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Abstract.: In this article, the translation hypersurfaces in Eucliddan
space are defined as the sum of three curves with distinct parameters with
unit speed, and non-planar. These curves are called the generator curves of
the hypersurface. Utilizing the hypersurface theory in Euclideapace,

unit normal vector field, shape (Weingarten) operator matrix, fundamental
forms, Gaussian curvature and mean curvature have been expressed for the
translation hypersurfaces. Finally, the computational example is stated to
efficiency of the theoretical results.
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1. INTRODUCTION

The theory of surfaces is the most attractive branch of differential geometry dealing
with certain characteristic properties of surfaces. In the literature, much attention has been
given to several types of surfaces, such as canal surface, ruled surface, rotation surface etc.
to determine their internal or exterior features. Translation surfaces (Scherk surfaces) has
become the focus of this attention in recent years. Translation surfaces in Euéliseace
were first introduced by Heinrich Ferdinand Scherk in 1835, [17]. Translation surfaces in
E? are defined by the following immersion

¢:E* = E3: (u,v) — ¢ (u,v) = a(u) + 6 (w)),
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wherea (u) and 5 (v) are unit speed, non-planar curves. The idea of investigating the
translation surfaces by considering them from various perspectives in different dimen-
sional spaces is a remarkable area for the geometers, [21, 7]. First of all, the translation
surfaces im3-dimensional Euclidean space were discussed [10, 5, 1], then these studies
were generalized and carried up4alimensional anck-dimensional [7, 19, 20]. In ad-
dition, there are many studies in non-Euclidean Geometry (especially Lorentz-Minkowski
and Galilean spaces) [25, 24, 3, 2, 4]. We highlight some papers that make an important
contribution to the study of translation surfaces, more precisely, on minimal translation sur-
faces[13, 6, 16, 15], affine translation surfaces [18, 14, 12], Weingarten translation surfaces
[8, 23] and constant curvature translation surfaces [2, 11]. Nowadays, translation surfaces
are generally used for design purposes in the architectural field. One of the best examples
of this is the design of the glass ceiling of the bank named DZ Bank in Berlin, Germany.
In addition, cylinder, elliptical paraboloid, egg box surface and helicoid surface are some
examples of translation surfaces.

Is it possible to define translation hypersurfaces as the sum of three curves with distinct
parameters with unit speed, and non-planar? The answer to this question is given in this
study. With this purpose, the paper is organized as 3 main sections and conclusions section.
Section 2 is devoted to the general information about hypersurfaces in Eucligdgeate
and its associated objects such as the unit normal vector field, shape operator matrix, fun-
damental forms, Gaussian curvature and mean curvature. In Section 3, the original concept
and its theoretical results are stated. The efficiency of the theoretical results is supported
by a computational example.

2. PRELIMINARIES
In this section, we recall some basic notations and the related results in [26].
Letxz = 242 Ti€i, Y = 24: Yi€i, 2 = 24: zie; be vectors inR*, equipped with the
standard innze:rlproduct givéﬁlby, y) = xlz;;lrxgyz +x3ys+x4ys, Where{ey, e, e3, 64}
is the standard basis &*. The norm of a vector € R* is given by||z|| = \/(z, z). The

vector product (or the ternary product or cross product) of the veataysz € R* is
defined by

€1 €2 €3 €4
Ty T2 T3 T4

YioY2 Yz Ya|
z1 z9 z3 zZ4

TRYRz= 2.1

(see details in [22]).
Let M be a hypersurface in Euclidedrspace whose parametrization is given by
¢:UCR3—E*
(u,v,w) = ¢ (u, v, w) = (1 (u,v,w) , P2 (U, v, w) , ¢3 (u, v, W) , Py (u, v, w))
where¢;, 1 < i < 4 are differentiable real valued functions defined Gnc R3.

