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Abstract. In most of the communicable diseases the Disease Free State
is obtained but after some time the new outbreaks of the infection are ob-
served in the population. Same is the case with Visceral Leishmaniasis.
We in this work focus to find threshold condition for the global stability of
Disease Free State of Visceral strain of Leishmaniasis. For this compre-
hensive mathematical model of Kala Azar and Post Kala Azar strains of
Leishmaniasis is formulated. The reproduction numberM0 and its biolog-
ical interpretation is discussed. On the basis of the transmission sensitivity
of the parameters some non-pharmaceutical interventions are made, called
control strategies. With the help of these strategies Disease Free State is
obtained. Finally threshold condition condition is obtained to maintain the
state. Numerical simulations are performed to verify the findings.
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1. INTRODUCTION

Leishmaniasis is an intracellular protozoan parasite which causes different strains of
Leishmaniasis. Visceral leishmaniasis (VL), Cutaneous leishmaniasis (CL), Mucocuta-
neous leishmaniasis (MCL), and Post Kala-Azar Dermal Leishmaniasis (PKDL) are the
main clinical manifestations of Leishmaniasis. Globally, leishmaniasis is highly preva-
lent in tropical and subtropical areas [17]. 95% of MLC instances are found in Brazil,
Peru, and Bolivia, whereas 75% of CL cases are documented in nations including Algeria,
Brazil, Syria, Iran, Ethiopia, Afghanistan, Costa Rica, Sudan, and Peru [4]. Furthermore,
Bangladesh, India, Brazil, Sudan, and Nepal account for almost 90% of occurrences of VL
[25].
An estimated 12 million individuals have contracted Leishmaniasis, with over 350 million
people at risk of developing the disease [7]. Globally, the prevalence of Leishmaniasis in
the human population ranges between 10 to 12 million cases, while clinical cases occur
at a rate of 1.5 to 2.5 million annually, with approximately 500,000 new cases of Visceral
Leishmaniasis (VL) reported each year. The disease claims the lives of 20 to 40 thousand
individuals annually and leads to around 2 million cases of human’s disabilities. Leish-
maniasis ranks second among tropical diseases in terms of both morbidity and mortality
[23, 19].
Visceral Leishmaniasis is the most severe form of the disease, affecting mammals and hu-
mans, primarily. L. Donovina is the main source of this strain. Visceral Leishmaniasis can
be of Zoonotic Visceral Leishmaniasis (ZVL) and Anthroponotic Visceral Leishmaniasis
(AVL), nature and affect people of all ages. The latency period of VL varies case to case.
However in most of the cases it occur from 2 weeks to 48 weeks [4, 25]. Rarely, PKDL
development was noted in the patient otherwise recovered from visceral leishmaniasis. The
stages of development of PKDL is different in different zone of the world. In Sudan it is de-
veloped in 6 months after recovery from Vl, where in India it may take 2 to 3 years [22, 23].
Sandfly is main source of carrying the protozoa from source to sank. The incubation/exposed
period of the disease in sandfly is 7 days. The birth rate of sanflies varies with temperature.
The most suitable temperature for its birth is 28o [17, 2].

Due to expensive medication, the treatment is restricted to human population. But due
to some factors like drug resistance and immunity system the failure of treatment is high
[19]. Though the primary investigation like piezoelectic Biosensor based on ultrasensitive
MEMS can play very important role in the disease control. But the disease being poor
centered, economic burden is the main hurdle [12].
Different Mathematical models have been formulated for disease control using both dif-
ferential equations and fractional differential differential equations [1, 27, 28]. We in this
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work focuses the comprehensive model formulation and control of disease with non phar-
maceutical approach. The total population is comprised of humans, sandflies and dogs.
This population is divided in 11 groups. The novalities of the model includes;

• The latency or incubation of the visceral strain in human’s body.

• The dormant period through which the victim pass before the appearance of PKDL
strain.

• The threshold condition for global stability of disease free state, enabling to stop
the new outbreaks of the disease

we, design control strategies to over come the transmission of the disease. These strategies
are designed with help of sensitivity index of M0; the reproduction number.

2. MODEL FORMULATION

In this section, we outline the development of the model.
The compartmental model of the human, reservoir, and vector populations is divided into
various classes. Within the human population, subclasses include:

• H1; The human class that is susceptible.
• H2; The latency class of Vl.
• H3; The PKDL Exposed class.
• H4; The Vl Infected class.
• H5; The PKDL infectious class.
• H6; The Recovered class.

