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Abstract. In this paper, we extend the concept of a magnetic curve, which
is viewed as a one-dimensional manifold representing the trajectory of a
charged particle moving under the action of a magnetic field, to a magnetic
surface considered as a two-dimensional manifold. For this purpose, we
investigate the contact geometry of Heisenberg three-group denoted by
H3. Subsequently, we determine the parametric equations of geodesic
surfaces, which can be interpreted as magnetic surfaces in the absence
of a magnetic field, and of magnetic surfaces. Lastly, we conclude with
illustrative examples of such surfaces in H3 with graphical presentation in
R3.
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1. INTRODUCTION

The study of magnetic structures represents a significant research fields where geometry
and physics, particularly magnetism, intersect. In geometry, a magnetic curve, seen as a
one-dimensional manifold, is a curve on a Riemannian manifold that follows the trajectory
of a charged particle moving under the influence of a magnetic field. It generalizes the
concept of a geodesic, which is the trajectory of a particle moving in the absence of a
magnetic field ”free fall”. Several research works on magnetic curves have appeared in
Riemannian, Lorentzian and generally in pseudo-Riemannian contexts. (See [6–8, 11, 18])

Thereafter, a magnetic surface, that defines a flux surface [9], is two-dimensional mag-
netic structure in which the magnetic field lines lie. This signifies that the magnetic vector
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fields at any point on a magnetic surface are tangent to the surface itself. In the absence
of magnetism, this surface is called a geodesic surface. The study of such surfaces in
Euclidean space is given in [16].

The importance of such surfaces has long been recognized in magnetic fusion research
that we can cite [2–4, 15, 16]. We present two concrete examples of magnetic surface that
we dissect in the following:

Plasma can serve as an excellent example to elucidate the concept of magnetic surfaces.
Considered as fourth state of matter, it is a hot ionized gas made up of approximately
equal numbers of positively charged ions and negatively charged electrons that it makes
it a good electrical conductor. The electrical conductivity creates currents flowing in a
plasma that interact with magnetic fields to produce the forces necessary for containment.
Ordinary matter ionizes and forms a plasma at temperatures above about 5000 K, and
most of the visible matter in the universe is in the plasma state. Plasma particles can
be confined and shaped by magnetic field lines that combine to act like an invisible bottle.
By fixing magnetic field lines toroidally around the interior of the tokamak, the ions and
electrons in the plasma are forced to move slightly around these field lines, preventing
them from escaping from the container. The creation of the first limited laboratory positron-
electron plasma presented an important applications of the magnetic surfaces. (See [3], [14]
and [15])

Earth’s magnetic field, characterized by its magnetic lines and magnetic surfaces, serves
as another example of magnetic surfaces as depicted in Figure 1.

FIGURE 1. Earth’s magnetic field

Consequently, in this paper, we focus our geometric study of a magnetic surfaces in
three-dimensional Heisenberg group, denoted by H3, by defining and determining the para-
metric equations of geodesic and magnetic surfaces.

The paper is organized as follow;
After an introduction in Section 1, we give in Section 2 an overview of contact geometry

of three-dimensional Heisenberg group H3 as a set definition, metric, orthonormal basis,
connection and contact structure. The Section 3 is devoted to the definitions of magnetic
and geodesic curves, and we define the magnetic and geodesic surfaces of a given manifold.
In the fourth Section, we determine the parametric equations that define the geodesic sur-
faces in H3. Subsequently, in the final Section 5, we determine the parametric equations of
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magnetic surfaces in H3. The Sections (4 and 5) are concluded by an illustrative examples
with graphical representations in R3.

Note that we have used the computer software, Wolfram Mathematica and Scientific
WorkPlace to solve PDEs and ODEs (in Eq. 5. 21 , Eq. 4. 15 ), as well as graphical
presentation.

2. GEOMETRY OF THREE-DIMENSIONAL HEISENBERG GROUP

The three-dimensional Heisenberg group, H3, is a group endowed with a multiplication
given as

(x1, x2, x3)(y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 − 1
2 (x1y2 + x2y1)).

and seen as the Riemannian real space R3 in which the invariant Riemannian metric is

gλ =
1

λ2
dx21 + dx22 + (x1dx2 + dx3)2 (2. 1)

where λ is a strictly positive real number. This gives H3 the structure of a Riemannian
manifold. Note that all left-invariant Riemannian metrics on the H3 are isometric to the
metric gλ.

Next, we define an orthonormal basis in (H3, gλ) and its associated dual basis as

e1 = ∂x2 − x1∂x3, e2 = λ∂x1, e3 = ∂x3, (2. 2)

and
e1 = dx2, e

2 = 1
λdx1, e

3 = x1dx2 + dx3.

