Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 45 (2013) pp. 77-96

Some Results On Homomorphic Images of $\Delta(2,3,13)$

M. Aslam Department of Mathematics Quaid-i-Azam University, Islamabad, Pakistan. Email: draslamqau@yahoo.com

Rehan Ahmad Department of Mathematics Quaid-i-Azam University, Islamabad, Pakistan. Email: rihan_ahmad3@hotmail.com

Abstract. It is known that conjugacy classes of actions of PGL(2, Z) on $PL(F_q)$ can be represented by coset diagrams $D(\theta, q)$, where $\theta \in F_q$ and q is a power of a prime p. In this paper, we have obtained conditions in terms of θ and q which ensure the emergence of coset diagrams representing homomorphic images of infinite triangle group $\Delta(2,3,13) = \langle x, y : x^2 = y^3 = (xy)^{13} = 1 > \text{on } PL(F_q)$. We have also found conditions for existence of some special types of fragments in the coset diagrams representing homomorphic images of $\Delta(2,3,13)$. We have used technique devised in [7] to stitch together small coset diagrams representing homomorphic images of $\Delta(2,3,13)$ to obtain homomorphic images of the same triangle group but of larger size.

AMS (MOS) Subject Classification Codes: Primary 20F05, Secondary 20G40.

Key Words: Linear-fractional transformations, Non-degenerate homomorphisms, Conjugacy classes, Parametrization, Projective line.

1. INTRODUCTION

It is well known that modular group PSL(2, Z) is generated by two linear-fractional transformations $x : z \longrightarrow \frac{-1}{z}$ and $y : z \longrightarrow \frac{z-1}{z}$, satisfying the relations

$$x^2 = y^3 = 1 \tag{1.1}$$

The linear-fractional transformation $t: z \longrightarrow \frac{1}{z}$ inverts x and y, that is, $t^2 = (xt)^2 = (yt)^2 = 1$, and so extends the group PSL(2, Z) to PGL(2, Z). The extended modular group PGL(2, Z) is then generated by the transformations x, y and t and its defining relations are

$$x^{2} = y^{3} = t^{2} = (xt)^{2} = (yt)^{2} = 1$$
(1.2)

Let q be a power of a prime p. Then the group PGL(2,q) is the group of all transformations $z \longrightarrow \frac{az+b}{cz+d}$ where a, b, c, d are in F_q and $ad - bc \neq 0$, while the group PSL(2,q) is its subgroup consisting of all those linear-fractional transformations $z \longrightarrow \frac{az+b}{cz+d}$ where ad - bc is a non-zero square in F_q .

Let $PL(F_q)$ denote the projective line over F_q , that is, $F_q \cup \{\infty\}$. If PGL(2, Z) acts on $PL(F_q)$, then every element of PGL(2, q) gives a permutation on the points of $PL(F_q)$. The group PGL(2, q) is a subgroup of the symmetric group S_{q+1} . As the elements of PSL(2, q) give only even permutations, it is therefore a subgroup of the alternating group A_{q+1} .

Triangle groups and their significance is well explained in [1], [2], [8], [9] and [10]. The groups are represented by

$$\Delta(l, m, n) = \langle x, y : x^{l} = y^{m} = (xy)^{n} = 1 \rangle$$
(1.3)

where $l, m, n \in \mathbb{Z}$ and l, m, n > 1. If we put

$$\delta(\Delta(l,m,n)) = \frac{1}{l} + \frac{1}{m} + \frac{1}{n} - 1$$
(1.4)

then $\Delta(l, m, n)$ contains the fundamental group of an orientable surface of positive genus as a subgroup of finite index whenever $\delta(\Delta(l, m, n)) \leq 0$; in particular $\Delta(l, m, n)$ is infinite.

