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Abstract. Constructing higher-order difference schemes are always chal-

lenging for boundary value problems. The core part is to define boundary

enclosure in such a way that guarantees stability and uniform order of ac-

curacy for all nodes. In this work, we develop sixth-order implicit finite

difference scheme for 2-D heat conduction equation with Dirichlet bound-

ary conditions. The computed generalized eigenvalues of implicit finite

difference matrices have negative real parts that guarantees stability in the

case of Crank-Nicolson method. The validity of our developed numerical

scheme is clearly reflected by the numerical testing.
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1. INTRODUCTION

The 2-D heat conduction equation can be written as

∂u(x, y, t)

∂t
= k

(

∂2u(x, y, t)

∂x2
+

∂2u(x, y, t)

∂y2

)

+ s(x, y, t), 0 < x < Lx,

0 < y < Ly, 0 < t ≤ tf , (1. 1 a)

u(x, y, 0) = f(x, y), 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, (1. 1 b)

27
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under Dirichlet boundary conditions:

u(x, 0, t) = g1(x, t), u(x, Ly, t) = g3(x, t)

u(0, y, t) = g4(y, t), u(Lx, y, t) = g2(y, t), 0 ≤ t ≤ tf .
(1. 2)

Heat conduction phenomena with suitable boundary conditions exist frequently in many

areas of science and engineering, see, for example, [4, 5, 11, 12, 13, 14, 15, 10, 2]. Histor-

ically, highly accurate compact finite difference (CFD) schemes are developed by Lele [9].

However, these higher-order CFD schemes offer good accuracy only at the interior nodes

or for periodic boundary conditions. The low-order of accuracy near boundary nodes affect

the whole numerical results and reduces the accuracy of overall numerical solution [3].

The CFD schemes are quite efficient as compared to many other classical methods [1].

On Cartesian uniform meshes, these schemes provide a higher-order of accuracy with only

a compact stencil [8]. The CFD schemes not only provide fast convergence but are also

numerically stable. One of the most important property of CFD schemes is their non-

oscillatory behavior. In the wave propagation phenomenon, these schemes play an impor-

tant role [16].

By using Local One Dimension (LOD) method, Jennifer. Z [6] has developed fourth-

order globally solvable, unconditionally stable, and convergent CFD schemes for multidi-

mensional heat conduction equation with Neumann boundary conditions. The LOD method

consists on mainly two aspects:

(I) Splitting of the differential equation;

(II) Discretization of resulting 1-D equations.

By using LOD method, the 2-D heat conduction equation is splitted into the correspond-

ing two 1-D equations:

1

2
Ut = Uxx +

1

2
F (x, y, t), (1. 3)

1

2
Ut = Uyy +

1

2
F (x, y, t). (1. 4)

Then by using Crank-Nicholson time integrator on these equations, second-order ac-

curate approximation for time was obtained. After that, by further treatment on spatial

derivative, fourth-order approximation over the whole domain was obtained.

Here, we are oriented to construct sixth-order implicit finite difference (IFD) scheme

for 2-D heat conduction problem. The most crucial point is to provide the construction of

the scheme for boundary enclosure in a way that we can maintain the order of accuracy

of interior node scheme as well as the stability of time integrator. Initially, a numerical

scheme is constructed for 1-D heat conduction equation and then extended to 2-D by using

Kronecker product.

2. SIXTH-ORDER IMPLICIT FINITE DIFFERENCE SCHEME

Suppose, we discretize the spatial interval [ax, bx] in to xn + 2 nodes. The grid points

can be computed as
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xi = ax + (i − 1)hx, for i = 1, 2, · · · , n+ 2, (2. 5)

where, hx = (bx−ax)
nx−1 . Note it that, we have xn interior nodes and two boundary nodes.

Boundary conditions are provided at nodes x1 and xn+2. We intend to construct sixth-

order IFD scheme for second-order derivatives at nodes adjacent to boundary nodes, i.e.,

x2, x3, xn, xn+1, and the interior nodes xi. Due to symmetry, we only present construction

of the proposed scheme for the one-sided nodes, i.e., x2 and x3.

The stencil used for sixth-order IFD scheme to approximate second-order derivatives is

(i− 2, i− 1, i, i+ 1, i+ 2) for i = 3, 4, · · · , n.

