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Abstract. This work aims to solve two problems in the Diophantine equa-
tion of the Narayana sequence. In the first question it’s proven that there
are only 177 solutions of expressing the product of two Narayana num-
bers as b repdigits numbers, for base 2 ≤ b ≤ 50. It’s also proven that
the Narayana numbers can not be factored as a product of two repdigits
numbers for base 2 ≤ b ≤ 50, except in two cases. The proofs use some
number-theoretic techniques, including Baker’s method of linear forms in
logarithms height, and some reduction techniques.
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1. INTRODUCTION

Let (Nn)n≥0 be the Narayana sequence, starting with N0 = 0, N1 = 1, and N2 = 1.
For n ≥ 3, the sequence is defined by the recurrence relation

Nn = Nn−1 +Nn−3. (1. 1)

The first values of Nk are 0, 1, 1, 1, 2, 3, 4, 6, . . .. Narayana cow sequence is similar to
the problem of Fibonacci’s rabbits, as it counts calves produced every four years. This
sequence (OEIS A000930 in [12]) appeared for the first time in the book Ganita Kau-
mudi(1365) by the Indian mathematician Narayana Pandita, who gave this sequence its
name, and played a role in mathematical developments such as, finding the approximate
value of the square roots, and investigations into the Diophantine equation ax2 + 1 = y2
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(Pell’s equation). Narayana cows sequence, also known as the supergolden sequence. The
real root corresponding to the solution of the characteristic equation is known as the super
golden ratio. In Pascal’s triangle, starting from n ≥ 3, the rows with triplicated diagonals
sum to Narayana sequence, while the rows with sloping diagonals of 45 degrees sum to
the Fibonacci sequence. In the fields of graph theory, coding theory, and cryptography, this
sequence is crucial.

In this work, we ascertain every solution to the Diophantine equation

NnNm = [a, . . . , a]b = a

(
bℓ − 1

b− 1

)
, (1. 2)

in integers (b, a,m, n, ℓ) with 3 ≤ m ≤ n, 2 ≤ b ≤ 50, 0 < a < b and ℓ > 1, and the
Diophantine equation’s solution

Nk = a1a2

(
bℓ1 − 1

b− 1

) (
bℓ2 − 1

b− 1

)
, (1. 3)

in integers (k, b, a1, a2, ℓ1, ℓ2) with 2 ≤ ℓ1 ≤ ℓ2 , 1 ≤ a1 ≤ a2 ≤ b− 1, k ≥ 3, and b ≥ 2.
More precisely, the theorems listed below have been proven.

Theorem 1.1. Let 3 ≤ m ≤ n, b ∈ {2, 3, . . . , 50}, a ∈ {1, . . . , b − 1}, and ℓ ≥ 2. The
Diophantine equation ( 1. 2 ) has just the following possible solutions:

(2,1,3,5,2) (3,1,3,6,2) (3,1,3,9,3) (3,1,4,4,2)
(3,2,4,6,2) (3,2,4,9,3) (3,1,9,11,6) (5,1,3,7,2)
(5,1,4,5,2) (5,2,4,7,2) (5,3,4,8,2) (5,2,5,6,2)
(5,3,5,7,2) (5,4,6,7,2) (6,4,3,11,2) (6,3,3,15,3)
(7,1,4,6,2) (7,1,5,10,3) (7,2,6,6,2) (7,3,6,7,2)

(11,10,4,13,2) (11,1,5,6,2) (11,7,5,11,2) (11,2,6,7,2)
(11,3,6,8,2) (11,3,7,7,2) (11,4,10,11,3) (12,1,3,9,2)
(12,2,4,9,2) (12,3,5,9,2) (12,4,6,9,2) (12,6,7,9,2)
(12,9,8,9,2) (13,2,3,11,2) (13,4,4,11,2) (13,6,5,11,2)

(13,8,6,11,2) (13,1,6,19,4) (13,12,7,11,2) (13,7,11,19,4)
(14,4,3,13,2) (14,8,4,13,2) (14,12,5,13,2) (15,11,4,14,2)
(15,1,6,6,2) (15,7,6,11,2) (16,9,9,16,3) (17,1,4,8,2)
(17,1,5,7,2) (17,10,5,13,2) (17,2,6,8,2) (17,2,7,7,2)
(17,3,7,8,2) (17,14,8,11,2) (18,1,3,10,2) (18,2,4,10,2)

