PunjabUniversity Journal of Mathematic&022),54(12),723-737
https://doi.org/10.52280/pujm.2022.5412035

On the Structural Properties and Some Topologicalndices of Young-Fibonacci Graphs

IgraZaman FM Bhatti
Departmenbf Mathematics,
Riphah Instituteof Computingand Applied Sciencefiphah InternationdUniversity, Lahore,
Pakistan.
Email: igrazamankh@gmail.confimbhatti@riphah.edu.pk

Received:03 March, 2022/ Accepted:28 December2022/ Publishedonline: 28 December2022

Abstract.: In this paper,we study Young FibonaccigraphsG,,, a specialfamily of graphs
that are constructedwith the help of integer partitions. Young diagramsare alsousedin

the constructiorof graphs.Thefamily of graphsis rich in structure.Thus,we investigate
various propertiesof the family of graphswhich include degreebasedstructureand
topologicalin-dices. Topologicalindiceslike Zagrebindex, Wiener Index, RandicIndex
and ConnectiveEccentricity Index of thesegraphsare computed. We also study the
eigenvaluesind energyf the graph.
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1. INTRODUCTION

The termgraph G(V, E) is typically defined as the set of verticés= {v;, v, v3, ..., U5 }
and edges’ = {ej,ea,e3,...,e, . The total number of vertices denotesraand total
number of edges denotesrnas The vertex se¥ comprises all the verticags of the graph
G and degree of the vertax is simply the total edges which are incidentiio Degree
of the graphz or d.,(G) is total degrees of all vertices A, maximum degree denotes as
A(G) and minimum degree ag(G).The distance between andv; vertices is measured
by the length between the vertices whereas, the path is shortest. Maximum distance be-
tween vertexy and all other vertices of the graph is called eccentricity denoteddfyhe
vertexv. The minimum eccentricity from all the vertices is called radiug the graph and
the maximum eccentricity from all the vertices is called diameter of the graph and denoted

. ) ] . 1, ifvi~vjandi#j

by w. The adjacency matriXl(G) is obtained byA(G); ; = {0, otherwise
deg(vij), i=]

, the Laplacian
0, otherwise P

The degree matri®(G) is defined adD(G); ; = {
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matrix L is defined ad.(G) = D(G) — A(G). The eigenvalues of any matrix M are the
roots\; of the characteristic polynomial @kt(AI — M). The energy of a grapfi with re-
spect to the adjacency matrix with eigenvalues, is defined in [27] @& G) = >, |\l
The Laplacian Energ¥; (G) with respect to the Laplacian matrix with eigenvalues [28]
is defined as

n

B(@) =Y ny— 22

j=1

TABLE 1. Some Topological indices whetk,(v;) is degree of vertex
v;, €(v;) is the eccentricity of vertex;

Topological Index Formulation

First Zagreb Index [14] Mi(G) =), deg(v)?

Second Zagreb Index [14] My (G) :va&_ deg(vi)deg(vj)
*| Wiener Index [15] W(G) = —o=t %1 4(va,vp)

Randé Index [17] R(G) - Zviwvj m

Connective Eccentricity Index [16]C¢(G) = D d;?f)j;)

Topological index or molecular descriptor is a numerical number which gives the mole-
cular properties of the graph like boiling point, stability, similarity, chirality and melting
point of chemical species [33—35]. There are several topological indices which have been
discussed in multiple research articles and successfully applicable in different fields like
pharmaceutical sciences, chemical studies. Some of them are discussed in this article.
Estrada index was introduced by Ernesto Estrada [22]. For a gFrdphE), the Estrada
index is denoted bf&(G), defined ag&(G) = Y., e* where); are the eigenvalues of
adjacency matrix of the grapgh. The Laplacian Estrada index [23] is denotedd$£ (G)
and defined ag&E(G) = Z?Zl e's wherep; are the eigenvalues of Laplacian matrix of
graphG.