The triangle groups $\Delta(2,3,n)$ are important especially as homomorphic images of PSL(2, Z). The groups are infinite if and only if n > 5. The finite triangle groups $\Delta(2,3,n)$, $n \le 5$ are known and they are: trivial, S_3 , A_4 , S_4 and A_5 , for n = 1, 2, 3, 4 and 5 respectively. If n = 6, then the triangle group $\Delta(2,3,n)$ is an extension by the cyclic group C_6 of a free Abelian group of rank 2. For n = 7, the triangle group $\Delta(2,3,n)$ becomes a Hurwitz group which is studied in [5] and [11]. Triangle group $\Delta(2,3,9)$ is studied in [7] and [10]. A detailed study of $\Delta(2,3,11)$ can be found in [8]. Here we are interested in triangle group $\Delta(2,3,13)$.

The triangle group $\Delta(2,3,13)$ has a fundamental domain consisting of two copies of a hyperbolic triangle with angles $\frac{\pi}{2}$, $\frac{\pi}{3}$, $\frac{\pi}{13}$. Let a, b, c be the vertices of the hyperbolic triangle and R_i represent hyperbolic reflection in hyperbolic sides M_i (i = 1, 2 and 13). Let $x = R_{13}R_3$ and $y = R_2R_{13}$, so that $yx = R_2R_{13}R_{13}R_3 = R_2R_3$. Then $R_{13}R_3$ is an anticlockwise hyperbolic rotation of π about a, R_2R_{13} is an anticlockwise hyperbolic rotation of $\frac{2\pi}{3}$ about b, and R_2R_3 is an anticlockwise hyperbolic rotation of $\frac{2\pi}{3}$ about b, and R_2R_3 is an anticlockwise hyperbolic rotation of $\frac{2\pi}{3}$ about c. Hence $x^2 = y^3 = (xy)^{13} = 1$ which is $\Delta(2,3,13)$. The group acts on hyperbolic space.

There are three more sections in this paper. In first section, we define some relevant notions and discuss parametrization of actions of PGL(2, Z) on $PL(F_q)$. We explicitly describe coset diagrams and construction of the diagrams through the actions. We are interested in the diagrams which are permutation representations of homomorphic images of the group $\Delta(2, 3, 13)$. Therefore, we obtain conditions in terms of θ and q which ensure the emergence of the required coset diagrams representing homomorphic images of the infinite triangle group $\Delta(2, 3, 13)$. In second section, we discuss some fragments observed in the diagrams. Then we explain how new diagrams representing the homomorphic images can be obtained just by stitching together two or more diagrams with the help of two fragments. In last section, we find conditions for existence of some special type of fragments in the diagrams. Finally, we give a list of linear fractionals transformations, which can be employed to construct homomorphic image representations of the group on prime fields F_q , where q < 1300.

2. PARAMETRIZATION AND COSET DIAGRAMS

A homomorphism $\alpha : PGL(2, Z) \longrightarrow PGL(2, q)$ is called a non-degenerate homomorphism if none of the generators x, y and t of PGL(2, Z) lies in the kernel of α , so that $\bar{x} = x\alpha$ and $\bar{y} = y\alpha$ and $\bar{t} = t\alpha$ are of orders 2, 3 and 2 respectively. Any two non-degenerate homomorphisms α and β are called conjugate if there exists an inner automorphism ρ of PGL(2, q) such that $\beta = \alpha\rho$.

In [6] it has been proved that the conjugacy classes of non-degenerate homomorphisms from PGL(2, Z) into PGL(2, q) correspond in a one-to-one fashion with the conjugacy classes of non-trivial elements of PGL(2, q), under a correspondence which assigns to the non-degenerate homomorphism α the class containing the element $(xy)\alpha$. This of course, means that we can actually parametrize the conjugacy classes of non-degenerate homomorphism α : $PGL(2, Z) \longrightarrow PGL(2, q)$, except for a few uninteresting ones, by the elements of F_q . That is, we can in fact parametrize the actions of PGL(2, Z) on $PL(F_q)$.

