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Abstract. An open conjecture of Pillai asserts that the equation xm −
yn = k has a finite number of solutions if m,n, x, y, k are integers with
m ≥ 3, n, x, y ≥ 2 and k ≠ 0 is fixed. Baker’s theory of linear forms is
employed to solve a variant of the Pillai problem for Balancing numbers
and powers of 2. More precisely, all the integer numbers c which can
be expressed in the form Br − 2s for non-negative integers r and s in at
least two ways are determined. The strategy of solution depends mainly
on Matveev’s fundamental inequality and on a reduction theorem of A.
Dujella and A. Pethö.
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1. INTRODUCTION

Catalan, in 1844, addressed the following problem: Does the equation xm − yn = 1,
for integers x, y,m, n ≥ 1, have only the solution (x, y,m, n) = (3, 2, 2, 3)?, see [7].
Mihăilescu, in 2002, solved completely the problem, see [25]. Linear forms in logarithms
were not used in Mihăilescu solution. In 1976, Tijdeman had used linear forms in loga-
rithms to prove that there are only finite number of solutions of the equation xm − yn = 1
, [29].

In 1936, Pillai generalized Catalan’s problem by formulating, for (a = 1, b = 1), the
following conjecture, see [26].

Conjecture 1.1. (Pillai’s conjecture) The equation

axm − byn = k, (1. 1)

where a, b, and k are non-zero integers, has only a finite number of integer solutions
(x, y,m, n) with m ≥ 3 and n, x, y ≥ 2 .
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Eq. ( 1. 1 ) is known as the Pillai equation. It is not known that Eq. ( 1. 1 ) has a finite
number of solutions if a, b, k are relatively prime and |abk| ≥ 2.
One the most important settings of the Pillai equation is the equation Un − Vm = k, where
(Un)n and (Vm)m are fixed linear recurrent sequences and k is a fixed integer. In [9], Chim
et al. proved that this equation, under some conditions, has at most two distinct solutions
(n,m). A special case of this equation is the equation Un − bm = k with b a fixed integer.
In [20], Heintze et al. showed that there exist effectively computable constants B and N0

such that for any integers b, c with b > B the equation Un−bm = k has at most two distinct
solutions (n,m) ∈ N2 with n ≥ N0 and m ≥ 1. Now, we mention some recent works
concerning these cases of the Pillai equation. In [3], Bravo et al. found all integers numbers
that can be written as a difference of a Tribonacci number and a power of 2 in more than
one way. Their work was a continuation of [11], in which they solved the same problem for
Fibonacci numbers and a powers of 2. In [8], Chim et al. investigated differences between
a Fibonacci number and a Tribonacci number that produce an integer in at least two ways.
In [9], they generalized their results in [8]. In [23], Lomeli et al. solved Pn − Fm =
Pn1

− Fm1
, where Pn and Fn are the nth Padovan and Fibonacci numbers, respectively.

In [14], Erazo et al. showed that, for integers c, n,m, the equation c = Xn − 2m, where
Xn is the X-coordinate of the solution to the Pell equation, has at most 3 solutions with
n ≥ 1 and m ≥ 0. In [15], they continued the study. In [10], Ddamulira and Luca
solved the previous problem for k-generalized Fibonacci numbers instead of Fibonacci
numbers. In [18], Garćıa and Gómez specified the integers that expressible as a difference
of a perfect power and a k–Pell number it at least two ways. In [16], Faye and Edjeou
solved the problem for Pell numbers, Pell–Lucas numbers and a powers of 3. In [21],
Hernández et al. studied, for non-negative integer pairs (n,m) ̸= (n1,m1), the equation
Fn − Pm = Fn1 − Pm1 where Pn is the nth Pell number. In [1], Batte et al. proved that
there exist at most 4 distinct representations to write an integer in the form Fk − pl with p
prime, k ≥ 2 and l ≥ 0. For more applications of Diophantine equations we refer to [22]
and [28]. This paper is a contribution to the previous works in the literature.