The stencil tells us that if we are standing at location i, then we need two mesh points left

of i and two mesh points right of it.

2.1. Generalized sixth-order implicit finite difference scheme. Suppose, we are inter-

ested to make sixth-order finite difference approximations of second order derivatives at

the interior nodes xi. To this end, we first write a prototype for the scheme with some

unknowns

βT ′′

i−2 + αT ′′

i−1 + T ′′

i + αT ′′

i+1 + βT ′′

i+2 = 1
h2 (a1Ti−2 − (

∑3
i=1 ai)Ti−1 + a2Ti + a3Ti+1 + a4Ti+2), (2. 6)

where α, β, a1, a2, a3, and a4 are unknowns to be determined in such a way that we can get

sixth-order accurate approximations of second-order derivatives. The Taylor’s expansion

of equation (2. 6 ) around the central nodes xi gives the following system of six linear

algebraic equations in six unknowns:

a4 = 0,

−3/2 a1 + a2/2− 2 a4 + 2 β + 2α+ 1 = 0,

−5/8 a1 + a2/24− 2/3 a4 + 4 β + α = 0,

31 a1

120
−

a2

120
−

a3

60
−

4 a4

15
= 0,

−
7 a1

80
+

a2

720
−

4 a4

45
+ 4/3 β + α/12 = 0,

127 a1

5040
−

a2

5040
−

a3

2520
−

8 a4

315
= 0.

(2. 7)

By solving the system given in equation (2. 7 ), we get the values of unknown parameters

and the error term as

a1 = 0, a2 =
−240

97
, a3 =

120

97
, a4 = 0, α =

12

97
, β =

−1

194
. (2. 8)

E = −
31 h6f8
48888

−
11 h8f10
183330

+O(h10) (2. 9)
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Then equation (2. 6 ) becomes

−1
194 (T

′′

i−2 − 24T ′′

i−1 − 194T ′′

i − 24T ′′

i+1 + T ′′

i+2) =
120
97h2 (0Ti−2 + Ti−1 − 2Ti + Ti+1 + 0Ti+2).

(2. 10)

The equation (2. 10 ) can be written as

−1

194

[

1 −24 −194 −24 1
]













T ′′

i−2

T ′′

i−1

T ′′

i

T ′′

i+1

T ′′

i+2













=
120

97h2

[

0 1 −2 1 0
]













Ti−2

Ti−1

Ti

Ti+1

Ti+2













,

(2. 11)

where, i = 3, 4, · · · , n. Equation (2. 11 ) can also be written as

−1

194















1 −24 −194 −24 1 · · · 0 0 0
0 1 −24 −194 −24 1 · · · 0 0
0 0 1 −24 −194 −24 1 · · · 0
...

...
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 · · · 1 −24 −194 −24 1





























T ′′

1

T ′′

2

T ′′

3
...

T ′′

n+2















=
120

97h2















0 1 −2 1 0 · · · 0 0 0
0 0 1 −2 1 0 · · · 0 0
0 0 0 1 −2 1 0 · · · 0
...

...
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 · · · 0 1 −2 1 0





























T1

T2

T 3
...

Tn+2















. (2. 12)

2.2. Sixth-order implicit finite difference scheme for nodes x2 and xn+1. Consider the

following relationship

T ′′

2 + αT ′′

3 + βT ′′

4 = 1
h2 (a1T1 − (

∑7
i=1 ai)T2 + a2T3 + a3T4 + a4T5 + a5T6 + a6T7 + a7T8).

(2. 13)
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By expanding equation (2. 13 ) around x2, we get the following system of seven linear

algebraic equations in seven unknowns:

−a2 − 2 a3 − 3 a4 − 4 a5 − 5 a6 − 6 a7 + a1 = 0,

−a1/2− a2/2− 2 a3 − 9/2 a4 − 8 a5 −
25

2
a6 − 18 a7 +

217

194
= 0,

a1/6− a2 /6− 4/3 a3 − 9/2 a4 −
32 a5

3
−

125 a6

6
− 36 a7 +

11

97
= 0,

−a1/24− a2/24− 2/3 a3 −
27 a4

8
−

32 a5

3
−

625 a6

24
− 54 a7 +

5

97
= 0,

a1

120
−

a2

120
−

4 a3

15
−

81 a4

40
−

128 a5

15
−

625 a6

24
−

324 a7

5
+

4

291
= 0,

−
a1

720
−

a2

720
−

4 a3

45
−

81 a4

80
−

256 a5

45
−

3125 a6

144
−

324 a7

5
+

1

582
= 0,

a1

5040
−

a2

5040
−

8 a3

315
−

243 a4

560
−

1024 a5

315
−

15625 a6

1008
−

1944 a7

35
−

1

2910
= 0.

