Punjab University Journal of Mathematics (2022),54(12),723-737
https://doi.org/10.52280/pujm.2022.5412035
On the Structural Properties and Some Topological Indices of Young-Fibonacci Graphs

Iqra Zaman, FM Bhatti
Department of Mathematics, Riphah Institute of Computing and Applied Sciences, Riphah International University, Lahore, Pakistan.
Email: iqrazamankh@gmail.com, fmbhatti@riphah.edu.pk

Received: 03 March, 2022 / Accepted: 28 December, 2022 / Published online: 28 December, 2022

Abstract

In this paper, we study Young Fibonacci graphs G_{n}, a special family of graphs that are constructed with the help of integer partitions. Young diagrams are also used in the construction of graphs. The family of graphs is rich in structure. Thus, we investigate various properties of the family of graphs which include degree based structure and topological in-dices. Topological indices like Zagreb Index, Wiener Index, Randic Index and Connective Eccentricity Index of these graphs are computed. We also study the eigenvalues and energy of the graph.

AMS (MOS) Subject Classification Codes: 68R10; 05C30; 05C75
Key Words: Young Fibonacci graphs; Integer Partitions; Young Diagram; Zagreb Index; Randic Index; Eigenvalues; Energy.

1. Introduction

The term graph $G(V, E)$ is typically defined as the set of vertices $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and edges $E=\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}$. The total number of vertices denotes as n and total number of edges denotes as m. The vertex set V comprises all the vertices $v_{i}^{\prime} s$ of the graph G and degree of the vertex v_{i} is simply the total edges which are incident to v_{i}. Degree of the graph G or $d_{e g}(G)$ is total degrees of all vertices in V, maximum degree denotes as $\Delta(G)$ and minimum degree as $\delta(G)$.The distance between v_{i} and v_{j} vertices is measured by the length between the vertices whereas, the path is shortest. Maximum distance between vertex v and all other vertices of the graph is called eccentricity denoted by ε of the vertex v. The minimum eccentricity from all the vertices is called radius r of the graph and the maximum eccentricity from all the vertices is called diameter of the graph and denoted by ω. The adjacency matrix $\mathcal{A}(G)$ is obtained by $\mathcal{A}(G)_{i, j}= \begin{cases}1, & \text { if } v_{i} \sim v_{j} \text { and } i \neq j \\ 0, & \text { otherwise }\end{cases}$ The degree matrix $\mathcal{D}(G)$ is defined as $\mathcal{D}(G)_{i, j}=\left\{\begin{array}{ll}d_{e g}\left(v_{i j}\right), & i=j \\ 0, & \text { otherwise }\end{array}\right.$, the Laplacian
matrix L is defined as $L(G)=\mathcal{D}(G)-\mathcal{A}(G)$. The eigenvalues of any matrix M are the roots λ_{i} of the characteristic polynomial of $\operatorname{det}(\lambda I-M)$. The energy of a graph G with respect to the adjacency matrix with λ_{i} eigenvalues, is defined in [27] as $E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$. The Laplacian Energy $E_{l}(G)$ with respect to the Laplacian matrix with μ_{i} eigenvalues [28] is defined as

$$
E_{l}(G)=\sum_{j=1}^{n}\left|\mu_{j}-\frac{2 m}{n}\right|
$$

Table 1. Some Topological indices where $d_{e g}\left(v_{i}\right)$ is degree of vertex $v_{i}, \varepsilon\left(v_{i}\right)$ is the eccentricity of vertex v_{i}

Topological Index	Formulation
First Zagreb Index [14]	$M_{1}(G)=\sum_{v_{i}} d_{e g}\left(v_{i}\right)^{2}$
Second Zagreb Index [14]	$M_{2}(G)=\sum_{v_{i} \sim v_{j}} d_{e g}\left(v_{i}\right) d_{e g}\left(v_{j}\right)$
Wiener Index [15]	$W(G)=\sum_{a=1}^{k} \sum_{b=1}^{k} d\left(v_{a}, v_{b}\right)$
Randić Index [17]	$R(G)=\sum_{v_{i} \sim v_{j}} \frac{1}{\sqrt{d_{e g}\left(v_{i}\right) d_{e g}\left(v_{j}\right)}}$
Connective Eccentricity Index [16]	$C^{\zeta}(G)=\sum_{v_{i}} \frac{d_{e g}\left(v_{i}\right)}{\varepsilon\left(v_{i}\right)}$