Let α be any such non-degenerate homomorphism and X, Y and T denote elements of GL(2,q) corresponding to the linear-fractional transformations \bar{x}, \bar{y} and \bar{t} in PGL(2,q), where as described earlier, $\bar{x} = x\alpha, \bar{y} = y\alpha$ and $\bar{t} = t\alpha$, for some non-degenerate homomorphism α from the group PGL(2,Z) into PGL(2,q), where F_q is not of characteristic 2 or 3, then because of this and because of the fact that \bar{x}, \bar{y} and \bar{t} are of orders 2.3 and 2 respectively, we can take the matrices X, Y and T to be $X = \begin{bmatrix} a & kc \end{bmatrix}$

2, 3, and 2 respectively, we can take the matrices X, Y and T to be $X = \begin{bmatrix} a & kc \\ c & -a \end{bmatrix}$, $Y = \begin{bmatrix} d & kf \\ f & -d-1 \end{bmatrix}$ and $T = \begin{bmatrix} 0 & -k \\ 1 & 0 \end{bmatrix}$ where $a, c, d, f, k \in F_q$ with $k \neq 0$. We write

$$a^2 + kc^2 = -\Delta \tag{2.1}$$

and require that

$$d^2 + d + kf^2 + 1 = 0. (2.2)$$

This certainly yields elements satisfying the relation $X^2 = \lambda_1 I$, $Y^3 = \lambda_2 I$ and $T^2 = \lambda_3 I$, where λ_1, λ_2 and λ_3 are some non-zero scalars and I is the identity matrix. The nondegenerate homomorphism α is determined by $\bar{x}\bar{y}$ because the one-to-one correspondence assigns to α the class containing $\bar{x}\bar{y}$. So we have to check only the conjugacy class of $\bar{x}\bar{y}$. The matrix XY has the trace

$$r = a(2d+1) + 2kcf$$
 (2.3)

If
$$trace(XYT) = ks$$
, then

$$s = 2af - c(2d+1), (2.4)$$

so that

$$3\Delta = r^2 + ks^2 \tag{2.5}$$

and set

$$\theta = \frac{r^2}{\Delta}.$$
(2.6)

For given q and θ we can always find the matrices X, Y and T by using equations (2.1) to (2.6). The action of PGL(2, Z) on $PL(F_q)$ involves PGL(2, q), and the corresponding coset diagram yields a permutation representation of PGL(2, q). In [6] a mechanism has

been developed to find a unique coset diagram $D(\theta, q)$ corresponding to each $\theta \in F_q$. It is unique in the sense that the actions corresponding to the same conjugacy class will produce the same coset diagram, except the labelling of the vertices.

We use coset diagrams for the actions of the group PGL(2, Z) on $PL(F_q)$. The diagrams are defined as follows:

three cycles of y are represented by small triangles whose vertices are permuted counterclockwise by y; any two vertices are interchanged by the involution x which is represented by an edge; action of t is represented by reflection about the vertical line of symmetry; fixed points of x and y (if exist) are denoted by heavy dots. Notice that $(yt)^2 = 1$ is equivalent to $tyt = y^{-1}$, which means that t reverses the orientation of the triangles representing three cycles of y (as reflection does); because of this, there is no need to make the diagram more complicated by introducing t-edges. These diagrams are called coset diagrams because here the vertices are identifiable with the right cosets in PGL(2, Z), of the stabilizer Nof any given point of $PL(F_q)$, so that x or y joins the coset Ngx or Ngy(for each $g \in$ PGL(2, Z)); hence the description of a coset diagram.