Integer Partitions is an interesting field in Combinatorics, which gives a number of applica-
tions in different fields like genetics, statistical mechanics, and modern algebra [3,4,31,32].
A Partition FunctionP,, [19], is the function counting the number of partitions for a given
natural number. A partition is a non increasing sequegens, ns, ..., nx), such that

|P,| = Zle n; = n wheren; are the parts of the partitioR, andP_,, = 0, P, = 1

(by default). A Young diagram [26] of,, of lengthh, is a collection of empty cells of

rows of left-justified order where rowy containingn; cells forl < j < h. The Young-
Fibonacci graphé&:,, [18] are finite ranked graphs with one level for each positive intager
constructed using integer partitions and Young diagramsnFo#Z*, the vertices at level

n are precisely the partition of integarand edges are drawn by connecting a partition of
integern and a partition of integer + 1 if the Young diagram for the partition of integer

n + 1 can be obtained by inserting one block into the Young diagram of the partition of
integern. The connection between the Young diagram @indn — 1 is defined by the rule

that Young diagram of integer can be obtained by adding a Young tab in the inner corners
or at the bottom of the Young diagramof- 1 integer. The levels are drawn as horizontal
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Partitions 5 4+1 3+2 3+1+1 2+2+1 2+ 1+ 1411+ 1+ 1+ 1+

Young Diagram | | | | | |

rows with levels increasing vertically upward and each Young diagram is replaced by a
vertex in the graph, see Figure 1.

Definition 1.1. The Young Fibonacci grap&',, is a simple undirected graph consists of
total number of partitions up to n as a set of vertices and the set of edges as the connection
between the Young diagrams of integeaind integem — 1.

FIGURE 1. Young Diagram and corresponding Young-Fibonacci gré@ph

In this paper, we discuss further properties of Young Fibonacci gréphEl8]. We
need the following results which have been givendr2f], for our later use in this paper.

Theorem 1.2. For the graphG,,, the total number of vertice¥ (G,,) is given by
N(Gn) =Y P, neZ" (1. 1)
=1

whereP; is the number of partitions of integer

Theorem 1.3. Letm(G,,) is the total number of edges of the graph, then

n—1

m(Gp) =(n—1)P+ > (n—i)P; 1. 2)

i=1

wheren > 1and P, = 1.
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We need the following results which have been given in the literature [6—-11], [13, 20]

for our later use.
—E(GQ)

E(G)
EE(G) > ay, +pe 2 +qe 2 (1. 3)

wherep, ¢, a, and E(G) are the positive, negative, zero eigenvalues and energy respec-
tively with respect t4(G).

1
(n—1)2<W(T) < 6n(n —1)(n+1) (1. 4)
whereW (T') is the Wiener Index of tre@' .
W(G)>n?—n—-—m+1 (1.5)

with w > 3. Further, the equality holds & has exactly two vertices with eccentricidy
and rest are of eccentriciBy

W(G)Zw+n(n—l)—m (1. 6)
and  W(G) << > Un _wlw= 1?3(“’ =2 _w—1) 1.7)
W(G) < r(n—r) [Tg:f) +n—r} (1. 8)
equality holds if and only if¥ = K ,,_;.
k
2m
§d§§m<n_1+n—2) (1. 9)
%m <C¢ < 27’” (1. 10)

with equality if and only if the eccentricities of all the vertices are same.

2. MAIN RESULTS

Theorem 2.1. LetG,, be the Young Fibonacci graph then

(a) the maximum degree of the graph, 1, denoted byA(G,,+1) for n > 3 appears on
the vertex having the part of non-increasing sequence of consecutive integeisri-e-
1,n—2,..21).

(b) Leta(n) denotes the!” term of maximum degree’s sequencesfor 2 then

a(n) =2n — 3+ m

Proof of (a): To prove this we use direct combinatorial proof. The Young diagram for
any consecutive decreasing integer part is given in Figure 2(a). One of the Young diagrams
of the integer parts af other than the consecutive non-increasing integer part is given in
Figure 2(b). In the diagram in Figure 2(a), exad#y cells can be added to make a Young
diagram of integer parts dh+1) integer in the graph and exactlycells can be deleted
to connect the integer parts of previonsl) integer in the graph. But in Figure 2(b) the
number of cells that can be added is less tfiafh) and the number of cells that can be
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@ (b)

FIGURE 2. (a) Young Diagram of integer partl+(I-1)+(l-
2)+...+4+3+2+1, (b) Young Diagram of other integer part

deleted is also less thanlt can be easily seen that the number of added and deleted cells
in Figure 2(a) are more than the diagram in Figure 2(b). Sohaiill be at the vertex
where the integer part of integeis consecutive and non-increasing. Now, it is evident that
the diagram of the maximum degree vertex will connect to the diagrams of integeils

to complete the graph if it is on the integer partofThe graph of maximum degree will
bEGn+1.

