Monogenity of Biquadratic Fields Related to Dedekind-Hasse's Problem

Mamoona Sultan
National University of Computer \& Emerging Sciences, Peshawar, Khyber Pakhtunkhwa, the Islamic Republik of Pakistan
Email: p109957@nu.edu.pk
Yoshifumi Kôhno
Christ Church in Japan,
059-1433 Hokkaido Yuhutugun, Abiracyo Toasa 42, Japan
Email: yoshikohno080928@d1.dion.ne.jp
Toru Nakahara
Qarshi University,
8km from Thokar Niaz Baig, Canal Bank Road, Opposite Izmir Town, Lahore, the Islamic Republik of Pakistan
Email: toru.nakahara@nu.edu.pk, toru.nakahara@qu.edu.pk, nakahara@ms.saga-u.ac.jp

Received: 25 April, 2015 / Accepted: 22 July, 2015 / Published online: 26 October, 2015

Abstract

The aim of this paper is to determine the monogenity of imaginary, and real biquadratic fields K over the field \boldsymbol{Q} of rational numbers and the relative monogenity of K over its quadratic subfield k. To characterize such phenomena it is necessary to determine an integral basis of the field K and to evaluate the relative norm of the different $\mathfrak{d}(\xi)$ with respect to K / k of an integer ξ in K. Here $\mathfrak{d}(\xi)$ is defined by $\prod_{\rho \in G \backslash\{\iota\}}\left(\xi-\xi^{\rho}\right)$, where $\xi-\xi^{\rho}$ denotes the partial different of an integer ξ in K, and G and ι denote the Galois group of K / Q and the identity embedding of K, respectively. For the succinct proof of non-monogenity, we consider a single linear Diophantine equation consisted of the partial differents with unit coefficients.