Topological index or molecular descriptor is a numerical number which gives the molecular properties of the graph like boiling point, stability, similarity, chirality and melting point of chemical species [33-35]. There are several topological indices which have been discussed in multiple research articles and successfully applicable in different fields like pharmaceutical sciences, chemical studies. Some of them are discussed in this article. Estrada index was introduced by Ernesto Estrada [22]. For a graph $G(V, E)$, the Estrada index is denoted by $\mathcal{E} \mathcal{E}(G)$, defined as $\mathcal{E} \mathcal{E}(G)=\sum_{i=1}^{n} e^{\lambda_{i}}$ where λ_{i} are the eigenvalues of adjacency matrix of the graph G. The Laplacian Estrada index [23] is denoted by $\mathcal{L E E}(G)$ and defined as $\mathcal{L E E}(G)=\sum_{j=1}^{n} e^{\mu_{j}}$ where μ_{j} are the eigenvalues of Laplacian matrix of graph G.
Integer Partitions is an interesting field in Combinatorics, which gives a number of applications in different fields like genetics, statistical mechanics, and modern algebra [3,4,31,32]. A Partition Function P_{n} [19], is the function counting the number of partitions for a given natural number. A partition is a non increasing sequence $\left(n_{1}, n_{2}, n_{3}, \ldots, n_{k}\right)$, such that $\left|P_{n}\right|=\sum_{j=1}^{k} n_{j}=n$ where n_{j} are the parts of the partition P_{n} and $P_{-n}=0, P_{0}=1$ (by default). A Young diagram [26] of P_{n}, of length h, is a collection of empty cells of h rows of left-justified order where row j containing n_{j} cells for $1 \leq j \leq h$. The YoungFibonacci graphs G_{n} [18] are finite ranked graphs with one level for each positive integer n constructed using integer partitions and Young diagrams. For $n \in \mathbb{Z}^{+}$, the vertices at level n are precisely the partition of integer n and edges are drawn by connecting a partition of integer n and a partition of integer $n+1$ if the Young diagram for the partition of integer $n+1$ can be obtained by inserting one block into the Young diagram of the partition of integer n. The connection between the Young diagram of n and $n-1$ is defined by the rule that Young diagram of integer n can be obtained by adding a Young tab in the inner corners or at the bottom of the Young diagram of $n-1$ integer. The levels are drawn as horizontal

Partitions	5	4+1	$3+2$	$3+1+1$	$2+2+1$	$2+1+1+1$	$1+1+1+1+1$
Young Diagram							

rows with levels increasing vertically upward and each Young diagram is replaced by a vertex in the graph, see Figure 1.

Definition 1.1. The Young Fibonacci graph G_{n} is a simple undirected graph consists of total number of partitions up to n as a set of vertices and the set of edges as the connection between the Young diagrams of integer n and integer $n-1$.

Figure 1. Young Diagram and corresponding Young-Fibonacci graph G_{5}

In this paper, we discuss further properties of Young Fibonacci graphs G_{n} [18]. We need the following results which have been given in [?,24], for our later use in this paper.

Theorem 1.2. For the graph G_{n}, the total number of vertices $N\left(G_{n}\right)$ is given by

$$
\begin{equation*}
N\left(G_{n}\right)=\sum_{i=1}^{n} P_{i}, n \in \mathbb{Z}^{+} \tag{1.1}
\end{equation*}
$$

where P_{i} is the number of partitions of integer i.
Theorem 1.3. Let $m\left(G_{n}\right)$ is the total number of edges of the graph G_{n}, then

$$
\begin{equation*}
m\left(G_{n}\right)=(n-1) P_{0}+\sum_{i=1}^{n-1}(n-i) P_{i} \tag{1.2}
\end{equation*}
$$

where $n \geq 1$ and $P_{0}=1$.

We need the following results which have been given in the literature [6-11], [13, 20] for our later use.

$$
\begin{equation*}
\mathcal{E E}(G) \geq a_{n}+p e^{\frac{E(G)}{2 p}}+q e^{\frac{-E(G)}{2 p}} \tag{1.3}
\end{equation*}
$$

where p, q, a_{n} and $E(G)$ are the positive, negative, zero eigenvalues and energy respectively with respect to $\mathcal{A}(G)$.

$$
\begin{equation*}
(n-1)^{2} \leq W(T) \leq \frac{1}{6} n(n-1)(n+1) \tag{1.4}
\end{equation*}
$$

where $W(T)$ is the Wiener Index of tree T.

$$
\begin{equation*}
W(G) \geq n^{2}-n-m+1 \tag{1.5}
\end{equation*}
$$

with $\omega \geq 3$. Further, the equality holds if G has exactly two vertices with eccentricity 3 and rest are of eccentricity 2 .

$$
\begin{array}{r}
W(G) \geq \frac{\omega(\omega-1)(\omega-2)}{6}+n(n-1)-m \\
\text { and } W(G) \leq \frac{\omega(n-1) n}{2}-\frac{\omega(\omega-1)(\omega-2)}{3}-m(\omega-1) \\
W(G) \leq r(n-r)\left[\frac{r(r-1)}{n-1}+n-r\right] \tag{1.8}
\end{array}
$$

equality holds if and only if $G \cong K_{1, n-1}$.

$$
\begin{gather*}
\sum_{i=0}^{k} d_{i}^{2} \leq m\left(\frac{2 m}{n-1}+n-2\right) \tag{1.9}\\
\frac{2 m}{\omega} \leq C^{\zeta} \leq \frac{2 m}{r} \tag{1.10}
\end{gather*}
$$

with equality if and only if the eccentricities of all the vertices are same.

2. Main Results

Theorem 2.1. Let G_{n} be the Young Fibonacci graph then
(a) the maximum degree of the graph G_{n+1}, denoted by $\Delta\left(G_{n+1}\right)$ for $n \geq 3$ appears on the vertex having the part of non-increasing sequence of consecutive integers $i-e(n, n-$ $1, n-2, \ldots, 2,1)$.
(b) Let a (n) denotes the $n^{\text {th }}$ term of maximum degree's sequence for $n \geq 2$ then

$$
a(n)=2 n-3+\left\lfloor\frac{n}{2}\right\rfloor
$$

Proof of (a): To prove this we use direct combinatorial proof. The Young diagram for any consecutive decreasing integer part is given in Figure 2(a). One of the Young diagrams of the integer parts of n other than the consecutive non-increasing integer part is given in Figure 2(b). In the diagram in Figure 2(a), exactly $l+l$ cells can be added to make a Young diagram of integer parts of $(n+1)$ integer in the graph and exactly l cells can be deleted to connect the integer parts of previous ($n-1$) integer in the graph. But in Figure 2(b) the number of cells that can be added is less than $(l+l)$ and the number of cells that can be

Figure 2. (a) Young Diagram of integer part $l+(l-1)+(l-$ 2) $+\ldots+4+3+2+1$, (b) Young Diagram of other integer part
deleted is also less than l. It can be easily seen that the number of added and deleted cells in Figure 2(a) are more than the diagram in Figure 2(b). So that Δ will be at the vertex where the integer part of integer n is consecutive and non-increasing. Now, it is evident that the diagram of the maximum degree vertex will connect to the diagrams of integers $n+1$ to complete the graph if it is on the integer part of n. The graph of maximum degree will be G_{n+1}.
(b) This statement is proved by mathematical induction.

