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Abstract. This research paper investigates the bioconvection magneto
hydrodynamics (MHD) squeezing nanofluid flow between two parallel
plates. One of the plates is stretched and the other is kept fixed. In
this study the water is taken as a base fluid because it is a favorable fluid
for living microorganisms. Appropriate variables lead to a strong nonlin-
ear ordinary differential system. The obtained nonlinear system has been
solved via homotopy analysis method (HAM). The significant influences
of thermophoresis and Brownian motion have also been taken in nanofluid
model. The convergence of the method has been shown numerically. The
variation of the Skin friction, Nusselt number, Sherwood number and their
effects on the velocity, concentration, temperature and the density motile
microorganism profiles are examined. It is observed that increasing ther-
mal radiation augmented the temperature of the boundary layer area in
fluid layer. This increase leads to drop in the rate of cooling for nanofluid
flow. An interesting variation are inspected for the density of the motile
microorganisms due to the varying bioconvection parameter in suction and
injection cases. Furthermore, for comprehension the physical presentation
of the embedded parameters, such as unsteady squeezing parameter (λ )
, Thermal radiation parameter (Rd), Peclet number (Pe), Thermophoresis
parameter (Nt), Levis number (Le) , Prandtl number (Pr), Schmidt num-
ber (Sc)and Brownian motion parameter (Nb) are plotted and discussed
graphically. At the end, we made some concluding remarks in the light of
this research article.

Key Words: MHD, Squeezing flow, Nano fluid, Parallel plates, Gyrotactic Microorgan-
isms and HAM.
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1. INTRODUCTION

Bioconvection model for MHD squeezing flow with heat and mass transfer between two
parallel plates containing gyrotactic microorganisms under the influence of thermal radi-
ation has been studied. It plays a very important role in the real world phenomena and
has vast applications which attract the researchers. Squeezing flow between the parallel
plates has received the attention of recent researchers due to widespread significance in
different fields, particularly in mechanical engineering, chemical engineering and food in-
dustry etc. (see [12, 23]). Many scientists worked in this field, according to their levels
and needs. A number of publications are available to explain and demonstrate the proper-
ties and behaviour of squeezing nanofluid for industrial applications like nuclear reactions,
foods, electronics, biomechanics, transportations etc. There are several examples regarding
squeezing flow, important are injection, compression and polymer preparation. This field
got considerable attention due to useful applications in the Biophysical and Physical field
as well. Stefan [51] has been explored squeezing flow using lubrication approximation.
Verma [52] has studied squeezing flow between parallel plates. Singh et al. [49] high-
lighted mass relocation and the effect of thermophoresis and Brownian motion. Acharya
et al. [4] investigated flow of the Cu water and Cu-kerosene nanofluid between parallel
plates. Hayat et al. [20] explored magneto-hydrodynamic (MHD) effect on squeezing flow
in Jeffery nanofluids for parallel disc.Heat transfer plays a very important role in industrial
and practical situations. In many practical and industrial situations, heat exchanged in the
system with the help of fluid. Heat transfer has plenty of useful applications in many equip-
ment’s such as heat exchangers, thermal conductivity and the heat transfer coefficient of the
fluid which have a significant role. In order to improve the heat transfer efficiency differ-
ent researchers have been investigated heat transfer in the nanofluids [13,17,29,42,45]. In
the light of the growing world competition in many industries and the role of heat trans-
fer in the costs of production, researchers turned their attention towards the new class of
fluids that have more effective thermal properties as compared to that of regular fluids.
This sort of fluids are suspended in the base fluid uninterruptedly and stably. Water, gly-
col and kerosene oil, etc. are used as the base fluids. For thermal conductivity of the
nanofluid, several models have been proposed. For instance, we can study [13,29] and
references therein. Firstly, Choi [13] explored the concept of enhancing thermal conduc-
tivity of the base fluid (water, glycol and kerosene oil, etc.). They termed such type of
fluid as nanofluid. Nano-fluid is the composition of Nano-particles, which shows signif-
icant properties at a reticent concentration of Nano-particles. Nano-fluid is a term refers
to liquid consisting sub micro particles. It has abundant applications, but the important
feature is the development of thermal conductivity observed by Masuda et al. [39]. Her
investigation reveals that Nano-fluid has different thermal properties like thermal viscosity,
thermal infeasibility, and relocation of temperature, convection temperature and thermal
conductivity as compared to oil and water base fluids [14,15,16,53]. Hamad [18] has been
