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Abstract. First of allin this article, we considé€g, ¢)-type sequences such
as(s,t)-Pell sequencép,, (s,t)), (s,t)-Pell-Lucas sequencg,, (s,t))

and (s, t)-Modified Pell sequencéR,, (s,t)). Also we considel(s,t)-
type matrix sequences such(ast)-Pell matrix sequencg/,, (s, t)), (s, t)-
Pell-Lucas matrix sequenc®,, (s, t)) and(s, t)-Modified Pell matrix se-
quence(W, (s,t)). Then we introducés, t)-generalized Pell sequence
(7, (s,t)) and its matrix sequence namég ¢)-generalized Pell matrix
sequencéX, (s,t)). But the main aim here to present many new results
for (s, t)-generalized Pell sequence afdt)-generalized Pell matrix se-
quence and study the relations for, t)-generalized Pell sequence and
(s,t)-generalized Pell matrix sequence with otliert)-type sequences
and(s, t)-type matrix sequences. In addition to this we also define matrix
sequences tfs, t)-type matrix sequences.
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1. INTRODUCTION

Many authors worked on Fibonacci, Lucas, Pell, Jacobsthal sequences etc by various
aspects (se@b]-[2]). The well-known Fibonacci sequence is given by the following equa-
tion

F,=F,_1+F, 2 n>2

From several past years many authors investigated the generalizations of Fibonacci, Lu-
cas, Pell sequences etc by adding parametarsd¢ to the recurrence relations of these
sequences then named the resulted sequencgestasype sequences likg, t)-Fibonacci
sequenceys, t)-Lucas sequencés, t)-Pell sequence etc. In addition to this they also de-
fined the matrix sequences f(¢, t)-type sequences and called the matrix sequences as
(s, t)-type matrix sequences likg, t)-Fibonacci matrix sequenceés, t)-Lucas matrix se-
quence,(s, t)-Pell sequence matrix etc. A matrix sequence is the sequence in which the
terms of the sequences are in the form of matrices and the elements of these matrices are
the terms of simplés, t)-type sequences.

In 2008 Civciv and Turkmen ir] and 4] defined(s, ¢)-Fibonacci sequencé’, (s, t)),,cy
and (s, t)-Lucas sequencél, (s, t)), . and their matrix sequencés, ¢)-Fibonacci ma-
trix sequence.F, (s, 1)),y and(s,t)-Lucas matrix sequence,, (s, t)),, .y respectively.

Foiq1(s,t) =sF, (s,t) +tF,—1(s,t), n>1 and Fy(s,t) =0, Fy(s,t) =1

Fnt1 (8,8) = sF (s,t) + tFp_1(s,8), n>1

ith 7 t) = Lo F t) = s 1 f teR
Wi ) = , ) = or s, +.
0(s:1) 0 1 1(s,¢) t 0 3
and
Ly (8,t) = 8Ly (8,t) + tLp—1(s,t), n>1 and Lo(s,t) =2, Ly (s,t) =s

L1 (8,t) = 8Ly (s,t) +tLp—1 (s,t), n>1

) s 2 242t s
with Lo (S,t) = L1 (S7t) = for s, t e R+.
2t —s st 2t

In 2011 Yazlik et allL3] introduced the generalizations ¢, ¢)-Fibonacci sequence and
(s, t)-Fibonacci matrix sequence by defining the sequefGgss, t)), . called the gener-
alized(s, t)-Fibonacci sequence arigk,, (s, 1)), . called the generalized, t)-Fibonacci
matrix sequence. In 2015 Gulec and Taskéta{udied(s, t)-Pell sequencéP, (s, t))
and Pell-Lucas sequenc€),, (s,t)), .y and their matrix representatio®, (s, 1)),y
and(Q, (s,1)),cy- Srisawat and Sripa®] investigated(s, ¢)-Pell sequence an, ¢)-
Pell-Lucas sequence by some matrix methods. Then in 2015 Ipek ét ddljneated
the another generalized, ¢)-Fibonacci sequencgr,, (s, 1)), .y and its matrix sequence
(R (5,1)),en- Yazlik et al.[14] applied binomial transforms to thi, ¢)-Fibonacci ma-
trix sequence and generalizéd t)-Fibonacci matrix sequence. In 2016 Uygun and Uslu
[17] studied the generalizations ¢, t)-Jacobsthal ands, ¢)-Jacobsthla-Lucas sequences
as well as generalizations of their matrix ones. 18] [Wani et al. studied the matrix se-
guences for generalized Fibonacci sequencekaRdll sequence.  The main aim of this

neN
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article to obtain the relations between {f3et)-generalized Pell sequence and othett)-
type sequences also obtain the relations betweet)-generalized Pell matrix sequence
and othel(s, t)-type matrix sequences.

