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Abstract.: In this paper, we study Young Fibonacci graphs Gn, a special family of graphs 
that are constructed with the help of integer partitions. Young diagrams are also used in 
the construction of graphs. The family of graphs is rich in structure. Thus, we investigate 
various properties of the family of graphs which include degree based structure and 
topological in-dices. Topological indices like Zagreb Index, Wiener Index, Randic Index 
and Connective Eccentricity Index of these graphs are computed. We also study the 
eigenvalues and energy of the graph.
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1. INTRODUCTION

The termgraph G(V, E) is typically defined as the set of verticesV = {v1, v2, v3, ..., vn}
and edgesE = {e1, e2, e3, ..., en}. The total number of vertices denotes asn and total
number of edges denotes asm. The vertex setV comprises all the verticesv′is of the graph
G and degree of the vertexvi is simply the total edges which are incident tovi. Degree
of the graphG or deg(G) is total degrees of all vertices inV , maximum degree denotes as
∆(G) and minimum degree asδ(G).The distance betweenvi andvj vertices is measured
by the length between the vertices whereas, the path is shortest. Maximum distance be-
tween vertexv and all other vertices of the graph is called eccentricity denoted byε of the
vertexv. The minimum eccentricity from all the vertices is called radiusr of the graph and
the maximum eccentricity from all the vertices is called diameter of the graph and denoted

by ω. The adjacency matrixA(G) is obtained byA(G)i,j =
{1, if vi ∼ vj and i 6= j

0, otherwise

The degree matrixD(G) is defined asD(G)i,j =

{
deg(vij), i = j

0, otherwise
, the Laplacian
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matrix L is defined asL(G) = D(G) − A(G). The eigenvalues of any matrix M are the
rootsλi of the characteristic polynomial ofdet(λI−M). The energy of a graphG with re-
spect to the adjacency matrix withλi eigenvalues, is defined in [27] asE(G) =

∑n
i=1 |λi|.

The Laplacian EnergyEl(G) with respect to the Laplacian matrix withµi eigenvalues [28]
is defined as

El(G) =
n∑

j=1

|µj − 2m

n
|

.

TABLE 1. Some Topological indices wheredeg(vi) is degree of vertex
vi, ε(vi) is the eccentricity of vertexvi

.

Topological Index Formulation
First Zagreb Index [14] M1(G) =

∑
vi

deg(vi)2

Second Zagreb Index [14] M2(G) =
∑

vi∼vj
deg(vi)deg(vj)

Wiener Index [15] W (G) =
Pk

a=1
Pk

b=1 d(va,vb)

2

Randíc Index [17] R(G) =
∑

vi∼vj

1√
deg(vi)deg(vj)

Connective Eccentricity Index [16]Cζ(G) =
∑

vi

deg(vi)
ε(vi)

Topological index or molecular descriptor is a numerical number which gives the mole-
cular properties of the graph like boiling point, stability, similarity, chirality and melting
point of chemical species [33–35]. There are several topological indices which have been
discussed in multiple research articles and successfully applicable in different fields like
pharmaceutical sciences, chemical studies. Some of them are discussed in this article.
Estrada index was introduced by Ernesto Estrada [22]. For a graphG(V,E), the Estrada
index is denoted byEE(G), defined asEE(G) =

∑n
i=1 eλi whereλi are the eigenvalues of

adjacency matrix of the graphG. The Laplacian Estrada index [23] is denoted byLEE(G)
and defined asLEE(G) =

∑n
j=1 eµj whereµj are the eigenvalues of Laplacian matrix of

graphG.
Integer Partitions is an interesting field in Combinatorics, which gives a number of applica-
tions in different fields like genetics, statistical mechanics, and modern algebra [3,4,31,32].
A Partition FunctionPn [19], is the function counting the number of partitions for a given
natural number. A partition is a non increasing sequence(n1, n2, n3, ..., nk), such that
|Pn| =