(b) This statement is proved by mathematical induction.

Forn = 2; A(2) = 2(2) — 3 + |2] = 2 which is trivial to see inG, the maximum
degree is 2. Now we recall the result’s proof of (a), where it has been shown that maximum
degree vertex ha@+1) edges, which are connecting to the next integer partd addes

are connecting to previous integer parts. The degree of a vertex of any graph is the number
of edges incident to it. So the total number of edgeqa#el) + 1 = 2/ + 1, wherel > 1.

Forn > 3, we have to show thatl + 1 =2n — 3. As | 2| =0, forn > 3.

Forn = [ 4 2, the right hand side becom&s+ 1, which is sufficient to show. a
Furthermore, it is readily seen that the radi{é&/,,) is calculated as(G,,) = n — 1 and

the diametew(G,,) is calculated as

w(Gp) =2(n—1) (2. 11)
w(Gp) =2r(Gp) (2.12)

In the following, we investigate the topological indices for the grd&ph by using the
formulas given in the Table 1, we have converted all the results in the foiy.of

Theorem 2.2. Let G,, be the Young Fibonacci graph an#l (G,,) be the Wiener Index of
G, then

W(Gn) < Z:'l:1 P; ((226?_1 P,-)2 — 1)

and

n

n 2
W(Gn) > <ZPZ-> —Y (n—i+1)P—n+2

i=1

Equality holds forG; andGs.
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Proof This can be easily observe that for any tfEéef connected grapli-, we have
W(G) < W(T') and using equations (1. 1) and (1. 4 ) for gr&ph, we obtain

W(G ) < (Z:’L:l PZ) (Z?:l P — 1) (Z:’L:l P+ 1)
" 6

Wi < 2P ((26?_1 Py -1)

Now for lower bound, using equation (1. 5) for gragh, we get
W(G,) > (N(Gn))2 = N(Gn) —m(Gp) +1

Using equations (1. 1) and (1. 2 ),we get

n 2
W(G,) > <ZB-> ZP (n—1)P =Y (n—i)P+1
<ZP> —in—l—l—i)Pi—n—&-Q

This completes the proof. O

2.3. Bounds for Wiener Index in the form of radius and sum of partitions of integer
P,

Theorem 2.4. LetG,, be a graph andV (G,,) be the wiener index a¥,, then

W(G) <r (zli;l—ﬁzp )(ZP—>

Equality holds forG, and Gs.

2r - - .
W(Gn)zg(r—l (2r —1) (ZP) —;n—i—l—z)Pi—n—i—l
where r is the radius of grapty,,.

Proof Using equations (1. 1) and (1. 8), we have

n T*l
W(Gn)§r<;Pi—r) ZP— S 1P)1

Now for lower bound we use equation (1. 6) for graph, as herew = w(G,) and
r = r(G,,) are diameter and radius 6f,, respectively and fo€,,, w(G,) = 2r(G,), w
have

W(G) > é(Qr —9)(2r — 1)2r +n(n — 1) -
by using equations (1. 1) and (1. 2), we get

n—1

W(G,) > g(r—l 2 —1) T-I-ZP (ZP —1) (n—1)P =Y (n—i)P

i=1
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W(G,) > %(r— 1)(2r — 1)r + (iP) ZP —n—i—l—Z(n—i)Pi

i=1 i=1

2r n ‘

This completes the proof. a

Theorem 2.5. LetG,, be the graph, m is number of edges ahds degree of vertex; of
the graphG,, then

My(Gp) = (2m)* =2 d;d;

1<j
Proof Let M:(G,,) = Y., F(d;), whereF(d;) is a function ofd;. Let
F(d;) = F(;) (2.13)
My(Gn) = a7 (2. 14)
i=1

Itis readily seentha}";" 27 = (>, xi)Q — 23, zix;, equation (2. 14) implies

n 2
sz> — Qinxj

i=1 1<J
By using equation (2. 13), we gét;(G,,) = (>, d;)? — 237, didy, for graphG,
i, di = 2m, implies
My(Gp) = (2m)* =2 d;d;
i<j
This completes the proof. a
In the following, we discuss the bounds for first Zagreb Indéx G, ).