2. DEFINITIONS OF(s,t)-TYPE SEQUENCES

Forg,h,k € Z™ ands,t € R*, we have the following definitions

Definition 2.1. [6] The (s, t)-Pell sequencéP,, (s,t)) is defined by the following recur-
rence relation

Pr(s,t) =25Pp_1(8,t) + tPp_a(s,t), n>2 (2. 1)
with Po (S,t) =0,P (S,t) =1

Definition 2.2. [6] The (s, t)-Pell-Lucas sequenc@,, (s,t)) is defined by the following
recurrence relation

Qn (S,t) = 28Qn—1 (57t) + th—Q (S7t)a n Z 2 (2 2)
with Qg (s,t) =2, Oy (s,t) = 2s

Definition 2.3. The (s, t)-Modified Pell sequencéR.. (s,t)) is given by the following
equation

Ry (8,t) =28Rp—1(8,t) + tRp—2 (s,t), n>2 (2.3)
. -1 1
withR_; = T, Ro (S,t) = ;, R1 (S,t) =1
Definition 2.4. The(s,t)-Generalized Pell sequenc&,, (s,t)) is given by the following
equation
Tn (s,t) = 28751 (8, t) + tTp—o(s,t), n>2 (2. 4)

gt +2ht — k

with7_ 1= 7

k
7o (s,t) = 298+2h5+§’ 71 (s,t) = g(4s®+t)+h(4s>+t)+k

3. DEFINITIONS OF(s,t)-TYPE MATRIX SEQUENCES

In this section we introduce matrix sequences of abeveé)-type sequences and are
called(s, t)-type matrix sequences and the elements of tllegg-type matrix sequences
are the terms of simplg, t)-type sequences. Fgrh, k € Z* ands, t € R*, the following
definitions are hold

Definition 3.1. [6] The(s, t)-Pell matrix sequencé/, (s, t)) is recurrently defined by
un (Sat) = 257/{7171 (S,t) + tuan (svt) , T Z 2 (3 1)

_ 10 2 1
withi (s,t) = 01 JUs (s,t) = -
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Definition 3.2. [6] The(s, t)-Pell-Lucas matrix sequena®,, (s, t)) is recurrently defined
by

Vi (8,t) = 28VNn_1 (8,1) + V2 (s,t), n>2 3.2
. 2s 2 452 + 2t 2s
with Vg (s,t) = L Vi (s,t) = - o

Definition 3.3. The(s, t)-Modified Pell matrix sequend@V,, (s, t)) is recurrently defined
by

Wh (8, t) = 2sWy 1 (8,t) + tWp_2 (s,1), n>2 (3. 3)
. 7-\:‘fl RO RQ Rl
with Wo (S, t) = , Wh (S, If) =
tRo tR_1 tR1 tRo

Definition 3.4. The (s, t)-generalized Pell matrix sequen¢&’, (s,t)) is recurrently de-
fined by

X (8,t) =28X,-1 (8,t) + tXp_2(s,t), n>2 (3.4)
T 7, T, T
with X (s,t) = | — L asn=|2
tTy t7_, th t

4. MATRIX SEQUENCES OF THHEs, t)-TYPE MATRIX SEQUENCES

In this section we introduce matrix sequencesfgt)-type matrix sequences which are
mentioned in the sectioi8). In other words here we defined sequences whose elements
are the terms ofs, t)-type matrix sequences. Forh, k € Z* ands,t € R™, we have

Definition 4.1. The matrix sequenc<d/7n (s, t)> of the(s, ¢)-Pell matrix sequencéP,, (s, t))
is recurrently defined by

Uy (5,8) = 25Uy _1 (5,8) + thp_o (s,t), 1 >2 (4. 1)
. U, U | -~ U, U
withtly (s,t) = |~ " L th(s,t)=1| > °
tUy tU_+ Uy, tUy

Definition 4.2. The matrix sequencéf}n (s, t)> of the (s, t)-Pell-Lucas matrix sequence
(Vn (s,t)) is given by the following equation

Y, (s,t) = 251771,1 (s,t) + ﬂ/}n,g (s,t), n>2 4.2
e Vi W | -~ Vo Wi
with ) (s, t) = Vi (s, t) =
V0= 1y, [ Y Lvl Vo