(18,3,5,10,2) (18,4,6,10,2) (18,6,7,10,2) (18,9,8,10,2)
(18,13,9,10,2) (19,3,3,13,2) (19,6,4,13,2) (19,9,5,13,2)
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(19,12,6,13,2) (19,18,7,13,2) (20,9,3,16,2) (20,18,4,16,2)
(20,4,5,11,2) (20,8,7,11,2) (20,12,8,11,2) (21,4,3,14,2)
(21,8,4,14,2) (21,12,5,14,2) (21,16,6,14,2) (23,5,4,13,2)
(23,11,5,14,2) (23,1,6,7,2) (23,10,6,13,2) (23,7,7,11,2)
(23,15,7,13,2) (23,22,7,14,2) (25,1,4,9,2) (25,2,6,9,2)
(25,3,7,9,2) (25,14,9,11,2) (26,7,3,16,2) (26,14,4,16,2)
(26,1,5,8,2) (26,21,5,16,2) (26,2,7,8,2) (26,3,8,8,2)
(26,20,8,13,2) (27,1,3,11,2) (27,2,4,11,2) (27,3,5,11,2)
(27,4,6,11,2) (27,6,7,11,2) (27,9,8,11,2) (27,13,9,11,2)
(27,19,10,11,2) (28,14,3,18,2) (29,2,3,13,2) (29,4,4,13,2)
(29,6,5,13,2) (29,8,6,13,2) (29,12,7,13,2) (29,18,8,13,2)
(29,26,9,13,2) (31,11,6,14,2) (32,8,5,14,2) (32,16,7,14,2)
(32,24,8,14,2) (33,14,19,20,4) (34,17,3,19,2) (35,5,5,13,2)
(35,1,6,8,2) (35,21,6,16,2) (35,1,7,7,2) (35,10,7,13,2)
(35,7,8,11,2) (35,15,8,13,2) (35,22,8,14,2) (37,1,4,10,2)
(37,2,6,10,2) (37,3,7,10,2) (37,14,10,11,2) (37,30,10,13,2)
(38,1,5,9,2) (38,2,7,9,2) (38,3,8,9,2) (38,20,9,13,2)
(39,3,4,13,2) (39,6,6,13,2) (39,9,7,13,2) (40,1,3,12,2)
(40,2,4,12,2) (40,3,5,12,2) (40,4,6,12,2) (40,6,7,12,2)
(40,9,8,12,2) (40,13,9,12,2) (40,19,10,12,2) (40,28,11,12,2)
(41,9,4,16,2) (41,2,5,11,2) (41,29,5,18,2) (41,18,6,16,2)
(41,4,7,11,2) (41,27,7,16,2) (41,6,8,11,2) (41,40,11,13,2)
(42,3,3,15,2) (42,6,4,15,2) (42,9,5,15,2) (42,12,6,15,2)
(42,18,7,15,2) (42,27,8,15,2) (42,39,9,15,2) (43,2,3,14,2)
(43,4,4,14,2) (43,6,5,14,2) (43,8,6,14,2) (43,12,7,14,2)
(43,18,8,14,2) (43,26,9,14,2) (43,38,10,14,2) (44,4,5,13,2)
(44,8,7,13,2) (44,12,8,13,2) (45,8,10,20,3) (47,5,6,13,2)
(47,11,7,14,2) (47,35,11,13,2) (48,16,11,11,2) (49,1,10,15,3)
(50,35,5,19,2)

TABLE 1. Continuation of Solutions of equation ( 1. 2 ) with ℓ ≥ 2

Theorem 1.2. The equation ( 1. 3 ) yields exclusively these solutions

N8 =
22 − 1

2− 1

22 − 1

2− 1
= [11]2[11]2

and

N16 =
22 − 1

2− 1

26 − 1

2− 1
= [11]2[111111]2.

