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Abstract. First of all in this article, we consider(s, t)-type sequences such
as(s, t)-Pell sequence〈Pn (s, t)〉, (s, t)-Pell-Lucas sequence〈Qn (s, t)〉
and (s, t)-Modified Pell sequence〈Rn (s, t)〉. Also we consider(s, t)-
type matrix sequences such as(s, t)-Pell matrix sequence〈Un (s, t)〉, (s, t)-
Pell-Lucas matrix sequence〈Vn (s, t)〉 and(s, t)-Modified Pell matrix se-
quence〈Wn (s, t)〉. Then we introduce(s, t)-generalized Pell sequence
〈Tn (s, t)〉 and its matrix sequence named(s, t)-generalized Pell matrix
sequence〈Xn (s, t)〉. But the main aim here to present many new results
for (s, t)-generalized Pell sequence and(s, t)-generalized Pell matrix se-
quence and study the relations for(s, t)-generalized Pell sequence and
(s, t)-generalized Pell matrix sequence with other(s, t)-type sequences
and(s, t)-type matrix sequences. In addition to this we also define matrix
sequences to(s, t)-type matrix sequences.
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1. INTRODUCTION

Many authors worked on Fibonacci, Lucas, Pell, Jacobsthal sequences etc by various
aspects (see[15]-[2]). The well-known Fibonacci sequence is given by the following equa-
tion

Fn = Fn−1 + Fn−2, n ≥ 2

From several past years many authors investigated the generalizations of Fibonacci, Lu-
cas, Pell sequences etc by adding parameterss andt to the recurrence relations of these
sequences then named the resulted sequences as(s, t)-type sequences like(s, t)-Fibonacci
sequence,(s, t)-Lucas sequence,(s, t)-Pell sequence etc. In addition to this they also de-
fined the matrix sequences for(s, t)-type sequences and called the matrix sequences as
(s, t)-type matrix sequences like(s, t)-Fibonacci matrix sequence,(s, t)-Lucas matrix se-
quence,(s, t)-Pell sequence matrix etc. A matrix sequence is the sequence in which the
terms of the sequences are in the form of matrices and the elements of these matrices are
the terms of simple(s, t)-type sequences.

In 2008 Civciv and Turkmen in [3] and [4] defined(s, t)-Fibonacci sequence〈Fn (s, t)〉n∈N
and

(
s, t

)
-Lucas sequence〈Ln (s, t)〉n∈N and their matrix sequences(s, t)-Fibonacci ma-

trix sequence〈Fn (s, t)〉n∈N and(s, t)-Lucas matrix sequence〈Ln (s, t)〉n∈N respectively.

Fn+1 (s, t) = sFn (s, t) + tFn−1 (s, t) , n ≥ 1 and F0 (s, t) = 0, F1 (s, t) = 1

Fn+1 (s, t) = sFn (s, t) + tFn−1 (s, t) , n ≥ 1

with F0 (s, t) =

[
1 0

0 1

]
, F1 (s, t) =

[
s 1

t 0

]
for s, t ∈ R+.

and

Ln+1 (s, t) = sLn (s, t) + tLn−1 (s, t) , n ≥ 1 and L0 (s, t) = 2, L1 (s, t) = s

Ln+1 (s, t) = sLn (s, t) + tLn−1 (s, t) , n ≥ 1

with L0 (s, t) =

[
s 2

2t −s

]
, L1 (s, t) =

[
s2 + 2t s

st 2t

]
for s, t ∈ R+.