For instance consider an action of $PGL(2, Z) = \langle x, y, t : x^2 = y^3 = t^2 = (xt)^2 = (yt)^2 = 1 > \text{ on } PL(F_{23}) \text{ by } x : z \longrightarrow \frac{-1}{z}, y : z \longrightarrow \frac{z-1}{z} \text{ and } t : z \longrightarrow \frac{1}{z} \text{ to give the following permutation representations:}$

 $\overline{x} : (0\infty)(122)(211)(315)(417)(59)(619)(713)(820)(1016)(1221)(1418)$

 $\overline{y} \quad : \quad (0 \propto 1) (2 \ 12 \ 22) (3 \ 16 \ 11) (4 \ 18 \ 15) (5 \ 10 \ 17) (6 \ 20 \ 9) (7 \ 14 \ 19) (8 \ 21 \ 13)$

 $\bar{t} \quad : \quad (0 \infty) (1) (2 \ 12) (3 \ 8) (4 \ 6) (5 \ 14) (7 \ 10) (9 \ 18) (11 \ 21) (13 \ 16) (15 \ 20) (17 \ 19) (22) \, .$

The coset diagram of the action is shown in Figure 1:

FIGURE 1

In this paper, we are interested in those conjugacy classes of non-degenerate homomorphisms α , which evolve the pairs of linear fractional transformations \bar{x} and \bar{y} satisfying the relation $\bar{x}^2 = \bar{y}^3 = (\bar{x}\bar{y})^{13} = 1$.

Theorem 1. For each zero of $f(z) = z^6 - 11z^5 + 45z^4 - 84z^3 + 70z^2 - 21z + 1$ in F_p , where $f(z) \in Z[z]$ and p is a prime number such that $p \equiv \pm 1 \pmod{13}$, there exists a conjugacy class of non-degenerate homomorphisms α such that $\alpha (PGL(2, Z)) = \langle \bar{x}, \bar{y} : \bar{x}^2 = \bar{y}^3 = (\bar{x}\bar{y})^{13} = 1 > .$

 $\begin{aligned} Proof. \text{ Since } p \equiv \pm 1 \pmod{13}, \text{ therefore, due to a result of A. M. Macbeath [3], there are two distinct traces r_1, r_2 of elements of the group $SL(2, p), that yield elements of order 13 in $PGL(2, p). Thus there are two conjugacy classes of non-degenerate homomorphisms from Δ(2, 3, 13) into $PGL(2, p). Every element of $PSL(2, p) that comes from an element of $SL(2, p) with trace r_1 or r_2 must have order 13. Now suppose A is any element of $SL(2, p) which has the trace r_1 or r_2. As A is a conjugate in $GL(2, p^2) to a matrix B of the form $\left[\begin{matrix} ρ & 0 \\ 0 & ρ^{-1} \end{matrix}\right], where $ρ$ is primitive 26-th root of unity in F_{p^2}, we have $r = tr($A$) = $tr($B$) = $ρ+ρ^{-1}$. Next $r^2 = (ρ+ρ^{-1})^2 = ρ^2+ρ^{-2}+2$, so $r^2-2 = ρ^2+ρ^{-2}$, which is the trace of B^2 and $r^3 = (ρ+ρ^{-1})^3 = ρ^3+3ρ+3ρ^{-1}+ρ^{-3}$, so $r^3-3r = ρ^3+ρ^{-3}$, which is the trace of B^3 and $(r^2-2)^2 = (ρ^2+ρ^{-2})^2$ implies that $r^4-4r^2+4 = ρ^4+ρ^{-4}+2$, so $r^4-4r^2+2 = ρ^4+ρ^{-4}$, which is the trace of B^4. Similarly we get $r^5-5r^3+5r = ρ^5+ρ^{-5}$ and $r^6-6r^4+9r^2-2 = ρ^6+ρ^{-6}$. \\ \end{aligned}$

