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Abstract. This manuscript focuses on new image segmentation model for
noisy and intensity inhomogeneity images on the basis of natural loga-
rithmic increasing density function. Local image information is necessary
for inhomogeneous images, but it is ineffective for noisy images. As a
result local information misguides the motion of active contour. How-
ever, the natural logarithmic function in new proposed model is capable
to capture minute details of images. Moreover, it also reduces the noise in
the images and helps to clarify the exact boundaries. Comparing with lo-
cal Chan-Vese Model, our new proposed model gives better performance
while treating noisy and intensity inhomogeneity images. Experiments on
noisy and intensity inhomogeneity images show the robustness of our new
proposed model.
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1. INTRODUCTION

The segmentation of image is one of the difficult tasks in the field of image processing
and computer vision. However, segmentation of image is employed vastly in engineering
sciences and medical sciences. Its objective is to divide an image in different parts to
make it meaningful and easier to analyze, so for detail study see monographs such as [2,
4, 8, 10, 14, 15, 16, 20, 22, 24]. Many kinds of algorithm have been suggested to find the
image segmentation problems till the recent times. Moreover, several approaches are used
to enhance the outcome of image segmentation algorithm. Among these, LCV model is of
great importance, and it is used both for local and global image information in the process
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image of segmenting. While performing few iterations in the LCV model which captures
local image details to segment the images with intensity inhomogeneity more efficiently;
however, the LCV model is in effective in the segmentation of noisy images. Furthermore,
the re-initialization step vastly used in traditional level set approaches which is quite time
consuming, and it can be abandoned by the introduction of a newly penalizing energy in
term of regularization form. Due to newly penalizing energy function, the consumption
of time is reduced. In addition, Level set evolution procedure having the evolution curve
which automatically ends on exact boundaries/edges of the given objects. At the same
time, it is also quite important to deal with the problem of segmentation in noisy images
because noisy images are mostly found in medical images and satellite. For details study
[1, 3, 5, 9, 12, 13, 17, 18, 21, 23, 25, 26] and references therein.

The above mentioned details encourage us to introduced a new noisy image segmenta-
tion model. The new proposed model can provide better and more efficient results when
the model is applied on noisy images. This new proposed model can capture more infor-
mation regarding the given noisy image; moreover, it also avoids the noise at the same time
in the final segmented result. Moreover, the time-consuming re-initialization step widely
adopted in traditional level set methods can be avoided by introducing a new penalizing
energy to the regularization term. As a result, the time-consumption is greatly decreased.
Specially, the evolving curve in level set evolution process can automatically stop on true
boundaries of objects. On the other hand, traditional models can segment noisy image, but
simultaneously these models also capture the noise which is defective having faulty result.
For detail study of traditional image segmentation models having different approaches see
the monographs such as [6, 10, 11, 12, 19, 22]. The idea of our new proposed model is
the combination of the local Chan-Vese model and non-linear diffusion model which are
based on noisy image segmentation. The new model considers information about the re-
gion sufficiently. It is not necessary to consider the re-initialization of the curve, due to the
application of Gaussian density function, and it must be noise robust. Due to which we
consider the mean as well as global variance of the given image. Compared with classical
LCV model, our new model for noisy image segmentation is much better because it reduces
the noise in the final segmented image. The above mentioned preference of our new model
can be seen through experimental results which will be presented in the last section of this
monograph.

2. NOTATIONS AND PRELIMINARIES

In this section, we discuss some previous works regarding noisy image segmentation
and intensity inhomogeneity image segmentation. In more precise way, we can briefly an-
alyze two models, which are the following:

• Nonlinear diffusion equation model for noisy image segmentation.

• Local Chen-Vese (LCV) model.

Taking in account, the main ideas and limitations regarding above mentioned models, we
propose our new model in section 3 which covers some limitations of LCV model, i.e. as we
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know that LCV model is not capable of giving efficient and good result in noisy intensity
inhomogeneity images but our propose model is better in such type of image segmenta-
tions. The robustness of our new proposed model are shown through some experimental
results, in section 4 of this monograph. The last section of this monograph is devoted to the
concluding note about our new Segmentation model.

Noisy Image Segmentation Based on Nonlinear Diffusion Equation (NSDB) Model.
The NSDB model [7] used statistical information in order to reduce the noise in segmenta-
tion. In NSBD model the infimum variance term in FEI model is replaced by a statistical
term, which is being consider as a part regarding external energy at first.

Generally the above model is given as: arg(minCE(C)), where E(C) is the energy
functional of this model, which has the following form:

E(C) = α

∮
C

g(C(s))ds︸ ︷︷ ︸
EGAC(C)

−β
∮
c

|〈∇I,N〉|ds︸ ︷︷ ︸
EAR(C)

+γ
[ ∫

inside(C)

(−logP1(I))ds+

∫
outside(C)

(−logP2(I))ds
]

︸ ︷︷ ︸
Estat(C)

.

