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Abstract. This article produces a blend between the fields of time discounting and fuzzy
integrals. By exploiting the mathematical properties of the Sugeno capacities, we can pro-
duce a Choquet integral that simultaneously is subadditive and coincides with either the
exponential or hyperbolic discounting additive formulas in the evaluation of individual time
moments. Numerical analyses guarantee that the new valuation procedures are different
from their additive counterparts.
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1. INTRODUCTION

This research is at the junction of two fields, namely, time discounting (motivated by mathematical finance) 
and the discrete Choquet integral (motivated by the theory of aggregation operators).

In mathematical finance, time discounting refers to the process of determining the present value of future 
endowments such as cash flows. This is a fundamental concept because assets (such as money) received in 
the future are generally considered less valuable than the same assets received today, due to factors such as 
inflation, risk, and in the monetary case, the potential to invest that money and earn a r eturn. Put succinctly, 
the basic idea is that a dollar received today is worth more than a dollar received in the future.

A natural problem that arises is the calculation of the “present value” of a future cash flow. Classical 
procedures make use of a certain rate, known as the “discount rate”. The standard Discounted Utility model, 
which assumes exponential discounting, became the canonical model since its introduction by renowned 
economists [5, 16].

This problem is a specific s etting f or a n a ggregation o perator, w ith p articular r estrictions i mposed by 
the precise framework (which is temporal). Aggregation operators are fundamental not only in (temporal 
or otherwise) decision-making, but also in fields s uch a s d ata a nalysis a nd i nformation f usion. Additive 
aggregation embeds the type of operators mentioned above. But many important classes of aggregation 
operators relax or dispense with this property. The Choquet integral is a remarkable example. It enables us to 
incorporate interactions between the inputs (typically, characteristics of the elements, or opinions of agents 
or experts). Whenever we feel that the importance of a set of inputs is not simply the sum of the importance
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of each individual input, we can use capacities or fuzzy measures. They are non-additive measures that let us
capture interactions, such as synergies or redundancies, between inputs.

1.1. Related work. Several experiments and studies have collectively shown that the Discounted Utility
model often fails to capture the complexity of human intertemporal choices [14, 18, 20]. There is evidence
that hyperbolic discounting and other models that account for time-inconsistent patterns provide a more
accurate description of how people value future rewards [8, 11]. Nevertheless, paradoxes remain that require
further explanations.

Additivity may be at the root of the inconvenience of existing models of time discounting. The subaddi-
tivity property seems to be more suitable than an additive expression in many different areas. For example,
experimental demonstrations of the subadditivity of probability judgements exist [17]. Possibly the first
scholars who found evidence of subadditive pricing were Kahneman and Knetsch [9]. In relation with our
goals, Daniel Read [15] convincingly argued that time discounting is subadditive, and also that for this reason,
subadditivity should supersede hyperbolic discounting.

The Choquet integral is more flexible than weighted sums (which are the particular case where the capacity
is additive) or other linear aggregation methods. This is particularly useful in decision-making processes
where the combined effect of multiple factors is more complex than the sum of their individual effects.
And remarkably, Choquet integrals can exhibit subadditivity. Therefore if we assume that time discounting
must be subadditive, then we can only agree that the Choquet integral provides an excellent opportunity to
determine the present value of future endowments. A crucial step in this case is the elicitation of the right
form of the capacity. The property that a capacity must satisfy to produce Choquet evaluations that are
subadditive was identified by Choquet [6]. We will take advantage of this characterization, and also of other
theoretical contributions about capacities, to go beyond additive discounting models without rejecting their
basic premises.

In this regard, one handicap of this general approach is that 2n values need to be specified for general
capacities defined on a set with n elements. We shall address this issue by focusing on Sugeno’s capacities,
also called λ-fuzzy measures. This class is interesting in the first place, because the computational complexity
of evaluating a capacity in this class is much lower compared to general capacities. Any λ-fuzzy measure can
be fully determined by specifying its evaluation for the n singletons plus the value of the parameter λ. This
means a considerable reduction of the computational burden. In the second place, because existing literature
allows us to disclose the exact situations for which Choquet integrals defined from λ-fuzzy measures are
subadditive.