Many authors have studied such Diophantine equations. For example, the authors in [7]
showed that, as a product of two repdigits, the biggest Fibonacci number is F10 = 55,
whereas the largest Lucas number is L6 = 18. The author in [4, 5] studied the sum
of three Padovan numbers as repdigits in base 10. They demonstrated that the only Tri-
bonacci numbers which can be articulated as concatenations of two repdigits in base 10 are
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Tn ∈ {13, 24, 33, 81}. According to the authors in [13], the only balanced number that is
the concatenation of two repdigits base 10 is 35. The authors in [8] studied all repdigits base
2 ≤ b ≤ 9 which can be articulated as a products of two Fibonacci numbers. The author in
[3] studied all repdigits which can be articulated as the product of a Fibonacci number and
a Pell number. The author in [9] studied Pell-Lucas and Pell numbers which can be artic-
ulated as sums of two Jacobsthal numbers. The authors in [16] studied all repdigits which
can be articulated as products of consecutive Padovan or Perrin numbers . Researchers in
[14] demonstrated that N14 = 88 and N17 = 277 are the only Narayana numbers which
can be articulated as sums of two repdigits. The authors in [2] studied the sum of two
Narayana numbers which can be articulated as b repdigits for the bases 2 ≤ b ≤ 100. For
further studies on Diophantine equations, you can found in [1, 10, 15, 18].

2. PRELIMINARY

2.1. Narayana sequence. The characteristic equation corresponding to the third-order lin-
ear recurrence relation ( 1. 1 ) is x3 − x2 − 1, three roots of this polynomial are β, α and
γ = ᾱ where

β = 2+r1+r2
6 , α = 4−(1+

√
−3)r1−(1−

√
−3)r2

12

and

r1 =
3

√
116− 12

√
93, r2 =

3

√
116 + 12

√
93.

Furthermore, the Binet formula is

Nn = a1β
n + a2α

n + a3γ
n for all n ≥ 0. (2. 4)

The initial values N0 = 0, N1 = 1 and N2 = 1 imply that a1 = β
(β−α)(β−γ) , a2 =

α
(α−γ)(α−β) and a3 = γ

(γ−β)(γ−α) . The Binet formula for equation ( 2. 4 ) can instead be
expressed as:

Nn = cββ
n+2 + cαα

n+2 + cγγ
n+2, (2. 5)

where
ct =

1
t3+2 , t ∈ {β, α, γ}.

It’s evident that
1.45 <β < 1.5

0.82 <|γ| = |α|< 0.83

5 <c−1
β < 5.15

|cα| ≃0.4075

|ξ(n)| <1

2
where ξ(n) = cαα

n+2 + cγγ
n+2.

(2. 6)

By induction over n, the following is easily proven

βn−2 ≤ Nn ≤ βn−1 for all n ≥ 0. (2. 7)

We have

2ℓ−1 ≤ bℓ−1 ≤ a bℓ−1
b−1 = NnNm ≤ βn+m−2 ≤ β2n−2 ≤ (1.5)2n−2

ℓ ≤ (2n− 2) log 1.5
log 2 + 1 < 2n− 1,
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and
(1.45)n−2 < βn−2 < Nn < NnNm = a bℓ−1

b−1 < bℓ < (50)ℓ

n < ℓ
log 50

log 1.45
+ 2 < 11 ℓ+ 2.

Similarly, we have

2ℓ1−1 < bℓ1−1 <
bℓ1 − 1

b− 1
< a1a2

(bℓ1 − 1)(bℓ2 − 1)

(b− 1)2
= Nk < βk−1

ℓ1 < (k − 1)
log β

log 2
+ 1 < k,

and

βk−2 < Nk = a1a2
(bℓ1 − 1)(bℓ2 − 1)

(b− 1)2
< (bℓ2 − 1)2 < b2ℓ2 < 502ℓ2

k < 2ℓ2
log 50

log β
+ 2

< 22ℓ2 + 2.
(2. 8)

2.2. Logarithmic linear forms of real algebraic numbers. Let f(x) ∈ Z[x] be a poly-
nomial of minimal degree d which has ψ as a root

f(X) = a0

d∏
i=1

(X − ψ(i)),

where ψ(i)’s are the conjugates of ψ. The logarithmic height of ψ is defined by

h(ψ) =
1

d
(log a0 +

d∑
i=1

logmax{|ψ(i)|, 1}).