In above energy term, I(u, v) represents a gray level image, ∇I(u, v) = {Iu, Iv} denotes
the gradient vector of the given image. The notation C : [0, L] 7−→ R2 is used for a para-
metric curve, and α, β, γ are any positive constants. Let us consider C(s) = {u(s), v(s)},
where s denotes arc length parameter. The notation Cs = {us, vs} used for tangent vector
of a curve, implies that the associated normal direction is given as N(s) = {−vs, us}. The
model in discussion, i.e. NSDB model, consolidate many geometric measures to a uni-
fied variational framework and obtain the required statistical active contour model. In the
Gaussian density case, we have two parameter’s only, i.e. mean m and variance σ2 should
be obtained. Let us consider

p(m,σ) =
1√
2πσ

exp(− (I(u, v)−m)2

2σ2
),

then the statistical active contour model is rearranged as below:
φt =

∂φ

∂t
= α.div(g(u, v)∇φ)− β.sign(〈∇I,∇φ〉∇I) + γ

[
log

σ2
2

σ2
1

− (I(u, v)−m1)2

σ2
1

+
(I(u, v)−m2)2

σ2
2

]
+ λ.div

[(
1− 1

|∇φ|

)]
,

where,

m1(φ) =

∫
Ω
I(u, v)χi(φ)dudv∫

Ω
χi(φ)dudv

, σ2
i (φ) =

∫
Ω

(I(u, v)−mi)
2χi(φ)dudv∫

Ω
χi(φ)dudv

,

χ1(φ) = H(φ), χ2(φ) = 1−H(φ) and

H(p) =

{
1, if p > 0
0, if p < 0

is a Heaviside function.
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Local Chan-Vese (LCV) Model. Many traditional segmentation model faces the problem
of inhomogeneity segmentation, which happen in many real world images. To overcome
the problem of inhomogeneous intensity segmentation, the LCV model combine both the
local and global statistical information. The general form of overall energy functional of
LCV model is:

F = αFG + βFL + FR,

where FG, FL and FR are global, local and regularized terms respectively and defined as:

FG(m1,m2, C) =

∫
inside(C)

|I −m1|2dudv +

∫
outside(C)

|I −m2|2dudv,

FL(n1,n2, C) =

∫
inside(C)

|I ′ − n1|2dudv +

∫
outside(C)

|I ′ − n2|2dudv,

and

FR =

∮
C

dp,

where C is a closed curve. m1, m2, n1 and n2 are constants inside and out side C and
I ′ is a smooth image define as I ′ = gk ∗ I − I and gk is an average operator with k × k
convolution size window. Now the overall energy functional of LCV model in regularized
form can be formulated as:

Fε(φ,m1,m2,n1,n2) = µ

∫
Ω

δε|∇φ|dudv +

∫
Ω

1

2
(| ∇φ | −1)2dudv

+ λ1

∫
Ω

(I −m1)2Hεdudv + λ1

∫
Ω

(I −m2)2(1−Hε)dudv

+ λ2

∫
Ω

(I ′ − d1)2Hεdudv + λ2

∫
Ω

(I ′ − d2)2(1−Hε)dudv.

The initial term reveal the regularized term, which is used for smoothing purpose of contour
and also this term is used to make the contour tight. While the next two terms in above equa-
tion represents the local and global terms, which came in application for capturing local and
global-information regarding the given image. Minimization of Fε(φ,m1,m2,n1,n2) with
respect to m1, m2, n1 and n2 yields the following:

m1(φ) =

∫
Ω
IHε(φ(u, v))dudv∫

Ω
Hε(φ(u, v))dudv

, m2(φ) =

∫
Ω
I(1−Hε(φ(u, v)))dudv∫

Ω
(1−Hε(φ(u, v)))dudv

,

n1(φ) =

∫
Ω
I ′Hε(φ(u, v))dudv∫

Ω
Hε(φ(u, v))dudv

, n2(φ) =

∫
Ω
I ′(1−Hε(φ(u, v)))dudv∫

Ω
(1−Hε(φ(u, v)))dudv

.

By minimizing Fε with respect to φ, the Euler-Lagrange’s equation for φ is given by:
δε

[
µdiv

( ∇φ
|∇φ|

)
+ λ1

(
− (I −m1)2 + (I −m2)2

)
+λ2

(
− (I ′ − n1)2 + (I ′ − n2)2

)]
= 0 in Ω,

∂φ

∂~n
= 0 on ∂Ω.