In 2011 Yazlik et al.[13] introduced the generalizations of(s, t)-Fibonacci sequence and
(s, t)-Fibonacci matrix sequence by defining the sequences〈Gn (s, t)〉n∈N called the gener-
alized(s, t)-Fibonacci sequence and〈Rn (s, t)〉n∈N called the generalized(s, t)-Fibonacci
matrix sequence. In 2015 Gulec and Taskara [6] studied(s, t)-Pell sequence〈Pn (s, t)〉n∈N
and Pell-Lucas sequence〈Qn (s, t)〉n∈N and their matrix representations〈Pn (s, t)〉n∈N
and〈Qn (s, t)〉n∈N. Srisawat and Sripad [9] investigated(s, t)-Pell sequence and(s, t)-
Pell-Lucas sequence by some matrix methods. Then in 2015 Ipek et al.[7] delineated
the another generalized(s, t)-Fibonacci sequence〈Gn (s, t)〉n∈N and its matrix sequence
〈Rn (s, t)〉n∈N. Yazlik et al.[14] applied binomial transforms to the(s, t)-Fibonacci ma-
trix sequence and generalized(s, t)-Fibonacci matrix sequence. In 2016 Uygun and Uslu
[11] studied the generalizations of(s, t)-Jacobsthal and(s, t)-Jacobsthla-Lucas sequences
as well as generalizations of their matrix ones. In [12] Wani et al. studied the matrix se-
quences for generalized Fibonacci sequence andk-Pell sequence. The main aim of this
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article to obtain the relations between the(s, t)-generalized Pell sequence and other(s, t)-
type sequences also obtain the relations between(s, t)-generalized Pell matrix sequence
and other(s, t)-type matrix sequences.

2. DEFINITIONS OF(s, t)-TYPE SEQUENCES

Forg, h, k ∈ Z+ ands, t ∈ R+, we have the following definitions

Definition 2.1. [6] The(s, t)-Pell sequence〈Pn (s, t)〉 is defined by the following recur-
rence relation

Pn (s, t) = 2sPn−1 (s, t) + tPn−2 (s, t) , n ≥ 2 (2. 1)

withP0 (s, t) = 0, P1 (s, t) = 1

Definition 2.2. [6] The(s, t)-Pell-Lucas sequence〈Qn (s, t)〉 is defined by the following
recurrence relation

Qn (s, t) = 2sQn−1 (s, t) + tQn−2 (s, t) , n ≥ 2 (2. 2)

withQ0 (s, t) = 2,Q1 (s, t) = 2s

Definition 2.3. The (s, t)-Modified Pell sequence〈Rr (s, t)〉 is given by the following
equation

Rn (s, t) = 2sRn−1 (s, t) + tRn−2 (s, t) , n ≥ 2 (2. 3)

withR−1 =
−1
t

,R0 (s, t) =
1
s

,R1 (s, t) = 1

Definition 2.4. The(s, t)-Generalized Pell sequence〈Tn (s, t)〉 is given by the following
equation

Tn (s, t) = 2sTn−1 (s, t) + tTn−2 (s, t) , n ≥ 2 (2. 4)

withT−1 =
gt + 2ht− k

t
, T0 (s, t) = 2gs+2hs+

k

s
, T1 (s, t) = g

(
4s2+t

)
+h

(
4s2+t

)
+k

3. DEFINITIONS OF(s, t)-TYPE MATRIX SEQUENCES

In this section we introduce matrix sequences of above(s, t)-type sequences and are
called(s, t)-type matrix sequences and the elements of these(s, t)-type matrix sequences
are the terms of simple(s, t)-type sequences. Forg, h, k ∈ Z+ ands, t ∈ R+, the following
definitions are hold

Definition 3.1. [6] The(s, t)-Pell matrix sequence〈Un (s, t)〉 is recurrently defined by

Un (s, t) = 2sUn−1 (s, t) + tUn−2 (s, t) , n ≥ 2 (3. 1)

with U0 (s, t) =

[
1 0

0 1

]
, U1 (s, t) =

[
2s 1

t 0

]
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Definition 3.2. [6] The(s, t)-Pell-Lucas matrix sequence〈Vn (s, t)〉 is recurrently defined
by

Vn (s, t) = 2sVN−1 (s, t) + tVn−2 (s, t) , n ≥ 2 (3. 2)

with V0 (s, t) =

[
2s 2

2t −2s

]
, V1 (s, t) =

[
4s2 + 2t 2s

2st 2t

]

Definition 3.3. The(s, t)-Modified Pell matrix sequence〈Wn (s, t)〉 is recurrently defined
by