The properties listed below are valid for the algebraic numbers ψ and γ.

h(ψ ± γ) ≤ h(ψ) + h(γ) + log(2)

h(ψγ±1) ≤ h(ψ) + h(γ)

h(ψm) = |m|h(ψ) (m ∈ Z).
(2. 9)

To prove our main theorem, we employ lower bounds of the Baker type for nonzero lin-
ear forms in the logarithms of real algebraic numbers, according to Matveev’s theorem [11].

Theorem 2.3. (Matveev) Let L be a finite extension field of degree D over Q, ψ1, . . . , ψt

be a positive real algebraic numbers in L, and r1, . . . , rt integers. Put

Λ = ψr1
1 × · · · × ψrt

t − 1

and B ≥ max{|r1|, . . . , |rt|}. Let Aj ≥ max{Dh(ψj), | logψj |, 0.16} be real numbers.
If Λ ̸= 0, then

log |Λ| > −1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 × · · · ×At.
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We obtain some high upper bounds for the problem-related variables from our computa-
tions. To reduce those higher boundaries, we need some reduction techniques. We employ
a few results from the theory of continued fractions. The following Lemma due to Dujella-
Pethő ([6],Lemma 5a).

We define ∥Y ∥ = min{|Y − n| : n ∈ Z} as the distance between a real number Y
and the nearest integer.

Lemma 2.4. (Dujella- Pethő) Let M be a positive integer such that q > 6M , where p
q is a

continued fraction expansion of one of the convergent of the irrational number τ , let A, B,
and µ ∈ R with A > 0, B > 1 and ϵ = ∥µq∥ −M∥τq∥. The inequality

0 < |uτ − v + µ| < AB−w

has no solution if ϵ > 0, in positive integers u, v and w with

u ≤M and w ≥ log(Aq/ϵ)

logB
.

This lemma analytically demonstrates an upper bound for x with respect to T . Guzmán
and Luca proved the following result ([17], Lemma 7).

Lemma 2.5. If m ≥ 10, T > (4m2)m and T > x
logm x , then x < 2mT logm T .

3. VERIFICATION OF THEOREM 1.1

3.1. Bounding on m. From equation ( 1. 2 ), we obtain

c2ββ
n+m+4 − abℓ

b− 1
= −ξ(m)cββ

n+2 − ξ(n)cββ
m+2 − ξ(n)ξ(m)− a

b− 1
.

Using inequalities ( 2. 6 ) and dividing both sides by c2ββ
n+m+4, one gets∣∣∣c2ββn+m+4 − abℓ

b− 1

∣∣∣ < cββ
n+2

2
+
cββ

m+2

2
+

5

4∣∣∣1− abℓ

c2ββ
n+m+4(b− 1)

∣∣∣ < 1

2cββm+2
+

1

2cββn+2
+

5

4c2ββ
n+m+4

<
1

cββm+2
+

5

4c2ββ
m+2

<

(
5.15× 1

1.452
+

5× 5.152

4× 1.452

)
1

βm

<
19

βm
.

Put

Λ1 :=
abℓ

c2ββ
n+m+4(b− 1)

− 1.

We have
log |Λ1| < log 19−m log β. (3. 10)
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Now, we apply Theorem (2.3), where

ψ1 := β, ψ2 := b, ψ3 := a
c2β(b−1)

r1 := −(n+m+ 4), r2 := ℓ, r3 := 1.

First, we show that Λ1 ̸= 0. If Λ1 = 0, then abℓ

b−1 = c2ββ
n+m+4. Consider the isomor-

phism σ : Q(β) → Q(α), defined by σ(β) = α. Then |c2ααn+m+4| < |c2α| < 1, while
the left-hand side is greater than 4 which is a contradiction. Using properties ( 2. 9 ), we
obtain:

h(ψ1) =
log β

3
;

h(ψ2) = log b;

h(ψ3) < h

(
a

b− 1

)
+ h(c2β)

< log(b− 1) +
2 log 31

3
< log b+ 3.4 log b

≤ 4.4 log b,

since the minimal polynomial of cβ is given by 31x3−31x2+10x−1. We takeB := 2n+4,
L := Q(β), thus D := [L : Q] = 3. Also, we take

A1 : = log β, A2 : = 3 log b, A3 : = 13.2 log b.