Definition 4.3. The matrix sequencéVAVn (s,t)> of the (s, t)-Modified Pell matrix se-
quencelW,, (s, t)) is given by the following equation

Wi (5,8) = 25Wp_1 (s,) + tWp_s (s,1), n >2 @A.3)
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Wy WO] _ [WQ Wl]

LD =100
1 0

with Wy (s, t) = LW o
0 —1

Definition 4.4. The matrix sequenceZ, (s,t)> of the (s, t)-Generalized Pell matrix se-
quence(7, (s, t)) is delineated as

T, (s,t) = 25T5_1 (s,8) + tTp_o (s,1), n>2 (4. 4)
_ T T ] - T, T
withZ (s,) = |~ |\ Tist)y=1| >
tTo T4 T tTo

In the rest of this paper, for convenience we will use the synBg] instead of Y, (s, t))
actually(y, (s, t)) is any sequence from the equati@ 1) to (4. 4).

5. CHARACTERISTIC EQUATION

Since the recurrence relation is similar for all the sequences that will be the general as
well as matrix sequences. So these sequences have the same characteristic equation.

22— 2s2—t=0 (5.1)
Let A andy be its roots which are given by
A=s+Vs2+t and p=s—Vs2+t (5.2

Certainly\ andy holds the following properties

LA+ pu=2su=—tand\ — pu=2vs%+t
ii. 2sA+t=XA2and2su +t = pu?

i s)\—s—tzwandsu—i—t:—w
iv. é—le_“andH—lz—)\_u
S 2s S 2s

Lemma 5.1. (General Result)For U4, andn, p € Zg, we have

yn+p+1 yp-i-l
t | =ur| ¢ (5. 3)
yn-i—p yp
yn+p _ yp+1)\ - yp-‘,-l/;/\ 7_Mypﬂ/\ '+ yp)\u (5 4)
_ A)\n—&-p _ Bun+p, A= yp+1 - yp:u _ yp+1 - yp/\ (5 5)

A A=p) " T P (A= p)
where(),,) is any sequence from the equati@ 1) to (4. 4).

Proof. The proof of the equatiorb( 3) can be easily obtained by using inductionran
To prove the equatiorb( 4) we use the concept of diagonalization of a square matrix.
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Sincel{; is a square matrix. Suppose thdie the eigenvalue @f; and then by the concept
of Cayley Hamilton theorem the characteristic equatiotypfs defined as

28—z 1
det(Uy —2I) =0= =22 252 -t=0

t —z

A andp be the characteristic roots as well as eigen valudg, ofNow the eigen vectors
corresponding to eigen values can be found by evaluating the equation

(Z/ll—ZI)CZO

where( is the column vector of ord&¥ x 1. Then the eigen vector correspondinghtts
delineated by

(U —AI)C = 0= [ZS‘A 1 ] m _ l(zs—x)clwg

t =2l [Ca tCy — ACq

Consider the equation
tCl — )\CQ =0= CQ = —uCl (5 6)
PutC; = z inthe equation§. 6), we getC, = —pux. Thus the eigenvectors corresponding

T 1
to A are of kind [ ] . Forxz = 1, the eigen vector assigning s [ ] . Similarly the
—px —H
_ o |1 _ 1 ) _
eigenvector assigning to is l )\]. LetC = [ )\] be the matrix of eigenvectors
_ -

A0
andD = 0 be the diagonal matrix. Then by the process of diagonalization, we have

I
up =co" (C)”
AT " A1
-t S
—pA" A" e 1
(/\ )_1 )\n-‘rl _ Mn—i—l )\n _ M’n
=(A—p
_‘u/\n+1_|_)\lun+1 —/M"—F/\u”
After using the equatiorb(_2), we get
ynw;erl _ ()\ B Iul)71 B )\n+1 _ MN+1 A" — ,U,N yz;;rl
yn+p __u)\nJrl * )\’un+1 _MAn + )\un yp
_y71,+p+1_ i g
t = (/\ — /.L)_l y )\n+1 n+1
1 Ypr1An n n
L y7l+p ] _7 p+1t + p+1t *yp[L)\ erp/\u
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where€ is the corresponding term of the matrix. Therefore, we have

_ y Iu)\nJrl y )\un+1 N "
Vnip = (A= p) ' ( p+1t + p+1t = VpuA" + VpAp

_ yp-‘,—lAn - yp—&-lun - yp,u/)\n + ypAMN
A—p
_ Y1 — ypu)\n _ Vot — yp)‘un
A—p A—p
— yPJrl - ypu)\n—&-p _ y;DJrl - yp)‘un+p
AP (X = p) p (A = )
This completes the proof of the lemma. O

6. RESULTS FOR(s,t)-TYPE SEQUENCES

In the present section we delineate some new resultésfoj-type sequences as well
some some relations among them.