Let ∇ be the Levi-Civita connection of g, then the non vanishing components of ∇ with
respect to the left-invariant orthonormal basis are

∇e1e2 = λ
2 e3, ∇e2e1 = −λ2 e3, ∇e3e1 = −λ2 e2

∇e1e3 = −λ2 e2, ∇e2e3 = λ
2 e1, ∇e3e2 = λ

2 e1
(2. 3)

Moreover, Heisenberg group (H3, φ, ξ, η, g) is an almost contact manifold where the con-
tact form is

η = x1dx2 + dx3 = e3, (2. 4)

ξ = e3 and the (1, 1)-tensor ϕ is

φ (e1) = e2; φ (e2) = −e1, φ (e3) = 0, (2. 5)

which satisfy

η (e3) = 1; φ2 (X) = −X + η (X) e3 and
gλ(φ (X) , φ (Y )) = g(X,Y ) + η(X)η(Y ),

for any vector fields X,Y on (H3, gλ). In addition, if

dη(X,Y ) = gλ(X,φ (Y )) (2. 6)

(H3, φ, ξ, η, gλ) become a contact manifold and the fundamental 2-form dη is closed and
it defines a magnetic field. (See [5, 12, 13])
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3. MAGNETIC CURVES AND SURFACES

In this section, we give an overview of the magnetic curves and we define the mag-
netic surface in the Riemannian manifold. A magnetic field F is a closed 2-form on n-
dimensional Riemannian manifold (M, g) and the LORENTZ force of F on (M, g) is a
(1, 1)-tensor field given by

F (X,Y ) = g(Φ (X) , Y ).

The magnetic trajectories, of F, are curves on (M, g) which satisfies the LORENTZ equa-
tion

∇tt =Φ (t) ,

where t is speed vector of magnetic curve (or trajectory) and ∇ is the Levi-Civita con-
nection associated to g. Hence, the LORENTZ equation generalizes the geodesic equation,
namely

∇tt =0.

Subsequently, we introduce a new definition of ’magnetic surfaces,’ extending the con-
cept of magnetic curves (one-dimensional magnetic manifolds) to two-dimensional mag-
netic manifolds. This generalizes geodesic surfaces in the absence of a magnetic field, as
detailed in the following definitions.

Definition 3.1. Let M be a regular surface and F be a magnetic tensor fields in (M, g). M
is a magnetic surface if the integral curves of the tangent vectors Xu and Xv are magnetic
curves i.e. {

∇Xu
Xu = Φ (Xu)

∇XvXv = Φ (Xv)
.

We can find also another equivalent definition of magnetic surfaces in [16].

Definition 3.2. Let M be a regular surface in n-dimensional Riemannian manifold (M, g)
parameterized with X(u, v) = (x(u, v)i)i=1,n.M is a geodesic surface if

∇XuXu = ∇XvXv = 0,

where Xu = ∂X
∂u and Xv = ∂X

∂v .

Remark 3.3. Note that the definition of magnetic surfaces, in the absence of magnetism
F (i.e. F ≡ 0), generalizes the definition of geodesic surfaces seen as a surface in which
each point has a geodesic as a curve which locally minimizes the distance.

Therefore, the determination of the parametric equation of such surfaces requires the
resolution of a second-order partial differential system, with two equations.

4. GEODESIC SURFACES IN H3

We consider in this section, the determination of geodesic surfaces in (H3, gλ) according
to the Definition 3.2.

Let M be a regular surface in H3 parameterized by

X : I × J ⊂ R2→ (H3, g)

(u, v) 7−→ X(u, v) = (x(u, v), y(u, v), z(u, v)).
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(Here, the functions (x1, x2, x3) are replaced by (x, y, z)). Its tangent vectors are{
Xu = xu∂x+ yu∂y + zu∂z
Xv = xv∂x+ yv∂y + zv∂z

. (4. 7)

From the Eq.( 2. 2 ), the vectors Xu and Xv are expressed, in the basis (ei)i=1,3 , as{
Xu = yue1 + xu

λ e2 + (xyu + zu) e3
Xv = yve1 + xv

λ e2 + (xyv + zv) e3
, (4. 8)

where the partial derivative is denoted by ∂
∂x = ∂x.

Using the connection formulas given in the Eq.( 2. 3 ), the covariant derivative of the
basis (ei)i=1,3 with respect to the tangent vectors are

∇Xue1 = −xu

2 e3 −
λ
2 (xyu + zu) e2

∇Xue2 = λ
2 yue3 + xu

λ e2 + λ
2 (xyu + zu) e1

∇Xu
e3 = −λ2 yue2 + xu

2 e1

and (4. 9)


∇Xv

e1 = −xv

2 e3 −
λ
2 (xyv + zv) e2

∇Xv
e2 = λ

2 yve3 + xv

λ e2 + λ
2 (xyv + zv) e1

∇Xv
e3 = −λ2 yve2 + xv

2 e1

.

Next, the covariant derivative of the tangent vectors in the direction of Xu and Xv are{
∇Xu

Xu = (yuu + xu (zu + xyu)) e1 +
(
xuu

λ − λyu (zu + xyu)
)
e2 + (zu + xyu)u e3

∇Xv
Xv = (yvv + xv (zv + xyv)) e1 +

(
xvv

λ − λyv (zv + xyv)
)
e2 + (zv + xyv)v e3

.