For $n=2 ; \Delta(2)=2(2)-3+\left\lfloor\frac{2}{2}\right\rfloor=2$ which is trivial to see in G_{2}, the maximum degree is 2 . Now we recall the result's proof of (a), where it has been shown that maximum degree vertex has $(l+1)$ edges, which are connecting to the next integer parts and l edges are connecting to previous integer parts. The degree of a vertex of any graph is the number of edges incident to it. So the total number of edges are $(l+1)+l=2 l+1$, where $l \geq 1$. For $n \geq 3$, we have to show that $2 l+1=2 n-3 . \because$ As $\left\lfloor\frac{2}{n}\right\rfloor=0$, for $n \geq 3$.
For $n=l+2$, the right hand side becomes $2 l+1$, which is sufficient to show.
Furthermore, it is readily seen that the radius $r\left(G_{n}\right)$ is calculated as $r\left(G_{n}\right)=n-1$ and the diameter $\omega\left(G_{n}\right)$ is calculated as

$$
\begin{array}{r}
\omega\left(G_{n}\right)=2(n-1) \\
\omega\left(G_{n}\right)=2 r\left(G_{n}\right) \tag{2.12}
\end{array}
$$

In the following, we investigate the topological indices for the graph G_{n} by using the formulas given in the Table 1, we have converted all the results in the form of P_{n}.

Theorem 2.2. Let G_{n} be the Young Fibonacci graph and $W\left(G_{n}\right)$ be the Wiener Index of G_{n} then

$$
W\left(G_{n}\right) \leq \frac{\sum_{i=1}^{n} P_{i}\left(\left(\sum_{i=1}^{n} P_{i}\right)^{2}-1\right)}{6}
$$

and

$$
W\left(G_{n}\right) \geq\left(\sum_{i=1}^{n} P_{i}\right)^{2}-\sum_{i=1}^{n}(n-i+1) P_{i}-n+2
$$

Equality holds for G_{1} and G_{2}.

Proof This can be easily observe that for any tree T of connected graph G, we have $W(G) \leq W(T)$ and using equations (1.1) and (1.4) for graph G_{n}, we obtain

$$
\begin{gathered}
W\left(G_{n}\right) \leq \frac{\left(\sum_{i=1}^{n} P_{i}\right)\left(\sum_{i=1}^{n} P_{i}-1\right)\left(\sum_{i=1}^{n} P_{i}+1\right)}{6} \\
W\left(G_{n}\right) \leq \frac{\sum_{i=1}^{n} P_{i}\left(\left(\sum_{i=1}^{n} P_{i}\right)^{2}-1\right)}{6}
\end{gathered}
$$

Now for lower bound, using equation (1. 5) for graph G_{n}, we get

$$
W\left(G_{n}\right) \geq\left(N\left(G_{n}\right)\right)^{2}-N\left(G_{n}\right)-m\left(G_{n}\right)+1
$$

Using equations (1.1) and (1.2),we get

$$
\begin{gathered}
W\left(G_{n}\right) \geq\left(\sum_{i=1}^{n} P_{i}\right)^{2}-\sum_{i=1}^{n} P_{i}-(n-1) P_{0}-\sum_{i=1}^{n-1}(n-i) P_{i}+1 \\
W\left(G_{n}\right) \geq\left(\sum_{i=1}^{n} P_{i}\right)^{2}-\sum_{i=1}^{n}(n+1-i) P_{i}-n+2
\end{gathered}
$$

This completes the proof.

2.3. Bounds for Wiener Index in the form of radius and sum of partitions of integer P_{i}.

Theorem 2.4. Let G_{n} be a graph and $W\left(G_{n}\right)$ be the wiener index of G_{n} then

$$
W\left(G_{n}\right) \leq r\left(\frac{r(r-1)}{\sum_{i=1}^{n} P_{i}-1}+\sum_{i=1}^{n} P_{i}-r\right)\left(\sum_{i=1}^{n} P_{i}-r\right)
$$

Equality holds for G_{1} and G_{2}.

$$
W\left(G_{n}\right) \geq \frac{2 r}{3}(r-1)(2 r-1)+\left(\sum_{i=1}^{n} P_{i}\right)^{2}-\sum_{i=1}^{n}(n+1-i) P_{i}-n+1
$$

where r is the radius of graph G_{n}.
Proof Using equations (1. 1) and (1. 8), we have

$$
W\left(G_{n}\right) \leq r\left(\sum_{i=1}^{n} P_{i}-r\right)\left[\sum_{i=1}^{n} P_{i}-r+\frac{r(r-1)}{\sum_{i=1}^{n} P_{i}-1}\right]
$$