Wn (s, t) = 2sWn−1 (s, t) + tWn−2 (s, t) , n ≥ 2 (3. 3)

withW0 (s, t) =

[
R1 R0

tR0 tR−1

]
,W1 (s, t) =

[
R2 R1

tR1 tR0

]

Definition 3.4. The(s, t)-generalized Pell matrix sequence〈Xn (s, t)〉 is recurrently de-
fined by

Xn (s, t) = 2sXn−1 (s, t) + tXn−2 (s, t) , n ≥ 2 (3. 4)

withX0 (s, t) =

[
T1 T0

tT0 tT−1

]
, X1 (s, t) =

[
T2 T1

tT1 tT0

]

4. MATRIX SEQUENCES OF THE(s, t)-TYPE MATRIX SEQUENCES

In this section we introduce matrix sequences for(s, t)-type matrix sequences which are
mentioned in the section (3). In other words here we defined sequences whose elements
are the terms of(s, t)-type matrix sequences. Forg, h, k ∈ Z+ ands, t ∈ R+, we have

Definition 4.1. The matrix sequence
〈
Ûn (s, t)

〉
of the(s, t)-Pell matrix sequence〈Pn (s, t)〉

is recurrently defined by

Ûn (s, t) = 2sÛn−1 (s, t) + tÛn−2 (s, t) , n ≥ 2 (4. 1)

with Û0 (s, t) =

[
U1 U0

tU0 tU−1

]
, Û1 (s, t) =

[
U2 U1

tU1 tU0

]

Definition 4.2. The matrix sequence
〈
V̂n (s, t)

〉
of the(s, t)-Pell-Lucas matrix sequence

〈Vn (s, t)〉 is given by the following equation

V̂n (s, t) = 2sV̂n−1 (s, t) + tV̂n−2 (s, t) , n ≥ 2 (4. 2)

with V̂0 (s, t) =

[
V1 V0

tV0 tV−1

]
, V̂1 (s, t) =

[
V2 V1

tV1 tV0

]

Definition 4.3. The matrix sequence
〈
Ŵn (s, t)

〉
of the (s, t)-Modified Pell matrix se-

quence〈Wn (s, t)〉 is given by the following equation

Ŵn (s, t) = 2sŴn−1 (s, t) + tŴn−2 (s, t) , n ≥ 2 (4. 3)
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with Ŵ0 (s, t) =

[
W1 W0

tW0 tW−1

]
, Ŵ1 (s, t) =

[
W2 W1

tW1 tW0

]

Definition 4.4. The matrix sequence
〈
T̂n (s, t)

〉
of the(s, t)-Generalized Pell matrix se-

quence〈Tn (s, t)〉 is delineated as

T̂n (s, t) = 2sT̂n−1 (s, t) + tT̂n−2 (s, t) , n ≥ 2 (4. 4)

with T̂0 (s, t) =

[
T1 T0

tT0 tT−1

]
, T̂1 (s, t) =

[
T2 T1

tT1 tT0

]

In the rest of this paper, for convenience we will use the symbol〈Yn〉 instead of〈Yn (s, t)〉
actually〈Yn (s, t)〉 is any sequence from the equation (2. 1) to (4. 4).

5. CHARACTERISTIC EQUATION

Since the recurrence relation is similar for all the sequences that will be the general as
well as matrix sequences. So these sequences have the same characteristic equation.

z2 − 2sz − t = 0 (5. 1)

Let λ andµ be its roots which are given by

λ = s +
√

s2 + t and µ = s−
√

s2 + t (5. 2)

Certainlyλ andµ holds the following properties

i. λ + µ = 2s, λµ = −t andλ− µ = 2
√

s2 + t

ii. 2sλ + t = λ2 and2sµ + t = µ2

iii. sλ + t =
λ (λ− µ)

2
andsµ + t = −µ (λ− µ)

2

iv.
λ

s
− 1 =

λ− µ

2s
and

µ

s
− 1 = −λ− µ

2s

Lemma 5.1. (General Result)For U1 andn, p ∈ Z0, we have


Yn+p+1

t
Yn+p


 = Un

1



Yp+1

t
Yp


 (5. 3)

Yn+p =
Yp+1λ

n − Yp+1µ
n − Ypµλn + Ypλµn

λ− µ
(5. 4)

= Aλn+p − Bµn+p, A =
Yp+1 − Ypµ

λp (λ− µ)
, B =

Yp+1 − Ypλ

µp (λ− µ)
(5. 5)

where〈Yn〉 is any sequence from the equation(2. 1) to (4. 4).