∑k
j=1 nj = n wherenj are the parts of the partitionPn andP−n = 0 , P0 = 1

(by default). A Young diagram [26] ofPn, of lengthh, is a collection of empty cells ofh
rows of left-justified order where rowj containingnj cells for1 ≤ j ≤ h. The Young-
Fibonacci graphsGn [18] are finite ranked graphs with one level for each positive integern
constructed using integer partitions and Young diagrams. Forn ∈ Z+, the vertices at level
n are precisely the partition of integern and edges are drawn by connecting a partition of
integern and a partition of integern + 1 if the Young diagram for the partition of integer
n + 1 can be obtained by inserting one block into the Young diagram of the partition of
integern. The connection between the Young diagram ofn andn− 1 is defined by the rule
that Young diagram of integern can be obtained by adding a Young tab in the inner corners
or at the bottom of the Young diagram ofn− 1 integer. The levels are drawn as horizontal
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Young Diagram

Partitions 5 4+1 3+2 3+1+1 2+2+1 2+1+1+11+1+1+1+1

rows with levels increasing vertically upward and each Young diagram is replaced by a
vertex in the graph, see Figure 1.

Definition 1.1. The Young Fibonacci graphGn is a simple undirected graph consists of
total number of partitions up to n as a set of vertices and the set of edges as the connection
between the Young diagrams of integern and integern− 1.

FIGURE 1. Young Diagram and corresponding Young-Fibonacci graphG5

In this paper, we discuss further properties of Young Fibonacci graphsGn [18]. We
need the following results which have been given in [?, 24], for our later use in this paper.

Theorem 1.2. For the graphGn, the total number of verticesN(Gn) is given by

N(Gn) =
n∑

i=1

Pi , n ∈ Z+ (1. 1)

wherePi is the number of partitions of integeri.

Theorem 1.3. Letm(Gn) is the total number of edges of the graphGn, then

m(Gn) = (n− 1)P0 +
n−1∑

i=1

(n− i)Pi (1. 2)

wheren ≥ 1 andP0 = 1.
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We need the following results which have been given in the literature [6–11], [13, 20]
for our later use.

EE(G) ≥ an + pe
E(G)
2p + qe

−E(G)
2p (1. 3)

wherep, q, an andE(G) are the positive, negative, zero eigenvalues and energy respec-
tively with respect toA(G).

(n− 1)2 ≤ W (T ) ≤ 1
6
n(n− 1)(n + 1) (1. 4)

whereW (T ) is the Wiener Index of treeT .

W (G) ≥ n2 − n−m + 1 (1. 5)

with ω ≥ 3. Further, the equality holds ifG has exactly two vertices with eccentricity3
and rest are of eccentricity2.

W (G) ≥ ω(ω − 1)(ω − 2)
6

+ n(n− 1)−m (1. 6)

and W (G) ≤ ω(n− 1)n
2

− ω(ω − 1)(ω − 2)
3

−m(ω − 1) (1. 7)

W (G) ≤ r(n− r)
[
r(r − 1)
n− 1

+ n− r

]
(1. 8)

equality holds if and only ifG ∼= K1,n−1.

k∑

i=0

d2
i ≤ m

(
2m

n− 1
+ n− 2

)
(1. 9)

2m

ω
≤ Cζ ≤ 2m

r
(1. 10)

with equality if and only if the eccentricities of all the vertices are same.

2. MAIN RESULTS

Theorem 2.1. LetGn be the Young Fibonacci graph then
(a) the maximum degree of the graphGn+1, denoted by∆(Gn+1) for n ≥ 3 appears on
the vertex having the part of non-increasing sequence of consecutive integers i-e(n, n −
1, n− 2, ..., 2, 1).
(b) Leta(n) denotes thenth term of maximum degree’s sequence forn ≥ 2 then

a(n) = 2n− 3 +
⌊

n

2

⌋

Proof of (a): To prove this we use direct combinatorial proof. The Young diagram for
any consecutive decreasing integer part is given in Figure 2(a). One of the Young diagrams
of the integer parts ofn other than the consecutive non-increasing integer part is given in
Figure 2(b). In the diagram in Figure 2(a), exactlyl+1 cells can be added to make a Young
diagram of integer parts of(n+1) integer in the graph and exactlyl cells can be deleted
to connect the integer parts of previous(n-1) integer in the graph. But in Figure 2(b) the
number of cells that can be added is less than(l+1) and the number of cells that can be
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. . .