1.2. The goals of this research. The main research premise of this study is easy to explain. If I know my
future assignments, my perception now about how valuable they are can be affected by interactions among
different periods. These interactions may take the form of either redundancies or synergies. They can be due
to the presence of e.g., annual or year-end bonus in periods different from those where the endowments will
be given.

The Discounted Utility and hyperbolic models mentioned above are insensitive to such cross-effects: the
future value of an amount that will be obtained in the future is always updated with the same rate of discount,
irrespective of other assignments in different periods.

So the challenge is: can we combine both traits –the essence of the classical evaluations in time discounting
models, and the existence of interactions among periods– using a Choquet integral? And, can we do it
efficiently, i.e., with a reduced computational burden?
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1.3. Outline of this research. Section 2 revisits the two fields that inspire our research. The fundamental
theoretical results that we need are stated there. Then in section 3 we give our results, both at theoretical
and numerical levels. A fully developed example illustrates all the computations that are needed to solve the
problem in section 4. Section 5 concludes this article.

2. BACKGROUND

This section revises concepts and results that will be needed in the rest of this article. They pertain to two
different fields, namely, the evaluation of temporal streams of endowments and the Choquet integral and its
properties.

2.1. Time discounting. In the discounted utility or exponential discounting model, discounted utility as-
sessments of choices made in the present and consecutive instants in the future, (x0, x1, . . . , xT ), have the
following additive form: for a fixed β ∈ (0, 1),

T∑
t=0

βtu(xt) (2. 1)

At moment t, xt is chosen, and its utility at that moment is u(xt). Then a discount factor β (e.g., β = 0.95)
is applied to update its “present value”. Larger values of β mean a more patient attitude: in fact, the extreme
case β = 1 is obviously associated with “no discount” and for this reason it is discarded.

We will not be concerned with the role of the utility u, which is independent of time, so in this ar-
ticle we work directly on the evaluation of (u(x0), . . . , u(xT )). Therefore the relevant formula becomes
Uβ(x0, . . . , xT ) =

∑T
t=0 β

txt.
The hyperbolic discounting model is governed by the following additive expression:

Hk(x0, . . . , xT ) =
T∑
t=0

1

1 + kt
xt. (2. 2)

Now the k factor determines the degree of discounting (for example, the interest rate). The larger the value
of k, the more impulsivity of the behavior.

Contrary to the case of exponential discounting, hyperbolic discounting allows for time-inconsistent pat-
terns such as those revealed by experiments.

2.2. Capacities and the Choquet integral: discrete versions. Let X = {1, . . . , n} represent either a set
of n attributes (in multi-criteria decision making) or experts (in group decision making), or the results of an
event with n possible outcomes. In our context, X represents periods of time.

We need the following concept to define the indices that evaluate temporal strems in the presence of
interactions among periods:

Definition 2.3 (Beliakov et al. [4], Definition 2.75). A discrete fuzzy measure (or a capacity) is a set function
µ : 2X −→ [0, 1] which is monotonic (i.e., µ(A) 6 µ(B) whenever A ⊆ B ⊆ X) and satisfies µ(∅) = 0,
µ(X) = 1.

The capacity satisfies additivity if it is the case that when A,B ⊆ X are disjoint, then µ(A ∪ B) =
µ(A) + µ(B). Additive set functions are uniquely determined by µ({1}), ..., µ({n}). Thus an additive
capacity is a probability measure that is determined by µ({1}), ..., µ({n}).