investigated the Nano-fluid analytical solution for convection flow in occurrence of mag-
netic field. Flow of nanofluid between parallel plates is one of the benchmark problems
which have important and crucial applications. Goodman [19] was the first one to inves-
tigate viscous fluid in parallel plates. Borkakoti and Bharali [10] have been investigated
Hydro magnetic viscous flow between parallel plates where one of the plates is a stretching
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sheet. Sheikholeslami et al. [8,47,48] studied nanofluid flow of viscous fluids between par-
allel plates with rotating systems in three dimensions under the magneto hydrodynamics
(MHD) effects. Mahmoodi and Kandelousi [38] have examined the hydro magnetic effect
of Kerosene?alumina nanofluid flow in the occurrence of heat transfer analysis, differential
transformation method is used in their work. Thermal radiation is also a part of this inves-
tigation and has an important role in flow phenomena. It has various applications because
of its dependence on temperature difference, as the polymer processing industries are using
the radiation effects for the transformation of heat. The common ways of transfer of heat
in industry is not beneficial nowadays. The radiations play significant role in heat transfer.
Hayat et al. [21] discussed thermal radiations influence in squeezing flows of Jeffery fluids.
Ali et al. [6] investigated effect of radiations on unsteady free convection magneto hydro-
dynamics flows of the Brinkman kind fluids in a porous medium have Newtonian heat. The
flow of mass by temperature gradient named Sort effects or thermal diffusion and energy
flows due to mass flow by temperature gradient is known Dufour effect or diffusion ther-
mal effect and it is reciprocal of the first one. Thermal diffusion is used for separation of
different isotopes of medium and light molecular weight. Nakhi and Chamkha [11] have
been investigated MHD mixed radiation- convection interaction of permeable surface ab-
sorbed at porous medium being there of Sorts and Dufours effect. Srinivasacharya [50] has
been investigated both the effects in vertical curly surface in the existence of the porous
medium. One of the very significant motive regarding the heat transfer enhancements in
the nanofluid is the addition of microorganisms. The addition of microorganisms (bacteria
and algae) in the base fluid elaborates the operation of bioconvection. [43] Which is pre-
ceded by their up-spinning oxygen, gravity and the source of light and their density tends
to be slightly greater as compared to the ambient fluid and leads to an unstable density
field. The dilution of microorganisms in the nanofluids amends its thermal conductivity
importantly. The mixed convection flow of the nanoparticles and microorganisms is called
gyrotactic microorganisms. Recently, Khan et al. [30] and Ammarah et al. [44] explored
the problem of the bioconvection flow in different geometries. Khan et al [26] studied
magnetic and Navier slip effect in heat and mass transfer in gyrotactic micro-organism in
vertical surface. Similarly, Khan with Makinde [27] have been studied boundary layer flow
of MHD in Nano-fluid consisting gyrotactic organism in linearly stretching sheet. In the
present field of science and engineering most of mathematical problems are so complex in
their nature that the accurate solution is almost extremely difficult. So for the solution of
such problems, Numerical and Analytical methods are used to find the approximate solu-
tion. One of the important and popular techniques for solution of such type problems is
HAM (Homotopy Analysis Method) [1,2,32,33,34,37] and the recent work about analyti-
cal solution and HAM can also be seen in [3,5,7,9,22,24,25,28,31,40,41,46,54]. Homotopy
analysis Method is a substitute method and its main advantage is applying to the nonlinear
differential equations without discretization and linearization.In this manuscript, we study
the bioconvection flow of a nanofluid between two parallel plates in the presence of mi-
croorganisms under the influence of thermal radiation. Water is taken as a base fluid for the
survival of the microorganisms. The Well-known Homotopy analysis Method is utilized
for numerical and analytical solutions, respectively. The influence of all nondimensional
physical parameters embedded in the bioconvection flow model is studied graphically as a
function of velocity, temperature, concentration and density of the motile microorganisms
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for suction and injection, respectively. Many similar and improved results have been found
and discussed analytically with the help of various graphs. The problem is formulated in
section 2 and transformed into the dimensionless system of ordinary differential equations
that describes the bioconvection flow between parallel plates. The next section presents
problem development. Section 3 depicts the development of convergent series solutions.
Analysis for convergence and discussion have been examined in Sections 4 and 5, respec-
tively. Section 6 gives the main outcomes of the present study.