Theorem 6.1. [9] For n € Zg, then'® terms of(s, t)-Pell sequencéP,,) and (s, t)-Pell-
Lucas sequenc@,,) are given respectively by

P = A; ~ Zn 6. 1)
Qu ="+ pu" (6.2)
Theorem 6.2. If n, p > 1, the following results hold

PnQp +tPn_19p-1 = Qnip—1 (6.3)
PRy 4+ tPr—1Rp—1 = Rugp-1 (6. 4)

Theorem 6.3. For n > 0, we have
Ry = A: I Zn 6.5)

Theorem 6.4. For n,p > 0, we get
Togp = NP — By *P, Ay = m, By = m (6. 6)
= T,Pos1 + 1Ty 1 Pa (6.7)

Z

= 3Qn + (Tp41 — sT,) Py, (6. 8)
=T, Ry + (Tp+1 — $Tp) Pn (6.9)

Proof. First of all replacey by 7 in the equationsd, 4) and 5. 5). Then the proof of the
equation/6. €) is obvious. Also

- _7;+1/\7L_7;+1Mn_7;'u)\n+7;AMn
n+p — )\7/11
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1
{0 == 2] - -5t}
)\7 |:T)\n+1 (7;+1—287;))\n—7;//6n+1— (7;+1_287;)Mn]
)\n+17 n+1 A" —
=+ (T~ 25%)
= ’Tppn+1 + tlfpfltpn
Again
T+ _ 7;)+1>\rb_7;+1'u/n _%MAH—"_,Z;))\M”
ntp =
A" ™ Tou\™  Tu™
== M( N — Ty + p2ﬂ _ p/; T p2ﬂ>
27, p+1 — , 257}\) AT — 27;,4_1 77},(287#)}/1 _ %Iu,)\n n ’Z;Aun
)\ W 2 2 2
n+1 T A\ TAu™ T )\n—H
)\ Ml M + p2M . pM2 +(7;+1—S7;>)\n
- p+1 - p)M ]
L [Tpy»
a2’ A=)+ " (A=) + (Tprr = sT,) (A" = ")
_ %Qn+(7;+1 ST P, By the Eqns. (6.1) and (6. 2)

SinceR,, = % we get
2s

,];L+p = S%Rn + (7;)-&-1 - 57;)) Pn
Hence the proof of the theorem. a

Corollary 6.5. If n > 0, then!® term of (s, t)-generalized Pell sequencg,, (s,t)) is
given by the following equation

T — T 71 — ToA

%:AQAn*BZ,Ufn; A2:#7 BQZA

)\n+2 _ ., m+2 A
=g 1 + h()\n+1 + Mn—i—l) + k
A—p
= g,])n+2 + hQnJrl + kRn
Proof. if we putp = 0 in the equation@. €), we get
T — Top T, — ToA
N, P2=
A—p

no_ Mn (6 10)

T, = A\ — Bop™, Ag = Y
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Now we use the values @f and7; to find the required result. Therefore, we have

./42)\" — ITl —’To,u)\n
A—p
=(A- u)_l (4982 + 4hs? + gt + 2ht + k — 2gsp — 2hsp — %u) A"
—(A—p)" [4gs2 + 4hs® + gt + 2ht + k — 2gs(2s — A) — 2hs(2s — )
= %(25 - N)|a
:(Afuflp@&X+ﬂ+2h@A+ﬂ+%(iflﬂA"
S

:(A—Mf4FXHW+MA—MM”H+4(A;f)M/ By (iii.) and (iv.)

Similarly

_ A —
B2Mn — ()‘_M) 1 [gun+2 _h()\_u)un-&-l —k( 28#)/”]

Therefore, we have
= 71 nt2 _ o nt2 _ n+1 _ n+1 AN
Tn—)\ﬂlgA g2+ h(A = ) A"+ (A = p)p +k(TS ),\
AN
(e

)\n+2 _ Mn+2

)\niun
_ O R
g A—p a A

= gPnt2 +hQni1 + kR, By the Eqns. (6. 1), (6. 2) and(6. 5)
This completes the proof of corollary. a

Lemma 6.6. Let0 < p < n, the following result holds

j}\ j)\n _j}\ j]\n
pp = Eepis 2l (6. 11)
ypyp+2 _yp+1

where<37n> is any sequence from the equati@ 2) to (2. 4).