A weaker requirement is subadditivity. This property holds if whenever A,B ⊆ X are disjoint then
µ(A ∪B) 6 µ(A) + µ(B).
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Subadditive capacities are submodular. Submodularity or strong subadditivity holds if whenever A,B ⊆
X , it is the case that µ(A ∪B) + µ(A ∩B) 6 µ(A) + µ(B).

Supermodular/superadditive capacities are defined by reversing inequalities above. We do not refer to
these classes of capacities in our work,

Now we define an interesting type of fuzzy measures whose main attractive is the small amount of infor-
mation that we must elicit to define them. As explained above, we only need to know their evaluation on
singletons, plus one conveniently chosen parameter.

Definition 2.4. A discrete fuzzy measure µ onX is a Sugeno fuzzy measure, also known as a λ-fuzzy measure,
when for a fixed λ ∈ (−1,+∞), the equality µ(A∪B) = µ(A) +µ(B) +λµ(A)µ(B) holds for all disjoint
A,B ⊆ X .

The case λ = 0 produces additive fuzzy measures, hence probability measures.
When λ 6= 0, the evaluation of any subset of X follows from µ({1}), ..., µ({n}) with the help of the

following expression, which can be found e.g., in [13, Eq. (2.4)] and [4, Eq. (2.15)]:

µ(A) =
1

λ

( k∏
j=1

(1 + λµ({ij}))− 1
)

when A = {i1, . . . , ik}. (2. 3)

Of course, the value of λ cannot be arbitrarily chosen. The following result is well known (Leszczyński,
Penczek and Grochulski [13]): the value of λ is related to {µ({i})}i∈X by the following normalization
condition (for which λ = 0 is always a solution)

λ+ 1 =
n∏
j=1

(1 + λµ({j})). (2. 4)

This result is described in for example, [3, section 2.9], [7, sect. 2.8.6] or [19, Theorem 4.7].
Let us now define the main analytical tool in this article.

Definition 2.5. The discrete Choquet integral with respect to the capacity µ is Cµ : Rn+ −→ R given by

Cµ(x1, . . . , xn) =

n∑
i=1

[
x(i) − x(i−1)

]
µ(Hi),

where x↗ = (x(1), . . . , x(n)) is a non-decreasing permutation of x = (x1, . . . , xn), x(0) = 0 by convention,
and Hi = {(i), . . . , (n)} is the set of indices corresponding to the largest n− i+ 1 components of x.

There is another equivalent definition that uses the concept of derivative of the capacity, but we do not
need it here so we skip it. The reader can consult [3, section 5.2] for details and other properties of this
aggregation operator.

Figure 1 helps us to visualize how the formula in Definition 2.5 evaluates a vector in a simple case with
three periods, i.e., X = {1, 2, 3}.

We say that Cµ is subadditive when Cµ(x+y) 6 Cµ(x)+Cµ(y) for all x, y ∈ Rn+. The following results
are well known:

Theorem 2.6 (Choquet [6]). Cµ is convex if and only if µ is submodular.
And in this case, Cµ is subadditive.

The second statement is easy to prove using the positive homogeneity of the Choquet integral [3, section
5.2]. We are not aware of a self-contained, direct proof of the first equivalence in the discrete case. In addition
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FIGURE 1. Visual interpretation of the application of the Choquet integral in an example
with X = {1, 2, 3}: evaluating the vector (0.2, 0.6, 0.9).

to Choquet himself, other authors considered the continuous statement, e.g., Alfonsi [2]. Many other results
relating convexity and integrals exist [10, 12].

Interestingly to our purposes: in the context of the study of λ-fuzzy measures, [19, Theorem 3.6] states
the following practical property.

Theorem 2.7 (Wang and Klir [19]). Suppose that {µ({i})}i∈X are fixed, µ({i}) ∈ [0, 1] for each i ∈ X .
Then:

(1) When
∑
i∈X µ({i}) > 1, there is exactly one λ ∈ (−1, 0) that satisfies the normalization condition

defined by Eq. ( 2. 4 ), allowing to produce a λ-fuzzy measure µ on X whose values on singletons
are {µ({i})}i∈X .