2. PROBLEM’S MATHEMATICAL FORMULATION:

The calculations and modelling used in this research article are explained as: The un-
steady, two-dimensional and symmetric-nature flow of a viscous incompressible fluid be-
tween two parallel plates with the effects of MHD and thermal radiations is considered.
The plates are placed in the Cartesian coordinates system in such a way that the lower plate
is on the horizontal x-axis, and the y-axis is at the perpendicular position to the lower plate
and the lower plate is fixed. It is assumed that the distance between these parallel plates is
y = h, where h is a function of t. Furthermore, it is assumed that the lower plate is capable
of moving away or towards the lower plate placed at y = 0. This plate (upper Plate) moves
with v(t) = dh

dt and the constant magnetic-fieldB0 is acting in the y-direction. The temper-
atures at the upper and lower plates are T1 and T2, respectively. It is also assumed that both
plates (upper and lower) are maintained at constant temperature. Where upper plate has
reflexive supporting conditions and nanoparticles are scattered uniformly at lower plate.
Uniform microorganisms distribution on the upper plate represented by N2 and lower plate
by N1 . The nanoparticles are scattered uniformly on the lower plate. The geometry of the
nanofluid flow phenomena is shown in Fig.1.

FIGURE 1. Geometry of the Nanofluid flow.
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Observance in the above deliberation, the elementary equations are continuity, velocity,
heat, concentration and density of the motile microorganism are articulated [9] as follows,

(2. 1)
∂û

∂x
+
∂v̂

∂y
= 0,

(2. 2) ρ
[
∂û
∂t + û∂û∂x + v̂ ∂û∂y

]
= −∂p

∂x
+ µ

(
∂2û

∂x2
+
∂2v̂

∂y2

)
− σB2

0 û(t),

(2. 3) ρ
[
∂v̂
∂t + û ∂v̂∂x + v̂ ∂v̂∂y

]
= −∂p

∂y
+ µ

(
∂2v̂

∂x2
+
∂2v̂

∂y2

)
,

(2. 4)
∂T

∂t
+ û

∂T

∂x
+ v̂

∂T

∂y
= α̂

(
∂2T
∂x2 + ∂2T

∂y2

)
+ τ

DB

(
∂C
∂x

∂T
∂x + ∂C

∂y
∂T
∂y

)
+

DT

T0

[
(∂T∂x )2 + (∂T∂y )2

] 
− 1

(ρcp)f

∂qrd
∂y

,

(2. 5)
∂C

∂t
+ û

∂C

∂x
+ v̂

∂C

∂y
= DB

(
∂2C
∂x2 + ∂2C

∂y2

) DT

T0

[
∂2T
∂x2 + ∂2T

∂y2

]
,

(2. 6)
∂N

∂t
+ û

∂N

∂x
+ v̂

∂N

∂y
+
∂(Nv∗)
∂z

= Dn
∂2N

∂y2
,

In above mentioned Eqs. (2.1 - 2.6) û and v̂ denotes velocity components, T and C rep-
resents the temperature at the plate and the volumetric fraction of the nanoparticles, N be
density of the motile-microorganism, τ =

(ρc)p
(ρc)f

, where (ρc)p and (ρc)f represents temper-
ature capacity of nanoparticles and fluids. Moreover, µ denotes viscosity, DB represents
Brownian diffusion and DT denotes thermophoretic coefficient, in x and y directions re-
spectively. Eqs. (2.1 - 2.6) represents the flow model for nanofluid. Further v∗ = bwc

∆C
∂C
∂y .

In Eq (2.4), qrd is the radiative heat fluctuation is expressed in term of Roseland approxi-
mation as:

(2. 7) qrd = − 4σ∗

3K∗
∂T 4

∂y
,

where in the above equation (2.7) K∗ and σ∗ denoted the mean absorption coefficient
and the Stefan Boltzmann constant respectively. Supposing that the difference in heat inside
the flow is such that T 4 can be expressed as a linear-combination of the heat, we enlarge
T 4 as a Taylor’s series about as under:

(2. 8) T 4 = T 4
0 + 4T 3

0

(
T − T0

)2
+ ...

After ignoring terms of higher order term, we obtain:

(2. 9) T 4 = 4TT 3
0 − 3T 4

0 .

By Putting Eq. (2.8) in Eq. (2.7) we get

(2. 10)
∂qr
∂y

= −16σ∗T 3
0

3K∗
∂2T

∂y2
.
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For lower and upper plates feasible auxiliary conditions are:

(2. 11) û = 0, v̂ = 0, T = T1, C = C1, N = N1,

(2. 12) v̂ =
dh

dx
, û = 0, T = T2, DB(

∂C

∂y
) +

DT

T0
(
∂T

∂y
) = 0, N = N2,

For the flow model of microorganism the non-dimensional similarity variables are:

(2. 13) Ψ(x, y) =
(

1−αt
bv

)−1
2 xf(η), u =

(
1−αt
bx

)−1
f ′(η), v = −

(
1−αt
bv

)−1
2 f(η),

η =
(
v(1−αt)

b

)−1
2

y, θ(η) =
(
T−T0

T2−T0

)
, φ(η) = −1 +

C

C0
, andθ(η) =

(
N−N0

N2−N0

)
,

Substituting Eq. (2.13) into the governing Eqs. (2.1-2.6), we develop the subsequent suc-
ceeding transformed ODE’s that are given bellow:

(2. 14) f iv + ff ′′′ − f ′f ′′ − ληf ′′′ − 3λf ′′ −Mf ′′ = 0,

(2. 15)
(
1 + 4

3

)
θ′′ + Pr(f − λη)θ′ +Nbφ′θ′ +Nt(θ′)2 = 0,

(2. 16) φ′′ + Le(f − λη)φ′ +
(
Nt
Nb

)
θ′′ = 0,

(2. 17) ϕ′′ + Sc(f − λη)ϕ′ + Peϕφ′′ − Peϕ′φ′ = 0.

The non-dimensional parameters after simplification are written as:

(2. 18)

λ =
α

2b
,M =

σB2
0

ρb
(1−αt), Rd =

4T 3σ

3(ρcp)fkα
, Sc =

v

Dn
, Nt =

(ρc)p
(ρc)f

DT (T2 − T0)

T0α
,

Nb =
(ρc)p
(ρc)f

DbC0

α
, Pr =

v

α
, Pe =

bcWc

Dn
, Le =

v

DB
, ω =

αH

2(vb)
1
2

, δϕ =
N1 −N0

N2 −N0
,

δφ =
C1 − C0

C0
, δθ =

T1 − T0

T2 − T0

In the above model equations (2.14 - 2.17) unlike parameters are used like λ represent
unsteady squeezing parameter, The other dimensionless physical parameter which are used
in the Flow Model are thermal radiation (Rd) , Peclet number (Pe), Levis number (Le)
, Brownian motion (Nb), Prandtl number (Pr), Schmidt number (Sc) and thermophoresis
parameter (Nt). Also ω, δφ, δϕ, and δθ all are constants. Furthermore, transmuted form
of the feasible boundary conditions both for lower as well as for upper plates defined in
equations (2.11) and (2.12) are as:

(2. 19) f(0) = 0, f ′(0) = 0, f ′(1) = 0, f(1) = w, θ(1) = δθ, θ(0) = 1,

φ(1) = δφ, ϕ(1) = δϕ, φ(0)Nb+ θ′(0)Nt = 0, ϕ(0) = 1.
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The Skin-Friction, Nusselt Number, Sherwood Number and the Density Number of the
motile microorganism are defined under as:

(2. 20)

Cf =
2τω

ρU2
w

, Nux =
xqw

K(Tw − T0)
, Shx =

xqm
DB(Cw − C0)

, Nnx =
xqn

Dn(nw − n0)
,

τω = |µ∂u
∂y
|y=0, qω = |K∂T

∂y
|y=0, qm = | −DB

∂φ

∂y
|y=0, qn = | −Dn

∂ζ

∂y
|y=0,

By using Eq. (2.13) dimensionless form, Nusselt Number, Skin-Friction, Sherwood Num-
ber and Local-Density of motile microorganisms are as:

(2. 21)
√
Rex
2

Cf = f ′′(0), Nux(Rex)−1/2 = −θ′(0), Shx(Rex)−1/2 = −φ′(0),

andNnx(Rex)−1/2 = −ζ ′(0).

Where Rex = xUω

v is signifies a local Reynolds number.

3. SOLUTION BY HAM:

In order to solve Eqs. (2.14 - 2.17) with boundary-conditions (2.19), we apply ”Homo-
topy Analysis Method”. For the solution HAM scheme has advantage such as it is free from
large or small parameters. This technique offers an easy way to confirm convergence of the
solution. Moreover, it delivers freedom for the right selection of auxiliary parameters and
base function. In this scheme the assisting parameter ~ is used to control the convergence
of the problem The initial guesses and linear operators for the dimensionless momentum,
energy, concentration and density of motile microorganism equations are (f0, θ0, φ0, ϕ0)
and (Lf , Lθ, Lφ, Lϕ) These are presented in the forms:

(3. 22) f0(η) = 3ωη2 − 2η3, θ0(η) = 1− η + δθη, ϕ0(η) = 1− η + δϕη,

φ0(η) =
1

Nb
(−Nt+Ntη +Ntδθ −Ntδθη +Nbδφ).

Selected linear operators, are:

(3. 23) Lf (f) =
∂4f

∂η4
, Lθ(θ) =

∂2θ

∂η2
, Lφ(φ) =

∂2φ

∂η2
, Lϕ(ϕ) =

∂2ϕ

∂η2
.

The above mentioned differential operators contents are shown below:

(3. 24) Lf (ε1 + ε2η + ε3η
2) + ε4η

3) = 0, Lθ(ε5 + ε6η) = 0, Lφ(ε7 + ε8η) = 0,

Lϕ(ε9 + ε10η) = 0.

Here
∑10
i=1 εi where i = 1, 2, 3, ... denotes arbitrary constants. The resultant non-linear

operators are given by: Nf ,Nθ,Nφ, and Nϕ.

(3. 25) Nf

[
f̂(η; ξ)

]
=
∂4f̂(η; ξ)

∂η4
+ f̂(η; ξ)

∂2f̂(η; ξ)

∂η2
− ∂f̂(η; ξ)

∂η

∂2f̂(η; ξ)

∂η2

− λη∂
3f̂(η; ξ)

∂η3
− 3λ

∂2f̂(η; ξ)

∂η2
−M ∂2f̂(η; ξ)

∂η2
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(3. 26) Nθ

[
f̂(η; ξ), θ̂(η; ξ), φ̂(η; ξ)

]
=
(
1 + 4

3Rd
) ∂2θ̂(η; ξ)

∂η2

+ Pr(f(η; ξ)− λη)
∂θ̂(η; ξ)

∂η
+Nb

∂θ̂(η; ξ)

∂η

∂φ̂(η; ξ)

∂η
+Nt

(
∂θ̂(η;ξ)
∂η

)2

(3. 27) Nφ

[
f̂(η; ξ), θ̂(η; ξ), φ̂(η; ξ)

]
=
∂2φ̂

∂η2
+ Le(f(η; ξ)− λη)

∂φ̂(η; ξ)

∂η

+
Nt

Nb

∂2θ̂(η; ξ)

∂η2

(3. 28) Nϕ

[
f̂(η; ξ), ϕ̂(η; ξ), φ̂(η; ξ)

]
=
∂2ϕ̂

∂η2
+ Sc(f(η; ξ)− λη)

∂ϕ̂(η; ξ)

∂η

− Peϕ̂(η; ξ)
∂2ϕ̂

∂η2
− Pe∂φ̂

∂η

∂ϕ̂

∂η

4. ZEROTH ORDER DEFORMATION PROBLEM:

(4. 29) (1− ξ)Lf [f̂(η, ξ)− f̂0(η)] = ψhfNf [f̂(η, ξ)]

(4. 30) (1− ξ)Lθ[θ̂(η, ξ)− θ̂0(η)] = ξhθNθ[f̂(η, ξ), θ̂(η, ξ), φ̂(η, ξ)]