AMS (MOS) Subject Classification Codes: 11R04, 11R11, 11R29

Key Words: Monogenity, Biquadratic field, Discriminant, Integral basis

1. Introduction

In the 1960's Hasse proposed to characterize an algebraic number field K whose ring Z_{K} of integers has a power integral basis or not. Let p be a prime number and $\zeta_{p^{e}}$ be a primitive p^{e} th root
of unity, which is a root of an irreducible cyclotomic polynomial $\Phi_{p^{e}}(x)=\left(x^{p^{e}}-1\right) /\left(x^{p^{e-1}}-1\right)$ over \boldsymbol{Q} with $\zeta_{2}=-1, \zeta_{3}=(-1+\sqrt{-3}) / 2, \zeta_{4}=\sqrt{-1}$ and $\zeta_{p^{e}}=\exp \left(2 \pi i / p^{e}\right), p \geqq 2, e \geqq 1$, Then for the Eisenstein field $k_{3}=\boldsymbol{Q}\left(\zeta_{3}\right)=\boldsymbol{Q}(\sqrt{-3})$, the Gauß field $k_{4}=\boldsymbol{Q}(\sqrt{-1})$ and a cyclotomic field $k_{p^{e}}=\boldsymbol{Q}\left(\zeta_{p_{e}}\right)$, it is known that $Z_{k_{3}}=\boldsymbol{Z}\left[1, \zeta_{3}\right], Z_{k_{4}}=\boldsymbol{Z}[1, \sqrt{-1}]$ and $\boldsymbol{Z}_{k_{p^{e}}}$ $=\boldsymbol{Z}\left[1, \zeta, \cdots, \zeta^{p^{e-1}(p-1)-1}\right]$ with $\zeta=\zeta_{p^{e}}$ as a \boldsymbol{Z}-free module of rank $p^{e-1}(p-1)$ [15]. Each of the fields is called monogenic. For an algebraic number field K over the rationals \boldsymbol{Q}, Z_{K} denotes the ring of integers in K. Let $\boldsymbol{Q} \subset F \subset K$ be an algebraic number field tower. It is said that a field K is relatively monogenic in the relative field extension K / F of degree n or equivalently, Z_{K} has a power integral basis of rank n over Z_{F} if for a suitable integer $\alpha \in Z_{K}, Z_{K}$ coincides with the Z_{F}-module $Z_{F}[\alpha]=Z_{F} \cdot 1+Z_{F} \cdot \alpha+\cdots+Z_{F} \cdot \alpha^{n-1}$ of rank n over Z_{F}. In the case of $F=\boldsymbol{Q}$, we say that K is monogenic or Z_{K} has a power integral basis [4]. Then to determine the monogenity of $Z_{K}=Z_{F}[\alpha]$ with a suitable integer α or $Z_{K} \neq Z_{F}[\beta]$ for any integer β in F is called DedekindHasse's problem. Let d_{F} and $d_{F}(\alpha)$ denote the field discriminant and the discriminant of a number α in F and the $\operatorname{Index} \operatorname{Ind}_{F}(\alpha)$ of a number α is defined by $\sqrt{\frac{\left|d_{F}(\alpha)\right|}{\left|d_{F}\right|}}$. It is known that Dedekind's example of a cubic field $K=\boldsymbol{Q}(\theta)$ is non-monogenic, where θ satisfies a cubic irreducible equation; $x^{3}-x^{2}-2 x-8=0$ with the discriminant $d_{K}(\theta)=\left\{\left(\theta-\theta^{\sigma}\right)\left(\theta-\theta^{\sigma^{2}}\right)\left(\theta^{\sigma}-\theta^{\sigma^{2}}\right)\right\}^{2}=2^{2} \cdot(-503)$ of θ and a non-trivial conjugate map σ on K [3]. In fact, $\{1, \theta, \eta\}$ with $\eta=\theta(\theta-1) / 2$ is an integral basis of K and it holds that $\left.{ }^{t}\left(\begin{array}{ll}1 & \theta\end{array} \theta^{2}\right)=\left(\begin{array}{lll}t \\ 1 & 0 & 0\end{array}\right)^{t}\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{t}\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\right) \cdot{ }^{t}\left(\begin{array}{lll}1 & \theta & \eta\end{array}\right)=A \boldsymbol{\eta}$, where $\boldsymbol{\eta}={ }^{t}(1 \theta \eta)$ and ${ }^{t} B$ denotes the transposed of a matrix B, and hence $d_{K}(\theta)=(\operatorname{det} A)^{2} d_{K}$. Here the field discriminant d_{K} is defined by $\operatorname{det}\left({ }^{t} \boldsymbol{\eta}^{t} \boldsymbol{\eta}{ }^{\sigma}{ }^{t} \boldsymbol{\eta}^{2}\right)^{2}$ and $\operatorname{Ind}_{K}(\theta)=|\operatorname{det} A|=2$. Then it follows that the ring $\boldsymbol{Z}\left[1, \theta, \theta^{2}\right]$ is a proper subring of Z_{K}. Moreover for any integer $\xi=x+y \theta+z \eta$, we know that $\operatorname{Ind}_{K}(\xi) \equiv 0(\bmod 2)$, namely Z_{K} has no power integral basis. In this paper we consider the problem on a family of imaginary, and real biquadratic fields $K=\boldsymbol{Q}(\sqrt{D M}, \sqrt{D N})$, where $D M N$ is a square free integer with $1 \leqq|D|, 1<N, M$ as an analogue of a work by Y. Motoda [9].

Theorem 1.1. Let K be a biquadratic field $\boldsymbol{Q}(\sqrt{D M}, \sqrt{D N})$, where $D M N$ is square free with $D M \equiv D N \equiv 3, M N \equiv 1(\bmod 4)$ and $1 \leqq|D|, 1<N, 1<M$. Then K has an integral basis $\boldsymbol{Z}\left[1, \sqrt{D M}, \frac{1+\sqrt{M N}}{2}, \frac{\sqrt{D M}+\sqrt{D N}}{2}\right]$ with the field discriminant $d_{K}=2^{4} D^{2} M^{2} N^{2}$ and Z_{K} has a relative power integral basis $Z_{k}[1, \sqrt{D M}]$ over Z_{k} with a quadratic subfield $k=\boldsymbol{Q}(\omega)$ and $\omega=\frac{1+\sqrt{M N}}{2}$. But, if $4 D \pm M \pm N \neq 0$ holds, then Z_{K} has no power integral basis.