Now from theorem 2.3, we get the following

log |Λ1| > −1.4×306×34.5×33×13.2 (1+log 3)(1+log(2n+4)) log β log2 b. (3. 11)

Using equation ( 3. 10 ) and ( 3. 11 ), we have the following

1 + log(2n+ 4) < 3.1 log n for all n ≥ 3,

m log β < log 19 + 1.4× 306 × 34.5 × 33 × 13.2× 3.1 (1 + log 3) log β log n log2 b.

Using Mathematica we have

m < 3.7× 1014 log n log2 b. (3. 12)

3.2. Bounding on n. Equation ( 1. 2 ) implies

Nn =
a

Nm

bℓ − 1

b− 1

cββ
n+2 − abℓ

Nm(b− 1)
= −ξ(n)− a

Nm(b− 1)
.

Using inequalities ( 2. 7 ) and ( 2. 6 ) , we get∣∣∣cββn+2 − abℓ

Nm(b− 1)

∣∣∣ < |ξ(n)|+ | a

Nm(b− 1)
|

<
1

2
+

1

βm−2
,
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and dividing both sides by cββn+2, we get∣∣∣1− abℓ

Nmcββn+2(b− 1)

∣∣∣ < 1

2cββn+2
+

1

cββn+m

<
1

2cββn
+

1

cββn

<
8

βn
.

(3. 13)

Put

Λ2 :=
abℓ

Nmcββn+2(b− 1)
− 1,

we have

|Λ2| <
8

βn
, (3. 14)

and

log |Λ2| < log 8− n log β. (3. 15)

Now, we apply Theorem 2.3, where

ψ1 := β, ψ2 := b, ψ3 := a
Nmcβ(b−1)

r1 := −(n+ 2), r2 := ℓ, r3 := 1.

The same way as before, we can prove that Λ2 ̸= 0, moreover, using properties ( 2. 9 ), we
obtain

h(ψ3) < h(
a

b− 1
) + h(cβ) + h(Nm)

< log(b− 1) +
log 31

3
+m log β

< log b+ 1.7 log b+m log β

≤ 2.7 log b+m log β.

We take B := 2n− 1, L := Q(β) thus D := 3,

A1 : = log β, A2 : = 3 log b, A3 : = 3(2.7 log b+m log β).

Using Theorem 2.3 we get

log |Λ2| > C log β log b (1 + log 3) (1 + log(2n− 1)) (2.7 log b+m log β). (3. 16)

where C = −1.4× 306 × 34.5 × 34, using equation ( 3. 15 ) and ( 3. 16 ), we have the
following, and using ( 3. 12 ) in addition to using inequality 1 + log(2n − 1) < 2.4 log n
for all n ≥ 3, using Mathematica we have

n

log2 n
< 9.6× 1027 log3 b.
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Now we apply Lemma 2.5, since 5.2× 1027 log3 b > (16)2, we obtain

n < 22 · 9.6 · 1027 log3 b log2(9.6× 1027 log3 b)

< 3.85× 1028 log3 b(64.5 + 3 log log b)2

< 3.85× 1028 log3 b(93.1 log b+ 3 log b)2

< 3.6× 1032 log5 b,

(3. 17)

since log log b < log b for every b ≥ 2 and 1
log 2 ≃ 1.4427.

3.3. Reducing the maximum bound on m. Let

z1 := ℓ log(b)− (n+m+ 4) log β + log(
a

c2β(b− 1)
),

if z1 > 0 then z1 < |ez1 − 1|, if z1 < 0 and |ez1 − 1| < 1
2 then |z1| < 2|ez1 − 1|. Since

|ez1 − 1| < 1
2 for all m > 9 and for all numbers less than 9, we found m positive since

n ≥ m and ℓ ≤ 2n− 1. Thus we have,

|z1| < 2|ez1 − 1|.