Now for lower bound we use equation (1.6) for graph G_{n}, as here $\omega=\omega\left(G_{n}\right)$ and $r=r\left(G_{n}\right)$ are diameter and radius of G_{n} respectively and for $G_{n}, \omega\left(G_{n}\right)=2 r\left(G_{n}\right)$, we have

$$
W\left(G_{n}\right) \geq \frac{1}{6}(2 r-2)(2 r-1) 2 r+n(n-1)-m
$$

by using equations (1.1) and (1.2), we get

$$
W\left(G_{n}\right) \geq \frac{2}{3}(r-1)(2 r-1) r+\sum_{i=1}^{n} P_{i}\left(\sum_{i=1}^{n} P_{i}-1\right)-(n-1) P_{0}-\sum_{i=1}^{n-1}(n-i) P_{i}
$$

$$
\begin{gathered}
W\left(G_{n}\right) \geq \frac{2}{3}(r-1)(2 r-1) r+\left(\sum_{i=1}^{n} P_{i}\right)^{2}-\sum_{i=1}^{n} P_{i}-n+1-\sum_{i=1}^{n}(n-i) P_{i} \\
W\left(G_{n}\right) \geq \frac{2 r}{3}(r-1)(2 r-1)+\left(\sum_{i=1}^{n} P_{i}\right)^{2}-\sum_{i=1}^{n}(n+1-i) P_{i}-n+1
\end{gathered}
$$

This completes the proof.
Theorem 2.5. Let G_{n} be the graph, m is number of edges and d_{i} is degree of vertex v_{i} of the graph G_{n} then

$$
M_{1}\left(G_{n}\right)=(2 m)^{2}-2 \sum_{i<j} d_{i} d_{j}
$$

Proof Let $M_{1}\left(G_{n}\right)=\sum_{i=1}^{n} F\left(d_{i}\right)$, where $F\left(d_{i}\right)$ is a function of d_{i}. Let

$$
\begin{align*}
F\left(d_{i}\right) & =F\left(x_{i}\right) \tag{2.13}\\
M_{1}\left(G_{n}\right) & =\sum_{i=1}^{n} x_{i}^{2} \tag{2.14}
\end{align*}
$$

It is readily seen that $\sum_{i=1}^{n} x_{i}^{2}=\left(\sum_{i=1}^{n} x_{i}\right)^{2}-2 \sum_{i<j} x_{i} x_{j}$, equation (2. 14) implies

$$
M_{1}\left(G_{n}\right)=\left(\sum_{i=1}^{n} x_{i}\right)^{2}-2 \sum_{i<j} x_{i} x_{j}
$$

By using equation (2.13), we get $M_{1}\left(G_{n}\right)=\left(\sum_{i=1}^{n} d_{i}\right)^{2}-2 \sum_{i<j} d_{i} d_{j}$, for graph G_{n}, $\sum_{i=1}^{n} d_{i}=2 m$, implies

$$
M_{1}\left(G_{n}\right)=(2 m)^{2}-2 \sum_{i<j} d_{i} d_{j}
$$

This completes the proof.
In the following, we discuss the bounds for first Zagreb Index $M_{1}\left(G_{n}\right)$.
Theorem 2.6. Let G_{n} be the graph then

$$
0 \leq M_{1}\left(G_{n}\right) \leq(n+\alpha-1)\left(2(n+\alpha)+\left(\sum_{i=1}^{n} P_{i}-3\right) \sum_{i=1}^{n} P_{i}\right)
$$

where $\alpha=\sum_{i=1}^{n-1}(n-i) P_{i}$ and equality holds for G_{1} and G_{2}.
Proof As $M_{1}\left(G_{n}\right)=\sum_{i=0}^{n} d_{i}^{2}$, it is clear that $M_{1}\left(G_{n}\right) \geq 0$. For upper bound we use equation (1.9) for G_{n} then by using equations (1.1) and (1.2), we get

$$
M_{1}\left(G_{n}\right) \leq\left((n-1)+\sum_{i=1}^{n-1}(n-i) P_{i}\right)\left(2(n-1)+2 \sum_{i=1}^{n-1}(n-i) P_{i}+\left(\sum_{i=1}^{n} P_{i}\right)^{2}-3 \sum_{i=1}^{n} P_{i}+2\right)
$$

Put $\alpha=\sum_{i=1}^{n-1}(n-i) P_{i}$, after simplify we get,

$$
M_{1}\left(G_{n}\right) \leq(n+\alpha-1)\left(2(n+\alpha)+\left(\sum_{i=1}^{n} P_{i}-3\right) \sum_{i=1}^{n} P_{i}\right)
$$

In the following, we give the bounds for the Connective Eccentricity Index C^{ζ}.
Theorem 2.7. Let G_{n} be the graph then

$$
1+\frac{\alpha}{n-1} \leq C^{\zeta}\left(G_{n}\right) \leq 2\left(1+\frac{\alpha}{n-1}\right)
$$

where $\alpha=\sum_{i=1}^{n-1}(n-i) P_{i}$, and the equality holds for G_{1} only.
Proof Using equations (1. 2) and (1. 10), we have

$$
\frac{2\left((n-1) P_{0}-\sum_{i=1}^{n-1}(n-i) P_{i}\right)}{d} \leq C^{\zeta}\left(G_{n}\right) \leq \frac{2\left((n-1) P_{0}-\sum_{i=1}^{n-1}(n-i) P_{i}\right)}{r}
$$