H(t) represents the total reservoir population, which is divided into the following sub-
classes.

• G1(t); The susceptible reservoir,
• G2(t); the infectious of reservoir,
• G3(t); the reservoir class being recovered from infection.

G(t) denotes the total vector population, which is categorized into the following classes.
• V1(t); The susceptible-vector class,
• V2(t); the infectious-vector class.

In impoverished communities, dogs, humans, and sandflies often coexist in close prox-
imity. In these kinds of environments, sandflies interact with humans as well as reservoirs.
Pathogens are transferred into human bloodstreams when an infected sandfly bites a vul-
nerable human in order to feed on blood. After the incubation period, the afflicted person
exhibits the typical signs and symptoms of a VL infection. Some infected individuals dies
due to the disease, some recover, and others appear to recover initially but later develop a
complication of VL infection known as PKDL. During this phase, individuals enter an in-
fectious stage of PKDL, characterized by the development of nodules throughout the body.
When an infected sand fly feeds on the blood of a susceptible dog, it introduces the in-
fection into the animal’s bloodstream. Following the incubation period, the dog becomes
infectious.
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FIGURE 1. The diagram illustrates the progression of the illness, with
distinct colors representing various categories or groups.

On the other hand, a vulnerable sand fly contracts the virus directly from the source if it
feeds on the blood of an infected dog or human.
The interaction between the human, reservoir, and vector populations is illustrated in the
flowchart depicted in the figure.

The system of differential equations governing the dynamics of human, reservoir, and
vector populations is expressed as follows:

Ḣ1 = B1 − fe V2

H+GH1 − ξ1H1

Ḣ2 = fe V2

H+GH1 − l2H2 − ξ1H2

Ḣ3 = l2H2 − π1H3 − βH3 − ξ1H3

Ḣ4 = π1H3 − ωπ1H3 − l3H2 − ξ1H4

Ḣ5 = l3H4 − π2H5 − β1H5 − β2H5 − ξ1H5

Ḣ6 = ωπ1H3 + π2H5 + β1H5 − ξ1H6

Ġ1 = B2 + yG3 − fe1
V2

H+GG1 − ξ2G1

Ġ2 = fe1
V2

H+GG1 − (d+ ξ2)G2

Ġ3 = dG2 − (y + ξ2)G3

V̇1 = B3 − fV1

H+G

(
m2(H3 +H5) +mG2

)
− ξ3V1

V̇2 = fV1

H+G

(
m2(H3 +H5) +mG2

)
− ξ3V2.

(2. 1)

Below is a table (1) displaying the values of the various parameters utilized in the model.

3. MODEL ANALYSIS

3.1. Invariant Region. It is assumed that every parameter is nonnegative. The state vari-
ables should be nonnegative at t=0 because the model deals with live populations [3]. The
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TABLE 1. Table displaying various parameter values

Notation Parameter definition Value/days Resource

β2 Reduce the mortality rate caused by PKDL 0.0006 [28]
e The likelihood of transmission of 0.0714 [15]

the Vl virus from flies to humans
m Transmission likelihood of Vl from 0.022 [28]

canines to flies
π1 Vl treatment rate 0.03 Assumed
1− ω V l complication rate 0.36 [11]
π2 PKDL− recovery rate due to treatment 0.033 [11]
β The mortality rate in dogs induced by Vl 0.00181 [15]
D The natural, periodic occurrence 0.000274 [2]

of dogs without prior planning
y The rate at which dogs lose immunity 0.00274 [2]
B3 fly Birth rate 0.299 [14]
l3 The latency phase of PKDL 0.004925925 [26]
ξ2 Natural lifespan of dogs 0.000274 [8]
B2 the birth rate of Dogs 0.073 [8]
f The flies biting rate 0.2856 [9]
B1 Natural lifespan of human 0.00004 [14]
ξ1 Human birth rate 0.0015875 [10]
m2 The likelihood of Vl transmission 0.22 [9]

from humans to flies
l2 The time it takes for Vl to incubate in human 0.009555 [5]
ξ3 Flies natural mortality rate 0.189 [14]
e1 The likelihood of Vl transmission 0.0714 [21]

from flies to Dogs
β1 PKDL natural-healing rate 0.00556 [11]

general dynamics are represented by the differential equations as follows:

Ḣ = B1 − ξ1H − βH3 − β2H5 (3. 2)

Ġ = B2 − ξ2G, (3. 3)

V̇ = B3 − ξ3V. (3. 4)

In the case when I1 = P2 = 0 and the human population is disease-free, equation (3. 2 )
reduces to the following form:

Ḣ = B1 − ξ1H. (3. 5)
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Nonnegative equilibrium of (3. 5 ) is

Hu =
B1

ξ1
. (3. 6)

Appling the mathematical fact (β + β2)H ≥ βH3 + β2(H5), to the equation (3. 2 ) we
have:

B1 − ξ1H − (β + β2)H ≤ Ḣ ≤ B1 − ξ1H. (3. 7)

Equation (3. 7 ) in lower bond is:

Ḣ = B1 − ξ1H − (β + β2)H. (3. 8)

The nonnegative equilibrium of (3. 8 ) is:

Hl =
B1

ξ1 + β + β2
. (3. 9)

We take the following starting conditions to be true:

H (0) = H0.

G (0) = G0,

V (0) = V 0,

If Hu and Hl are solutions to equations (3. 5 ) and (3. 8 ) respectively, then any solution to
equation (3. 2 ) must meet the following cond:

Hl ≤ H ≤ Hu. (3. 10)

Examine Ω, the biologically viable zone, as provided by

Ω =

(
(H1, H2, H3, H4, H5, H6, G1, G2, G3, V1, V2) ∈ R11

+ ,

0 ≤ H1, H2, H3, H4, H5, H6, G1, G2, G3, V1, V2, H ≤ B1

ξ1
;G ≤ B2

ξ2
;V ≤ B3

ξ3

)
.

Using the usual comparison theorem, we may obtain from equation (2)

H ≤ H(0)e−ξt + B1

ξ1

(
1− e−ξ1t

)
.

So
H ≤ B1

ξ1
as t→∞.

Similarly[
V ≤ B3

ξ3
and G ≤ B3

ξ3

]
as t→∞.

Therefore, Ω constitutes a positively invariant domain, ensuring the epidemiological and
mathematical well-posedness of the model [7, 28], with all trajectories being forward
bounded.

3.2. Initial Rate of transmission. The number of secondary infections that arise from the
introduction of an infected individual into a completely susceptible population is called
Reproduction number, denoted by M0 in this work [6, 27, 24]. To determine the basic
reproductive number, we employ the next generation method, as outlined in [18, 28]. After
simplification, we get M0
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W =


0 0 0 0 0 z1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 z2

0 z3 0 z4 z5 0

 ,

P =


−a1 0 0 0 0 0
l2 −a2 0 0 0 0
0 d2 −a3 0 0 0
0 0 l3 −a4 0 0
0 0 0 0 −(D + ξ2) 0
0 0 0 0 0 −ξ3

 ,

Here

z1 = fe
B1ξ2

ξ2B1 + ξ1B2
, z2 = fe1

B2ξ1
ξ2B1 + ξ1B2

,

z3 = fm2
ξ2ξ1B3

ξ3(ξ2B1 + ξ1B2)
, z4 = fm2

ξ2ξ1B3

ξ3(ξ2B1 + ξ1B2)
,

z5 = fm
ξ2ξ1vc

(D + ξ2)ξ3(ξ2B1 + ξ1B2)

with
a1 = l2 + ξ1, a2 = π1 + β + ξ1 a3 = l3 + ξ1 a4 = π2 + β1 + β2 + ξ1.
d2 = (1− ω)π1.
Following computation, we obtain M0 as

M0 =

[
z2z5

(D + ξ1)ξ3
+
l2z1z3

a1a2ξ3
+

d2l3l2z4z1

ξ3a1a2a3a4

] 1
2

.

following further simplification to get M0 =
√
Ma +Mb where Ma = M1M2, Mb =

M3M4.

M1 =
fe1ξ1B3

ξ3(B1ξ2 +B2ξ1)
, M2 =

fmξ1B2

(D + ξ2)ξ3(B1ξ2 +B2ξ1)
,

M3 =
feξ2B1

ξ3(B1ξ2 +B2ξ1)
, M4 =

fm2ξ2ξ1B3

ξ3(B1ξ2 +B2ξ1)

[
l2
a1a2

(1 +
d2l3
a3a4

)

]
.