We aim to completely determine the numbers a which can be expressed in more than
one way as a difference of a balancing number and a power of 2. In other words, we study
the equation:

Br − 2s = a (1. 2)

for fixed integer a and non negative integers r and s. The following result gathers the so-
lutions. The only integers that can be represented in the form Br − 2s ,with r, s ≥ 0, in at
least two ways are -1 and -2. In addition, the representations are

−1 = B0 − 20 = B1 − 21,−2 = B0 − 21 = B2 − 23

The approach is as follows: we upper bound all the implied variables by a single variable.
Then Matveev’s theorem is employed to obtain an upper bound for this variable. The
obtained bound is too large and so it is difficult to probe all the possible cases. As a result,
we try to obtain certain linear forms to utilize the result of Dujella and Pethö to reduce that
bound. Lastly, Sage computations are used to determine the solutions.
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2. NUMBER THEORETIC BACKGROUNDS

2.1. Balancing numbers. Balancing numbers are defined recursively by B0 = 0, B1 = 1
and Bn+1 = 6Bn −Bn−1 for n ≥ 1. So, the initial terms are

0, 1, 6, 35, 204, 1189, 6930, ...

Balancing numbers are characterized by the equation

Θ(ν) := ν2 − 6ν + 1 = 0.

Assuming σ = 3 +
√
8 and ϱ = 3−

√
8 are the solutions, then the Binet formula is

Bn =
σn − ϱn

2
√
8

for all n ≥ 0. (2. 3)

One can show that
σn−1 ≤ Bn < σn for all n ≥ 1. (2. 4)

For details on balancing numbers and related concepts, see [2], [17], [27] and the references
mentioned therein.

2.2. Linear forms in logarithms. Assume that the minimal polynomial (over Z) of an
algebraic number κ is

c0x
m + c1x

m−1 + ...+ cm = c0

m∏
i=1

(x− κ(i)),

where c0 > 0 is integer and κ(i)’s are the conjugates of κ. Over an algebraic real field, the
logarithmic Weil height of κ is defined by

h(α) :=
1

m

(
log c0 +

m∑
i=1

log
(
max

{∣∣∣κ(i)
∣∣∣ , 1})) .

The following properties are satisfied by h (see [5] for proofs):

h (κ1 ± κ2) ≤ h (κ1) + h (κ2) + log 2;

h
(
κ1κ

±1
2

)
≤ h (κ1) + h (κ1) ;

h (κs) = |s| h (κ) (s ∈ Z) .
Using Matveev’s theorem, see [24], Bugeaud, Mignotte and Siksek deduced the following
result, see [4], .

Let dA be the degree of a real algebraic number field A, κ1, ..., κm ∈ A with κi > 0 for
i = 1, ...,m and let t1, ..., tm be non zero integers such that

Ω := κt1
1 κt2

2 ...κtm
m − 1 ̸= 0.

For i = 1, ...,m, let
Hi ≥ max{dAh (κi) , |log κi| , 0.16}, .

and β ≥ max{|t1| , ..., |tm|}.
Then

log |Ω| > −1.4 · 30m+3 ·m4.5 · d2A · (1 + log dA) · (1 + log β)H1...Hm. (2. 5)

The following result is a part of Lemma (2.2) in de Wager[12].
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Lemma 2.3. Let a, x ∈ R and |x| < a < 1. Then |x| < a
1−e−a |ex − 1|.

Immediately, if a = 1
2 then |x| < 2|ex−1|. This is the case that will be used throughout

the paper.

3. BOUNDING THE VARIABLES

Assume that there exist r, s, r1, s1 with (r, s) ̸= (r1, s1) and Br − 2s = Br1 − 2s1 .
The equation is symmetric. So we can assume that s ≥ s1. But s = s1 leads to r = r1,
contradicting the assumption. Therefore, s > s1. This implies that r > r1. Thus, r ≥ 2
and r1 ≥ 0. Bounding the variable r in the equation

Br −Br1 = 2s − 2s1 (3. 6)

is our goal in this section. We note that Br−Br−2 = 6Br−1−2Br−2 > 4Br−1 > Br1 .
Combining this with ( 2. 4 ) we see that, for r ≥ 3,

σr−3 ≤ Br−2 ≤ Br −Br1 = 2s − 2s1 < 2s (3. 7)

and
σr ≥ Br ≥ Br −Br1 = 2s − 2s1 ≥ 2s−1. (3. 8)

These imply that
log 2

log σ
(s− 1) ≤ r ≤ log 2

log σ
s+ 3. (3. 9)

If r < 150, then s ≤ 600. Solving Eq.( 3. 6 ) for 0 ≤ r1 < r ≤ 150 and 0 ≤ s1 < s ≤ 600
we obtain the solutions in Theorem 1. From now on, we assume that r ≥ 150. From
inequality ( 3. 9 ) we have s < 3r.