(4. 31) (1− ξ)Lφ[φ̂(η, ξ)− φ̂0(η)] = ξhφNφ[f̂(η, ξ), θ̂(η, ξ), φ̂(η, ξ)]

(4. 32) (1− ξ)Lϕ[ϕ̂(η, ξ)− ϕ̂0(η)] = ξhϕNϕ[f̂(η, ξ), θ̂(η, ξ), ϕ̂(η, ξ)]

The subjected boundary conditions are derived as:

(4. 33) f̂(η, ξ)|η=0 = 0, f̂(η, ξ)|η=1 = w,

(4. 34) θ̂(η, ξ)|η=0 = 1, f̂(η, ξ)|η=1 = δθ,

(4. 35) ϕ̂(η, ξ)|η=0 = 1, ϕ̂(η, ξ)|η=1 = δϕ,

(4. 36)
∂f̂(η, ξ)

∂η
|η=0 = 0,

∂f̂(η, ξ)

∂η
|η=1 = 0,

(4. 37) φ̂(η, ξ)|η=1 = δφ, Nbφ̂(η, ξ)|η=0 +Nt
∂θ̂(η, ξ)

∂η
|η=0 = 0,

where ξ ∈ [0, 1] is the embedding constraint, hf , hθ, hφ, hϕ were used to regulate conver-
gence of the solution. Where ξ = 0 , ξ = 1 we have;

(4. 38) f̂(η) = f̂(η, 1), θ̂(η) = θ̂(η, 1), φ̂(η) = φ̂(η, 1), ϕ̂(η) = ϕ̂(η, 1)
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Expanding the above term of ξ with use of Taylor’s series expansion we obtain:

(4. 39) f̂(η, ξ) = f̂0(η) +
∞∑
i=1

f̂i(η)

(4. 40) θ̂(η, ξ) = θ̂0(η) +
∞∑
i=1

θ̂i(η)

(4. 41) φ̂(η, ξ) = φ̂0(η) +
∞∑
i=1

φ̂i(η)

(4. 42) ϕ̂(η, ξ) = ϕ̂0(η) +

∞∑
i=1

ϕ̂i(η)

(4. 43) f̂i(η) =
1

i!

∂f̂(η, ξ)

∂η
|η=0, θ̂i(η) =

1

i!

∂θ̂(η, ξ)

∂η
|η=0,

φ̂i(η) =
1

i!

∂φ̂(η, ξ)

∂η
|η=0, ϕ̂i(η) =

1

i!

∂ϕ̂(η, ξ)

∂η
|η=0

5. Ith ORDER DEFORMATION PROBLEM:

Differentiating Zeroth Order equations ith times we obtained the ith Order deformation
equations with respect to ξ dividing by i! and then inserting ξ = 0 So, ith order deformation
equations are:

(5. 44) Lf

[
f̂i(η)− ζif̂i−1(η)

]
= hfR

f
i (η),

(5. 45) Lθ

[
θ̂ii(η)− ζiθ̂i−1(η)

]
= hθR

θ
i (η),

(5. 46) Lφ

[
φ̂i(η)− ζiφ̂i−1(η)

]
= hφR

φ
i (η).

(5. 47) Lϕ
[
ϕ̂i(η)− ζiϕ̂i−1(η)

]
= hϕR

ϕ
i (η).

The resulting boundary conditions are:

(5. 48) f̂i(0) = f̂ ′i(0) = θ̂ii(0) = φ̂i(1) = f̂i(1) = f̂ ′i(1) = θ̂ii(1)

= ϕ̂ii(0) = ϕ̂ii(1) = 0, Nbφ̂i(0) +Ntθ̂′i(0) = 0
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and