Now by equations (2. 11) and (2. 12), we obtain

$$
\frac{2\left((n-1)-\sum_{i=1}^{n-1}(n-i) P_{i}\right)}{2(n-1)} \leq C^{\zeta}\left(G_{n}\right) \leq \frac{2\left((n-1)-\sum_{i=1}^{n-1}(n-i) P_{i}\right)}{n-1}
$$

by putting $\alpha=\sum_{i=1}^{n-1}(n-i) P_{i}$, we get

$$
1+\frac{\alpha}{n-1} \leq C^{\zeta}\left(G_{n}\right) \leq 2\left(1+\frac{\alpha}{n-1}\right)
$$

This completes the proof.
Here we give a conjucture for Randic Index, $R\left(G_{n}\right)$.
Conjecture 2.8. Let G_{n} be the graph, $R\left(G_{n}\right)$ be the Randic Index then we have

$$
\left\lfloor\frac{R\left(G_{n}\right)}{2}\right\rfloor+1=\sum_{i=1}^{\infty} \frac{x^{i}\left(1-x^{\left(i\left\lfloor\frac{i}{2}\right\rfloor\right)}\right)}{\prod_{j=1}^{i}\left(1-x^{j}\right)}
$$

Here, we give an example for the above conjecture. For G_{5} given in Figure 1, we have Randic index $R\left(G_{5}\right)=8.5258846$ and

$$
\left\lfloor\frac{R\left(G_{5}\right)}{2}\right\rfloor+1=5
$$

Now if we see the generating function

$$
\sum_{i=1}^{\infty} \frac{x^{i}\left(1-x^{\left(i\left\lfloor\frac{i}{2}\right\rfloor\right)}\right)}{\prod_{j=1}^{i}\left(1-x^{j}\right)}
$$

gives the series

$$
=1 x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+7 x^{6}+11 x^{7}+16 x^{8}+23 x^{9}+\ldots
$$

here the coefficient of x^{5} gives the value of required result for G_{5}, which is 5 .

Young Diagrams of integer parts of 4	Number of 1's in integer parts	Conjugates of integer parts of 4	Number of 1's in integer parts
$4 \square$	0	\exists	
$3+1 \square$	1	\square	4
$2+2 \square$	0	$\square 2+1+1$	2
$2+1+1 \square$	2	\square	
$1+1+1+1 \square$	4	$\square+1$	0

TABLE 2. Number of 1's, integer parts 4 and $3+1$ have fewer 1's than their conjugates $1+1+1+1$ and $2+1+1$ respectively.
2.9. Spectral Properties of Young Fibonacci graphs. In the following, we have some results related to the spectral properties of G_{n}. We compute some eigenvalues based results which are discussed in the form of theorems.
Before moving to the results, let us discuss some terminologies first. Let we have integer $n=4$ then we have integer partition of $4:\{4,3+1,2+2,2+1+1,1+1+1+1\}$. There is a generating function to find number of parts of integer partition P_{n+1} for $n \geq 1$, such that P_{n+1} contains fewer 1's than its conjugate that is

$$
\begin{equation*}
\left(-1+\frac{1}{\prod_{k>0}\left(1-x^{k}\right)}\right) \cdot \frac{x}{1+x} \tag{2.15}
\end{equation*}
$$

In which the coefficient terms of x^{n} indicate the value of number of parts of integer partition P_{n+1} for $n \geq 1$ such that P_{n+1} contains fewer 1's than its conjugate. We determine some results related to the zero eigenvalues of G_{n}.

Remark 2.10. Let a_{n} denotes the number of zero eigenvalues of G_{n} then the recurrence relation to obtain a_{n} is

$$
\begin{equation*}
a_{n}=P_{n}-a_{n-1} \tag{2.16}
\end{equation*}
$$

for $a_{1}=1$, and P_{n} is number of integer partition of integer n for G_{n}.
We give the following result to find a_{n} for graph G_{n} with the help of integer partitions P_{n}.

Theorem 2.11. Let a_{n} denotes the number of zero eigenvalues of $G_{n}, n \geq 1$ then

$$
a_{n}= \begin{cases}\sum_{i=1}^{n}(-1)^{i} P_{i} ; & \text { when } n \text { is even } \\ \sum_{i=1}^{n}(-1)^{i+1} P_{i} ; & \text { otherwise }\end{cases}
$$

Proof

We use induction to prove this theorem.
Case1: When \mathbf{n} is even, $n \geq 2$: for $n=2$,

$$
a_{2}=\sum_{i=1}^{2}(-1)^{i} P_{i}
$$

we have $a_{2}=1$. Now for induction step, let us suppose that the result is true for $n=k$.

$$
a_{k}=\sum_{i=1}^{k}(-1)^{i} P_{i}
$$

Now we have to show that the result is true for $n=k+2$, for this we need to add to both sides

$$
(-1)^{k+1} P_{k+1}+(-1)^{k+2} P_{k+2}
$$

we get

$$
a_{k}+(-1)^{k+1} P_{k+1}+(-1)^{k+2} P_{k+2}=\sum_{i=1}^{k}(-1)^{i} P_{i}+(-1)^{k+1} P_{k+1}+(-1)^{k+2} P_{k+2}
$$

Implies

$$
\begin{equation*}
a_{k}-P_{k+1}+P_{k+2}=\sum_{i=1}^{k+2}(-1)^{i} P_{i} \tag{2.17}
\end{equation*}
$$

Now using equation (2.16), we have

$$
\begin{array}{r}
P_{k+1}=a_{k+1}+a_{k} \\
P_{k+2}=a_{k+2}+a_{k+1} \tag{2.19}
\end{array}
$$