Proof. The proof of the equation (5. 3) can be easily obtained by using induction onn.
To prove the equation (5. 4) we use the concept of diagonalization of a square matrix.



22 Arfat Ahmad Wani, Paula catarino and Serpil Halici

SinceU1 is a square matrix. Suppose thatz be the eigenvalue ofU1 and then by the concept
of Cayley Hamilton theorem the characteristic equation ofU1 is defined as

det (U1 − zI) = 0 ⇒
∣∣∣∣∣
2s− z 1

t −z

∣∣∣∣∣ = z2 − 2sz − t = 0

λ andµ be the characteristic roots as well as eigen values ofU1. Now the eigen vectors
corresponding to eigen values can be found by evaluating the equation

(U1 − zI) C = 0

whereC is the column vector of order2 × 1. Then the eigen vector corresponding toλ is
delineated by

(U1 − λI) C = 0 ⇒
[
2s− λ 1

t −λ

][
C1

C2

]
=

[
(2s− λ) C1 + C2

tC1 − λC2

]
= 0

Consider the equation

tC1 − λC2 = 0 ⇒ C2 = −µC1 (5. 6)

PutC1 = x in the equation (5. 6), we getC2 = −µx. Thus the eigenvectors corresponding

to λ are of kind

[
x

−µx

]
. Forx = 1, the eigen vector assigning toλ is

[
1

−µ

]
. Similarly the

eigenvector assigning toµ is

[
1

−λ

]
. Let C =

[
1 1

−µ −λ

]
be the matrix of eigenvectors

andD =

[
λ 0

0 µ

]
be the diagonal matrix. Then by the process of diagonalization, we have

Un
1 = CDn

(C)−1

= (λ− µ)−1

[
λn µn

−µλn −λµn

][
λ 1

−µ −1

]

= (λ− µ)−1

[
λn+1 − µn+1 λn − µn

−µλn+1 + λµn+1 −µλn + λµn

]

After using the equation (5. 3), we get


Yn+p+1

t
Yn+p


 = (λ− µ)−1

[
λn+1 − µN+1 λn − µN

−µλn+1 + λµn+1 −µλn + λµn

] 

Yp+1

t

Yp






Yn+p+1

t
Yn+p


 = (λ− µ)−1




E

−Yp+1µλn+1

t
+
Yp+1λµn+1

t
− Ypµλn + Ypλµn



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whereE is the corresponding term of the matrix. Therefore, we have

Yn+p = (λ− µ)−1

(
−Yp+1µλn+1

t
+
Yp+1λµn+1

t
− Ypµλn + Ypλµn

)

=
Yp+1λ

n − Yp+1µ
n − Ypµλn + YpλµN

λ− µ

=
Yp+1 − Ypµ

λ− µ
λn − Yp+1 − Ypλ

λ− µ
µn

=
Yp+1 − Ypµ

λp (λ− µ)
λn+p − Yp+1 − Ypλ

µn (λ− µ)
µn+p

This completes the proof of the lemma. ¤

6. RESULTS FOR(s, t)-TYPE SEQUENCES

In the present section we delineate some new results for(s, t)-type sequences as well
some some relations among them.