(5. 49) Rfi (η) = f̂ ivi−1 +
i−1∑
k=0

f̂i−1−kf̂
′′′
k +

i−1∑
k=0

f̂ ′i−1−kf̂
′′
k − ληf̂ ′′′i−1 − 3λf̂ ′′i−1

−Mf̂ ′′i−1,

(5. 50) Rθi (η) =
(
1 + 4

3Rd
)
θ̂′′i−1 + Pr

(∑i−1
k=0 f̂i−1−kθ̂

′
k − ληθ̂′i−1

)
+Nb

i−1∑
k=0

φ̂′i−1−kθ̂
′
k +Nt

i−1∑
k=0

θ̂′i−1−kθ̂
′
k

(5. 51) Rφi (η) = φ̂
′′

i−1 + Le
(∑i−1

k=0 f̂i−1−kφ̂
′
k − ληφ̂′i−1

)
+

Nt

Nb
θ̂′′i−1,

(5. 52) Rϕi (η) = ϕ̂
′′

i−1 + Sc
(∑i−1

k=0 f̂i−1−kϕ̂
′
k − ληϕ̂′i−1

)
+ Pe

i−1∑
k=0

ϕ̂′i−1−kφ̂
′′
k

− Pe
i−1∑
k=0

ϕ̂′i−1−kφ̂
′
k,

Where

(5. 53) ζi =

{
1, ξ > 1
0, ξ 6 1

6. CONVERGENCE:

When the series solutions is calculated for the velocity, density of motile microorgan-
ism, temperature and concentration functions via using HAM, the assisting parameters are
hf ,hθ,hφ and hϕ. These main parameters are responsible for the convergence of the solu-
tion. To get the possible region of the h-Curves graph of f ′′(0),θ′(0),ϕ′(0) and φ′(0) for
13th order approximation are plotted in the Figures. (1-2). The h-curves consecutively dis-
play the valid region. In HAM technique the convergence region is important to determine
the meaningful series solutions of the governing problems of f ′′(0),θ′(0),ϕ′(0) and φ′(0).
The parameters hf ,hθ, hφ and hϕ are employed to control solution. Moreover, the h-curves
are plotted at 13th order approximation. From the h-curves we observed the appropriate
ranges for hf ,hθ,hφ and hϕ are −2.3 ≤ hf ≤ 0.2, −2.2 ≤ hθ ≤ 0.1, −2.5 ≤ hφ ≤ 0.5,
and −2.1 ≤ hϕ ≤ 0.4.
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FIGURE 2. The combined curve of functions at 13th order approximation.

FIGURE 3. The combined curve of functions and at 13th order approximation.

Table 1.Represents convergence of the HAM up to 13th Order Approximation where,
λ = M = Nt = 0.5,Pr = 0.7,Nb = 1,Le = 0.6,Sc = 0.8,ω = Rd = 0.1,Pe = 0.7.

Approximation f ′′(0) θ′(0) φ′(0) ϕ′(0)
Order

1 3.98886 -0.0207921 0.953750 1.00025
3 3.97650 -0.0387064 0.913169 1.07375
5 3.97584 -0.0396453 0.910490 1.08915
7 3.97583 -0.0396677 0.910384 1.09009
9 3.97583 -0.0396682 0.910379 1.09014

13 3.97583 -0.0396682 0.910379 1.09014
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7. RESULT AND DISCUSSION:

In this portion we have disclosed the physical interpretation of sundry variables involv-
ing into the problem and is about to understand the effects of various non-dimensional phys-
ical quantities on the Velocity f(η), Heat θ(η) , Concentration φ(η) and Density of motile
microorganism ϕ(η) profiles. The following results with complete details are achieved:
Fig. 1 shows geometry of the fluid model for comprehensions of the readers. The h-curves
are elaborated in Figs. (2-3). Figs 4,5,6 and 7 represent the influences of squeezing fluid
parameter λ on f(η), θ(η) , φ(η) and ϕ(η). When plates are moving apart, then λ takes
the positive value in that corresponding case and when plates are coming closer the values
are considered negative. Figure.4 clearly shows the influence of the flow when plates are
moving away and this is opposite case of when plates coming nearer. With the increase
of λ values fluid velocity also increasing. Clearly velocity increases in the channel when
fluid sucked inside. On the other hand when fluid injected out, then the plates come closer
to one another. This manner brings about a drop in the fluid and consequently decreases
the velocity. With varying value of λ parameter the influence of f(η) shown in fig. 4.
Figs. 5 and 6 show the influence of λ parameter on the heat and concentration distribu-
tions respectively. Due to squeezing of the fluid the velocity increases and subsequently
falls the temperature of the fluid because warm nanoparticles are escaping rapidly which
results in lower temperature and the concentration of the fluid automatically reduces. Fig.7
indicates variation in density of the motile microorganisms for various values of λ. The
density of microorganisms ϕ(η) illustrates variations. With changing λ values, the ϕ(η) is
a decreasing factor, when λ parameter changes negatively and it shows increasing function
for positive values of λ. Fig.8 demonstrates the impact of velocity field for various val-
ues of magnetic field parameter M. It depicts that with an increase in value of M, velocity
profile decreases, because Lorentz forces work against the flow and those regions where
its influences dominates, it reduces velocity. After a certain distance it increases. Figs.9
demonstrates the characteristics of magnetic parameter M on heat distribution , which is
increasing for higher values and drops for the small values of M. Actually Lorentz force
decreasing which depend on magnetic field M, so decreasing M leads to decrease Lorentz
force and consequently decreases θ(η). The impact of Pr on the θ(η) and φ(η) are shown
in Figs. 10 and 11. Clearly it is seen that temperature and concentration distributions vary
inversely with Pr, that is temperature distribution drop with large numbers of Pr and rise
for lesser values of Pr. Physically, the fluids having a small number of Pr has larger ther-
mal diffusivity and this effect is opposite for higher Prandtl number. Due to this fact large
Pr causes the thermal boundary layer to decrease. The effect is even more diverse for the
small number of Pr since thermal boundary layer thickness is relatively large. On the other
hand increasing behaviour of concentration distribution is shown in fig.11 for increasing
Pr values. Figs.12 represents the influence of thermophoretic parameter Nt on heat pro-
file θ(η). It is investigated that θ(η) is increased by varying thermophoretic parameter Nt.
According to Kinetic Molecular theory increasing number of particles and increasing num-
ber of active particles both can cause to increase in the heat factor. Fig.13 represents the
change in the concentration profile φ(η) due to change in parameter Nt. The profile φ(η)
decreases in suction and injection cases. In injection case, the decrement in φ(η) is slow as
compare to fluid suction case. Figs.14 and15 show the effect of Nb on θ(η) and φ(η) fields.
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Heat profile θ(η) is increased by varying values of Nb as shown in fig. 14. Due to Kinetic
molecular theory the heat of the fluid increases due to the increase of Brownian motion.
So the given result is in good agreement with real situation. Similarly fig.15 highlights the
impact of varying Nb parameter with respect to the concentration profile φ(η) on domain,
0 ≤ λ ≤ 1. An increasing impact of φ(η) is observed for both suction and injection in
fig.15. A fast increment has been observed in φ(η) for fluid suction as compared to fluid
injection. Fig.16 represents the effect of Peclet number Pe on ϕ(η). The values of den-
sity field of motile microorganism increase with increase value of Pe. Fig. 17 shows the
impacts of on density field of motile microorganism ϕ(η).The values of density field of
the motile microorganisms decrease with increase in the values of Sc. Actually, Schmidt
number is the ratio of kinematic viscosity to the mass flux. So when kinematic viscosity
increases, then spontaneously the Sc increases and ϕ(η) decreases. Fig. 18 displays the
influence of Le on the concentration profile φ(η) where it decreases when number Le in-
creases. Actually, it is the ratio of thermal diffusivity to the mass diffusivity. So, when the
thermal diffusivity decreases it automatically decreases Le and also decreases concentra-
tion field. Fig. 19 displays the effect of radiation parameter Rd on the heat field θ(η) . It is
clearly observed that heat profile θ(η) decreases with increase values of Rd. It is a common
observation that radiating a fluid or some other thing can cause to reduce the temperature
of that particular object.