Now using Equations (2. 18) and (2. 19) in Equation (2.17) , we get

$$
a_{k+2}=\sum_{i=1}^{k+2}(-1)^{i} P_{i}
$$

Case2: When \mathbf{n} is odd, $n \geq 1$: let for $k+1$ being an odd integer, Let us assume that the result is true for $n=k+1$, that is

$$
a_{k+1}=\sum_{i=1}^{k+1}(-1)^{i+1} P_{i}
$$

Now we have to show that the result is true for $n=k+3$, for this add to both sides

$$
(-1)^{k+2+1} P_{k+2}+(-1)^{k+3+1} P_{k+3}
$$

we get
$a_{k+1}+(-1)^{k+2+1} P_{k+2}+(-1)^{k+3+1} P_{k+3}=\sum_{i=1}^{k+1}(-1)^{i+1} P_{i}+(-1)^{k+2+1} P_{k+2}+(-1)^{k+3+1} P_{k+3}$
implies

$$
\begin{equation*}
a_{k}-P_{k+2}+P_{k+3}=\sum_{i=1}^{k+3}(-1)^{i+1} P_{i} \tag{2.20}
\end{equation*}
$$

Now using equation (2. 16), We have

$$
\begin{align*}
& P_{k+2}=a_{k+2}+a_{k+1} \tag{2.21}\\
& P_{k+3}=a_{k+3}+a_{k+2} \tag{2.22}
\end{align*}
$$

Now using equation (2.21) and (2.22) in equation (2.20), we get

$$
a_{k+3}=\sum_{i=1}^{k+3}(-1)^{i+1} P_{i}
$$

which completes the proof.
Theorem 2.12. The number of zero eigenvalues of graph G_{n} is exactly same as the number of partitions P_{n+1} that contains fewer 1's than its conjugate.

Proof First recall the result which is given in equation (2.15). The generating function for the number of partition P_{n+1}, that contains fewer $1^{\prime} s$ than its conjugate is

$$
\left(-1+\frac{1}{\prod_{k>0}\left(1-x^{k}\right)}\right) \cdot \frac{x}{1+x}
$$

expanding this

$$
\begin{aligned}
& \quad=\frac{-x}{1+x}+\frac{x}{1+x}\left(\frac{1}{\prod_{k>0}\left(1-x^{k}\right)}\right) \\
& =-x(1+x)^{-1}+x(1+x)^{-1}(1-x)^{-1}\left(1-x^{2}\right)^{-1}\left(1-x^{3}\right)^{-1}\left(1-x^{4}\right)^{-1} \ldots \\
& =-x\left(1-x+x^{2}-x^{3}+x^{4}-\ldots\right)+x\left(1-x+x^{2}-x^{3}+x^{4}-\ldots\right)\left(1+x+x^{2}+x^{4}+\right. \\
& \left.x^{6}+\ldots\right)\left(1+x^{3}+x^{6}+x^{9}+x^{12}+\ldots\right) \ldots \\
& =\left(-x+x^{2}-x^{3}+x^{4}-x^{5}+\ldots\right)+\left(x-x^{2}+x^{3}-x^{4}+\ldots\right)\left(1+x+x^{2}+x^{4}+x^{6}+\right. \\
& \ldots)\left(1+x^{3}+x^{6}+x^{9}+x^{12}+\ldots\right) \ldots
\end{aligned}
$$

If we simplify and calculate the coefficients i.e for the coefficient of x^{2}, we will find $1 . x^{2}+$ 1. $x^{2}-1 . x^{2}$. The coefficient of x^{2} is 1 exactly same as the number of zero eigenvalues of graph G_{1}. In the same way if we check the coefficient of x^{5} that is 3 and the number of zero eigenvalues of graph G_{4} is 3 , and the term that has the $(n+1)^{t h}$ power in the expansion of equation is obtained by selecting $x^{1 a_{1}}$ from the first factor, $x^{2 a_{2}}$ from the second factor and so on, where

$$
1 a_{1}+2 a_{2}+3 a_{3}+\ldots=n+1
$$

Since there is one to one correspondence between the number of times the term x^{n+1} is obtained in the sequence and the number of zero eigenvalues of graph G_{n}. So the coefficient of x^{n+1} will represent the number of zero eigenvalues of graph G_{n}.
In the following, we obtain bounds for the energy of graph G_{n} in terms of λ_{1} which is the largest eigenvalue of the graph and integer partitions function P_{n}.

Theorem 2.13. Let G_{n} be the graph then

$$
E\left(G_{n}\right) \leq \lambda_{1}+\sqrt{\left(\sum_{i=2}^{n} P_{i}\right)\left(2 n-2+2 \sum_{i=1}^{n-1}(n-i) P_{i}-\lambda_{1}^{2}\right)}
$$

the equality holds only for G_{1}.
Proof As in [29], the bounds for energy of bipartite graphs is discussed in detail, for any bipartite graph G with m edges and n vertices

$$
\begin{equation*}
E(G) \leq \frac{2 m}{n}+\sqrt{(n-1)\left(2 m-\left(\frac{2 m}{n}\right)^{2}\right)} \tag{2.23}
\end{equation*}
$$

Since G_{n} is also a bipartite graph and $\lambda_{1} \geq \frac{2 m}{n}$, then

$$
E\left(G_{n}\right) \leq \lambda_{1}+\sqrt{(n-1)\left(2 m-\lambda_{1}^{2}\right)}
$$

using (1. 1) and (1.2) in above inequality,

$$
E\left(G_{n}\right) \leq \lambda_{1}+\sqrt{\left(\sum_{i=2}^{n} P_{i}\right)\left(2 n-2+2 \sum_{i=1}^{n-1}(n-i) P_{i}-\lambda_{1}^{2}\right)}
$$

Furthermore, we obtain bounds for the energy of graph G_{n} in terms of λ_{1} which is the largest eigenvalue of the graph, integer partition function P_{n} and and Energy with respect to Laplacian matrix.