Corollary 1.2. There exist infinitely many non-monogenic biquadratic fields.
Corollary 1.3. Using the same notation as in Theorem 1.1, there exist monogenic biquadratic fields for $D= \pm 1, M-N= \pm 4$.

Our theorem gives a negative solution to the problem 6 in [11]. An explicit integral basis of any biquadratic field K is shown in K . S. Williams using evaluation modulo powers of 2 without the process of a relative extension $K / k / Q$ for a quadratic subfield k of K [16]. On the family of imaginary biquadratic fields K with $D<0$ a complete classification of monogenity has been given by G. Nyul using the evaluation of the full norm of the different $\mathfrak{d}_{K}(\xi)$ for any element $\xi \in K$ [12]. On the contrary, based on the works of M.-N. Gras, F. Tanoè, it is shown that there exist infinitely many real monogenic biquadratic fields not depending on Dirichlet's theorem on arithmetic
progression [9, 4]. We prove our theorem by the consideration of the relative norm with respect to K / k of partial differents $\xi-\xi^{\rho}$ of the different $\mathfrak{d}(\xi)$ of an integer ξ, and a single linear Diophantine equation consisted of three relative norms of the partial differents with unit coefficients. Here $\mathfrak{d}(\xi)$ is defined by $\prod_{\rho \in G \backslash\{\iota\}}\left(\xi-\xi^{\rho}\right)$ with Galois group G of K / Q and the identity embedding ι of K for a family of certain biquadratic fields. Related works are found in $[1,2,5,6,8,10,13,14]$.

2. Integral bases

Let K be a biquadratic field $\boldsymbol{Q}(\sqrt{D M}, \sqrt{D N})$ with a square free $D M N, 1 \leqq|D|, 1<N$, $1<M$ and $D M \equiv D N \equiv 3(\bmod 4), M N \equiv 1(\bmod 4)$. Let k be a quadratic subfield $\boldsymbol{Q}(\sqrt{D M})$. Then it holds that $K=k[1, \omega]=\boldsymbol{Q}\left[1, \sqrt{D M}, \omega, \gamma_{0}\right]$ with $\omega=\frac{1+\sqrt{M N}}{2}$ and $\gamma_{0}=\sqrt{D M} \omega=$ $\frac{\sqrt{D M}+M \sqrt{D N}}{2}$.
Let $k=\boldsymbol{Q}(\sqrt{D M}), k_{1}=\boldsymbol{Q}(\sqrt{M N})$ and $k_{2}=\boldsymbol{Q}(\sqrt{D N})$ be the quadratic subfields of K. Let $G=\operatorname{Gal}(K / Q)$ be the Galois group of K over \boldsymbol{Q} generated by embeddings σ and τ. Let $H_{k}=<\sigma>, H_{k_{1}}=<\tau>$ and $H_{k_{2}}=<\sigma \tau>$ be the Galois subgroups corresponding to subfields k, k_{1} and k_{2} of K, respectively. Then it holds that

$$
\begin{array}{rrrr}
\sigma: \sqrt{D M} \mapsto \sqrt{D M}, & \sqrt{M N} \mapsto-\sqrt{M N}, & \sqrt{D N} \mapsto-\sqrt{D N}, \\
\tau: \sqrt{D M} \mapsto-\sqrt{D M}, & \sqrt{M N} \mapsto \sqrt{M N}, & \sqrt{D N} \mapsto-\sqrt{D N}, \\
\sigma \tau: \sqrt{D M} \mapsto-\sqrt{D M}, & \sqrt{M N} \mapsto-\sqrt{M N}, & \sqrt{D N} \mapsto \sqrt{D N} .
\end{array}
$$