(2. 14)

By solving the system given in equation (2. 14 ), we get the following values of unknowns

and the error term as

a1 =
12089

17460
, a2 = −

5757

1940
, a3 =

4237

873
, a4 = −

12821

3492
, a5 =

6843

3880
, a6 = −

8539

17460
,

a7 =
1043

17460
.

(2. 15)

E = −
2357 h6f8
46560

−
10615 h7f9

97776
+O(h8) (2. 16)

Whereas, the values of α and β are same as defined in the generalized sixth-order IFD

scheme. Substituting the values of unknowns in equation (2. 13 ), we have

1

194
(194T ′′

2 + 24T ′′

3 − T ′′

4 )

= 1
h2

(

12089
17460T1 +

558
2315T2 −

5757
1940T3 +

4237
873 T4 −

12821
3492 T5 +

6843
3880T6 −

8539
17460T7 +

1043
17460T8

)

.

(2. 17)

Equation (2. 17 ) can also be written as

1

194

[

194 24 −1
]





T ′′

2

T ′′

3

T ′′

4




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=
1

h2

[

12089
17460

558
2315 − 5757

1940
4237
873 − 12821

3492
6843
3880 − 8539

17460
1043
17460

]











T1

T2

...

T8











. (2. 18)

Similarly, we can write the stencil for xn+1 as

[

1 α β
]





T ′′

(i−1)

T ′′

i

T ′′

(i+1)





1

h2
=

[

a1 −

(

i=7
∑

i=1

ai

)

a2 a3 a4 a5 a6 a7

]











T1

T2

...

T8











.

(2. 19)

2.3. Sixth-order implicit finite difference scheme for nodes x3 and xn. Consider the

following relationship

αT ′′

2 + T ′′

3 + αT ′′

4 + βT ′′

5

=
1

h2
(a1T1 + a2T2 − (

7
∑

i=1

ai)T3 + a3T4 + a4T5 + a5T6 + a6T7 + a7T8). (2. 20)

By expanding equation (2. 20 ) around x3, we obtain the following system of linear alge-

braic equations:

−4 a6 − 5 a7 + 2 a1 + a2 − a3 − 2 a4 − 3 a5 = 0,

−2 a1 − a2/2− a3/2− 2 a4 − 9/2 a5 − 8 a6 −
25

2
a7 +

241

194
= 0,

4/3 a1 + a2/6− a3 /6− 4/3 a4 − 9/2 a5 −
32 a6

3
−

125 a7

6
−

1

97
= 0,

−2/3 a1 − a2 /24− a3/24− 2/3 a4 −
27 a5

8
−

32 a6

3
−

625 a7

24
+

11

97
= 0,

4 a1

15
+

a2

120
−

a3

120
−

4 a4

15
−

81 a5

40
−

128 a6

15
−

625 a7

24
−

2

291
= 0,

−
4 a1

45
−

a2

720
−

a3

720
−

4 a4

45
−

81 a5

80
−

256 a6

45
−

3125 a7

144
+

2

291
= 0,

8 a1

315
+

a2

5040
−

a3

5040
−

8 a4

315
−

243 a5

560
−

1024 a6

315
−

15625 a7

1008
−

2

1455
= 0.

(2. 21)

By solving the system given in equation (2. 21 ), we obtain the values of unknowns and the

error term as

a1 =
469

17460
, a2 =

2177

1940
, a3 =

3371

3492
, a4 =

41

194
, a5 = −

201

1940
, a6 =

1019

34920
,

a7 = −
7

1940
.

(2. 22)
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E =
2647 h6f8
977760

+
349 h7f9
97776

+O(h8) (2. 23)

As before, the values of α and β are same as defined for generalized IFD scheme. After

substituting the values of unknowns in equation (2. 20 ), we get the following equation

1

194

(

24T ′′

2 + 194T ′′

3 + 24T ′′

4 − T ′′

5

)

= 1
h2

(

469
17460T1 +

2177
1940T2 +

3149
1401T3 +

3371
3492T4 +

41
194T5 −

201
1940T6 +

1019
34920T7 −

7
1940T8

)

.