By substituting into the inequality ( 3. 10 ), we have∣∣∣∣ℓ log b− (n+m+ 4) log β + log

(
a

c2β(b− 1)

)∣∣∣∣ < 38

βm
;

∣∣∣∣ℓ log blog β
− (n+m+ 4) +

log

(
a

c2β(b− 1)

)
log β

∣∣∣∣ <103

βm
.

(3. 18)

Let

A := 103, B := β, τ :=
log b

log β
, µ := log

( a

c2β(b− 1)

)
/ log β andM := 7.2× 1032 log5 b.

Using Mathematica, for all b ∈ {2, 3, . . . , 50} and a ∈ {1, 2, . . . , b − 1}, we calculate a
convergent pk

qk
such that qk > 6M , furthermore computing ε(b) := ∥µqk∥ −M∥τqk∥, we

find that ε(b) is positive for all b, so we can conclude from Lemma 2.4. that if there is
a solution to the inequality ( 3. 18 ) then m ≤ max

(
log(Aqk/ε(b))

logB

)
≤ 258, since q76 :=

80343224848903593720119619072658468105 and ϵ = 0.00110029.

3.4. Reducing the maximum bound on n. Let

z2 := ℓ log b− (n+ 2) log β + log(
a

Nmcβ(b− 1)
),

as before and by substituting into the inequality ( 3. 14 ), we have

∣∣∣∣ℓ log blog β
− (n+ 2) +

log

(
a

Nmcβ(b− 1)

)
log β

∣∣∣∣ < 44

βn
. (3. 19)
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Let

A := 44, B := β, τ :=
log b

log β
, µ := log

(
a

Nmcβ(b− 1)

)
/ log βandM := 7.2×1032 log5 b,

for all b ∈ {2, 3, . . . , 50} , a ∈ {1, 2, . . . , b−1} andm ∈ {3, . . . , 258}, using Mathematica,
we find that ε(b) > 0, so using Lemma 2.4, we can say that if the inequality ( 3. 19 ) has a
solution then

n ≤ max(
log(Aqk/ε(b))

logB
) ≤ 280,

since q83 := 7079663398524420302381593824529508433082 and ϵ := 7.54491× 10−6.
We conclude all solutions (b, a, n,m, ℓ) of Equation ( 1. 2 ), where

3 ≤ m ≤ n, 2 ≤ b ≤ 50, 0 < a < b and l ≥ 2, reduce to the rang 3 ≤ n ≤ 280, with the
help of Mathematica, we compute all solution in specified range, and conclude Theorem
1.1.

4. VERIFICATION OF THEOREM 1.2

4.1. Bounding on ℓ1. From equation ( 1. 3 ), we obtain

cββ
k+2 − a1a2b

ℓ1+ℓ2

(b− 1)2
= −ξ(k)− a1a2b

ℓ1

(b− 1)2
− a1a2b

l2

(b− 1)2
+

a1a2
(b− 1)2

.

Hence, using inequalities ( 2. 6 ), ( 2. 7 )∣∣∣∣cββk+2 − a1a2b
ℓ1+ℓ2

(b− 1)2

∣∣∣∣ < 1

2
+ bℓ1 + bℓ2 + 1

<
3

2
+ 2bℓ2 ,

and dividing both sides by a1a2b
ℓ1+ℓ2

(b−1)2 , we get∣∣∣∣cββk+2(b− 1)2

a1a2bℓ1+ℓ2
− 1

∣∣∣∣ < 3(b− 1)2

2a1a2bℓ1+ℓ2
+

2(b− 1)2

a1a2bℓ1

<
3(b− 1)2

bℓ1
+

2(b− 1)2

bℓ1

<
3b2

bℓ1
+

2b2

bℓ1

≤ 5

bℓ1−2
.

Put

Λ3 :=
cββ

k+2(b− 1)2

a1a2bℓ1+ℓ2
− 1,

we have

|Λ3| ≤
5

bℓ1−2
(4. 20)

and
log |Λ3| ≤ log 5− (ℓ1 − 2) log b. (4. 21)
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Now, we apply Theorem 2.3, where

ψ1 := β ψ2 := b ψ3 :=
cβ(b−1)2

a1a2

r1 := k + 2 r2 := −(ℓ1 + ℓ2) r3 := 1.