¢ (U) = M? c E*is a hypersurface if and only if systef,,, ¢,, ., } is linearly in-

dependent, where the partial derivativeg ¢, and ¢, can be expressed as, = %,
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¢y = %‘P ando,, = g—f). The unit normal vector fieldV of the hypersurfacé/?3 given by

v

the parametric equation is expressed by

u @ Py @ P
N(u,v,w) = W (2.2)
The first fundamental forni on the space of vector fieldg M/3) is defined by the function
I:x(M3) x x(M?) — C>®(M3,R)
(X,)Y)—~I(X,Y)=(X,)Y)
and also referred to as
I = ¢11du® + doadv® + pazdw? + 2 (pr2dudv + ¢13dudw + gazdvdw), (2. 3)

whereg;;, 1 < 4,5 < 3 are the coefficients of the first fundamental form. Hence, the
matrix I corresponding to the first fundamental form coefficients of the hypersudféte

is expressed as
d11 b1z P13
I= |12 ¢a2 o3| . (2. 4)
13 ¢23 P33
The shape operator of the hypersurfadé is defined by
S x (M?) —x (M?)
X +—S5(X)=DxN,

whereD is the Riemannian connection it and NV is the unit normal ofd/3. By using
the definition of the shape operator, the below equalities can be written

S(¢u) = Dti)u,N = Nuv
S(¢v) :D(buN:Nva
S((bw) :D¢wN:Nw~

For any curvex on the hypersurfac#/?, we can write{a”’, N) = — (S («’) , o) with the
help of these equalities.
The second fundamental forfd of the hypersurfac@/? is expressed as follows:

1T x(M?) x x(M?) — C%(M°,R)
(X, Y)— II(X,Y) =(5(X),Y),
and also referred to as
IT = @11du® + poadv? + p3zdw? + 2 (piadudv + @13dudw + posdvdw), (2. 5)

wheregp;;, 1 <4, j < 3 are the coefficients of the second fundamental form. Similar with
the matrixI, the matrixII corresponding to the second fundamental form coefficients of
the hypersurfaca/? is calculated as

P11 P12 P13
II= (12 @22 @3 ]|. (2. 6)

Y13 P23 P33
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Taking into account all of these, the shape operator matrat the hypersurfacd/? can
be presented a$ = I~'II using equations (2. 4) and (2. 6).
The Gaussian curvatut€ of hypersurface\/? is given by
K:M>—R 2.7
P +— K (P)=detS (P)

deflI
and can be calculated &S = detS = dot using equations (2. 4) and (2. 6).
The mean curvatur® of hypersurfacel/? is defined by
H:M3>—R
(2. 8)

P H(P) = éTrS(P).

For a tangent vectdf # X p, if (S (Xp),Xp) =0, then the directior p is called the
asymptotic direction of the hypersurfagé?® at the pointP.

A curve, whose tangent vector at each point is asymptotic, is called an asymptotic line
on the hypersurfaca/3. A curvea on the hypersurfacé/? is an asymptotic line if and
only if

(', N) = 0. 2.9)

If the mean curvaturéd of the hypersurfacé/? is equal to zerod = 0, then the
hypersurface\/® is called minimal hypersurface.

3. TRANSLATION HYPERSURFACESGENERATED BY UNIT SPEED, NON-PLANAR
CURVES IN EUCLIDEAN 4-SPACE

In this original section, the definition of tt3eparametric translation surface in Euclidean
4-space is given, and the definitions of unit normal vector field, shape operator matrix,
fundamental forms, Gaussian curvature and mean curvature are mentioned.