(2. 24)

Equation (2.3) can also be written as

1

194

[

24 194 24 −1
]









T ′′

2

T ′′

3

T ′′

4

T ′′

5









=
1

h2

[

469
17460

2177
1940

3149
1401

3371
3492

41
194 − 201

1940
1019
34920 − 7

1940

]











T1

T2

...

T8











. (2. 25)

Similarly, we can write the stencil for xn as

[

α 1 α β
]









T ′′

i−2

T ′′

i−1

T ′′

i

T ′′

i+1









=
1

h2

[

a1 a2 −

(

i=7
∑

i=1

ai

)

a3 a4 a5 a6 a7

]











T1

T2

...

T8











.

(2. 26)

To illustrate the procedure for the conversion of the above developed 1-D schemes in to

2-D schemes, consider the following 2-D heat conduction equation

Ut = K1U(xx) +K2U(yy) + s(x, y, t), 0 ≤ x, y ≤ 1, t ≤ tf , (2. 27)

where, s(x,y,t) is the source term. Assume that the analytic solution of 2-D heat equation is

U(x, y, t) = e−t2sin(πx)sin(πy). (2. 28)

Differentiating equation (2. 28 ) twice w.r.t. x and y and taking first derivative w.r.t. t, then

by subsituting these values in equation (2. 27 ) we have the following expression

s(x, y, t) = ((K1 +K2)π
2 − 2t)U. (2. 29)

Suppose, we have a differential operator that computes second-order derivatives, i.e.,

U(xx) = A1U(:, y, t),

U(yy) = A2U(x, :, t).

For 2-D scheme, we construct the differential operator as

A = K1(Iy ×A1) +K2(A2 × Ix). (2. 30)



34 Kainat Jahangir, Shafiq Ur Rehman, Fayyaz Ahmad and Anjum Pervaiz

Then equation (2. 27 ) becomes

Ut(t) = AU(t) + s(t). (2. 31)

Now we use Crank-Nicholson method to solve equation (2. 31 ) as follows

U (n+1) − Un

∆t
= A

U (n+1) + Un

2
+

S(n+1) + Sn

2
, (2. 32)

U (n+1) − Un =
∆t

2
AU (n+1) +

∆t

2
AUn +

∆t

2
(S(n+1) + Sn). (2. 33)

Let

S(n+1/2) =
S(n+1) + Sn

2
, r =

∆t

2
.

Then, we have

U (n+1) − Un = rAU (n+1) + rAUn +∆ts(n+1/2), (2. 34)

(I − rA)U (n+1) = (I + rA)Un +∆tS(n+1/2). (2. 35)

Equation (2. 35 ) can be simplified as follows

U (n+1) = B−1
1 (B2U

n +∆tsn+1/2), (2. 36)

where,

B1 = I − rA,

B2 = I + rA,

I = identity matrix

This is how we convert one-dimensional IFD schemes in to two-dimensional IFD schemes.

3. STABILITY

After spatial discretization of 1-D heat conduction equation, we get

Tt(t) = kTxx(t) + S(t)

Tt(t) =
k

h2
A

−1
BT(t) + S(t) ,

(3. 37)

where, ATxx = 1
h2BT. We apply Crank-Nicolson method on the above equations for

temporal discretization and get

T(ti+1)−T(ti)

∆t
=

k

h2
A

−1
B

(

T(ti+1)−T(ti)

2

)

+
S(ti+1) + S(ti)

2

T(ti+1) =
(

I− rA−1
B
)−1 (

I+ rA−1
B
)

T(ti) +
(

I− rA−1
B
)−1

∆tSi+1/2 ,
(3. 38)

where r = k∆t
2h2 and S

i+1/2 = S(ti+1)+S(ti)
2 .

Now if the real parts of eigenvalues of
(

I− rA−1
B
)

−1 (
I+ rA−1

B
)

are negative then

the numerical scheme is stable.

One can check that λ is the eigenvalue of A−1
B iff (1+ rλ)/(1− rλ) is the eigenvalue of
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(

I− rA−1
B
)

−1 (
I+ rA−1

B
)

. Next we will show that if |(1 + rλ)/(1 − rλ)| < 1 then

real part of λ is negative.