3.3. Sensitivity and Biological Sense of M0. The first term of M0 is Mb = M3M4.
Where

M3 =
feξ2B1

ξ3(B1ξ2 +B2ξ1)
, M4 =

fm2ξ2ξ1B3

ξ3(B1ξ2 +B2ξ1)

[
l2
a1a2

(1 +
d2l3
a3a4

)

]
.

When a susceptible human comes into contact with a Vl-infected fly at a rate of f,
and there’s a chance of disease transmission from the fly to the human denoted by e, the
Vl-infection can be transmitted from the fly to the human. This process is appropriately
represented byM3. Conversely, if a human is infected and a fly is susceptible, the direction
of Vl-transmission occurs from the human to the fly, as shown by M4. Therefore, Mb



Threshold Condition for Elimination of Zoonotic Visceral Leishmaniasis 303

rightly presnts the transmission of the Vl-strain between the fly and the human.
Similarly,Ma represents the mechanism through which transmission of Vl-infection occurs
between the fly and reservoir. Both Ma and Mb refer to the transmission of Vl strains of
leishmaniasis, making M0 biologically significant.

3.4. Control strategies based model.

Ḣ1 = B1 − (f − u1)e V2

H+GH1 − ξ1H1

Ḣ2 = (f − u1)e V2

H+GH1 − l2H2 − ξ1H2

Ḣ3 = l2H2 − π1H3 − βH3 − ξ1H3

Ḣ4 = π1H3 − ωπ1H3 − l3H2 − ξ1H4

Ḣ5 = l3H4 − π2H5 − β1H5 − β2H5 − ξ1H5

Ḣ6 = ωπ1H3 + π2H5 + β1H5 − ξ1H6

Ġ1 = B2 + yG3 − (f − u1)e1
V2

H+GG1 − (ξ2 + u3)G1

Ġ2 = (f − u1)e1
V2

H+GG1 − (d+ ξ2 + u3)G2

Ġ3 = dG2 − (y + ξ2)G3

V̇1 = B3 − (f−u1)V1

H+G

(
m2(H3 +H5) +mG2

)
− (ξ3 + u2)V1

V̇2 = (f−u1)V1

H+G

(
m2(H3 +H5) +mG2

)
− (ξ3 + u2)V2.

(3. 11)

4. THRESHOLD CONDITION

In this section, we examine the stability of the disease-free equilibrium. We employ
Theorem 3.1 from the referenced source [27]. Let the column vector representing all state
variables be denoted as Y, with susceptible variables designated as Ys and infected variables
as MI .

Theorem 4.1. Let the Domain U be defined as

U = {M ∈ Ω;MI = 0,Ms 6= 0}.

Then the sub system

Ḣ1 = B1 − (f − u1)e V2

H+GH1 − ξ1H1

Ḣ6 = ωπ1H3 + π2H5 + β1H5 − ξ1H6

Ġ1 = B2 + yG3 − (f − u1)e1
V2

H+GG1 − (ξ2 + u3)G1

Ġ3 = dG2 − (y + ξ2)G3

V̇1 = B3 − (f−u1)V1

H+G

(
m2(H3 +H5) +mG2

)
− (ξ3 + u2)V1

(4. 12)

is GAS at the domain U .

Proof. The above sub-system

Ṁs = Cs(M). (Ms) + Js
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reduces to the form: 
Ḣ1 = B1 − ξ1H1

Ḣ6 = −ξ1H6

Ġ1 = B2 + yG3 − (ξ2 + u3)G1

Ġ3 = −(y + ξ2)G3

V̇1 = B3 − (ξ3 + u2)V1

(4. 13)

Here

CS =


ξ1 0 0 0 0
−0 ξ1 0 0 0
0 0 (ξ2 + u3) y 0
0 0 0 −(y + ξ2) 0
0 0 0 0 −(ξ3 + u2)

 , Js = (B1, 0, B1, 0, B1)T

All entries C(J,J) in matrix Cs are negative. Consequently, the subsystem pertaining
to the non-infected human population exhibits GAS at the DFE point, which is denoted as
(B1

ξ1
, 0, 0, 0, 0, 0).

�

The subsystem representing the infected population is:

Ṁ1 = SI (M)MI .