Definition 3.1. A hypersurfacel/® produced by non-planar curves with unit speed

a(u) = (a1 (u),0n(u),as(u),aq (u))
Bw)= (Bi(v),B2(v),B3(v),0Bs(v))
y(w)= (1 (w),y2 (w),ys (w),y (w))

is called a translation hypersurface in Euclide&space. Thus, a translation hypersurface
is given by an immersion

¢ :E* — E*
(u,v,w) = ¢ (u,v,w) = a(u) + B (v) + v (w)
= (o (u) + B1 (v) + m (w) a2 (w) + B2 (v) + 72 (W) ,
as (u) + 3 (v) + 73 (W), ag (u) + B4 (v) + 72 (w))
(

= (¢1 ’U’7an) a¢2 (U,U,w) a¢3 (U,U,UJ) a¢4 (U,U,UJ)) .
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By taking into account the basic recallments given in previous section let us examine
the properties for the translation hypersurface given by above immersion.
The tangent space of hypersurfae€ is spanned by the vector fields

bu=a (W)=Ta, ¢u=0 (1)=Ts ¢u=7 (w)=T,. (3. 10)
The unit normal vector field of hypersurfadé® using equalities (3. 10) and (2. 2) is
obtained as
T, ®Ts T,
ITa ® Tp @ T4

By means of the properties of the vector produdEfn the square of the denominator is
calculated as follows:

A=|Ta@Ts 0T,

N:

Ta,Ta) (Ta,Tp) (Ta,Ty) 1 COSTaB  COSOqqy
= <T[3,Ta> <T[3,T5> <Tg7Ty> = |COSOng 1 COS O3
(T, To) (Ty,T5) (Ty,T) COSCOqy  COSOBy 1
2

2 2
=1—cos"0ng — COS” Oy — COS” 0, + 2COS 0ng COS T oy COS T3,

whereo g is the angle betweel, andT}, 0. is the angle betweeh, andT’, andog,
is the angle betweefi; andT,. Hence, the unit normal vector field of hypersurfadeé is

1
N=—=(Ty®T3T,).

VA
The coefficients of the first fundamental form of the hypersurfaceare obtained as
¢11 = (Pu; du) = (Ta, Ta) = 1,
22 = (Pv, Pv) = T, Ty =1,
¢33 = (w, dw) = (T, Ty) =1,
12 = (u, Pv) = (Pv, u) = 21 = Tu,Tg = Ta T coSTa3 = COSTLg,
$13 = (Pu, dw) = (bw, Pu) = ¢31 = (Ta, Ty) = Ta ||Ty][cosoay = cosoary,
¢23 = (Dv, dw) = (Pw, Pv) = ¢32 = 13,7y = Ty |Ty||cosogy = cosog,.
Then if the equalities (3. 11 ) are substituted in the equation (2. 3),

(3. 11)

I = du® + dv* + dw? + 2 (cos oagdudv + cos 04~ dudw + cos oz, dvdw)

is found.

The coefficients of the second fundamental form of the hypersuffatare given by

011 = — (N, Puu) = — (N, k1 Na) = —k1a (N, No) = —k14 c0s b,

P22 = — (N, o) = — (N, k1gNp) = k15 (N, Ng) = —ki cos b3,
P33 = — (N, dww) = — (N, k1yNy) = =k (N, Ny) = k1 cos 0, 3. 12)
P12 = — (N, puv) = = (N,0) =0, '
P13 = — (N, puw) = — (N,0) =0
P23 = — (N, ¢vy) = — (N, 0) =0,



Translation Hypersurfaces in Euclidean 4-Spaces 707

whered,, is the angle betweerV and V., 03 is the angle betweery and Ng andé, is
the angle betweelv andN,,. Then if the equalities (3. 12 ) are substituted in the equation
(2. 5), we obtain

IT = —ky,, cos 0,du® — k15 cos egdUQ — k1 cos HvdU’Q-

The matrixI corresponding to the second fundamental form coefficients of the hypersurface
M3 using equation (2. 4 ) is obtained as

1 COSOn3 COSOTay
I=|cosoans 1 COS 03
COSTqry COSTgy 1

The inverse of the matrikis given by

oL
A
o ) 1
sin® o —COSOqB + COSTqy COSO3y — COSTqy + COSTnp3 COSOT3y
8— COS Tn3 + COS Onry COS O3y sin? Oary — COS 0By + COSTap COS Tany
— COSOqy + COSOaBCOSORy — COSTBy + COSTqpB COSOary sin? Oap