The same way as before we can prove Λ3 ̸= 0, moreover using properties ( 2. 9 ), we
obtain:

h(ψ3) < h(cβ) + h

(
b− 1

a1

)
+ h

(
b− 1

a2

)
<

log 31

3
+ 2 log(b− 1)

< 3.7 log b.

We can take L := Q(β) thus D := 3 , B := 22ℓ2 + 4 since k < 22ℓ2 + 2

A1 : = log β, A2 : = 3 log b, A3 : = 11.1 log b,

and then from Theorem 2.3 we get

log Λ3 > −1.4 · 306 · 34.5 · 33 · 11.7 · (1 + log 3)(1+ log(22ℓ2 +4)) log β log2 b. (4. 22)

Using equation ( 4. 21 ) and ( 4. 22 ) , we have the following,

(1 + log(22ℓ2 + 4)) < 7.1 log ℓ2 for all ℓ2 ≥ 2,

using Mathematica, we have gives us

ℓ1 < 2.7× 1014 log ℓ2 log b. (4. 23)

4.2. Bounding on ℓ2. Let

Nk

a1(b
ℓ1 − 1)

b− 1

=
a2(b

ℓ2 − 1)

b− 1

cββ
k+2(b− 1)

a1(bℓ1 − 1)
− a2b

ℓ2

b− 1
=

−ξ(k)(b− 1)

a1(bℓ1 − 1)
− a2
b− 1

.

Hence, ∣∣∣∣cββk+2(b− 1)

a1(bℓ1 − 1)
− a2b

ℓ2

b− 1

∣∣∣∣ < (b− 1)

2a1(bℓ1 − 1)
+ 1,

and dividing both sides by a2b
ℓ2

b−1 , we get∣∣∣∣βk+2cβb
−ℓ2(b− 1)2

a1a2(bℓ1 − 1)
− 1

∣∣∣∣ < (b− 1)2

a1a2bℓ2(bℓ1 − 1)
+
b− 1

a2bℓ2

<
(b− 1)2

bℓ2
+
b− 1

bℓ2

<
b2

bℓ2
+

b

bℓ2∣∣∣∣βk+2cβb
−ℓ2(b− 1)2

a1a2(bℓ1 − 1)
− 1)

∣∣∣∣ ≤ 2

bℓ2−2
. (4. 24)
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Put Λ4 :=
βk+2cβb

−ℓ2 (b−1)2

a1a2(bℓ1−1)
− 1, we have

log |Λ4| ≤ log 2− (ℓ2 − 2) log b. (4. 25)

Now, we apply Theorem 2.3, where

ψ1 := β, ψ2 := b, ψ3 :=
cβ(b−1)2

a1a2(bℓ1−1)

r1 := k + 2, r2 := −ℓ2, r3 := 1.

The same way as before we can prove that |Λ4| ≠ 0, moreover, using properties ( 2. 9 )

h(ψ3) < h(cβ) + h

(
b− 1

a1

)
+ h

(
b− 1

a2

)
+ h(bℓ1 − 1)

<
log 31

3
+ 2 log(b− 1) + ℓ1 log b

< 3.7 log b+ ℓ1 log b,

thus, choosing

A1 : = log β, A2 : = 3 log b, A3 : = 3(3.7 log b+ ℓ1 log b), B : = 22l2 + 4,

log Λ4 > −1.4 ·306 ·34.5 ·34 log β log b(1+log 3)(1+log(22ℓ2+4))(3.7 log b+ℓ1 log b),
(4. 26)

from ( 4. 23 ), ( 4. 25 ) and ( 4. 26 ) we deduce

ℓ2 < 1.9× 1028 log2 b log2 ℓ2.

Now we apply Lemma 2.5, since 2× 1028 log2 ℓ2 log b > (16)2, we obtain

ℓ2

log2 ℓ2
< 1.9× 1028 log2 b

ℓ2 < 22 · 1.9 · 1028 log2 b log2(1.9× 1028 log2 b)

< 7.7× 1028 log2 b(65.2 + 2 log log b)2

< 7.1× 1032 log4 b.