In this case, µ is submodular.
(2) When

∑
i∈X µ({i}) < 1, there is exactly one λ > 0 that satisfies the normalization condition defined

by Eq. ( 2. 4 ).
In this case, µ is supermodular.

3. THE PROBLEM AND RESULTS

We are ready to state the problem we want to address formally.
For a fixed temporal horizon T formed by the periods X = {1, 2, . . . , T}, we assume that either the

exponential or hyperbolic formula define {µ({i})}Ti=1. Hence we have a fixed horizon setup with “quanta”
of time. This is only natural, as discounted sums assume quantization of time as well.

The question arises: When can we define a Choquet integral that is subadditive from a λ-fuzzy measure µ
such that its values on singletons are {µ({i})}Ti=1?

Note that when we use additive expressions (λ = 0), and we dispense with the normalization condition,
then the solution that we obtain is precisely the standard formulas of the exponential or hyperbolic discount-
ing. Hence if we solve the problem posed above, then we will be producing a subadditive expression from
the same information on the evaluation of individual moments of time, but with the property for which Read
[15] advocated.
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This solution will produce a subadditive alternative to the exponential/hyperbolic discounting formulas,
that is at the same time efficient (because it is calculated from a computationally simple capacity).

We proceed to set forth the algebraic conditions that permit to solve this question. Then we will present
the results of numerical computations that solve the algebraic problems that stem from various time horizons
and values of the discount rates.

3.1. Algebraic solution. To solve the problem stated above, the combination of Theorems 2.6 and 2.7 shows
that we need to work exactly with the cases that guarantee

∑
i∈X µ({i}) > 1. When T is such that this is

true, then we can assure that one λ ∈ (−1, 0) satisfies the normalization condition given in Eq. ( 2. 4 ).
Therefore the value of λ depends on both the model and time horizon. Also, we know that the λ-capacity
that is thus defined must be submodular, by Theorem 2.7. Therefore this λ-capacity must define a subadditive
Choquet integral, by Theorem 2.6.

To summarize: the normalization condition allows us to compute λ that produces a λ-capacity, and when∑
i∈X µ({i}) > 1, the capacity that is defined yields a subadditive evaluation of the temporal vectors by the

Choquet integral associated with the capacity.
The next section is dedicated to study when we can follow this steps.

3.2. Numerical computations. In this section we perform computer-assisted numerical experiments for the
deteminarion of the values of λ that allow us to solve the problem we have posed, whenever it admits a
solution. We do this separately for the hyperbolic and the exponential formulation of the problem. Of course,
we must confine ourselves to a reasonable list of time horizons and parameters.

3.2.1. The case of hyperbolic discounting. For each temporal horizon T and rate k, the values of the λ
parameter that extend the hyperbolic assessment with a λ-capacity can be computed numerically. We only
need to solve Eq. ( 2. 4 ) when the values of {µ({i})}Ti=1 are given by Eq. ( 2. 2 ). In this way, each horizon
T and rate k yield a Sugeno capacity µTk , which in turn produces the desired evaluation Cµ

T
k .

Table 1 summarizes the findings for various numbers of periods. In this table, the arrow points at more
impulsivity. One can observe that unless we are dealing with pathological situations showing an extreme lack
of impulsivity, the problem admits a unique solution.