First we show that an integral basis of Z_{K} is explicitely determined. For an integer $\xi \in Z_{K}$ there exist coefficients $a, b, c, d \in \boldsymbol{Q}$ such that $\xi=a+b \sqrt{D M}+c \omega+d \gamma_{0}$. If $c=d=0$ holds, then $\xi=a+b \sqrt{D M} \in Z_{K} \cap k$, and hence $a, b \in \boldsymbol{Z}$ holds by $Z_{K} \cap k=Z_{k}=\boldsymbol{Z}[1, \sqrt{D M}]$. Put $\xi_{1}=\xi-a-b \sqrt{D M}$ with $a, b \in \boldsymbol{Z}$. Then $\xi_{1}=c \omega+d \gamma_{0} \in Z_{K}$ holds. If we choose $d=0$, then $c \in \boldsymbol{Z}$. Put $\xi_{2}=\xi_{1}-c \omega$ with $c \in \boldsymbol{Z}$. By $\xi_{2}=d \frac{\sqrt{D M}+M \sqrt{D N}}{2}=d \frac{M-1}{2} \sqrt{D N}+d \frac{\sqrt{D M}+\sqrt{D N}}{2}$, $\xi_{2}-d \frac{M-1}{2} \sqrt{D N}=d \frac{\sqrt{D M}+\sqrt{D N}}{2}$, which is denoted by ξ_{3} should belong to Z_{K} as $d \frac{M-1}{2} \in \boldsymbol{Z}$. Put $\gamma=\frac{\sqrt{D M}+\sqrt{D N}}{2}$. Thus by $T_{K / k}\left(\xi_{3}\right)=d \gamma+d \gamma=d \sqrt{D M} \in Z_{k}, d \in \boldsymbol{Z}$ is deduced. Here, $T_{K / k}(\cdot)$ means the relative trace with respect to K / k. Put $Z_{K}^{\prime}=\boldsymbol{Z}[1, \sqrt{D M}, \omega, \gamma]$. Therefore if $\xi \in Z_{K}$, it holds that $\xi \in Z_{K}^{\prime}$, namely $Z_{K} \subseteq Z_{K}^{\prime}$.
Conversely for any $\xi=s+t \sqrt{D M}+u \omega+v \gamma \in Z_{K}^{\prime}$ with $s, t, u, v \in Z$, we have $T_{K / k}(\xi)=\xi+\xi^{\sigma}$ $=2 s+2 t \sqrt{D M}+u+v \sqrt{D M} \in Z_{k}$ and $N_{K / k}(\xi)=\xi \xi^{\sigma} \in Z_{k}$, namely, $4 N_{K / k}(\xi)=2 \xi \cdot 2 \xi^{\sigma}$ $=(2 s+u+(2 t+v) \sqrt{D M})^{2}-(u \sqrt{M N}+v \sqrt{D N})^{2} \equiv\left(u^{2}+v^{2} D M+2 u v \sqrt{D M}\right)-\left(u^{2} M N+\right.$ $\left.2 u v N \sqrt{D M}+v^{2} D N\right) \equiv 0\left(\bmod 4 Z_{k}\right)$. Here, $N_{K / k}(\cdot)$ means the relative norm with respect to K / k. In fact, because of $u^{2}(1-M N)+v^{2} D(-M+N) \equiv 0(\bmod 4)$ and $2 u v(1-N) \equiv 0(\bmod 4)$, we obtain $\xi \in K \cap \tilde{\boldsymbol{Z}}=Z_{K}$. Here $\tilde{\boldsymbol{Z}}$ denotes the ring of integral closure over \boldsymbol{Q}. Thus $Z_{K}^{\prime} \subseteq Z_{K}$ holds. Then for a biquadratic field K, Z_{K} coincides with $\boldsymbol{Z}\left[1, \sqrt{D M}, \frac{1+\sqrt{M N}}{2}, \frac{\sqrt{D M}+\sqrt{D N}}{2}\right]$.