The below equation is consider for solution.
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
φt =

∂φ

∂t
= δε

[
λ1

(
− (I −m1)2 + (I −m2)2

)
+ λ2

(
− (I ′ − n1)2 + (I ′ − n2)2

)]
+
[
µδε∇.

( ∇φ
|∇φ|

)
+
(
∇2φ−∇. ∇φ

|∇φ|

)]
, in Ω,

φ(u, v, t) = φ0(u, v, 0), in Ω.

Thus LCV model encompass the inhomogeneity problems. In fact, LCV model has also
some drawbacks, because it fails in images which has low contrast, images regarding
low frequencies, unilluminated objects, overlapping regions of homogeneous intensities,
in such situations the results of the LCV model is not to much satisfactory.

3. PROPOSED LOCAL CHAN-VESE NOISY IMAGE SEGMENTATION MODEL:

This section deals with the study of our new proposed SEGMENTATION model. It
is known that LCV model perform better in intensity inhomogeneity images but fails in
noisy image segmentation. Since, LCV model uses local image information due to which
it sometimes almost fails to segment some sort of noisy images. Hence, to reduce that
mention limitations regarding LCV model, we proposed a new model in the following
way:
For our new proposed model, we define a new logarithmic density function and also use
few statistical information to reduce the problem regarding image segmentation in such
type of noisy images. The energy functional of our new proposed model is given by:

Q(ζ1, ζ2, χ1, χ2, ς
2
1 , ς

2
2 , ς

2
3 , ς

2
4 , ψ) = ξ1ξ2

∫
inside(Γ)

(ln£1(I))ds

+ ξ1ξ2

∫
outside(Γ)

(ln£2(I))ds

+ ξ1ξ2

∫
inside(Γ)

(ln£3(I ′))ds

+ ξ1ξ2

∫
outside(Γ)

(ln£4(I ′))ds, (3. 1)

where,

£1 =
−1√
2πς1

exp(
(I(α, β)− ζ1)2

2ς21
), £2 =

−1√
2πς2

exp(
(I(α, β)− ζ2)2

2ς22
),

£3 =
−1√
2πς3

exp(
(I ′(α, β)− χ1)2

2ς23
), £4 =

−1√
2πς4

exp(
(I ′(α, β)− χ2)2

2ς24
),

and ζ1, ζ2 are the averages of given image inside and outside respectively and d1, d2 are the
averages of difference image inside and outside respectively and ς2i , where i = 1, 2, 3, 4
denotes the corresponding variances.

In detail, local chan-vese model only takes global image statistics. In segmentation of
inhomogeneous noisy images local chan-vese model causes weak detection of boundaries,
because local chan-vese model only uses global image statistics. Therefore, model (3.1)
is introduced which is a new image segmentation model. The proposed model (3.1) uses
both local and global statistics. Therefore, the proposed model (3.1) works more good and
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efficiently in segmenting the homogenous and in-homogenous noisy images. Moreover,
the local statistics of image helps in capturing a local minute details and ignoring the noise
while global image statistics provides robust, fast detection of global image structure and
provide a good result in noisy images.

Now we minimizing the energy functional given in Eq. (3.1). For a fixed level set
function ψ, we minimize the energy functional in Eq. (3.1) with respect to ζ1, ζ2, χ1, χ2

and variances . Using variational calculus, we can prove that the constant functions ζ1, ζ2,
χ1, χ2 and variances that reduce the energy functional in Eq. (3.1) for a fixed function ψ
as given below:

ζ1(ψ) =

∫
Ω
I(α, β)H(ψ)dαdβ∫

Ω
H(ψ)dαdβ

, ζ2(ψ) =

∫
Ω
I(α, β)(1−H(ψ))dαdβ∫

Ω
(1−H(ψ))dαdβ

,

χ1(ψ) =

∫
Ω
I ′(α, β)H(ψ)dαdβ∫

Ω
H(ψ)dαdβ

, χ2(ψ) =

∫
Ω
I ′(α, β)(1−H(ψ))dαdβ∫

Ω
(1−H(ψ))dαdβ

.

And

ς21 (ψ) =

∫
Ω

(I(α, β)− ζ1)2H(ψ)dαdβ∫
Ω
H(ψ)dαdβ

, ς22 (ψ) =

∫
Ω

(I(α, β)− ζ2)2(1−H(ψ))dαdβ∫
Ω

(1−H(ψ))dαdβ
,

ς23 (ψ) =

∫
Ω

(I ′(α, β)− χ1)2H(ψ)dαdβ∫
Ω
H(ψ)dαdβ

, ς24 (ψ) =

∫
Ω

(I ′(α, β)− χ2)2(1−H(ψ))dαdβ∫
Ω

(1−H(ψ))dαdβ
.