Theorem 2.14. Let G_{n} be the graph then

$$
E\left(G_{n}\right) \leq \lambda_{1}+\sqrt{\left(\sum_{i=2}^{n} P_{i}\right)\left(E_{l}\left(G_{n}\right)-\lambda_{1}^{2}\right)}
$$

Equality holds for G_{1} and $E_{l}\left(G_{n}\right)$ is the energy with respect to Laplacian matrix of G_{n}.
Proof To prove this inequality we will use the inequality

$$
\begin{equation*}
E(G) \leq \frac{2 m}{n}+\sqrt{(n-1)\left(2 m-\left(\frac{2 m}{n}\right)^{2}\right)} \tag{2.24}
\end{equation*}
$$

As $\lambda_{1} \geq \frac{2 m}{n}$ and $n=\sum_{i=1}^{n} P_{i}$ implies $n-1=\sum_{i=2}^{n} P_{i}$ and for G_{n}, the energy with respect to Laplacian matrix E_{l} is twice the number of edges of G_{n}, that is

$$
E_{l}\left(G_{n}\right)=2 m\left(G_{n}\right)
$$

using these facts we get

$$
E\left(G_{n}\right) \leq \lambda_{1}+\sqrt{\left.\left(\sum_{i=2}^{n} P_{i}\right)\right)\left(E_{l}\left(G_{n}\right)-\lambda_{1}\right)^{2}}
$$

this proves the inequality.
We will discuss some topological indices related results of G_{n}.

Theorem 2.15. Let G_{n} be the graph then

$$
\mathcal{E E}\left(G_{n}\right) \geq a_{n}+\left(\sum_{i=1}^{n} P_{i}-a_{n}\right) \operatorname{Cosh}\left(\frac{E\left(G_{n}\right)}{\sum_{i=1}^{n} P_{i}-a_{n}}\right)
$$

where a_{n} is number of zero eigenvalues, $E\left(G_{n}\right)$ is energy of G_{n}.
Proof As G_{n} is bipartite graph so number of positive eigenvalues p and negative eigenvalues q are equal, so that $p=q$, using (1.3) for G_{n}, we have

$$
\begin{gathered}
\mathcal{E E}\left(G_{n}\right) \geq a_{n}+p\left(e^{\frac{E(G)}{2 p}}+e^{\frac{-E(G)}{2 p}}\right) \\
\geq a_{n}+2 p\left(\cosh \left(\frac{E(G)}{2 p}\right)\right)
\end{gathered}
$$

as $N\left(G_{n}\right)=a_{n}+p+q$ so that $N\left(G_{n}\right)=a_{n}+2 p$, this implies

$$
\mathcal{E E}\left(G_{n}\right) \geq a_{n}+\left(\sum_{i=1}^{n} P_{i}-a_{n}\right) \cosh \left(\frac{E(G)}{\sum_{i=1}^{n} P_{i}-a_{n}}\right)
$$

Theorem 2.16. For graph G_{n}, the Laplacian Estrada index is

$$
\mathcal{L E E}\left(G_{n}\right)=\sum_{i=0}^{n}(1-n+i) P_{i}+e^{2} \mathcal{E} \mathcal{E}\left(L\left(G_{n}\right)\right)
$$

where $\mathcal{E} \mathcal{E}\left(L\left(G_{n}\right)\right)=$ Estrada index of line graph.
Proof By using bound of Laplacian Estrada index for any graph from the article [30] for G_{n}, we get

$$
\begin{gathered}
\mathcal{L E E}\left(G_{n}\right)=N\left(G_{n}\right)-m\left(G_{n}\right)+e^{2} \mathcal{E E}\left(L\left(G_{n}\right)\right) \\
\mathcal{L E E}\left(G_{n}\right)=\sum_{i=1}^{n} P_{i}-(n-1) P_{0}-\sum_{i=1}^{n-1}(n-i) P_{i}+e^{2} \mathcal{E E}\left(L\left(G_{n}\right)\right)
\end{gathered}
$$

On simplification, we get

$$
\mathcal{L E E}\left(G_{n}\right)=\sum_{i=0}^{n}(1-n+i) P_{i}+e^{2} \mathcal{E} \mathcal{E}\left(L\left(G_{n}\right)\right)
$$

3. Conclusion

In this paper, we perceive results to construct Young Fibonacci graphs G_{n}, using concepts of Integer partitions. We also identify the vertices of the graphs which have the maximum degree. The radius and diameter of the graph G_{n} are calculated. Topological indices are also calculated for G_{n} and particularly Zagreb Index. Some results for the energy of the graphs are constructed. Moreover, results on eigenvalues and Laplacian Estrada index are also given.