Inserting Binet formulas into Eq.( 1. 2 ), we get
σr − ϱr

4
√
2

− σr1 − ϱr1

4
√
2

= 2s − 2s1 . (3. 10)

Then ∣∣∣∣ σr

4
√
2
− 2s

∣∣∣∣ = ∣∣∣∣σr1 − ϱr1

4
√
2

+
ϱr

4
√
2
− 2s1

∣∣∣∣ .
Since |ϱ| < 1, it follows that∣∣∣∣ σr

4
√
2
− 2s

∣∣∣∣ < σr1 + 2

4
√
2

+ 2s1 <
σr1

√
2
+ 2s1 < 2 max{σr1 , 2s1}. (3. 11)

Then∣∣∣(√2)−1σr2−s−2 − 1
∣∣∣ < 2 max{σr12−s, 2s1−s} < max{σr1−r+4, 2s1−s+1}, (3. 12)

where in the last inequality we used σ > 2. Let Ω1 = (
√
2)−1σr2−s−2 − 1. If Ω1 = 0,

then σ2r = 22s+5. Conjugation in Q(
√
2) yields ϱ2r = 22s+5 ∈ Q which is impossible

since ϱ < 1. Therefore, Ω1 ̸= 0. Taking A = Q(σ) = Q(
√
2), we find that dA = 2. Let

m = 3, κ1 =
√
2, κ2 = σ, κ3 = 2, t1 = −1, t2 = r, t3 = −(s+ 2).

Then
h(κ1) =

1

2
log 2;
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h(κ2) =
1

2
log σ;

h(κ3) = log 2.

Let
H1 = log 2, H2 = log σ, and H3 = 2 log 2.

As 4r ≥ max{1, r, s+ 2}, we take β = 4r. Then Theorem (2.2) shows that

log |Ω1| > −c1(1 + log 4r),

where c1 = 1.4 · 306 · 34.5 · 4 · (1 + log 2)(log 2)(2 log 2 log σ). Therefore

log |Ω1| > −1.7 · 1012(1 + log 4r). (3. 13)

A combination with ( 3. 12 ) yields

min{(r − r1 − 4) log σ, (s− s1 − 1) log 2} < 1.7 · 1012(1 + log 4r).

Thus
min{(r − r1) log σ, (s− s1) log 2} < 1.8 · 1012(1 + log 4r). (3. 14)

Case I: min{(r − r1) log σ, (s− s1) log 2} = (r − r1) log σ.
From Eq.( 3. 6 ) we deduce that∣∣∣∣σr−r1 − 1

4
√
2

σr1 − 2s
∣∣∣∣ = ∣∣∣∣ϱr − ϱr1

4
√
2

− 2s1
∣∣∣∣ < 2s1 + 1 < 2s1+1.

Then ∣∣∣∣(σr−r1 − 1

4
√
2

)
σr12−s − 1

∣∣∣∣ < 2s1−s+1. (3. 15)

Let Ω2 =
(

σr−r1−1
4
√
2

)
σr12−s − 1. If Ω2 = 0, then

(σr−r1 − 1)σr1 = 4
√
2 · 2s

Conjugating in Q(
√
2) yields

(σr−r1 − 1)σr1 = (1 + ϱr−r1)ϱr1 . (3. 16)

We have (σr−r1 − 1)σr1 = σr − σr1 ≥ σr − σr−1 ≥ σr−1 ≥ σ149. In addition,
|(1 + ϱr−r1)ϱr1 | ≤ (1 + |ϱ|r−r1) |ϱr1 | < 2. This is a contradiction. Thus Ω2 ̸= 0. Set

κ1 =
σr−r1 − 1

4
√
2

, κ2 = σ, κ3 = 2, m = 3, t1 = 1, t2 = r1, t3 = −s.