Take

∣

∣

∣

∣

1 + rλ

1− rλ

∣

∣

∣

∣

< 1

|1 + rλ| < |1 − rλ|

(1 + rλ1)
2 + r2λ2

2 < (1− rλ1)
2 + r2λ2

2

1 + rλ1 < 1− rλ1

λ1 < 0 ,

(3. 39)

where λ = λ1 + i λ2.

For simplicity, assume the boundary conditions at nodes x1 and xn+2 are zero. By includ-

ing the stencils for boundaries, the approximation of second order derivative can be written

as

ATxx =
1

h2
BT ,

where A and B for n = 10 are

A =



















































1 12/97 −1/194 0 0 0 0 0 0 0

12/97 1 12/97 −1/194 0 0 0 0 0 0

−1/194 12/97 1 12/97 −1/194 0 0 0 0 0

0 −1/194 12/97 1 12/97 −1/194 0 0 0 0

0 0 −1/194 12/97 1 12/97 −1/194 0 0 0

0 0 0 −1/194 12/97 1 12/97 −1/194 0 0

0 0 0 0 −1/194 12/97 1 12/97 −1/194 0

0 0 0 0 0 −1/194 12/97 1 12/97 −1/194

0 0 0 0 0 0 −1/194 12/97 1 12/97

0 0 0 0 0 0 0 −1/194 12/97 1



















































,

B =































−8417
34920

−5757
1940

4237
873

−12821
3492

6843
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Notice that the matrix A is a Toeplitz matrix and also strictly diagonally dominant. The

matrix B is not Toeplitz due to inclusion of boundary stencils. If we neglect the first two

and last two rows and columns then the remaining matrix is a Toeplitz matrix. This fact

tells us as we increase the grid size, the eigenvalues of growing matrices are not random

but follows a pattern or profile. In Figure 1, we have plotted the real part of eigenvalues of

A−1B for n = 1000 and it shows that graph is below zeros. In other words, the real parts

of all eigenvalues are negative.

By sampling eigenvalues from smaller matrices, we can tell the eigenvalues of much

larger matrices by using extrapolate algorithm. Hence, it is easy to check the sign of eigen-

values in the asymptotic cases when size of the matrix is much larger. In the extrapolate
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FIGURE 1. Real parts of eigenvalues of A−1
B for n = 1000.

algorithm, the eigenvalues of sequence of banded Toeplitz matrices are not random but fol-

low a regular pattern. This means in limit the behavior of eigenvalues of larger matrices is

predictable.

In Figure 2, we have plotted the eigenvalues of A−1B⊗ I+ I⊗A−1B. Where we can see,

as we increase the size of matrices their respective real part spectrum becomes closer and

closer.

It means the eigenvalues are not randomly distributed but follow a regular patter. Clearly all

the real parts of eigenvalues are negative. This conclude that our proposed iterative scheme

is stable.

4. MULTI-DIMENSIONAL LINEAR HEAT EQUATION

It is possible to use 1-D IFD for any dimension linear heat equation on regular and

rectangular grid by using Kronecker product. The IFD scheme is not valid for irregular

grids in any dimension.

Consider a three dimensional linear heat equation of the form

Ut = K1 Uxx +K2Uyy +K3 Uzz + s(x, y, z, t) .

Let Ax, Ay and Az are 1-D IFD operators to approximate second order derivatives Uxx,

Uyy and Uzz respectively. By using Kronecker product we can discretize

K1 Uxx +K2 Uyy +K3Uzz

with the following linear operator

K1 Ax ⊗ Iy ⊗ Iz +K2 Ix ⊗Ay ⊗ Iz +K3 Ix ⊗ Iy ⊗Az .

Generalization is straightforward for other higher dimensional cases.
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FIGURE 2. Real parts of eigenvalues of A−1
B for n = 1000.

5. NUMERICAL TESTING

To verify numerically the order of accuracy sixth-order IFD we take the following one-

dimensional problem

Tt(x, t) = k Txx(x, t) 0 < x < 1 , t > 0 . (5. 40)

This heat equation has analytical solution T (x, t) = e−k π2 t sin (π x). Table 1 shows the

order of accuracy for different values of k. Our numerical testing proves that IFD has at

least six order of accuracy. We use

Order of accuracy = log2

(

Absolute error at h

Absolute error at h/2

)

to compute the order of accuracy.