Theorem 2.6. LetG,, be the graph then

O<M1(Gn)<(n+a—1)< (n+ a) <ZP—3)ZP>

n—1

wherea = ) .""(n — i) P; and equality holds fo7; andG.

Proof As M:(G,) = Y., d?, itis clear thatM; (G,,) > 0. For upper bound we use
equation (1. 9) fory,, then by using equations (1. 1) and (1. 2 ), we get

Ml(Gn) S ((’I’L - 1) + i:(n — ’L)Pl> (2(71 — 1) + QZ_:(’II — Z)PI + (ZP1> - 32]31 + 2)
Puta = Y7~ f(n — 1) P;, after simplify we get,

M1(Gn)§(n+a—1)< n+ a) <ZP—3> n H)

— i=
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O
In the following, we give the bounds for the Connective Eccentricity Index
Theorem 2.7. LetG,, be the graph then
« «
= < < _—
1+n_1 <C (Gn)2<1+n_1)
wherea = Zf;ll (n — i) P;, and the equality holds fa&; only.
Proof Using equations (1. 2 ) and (1. 10 ), we have
2((n=1)P = 215 (n =) P3) 2((n= 1R~ X1 (0 = i) Py)
< C4(Gy) <
d r
Now by equations (2. 11 ) and (2. 12 ), we obtain
2((n-1) - 25 (- )P) i ((n=1) - TS (- 0)R)
2(n—1) < O {Gn) < n—1
by puttinga = >7"'(n — i) P;, we get
(0% (0%
1 <CYG,) <2(1
+n_1 <C(Gy) < ( +n_1)
This completes the proof. d

Here we give a conjucture for Randic Inde¥(G,, ).
Conjecture 2.8. LetG,, be the graphR(G,,) be the Randic Index then we have
0o i _ (il%)
2 i=1 H;:l(l —aJ)

Here, we give an example for the above conjecture.@=pgiven in Figure 1, we have
Randic indexR(G5) = 8.5258846 and

Gy

Now if we see the generating function

gives the series
=122 + 222 + 32 +52° + 728 + 1127 + 162 + 232° + ...

here the coefficient of® gives the value of required result f6f;, which is 5.
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Young Diagrams of | Number of 1's | Conjugates of Number of 1's
integer parts of 4 in integer parts | integer parts of 4 | in integer parts

A40TTT] 0 1+1+1+1 4

3+15:D 1 [ 2+1+1
2+2E 0 B} 2+2

0
2+1+1§:‘ 2 3+1 1

l+1+1+1§ 4 [T1T114 0
TABLE 2. Number of 1's, integer partsand3 + 1 have fewer 1's than
their conjugates + 1+ 1 4+ 1 and2 + 1 + 1 respectively.

2.9. Spectral Properties of Young Fibonacci graphs.In the following, we have some
results related to the spectral propertiesiof We compute some eigenvalues based results
which are discussed in the form of theorems.

Before moving to the results, let us discuss some terminologies first. Let we have integer
n = 4 then we have integer partition ofdt, 3+ 1,2+2,2+1+ 1,141+ 1+ 1}. There

is a generating function to find number of parts of integer partiftn, for n > 1, such

that P, 1 contains fewer 1's than its conjugate that is

1 T
<_1+ Hk>0(1_$k)) 1+ (& 15)

In which the coefficient terms af” indicate the value of number of parts of integer partition
P, 1 forn > 1 such thatP,,; contains fewer 1's than its conjugate. We determine some
results related to the zero eigenvalue&:gf

Remark 2.10. Let a,, denotes the number of zero eigenvalue&gfthen the recurrence
relation to obtaina,, is

ap =P, —an_1 (2. 16)
for a; = 1, and P,, is number of integer partition of integer n f6f,, .

We give the following result to find,, for graphG,, with the help of integer partitions
P,.