By utilizing equation (2. 6 ), the matrikI, which corresponds to the second fundamen-
tal form coefficients, is computed as

—k1q cosb, 0 0
II= 0 —kigcosbs 0
0 0 —k1, cos O,

As a consequence, using the maifilxand the inverse of matrik the shape operatsr
of the hypersurfaca/? is written as

(@] 1
1 —k1q cos Bq sin? oo kigcosfgA —k1~ cos0y B
S = X k1o cosOq A —k1gcosfg sin? Cary k1~ cos 0,C R,
—kiq cosbOoB k1g cos03C —k1~ cos O sin? Oag
where
A = c080,3 — COSTqny COS TR,
B = c0s0,3C0803, — COS g,
C = coS03y — COSTqy COS Ong.

The Gaussian curvatut€ of the hypersurfacé/? is calculated as

1 — kg cOs 6, sin? OBy kg costgA —k1,cos0,B
K= A3 k1o cosO,A —kigcosbg sin? Oary k1~ cos8,C
—kiq cosb,B k1 cos83C —k1 cos b, sin? Oup
1
=17 [k1q cos O k15 cos Ok cos 0, (A sin® oo + B? sin® 04,

+ C?%sin® 05, — 2ABC — sin® 0,44 sin® 0, sin’ o8y)],
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by using equation (2. 7). Additionally, by using the equation (2. 8), the mean curvature
H is calculated as follows: ]
1 . 2 .2 .2 !
H= ~3A k1q cos 0a sin® ogy + kg cos g sin® oy + ki cosOysin”oqg . (3. 13)

In the light of the above calculations, the following theorem can be given.

Theorem 3.2. Let M? be a translation hypersurface i#*. Let any two of the generator
curvesa, 8 andy be asymptotic lines , the first curvatures of these curves be non-zero and
the tangents of the generator curves do not be in the same direction. Moreover, take the
angle betweefl, andTj for k = 0,1,2, ... beo,s # kw. Under these circumstances, the
necessary and sufficient condition for the translation hypersurface to be minimal is that the
third generator curve is also an asymptotic line.

Proof. (=) : Let a, 3 be asymptotic lines and/3 be minimal translation hypersurface.
Let’s prove that curve is also an asymptotic line:
SinceM? is a minimal translation hypersurface, one can see that

1
H= “3A [kla cos 0, sin? 03y + ki1gcosfs sin? Oa~y + k1 cOS Oy sin? aag] =0.
Hence,
k1 cos 6, sin® 03~ + k1gcos b sin? Oar + k1~ cos Oy sin? 003 =0 (3. 14)

is concluded. Since the first curvatures of the generator curves are non-zetoaadg
are asymptotic lines, we obtain that

kla 7é Oa klﬂ 7é 07 kl’y 7& 0.

According to equation (2. 9), we have that’, N) = 0 and(5”, N) = 0. Therewith,
D E
o' N = TL;,N = (k1iaNa, N) = k1o (Na, N) = k1o || Na|| || N|| cos 6o = k1a cosfa =0

is obtained. As:;, # 0, itis clear thatcos 6, = 0. If the same process is applied for the
curveg, thencos 63 = 0 is calculated. If the found values are replaced in equation (3. 14 ),
k1 cos Oy sin? 0.3 = 0 is obtained. Sincé;, # 0 and the angle betweeh, andTj is
oapg # kmfork =0,1,2,..., cosf, = 0, that is(y”, N) = 0 is obtained. Therefore,
according to equation (2. 9), the curyés asymptotic line on the hypersurfagé?.

(<) : Let o, 3 and~y be asymptotic lines. Let's prove that the hypersurfacé is
minimal translation hypersurface:
Sinceq, § and~ are asymptotic lines according to equation (2. 9) the followings can be
written

(@"/N) =cosb, =0, (3",N)=cosbsg=0, (v',N)=-cosb,=0.