References

[1] G. E. Andrews, The theory of partitions (No. 2). Cambridge university press, 1998
[2] G. E. Andrews, The Theory of Partitions, US: Cambridge University Press,1976.
[3] M. Abramowitz, I. A. Stegun and R. H. Romer, Handbook of mathematical functions with formulas, graphs, and mathematical tables, United States Department of Commerce, National Bureau of Standards, 1988
[4] H. Bamdad, F. Ashraf and I. Gutman.Lower bounds for Estrada index and Laplacian Estrada index. Applied Mathematics Letters; 23 (2010) 739-742.
[5] F. M. Bhatti, I. Zaman and T. Naz., Integer Partitions with Generating functions, Proceedings of the 26th Asian Technology Conference in Mathematics, 1 (1) (2021)
[6] F. M. Bhatti, M. Malooq, J. Ahmad, I. Zaman, and M. Usman, On Some Structural Properties of IntegerBased Graphs and Their Topological Indices. Journal of Mathematics, 1(1)(2022) 1-6
7] F. M. Bhatti, I.Zaman, and T. Naz. "Teaching of the Graph Construction Techniques using Integer Partitions." Proceedings of the 25th Asian Technology Conference in Mathematics,1(1)(2020),268-276.
[8] G. Caporossi, D. Cvetkovi, I. Gutman and P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy. Journal of Chemical Information and Computer Sciences 39 (1999) 984-96.
9] A. Comtet, S. N. Majumdar and S. Ouvry, Integer partitions and exclusion statistics. Journal of Physics A: Mathematical and Theoretical, 40, No. 37 (2007)11255.
[10] K. C. Das and I. Gutman, Estimating the Wiener index by means of number of vertices, number of edges, and diameter. MATCH Commun. Math. Comput. Chem, 64(3),(2010) 647-660.
[11] K. C. Das and M. J. Nadjafi-Arani, M. J. (2017). On maximum Wiener index of trees and graphs with given radius. Journal of Combinatorial Optimization, 34(2), 574-587.
[12] K. C. Das, Sharp bounds for the sum of the squares of the degrees of a graph. Kragujevac journal of Mathematics, 25(25), (2003)19-41.
[13] N. De, Bounds for the connective eccentric index. International Journal of Contemporary Mathematical Sciences, 7(44), (2012)2161-2166.
[14] D. de Caen, An upper bound on the sum of squares of degrees in a graph. Discrete Mathematics, 185(1-3), (1998) 245-248.
[15] A. Dembo, O. Zeitouni and A. M. Vershik, Large deviations for integer partitions (1998)No. IHES-M-98-57 SCAN-9901069.
[16] R. C. Entringer, D. E. Jackson and D. A. Snyder, Distance in graphs. Czechoslovak Mathematical Journal, 26(2), (1976) 283-296.
[17] G. H. Fath-Tabar, A. R. Ashrafi, and I. Gutman. "Note on Estrada and L-Estrada indices of graphs." Bulletin (Acadmie serbe des sciences et des arts. Classe des sciences mathmatiques et naturelles. Sciences mathmatiques) 2009; 1-16.
[18] E. Estrada, "Characterization of 3D molecular structure." Chemical Physics Letters; 319 (2000) 713-718.
[19] M. W. Fulton, Young tableaux: with applications to representation theory and geometry (No. 35). Cambridge University Press, 1997
[20] M. W. Fulton, Young tableaux: with applications to representation theory and geometry (No. 35). Cambridge University Press, 1997
[21] I. Gutman "Degree-based topological indices." Croatica Chemica Acta 86, no. 4 (2013): 351-361.
[22] I. Gutman, and N. Trinajsti. "Graph theory and molecular orbitals. Total Φ-electron energy of alternant hydrocarbons." Chemical Physics Letters,17.4 (1972): 535-538
[23] I. Gutman, The energy of graph, Steirmarkisches Mathematisches Symposium, 103(1978) 122.
[24] Gutman, I., \& Zhou, B .Laplacian energy of a graph. Linear Algebra and its applications, 414 No.1(2006) 29-37.
[25] S. Gupta, M. Singh and A. K. Madan, Connective eccentricity Index: A novel topological descriptor for predicting biological activity, J. Mol. Graph.Model., 18 (2000), 18-25
[26] M. Randic, "Characterization of molecular branching." Journal of the American Chemical Society 97, no. 23 (1975): 6609-6615.
[27] J. H. Koolen and V. Moulton, Maximal energy bipartite graphs. Graphs and Combinatorics, 19, No. 1 (2003)131-135.
[28] J. F. C. Kingman, Random partitions in population genetics. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 361,(1704), (1978) 1-20.
[29] Z. Mihali and N. Trinajsti, A graph-theoretical approach to structure-property relationships. (1992)
[30] S. Seo, and A. J. Yee, Index of seaweed algebras and integer partitions. arXiv preprint arXiv:1910. (2019)14369.
[31] D. Tian, and K. P. Choi, Sharp bounds and normalization of wiener-type indices. Plos one, 8(11), (2013) e78448.
[32] X. L. Wang, J. B. Liu, M. Ahmad, M. K. Siddiqui, M. Hussain, M. Saeed, Molecular properties of symmetrical networks using topological polynomials. Open Chemistry, 17, No. 1 (2019).849-864.
[33] H. B. Walikar, V. S. Shigehalli and H. S. Ramane. "Bounds on the Wiener number of a graph." MATCHCOMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY 50 (2004): 117-132.
[34] O. Wieder, S. Kohlbacher, M. Kuenemann, A. Garon, P. Ducrot, T. Seidel and T. Langer, A compact review of molecular property prediction with graph neural networks. Drug Discovery Today: Technologies, 37 (2020)1-12.
[35] B. Zhou and I. Gutman, More on the Laplacian Estrada index. Applicable Analysis and Discrete Mathematics, 3, No. 2 (2009)371-378.