(a) (b)

FIGURE 2. (a) Young Diagram of integer part l+(l-1)+(l-
2)+...+4+3+2+1 , (b) Young Diagram of other integer part

deleted is also less thanl. It can be easily seen that the number of added and deleted cells
in Figure 2(a) are more than the diagram in Figure 2(b). So that∆ will be at the vertex
where the integer part of integern is consecutive and non-increasing. Now, it is evident that
the diagram of the maximum degree vertex will connect to the diagrams of integersn + 1
to complete the graph if it is on the integer part ofn. The graph of maximum degree will
beGn+1.
(b) This statement is proved by mathematical induction.
For n = 2; ∆(2) = 2(2) − 3 +

⌊
2
2

⌋
= 2 which is trivial to see inG2, the maximum

degree is 2. Now we recall the result’s proof of (a), where it has been shown that maximum
degree vertex has(l+1) edges, which are connecting to the next integer parts andl edges
are connecting to previous integer parts. The degree of a vertex of any graph is the number
of edges incident to it. So the total number of edges are(l + 1) + l = 2l + 1, wherel ≥ 1.
Forn ≥ 3, we have to show that2l + 1 = 2n− 3. ∵ As

⌊
2
n

⌋
= 0, for n ≥ 3.

Forn = l + 2, the right hand side becomes2l + 1, which is sufficient to show. ¤
Furthermore, it is readily seen that the radiusr(Gn) is calculated asr(Gn) = n − 1 and
the diameterω(Gn) is calculated as

ω(Gn) = 2(n− 1) (2. 11)

ω(Gn) = 2r(Gn) (2. 12)

In the following, we investigate the topological indices for the graphGn by using the
formulas given in the Table 1, we have converted all the results in the form ofPn.

Theorem 2.2. Let Gn be the Young Fibonacci graph andW (Gn) be the Wiener Index of
Gn then

W (Gn) ≤
∑n

i=1 Pi

(
(
∑n

i=1 Pi)
2 − 1

)

6
and

W (Gn) ≥
(

n∑

i=1

Pi

)2

−
n∑

i=1

(n− i + 1)Pi − n + 2

Equality holds forG1 andG2.
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Proof This can be easily observe that for any treeT of connected graphG, we have
W (G) ≤ W (T ) and using equations (1. 1 ) and (1. 4 ) for graphGn, we obtain

W (Gn) ≤ (
∑n

i=1 Pi) (
∑n

i=1 Pi − 1) (
∑n

i=1 Pi + 1)
6

W (Gn) ≤
∑n

i=1 Pi

(
(
∑n

i=1 Pi)
2 − 1

)

6
Now for lower bound, using equation (1. 5 ) for graphGn, we get

W (Gn) ≥ (N(Gn))2 −N(Gn)−m(Gn) + 1

Using equations (1. 1 ) and (1. 2 ),we get

W (Gn) ≥
(

n∑

i=1

Pi

)2

−
n∑

i=1

Pi − (n− 1)P0 −
n−1∑

i=1

(n− i)Pi + 1

W (Gn) ≥
(

n∑

i=1

Pi

)2

−
n∑

i=1

(n + 1− i)Pi − n + 2

This completes the proof. ¤

2.3. Bounds for Wiener Index in the form of radius and sum of partitions of integer
Pi.

Theorem 2.4. LetGn be a graph andW (Gn) be the wiener index ofGn then

W (Gn) ≤ r

(
r(r − 1)∑n
i=1 Pi − 1

+
n∑

i=1

Pi − r

)(
n∑

i=1

Pi − r

)

Equality holds forG1 and G2.