Theorem 2.11. Leta,, denotes the number of zero eigenvalue&'pfn > 1 then
Z(fl)iPi; when n is even
=1
n .
Z(—l)“‘lPi; otherwise

i=1

ap =



732 Igra Zaman, FM Bhatti

Proof
We use induction to prove this theorem.
Casel: Whennis evenp > 2: forn = 2,

2

ay =Y (-1)'P,

1=1
we haveas, = 1. Now for induction step, let us suppose that the result is true ferk.

k

ar =Y (-1)'P;

=1
Now we have to show that the result is true foe= k + 2, for this we need to add to both
sides
(=D Prgr + (1) 2 Prys
we get

K
ar + (1) Py + (1) P Ps = ) (1P 4 (—1)M Py + (1) Py

1=1
Implies
k+2 )
ar — Pop1+ Proya = Y _(-1)'P; (2. 17)
=1
Now using equation ( 2. 16 ), we have
Prey1 = agy1 + ag (2. 18)
Pyyo = agyo + agq (2. 19)

Now using Equations (2. 18 ) and ( 2. 19) in Equation (2. 17), we get

k+2

ag42 = Z(*l)ipi

=1
Case2: When n is oddn > 1: let for k + 1 being an odd integer, Let us assume that the
result is true fom = k + 1, that is
k+1

ag+1 = Z(*l)iHPz'

=1
Now we have to show that the result is true foe= k + 3, for this add to both sides
(_1)k+2+1Pk’+2 4 (_1)k+3+1pk+3

we get

k1
1 +(= 1) P Pt () Py = Y (1) P (- 1) P ()R Py
i=1
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implies
k+3 '
ar — Poya+ Prys = Y _(=1)""'P; (2. 20)
1=1
Now using equation ( 2. 16 ), We have
Prio = apyo + agq (2. 21)
Piys = apys + agyo (2. 22)

Now using equation (2. 21 ) and (2. 22) in equation (2. 20 ) , we get

k+3

Ak+3 = Z(_l)i—HPi

=1
which completes the proof. O

Theorem 2.12. The number of zero eigenvalues of gr&phis exactly same as the number
of partitions P,,.; that contains fewet’s than its conjugate.

Proof First recall the result which is given in equation (2. 15). The generating function
for the number of partitior?, . 1, that contains fewel’s than its conjugate is

(_1 - Hk>o(11 —m) '11;5

expanding this

__—r = ( 1 )

14z 1+4a \ [l —ab)
=—z(l+2)t+z(l+2) ' (1-2) 11 -2 11 —-23)" (1 —2*) 7L
=—a(l-z+2?-2®+2* - . )+z(l—-o+2? -3+t - )1 +ax+2?2+2* +
20+ )1+ 2 +ab 2% + 22+ )
=(—r+? -+t -2+ ) (-2 + 2 -2t )+ o+ 2?2t b+
DA+ 342t 2+ 2t )
If we simplify and calculate the coefficients i.e for the coefficient&fwe will find 1.22 +
1.22 — 1.22. The coefficient of:? is 1 exactly same as the number of zero eigenvalues of
graphG;. In the same way if we check the coefficientSfthat is 3 and the number of zero
eigenvalues of grapty, is 3, and the term that has tie + 1)*" power in the expansion
of equation is obtained by selecting® from the first factorz2*2 from the second factor
and so on, where

1a1—|—2a2+3a3+...:n—|—1

Since there is one to one correspondence between the number of times theé'teria
obtained in the sequence and the number of zero eigenvalues of@rapho the coeffi-
cient ofz" ! will represent the number of zero eigenvalues of gr&ph O
In the following, we obtain bounds for the energy of graghin terms of\; which is the
largest eigenvalue of the graph and integer partitions fundgon
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Theorem 2.13. LetG,, be the graph then

E(G,) <)\1+J (ZP) (%2&5@1)3@)

i=1

the equality holds only fof; .

Proof As in [29], the bounds for energy of bipartite graphs is discussed in detail, for any
bipartite graphG with m edges ana vertices

2
E(G) < %m + $ (n—1) <2m _ (?) ) 2. 23)

SinceG,, is also a bipartite graph and > 27’” then

B(Ga) < M+ /(n—1)(2m — 22)
using (1. 1) and (1. 2) in above inequality,

E(G) <A1+J (ZP) <2n—2+2n21 n— i) —XZ)

=1

O
Furthermore, we obtain bounds for the energy of gréphin terms of \; which is the
largest eigenvalue of the graph, integer partition funcfiyrend and Energy with respect
to Laplacian matrix.