(4. 10)
Now, using the Definition 3.2, we have the system (S)

S :

{
∇Xu

Xu = 0
∇XvXv = 0

,

by the Eq. ( 4. 10 ) and taking into account that (ei)i=1,3 is an orthonormal basis, we get
two systems

SG :

 xuu − λ2yu (zu + xyu) = 0
yuu + xu (zu + xyu) = 0
(zu + xyu)u = 0

and SG :

 xvv − λ2yv (zv + xyv) = 0
yvv + xv (zv + xyv) = 0
(zv + xyv)v = 0

which, after an integration of equations (SG3 and SG3), turns to

SG :

 xuu − λ2yuϕ (v) = 0
yuu + xuϕ (v) = 0
zu + xyu = ϕ (v)

and SG :

 xvv − λ2yvϕ (u) = 0
yvv + xvϕ (u) = 0
zv + xyv = ϕ (u)

, (4. 11)

then we have the following theorem.

Theorem 4.1. Let M be a regular surface in H3 parameterized withX(u, v) = (x(u, v), y(u, v), z(u, v)),
then M is geodesic surface if and only if the systems (SG) and

(
SG
)

holds.

In order to determine the parametric equations of geodesic surfaces, it is necessary to
solve the systems (SG) and

(
SG
)
. Due to the complexity of the general case, we assume

that the functions ϕ and ϕ are zero or constants.
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Case 1. If ϕ = ϕ ≡ 0, the equations (SG1,2) becomes

xuu = 0 and yuu = 0. (4. 12)

From Eqs.( 4. 11 3 and 4. 12 ), the general solution of (SG) is x(u, v) = ϕ1u+ ϕ2

y(u, v) = ϕ3u+ ϕ4

z(u, v) = −ϕ1ϕ3

2 u2 − ϕ2ϕ3u+ ϕ5

, (4. 13)

where ϕ1,5 are arbitrary smooth functions in v. Substituting the Eq.( 4. 13 ) in equation(
SG1,2

)
, we get {

xvv = ϕ1vvu+ ϕ2vv = 0
yvv = ϕ3vvu+ ϕ4vv = 0

,

by comparing with respect to u, the functions (ϕi)i=1,4 are linear in v (i.e. ϕi = aiv+ bi |
ai, bi ∈ R, i = 1, 4).
Using the Eqs.( 4. 13 3 and 4. 11 6), we have

−
(ϕ1ϕ3)v

2
u2 − (ϕ2ϕ3)v u+ ϕ5v = − (ϕ1u+ ϕ2) (ϕ3vu+ ϕ4v)

= −ϕ1ϕ3vu
2 − (ϕ1ϕ4v + ϕ2ϕ3v)u− ϕ2ϕ4v,

comparing again with respect to u and after with respect to v, we obtain ϕ1vϕ3 = ϕ1ϕ3v

ϕ2vϕ3 = ϕ1ϕ4v

ϕ5v = −ϕ2ϕ4v

and

 a1a4 = a2a3
a1b3 = b1a3

ϕ5 = −a2a42 v2 − b2a4v + a5

,

where a5 is a real constant. Then, the solution of the systems
(
SG and SG

)
are

x(u, v) = a1vu+ b1u+ a2v + b2
y(u, v) = a3vu+ b3u+ a4v + b4
z(u, v) = − 1

2u
2v2a1a3 + uv2a2a3 − a1b3u2v − 1

2u
2b1b3 − 1

2v
2a2a4

+uv (a2b3 + a3b2) + ub2b3 − va4b2 + a5

(4. 14)

with a conditions a1a4 = a2a3 and a1b3 = b1a3.

Case 2. If ϕ ≡ 0 and ϕ is a non-zero constant, the general solution of (SG) is given in the
Eq.( 4. 13 ), by substituting it in the Eqs.

(
SG1,2

)
, we obtain{ (

ϕ1vv − λ2ϕϕ3v

)
u+

(
ϕ2vv − λ2ϕϕ4v

)
= 0

(ϕ3vv + ϕϕ1v)u+ (ϕ4vv + ϕϕ2v) = 0
,

which gives the ODEs

ϕ1vv = λ2ϕϕ3v; ϕ3vv + ϕϕ1v = 0 and
ϕ2vv = λ2ϕϕ4v; ϕ4vv + ϕϕ2v = 0,

with solutions {
ϕ1,2 (v) =

a1,2
λϕ sinλϕv + b1,2

ϕ3,4 (v) =
a1,2
λ2ϕ cosλϕv + b3,4

, (4. 15)
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where a1,2 and b1,4 are real constants. Using the Eq.( 4. 13 3) and Eq.( 4. 11 6), and
comparing with respect to u, we have

ϕ1ϕ4v = ϕ2vϕ3; ϕ1vϕ3 = ϕ1ϕ3v and ϕ5v = ϕ− ϕ2ϕ4v.