TABLE 1. Order of accuracy of IFD in 1-D case.

k ∆t h Absolute error Order of accuracy

1 1e− 6 0.090909 1.5176e− 6 -

0.047619 6.1566e− 9 7.9455
1e− 3 1e− 6 0.090909 2.1141e− 7 -

0.047619 2.3616e− 9 6.4841
1e− 5 1e− 5 0.090909 2.1245e− 9 -

0.047619 2.9554e− 11 6.1676
1e− 7 1e− 3 0.090909 2.1233e− 11 -

0.047619 2.8086e− 13 6.2403
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To check the validity and accuracy of our developed sixth-order IFD scheme, we also

solve the following 2-D example with Dirichlet boundary conditions.

Dirichlet problem =



















Tt(x, y, t) = Txx(x, y, t) + Tyy(x, y, t) , 0 < x < 1, 0 < y < 1, t > 0 ,

T (x, y, 0) = sin(π x)sin(π y) , 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 ,

T (x, 0, t) = T (x, 1, t) = 0 , t > 0 ,

T (0, y, t) = T (1, y, t) = 0 .

(5. 41)

The analytical solution to the problem (5. 41 ) is given in equation (5. 42 ).

T (x, y, t) = e−π2 t sin(π x) sin(π y) (5. 42)

To check the order of accuracy of IFD scheme for 2-D problem ( 5. 41 ) we took

h1 = h2 = h and ∆t = 1e − 5. Order of accuracy is computed in Table 2 and it ensures

our theoretically proposed order of accuracy.

TABLE 2. Order of accuracy of IFD in 2-D case.

h Absolute error Order of accuracy

0.125 3.9358e− 06 -

0.0666667 1.7561e− 08 7.8081
0.0322581 1.1598e− 10 7.2424

FIGURE 3. Absolute error plot.

We have performed extensive numerical testing to observe the quality of the developed

sixth-order compact implicit finite difference scheme by calculating absolute error against
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FIGURE 4. Absolute error plot.

the temporal and spatial dimensions. On top of that we also have performed numerical

experiments to observe absolute error for different times.

In Figure 3, the absolute error behavior has been observed against the grid points. The

maximum of the absolute error is no more than 1.62× 10−8. Whereas, Figure 4 combines

the absolute error effect against the space index and time index.

In Figure 5, the solution sets with respect to four different time steps are plotted. While

in Figure 6, absolute error has been plotted against four different time steps. When time

is zero, there is no absolute error but when time gradually increases, absolute error also

increases. It is shown that, for non-zero time, the maximum absolute error is ranging from

approximately 1.82× 10−10 to 1.89× 10−9.

In Figure 7, the solution sets have been plotted for ten different time steps. While Figure

8 beautifully explains the absolute error behaviour against ten different time steps. It has

been observed that the maximum absolute error for ten different time steps is in-between

approximately 3.4 × 10−11 to 1.85 × 10−9. It has also been analyzed that the value of

absolute error in the third time step is slightly increased, whereas in the remaining time

steps it is increased by approximately one order of magnitude until it attains the maximum

absolute error of approximately 1.85× 10−9.
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FIGURE 5. Solution plots for four different times.
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FIGURE 6. Absolute error plots for four different times.

6. CONCLUSIONS

The implicit finite difference schemes provide more accurate way to approximate the

spatial derivatives as compared to explicit finite difference schemes. We have constructed
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FIGURE 7. Solution plots for ten different times.
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FIGURE 8. Absolute error plots for ten different times.

sixth-order implicit finite difference scheme for 1-D heat conduction problem on uniform

grid, in-particular, for boundary enclosure to guarantee high order of accuracy and stabil-

ity of time integrator. With the help of Kronecker product, one can extend IFD to higher

dimensional heat equation on regular rectangular girds. The IFD scheme is only valid for
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Dirichlet boundary conditions on regular rectangular girds. To construct higher order im-

plicit finite different scheme with order greater than four for Neumann boundary conditions

are challenging. The validity of our developed numerical scheme is clearly reflected by the

solved numerical example. It has been observed that the computed generalized eigenvalues

of compact finite difference matrices have negative real parts that guarantees stability in the

case of Crank-Nicolson method. Further work can be done by developing such schemes

for more complicated problems; see, for example, [7].
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