3. ReLative monogenity of a biquadratic field over a quadratic subfield

Assume that $Z_{K}=Z_{k_{1}}[1, \eta]$ over $Z_{k_{1}}$ for $Z_{k_{1}}=\boldsymbol{Z}[1, \omega]$ and $\eta=a+b \sqrt{D M}$ with $a, b \in \boldsymbol{Q}$. Thus $Z_{K}=\boldsymbol{Z}\left[1, \frac{1+\sqrt{M N}}{2}\right][1, a+b \sqrt{D M}]$
$=\boldsymbol{Z}\left[1, \frac{1+\sqrt{M N}}{2}, a+b \sqrt{D M}, a\left(\frac{1+\sqrt{M N}}{2}\right)+b\left(\frac{\sqrt{D M}+\sqrt{D N}}{2}\right)\right]$ be a free module of rank 4 over \boldsymbol{Q}. Then we show that Z_{K} has a relative integral basis over $Z_{k_{1}}$. Let $d_{K}(\alpha, \beta, \gamma, \delta)$ be the discriminant $\operatorname{det}\left({ }^{t} \boldsymbol{\alpha},{ }^{t} \boldsymbol{\beta},{ }^{t} \boldsymbol{\gamma},{ }^{t} \boldsymbol{\delta}\right)^{2}$ with a column vector $\boldsymbol{\mu}=\left(\mu, \mu^{\sigma}, \mu^{\tau}, \mu^{\sigma \tau}\right)$.
Then by $d_{K}(\alpha, \beta, \gamma, a \beta+b \delta)=d_{K}(\alpha, \beta, \gamma, b \delta)$, it follows that

$$
\begin{aligned}
& d_{K}\left(1, \omega, a+b \sqrt{D M}, a \omega+b \frac{\sqrt{D M}+\sqrt{D N}}{2}\right) \\
& =d_{K}\left(1, \omega, b \sqrt{D M}, b \frac{\sqrt{D M}+\sqrt{D N}}{}{ }^{2}\right. \\
& =b^{2+2} d_{K}\left(1, \omega, \sqrt{D M}, \frac{\sqrt{D M}+\sqrt{D N}}{2}\right) \\
& =b^{4} d_{k_{1}}(1, \omega)\left(2^{2} D \sqrt{M N}\right)^{2} \\
& =b^{4} M N \cdot 2^{4} D^{2} M N \\
& =b^{4} \cdot 2^{4} D^{2} M^{2} N^{2} .
\end{aligned}
$$

Thus for $\eta=a+b \sqrt{D M}$ with $a=0, b=1, Z_{K}$ has a relative power integral basis $\{1, \eta\}$ over $Z_{k_{1}}$.

4. Monogenity of a biquadratic field

Let K be an imaginary, or real biquadratic field $\boldsymbol{Q}(\sqrt{D M}, \sqrt{D N})$ with positive square free relatively prime integers $|D| \geqq 1, N>1, M>1$ and $D M \equiv D N \equiv 3, M N \equiv 1(\bmod 4)$. Let $k=\boldsymbol{Q}(\sqrt{D M})$ and $k_{2}=\boldsymbol{Q}(\sqrt{D N})$ be quadratic subfields of K and $k_{1}=\boldsymbol{Q}(\sqrt{M N})$ be a real one. Let $G(K / Q)$ be the Galois group G of K over \boldsymbol{Q} generated by embeddings σ and τ. Let the subfields k, k_{1} and k_{2} of K have corresponding Galois subgroups $H_{k}=\langle\sigma\rangle, H_{k_{1}}=<\tau>$ and $H_{k_{2}}=<\sigma \tau>$ in G, respectively. Let X denote the character group corresponding to $G(K / \boldsymbol{Q})$ generated by χ and λ, which denote primitive characters of order 2 defined by $\chi(\sigma)=-1, \chi(\tau)=1$ and $\lambda(\sigma)=\lambda(\tau)=-1$. By virtue of Hasse's conductor-discriminant formula, the field discriminant d_{K} of K coincides with

$$
\prod_{\psi \in X} f_{\psi}=f_{\chi^{0}} \cdot f_{\chi} \cdot f_{\lambda} \cdot f_{\chi \lambda}=1 \cdot 2^{2}|D M| \cdot 2^{2}|D N| \cdot M N=2^{4} \cdot D^{2} \cdot M^{2} \cdot N^{2}
$$

where f_{ψ} denote the conductor corresponding to a character ψ of X with the principal character χ^{0} [7, 15]. Assume that the field K has a power integral basis for some suitable integer $\xi=$ $a+b \sqrt{D M}+c \frac{1+\sqrt{M N}}{2}+d \frac{\sqrt{D M}+\sqrt{D N}}{2}$ in K such that

$$
Z_{K}=\boldsymbol{Z}[\xi]=\boldsymbol{Z}\left[1, \xi, \xi^{2}, \xi^{3}\right] .
$$