Where

Ṁ1 =



Ḣ2 = (f − u1)e V2

H+GH1 − l2H2 − ξ1H2

Ḣ3 = l2H2 − π1H3 − βH3 − ξ1H3

Ḣ4 = π1H3 − ωπ1H3 − l3H2 − ξ1H4

Ḣ5 = l3H4 − π2H5 − β1H5 − β2H5 − ξ1H5

Ġ2 = (f − u1)e1
V2

H+GG1 − (d+ ξ2 + u3)G2

V̇2 = (f−u1)V1

H+G

(
m2(H3 +H5) +mG2

)
− (ξ3 + u2)V2.

(4. 14)

Theorem 4.2. SI is irreducible and metzler ∀ M ∈ Ω in the system (4. 14 ). Moreover,
certain SI exist so as

SI (M) ≤ SI (M) forM∈ Ω. (4. 15)

Also
SI ∈ N = {SI(M),M∈ Ω} SI = NmaxΩ. (4. 16)

%(SI) ≤ 0. (4. 17)

The modulus of stability, %, represents the real component that dominates the eigenvalues
of SI .

Proof. Let’s rewrite (4. 14 ) subsystem as follows:

Ṁ1 = SI (MS)MI
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SI(M) =


−U1 0 0 0 0 N1

l2 −U2 0 0 0 0
0 (1− ω)π1 −U3 0 0 0
0 0 l3 −U4 0 0
0 0 0 0 −U5 N2

0 N3 0 N4 N5 −(ξ3 + u2)

 ,

N1 =
(f − u1)eH1

H +G
,N2 =

(f − u1)e1G1

H +G
,N3 =

(f − u1)m2V1

H +G

N4 =
(f − u1)m2V1

H +G
,N5 =

(f − u1)mV1

H +G
Given that the diagonal entries S(i, j) for i = j are negative, and the entries S(i, j) for
i 6= j are non-negative, the matrix SI(M) is both metzler and irreducible for allM∈ Ω.

�

Theorem 4.3. There is always an upper bound matrix SI for the matrix SI of equation (4),
such that

SI (M) ≤MI (M) forM∈ Ω. (4. 18)
Also

SI ∈ N = {SI(M),M∈ Ω} SI = NmaxΩ
. (4. 19)

%(SI) ≤ 0. (4. 20)
The spectral radius of SI is denoted by %.

Proof. Let’s rewrite (4. 14 ) subsystem as follows:

Ṁ1 = SI (M)MI

SI(M) =



−U1 0 0 0 0
(f−u1)eH0

1

Hl+Gl

l2 −U2 0 0 0 0
0 (1− ω)
pi1 −U3 0 0 0
0 0 l3 −U4 0 0

0 0 0 0 −U5
(f−u1)e1G

0
1

Hl+Gl

0
(f−u1)m2V

0
1

Hl+Gl
0

(f−u1)m2V
0
1

Hl+Gl

(f−u1)mV 0
1

Hl+Gl
−(ξ3 + u2)


,

It follows that for anyM ∈ Ω, the matrix SI(M) is irreducible and metzler since the
diagonal entries are negative and the off-diagonal elements are non-negative.
Let the upper bound of the matrix SI(M) be shown by SI(M).

SI(M) =


−U1 0 0 0 0 x1

l2 −U2 0 0 0 0
0 (1− ω)π1 −U3 0 0 0
0 0 l3 −U4 0 0
0 0 0 0 −U5 x2

0 x3 0 x4 x5 −(ξ3 + u2)

 ,
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Where

x1 = (f − u1)e
B1ξ2(ξ1 + β + β2)

ξ1(B1ξ2 +B2(ξ1 + β + β2)
,

x2 = (f − u1)e1
B2ξ2(ξ1 + β + β2)

ξ2(B1ξ2 +B2(ξ1 + β + β2)
,

x3 = (f − u1)m2
B3ξ2(ξ3 + β + β2)

ξ2(B1ξ2 +B2(ξ1 + β + β2)
,

x4 = (f − u1)m2
B3ξ2(ξ3 + β + β2)

ξ2(B1ξ2 +B2(ξ1 + β + β2)
,

x5 = (f − u1)m
B3ξ2(ξ3 + β + β2)

ξ2(B1ξ2 +B2(ξ1 + β + β2)
,

U1 = (l2 + ξ1), U2 = (π1 + β + ξ1), U3 = (l3 + ξ1),

U4 = (π2 + β1 + β2 + ξ1), U5 = (D + ξ2 + u3)

Since the Jacobian matrix of the subsystem represented by (4. 14 ) at the Disease-Free
Equilibrium (DFE) differs from the matrix SI , it indicates that the upper bound is not
reached within Ω. This establishes a sufficient condition for the global stability of the
DFE. �

Next we prove a5 or (4. 20 ).