Theorem 6.1. [9] For n ∈ Z0, thenth terms of(s, t)-Pell sequence〈Pn〉 and(s, t)-Pell-
Lucas sequence〈Qn〉 are given respectively by

Pn =
λn − µn

λ− µ
(6. 1)

Qn = λn + µn (6. 2)

Theorem 6.2. If n, p ≥ 1, the following results hold

PnQp + tPn−1Qp−1 = Qn+p−1 (6. 3)

PnRp + tPn−1Rp−1 = Rn+p−1 (6. 4)

Theorem 6.3. For n ≥ 0, we have

Rn =
λn + µn

λ + µ
(6. 5)

Theorem 6.4. For n, p ≥ 0, we get

Tn+p = A1λ
n+p − B1µ

n+p, A1 =
Tp+1 − Tpµ

λp (λ− µ)
, B1 =

Tp+1 − Tpλ

µp (λ− µ)
(6. 6)

= TpPn+1 + tTp−1Pn (6. 7)

=
Tp

2
Qn + (Tp+1 − sTp)Pn (6. 8)

= sTpRn + (Tp+1 − sTp)Pn (6. 9)

Proof. First of all replaceY by T in the equations (5. 4) and (5. 5). Then the proof of the
equation (6. 6) is obvious. Also

Tn+p =
Tp+1λ

n − Tp+1µ
n − Tpµλn + Tpλµn

λ− µ
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=
1

λ− µ

{[(Tp+1 − Tp

(
2s− λ

)
λn

]
−

[
Tp+1 − Tp

(
2s− µ

)
µn

]}

=
1

λ− µ

[
Tpλ

n+1 +
(Tp+1 − 2sTp

)
λn − Tpµ

n+1 − (Tp+1 − 2sTp

)
µn

]

= Tp
λn+1 − µn+1

λ− µ
+

(Tp+1 − 2sTp

)λn − µn

λ− µ

= TpPn+1 + tTp−1Pn

Again

Tn+p =
Tp+1λ

n − Tp+1µ
n − Tpµλn + Tpλµn

λ− µ

=
1

λ− µ

(
Tp+1λ

n − Tpµλn

2
− Tp+1µ

n +
Tpλµn

2
− Tpµλn

2
+
Tpλµn

2

)

=
1

λ− µ

[
2Tp+1 − Tp

(
2s− λ

)

2
λn − 2Tp+1 − Tp

(
2s− µ

)

2
µn − Tpµλn

2
+
Tpλµn

2

]

=
1

λ− µ

[
Tpλ

n+1

2
− Tpµλn

2
+
Tpλµn

2
− Tpµλn+1

2
+

(Tp+1 − sTp

)
λn

− (Tp+1 − sTp

)
µn

]

=
1

λ− µ

[Tp

2
λn

(
λ− µ

)
+
Tp

2
µn

(
λ− µ

)
+

(Tp+1 − sTp

)(
λn − µn

)]

=
Tp

2
Qn + (Tp+1 − sTp)Pn By the Eqns. (6. 1) and (6. 2)

SinceRn =
Qn

2s
, we get

Tn+p = sTpRn + (Tp+1 − sTp)Pn

Hence the proof of the theorem. ¤
Corollary 6.5. If n ≥ 0, the nth term of (s, t)-generalized Pell sequence〈Tn (s, t)〉 is
given by the following equation

Tn = A2λ
n − B2µ

n, A2 =
T1 − T0µ

λ− µ
, B2 =

T1 − T0λ

λ− µ

= g
λn+2 − µn+2

λ− µ
+ h

(
λn+1 + µn+1

)
+ k

λn − µn

λ + µ

= gPn+2 + hQn+1 + kRn





(6. 10)

Proof. if we putp = 0 in the equation (6. 6), we get

Tn = A2λ
n − B2µ

n, A2 =
T1 − T0µ

λ− µ
, B2 =

T1 − T0λ

λ− µ
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Now we use the values ofT0 andT1 to find the required result. Therefore, we have

A2λ
n =

T1 − T0µ

λ− µ
λn

=
(
λ− µ

)−1
(
4gs2 + 4hs2 + gt + 2ht + k − 2gsµ− 2hsµ− k

s
µ
)
λn

=
(
λ− µ

)−1
[
4gs2 + 4hs2 + gt + 2ht + k − 2gs

(
2s− λ

)− 2hs
(
2s− λ

)

− k

s

(
2s− λ

)]
λn

=
(
λ− µ

)−1
[
g
(
2sλ + t

)
+ 2h

(
sλ + t

)
+ k

(λ

s
− 1

)]
λn

=
(
λ− µ

)−1

[
gλn+2 + h

(
λ− µ

)
λn+1 + k

(λ− µ

2s

)
λn

]
By (iii. ) and (iv.)