For an algebraic number field tower $\boldsymbol{Q} \subset F \subset L$ with the Galois group $G=G(L / \boldsymbol{Q})$, the field different \mathfrak{d}_{L} is defined as an ideal

$$
\left(\beta-\beta^{\rho} ; \forall \beta \in Z_{L}, \forall \rho \in G(L / \boldsymbol{Q})\right)
$$

of L, and the relative field different $\mathfrak{d}_{L / F}$ as an ideal

$$
\left(\gamma-\gamma^{\rho} ; \forall \gamma \in Z_{L}, \forall \rho \in G(L / F)\right)
$$

of L / F. By the assumption $Z_{K}=\boldsymbol{Z}[\xi]$, it holds that

$$
\left(d_{K}(\xi)\right)=\left(N_{K}\left(\mathfrak{d}_{K}(\xi)\right)\right)=\left(\mathrm{N}_{K}\left(\mathfrak{d}_{K}\right)\right)=\left(d_{K}\right),
$$

where (α) means the principal ideal generated by a number α in K and $N_{F}(\alpha), \mathrm{N}_{F}(\mathfrak{a})$ are the norms of α and of \mathfrak{a} with respect to F / Q, respectively. Hence for the biquadratic field K, the different $\mathfrak{d}_{K}(\xi)$ of an element $\xi \in Z_{K}$ is given by $\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\sigma \tau}\right)$. Thus it holds that
$N_{K}\left(\mathfrak{d}_{K}(\xi)\right)=N_{K}\left(\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\sigma \tau}\right)\right)=N_{k}\left(N_{K / k}\left(\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\sigma \tau}\right)\right)\right)$
$=N_{k}\left(\left(\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\sigma \tau}\right)\right)\left(\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\sigma \tau}\right)\right)^{\sigma}\right)$
$=\left(\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\sigma \tau}\right)\left(\left(\xi^{\sigma}-\xi\right)\left(\xi^{\sigma}-\xi^{\sigma \tau}\right)\left(\xi^{\sigma}-\xi^{\tau}\right)\right)\right.$
$\cdot\left(\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\sigma \tau}\right)\right)\left(\left(\xi^{\sigma}-\xi\right)\left(\xi^{\sigma}-\xi^{\sigma \tau}\right)\left(\xi^{\sigma}-\xi^{\tau}\right)\right)^{\tau}$
$=\left(\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma}\right)^{\tau}\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\tau}\right)^{\sigma}\left(\xi-\xi^{\sigma \tau}\right)\left(\xi-\xi^{\sigma \tau}\right)^{\sigma}\right)^{2}$
and hence

$$
d_{K}(\xi)=\left(N_{K / k_{1}}\left(\xi-\xi^{\sigma}\right) N_{K / k}\left(\xi-\xi^{\tau}\right) N_{K / k_{2}}\left(\xi-\xi^{\sigma \tau}\right)\right)^{2} .
$$

Here we have $\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma}\right)^{\tau} \in F_{<\sigma, \tau>}=k \cap k_{1}=\boldsymbol{Q},\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\tau}\right)^{\sigma} \in F_{<\sigma, \tau>}=$ $k \cap k_{1}=\boldsymbol{Q}$
and $\left(\xi-\xi^{\sigma \tau}\right)\left(\xi-\xi^{\sigma \tau}\right)^{\sigma} \in F_{<\sigma, \tau>}=k \cap k_{2}=\boldsymbol{Q}$.
Now, for the candidate ξ of power integral basis in Z_{K} with

$$
\xi=a+b \sqrt{D M}+c \frac{1+\sqrt{M N}}{2}+d \frac{\sqrt{D M}+\sqrt{D N}}{2}
$$

we calculate the relative differents from the biquadratic field $K=\boldsymbol{Q}(\sqrt{D M}, \sqrt{D N})$ to a suitable quadratic subfield as follows;

$$
\begin{aligned}
& \mathfrak{d}_{K / k}(\xi)=\xi-\xi^{\sigma}=c \sqrt{M N}+d \sqrt{D N}=\sqrt{N}(c \sqrt{M}+d \sqrt{D}), \\
& \mathfrak{d}_{K / k_{1}}(\xi)=\xi-\xi^{\tau}=(2 b+d) \sqrt{D M}+d \sqrt{D N} \\
& \mathfrak{d}_{K / k_{2}}(\xi)=\xi-\xi^{\sigma \tau}=(2 b+d) \sqrt{D M}+c \sqrt{M N}
\end{aligned}
$$