Again, using the Eqs.( 4. 15 ) and comparing with respect to v, we find

a1 = 0; a2b3 = a2b1 = 0;

ϕ5v = −a2b2
λ2ϕ

cos vλϕ− a22
4λ3ϕ2 sin 2vλϕ+

(
ϕ+

a22
2λ2ϕ

)
v + b5.

Hence, the solution of systems
(
SG and SG

)
is

x(u, v) = b1u+ a2
λϕ sinλϕv + b2

y(u, v) = b3u+ a2
λ2ϕ cosλϕv + b4

z(u, v) = −a2b2λ2ϕ cos vλϕ− a22
4λ3ϕ2 sin 2vλϕ− b1b3

2 u2 + b2b3u+
(
ϕ+

a22
2λ2ϕ

)
v + b5

,

(4. 16)
with condition a2b3 = a2b1 = 0

Remark 4.2. The only surface M with the parametrization given in Eq.( 4. 16 ), in the
case a2 = 0, is

X(u, v) =

(
b1u+ b2, b3u+ b4,−

b1b3
2
u2 + b2b3u+ ϕv + b5

)
,

where b1,5 are real constants.

Case 3. If ϕ and ϕ are non-zero constants, the general solution of (SG) is
x(u, v) = ϕ1

λϕ sinλϕu+ ϕ2,

y(u, v) = ϕ1

λ2ϕ cosλϕu+ ϕ3

z(u, v) = ϕu− ϕ1

4λ3ϕ2 (ϕ1 sin 2λϕu+ 4λϕϕ2 cosλϕu− 2λϕϕ1u) + ϕ4

. (4. 17)

Substituting the last equation in
(
SG1,2

)
, we have

ϕ1vv

λϕ sinλϕu+ ϕ2vv − ϕ
ϕϕ1v cosλϕu− λ2ϕϕ3v = 0

ϕ1vv

λ2ϕ cosλϕu+ ϕ3vv + ϕ
λϕϕ1v sinλϕu+ ϕϕ2v = 0

,

comparing with respect to u, give the ODEs

ϕ1vv = ϕ2vv = ϕ3vv = ϕ1v = ϕ3v = ϕ2v = 0,

its solutions are
ϕ1,3 = a1,3 reals.

From the Eq.( 4. 17 3) and equation
(
SG3

)
, we have

ϕ4 = ϕv + b4,

which give the solution of the systems
(
SG and SG

)
x(u, v) = a1

λϕ sinλϕu+ a2,

y(u, v) = a1
λ2ϕ cosλϕu+ a3

z(u, v) = − a21
4λ3ϕ2 sin 2λϕu− a1a2

λ2ϕ cosλϕu+
(
ϕ+

a21
2λ2ϕ

)
u+ ϕv + b4

. (4. 18)
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Now, we can present the following proposition.

Proposition 4.3. The parametric surfaces M1,2,3 parameterized by
1.

X (u, v) =


x(u, v) = a1vu+ b1u+ a2v + b2
y(u, v) = a3vu+ b3u+ a4v + b4
z(u, v) = − 1

2u
2v2a1a3 − a1b3u2v − 1

2u
2b1b3 − 1

2v
2a2a4

+uv (a2b3 + a3b2) + ub2b3 − va4b2 + a5

 ,

with conditions a1a4 = a2a3 and a1b3 = b1a3,
2.

X (u, v) =

(
b1u+ b2, b3u+ b4,−

b1b3
2
u2 + b2b3u+ ϕv + b5

)
,

3.

X (u, v) =

 x(u, v) = a1
λϕ sinλϕu+ a2,

y(u, v) = a1
λ2ϕ cosλϕu+ a3

z(u, v) = − a21
4λ3ϕ2 sin 2λϕu− a1a2

λ2ϕ cosλϕu+
(
ϕ+

a21
2λ2ϕ

)
u+ ϕv + b4

 ,

respectively, are geodesic surfaces in H3, where a1,5, b1,5, ϕ and ϕ are real constants.

Proof. Its direct consequence from the Theorem 4.1, Definition 3.2, Remark 4.2 and the
Eqs( 4. 14 and 4. 18 ).

Corollary 4.4. The curves α1,2 : I ⊂ R→ H3 parameterized by

u 7→ X (u, v) | v is fixed real number and

v 7→ X (u, v) | u is fixed real number

respectively, are geodesic curves in H3 where X (u, v) is the parametrization given in
Proposition 4.3.

�

Example 4.5. 1. Using the assertion 1,2,3 of the Proposition 4.3 with conditions

a2,5 = b4 = 0; a1 = a4 =
b1
2

= b2 = 2b3 = 1; (u, v) ∈ [−2, 2]
2
,

b1 = 2b2,3 = 2ϕ = 2; b4,5 = 0 ; (u, v) ∈ [−5, 3]
2

a1,2 = ϕ = ϕ =
λ

2
= 1; a3 = b4 = 0; (u, v) ∈

[
−π

2
,
π

2

]
× [−4, 4]

then the surfaces M1,2,3 (See Figures 2, 4 and 5 presented in R3) parameterized by

X1(u, v) =

(
vu+ u+ 1,

1

2
u,−1

2
u2v − 1

2
u2 + u

1

2
− v
)
,

X2(u, v) =
(
2u+ 1, u,−u2 + u+ v

)
,

X3(u, v) =

(
1

2
sin 2u+ 1,

1

4
cos 2u,

9

8
u+ v − 1

32
sin 4u− 1

4
cos 2u

)
,

respectively, are geodesic surfaces in H3. Moreover, we plot a geodesic curves α1,2, in
blue color, when u = 3 and v = 3 on geodesic surface M2. (See Figure 3)
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FIGURE 2. Geodesic
surface M1

FIGURE 3. Geodesic
curves α1,2 in M1.