From ( 2. 8 ), we find that k < 1.562× 1034 log4 b.

4.3. Reducing the maximum bound on ℓ1. Let

z3 := (k + 2) log β − (ℓ1 + ℓ2) log b+ log
(b− 1)2cβ
a1a2

,

if z3 > 0 then z3 < |ez3 − 1|, if z3 < 0 and |ez3 − 1| < 1
2 , then |z3| < 2|ez3 − 1| Since

|ez3 − 1| < 1
2 for all ℓ1 > 3 and for all numbers less than 3, we found ℓ1 positive since

ℓ2 ≥ ℓ1 and k < 22ℓ2 + 2. Thus we have,

|z3| < 2|ez3 − 1|.

By substituting into the inequality ( 4. 20 )∣∣∣∣(k + 2) log β − (ℓ1 + ℓ2) log b+ log

(
(b− 1)2cβ
a1a2

) ∣∣∣∣ < 10

bℓ1−2
,
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and dividing both by log b, we have

∣∣∣∣(k + 2)
log β

log b
− (ℓ1 + ℓ2) +

log

(
(b− 1)2cβ
a1a2

)
log b

∣∣∣∣ < 10

log(b)bℓ1−2

∣∣∣∣(k + 2)
log β

log b
− (ℓ1 + ℓ2) +

log

(
(b− 1)2cβ
a1a2

)
log b

∣∣∣∣ < 14.5

bℓ1−2
. (4. 27)

Since 1
log 2 = 1.4427. Let

A : = 14.5, B : = b, τ : =
log β

log b
,

µ : = log

(
(b− 1)2cβ
a1a2

)
/ log b, M : = 6.77× 1034 log4 b ,

for all b ∈ {2, 3, . . . , 50} and a1, a2 ∈ {1, . . . , b − 1}, using Mathematica we find that
ε(b) > 0, so we can conclude from Lemma 2.4 that if there is a solution to the inequality
( 4. 27 ) then

ℓ1 − 2 ≤ max

(
log (Aqk/ε(b))

logB

)
≤ 122,

since q84 = 107652262008477484336487139106538810 and ϵ := 0.231494. Hence ℓ1 ≤
124.

4.4. Reducing the maximum bound on ℓ2. Let

z4 := (k + 2) log β − ℓ2 log b+ log
cβ(b− 1)2

a1a2(bℓ1 − 1)
,

if z4 > 0 then z4 < |ez4 − 1| and |z4| < 2|ez4 − 1| ifz4 < 0 and |ez4 − 1| < 1
2 . As

previously, hence we have, |z4| < 2|ez4 − 1|. By substituting into the inequality ( 4. 24 )
and dividing both by log b, we have

∣∣∣∣(k + 2)
log β

log b
− ℓ2 +

log

(
cβ(b− 1)2

a1a2(bℓ1 − 1)

)
log b

∣∣∣∣ < 4

log b bℓ2−2

<
5.8

bℓ2−2
.

Let

A := 5.8, B := b, τ :=
log β

log b
,

µ := log

(
cβ(b− 1)2

a1a2(bℓ1 − 1)

)
/ log b and M := 6.77× 1034 log4 b,

for all b ∈ {2, 3, . . . , 50}, a1, a2 ∈ {1, · · · , b − 1},and ℓ1 ∈ {1, . . . , 124}, using Mathe-
matica we find that ε(b) > 0, so we can conclude from Lemma 2.4 that if there is a solution
to the inequality ( 4. 27 ) then
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ℓ2 − 2 ≤ max

(
log (Aqk/ε(b))

logB

)
≤ 130,

since q87 := 2335912437115194950050991297811650859 and ϵ := 0.00815537. Hence
ℓ2 ≤ 132 and k < 2906.

5. CONCLUSION

In this manuscript two problems related to Narayana numbers were solved. We found
all possible product of two Narayana numbers which give a repdigits in base b from 2 to
50. Also we found Narayana numbers which can be articulated as a product of two repdigit
in base b from 2 to 50. The techniques used in this work can be applied to a wide range of
similar problems.
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