Note that the minimal polynomial of κ1 divides 32x2 − 32Br−r1x+ 2(Cr−r1 − 1), where
Cr = σr+ϱr

2 is the rth Lucas-balancing numbers. Then,

h(κ1) ≤
1

2

(
log 32 + log

(
σr−r1 + 1

4
√
2

))
<

1

2
log(8

√
2σr−r1)

<
1

2
log(σr−r1+2) <

1

2
(r − r1 + 2) log σ

< 0.9 · 1012(1 + log 4r)

Moreover, h(κ2) =
1
2 log σ, and h(κ3) = log 2. So, we take

H1 = 1.8 · 1012(1 + log 4r), H2 = log σ, and H3 = 2 log 2.
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Also, 3r ≥ max{1, r1, s}. We take β = 3r. Thanks to Theorem(2.2), we have

log |Ω2| > −c2(1 + log 4r)(1 + log 3r),

where c2 = 1.4 · 306 · 34.5 · 4 · 1.8 · 1012 · (1 + log 2)(2 log 2 log σ). Then

log |Ω2| > −4.3 · 1024(1 + log 4r)2. (3. 17)

This and ( 3. 15 ) give

(s− s1) log 2 < 4.4 · 1024(1 + log 4r)2. (3. 18)

Case II: min{(r − r1) log σ, (s− s1) log 2} = (s− s1) log 2.
From Eq.( 3. 6 ) we deduce that∣∣∣∣ σr

4
√
2
− 2s1(2s−s1 − 1)

∣∣∣∣ = ∣∣∣∣σr1 + ϱr − ϱr1

4
√
2

∣∣∣∣ < σr1 + 2

4
√
2

< σr1 .

Then ∣∣∣√2
(
2s−s1 − 1

)−1
σr2−s1−2 − 1

∣∣∣ < σr1

s− s1
≤ 2σr1

2s
.

Since 2s > σr−3 and σ > 2, then∣∣∣∣(√2
(
2s−s1 − 1

))−1

σr2−s1−2 − 1

∣∣∣∣ < σr1−r+4. (3. 19)

Let Ω3 =
(√

2 (2s−s1 − 1)
)−1

σr2−s1−2 − 1. Assume that Ω3 = 0. Then we have
σr =

√
2 · 2s1+2(2s−s1 − 1). Conjugation in Q(

√
2) yields ϱr =

√
2 · 2s1+2(2s−s1 − 1).

Therefore, |ϱr| > 1, a contradiction. So, Ω3 ̸= 0. Let

κ1 =
√
2(2s−s1 − 1), κ2 = σ, κ3 = 2, m = 3, t1 = −1, t2 = r, t3 = −s1 − 2.

The minimal polynomial of κ1 is x2 − 2(2s−s1 − 1)2. Consequently,

h(κ1) = log
(√

2
(
2s−s1 − 1

))
< (s− s1 + 1) log 2 < 1.9 · 1012 (1 + log 4r) .

Let
H1 = 3.8 · 1013(1 + log 4r), H2 = log σ, and H3 = 2 log 2.

Also, 3r ≥ max{1, s1 + 2, r}. So, taking β = 3r and employing Theorem(2.2) again, we
get

log |Ω3| > −c3(1 + log 4r)(1 + log 3r), (3. 20)

where c2 = 1.4 · 306 · 34.5 · 4 · 3.8 · 1013 · (1 + log 2)(2 log 2 log σ). Then

log |Ω3| > −9.1 · 1025(1 + log 4r)2. (3. 21)

This and ( 3. 19 ) give

(r − r1) log σ < 9.2 · 1025(1 + log 4r)2. (3. 22)

Thus, by ( 3. 18 ) and ( 3. 22 ), we arrive at

min{(r − r1) log σ, (s− s1) log 2} < 4.4 · 1024(1 + log 4r)2 (3. 23)

and
max{(r − r1) log σ, (s− s1) log 2} < 9.2 · 1025(1 + log 4r)2. (3. 24)
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From Eq.( 3. 6 ) we see that∣∣∣∣(σr−r1 − 1

4
√
2

)
σr1 − 2s1

(
2s−s1 − 1

)∣∣∣∣ = ∣∣∣∣ϱr − ϱr1

4
√
2

∣∣∣∣ < |ϱ|r1 =
1

σr1
.