W (Gn) ≥ 2r

3
(r − 1)(2r − 1) +

(
n∑

i=1

Pi

)2

−
n∑

i=1

(n + 1− i)Pi − n + 1

where r is the radius of graphGn.

Proof Using equations (1. 1 ) and (1. 8 ), we have

W (Gn) ≤ r

(
n∑

i=1

Pi − r

)[
n∑

i=1

Pi − r +
r(r − 1)∑n
i=1 Pi − 1

]

Now for lower bound we use equation (1. 6 ) for graphGn, as hereω = ω(Gn) and
r = r(Gn) are diameter and radius ofGn respectively and forGn, ω(Gn) = 2r(Gn), we
have

W (Gn) ≥ 1
6
(2r − 2)(2r − 1)2r + n(n− 1)−m

by using equations (1. 1 ) and (1. 2 ), we get

W (Gn) ≥ 2
3
(r − 1)(2r − 1)r +

n∑

i=1

Pi

(
n∑

i=1

Pi − 1

)
− (n− 1)P0 −

n−1∑

i=1

(n− i)Pi
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W (Gn) ≥ 2
3
(r − 1)(2r − 1)r +

(
n∑

i=1

Pi

)2

−
n∑

i=1

Pi − n + 1−
n∑

i=1

(n− i)Pi

W (Gn) ≥ 2r

3
(r − 1)(2r − 1) +

(
n∑

i=1

Pi

)2

−
n∑

i=1

(n + 1− i)Pi − n + 1

This completes the proof. ¤
Theorem 2.5. Let Gn be the graph, m is number of edges anddi is degree of vertexvi of
the graphGn then

M1(Gn) = (2m)2 − 2
∑

i<j

didj

Proof Let M1(Gn) =
∑n

i=1 F (di), whereF (di) is a function ofdi. Let

F (di) = F (xi) (2. 13)

M1(Gn) =
n∑

i=1

x2
i (2. 14)

It is readily seen that
∑n

i=1 x2
i = (

∑n
i=1 xi)

2 − 2
∑

i<j xixj , equation (2. 14 ) implies

M1(Gn) =

(
n∑

i=1

xi

)2

− 2
∑

i<j

xixj

By using equation (2. 13 ), we getM1(Gn) = (
∑n

i=1 di)2 − 2
∑

i<j didj , for graphGn,∑n
i=1 di = 2m, implies

M1(Gn) = (2m)2 − 2
∑

i<j

didj

This completes the proof. ¤
In the following, we discuss the bounds for first Zagreb IndexM1(Gn).

Theorem 2.6. LetGn be the graph then

0 ≤ M1(Gn) ≤ (n + α− 1)

(
2(n + α) +

(
n∑

i=1

Pi − 3

)
n∑

i=1

Pi

)

whereα =
∑n−1

i=1 (n− i)Pi and equality holds forG1 andG2.

Proof As M1(Gn) =
∑n

i=0 d2
i , it is clear thatM1(Gn) ≥ 0. For upper bound we use

equation (1. 9 ) forGn then by using equations (1. 1 ) and (1. 2 ), we get

M1(Gn) ≤
(

(n− 1) +
n−1∑

i=1

(n− i)Pi

) 
2(n− 1) + 2

n−1∑

i=1

(n− i)Pi +

(
n∑

i=1

Pi

)2

− 3
n∑

i=1

Pi + 2




Putα =
∑n−1

i=1 (n− i)Pi, after simplify we get,

M1(Gn) ≤ (n + α− 1)

(
2(n + α) +

(
n∑

i=1

Pi − 3

)
n∑

i=1

Pi

)
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¤
In the following, we give the bounds for the Connective Eccentricity IndexCζ .

Theorem 2.7. LetGn be the graph then

1 +
α

n− 1
≤ Cζ(Gn) ≤ 2

(
1 +

α

n− 1

)

whereα =
∑n−1

i=1 (n− i)Pi, and the equality holds forG1 only.

