. Let us consider the following boundary value problem
£€-6 1S9

SOOI = e s €08 @9

with the boundary condition

37(0) = 0.
< ) 2 = “4.5)
3(2) = [, S(s)ds
Where1= %, B(1—1) =1and O = 3 by using (H2) the result is
— (& —(6 3| < £€-6 s &
[@(§, 1) — @(€,S2)] < m|\31 - S,
M = 0.0182,
9o = 0.328
91 = 11.8401

Then, by Theorem(3.2) the following is obtained
1(B31)(6) = (B32)(O)I] < (Yo + 1 M)|[S1 = B, (Jo + 91 M) = 0.5585 < 1.
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Then the problem ( 4. 4 ) has a unique solution.

5. CONCLUSION

This study successfully establishes the existence and uniqueness of Atangana-Baleanu
solutions for FDEs in the Caputo sense. By applying Monch’s fixed point theorem, we
demonstrated the conditions under which solutions exist, and we employed the Banach
contraction principle to showcase the uniqueness of these solutions. The theoretical in-
sights presented are further validated through a practical example, illustrating how various
fractional orders impact the behavior of the solutions. Our findings contribute to the un-
derstanding of FDEs and provide a solid foundation for Beyond its immediate findings, the
work sets the stage for future investigations into more complex systems that employ AB-
FDEs, encouraging further exploration into their properties and applications. This opens
avenues for interdisciplinary research and fosters collaboration among mathematicians and
scientists in fields where fractional calculus plays a significant role.
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