Similarly

B2µ
n =

(
λ− µ

)−1

[
gµn+2 − h

(
λ− µ

)
µn+1 − k

(λ− µ

2s

)
µn

]

Therefore, we have

Tn =
1

λ− µ

[
gλn+2 − gµn+2 + h

(
λ− µ

)
λn+1 + h

(
λ− µ

)
µn+1 + k

(λ− µ

2s

)
λn

+ k
(λ− µ

2s

)
µn

]

= g
λn+2 − µn+2

λ− µ
+ h

(
λn+1 + µn+1

)
+ k

λn − µn

λ + µ

= gPn+2 + hQn+1 + kRn By the Eqns. (6. 1), (6. 2) and(6. 5)

This completes the proof of corollary. ¤

Lemma 6.6. Let0 ≤ p ≤ n, the following result holds

Pn−p =
ŶpŶn+1 − Ŷp+1Ŷn

ŶpŶp+2 − Ŷ2
p+1

(6. 11)

where
〈
Ŷn

〉
is any sequence from the equation(2. 2) to (2. 4).

Proof. From the equation (5. 5), we get

ŶpŶn+1 − Ŷp+1Ŷn

ŶpŶp+2 − Ŷ2
p+1

=

(Aλp − Bµp
)(Aλn+1 − BµN+1

)− (Aλp+1 − Bµp+1
)(Aλn − Bµn

)

YpYp+2 − Y2
p+1
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=
−AB

(
λn+1µp − λnµp+1 − λp+1µn + λpµn+1

)

YpYp+2 − Y2
p+1

=
−AB(

λ− µ
)(

λµ
)p(

λn−p − µn−p
)

YpYp+2 − Y2
p+1

SinceAB = −ŶpŶp+2 − Ŷ2
p+1(

λµ
)p(

λ− µ
)2 . Then we get

ŶpŶn+1 − Ŷp+1Ŷn

ŶpŶp+2 − Ŷ2
p+1

= Pn−p

Hence the result. ¤

Theorem 6.7. For n ∈ Z0, we get

Pn =
Qn+1 − sQn

2
(
s2 + t

)

=
s
(Rn+1 − sRn

)

s2 + t

=
T0Tn+1 − T1Tn

T0T2 − T 2
1

(6. 12)

Proof. The proof can be clearly seen by using the equation (6. 11). ¤

7. RESULTS FOR(s, t)-TYPE MATRIX SEQUENCES

Here we introduce some new results for(s, t)-type matrix sequences. In addition to this
some relations among(s, t)-type matrix sequences are obtained.

Theorem 7.1. [6] Thenth terms of the
(
s, t

)
-Pell matrix sequence〈Un〉 and

(
s, t

)
-Pell-

Lucas matrix sequence〈Vn〉 are given by

Un =

[
Pn+1 Pn

tPn tPn−1

]
, n ≥ 1 (7. 1)

Vn =

[
Qn+1 Qn

tQn tQn−1

]
, n ≥ 1 (7. 2)
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Theorem 7.2. For n ∈ N, the following relation holds

Un =

[
Qn+2 − sQn+1 Qn+1 − sQn

t
(Qn+1 − sQn

)
t
(Qn − sQn−1

)
]

=
s

s2 + t

[
Rn+2 − sRn+1 Rn+1 − sRn

t
(Rn+1 − sRn

)
t
(Rn − sRn−1

)
]

=
1

T0T2 − T 2
1

[
T0Tn+2 − T1Tn+1 T0Tn+1 − T1Tn

t
(T0Tn+1 − T1Tn

)
t
(T0Tn − T1Tn−1

)
]

(7. 3)