Then∣∣∣∣( σr−r1 − 1√
2 (2s−s1 − 1)

)
σr12−s1−2 − 1

∣∣∣∣ < 1

σr1(2s − 2s1)
≤ 2

σr12s
< σ4−r. (3. 25)

Let Ω4 =
(

σr−r1−1√
2(2s−s1−1)

)
σr12−s1−2 − 1. If Ω4 = 0, then conjugation produces a contra-

diction. Therefore, Ω4 ̸= 0. We take

κ1 =
σr−r1 − 1√
2(2s−s1 − 1)

, κ2 = σ, κ3 = 2, m = 3, t1 = −1, t2 = r1, t3 = −s1 − 2.

We have

h(κ1) ≤ h

(
σr−r1 − 1√

2

)
+ h

(
2s−s1 − 1

)
<

1

2
(r − r1 + 2) log σ + (s− s1) log 2

< 1.4 · 1026 (1 + log 4r)
2
.

Take
H1 = 2.8 · 1026(1 + log 4r)2, H2 = log σ, and H3 = 2 log 2.

Also, 3r ≥ max{1, s1 + 2, r1}. We take β = 3r. Then

log |Ω4| > −c4(1 + log 4r)2(1 + log 3r),

where c4 = 1.4 · 306 · 34.5 · 4 · 5 · 1024 · (1 + log 2)(2 log 2 log σ). Then

log |Ω3| > −1.2 · 1037(1 + log 4r)3. (3. 26)

A combination of ( 3. 25 ) and ( 3. 26 ) yields

r − 4 < 0.7 · 1037(1 + log 4r)3.

Hence
r < 7.3 · 1042.

4. REDUCING THE UPPER BOUND

Set ||λ| | := min{|λ− n| : n ∈ Z} for any real number λ . Dujella and Pethö proved
the next result, see [13].

Lemma 4.1. Let K > 0 be an integer, λ be an irrational number, θ,A,B be given real
numbers with A > 0, B > 1 . Let p

q be a convergent of λ and q > 6K. If s, t, ω > 0 are
positive integers that satisfy

0 < |sλ− t+ θ| < A

Bω

with s ≤ K, and ϵ := ||θq|| −K||λq|| > 0, then

ω <
log
(

Aq
ϵ

)
logB

.
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Let
∆1 = r log σ − (s+ 2) log 2− log(4

√
2).

By Eq.( 3. 12 ), we have

|Ω1| =
∣∣e∆1 − 1

∣∣ < max{σr1−r+4, 2s1−s+1}. (4. 27)

So, by lemma (2.3), we have

|∆1| < 2 max{σr1−r+4, 2s1−s+1} < max{σr1−r+5, 2s1−s+2}. (4. 28)

If ∆1 > 0, then

0 < r

(
log σ

log 2

)
− s− 9

2
< max{ σ5

log 2
σr1−r,

4

log 2
2s1−s} < max{9704σr1−r, 6 · 2s1−s}.

(4. 29)
Let K = 7.3 · 1042 (K > r > 3s) , λ = log σ

log 2 , θ = −9
2 , A = 9704, B = σ or A = 6,

B = 2. The continued fraction of λ entails that q94 > 6K. Then

ϵ = ||θq94| | −K ||λq94| | > 0.49.

Lemma (4.1) entails that r − r1 < 64, or s− s1 < 151.
If ∆1 < 0, then

0 < (s+ 2)

(
log 2

log σ

)
− s+

log(4
√
2)

log σ
= s

(
log 2

log σ

)
− s+

log(16
√
2)

log σ

< max{ σ5

log σ
σr1−r,

4

log σ
2s1−s} < max{3816σr1−r, 3 · 2s1−s}.

Let K = 4.32·1043 , λ = log 2
log σ , θ = log(16

√
2)

log σ , A = 3816, B = σ or A = 3, B = 2. For
λ, we find that q95 > 6K(q95 = 315888950006391451014443556349119477725131236).
We compute

ϵ = ||θq95| | −K ||λq95| | > 0.49.