FIGURE 4. Geodesic
surface M2

FIGURE 5. Geodesic
surface M3

5. MAGNETIC SURFACES IN H3

In order to determine magnetic surfaces, we introduce a magnetic field Fq on contact
manifold (H3, φ, ξ, η, gλ), defined as

Fq(X,Y ) = g(Φ (X) , Y ),

where X and Y are vector fields on H3 and q is a real constant (the value of the magnetic
charge). Taking into account the Eq.( 2. 6 ), Fq is called the contact magnetic field with
strength q. The (1, 1)-tensor field Φ that present the LORENTZ force associated to the
magnetic fields Fq is given as

Φ = qφ.

Then the Definition 3.1 turns to;

Definition 5.1. Let M be a regular surface and Fq be a magnetic tensor fields in H3. M is
a magnetic surface if the integral curves of the vectors Xu and Xv are magnetic curves i.e.{

∇Xu
Xu = qφ (Xu)

∇Xv
Xv = qφ (Xv)

. (5. 19)

From the Definition 5.1 and using the Eqs( 2. 2 , 2. 5 ), we have

φ (Xu) = −xu
λ
e1 + yue2 and φ (Xv) = −xv

λ
e1 + yve2,
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then, we obtain the system{
(yuu + xu (zu + xyu)) e1 +

(
xuu

λ − λyu (zu + xyu)
)
e2 + (zu + xyu)u e3 = −q xu

λ e1 + qyue2
(yvv + xv (zv + xyv)) e1 +

(
xvv

λ − λyv (zv + xyv)
)
e2 + (zv + xyv)v e3 = −q xv

λ e1 + qyve2
.

After an integration of the component of e3 and taking into account that (ei)i=1,3 is an
orthonormal basis, we get two systems

S :

 xuu − λ (λϕ (v) + q) yu = 0
yuu + 1

λ (λϕ (v) + q)xu = 0
zu + xyu = ϕ (v)

and S :

 xvv − λ (λϕ (u) + q) yv = 0
yvv + 1

λ (λϕ (u) + q)xv = 0
zv + xyv = ϕ (u)

,

(5. 20)
where ϕ and ϕ are arbitrary smooth functions.

Theorem 5.2. Let M be a regular surface in H3 parameterized byX(u, v) = (x(u, v), y(u, v), z(u, v)),
then M is magnetic surface if and only if the systems (S) and

(
S
)

holds.

Similarly as the above section, we will solve the systems
(
S and S

)
in order to deter-

mine the magnetic surfaces in the case when the functions ϕ and ϕ are zero or non-zero
constants.

Case 1. If ϕ = ϕ ≡ 0, the equations (S1,2) becomes

xuu = qλyu; yuu = − q
λ
xu. (5. 21)

Using the Eqs.( 5. 20 3), the solution of the system (S) is
x (u, v) = ϕ1

q sin qu+ ϕ2

y (u, v) = ϕ3

qλ cos qu+ ϕ4

z(u, v) = − 1
4q2λϕ3 (ϕ1 sin 2qu− 2qϕ1u+ 4qϕ2 cos qu) + ϕ5

, (5. 22)

where ϕ1,5 are arbitrary smooth functions in v.
Now, let calculate the unknown functions ϕ1,5.

Substituting the Eq.( 5. 22 ) in the equation
(
S1,2

)
, we have{ ϕ1vv

q sin qu+ ϕ2vv = ϕ3v cos qu+ qλϕ4v
ϕ3vv

qλ cos qu+ ϕ4vv = −ϕ1v

λ sin qu− q
λϕ2v

,

by a comparing with respect to u, we deduce the ODEs

ϕ1v = ϕ3v = 0; ϕ2vv = +qλϕ4v; ϕ4vv = − q
λ
ϕ2v,

its solutions are

ϕ1,3 = a1,3 ϕ2 (v) =
a2
q

sin qv + b1; ϕ4 (v) =
a2
qλ

cos qv + b2,

where a1,3 and b1,2 are arbitrary real constants. Using the Eq.( 5. 20 6 and 5. 22 3) and
comparing with respect to u, we obtain

a3ϕ2v = a1ϕ4v = 0; ϕ5v = −ϕ2ϕ4v.