Proof. The proof of this theorem can be obtained by using the equations (6. 12) and (7. 1).
¤

Corollary 7.3. If n ≥ 1, we get

Qn =
T0

(Tn+2 + tTn

)−T1

(Tn+1 + tTn−1

)

T0T2 − T 2
1

Theorem 7.4. For n ∈ N, the nth terms of the sequences(s, t)-Modified Pell matrix
sequence〈Wn〉 and(s, t)-generalized Pell matrix sequence〈Xn〉 are delineated by

Wn =

[
Rn+1 Rn

tRn tRn−1

]
(7. 4)

Xn =

[
Tn+1 Tn

tTn tTn−1

]
(7. 5)

Proof. By using the equation (5. 4), we get

Wn =
W1λ

n −W1µ
n −W0µλn +W0λµn

λ− µ

=
1

λ− µ

[(
R2 R1

tR1 R0

)
λn −

(
R2 R1

tR1 R0

)
µn −

(
R1 R0

tR0 R−1

)
µλn

+

(
R1 R0

tR0 R−1

)
λµn

]

=
1

λ− µ




R2λ
n −R2µ

n −R1µλn +R2λµn R1λ
n −R1µ

n −R0µλn

+R0λµn

t
(
R1λ

n −R1µ
n −R0µλn +R0λµn

)
t
(
R0λ

n −R0µ
n −R−1µλn

+R−1λµn
)




=

[
Rn+1 Rn

tRn tRn−1

]
By the Eqn. (5. 4)
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Similarly

Xn =

[
Tn+1 Tn

tTn tTn−1

]

¤
Theorem 7.5. Let n ≥ 0, the following result holds for the matrix sequences〈Un〉, 〈Vn〉,
〈Wn〉 and〈Xn〉, we have

Xn = gUn+2 + hVn+1 + kWn

Proof. From the equations (7. 1), (7. 2) and (7. 4), we get

gUn+2 + hVn+1 + kWn = g

[
Pn+3 Pn+2

tPn+2 tPn

]
+ h

[
Qn+2 Qn+1

tQn+1 tQn

]

+ k

[
Rn+1 Rn

tRn tRn−1

]

=

[
Tn+1 Tn

tTn tTn−1

]
By the Eqn. (6. 10)

= Xn By the Eqn. (7. 5)

as required. ¤
Theorem 7.6. For n ≥ 0, we get

Xn = T0Un+1 + tT−1Un

= X0Pn+1 + tX−1Pn
(7. 6)

Xn =
T0

2
Vn +

(T1 − sT0

)Un

=
X0

2
Qn +

(X1 − sX0

)Pn

(7. 7)

Xn = sT0Wn +
(T1 − sT0

)Un

= sX0Rn +
(X1 − sX0

)Pn

(7. 8)

Proof. By using the equation (7. 1), we obtain

T0Un+1 + tT−1Un = T0

[
Pn+2 Pn+1

tPn+1 tPn

]
+ tT−1

[
Pn+1 Pn

tPn tPn−1

]

=

[T0Pn+2 + tT−1Pn+1 T0Pn+1 + tT−1Pn

t
(T0Pn+1 + tT−1Pn

)
t
(T0Pn + tT−1Pn−1

)
]

=

[
Tn+1 Tn

tTn tTn−1

]
By the Eqn. (6. 7)

= Xn
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Again

X0Pn+1 + tX−1Pn =

[
T1 T0

tT0 tT−1

]
Pn+1 +

[
tT0 tT−1

t2T−1 t2T−2

]
Pn

=

[ T1Pn+1 + tT0Pn T0Pn+1 + tT−1Pn

t
(T0Pn+1 + tT−1Pn

)
t
(T−1Pn+1 + tT−2Pn

)
]

=

[
Tn+1 Tn

tTn tTn−1

]
By the Eqn. (6. 7)

= Xn

Hence the proof of the equation (7. 6).
The proof of the equations (7. 7) and (7. 8) is same as the proof of the equation (7. 6). ¤

Theorem 7.7. For n ≥ 0, the following results are obvious

Un =
Vn+1 − sVn

2 (s2 + t)

=
s
(Wn+1 − sWn

)

s2 + t

=
T0Xn+1 − T1Xn

T0T2 − T 2
1

(7. 9)

Proof. The proof can be clearly seen by using the equations (6. 12), (7. 2), (7. 4) and
(7. 5). ¤

Theorem 7.8. (Commutative property) If n, p ∈ Z0, we get

UnWp = WpUn = Wn+p (7. 10)

XpUn = UnXp = Xn+p (7. 11)

Proof.