Then the relative norm $N_{K / k_{1}}$ of the relative different $\mathfrak{d}_{K / k_{1}}(\xi)$ is given by

$$
\begin{equation*}
\left|N_{K / k}\left(\xi-\xi^{\sigma}\right)\right|=\left|\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma}\right)^{\tau}\right|=N\left|\left(c^{2} M-d^{2} D\right)\right| \tag{4.1}
\end{equation*}
$$

with any c and d. Next, we have

$$
\begin{equation*}
\left|N_{K / k}\left(\xi-\xi^{\tau}\right)\right|=\left|\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\tau}\right)^{\sigma}\right|=\left|-(2 b+d)^{2}(D M)+d^{2} D N\right| \equiv 0(\bmod 4 D) \tag{4.2}
\end{equation*}
$$

with any b and d. Finally, it holds that
$\left|N_{K / k_{2}}\left(\xi-\xi^{\sigma \tau}\right)\right|=\left|\left(\xi-\xi^{\sigma \tau}\right)\left(\xi-\xi^{\sigma \tau}\right)^{\sigma}\right|$
$=\left|((2 b+d) \sqrt{D M}+c \sqrt{M N})((2 b+d) \sqrt{D M}+c \sqrt{M N})^{\sigma}\right|=\left|(2 b+d)^{2}(D M)-c^{2} M N\right|$
$=M\left|(2 b+d)^{2} D-c^{2} N\right|$
with any b, c and d. By the assuption $Z_{K}=\boldsymbol{Z}[\xi]$, from equations (4.1), (4.2) and (4.3), each norm of the partial factor $\xi-\xi^{\sigma}, \xi-\xi^{\tau}$ and $\xi-\xi^{\sigma \tau}$ should be equal to $N, 4 D$ and M modulo a unit, respectively. In fact we obtain the identity relation;

$$
0=\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma}\right)^{\tau}-\left(\xi-\xi^{\tau}\right)\left(\xi-\xi^{\tau}\right)^{\sigma}+\left(\xi-\xi^{\sigma \tau}\right)\left(\xi-\xi^{\sigma \tau}\right)^{\sigma}
$$

and hence

$$
\begin{equation*}
0=N\left(c^{2} M-d^{2} D\right)-4 D \frac{-(2 b+d)^{2}(M)+d^{2} N}{4}+M\left((2 b+d)^{2} D-c^{2} N\right) . \tag{4.4}
\end{equation*}
$$

From (4.4) since each of the coefficients of $N, 4 D, M$ is a unit in \boldsymbol{Z} we obtain the linear Diophantine equation;

$$
0=N \pm 4 D \pm M
$$

which contradicts to the assumption. Thus we have

$$
\left|d_{K}(\xi)\right|>\left(N \cdot 2^{2} D \cdot M\right)^{2}=2^{4} D^{2} M^{2} N^{2}=d_{K} .
$$

Therefore $\operatorname{Ind}_{K}(\xi)>1$ holds for $\operatorname{Ind}_{K}(\xi)=\sqrt{\frac{\left|d_{K}(\xi)\right|}{\left|d_{K}\right|}}$, which shows that Z_{K} does not have any power integral basis and hence K is non-monogenic.