Again, comparing with respect to v, we get the conditions

a2a3 = a2a1 = 0, (5. 23)
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and

ϕ5 = − a22
4q2λ

sin 2qv − a2b1
qλ

cos qv +
a22

2qλ
v + b3, (5. 24)

where b3 is arbitrary real constant.
Then the solution of systems

(
S and S

)
is

X(u, v) =


x (u, v) = a1

q sin qu+ a2
q sin qv + b1

y (u) = a3
qλ cos qu+ a2

qλ cos qv + b2
z(u, v) = − 1

2q2λa
2
2 cos qv sin qv − 1

2q2λa1a3 cos qu sin qu− 1
q2λa2a3 cos qu sin qv

− 1
qλa3b1 cos qu− 1

qλa2b1 cos qv +
a22
2qλv + a1a3

2qλ u+ b3


(5. 25)

with conditions

a2a3 = a2a1 = 0. (5. 26)

Now, we have the proposition.

Proposition 5.3. There are no magnetic surfaces, given by the Theorem 5.2, parameterized
by the Eq.( 5. 25 ) when ϕ = ϕ ≡ 0.

Proof. The parametrization given in Eq.( 5. 25 ) is reduced only to curve for possible cases
a2 = 0 or a3 = a1 = 0 given in the condition Eq.( 5. 26 ). �

Case 2. If ϕ = 0 and ϕ is a non-zero constant, then the equations (S1,2) give a same
solutions given in Eq.( 5. 22 ). Substituting the Eq.( 5. 22 ) in the equations

(
S1,2

)
, we

have { (
−1− λ

qϕ
)
ϕ3v cos qu+ 1

qϕ1vv sin qu− qλϕ4v + ϕ2vv − λ2ϕϕ4v = 0

(q + λϕ)ϕ1v sin qu+ ϕ3vv cos qu+ qλϕϕ2v + qλϕ4vv + q2ϕ2v = 0
,

by a comparing with respect to u, we get the ODEs{
ϕ1vv = ϕ3vv = 0; (q + λϕ)ϕ3v = (q + λϕ)ϕ1v = 0
−qλϕ4v + ϕ2vv − λ2ϕϕ4v = λϕϕ2v + λϕ4vv + qϕ2v = 0

, (5. 27)

We observe two cases for above ODEs,
i. if ϕ = −q

λ , then the functions ϕ1,4 are linear in v, i.e.

ϕ1,4 = a1,4v + b1,4 | a1,4, b1,4 ∈ R. (5. 28)

Using the Eqs.( 5. 22 3 and
(
S3

)
) and comparing with respect to v, we deduce

ϕ1ϕ4v = ϕ1ϕ3v = ϕ3ϕ2v = ϕ3ϕ1v = 0
−q
λ − ϕ2ϕ4v = ϕ5v

,

and

a1a4 = a1a3 = a2a3 = b1a4 = b1a3 = b3a2 = b3a1 = 0 (5. 29)

ϕ5 =
−q
λ
v − a2a4

2
v2 + a4b2v + b5,
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where b5 is real constant.
ii. if ϕ 6= −q

λ , then, we have

ϕ1 = a1; ϕ3 = a3
ϕ2 = −λa2 cosAv + b2
ϕ4 = a2 sinAv + b4

, (5. 30)

where A = q + λϕ.
Using the Eqs.( 5. 22 3 and

(
S
)
3
) and comparing with respect to v, we deduce

a1a2 = a2a3 = 0, (5. 31)

ϕ5 = a2b2 sinAv − 1

4
λa22

(
sin 2Av + 2Av

)
+ b3.

Hence, We can present the following proposition.

Proposition 5.4. The surfaces M1,2 are magnetic surfaces in H3 parameterized by:
1.

X(u, v) =


x (u, v) = ϕ1

q sin qu+ ϕ2

y (u) = ϕ3

qλ cos qu+ ϕ4

z(u, v) = − 1
4q2λϕ3 (ϕ1 sin 2qu− 2qϕ1u+ 4qϕ2 cos qu)

− q
λv −

a2a4
2 v2 + a4b2v + b5


where the functions ϕ1,4 = a1,4v + b1,4 are linear and a1a4 = a1a3 = a2a3 = b1a4 =
b1a3 = b3a2 = b3a1 = 0.
2.

X(u, v) =


x (u, v) = a1

q sin qu− λa2 cosAv + b2
y (u) = a3

qλ cos qu+ a2 sinAv + b4
z(u, v) = − 1

4q2λ

(
a1a3 sin 2qu− 2qa1a3u+ 4qa3

(
−λa2 cosAv + b2

)
cos qu

)
+ϕv + a2 sinAv + b4


where a1,4, b1,5 are real constants with the condition a1a2 = a2a3 = 0.