Lemma (4.1) entails that r − r1 < 64, or s − s1 < 151. Hence, ∆1 ̸= 0 implies that
r − r1 < 64, or s− s1 < 151.

We investigate each case separately. Let r − r1 < 64. Assume that s− s1 ≥ 20. Set

∆2 = r1 log σ − s log 2 + log

(
σr−r1 − 1

4
√
2

)
.

By Eq.( 3. 15 ) and lemma (2.3), we obtain

|∆2| <
4

2s−s1
. (4. 30)

Since Ω2 ̸= 0, we deduce that ∆2 ̸= 0. If ∆2 > 0, then

0 < r1

(
log σ

log 2

)
− s+

log
(

σr−r1−1
4
√
2

)
log 2

<
4

(log 2)2s−s1
<

6

2s−s1
. (4. 31)

Let K = 7.2 · 1042 (K > r > 3s) , λ = log σ
log 2 , θt =

log
(

σt−1

4
√

2

)
log 2 , where t = r − r1,

A = 6, B = 2. As before, q94 > 6K. For 1 ≤ t ≤ 63 and t ̸= 2, we compute

ϵ = ||θtq94| | −K ||λq94| | > 0.007.
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Lemma (4.1) entails that s− s1 ≤ 157.
If ∆2 < 0, we obtain the same result.
For investigating the case t = 2, we use a theorem of Legendre, see Theorem 184 in

[19] for details. Let z = [a0, a1, ...] be a real number and p, q ∈ Z. If∣∣∣∣pq − z

∣∣∣∣ < 1

2q2
,

then p
q is a convergent of the continued fraction of z. Let t be a non negative integer such

that 1 ≤ q ≤ qt, then
1

(b+ 2) q2
<

∣∣∣∣pq − z

∣∣∣∣ ,
where b = max0≤i≤t{ai}

Now we finish our investigation of this part by considering the case t = 2. The reason
behind excluding t = 2 is that σ2−1

4
√
2

= σ. If t = 2, then

∆2 = (r1 + 1) log σ − s log 2.

Consequently, by Eq.( 3. 15 ),∣∣∣∣ log σlog 2
− s

r1 + 1

∣∣∣∣ < 3

2s−s1(r1 + 1)
.

Assume that s− s1 > 150. Then 2s−s1 > 6 · 8 · 1042 > 6 · (r1 + 1). Thus

3

2s−s1(r1 + 1)
<

1

2(r1 + 1)2
.

Therefore ∣∣∣∣ log σlog 2
− s

r1 + 1

∣∣∣∣ < 1

2(r1 + 1)2
.

Then, by Legendre’s theorem, we deduce that s
r1+1 is a convergent of log σ

log 2 = λ. Actually,
q90 = 8876525780054568437394852482864205881249240 > 8 · 1042 > r1 + 1. Then
b = 200. Hence

1

202(r1 + 1)2
<

3

2s−s1(r1 + 1)
.

This implies that
2s−s1 < 3 · 202(r1 + 1) < 3 · 202 · 8 · 1042.

Then
s− s1 ≤ 151.

Now, we turn our attention to the case s− s1 ≤ 151. Let

∆3 = r log σ − s1 log 2 + log(
1

4
√
2(2s−s1 − 1)

).

Assume that r − r1 ≥ 20. Then, by lemma (2.3), we have

|∆3| <
2σ4

σr−r1
.
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If ∆3 > 0, then

0 < r

(
log σ

log 2

)
− s1 +

log
(

1
4
√
2(2s−s1−1)

)
log 2

<
2σ4

(log 2)σr−r1
<

3330

σr−r1
.

Let K = 7.3 · 1042 , λ = log σ
log 2 , θu =

log
(

1
4
√

2(2u−1)

)
log 2 , where u = s − s1, A = 3330,

B = σ. As before, q94 > 6K. For 1 ≤ u ≤ 150, we find that

ϵ = ||θuq94| | −K ||λq94| | > 0.005.

Hence, by Lemma (4.1), r − r1 ≤ 65. The same result is obtained if ∆3 < 0.
In summary, all the previous cases always give the bounds r − r1 ≤ 65 and s− s1 ≤ 157.