Proof of Corollary 1.2. Put $N=8 D_{0} t+M_{0}$ with a valuable $t(1 \leqq t)$ for $D=D_{0}>0$, $M=M_{0}>0$ and
$\left(8 D_{0}, M_{0}\right)=1$. Then there exist infinitely many prime numbers N by Dirichlet's theorem.
Proof of Corollary 1.3. Let $D= \pm 1, N-M=4 D$, and $b=c=0, d=1$. Then by (4.1), (4.2) and (4.3), we obtain that the product is equal to $(M \cdot 4(\pm 1) \cdot N)^{2}=2^{4} D^{2} M^{2} N^{2}$.
Remark 4.1. By the next work it will be investigated on monogenity for a complete
classification of the real biqadratic fields $\boldsymbol{Q}(\sqrt{D M}, \sqrt{D N})$ such that
(i) $D \equiv M \equiv N \equiv 1$ or $3(\bmod 4)$
(ii) $D M \equiv D N \equiv 2(\bmod 4)$ and $M N \equiv 3(\bmod 4)$
and
(iii) $D M \equiv D N \equiv 2(\bmod 4)$ and $M N \equiv 1(\bmod 4)$.

5. Acknowledgements

The authors deeply thank the referee for his/her remarks to improve this paper and Prof. M. Showkat Raheem Chowdhury[UMT, Lahore] for his kind notices.

References

[1] S. Ahmad, T. Nakahara and S. M. Husnine, Power integral bases for certain pure sextic fields, International Journal of Number Theory (Singapore), 10-8 (2014) 2257-2265, DOI: 10.1142/S179304211450778.
[2] S. Akizuki and K. Ota, On power bases for ring of integers of relative Galois extensions, Bull. London Math. Soc. 45, (2013) 447-452.
[3] R. Dedekind, Über die Zusammenhang zwischen der Theorie der Ideals und der Theorie der höhren Kongruenzen, Abh. Akad. Wiss. Göttingen, Math.-Phys. Kl. 23, (1878) 1-23.
[4] M. N. Gras and F. Tanoé, Corps biquadratiques monogènes, Manuscripta Math. 86, (1995) 63-77.
[5] A. Hameed and T. Nakahara, Integral basis and relative monogenity of pure octic fields, submitted.
[6] A. Hameed, T. Nakahara, S. Husnine and S. Ahmad, On existing of canonical number system in certain class of pure algebraic number fields, Journal of Prime Research in Mathematics, 7, (2011) 19-24.
[7] H. Hasse, Arithmetische Bestimmungen von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern, Abh. Deutsch. Akad. Wiss. Berlin Kl. Math. Phys. Tech. Nr. 2, (1948) 3-95.
[8] N. Khan, T. Nakahara, S. I. Katayama and T. Uehara, Monogenity of totally real algebraic extension fields over a cyclotomic field, To appear in J. Number Theory.
[9] Y. Motoda, Notes on quartic fields, Rep. Fac. Sci. Engrg. Saga U. Math. 32, No. 1 (2003)1-19. Appendix and Corrigenda to "Notes on Quartic Fields," ibid, 37, No. 1 (2008) 1-8.
[10] Y. Motoda, T. Nakahara, S. I. A. Shah and T. Uehara, On a problem of Hasse, RIMS kokyuroku Bessatsu, Kyoto Univ. 12, (2009) 209-221.
[11] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer-Verlag, $3^{\text {rd }}$ ed., Berlin-HeidelbergNew York; PWM-Polish Scientific Publishers, Warszawa, 2007.
[12] G. Nyul, Power integral bases in mixed biquadratic number fields, Acta. Acad. Paed. Agriensis. Sectio Mathematicae, 28, (2001) 79-86.
[13] M. Sultan and T. Nakahara, On the Monogeneity of cyclic quartic field of prime conductor, World Applied Sciences Journal, 30, No. 12 (2014) 1947-1952.
[14] M. Sultan and T. Nakahara, On certain octic biquartic fields related to a problem of Hasse, Published in Monatshefte für Mathmatik, 174, No. 4 (2014) 153-162: DOI 10.1007/s00605-014-0670-y
[15] L. C. Washington, Introduction to cyclotomic fields, Graduate texts in mathematics, $2^{\text {nd }}$ ed. Springer-Verlag, New York-Heidelberg-Berlin, 83, 1995.
[16] K. S. Williams, Integers of biqadratic fields, Canad. Math. Bull. 13, (1970) 519-526.