T = 3 T = 4 T = 5 T = 6 T = 10
k = 0.95 −0.304416 −0.581067 −0.703793 −0.772405 −0.884439
k = 0.9 −0.377174 −0.627029 −0.737797 −0.799603 −0.9
k = 0.5 −0.820551 −0.902255 −0.937265 −0.95592 −0.983306
k = 0.1 −0.996259 −0.99898 −0.999664 −0.999875 −0.999995
k = 0.05 −0.999423 −0.999906 −0.999981 −0.999996 ×
k = 0.01 −0.999994 × × × ×

× = too close to −1 to be useful.
TABLE 1. A summary of the values of λ obtained for the problem posed by hyperbolic
discounting. Each T and k define µTk , the λ-fuzzy measure associated with the value in the
table.
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3.2.2. The case of exponential discounting. Similarly to the case of section 3.2.1, for each temporal horizon
T and discount rate β, the values of the λ parameter that extend the exponential assessment with a λ-capacity
can be computed numerically too. To this purpose, now we solve Eq. ( 2. 4 ) when {µ({i})}Ti=1 are given by
Eq. ( 2. 1 ). In this way, each horizon T and rate β yield a Sugeno capacity µ̄Tβ , which in turn produces the

desired evaluation Cµ̄
T
β .

Table 2 summarizes the findings for various numbers of periods. In this table, the arrow points at more
patience.

We should remember that positive values are associated with superadditive behavior, for which no exper-
imental evidence has been reported. Table 2 is therefore qualitatively different from Table 1: in the case of
Table 2, both superadditive and subadditive behaviors are possible, for each number of periods. The patience
threshold where the behavior changes, for each time horizon, is in the first row of Table 2. The numerical
evidence seems to guarantee that for values β > 0.5, the problem admits a unique solution.

T = 3 T = 4 T = 5 T = 6 T = 10
Threshold 0.543689 0.51879 0.50866 0.504138 0.500245
β = 0.95 −0.999288 −0.99987 −0.999971 −0.999992 ×
β = 0.9 −0.994377 −0.998171 −0.999265 −0.999658 −0.99996
β = 0.55 −0.0615814 −0.286217 −0.374087 −0.415062 −0.455633
β = 0.51 +0.402054 +0.09892 −0.014924 −0.065447 −0.110392
β = 0.4 +3.31515 +2.6162 +2.39183 +2.30907 +2.25726

Last row presented for illustration (superadditive behavior, no evidence).
TABLE 2. A summary of the values of λ obtained for the problem posed by exponential
discounting. Each T and β define µ̄Tβ , the λ-fuzzy measure associated with the value in the
table.

4. EXAMPLE

For both comparison and illustration, we consider a time horizon with 3 future periods. We compute the
evaluations of four vectors, namely, x1 = (14, 9, 12), x2 = (3, 7, 1), x3 = (6, 11, 9), and x4 = (17, 16, 13),
by four models:

(1) The hyperbolic discounting model with k = 0.9.
(2) The exponential discounting model with k = 0.9.
(3) The model developed in this article from the hyperbolic discounting model with k = 0.9, i.e., Cµ

3
0.9 .

(4) The model developed in this article from the exponential discounting model with β = 0.9, i.e.,Cµ̄
3
0.9 .

The next standard presentation defines µ3
0.9, the λ-capacity designed from µ({1}) = 1

1+0.9·1 = 0.526316,
µ({2}) = 1

1+0.9·2 = 0.357143, and µ({3}) = 1
1+0.9·3 = 0.27027. In this case, we need to appeal to

λ = −0.377174 (cf., Table 1) and so we get the full expression of µh0.9, namely,

0
0.812561 0.742934 0.591006
0.52631 0.357143 0.27027

0
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The next standard presentation defines µ̄3
0.9, the λ-capacity designed from µ({1}) = 0.91 = 0.9, µ({2}) =

0.92 = 0.81, and µ({3}) = 0.93 = 0.729: Now we need to appeal to λ = −0.994377 (cf., Table 2) and so
we get the full expression of µ̄3

0.9, namely,

0
0.985099 0.976589 0.95183

0.9 0.81 0.729
0

Table 3 summarizes the results of our computations. All four models coincide to recommend the ranking
x4 � x1 � x3 � x2.