Theorem 2.14. LetG,, be the graph then

E(Gy) <A1+J<ZP> - A1)

Equality holds forG; and E;(G,,) is the energy with respect to Laplacian matrix@f.

Proof To prove this inequality we will use the inequality

2m

2
BG) < =+ \/(n - DEm - (1)) 2. 24)
As \; > 2% andn = Y, P, impliesn — 1 = Y7, P; and forG,,, the energy with
respect to Laplacian matrik; is twice the number of edges 6f,, that is
E(G,) =2m(G,)
using these facts we get

n

E(Gn) <A+ \l (D P))EI(Gn) = A1)?

1=2
this proves the inequality. O
We will discuss some topological indices related result&' pf
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Theorem 2.15. Let G, be the graph then

E(Gy)
wherea,, is number of zero elgenvalueg(Gn) is energy of7,,.

Proof As G,, is bipartite graph so number of positive eigenvalp@®d negative eigen-
valuesg are equal, so that = ¢, using ( 1. 3) forG,,, we have

E(G) —E(G)
EE(Gn) Z an+p (e +eo )

> an 20 (cosh (50 ) )

asN(G,) = a, + p+ ¢ sothatN (G,,) = a,, + 2p, this implies

EE(Gn) = an + (Z Pi— ) cosh (zEgaG)—)
2 " Pi—an

Theorem 2.16. For graphG,,, the Laplacian Estrada index is
LEE(Gn) =) (1 —n+i)P;+ *EE(L(Gy))
=0
where€EE(L(G,,)) =Estrada index of line graph.

Proof By using bound of Laplacian Estrada index for any graph from the article [30] for
G, we get
LEE(G,) = N(G,) —m(Gy) + e*EE(L(G))
n n—1
LEE(Gn) =) Pi—(n—1)Py— Y (n—i)P;+ *EE(L(Gy))
=1 i=1
On simplification, we get
LEE(Gn) = (1—n+i)P; + e’ EE(L(Gy))

=0

3. CONCLUSION

In this paper, we perceive results to construct Young Fibonacci gi@phsising con-
cepts of Integer partitions. We also identify the vertices of the graphs which have the
maximum degree. The radius and diameter of the giG@phare calculated. Topological
indices are also calculated fof,, and particularly Zagreb Index. Some results for the en-
ergy of the graphs are constructed. Moreover, results on eigenvalues and Laplacian Estrada
index are also given.



736 Igra Zaman, FM Bhatti

REFERENCES

[1] G. E. Andrews;The theory of partitiongNo. 2). Cambridge university press, 1998

[2] G. E. AndrewsThe Theory of PartitiondJS: Cambridge University Press,1976.

[3] M. Abramowitz, I. A. Stegun and R. H. Rométandbook of mathematical functions with formulas, graphs,
and mathematical tablet)nited States Department of Commerce, National Bureau of Standards, 1988

[4] H.Bamdad, F. Ashraf and |I. Gutmawwer bounds for Estrada index and Laplacian Estrada indgplied
Mathematics Letters23(2010) 739-742.

[5] F. M. Bhatti, I. Zaman and T. Nazlnteger Partitions with Generating functionBroceedings of the 26th
Asian Technology Conference in Mathematit¢l) (2021)

[6] F. M. Bhatti, M. Malooq, J. Ahmad, I. Zaman, and M. Usm&m Some Structural Properties of Integer-
Based Graphs and Their Topological Indicdsurnal of Mathematic4,(1)(2022) 1-6

[7] F. M. Bhatti, I.Zaman, and T. NaZTeaching of the Graph Construction Techniques using Integer Parti-
tions!” Proceedings of the 25th Asian Technology Conference in MathentKti$€020),268-276.

[8] G. Caporossi, D. Cvetkovi, |. Gutman and P. Han&&miable neighborhood search for extremal graphs. 2.
Finding graphs with extremal energyournal of Chemical Information and Computer Scierg@$1999)
984-96.

[9] A. Comtet, S. N. Majumdar and S. Ouvipteger partitions and exclusion statistickurnal of Physics A:
Mathematical and Theoretica0,N0.37 (2007)11255.

[10] K. C. Das and |. GutmarEstimating the Wiener index by means of number of vertices, number of edges,
and diameterMATCH Commun. Math. Comput. Cheri4(3),(2010) 647-660.