Theorem 4.4. The axiom a5 ; %(S̄I) ≤ 0 is satisfied by the metzler matrix if ξ < 1,
where ξ, is supplied by:

ξ = B2B3f
2e1m(D+ξ2)ξ2((ξ1+β+β2))2

(B1ξ2+B2(ξ1+β+β2))2ξ2
2ξ

2
3

+ f2em2l2B1B3(D+ξ2)ξ2((ξ1+β+β2))2

(B1ξ2+B2(ξ1+β+β2))2(l2+ξ1)(π1+β+ξ1) +

f2em2B1B3l2l3(1−ω)(D+ξ2)ξ2((ξ1+β+β2))2

(B1ξ2+B2(ξ1+β+β2))2(l2+ξ1)(π1+δ1+ξ1)(l3+ξ1)(π2+β1+β2+ξ1)ξ1ξ3

Proof. We employ the subsequent breakdown of the matrix BI .

BI =

(
M N
O P

)
,

where

M =


−U1 0 0 0
l2 −U2 0 0
0 (1− ω)π1 −U3 0
0 0 l3 −U4

 ,

O =

(
0 0 0 0
0 N3 0 N4

)
,

N =


0 N1

0 0
0 0
0 0

 , P =

(
−U5 N2

N5 −(ξ3 + u2)

)
.

The matrix BI is stable if
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• M is stable
• P −OM−1N is stable.

The matrix M is metzler stable because

• For i 6= j M(i,j) are non negative.
• The eigenvalues of M are negative.

Next, if we denote P −OM−1N as D, then the stability of D ensures the stability of BI .
From Routh-Hurwitz theory ([20]), we understand that in our specific case:
%(B̄I) ≤ 0 only if

B2B3f
2e1m(D + ξ2)ξ2((ξ1 + β + β2))2

(B1ξ2 +B2(ξ1 + β + β2))2ξ2
2ξ

2
3

+
f2em2l2B1B3(D + ξ2)ξ2((ξ1 + β + β2))2

(B1ξ2 +B2(ξ1 + β + β2))2(l2 + ξ1)(π1 + β + ξ1)
+

f2em2B1B3l2l3(1− ω)(D + ξ2)ξ2((ξ1 + β + β2))2

(B1ξ2 +B2(ξ1 + β + β2))2(l2 + ξ1)(π1 + δ1 + ξ1)(l3 + ξ1)(π2 + β1 + β2 + ξ1)ξ1ξ3
< 1

Let ξ = B2B3f
2e1m(D+ξ2)ξ2((ξ1+β+β2))2

(B1ξ2+B2(ξ1+β+β2))2ξ2
2ξ

2
3

+ f2em2l2B1B3(D+ξ2)ξ2((ξ1+β+β2))2

(B1ξ2+B2(ξ1+β+β2))2(l2+ξ1)(π1+β+ξ1)+

f2em2B1B3l2l3(1−ω)(D+ξ2)ξ2((ξ1+β+β2))2

(B1ξ2+B2(ξ1+β+β2))2(l2+ξ1)(π1+δ1+ξ1)(l3+ξ1)(π2+β1+β2+ξ1)ξ1ξ3
.

Next, we have demonstrated that, for ξ < 1, the assumption a5 or (4. 20 ) is met. �

In the preceding discussion, we have validated all the assumptions outlined in Theorem
3.1 of the referenced work [27].
We make the following theorem based on the results presented above:

Theorem 4.5. : The Disease-Free Equilibrium (DFE) of the given system will achieve
global asymptotic stability if the parameters utilized in the model adhere to the condition
ξ < 1, where ξ is as defined previously.

5. STRATEGIES FOR CONTROL DERIVED FROM SENSITIVITY ANALYSIS

Various parameter within the model exert distinct impacts on the disease transmission.
The influence of parameter K on phenomenon Z is term as the sensitivity of Z wrt K [18].

ΥK
Z =

∂Z

∂K

K

Z
.