8. TABLE DISCUSSIONS:

Table.1 displays numerical values of HAM solutions at different approximation using
various values of different parameters. It is clear from the table.1 that homotopy analy-
sis technique is a quickly convergent technique. Physical quantities such as skin friction
co-efficient, heat flux, mass flux and Local-density number of motile microorganism for
engineering interest are calculated through Tables: (2-5). Table: 2 displays the impact of
inserting parameters M and λ on Skin friction Cf . It is seen that increasing value of M and
λ decreases the skin friction Cf . Table.3 examines the influences of embedding parameters
Nb,Nt,Pr and Rd on heat flux Nu. It is seen that increasing values of Pr increase the heat
flux Nu where Rd,Nt and Nb decrease the heat flux when it increased. Table.4 inspects the
influences of Le,Nb and Nt on mass flux Sh. The increasing values of Le and Nb increase
the mass flux where Nt reduces the mass flux .The influences of Sc,λ and Pe on ϕ′(0) are
shown in Table.5. The increasing values of Pe increases ϕ′(0), while the higher value of λ
and Sc reduce ϕ′(0).
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Table 2. Represents numerical values of the Skin-Friction Co-efficient for various pa-
rameters where Nb = 1,Nt = Le = 0.6,Sc = 0.8,Pe = 0.7 and ω = 0.1.

M λ −(CfRex)
1
2 −(CfRex)

1
2

Hayat et al. [22] result Present Results
0.1 1.5 -2.40160 1.1051
0.5 -2.41735 0.9999
1.0 -2.42522 0.9957
0.1 1.5 -2.40788 1.2057

2.0 -2.40828 1.1947
2.5 -2.40947 1.1747
3.0 -2.41426 0.9957

Table 3. Represents Numerical values of Local-Nusselt number for unlike type param-
eters, where Pr = 0.7,λ = 1,Le = 0.6,Sc = 0.8,Pe = 0.7,ω = 0.1 and M = 0.5.

Rd Nt Nb Pr −θ′(0) −θ′(0)
Alsaedi el al Present Result
[7].Results

0.5 0.5 0.5 1.0 ..... 2.0003
0.1 ..... 1.6202
1.5 ..... 1.2133
0.5 0.5 0.8167 1.9501

1.0 0.6971 1.5546
1.5 0.5735 1.2013
0.5 0.8943 2.5923

0.5 0.8011 1.7456
1.0 1.0 0.7472 1.0072
0.5 1.5 0.8943 1.1196

2.0 1.0270 17456

Table 4. Represents Numerical type values of Local-Sherwood number for unlike pa-
rameters, where Le = 0.6,Sc = 0.8,Pe = Pr = 0.7,ω = 0.1,λ = M = 0.6.

Le Nb Nt −φ′(0) −φ′(0)
Alsaedi el al Present Result
[7].Results

0.1 0.2 0.5 0.4471 0.8518
0.5 0.5878 0.9618
1.0 0.2 0.5878 0.6624

0.6 0.9582 0.7910
1.0 1.0320 0.8518
0.2 0.5 0.5878 0.8615

1.0 0.8588 0.9020
1.5 -0.3914 0.8901
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Table 5. Represents Numerical values of Local-density number of motile microorganism
for various types of parameters, when Sc = 0.8,Pr = 1,Pe = 0.7,ω = 0.1,λ = M = 0.5.

Sc λ Pe −ϕ′(0) −ϕ′(0)
Alsaedi el al Present Result
[7].Results

1.0 0.5 0.5 ..... 1.6434
1.5 ..... 1.2526
2.0 ..... 0.9542
1.0 0.5 ..... 2.1053

1.0 ..... 1.8599
1.5 ..... 0.9552
0.5 0.5 1.3811 1.6864

1.5 1.4764 1.7801
2.0 1.5731 2.1053

FIGURE 4. Effect of λ on f(η), when ω = 0.8 and M = 1.9.