Now, let

∆4 = r1 log σ − s1 log 2 + log

(
σr−r1 − 1

4
√
2 (2s−s1 − 1)

)
.

By ( 3. 25 ), we deduce that

|∆4| <
2σ4

σr
.

If ∆4 > 0, then

0 < r1

(
log σ

log 2

)
− s1 +

log
(

σt−1
4
√
2(2u−1)

)
log 2

<
2σ4

(log 2)σr
<

3330

σr
,

where t = r − r1 and u = s− s1.

Let K = 7.2 · 1042 , λ = log σ
log 2 , θt,u =

log
(

σt−1

4
√

2(2u−1)

)
log 2 , A = 3330, B = σ. As before,

q94 > 6K. We find that

ϵ = ||θt,uq94| | −K ||λq94| | > 0.0001,

for all 1 ≤ t ≤ 65, 1 ≤ u ≤ 157, except the pairs (t, u) = (2, 1), (4, 2), (10, 83), (28, 99).
Excluding these pairs, as they give negative values of ϵ, we get r < 68. This contradicts
the main assumption that r ≥ 150.
The case t = 2, u = 1: can be investigated as we did in treating ∆2.
The case t = 10, u = 83: Using q95, we find that

ϵ = ||θ10,83q95| | −K ||λq95| | > 0.09,

Hence, by Lemma (4.1), r ≤ 66.
The case t = 28, u = 99: Using q95 again, we find that

ϵ = ||θ28,99q95| | −K ||λq95| | > 0.03,

Hence, by Lemma (4.1), r ≤ 67.
The case t = 4, u = 2: We have
Since σ4−1

4
√
2(22−1)

= 2σ2. Therefore,

(r1 + 2)
log σ

log 2
− (s1 − 1) = r1

(
log σ

log 2

)
− s1 +

log 2σ2

log 2
.
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Then ∣∣∣∣(r1 + 2)
log σ

log 2
− (s1 − 1)

∣∣∣∣ < 3330

σr
.

Therefore ∣∣∣∣ log σlog 2
− s1 − 1

r1 + 2

∣∣∣∣ < 3330

σr(r1 + 2)
.

As before σr > 2 · 3330 · 8 · 1042 > 2 · 3330 · (r1 +2). Thus s1−1
r1+2 is a convergent of log σ

log 2 .
Similar calculations as before gives r < 64.

As a result, we see that the all the solutions lie inside the ranges 0 ≤ r1 < r ≤ 150 and
0 ≤ s1 < s ≤ 600. This completes the proof.

5. CONCLUSION

We completely determined the solutions of the Pillai’s problem with Balancing numbers
and powers of 2. We used a result of Bugeaud, Mignotte and Siksek that deduced from
Matveev’s theorem. A reduction lemma is then applied to decrease the too large upper
bound to an investigatable level. We found that there are two numbers (-1 and -2) which
have at least two representations of the form Br − 2s. This can be continued to investigate
the problem of Pillai same problem with other integer sequences.
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[7] E. Catalan, Note extraite d’une lettre adressée à l’éditeur, J. Reine Angew. Math. 27, (1844) 167–195.
[8] K. C. Chim, , I. Pink and V. Ziegler, On a variant of Pillai’s problem, Int. J. Number Theory. 13, (2017)

1711-1727.
[9] K. C. Chim, , I. Pink and V. Ziegler, On a variant of Pillai’s problem II, J. Number Theory. 183, (2018)

269-290.



On Pillai’s Problem With Balancing Numbers and Powers of 2 399

[10] M. Ddamulira and F.Luca, On the problem of Pillai with k-generalized Fibonacci numbers and powers of 3,
Int. J. Number Theory. 16(7), (2020) 1643-1666.

[11] M. Ddamulira, F. Luca and M. Rakotomalala, On a problem of Pillai with Fibonacci numbers and powers of
2, Proc. Math. Sci. 127, (2017) 411-421.

[12] B.M.M. de Weger, Algorithms for Diophantine Equations, CWI Tracts 65. Stichting Mathematisch Centrum,
Amsterdam, 1989.
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