Proof. From the equatiors 5), we get
ypj)\nJrl - 5)\p+1j}n
ypyp—ﬂ - y§+1
(AN — BuP) (AN — BpNHL) — (ANPTL — Bt 1) (AN™ — Bu™)
ypyp+2 - y§+1
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—.AB</\”+1MP _ )\nlup+1 _ )\p+1un + )\pﬂn+1>
ypyp+2 - y§+1
—AB(A — ) ()" (AP — " 7)
ypyp+2 - y§+1

YY) )2
ypyp+2 - yp+1

SinceAB = — - 5
(M) (A= 1)

Then we get

ypy’n+l - yp+1yn

— =Prn_p
ypyp+2 - y§+1
Hence the result.
Theorem 6.7. For n € Zy, we get
Pn _ QnJrl - SQn
2(s% +1)
S(Rn+1 — sRn)
- s2 4+t
~ T0Tp 1 — N7,
T L -1

Proof. The proof can be clearly seen by using the equaorit).

7. RESULTS FOR(s, t)-TYPE MATRIX SEQUENCES

(6. 12)

Here we introduce some new results fert)-type matrix sequences. In addition to this

some relations amon@, t)-type matrix sequences are obtained.

Theorem 7.1. [6] Then'” terms of the(s, t)-Pell matrix sequencé,,) and (s, t)-Pell-

Lucas matrix sequeng@’,,) are given by

7)n+ 1 Pn
tPn, tPnh-1

Vn _ Qn+1 Qn . n Z 1
th th—l

n>1

9 -

Uy, =

(7. 1)

(7. 2)
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Theorem 7.2. For n € N, the following relation holds

Qn+2 - SQnJrl Qn+1 - SQn
t(Qn-‘,—l _SQn) t(Qn _SQn—l)

Rit2 — sRny1 Rnt1 — Ry ]

Uy, =

S

= 7.3
o (7. 3)

t(Rn+1 - SRn) t(Rn - SRn—l)

B 1 ToTon2 —TiTnyr 10T — 17,
LWL T (T Tn —TT,) HToT — 1T 1)

Proof. The proof of this theorem can be obtained by using the equaoris( and (7. 1).
O

Corollary 7.3. If n > 1, we get

_ To(Tn+2 + tTn) -1 (Tn+1 + tlfnfl)

Q. e

Theorem 7.4. For n € N, the n'* terms of the sequencés, t)-Modified Pell matrix
sequencéW,,) and (s, t)-generalized Pell matrix sequen¢#,,) are delineated by

7?/n+1 Rn

W, = (7. 4)
tRy, tRn_1
T, T,

x, = | " (7. 5)
T, tT,

Proof. By using the equatiorb( 4), we get

WA — Wip™ — WopuA™ + Wou"
W, = py—

1 R2 Ra\ ., R2 Ri\ , Ri Ro N
=1 AT — W= HA
A— 1% tR1 Ro tR1 Ro tRo R_1

Ri Ro\. .
+ AL
tRo R_1
RoA™ — Rgﬂn — Rl,u)\" + RQ)\/ln RiA™ — Rlun — R(),U)\n
) +RoAu"

=3 =4 t(Rl)\” R — Rop\" + R())\,u”) t(RO)\" — Rop™ — R_1p\"
+R71Au”)

Roy1 R By the Eqn. (5. 4)
= e n. s
Ry R y e
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X, — Toi1 Ty
7, T,

Similarly

O

Theorem 7.5. Letn > 0, the following result holds for the matrix sequend&ss), (V,.).
(W,) and (X,,), we have

Xn = gun+2 + hVn+1 + kW,
Proof. From the equations/( 1), (7. 2) and 7. 4), we get

P7L+3 Pn+2 h Qn+2 Qn—i—l
th+ 1 t Qn

gun+2 + hvn+1 + kWn =4

tPnia Py,
Rn Rn
T
IR, tR,-1
l i 1 By the Eqn. (6. 10)
=X, By the Eqn. (7..5)
as required. O
Theorem 7.6. For n > 0, we get
Xp = Tolhpt1 + tT_1U,
o ' (7. 6)
= XOPn+1 +tX_ 1P,
T
Xn = ?Ovn + (71 - 876)(/{»”
¥ (7. 7)
=5 Qn + (1 = sX0) Py
X, = sToW,, + (T1 — sTy)U,
0 (T = 5To) (7. 8)
=sAR, + (Xl - SXO)Pn
Proof. By using the equation/( 1), we obtain
P, P, P, P,
Ty + 1T Uy =T | 7 " e |
tPn+ 1 tpn tPn tpn -1