[11] K. C. Das and M. J. Nadjafi-Arani, M. J. (2017). On maximum Wiener index of trees and graphs with given
radius.Journal of Combinatorial Optimizatiqr34(2), 574-587.

[12] K. C. Das,Sharp bounds for the sum of the squares of the degrees of a d¢eguyjujevac journal of Mathe-
matics,25(25), (2003)19-41.

[13] N. De, Bounds for the connective eccentric indéxternational Journal of Contemporary Mathematical
Sciences7(44), (2012)2161-2166.

[14] D. de CaenAn upper bound on the sum of squares of degrees in a gidiskrete Mathematic4,851-3),
(1998) 245-248.

[15] A. Dembo, O. Zeitouni and A. M. Vershikarge deviations for integer partitiond998)No. IHES-M-98-57
SCAN-9901069.

[16] R. C. Entringer, D. E. Jackson and D. A. Snyd®istance in graphsCzechoslovak Mathematical Journal,
26(2), (1976) 283-296.

[17] G. H.Fath-Tabar, A. R. Ashrafi, and |. GutmaNote on Estrada and L-Estrada indices of graptBulletin
(Acadmie serbe des sciences et des arts. Classe des sciences mathmatiques et naturelles. Sciences mathma-
tiques) 2009; 1-16.

[18] E. Estrada;Characterization of 3D molecular structureChemical Physics Letter§19(2000) 713-718.

[19] M. W. Fulton,Young tableaux: with applications to representation theory and geor{iétry35). Cambridge
University Press, 1997

[20] M. W. Fulton,Young tableaux: with applications to representation theory and geor{iétry35). Cambridge
University Press,1997

[21] I. Gutman"Degree-based topological indicéCroatica Chemica Acta 86, nd.(2013): 351-361.

[22] 1. Gutman, and N. Trinajsti’Graph theory and molecular orbitals. Totab-electron energy of alternant
hydrocarbong.Chemical Physics Letters7.4 (1972): 535-538.

[23] I. Gutman,The energy of graptSteirmarkisches Mathematisches SymposiL@¥1978) 122.

[24] Gutman, I., & Zhou, BLaplacian energy of a grapi.inear Algebra and its application414 No.1(2006)
29-37..

[25] S. Gupta, M. Singh and A. K. Mada@onnective eccentricity Index: A novel topological descriptor for
predicting biological activityJ. Mol. Graph.Model.18 (2000), 18-25

[26] M. Randic,”Characterization of molecular branchingJournal of the American Chemical Society 97, no.
23(1975): 6609-6615.

[27] J. H. Koolen and V. MoultonMaximal energy bipartite graphsGraphs and Combinatoric4,9, No.1
(2003)131-135.



On the Structural Properties and Some Topological Indices of Young-Fibonacci Graphs 737

[28] J. F. C. KingmanRandom partitions in population genetid2oceedings of the Royal Society of London.
A. Mathematical and Physical Scienc8§,1(1704), (1978) 1-20.

[29] z. Mihali and N. Trinajsti,A graph-theoretical approach to structure-property relationsh{i992)

[30] S. Seo, and A. J. Yedndex of seaweed algebras and integer partitioasXiv preprint arXiv:1910.
(2019)14369.

[31] D. Tian, and K. P. ChoiSharp bounds and normalization of wiener-type indiddes one8(11), (2013)
e78448.

[32] X.L.Wang, J.B. Liu, M. Ahmad, M. K. Siddiqui, M. Hussain, M. Sae&thlecular properties of symmet-
rical networks using topological polynomia®pen Chemistryl7,No. 1 (2019).849-864.

[33] H. B. Walikar, V. S. Shigehalli and H. S. RamariBounds on the Wiener number of a grabpMATCH-
COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY 50(2004): 117-132.

[34] O. Wieder, S. Kohlbacher, M. Kuenemann, A. Garon, P. Ducrot, T. Seidel and T. Langempact review
of molecular property prediction with graph neural networkug Discovery Today: Technologie37
(2020)1-12.

[35] B. Zhou and I. Gutmariylore on the Laplacian Estrada indefpplicable Analysis and Discrete Mathemat-
ics,3,No.2 (2009)371-378.