FIGURE 5. Effect of λ on θ(η), when ω = 0.8,Le = 0.4,Nt =
0.1,Nb = Rd = 0.4,Pr = 0.6.
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FIGURE 6. Effect of λ on φ(η), when ω = 0.8,Le = 0.4,Nt =
0.1,Nb = 0.6,Pr = 0.6 and M = 0.5.

FIGURE 7. Effect of λ on ϕ(η), when ω = 0.8,Le = Sc = 0.4,Nt =
Pe = 0.1,Nb = 0.3 and M = 1.

FIGURE 8. Effect of M on f(η), when ω = 0.8 and λ = 0.9.
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FIGURE 9. Effect of M on θ(η), when ω = 0.8,Le = 0.3,Nt =
0.6,Nb = 0.1,λ = Rd = 1,Pr = 0.5.

FIGURE 10. Effect of Pr on θ(η), when ω = 0.8,Le = 0.3,Nt =
0.6,λ = Rd = 0.4,Nb = 0.1,M = 1.

FIGURE 11. Effect of Pr on φ(η), when ω = 0.8,Le = 0.3,Nt =
0.6,λ = 0.4,Nb = 0.1,Pr = 0.2,M = 1.
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FIGURE 12. Effect of Nt on θ(η), when ω = 0.8,Le = 0.3,λ = Rd =
0.4,Nb = 0.1,Pr = 0.6,M = 2.

FIGURE 13. Effect of Nt on φ(η), when ω = 0.8,Le = 0.3,λ =
0.4,Nb = 0.1,Pr = 0.6,M = 2.

FIGURE 14. Effect of Nb on θ(η), when ω = 0.8,Le = 0.3,λ = Rd =
0.4,Nt = 0.1,Pr = 0.6,M = 2.
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FIGURE 15. Effect of Nb on φ(η), when ω = 0.8,Le = 0.3,λ =
0.4,Nt = 0.1,Pr = 0.6,M = 1.

FIGURE 16. Effect of Pe on ϕ(η), when ω = 0.8,Le = 0.3,λ = Sc =
0.4,Nb = 0.1,Nt = 0.6,M = 2.

FIGURE 17. Effect of Sc on ϕ(η), when ω = 0.8,Le = 0.3,λ =
0.4,Nb = 0.1,Nt = 0.6,Pr = 0.5,M = 1.
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FIGURE 18. Effect of Le on φ(η), when ω = 0.8,Le = 0.4,λ = 4,Nt =
0.1,Nb = 0.3,Pr = 0.6,M = 1.

FIGURE 19. Effect of Rd on θ(η), when ω = Le = 0.8,λ = 4,Nb =
0.1,Nt = 0.6,Pr = 0.5,M = 1.9.

9. CONCLUDING REMARKS:

In this research article, bioconvection flow between two parallel plates is under consid-
eration. It is assumed that the plates are capable to expand or contract. The dimensional
flow model included the nanofluid and microorganisms transformed into the nondimen-
sional and highly nonlinear system of ordinary differential equations. For this, a defined
dimensionless form of the similarity variables is utilized. Also, the supporting boundary
conditions are reduced in dimensionless form.Effect of embedding parameters are observed
and discussed graphically. Furthermore, the variation of the Skin friction, Sherwood num-
ber, Nusselt number and their effects on the velocity, concentration, temperature and motile
microorganism profiles are examined. The key points are:

• The larger values of Nb rise the kinetic energy of the nanoparticles, which result
an increase in the heat profile.
• When we increase thermal radiation parameter Rd, then it augments temperature

of the boundary layer area in fluid layer. This increase leads to drop in the rate of
cooling for nanofluid flow.
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• It is observed that θ(η) is increased by varying thermophoretic parameter Nt.
• Thermophoretic and Brownian motion parameters affect the concentration field

reversely for both the suction and injection case.
• The convergence of the homotopy method along with the variation of different

physical parameters has been observed numerically.
• Interesting variations in the density of motile microorganisms ϕ are analyzed for

different values of the bioconvection parameter.
• It is seen that increasing M and λ reduce the skin friction Cf .
• It is seen that increasing values of Pr increases the heat flux Nu while Nb, Nt

and Rd reduce the heat flux Nu.
• The increasing values of Le and Nb increase the mass flux where Nt reduces the

mass flux.
• For the suction/injection parameter λ, Brownian parameterNb and thermophoretic

parameter Nt the density of motile microorganisms shows very prominent varia-
tions throughout the domain of interest.

10. NOMENCLATURE:

The following abbreviations are used in this manuscript:
B0 Magnetic field strength
Rd Rediation parameter
M Magnetic parameter
DB Brownian diffusion of nanofluids
Nt Thermophoretic parameter
Nb Brownian motion parameter
Sh Sherhood number
Nu Nusslet number
Re Reynold number
Pr Prandtl number
Sc Schmidth number
Cref Reference concentration
Tref Reference temperature
τij Extra stress tensor
ν Kinematic viscosity
µ Dynamic viscosity
T Temperature
k̂ Thermal conductivity
qrd Radioactive heat fluctuation
σ∗ Stefan Boltzmann constant
k∗ Mean absorption coefficient
β Film Thickness parameter
λ Unsteady squeezing parameter
ρ Density
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