Proof Using equations (1. 2 ) and (1. 10 ), we have

2
(
(n− 1)P0 −

∑n−1
i=1 (n− i)Pi

)

d
≤ Cζ(Gn) ≤

2
(
(n− 1)P0 −

∑n−1
i=1 (n− i)Pi

)

r

Now by equations (2. 11 ) and (2. 12 ), we obtain

2
(
(n− 1)−∑n−1

i=1 (n− i)Pi

)

2(n− 1)
≤ Cζ(Gn) ≤

2
(
(n− 1)−∑n−1

i=1 (n− i)Pi

)

n− 1

by puttingα =
∑n−1

i=1 (n− i)Pi, we get

1 +
α

n− 1
≤ Cζ(Gn) ≤ 2

(
1 +

α

n− 1

)

This completes the proof. ¤
Here we give a conjucture for Randic Index,R(Gn).

Conjecture 2.8. LetGn be the graph,R(Gn) be the Randic Index then we have

⌊
R(Gn)

2

⌋
+ 1 =

∞∑

i=1

xi
(
1− x(ib i

2 c)
)

∏i
j=1(1− xj)

Here, we give an example for the above conjecture. ForG5 given in Figure 1, we have
Randic indexR(G5) = 8.5258846 and

⌊
R(G5)

2

⌋
+ 1 = 5

Now if we see the generating function

∞∑

i=1

xi
(
1− x(ib i

2 c)
)

∏i
j=1(1− xj)

gives the series

= 1x2 + 2x3 + 3x4 + 5x5 + 7x6 + 11x7 + 16x8 + 23x9 + ...

here the coefficient ofx5 gives the value of required result forG5, which is 5.
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Young Diagrams of Number of 1’s Conjugates of Number of 1’s
integer parts of 4 in integer parts integer parts of 4 in integer parts

4 0 1+1+1+1 4

3+1 1 2+1+1 2

2+2 0 2+2 0

2+1+1 2 3+1 1

1+1+1+1 4 4 0
TABLE 2. Number of 1’s, integer parts4 and3 + 1 have fewer 1’s than
their conjugates1 + 1 + 1 + 1 and2 + 1 + 1 respectively.

2.9. Spectral Properties of Young Fibonacci graphs.In the following, we have some
results related to the spectral properties ofGn. We compute some eigenvalues based results
which are discussed in the form of theorems.
Before moving to the results, let us discuss some terminologies first. Let we have integer
n = 4 then we have integer partition of 4:{4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1}. There
is a generating function to find number of parts of integer partitionPn+1 for n ≥ 1, such
thatPn+1 contains fewer 1’s than its conjugate that is

(
−1 +

1∏
k>0(1− xk)

)
.

x

1 + x
(2. 15)

In which the coefficient terms ofxn indicate the value of number of parts of integer partition
Pn+1 for n ≥ 1 such thatPn+1 contains fewer 1’s than its conjugate. We determine some
results related to the zero eigenvalues ofGn.

Remark 2.10. Let an denotes the number of zero eigenvalues ofGn then the recurrence
relation to obtainan is

an = Pn − an−1 (2. 16)

for a1 = 1, andPn is number of integer partition of integer n forGn.

We give the following result to findan for graphGn with the help of integer partitions
Pn.