5.1. Control strategies. Based on sensitivity indexes, we identify five parameters for in-
tervention. The intervention in the parameter means an increase or decrease in the value of
the parameter on whether their sensitivity index is positive or negative. As a result, M0, the
initial rate of disease transmission, decreases. The following criteria were chosen for the
intervention: f signifies the sand fly bite rate; m indicates the chance of the visceral strain
being transmitted from dogs to sand flies; B3 represents the fly birth rate; ξ2 represents
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TABLE 2. Parameters’s sensitivity indices

Parameter Value index Parameter Value index

f 0.2856 1 B3 0.299 0.5

e 0.0714 +0.0936 m 0.22 +0.4064

m2 0.22 +0.0936 l2 0.009555 +0.00039009

l3 0.004925925 +0.00075372 ξ3 0.189 −1.0000

ξ1 0.00004 +0.0348 ξ2 0.000274 −0.4105

α1 0.64 −0.0365 β 0.011 −0.0234

β2 0.011 −0.0208 D 0.000274 −0.3530

B1 0.0015875 −0.0361 B2 0.073 −0.4639

β1 0.00556 −0.0105 π1 0.033 −0.0623

π2 0.033 −0.0623 e2 0.0714 +0.4064

the natural dog expiry rate; and ξ3 represents the natural sand fly death rate. These inter-
ventions are carried out in appropriate proportions, leading to the proposal of four control
strategies, as outlined in Table (3).

TABLE 3. Control strategies

Strategy f B1 m ξ3 ξ2

Strategy − 1 0.1721 0.113 0.005 0.022 0.0007

Strategy − 2 0.1921 0.103 0.001 0.102 0.000971

Strategy − 3 0.2663 0.00001 0.00003 0.205 0.0099

5.2. Numerical simulation. We used ODE 45 to produce numerical simulations. The
graphs generated with help of simulations are presented in figures (2) to (7). The figures
shows the comparisons of the control strategies. To ensurer the global stability of the
disease free state, perturbations were made in the infected classes (H2, H3, H4, H5, G2,
and V2). The results shows that after perturbation all the state variables are attracted by the
state of disease-free equilibrium.

5.3. Conclusions: This study presents a mathematical model of visceral leishmaniasis,
including post-kala-azar dermal leishmaniasis (PKDL), considering homogeneously mixed
populations of sandflies, dogs, and humans. Based on sensitivity indexes of parameters, we
select five key parameters for intervention and propose three control strategies, the details
shown in Table (3).
In our approach, we consider three different strategies for controlling the spread of the
disease. In Strategy − 1, we utilize the actual parameter values without any intervention.
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FIGURE 2. The duration required to eliminate individuals from
Vlexposed human population.

FIGURE 3. Contrasting the impacts of different control strategies on the
population of infected human population.

FIGURE 4. Contrasting the effects of various control strategies on the
population of exposed individuals with PKDL Exposed population.

However, Strategy − 2 and Strategy − 3 uses the values of the parameters after bing
intervened.
Our analysis focuses on the role of the exposed class, which serves as a gateway for disease
transmission. With Strategy−3, we observe that the density of this class decreases to zero
within a period of 110 days, as depicted in (2). Similarly, the density of the infectious class
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FIGURE 5. contrasting the impacts of different control strategies on the
population of infected individuals with PKDL.

FIGURE 6. Comparing the impacts of different control strategies on the
population of infected reservoirs.

FIGURE 7. Comparing the impacts of various control strategies on the
population of infected vectors.

reaches zero within 175 days with Strategy−3, as illustrated in (3). (4) demonstrates that
by implementing Strategy − 3, we can reduce the density of the exposed PKDL class to
zero within 145 days. Additionally, the density of the PKDL infectious class diminishes to
zero within 170 days, as indicated in (5).
Furthermore, we recognize the significant roles played by the reservoir and sandflies classes
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TABLE 4. The duration of infection removal using various tactics

T.Ei Strategy − 1 Strategy − 2 Strategy − 3

T.H2 350 130 110

T.H3 400 190 175

T.H4 400 160 145

T.H5 400 180 170

T.G2 ∗ ∗ 470

T.V2 350 72 35

Let’s denote T.Ei as the time taken to elimination Ei.

in disease transmission. Employing Strategy − 3, we achieve elimination of these classes
within 470 days and 35 days, respectively, as depicted in (6) and (7).
Strategy − 3 emerges as the optimal choice for eradicating Leishmaniasis entirely. With
the threshold value, ξ, calculated to be less than one based on the parameter values in use,
the likelihood of new disease outbreaks is eliminated. Consequently, the disease-free state
achieved through this strategy is globally asymptotically stable.
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