Now keeping ζ1, ζ2, χ1, χ2 and variances fixed, and minimizing the overall energy func-
tional given in Eq. (3.1) with respect to ψ. We did the minimization of Eq. (3.1) by
involving a time artificial variable t ≥ 0, hence minimization of energy functional given in
Eq. (3.1) for fixed ζ1, ζ2, χ1, χ2 and variances is given by:

ψt =
∂ψ

∂t
= ξ1ξ2

[
ln
ς22
ς21

+
(I(α, β)− ζ1)2

ς21
− (I(α, β)− ζ2)2

ς22

]
+ ξ1ξ2

[
ln
ς24
ς23

+
(I ′(α, β)− χ1)2

ς23
− (I ′(α, β)− χ2)2

ς24

]
.

The following section of this monograph, shows the applicability of the above new re-
search work. In precise way we can say that the coming section shows the numerical work
regarding the energy functional of our new proposed model.

4. EXPERIMENTAL RESULTS:

This section contains some experimental results of LCV model and proposed model.
These experimental results shows the efficiency and better performance of our new pro-
posed model, as compared to LCV model regarding noisy images. Initial contour can be
considered any where on the original noisy image. We present three set of images for each
model, i.e. original image, final contour and the segmented result. The comparison for
each image is elaborated in the corresponding remark.
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Experimental result of LCV model

(a) Original Image (b) LCV Result (c) Final Result

FIGURE 1. The figure illustrating the performance of LCV model. (a) Original
synthetic Image (b) LCV model Result (c) Final Result.

Experimental result of proposed model

(a) Original Image (b) proposed Result (c) Final Result

FIGURE 2. The figure illustrating the performance our proposed SEGMENTA-
TION model. (a) Original synthetic Image (b) proposed model Result (c) Final
Result.

Remark 4.1. The above figure is an original satellite image. The result of figures 3 and
4 shows the robustness of LCV and proposed models, respectively. Clearly, the result of
proposed model is more efficient as compared to LCV model, because proposed model
captured more information of the original image.

Experimental result of LCV model

(a) Original Image (b) LCV Result (c) Final Result

FIGURE 3. The figure illustrating the performance of LCV model. (a) Original
synthetic Image (b) LCV model Result (c) Final Result.

Experimental result of proposed model
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(a) Original Image (b) proposed Result (c) Final Result

FIGURE 4. The figure illustrating the performance of our new proposed SEG-
MENTATION model. (a) Original synthetic Image (b) proposed model Result
(c) Final Result.

Remark 4.2. The above figure is an original satellite image. The result of figures 1 and
2 shows the robustness of LCV and proposed models, respectively. Clearly, the proposed
model Result is more efficient as compared to LCV model, because proposed model cap-
tured more information of the original image.

Experimental result of LCV model

(a) Original Image (b) LCV Result (c) Final Result

FIGURE 5. The figure illustrating the performance LCV model. (a) Original
Image (b) LCV model Result (c) Final Result.

Experimental result of proposed model

(a) Original Image (b) proposed Result (c) Final Result

FIGURE 6. The figure illustrating the performance our proposed SEGMENTA-
TION model. (a) Original Image (b) proposed model Result (c) Final Result.

Remark 4.3. The above figure is a real medical noisy image. The result of figures 7 and
8 shows the robustness of LCV and proposed models, respectively. Clearly, the result of
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proposed model is more efficient as compared to LCV model, because proposed model
captured less noise.

Experimental result of LCV model

(a) Original Image (b) LCV Result (c) Final Result

FIGURE 7. The figure illustrating the performance of LCV model. (a) Original
Image (b) LCV model Result (c) Final Result.

Experimental result of proposed model

(a) Original Image (b) proposed Result (c) Final Result

FIGURE 8. The figure illustrating the performance our proposed SEGMENTA-
TION model. (a) Original Image (b) proposed model Result (c) Final Result.

Remark 4.4. The above figure displays a real noisy medical image. The result of figures 5
and 6 shows the robustness of LCV and proposed models, respectively. Clearly, the result
of proposed model is more efficient as compared to LCV model, because proposed model
captured less noise.

5. CONCLUSION

In a nutshell we can precisely claim that our new proposed model for noisy intensity
inhomogeneity images is actually the amalgam of both LCV model and Noisy image seg-
mentation model. Precisely the new model is less time consuming and probably can be
adopted instead of traditional level set methods by introducing a new penalizing energy
to the regularization term. Specially, the evolving curve in level set evolution process can
automatically stop on true boundaries of objects. Furthermore, the new model is also based
on logarithmic function and it is founded on the basis of nonlinear diffusion model [7]. The
new model gives us better results as compared to the traditional models which we witnessed
in the above experimental works.
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