Theorem 2.11. Letan denotes the number of zero eigenvalues ofGn, n ≥ 1 then

an =





n∑

i=1

(−1)iPi; when n is even

n∑

i=1

(−1)i+1Pi; otherwise
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Proof
We use induction to prove this theorem.
Case1: When n is even,n ≥ 2: for n = 2,

a2 =
2∑

i=1

(−1)iPi

we havea2 = 1. Now for induction step, let us suppose that the result is true forn = k.

ak =
k∑

i=1

(−1)iPi

Now we have to show that the result is true forn = k + 2 , for this we need to add to both
sides

(−1)k+1Pk+1 + (−1)k+2Pk+2

we get

ak + (−1)k+1Pk+1 + (−1)k+2Pk+2 =
k∑

i=1

(−1)iPi + (−1)k+1Pk+1 + (−1)k+2Pk+2

Implies

ak − Pk+1 + Pk+2 =
k+2∑

i=1

(−1)iPi (2. 17)

Now using equation ( 2. 16 ), we have

Pk+1 = ak+1 + ak (2. 18)

Pk+2 = ak+2 + ak+1 (2. 19)

Now using Equations ( 2. 18 ) and ( 2. 19 ) in Equation ( 2. 17 ) , we get

ak+2 =
k+2∑

i=1

(−1)iPi

Case2: When n is odd,n ≥ 1: let for k + 1 being an odd integer, Let us assume that the
result is true forn = k + 1, that is

ak+1 =
k+1∑

i=1

(−1)i+1Pi

Now we have to show that the result is true forn = k + 3, for this add to both sides

(−1)k+2+1Pk+2 + (−1)k+3+1Pk+3

we get

ak+1+(−1)k+2+1Pk+2+(−1)k+3+1Pk+3 =
k+1∑

i=1

(−1)i+1Pi+(−1)k+2+1Pk+2+(−1)k+3+1Pk+3
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implies

ak − Pk+2 + Pk+3 =
k+3∑

i=1

(−1)i+1Pi (2. 20)

Now using equation ( 2. 16 ), We have

Pk+2 = ak+2 + ak+1 (2. 21)

Pk+3 = ak+3 + ak+2 (2. 22)

Now using equation ( 2. 21 ) and ( 2. 22 ) in equation ( 2. 20 ) , we get

ak+3 =
k+3∑

i=1

(−1)i+1Pi

which completes the proof. ¤

Theorem 2.12.The number of zero eigenvalues of graphGn is exactly same as the number
of partitionsPn+1 that contains fewer1′s than its conjugate.

Proof First recall the result which is given in equation (2. 15 ). The generating function
for the number of partitionPn+1, that contains fewer1′s than its conjugate is

(
−1 +

1∏
k>0(1− xk)

)
.

x

1 + x

expanding this

=
−x

1 + x
+

x

1 + x

(
1∏

k>0(1− xk)

)

= −x(1 + x)−1 + x(1 + x)−1(1− x)−1(1− x2)−1(1− x3)−1(1− x4)−1...
= −x(1− x + x2 − x3 + x4 − ...) + x(1− x + x2 − x3 + x4 − ...)(1 + x + x2 + x4 +
x6 + ...)(1 + x3 + x6 + x9 + x12 + ...)...
= (−x + x2 − x3 + x4 − x5 + ...) + (x− x2 + x3 − x4 + ...)(1 + x + x2 + x4 + x6 +
...)(1 + x3 + x6 + x9 + x12 + ...)...
If we simplify and calculate the coefficients i.e for the coefficient ofx2, we will find 1.x2 +
1.x2 − 1.x2. The coefficient ofx2 is 1 exactly same as the number of zero eigenvalues of
graphG1. In the same way if we check the coefficient ofx5 that is 3 and the number of zero
eigenvalues of graphG4 is 3, and the term that has the(n + 1)th power in the expansion
of equation is obtained by selectingx1a1 from the first factor,x2a2 from the second factor
and so on, where

1a1 + 2a2 + 3a3 + ... = n + 1

Since there is one to one correspondence between the number of times the termxn+1 is
obtained in the sequence and the number of zero eigenvalues of graphGn. So the coeffi-
cient ofxn+1 will represent the number of zero eigenvalues of graphGn. ¤
In the following, we obtain bounds for the energy of graphGn in terms ofλ1 which is the
largest eigenvalue of the graph and integer partitions functionPn.
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Theorem 2.13. LetGn be the graph then

E(Gn) ≤ λ1 +

√√√√
(

n∑

i=2

Pi

)(
2n− 2 + 2

n−1∑

i=1

(n− i)Pi − λ2
1

)

the equality holds only forG1.