Proof. Its direct consequence from the Theorem 5.2, the Definition 5.1 and the Eqs.( 5. 22
, 5. 28 , 5. 29 , 5. 30 and 5. 31 ). �

Example 5.5. The surface M parameterized by

X(u, v) =

(
sinu+ 1,

1

2
cosu+ 1,−1

8
(sin 2u− 2u+ 4 cosu) + v

)
is magnetic surface in H3. Using the Proposition 5.4 for the assertion 1 with the condition
a1,4 = b5 = 0; b1,4 = q = 1

2λ = 1 and for the assertion 2 with the condition ϕ2 = b2 =

a1,3 = 1
2λ = q = ϕ = 1; a2 = b4 = 0.(See Figure 6 presented in R3)

Case 3. If ϕ and ϕ are non-zero constants, then the solution of equations (S1,2){
xuu − λ (λϕ+ q) yu = 0
yuu + 1

λ (λϕ+ q)xu = 0
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FIGURE 6. Magnetic surface M in H3

have two cases

i.

{
x (u, v) = ϕ1u+ ϕ2

y (u, v) = ϕ3u+ ϕ4
if ϕ = −q

λ ,

ii.

{
x (u, v) = ϕ1

A sinAu+ ϕ2

y (u, v) = ϕ1

A cosAu+ ϕ3
if ϕ 6= −q

λ ,
(5. 32)

where ϕ1,4 are arbitrary function in v and A = q + λϕ. Using the equation (S)3 ,, we
obtain {

i. z (u, v) = −ϕ1ϕ3

2 u2 −
(
q
λ + ϕ2ϕ3

)
u+ ϕ5

ii. z (u, v) = −ϕ1

(
1 + 1

Aϕ2

)
cosAu+ ϕu+ ϕ5

, (5. 33)

where ϕ5 is arbitrary smooth function in v. Substituting the last solutions in the equations(
S1,2

)
, we have

i.

{ (
ϕ1vv − λAϕ3v

)
u+ ϕ2vv − λAϕ4v = 0(

ϕ3vv + A
λϕ1v

)
u+ ϕ4vv + A

λϕ2v = 0
,

ii.

{
ϕ1vv

A sinAu− λA
A ϕ1v cosAu+ ϕ2vv − λAϕ3v = 0

ϕ1vv

A cosAu+ A
λAϕ1v sinAu+ 1

λϕ2v + ϕ3vv = 0
,

here A = λϕ+ q. Comparing with respect to u, we get the ODEs

i.

{
ϕ1vv = λAϕ3v; ϕ2vv = λAϕ4v

ϕ3vv = −Aλϕ1v; ϕ4vv = −Aλϕ2v

ii.

{
ϕ1vv = 0; Aϕ1v = 0
1
λϕ2v + ϕ3vv = 0; ϕ2vv = λAϕ3v
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according to the value and the sign of A (i.e. ϕ = or < or > to − q
λ ), its solutions are

i.

{
a. ϕi = aiv + bi if A = 0
b. ϕ1,2 (v) =

a1,2
A

sinAv + b1,2; ϕ3,4 (v) =
a3,4
Aλ

cosAv + b3,4 if A 6= 0
(5. 34)

ii.



a. ϕ1,2 = a1,2v + b1,2; ϕ3 = −a2λ v + b3 if A = 0

b. ϕ1 = a1,



ϕ2 (v) = b2 + a2√
A

sin
√
Av

ϕ3 (v) = b3 + a2
Aλ

cos
√
Av,

if A > 0

ϕ2 (v) = b2 + a2√
a
e
√
−Av − a3√

a
e−
√
−Av

ϕ3 (v) = b3 − a2
aλe
√
−Av − a3

Aλ
e−
√
−Av,

if A < 0

Using the Eqs.( 5. 33 and
(
S3

)
), we obtain

i. ϕ1vϕ3 = 0, ϕ1ϕ4v = ϕ2vϕ3, ϕ5v = ϕ− ϕ2ϕ4v

ii.

{
A = 0, ϕ1 = a1, ϕ1ϕ3v = 0
ϕ2vϕ1 = 0; ϕ5v = ϕ− ϕ2ϕ3v

and comparing with respect to v, we deduce

i.

{
a. a1a3 = a1b3 = 0; a1a4 = a2a3;
b. a1b3 = a1a3 = a2a3 = a2b3 = a1a4 = b1a4 = 0

(5. 35)

ii.

{
a. ϕ1 = a1, a1a2 = 0 if A = 0
b. non-existent case

and

i.

{
a. ϕ5 = −a2a42 v2 −

(
q
λ + b2a4

)
v + b4

b. ϕ5 = a2a4
4A

2
λ

sin 2Av + a4b2
Aλ

cosAv +
(
ϕ− a2a4

2Aλ

)
v + b5

(5. 36)

ii.

{
a. ϕ5 = a2a2

2λ v2 −
(
q
λ −

a2b2
λ

)
v + b4

b. non-existent case

Finally, we can present the following proposition.

Proposition 5.6. The surfaces M1,2,3 are magnetic surfaces in H3 parameterized by
1.

X(u, v) =


x (u, v) = a1vu+ b1u+ a2v + b2
y (u, v) = a3vu+ b3u+ a4v + b4
z (u, v) = − 1

2u
2b1b3 − 1

2v
2a2a4 − uv2a2a3 − 1

2u
2va3b1 − (a2b3 + a3b2)uv

−ub2b3 − va4b2 − q
λ (u+ v) + b4


with conditions a1a3 = a1b3 = 0; a1a4 = a2a3,
2.