UnWp =

[
Rp+1Pn+1 + tRpPn RpPn+1 + tRp−1Pn

t
(RpPn+1 + tRp−1Pn

)
t
(RpPn + tRp−1Pn−1

)
]

=

[
Rn+p+1 Rn+p

tRn+p tRn+p−1

]

= Wn+p

Similarly

WpUn = Wn+p

Thus, we get

UnWp = WpUn = Wn+p

The proof of equation (7. 11) is similar to the proof of equation (7. 10). ¤
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Lemma 7.9.

Up
n = Unp, n, p ≥ 1 (7. 12)

Proof. To prove the result we use induction onp. Let p = 1, we have

Un = Un

Suppose that the result is true for all valuesi less than or equal top. Then, we have

Up+1
n = Up

nUn

= UnpUn

= Unp+n

= Un(p+1)

SinceUnpUn = Unp+n [6], we get

Up+1
n = Unp+n

= Un(p+1)

as required. ¤

Theorem 7.10. For n, p ≥ 0 andr ≥ 1, we have

Wp
n+r =

(Wp
r

)Unp (7. 13)

X p
n+r =

(X p
r

)Unp (7. 14)

Proof. Since

(Wp
r

)Unp =
Up

n

(Wp
r

)Unp

Up
n

=

(UnWr

)p Unp

Up
n

= Wp
n+r By the Eqns. (7. 10) and (7. 12).

Similarly ¤

X p
n+r =

(X p
r

)Unp

8. RESULTS FORMATRIX SEQUENCES OF THE(s, t)-TYPE MATRIX SEQUENCES

Theorem 8.1. For n ≥ 0, the nth terms of all matrix sequences of(s, t)-type matrix
sequences are given by the following equations

Ûn =

[
Un+1 Un

tUn tUn−1

]
(8. 1)

V̂n =

[
Vn+1 Vn

tVn tVn−1

]
(8. 2)
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Ŵn =

[
Wn+1 Wn

tWn tWn−1

]
(8. 3)

X̂n =

[
Xn+1 Xn

tXn tXn−1

]
(8. 4)

Proof. ReplaceY by Û in the equation (5. 4), we get

Ûn =
Û1λ

n − Û1µ
n − Û0µλn + Û0λµn

λ− µ

=
1

λ− µ




U2λ
n − U2µ

n − U1µλn + U1λµn U1λ
n − U1µ

n − U0µλn

+U0λµn

t
(
U1λ

n − U1µ
n − U0µλn + U0λµn

)
t
(
U0λ

n − U0µ
n − U−1µλn

+U−1λµn
)




=

[
Un+1 Un

tUn tUn−1

]
By the Eqn. (5. 4)

This proves the equation (8. 1). ¤

The other equations can be proved same as the equation (8. 1).

Theorem 8.2. If n ≥ 1, we get

Ûn =
1

2
(
s2 + t

)
[
Vn+2 − sVn+1 Vn+1 − sVn

t
(Vn+1 − sVn

)
t
(Vn − sWn−1

)
]

=
s

s2 + t

[
Wn+2 − sWn+1 Wn+1 − sWn

t
(Wn+1 − sWn

)
t
(Wn − sWn−1

)
]

=
1

T0T2 − T 2
1

[
T0Xn+2 − T1Xn+1 T0Xn+1 − T1Xn

t
(T0Xn+1 − T1Xn

)
t
(T0Xn − T1Xn−1

)
]

(8. 5)

Proof. The proof can be easily established by using the equation (7. 9). ¤
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