Proof As in [29], the bounds for energy of bipartite graphs is discussed in detail, for any
bipartite graphG with m edges andn vertices

E(G) ≤ 2m

n
+

√√√√(n− 1)

(
2m−

(
2m

n

)2
)

(2. 23)

SinceGn is also a bipartite graph andλ1 ≥ 2m
n , then

E(Gn) ≤ λ1 +
√

(n− 1)(2m− λ2
1)

using (1. 1 ) and (1. 2 ) in above inequality,

E(Gn) ≤ λ1 +

√√√√
(

n∑

i=2

Pi

)(
2n− 2 + 2

n−1∑

i=1

(n− i)Pi − λ2
1

)

¤
Furthermore, we obtain bounds for the energy of graphGn in terms ofλ1 which is the
largest eigenvalue of the graph, integer partition functionPn and and Energy with respect
to Laplacian matrix.

Theorem 2.14. LetGn be the graph then

E(Gn) ≤ λ1 +

√√√√
(

n∑

i=2

Pi

)
(El(Gn)− λ2

1)

Equality holds forG1 andEl(Gn) is the energy with respect to Laplacian matrix ofGn.

Proof To prove this inequality we will use the inequality

E(G) ≤ 2m

n
+

√
(n− 1)(2m− (

2m

n
)2) (2. 24)

As λ1 ≥ 2m
n andn =

∑n
i=1 Pi impliesn − 1 =

∑n
i=2 Pi and forGn, the energy with

respect to Laplacian matrixEl is twice the number of edges ofGn, that is

El(Gn) = 2m(Gn)

using these facts we get

E(Gn) ≤ λ1 +

√√√√(
n∑

i=2

Pi))(El(Gn)− λ1)2

this proves the inequality. ¤
We will discuss some topological indices related results ofGn.
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Theorem 2.15. LetGn be the graph then

EE(Gn) ≥ an +

(
n∑

i=1

Pi − an

)
Cosh

(
E(Gn)∑n

i=1 Pi − an

)

wherean is number of zero eigenvalues,E(Gn) is energy ofGn.

Proof As Gn is bipartite graph so number of positive eigenvaluesp and negative eigen-
valuesq are equal, so thatp = q, using ( 1. 3 ) forGn, we have

EE(Gn) ≥ an + p
(
e

E(G)
2p + e

−E(G)
2p

)

≥ an + 2p

(
cosh

(
E(G)

2p

))

asN(Gn) = an + p + q so thatN(Gn) = an + 2p, this implies

EE(Gn) ≥ an +

(
n∑

i=1

Pi − an

)
cosh

(
E(G)∑n

i=1 Pi − an

)

¤

Theorem 2.16. For graphGn, the Laplacian Estrada index is

LEE(Gn) =
n∑

i=0

(1− n + i)Pi + e2EE(L(Gn))

whereEE(L(Gn)) =Estrada index of line graph.

Proof By using bound of Laplacian Estrada index for any graph from the article [30] for
Gn, we get

LEE(Gn) = N(Gn)−m(Gn) + e2EE(L(Gn))

LEE(Gn) =
n∑

i=1

Pi − (n− 1)P0 −
n−1∑

i=1

(n− i)Pi + e2EE(L(Gn))

On simplification, we get

LEE(Gn) =
n∑

i=0

(1− n + i)Pi + e2EE(L(Gn))

¤

3. CONCLUSION

In this paper, we perceive results to construct Young Fibonacci graphsGn, using con-
cepts of Integer partitions. We also identify the vertices of the graphs which have the
maximum degree. The radius and diameter of the graphGn are calculated. Topological
indices are also calculated forGn and particularly Zagreb Index. Some results for the en-
ergy of the graphs are constructed. Moreover, results on eigenvalues and Laplacian Estrada
index are also given.
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