Vector (14, 9, 12) (3, 7, 1) (6, 11, 9) (17, 16, 13)
Hyperbolic discounting model, k = 0.9 13.826 4.34922 9.5189 18.1752
Exponential discounting model, β = 0.9 28.638 9.099 20.871 37.737

Extension of hyperbolic discounting model Cµ
3
0.9 12.2814 4.05369 8.4873 15.964

Extension of exponential discounting model Cµ̄
3
0.9 13.7298 6.2102 10.4755 16.8553

TABLE 3. A summary of the evaluations produced from 4 different models for time dis-
counting, for four vectors with a time horizon T = 3 and parameter 0.9.

We note that (17, 16, 13) = (14, 9, 12) + (3, 7, 1). As prescribed by the subadditivity property of both
Cµ

3
0.9 and Cµ̄

3
0.9 , we confirm by inspection of Table 3 that

15.964 = Cµ
3
0.9(17, 16, 13) 6 Cµ

3
0.9(14, 9, 12) + Cµ

3
0.9(3, 7, 1) = 12.2814 + 4.05369

and
16.8553 = Cµ̄

3
0.9(17, 16, 13) 6 Cµ̄

3
0.9(14, 9, 12) + Cµ̄

3
0.9(3, 7, 1) = 13.7298 + 6.2102.

We must emphasize that despite the analysis above, it is not always the case that the models studied in this
section produce the same rankings. To see this, we consider the vector x5 = (7.5, 10, 8). Table 4 summarizes
the computations of its present value, for the four models studied here. By comparison with Table 3, we note
that the hyperbolic model and the extension proposed in this article coincide to recommend x5 � x3. The
other two models recommend x3 � x5.

Vector x5 = (7.5, 10, 8) x6 = (4, 6, 2) x7 = (2, 7, 2)
Hyperbolic discounting model, k = 0.9 9.68096 4.78866 4.09317
Exponential discounting model, β = 0.9 20.682 9.918 8.928

Extension of hyperbolic discounting model Cµ
3
0.9 8.50979 4.33941 3.78571

Extension of exponential discounting model Cµ̄
3
0.9 9.59592 5.5902 6.05

TABLE 4. A summary of the evaluations produced from 4 different models for time dis-
counting, for three vectors with a time horizon T = 3 and parameter 0.9.

There is another fact that becomes apparent from the comparison between Tables 3 and 4. Observe the
contrast between x6 = (4, 6, 2) and x2 = (3, 7, 1). The first three criteria in the table recommend x6 � x2.
However our extension of the exponential discounting model recommends the opposite. In addition, observe
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the comparison between x6 = (4, 6, 2) and x7 = (2, 7, 2). Although the exponential discounting model
recommends x6 � x7, the extension of the model presented in this paper recommends the opposite. These
two situations ensure that our subadditive extensions do not necessarily replicate the rankings established by
the corresponding additive models of time discounting.

5. CONCLUSION

We found that a Choquet integral can be defined from either the exponential or hyperbolic discounting
formulas, without requiring additional information. The solution hinges on the fundamental properties of the
Sugeno fuzzy measures. By doing so we have found a structural difference between both models: all feasible
solutions for the hyperbolic model are subadditive, whereas the exponential case allows for both subadditive
and superadditive evaluations (for any fixed horizon). We have emphasized that our models are different
from existing evaluations not only in the computation of present values, but also in the comparison between
streams of future endowments.

A setback of the approach we have followed in this article is that the addition or removal of periods forces
us to redo all calculations, since the value of λ changes. This modification obliges to recalculate the capacity,
therefore the Choquet evaluation of the streams with more or fewer periods.

As a promising line for future research, we note that the problem that we posed can be defined for arbitrary
values µ({1}), ... , µ({T}), i.e., for values not necessarily determined by the formulas of time discounting.
It may also be interesting to consider other properties of the desired aggregation operator, instead of subad-
ditivity. Aggregation operators have been applied in fuzzy models and its extensions [1], so itt is reasonable
to expect interpretations in this framework too.
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