X(u, v) =


x (u, v) = a1

A
u sinAv + a2

A
sinAv + b1u+ b2

y (u, v) = a3
A
u sinAv + a4

A
sinAv + b3u+ b4

z (u, v) = a2a4
2A

2
λ

cosAv sinAv − 1
Aλ

(
a3b1
2 u2 + a3b2u− a4b2

)
cosAv

− b1b32 u2 +
(
ϕ− a2a4

2Aλ

)
v −

(
q
λ + b2b3

)
u+ b5


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with conditions a1b3 = a1a3 = a2a3 = a2b3 = a1a4 = b1a4 = 0 and ϕ 6= −q
λ (i.e.

A = λϕ+ q 6= 0).
3.

X(u, v) =

 x (u, v) = a1
A sinAu+ a2v + b2

y (u, v) = a1
A cosAu− a2

λ v + b3

z (u, v) = −
(
a1 + a1b2

A

)
cosAu+

a22
2λv

2 −
(
q
λ −

a2b2
λ

)
v + ϕu+ b4


with conditions a1a2 = 0 and ϕ 6= −q

λ (i.e. A = λϕ+ q 6= 0) where a1,4, b1,5 and ϕ are a
real constants.

Proof. The proof follows from the Theorem 5.2 , the Definition 5.1 the Eqs.( 5. 32 and 5.
33 ) and the conditions given in Eqs.( 5. 35 and 5. 36 ).

Corollary 5.7. The curves parameterized by

α1 : I ⊂ R→ H3, u 7→ X (u, v) | v is fixed real number and

α2 : I ⊂ R→ H3, v 7→ X (u, v) | u is fixed real number

are magnetic curves in H3, where X (u, v) is the parametrization given in Propositions
5.3,5.4 and 5.6.

�

Example 5.8. 1. The surface M1 (see Figure 7) parameterized by

X(u, v) =

(
u+ 1, vu+ 2u+ v,−u2 − 1

2
u2v − uv − 3u− 2v

)
is magnetic surface in H3. Using the assertion 1 of the Proposition 5.6 with conditions

a3 = 2a4 = b3 = 2b1 = 2b2 = q = λ = 2; a1 = a2 = b4 = 0

2. The surface M2 (see Figure 8) parameterized by

X(u, v) =

(
2u+ 1,

1

2
u sin 2v +

1

2
sin 2v + u,−1

2

(
u2 + u

)
cos 2v − u2 + v − 2u

)
is magnetic surface in H3. Using the assertion 2 of the Proposition 5.6 with conditions

a1 = a2 = a4 = b4 = b5 = 0; 0.5b1 = b2 = b3 = a3 = a4 = 1

q = λ = ϕ = 1; A = λϕ+ q = 2 and (u, v) ∈ [−1, 1]× [−π, π]

In the magnetic surface M2 we plot a magnetic curves α1,2 when u = 1. and v = 1. (See
Figure 9)
3. The surfaces M3·1 and M3·2 parameterized by

X(u, v) =

(
v + 1,−v, 1

2
v2 + u

)
X(u, v) =

(
1

2
sin 2u+ 1,

1

2
cos 2u,−3

2
cos 2u− v + u

)
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respectively, are magnetic surfaces in H3. Using the assertion 3 of the Proposition 5.6 with
conditions

a1 = b3 = b4 = 0, a2 = b2 = λ = ϕ = q = 1; A = λϕ+ q = 2 and

a2 = b3 = b4 = 0, a1 = b2 = λ = ϕ = q = 1; A = λϕ+ q = 2

respectively.(See Figures 10 and 11 presented in R3)

FIGURE 7. Magnetic surface M1

FIGURE 8. Magnetic
surface M2

FIGURE 9. Magnetic
curves α1,2 (blue color)
in M2 ⊂ H3

FIGURE 10. Magnetic
surface M3·1

FIGURE 11. Magnetic
surface M3·2
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Corollary 5.9. There exist a magnetic geodesic surfaces in H3.

Proof. Just compare the geodesic surface equation in the case 3 and the magnetic surface
equation in the case 2 for good selection of constants, we get a magnetic geodesic surfaces
in H3. �

CONCLUSION

A magnetic curve, which is the trajectory of a charged particle moving under the influ-
ence of a magnetic field, can be viewed as a one-dimensional magnetic manifold. Moti-
vated by real world examples, we have extended this concept to two-dimensional manifold,
namely the magnetic surface, where the magnetic field vector at any point on the surface
is tangent to the surface itself. As an application, we have presented a method for deriving
parametric equations of magnetic surfaces within the Heisenberg three-group, considered
as a Riemannian manifold. Subsequently, a concrete examples of such surfaces proving
their existence are given. In Euclidean three-space this study was given in [16], We invite
readers to apply this study to other three-dimensional contact manifolds such as Sol3 and
Sl(2,R).
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