If the calculated values are replaced in equation (3. 13), then

1
H= “3A [kla cos 0, sin? ogy + ki1gcosfg sin® Oa~ + k1~ cOS Oy sin® UQB] =0

is obtained. As a result, the hypersurfadé is minimal translation hypersurface. [

The following computational example demonstrates the above results.



Translation Hypersurfaces in Euclidean 4-Spaces 709

Example 3.3. Consider the generator curves given by

au) = fu -1, f” cosg,smg)
= v V2v v

B(v) = (cosgz,sing, 7+172)

v (w) = (cos ﬁ,smﬁ-s-l’i’le),

and the translation hypersurface

¢ (u,v,w) = a(u) + 4 (v) +7v(w) (3. 15)
in Euclidean4-space. The generator curves 3 andy have unit speed and are non-
planar, since the second curvatures ( seg¢9h) ko, = k‘gﬁ = f andky, = %

of these curves are non-zero, respectively. Note that the curves are not asymptotic due to
(o, N) #0, (8", N) # 0and(y”, N) # 0. The tangent vectors of the hypersurfadé
are obtained as

%—dw>:R:‘§q?%s%% 1),
=03 (v) =1p= _%sm%,%cos%,?y%) (3. 16)
¢w—vw>=rw——zmm%7: o b h)

W () =1, = iaQ,
ﬁ/ ﬂ-) _T5|p: _% O7§a )7

YO =T, = (07534
The unit normal vector field of hypersurfagé® using equationf2. 2 )is

|
N‘P_\/61—12\/§+4\/§—6\/6(2’ 1-2v3+ V6, V2 - 2v3,2V6).

The first and the second fundamental forms of hypersufééeare given as follows:

\/i—\/é 1++2
2

dudv + dudw + dvdw

I’P:du2+dv2+dw2+

1], = 5 du +Td —s—)\d

wherel = /61 — 12v/2 + 4/3 — 61/6. The matrix corresponding to the coefficients of
the first fundamental form of M is calculated as

1 V2—6 1
6 2
I] — | v2=v6 1 142
P 6 1
1 1+v2 1
2 1
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Furthermore, the inverse of the matiixs obtained as

9(2v2—13) 6(v/2-4v6-3)  12(5+v3+1/2—3)
22 Y 2
I =] 6(+/2-4v6-3) 108 12(3+2v2+/6)
I —A2 A2 A2
12(5+v3+v/2-v3)  12(3+2v2+6) 16(7+/3)
_)\2 >\2 )\2
The shape operator of the hypersurfae€ using equatiors = 111 is found as
2616 — 83 3 21-23v2-8V3+ 6 12 5+\/§+p2—\/§i
A3 23 B A3
s = 32— 25 +4V6 27(—=1 — 2/3 + V6) 12 3+2vV2+V6
P —_— - @7 e .
A3 A3 A3
8\5(5+\/§+pm) 3 8V2+2v3+2V6-3 16 743

V323 A3 23

The Gaussian curvature of the hypersurfadé using equatior{2. 7 )is obtained as

P
8 47058 — 358142 4 14292v/3 — 115576 + 12 2 — /2 —492 + 39612 — 210v/3 + 1756

K = 5

The mean curvature of the hypersurfae€ using equatior{2. 8 )is found

85 — 461/3 + 536
A3 :

H‘P:

4. CONCLUSIONS

The main point of this paper is to develop the theory of the translation hypersurfaces in
Euclideand-space. Namely, with this approach, the existencg-parametric translation
surfaces as the sum of three unit speed non-planar space curves with distinct parameters
bring to light along with their characteristic features. The unit normal vector field, the fun-
damental forms, the shape operator matrix, the Gaussian curvature and the mean curvature
are discussed for these new translation hypersurfaces. The calculations were supported
with the numerical example.
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