%Pn+2 + 1T 1Pn+1 %Pn-i-l + tT—lpn
%P7L+1 + tT 1P ) t(%Pn + tT_lpn—l)

[ ik ] By the Eqn. (6. 7)
— X,
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Again
XoPpi1 + X P 7 T Poat | [ T
0/ " n+1 —1Fn = _t% tT_l n+1 tzT_l tQT_Q n
ﬁpn-l-l + t%,Pn %Pn+1 + tT—IPn

; _t(%P7L+1 + tT—IPn) t(T—lpn-i-l + tT_QPn)
T T By the Eqn. (6. 7)

= € 1n. .
1T, 1T, yes

=X,

Hence the proof of the equaticdi.(6).
The proof of the equationg (/) and [7. &) is same as the proof of the equatign §). O

Theorem 7.7. For n > 0, the following results are obvious

Vi1 — SV,
=S mrn
_ S(Wiy1 — W) (7. 9)
s2 4+t
- ToXp1 — T X,
ToT; — T2
Proof. The proof can be clearly seen by using the equatiénd?), (7. 2), (7.4) and
(7.5). O
Theorem 7.8. (Commutative property) If n,p € Zg, we get
U WVp = Wpllyy, = Wity (7. 10)
Xy, = UnXp = Xnip (7. 11)
Proof.
U, = Rp+1Pns1 +tRyPy, RpPrs1 +tRp—1Pp
tH(RpPrs1 + tRp—1Pn) t(RpPn +tRp_1Pp_1)
- Rn+p+1 Rner
B [ tRutp tRutp-1
= VWn+p
Similarly
Wold, = Whtp
Thus, we get

UWp = Wpll, = Wiy
The proof of equationd, 11) is similar to the proof of equatiorY( 10). O
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Lemma 7.9.

UL =Upp, n,p>1 (7. 12)
Proof. To prove the result we use induction pnLetp = 1, we have
U, =U,
Suppose that the result is true for all valddsss than or equal te. Then, we have
urtt = uru,
= Upply,
= Unptn
= Un(p+1)
Sinceldy, Uy, = Uppr, [6], we get
UET = Uppin
= Un(p+1)
as required. O

Theorem 7.10.For n,p > 0 andr > 1, we have

W, = (WE)Uny (7. 13)
XY= (X ) Uy (7. 14)
Proof. Since
up(We )y
V1)t =
L U) Uy
up
=Wr., By the Eqns. (7..10) and (7..12).
Similarly O

XS-M = (Xf)unp

8. RESULTS FORMATRIX SEQUENCES OF THEs,t)-TYPE MATRIX SEQUENCES

Theorem 8.1. For n > 0, the n!® terms of all matrix sequences ¢f,t)-type matrix
sequences are given by the following equations

U U,

L= @®. 1)
ﬂ/{n tun -1

o Ve W

V,=| "M 8. 2)
Vo Vs
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- _ Wn-‘rl Wn (8 3)
W, W '
~ X, X,
Xn _ 1+1 n (8 4)
tX, tX,._1
Proof. Replacey byLA{ in the equation8. 4), we get
G _ WX U — Uopd™ + UoAp”
U \™ — Uz,u” — L{l,u)\” + L{l)\u” UL A" — ulu” — U()/J)\n
1 +Up A"
A—p t(um Uy — Uop ™ +u0m") t(uov — Uop™ — Uy A"
+Z/{71>\Mn)
Unir  Un By the Eqn. (5. 4)
= e 1. . a
tun ﬂ/{n—l Y a
This proves the equatio8(1). a
The other equations can be proved same as the equ8tidn.(
Theorem 8.2. If n > 1, we get
~ 1 Vn+2 - 5Vn+1 Vn+1 - SV"
U, = ———
2(32 + t) t(vn—i-l - SVn) t(vn - SWn—l)
o S Wn+2 - SWnJrl Wn+1 - SWn (8 5)
$2 4t [t(Wpgr — W) t(W, — sW,1) '
N 1 %Xn+2 - ﬂXn+1 %Xn+1 - ﬂXn
767—2 - 7—12 t(,]—OXn-ﬁ-l - 7'1Xn) t(%Xn - ﬂXn—l)
Proof. The proof can be easily established by using the equafio® ) |
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