Since $\rho^{26} = 1$, so $(\rho^{13} - 1)(\rho^{13} + 1) = 0$, but $\rho^{13} \neq 1$, which implies that $\rho^{13} + 1 = 0$, so $(\rho + 1)(\rho^{12} - \rho^{11} + \rho^{10} - \rho^9 + \rho^8 - \rho^7 + \rho^6 - \rho^5 + \rho^4 - \rho^3 + \rho^2 - \rho + 1) = 0$. But $\rho \neq -1$, which implies that $\rho^{12} - \rho^{11} + \rho^{10} - \rho^9 + \rho^8 - \rho^7 + \rho^6 - \rho^5 + \rho^4 - \rho^3 + \rho^2 - \rho + 1 = 0$. Now since $\rho^{13} = -1$, we have $\rho^{12} = -\rho^{-1}$, $\rho^{11} = -\rho^{-2}$, $\rho^{10} = -\rho^{-3}$, $\rho^9 = -\rho^{-4}$, $\rho^8 = -\rho^{-5}$, $\rho^7 = -\rho^{-6}$. So by substituting in equation $\rho^{12} - \rho^{11} + \rho^{10} - \rho^9 + \rho^8 - \rho^7 + \rho^6 - \rho^5 + \rho^4 - \rho^3 + \rho^2 - \rho + 1 = 0$, we get $(\rho^6 + \rho^{-6}) - (\rho^5 + \rho^{-5}) + (\rho^4 + \rho^{-4}) - (\rho^3 + \rho^{-3}) + (\rho^2 + \rho^{-2}) - (\rho + \rho^{-1}) + 1 = 0$, which implies that $r^6 - r^5 - 5r^4 + 4r^3 + 6r^2 - 3r - 1 = 0$. Since tr(B) = r and $det(B) = \Delta = 1$, we can put $\theta = r^2$ in the equation to obtain $\theta^6 - 11\theta^5 + 45\theta^4 - 84\theta^3 + 70\theta^2 - 21\theta + 1 = 0$. Thus $\bar{x}\bar{y}$ has order 13 if and only if $f(\theta) = \theta^6 - 11\theta^5 + 45\theta^4 - 84\theta^3 + 70\theta^2 - 21\theta + 1 = 0$.

Above theorem can be proved alternatively as:

Let X, Y and XY be the matrices in GL(2, p) corresponding to the elements \bar{x}, \bar{y} and $\bar{x}\bar{y}$ respectively. Now characteristic equation of XY can be written as:

$$(XY)^2 - rXY + \Delta I = 0.$$

mVV

 $(\mathbf{v}\mathbf{v})^2$

This implies that:

$$(XY)^{4} = (r^{2} - \Delta) (XY)^{2} - r\Delta XY$$

$$= (r^{2} - \Delta) (rXY - \Delta I) - r\Delta XY$$

$$= (r^{3} - 2r\Delta) XY + (-\Delta r^{2} + \Delta^{2}) I$$

$$(XY)^{5} = (r^{3} - 2r\Delta) (XY)^{2} + (-\Delta r^{2} + \Delta^{2}) XY$$

$$= (r^{3} - 2r\Delta) (rXY - \Delta I) + (-\Delta r^{2} + \Delta^{2}) XY$$

$$= (r^{4} - 3\Delta r^{2} + \Delta^{2}) XY + (-r^{3}\Delta + 2r\Delta^{2}) I.$$

Continuing in similar way we get:

$$\begin{split} (XY)^6 &= \left(r^5 - 4r^3\Delta + 3r\Delta^2\right) XY + \left(-r^4\Delta + 3r^2\Delta^2 - \Delta^3\right) I \\ (XY)^7 &= \left(r^6 - 5r^4\Delta + 6r^2\Delta^2 - \Delta^3\right) XY + \left(-r^5\Delta + 4r^3\Delta^2 - 3r\Delta^3\right) I \\ (XY)^8 &= \left(r^7 - 6r^5\Delta + 10r^3\Delta^2 - 4r\Delta^3\right) XY + \left(-\Delta r^6 + 5r^4\Delta^2 - 6r^2\Delta^3 + \Delta^4\right) I \\ (XY)^9 &= \left(r^8 - 7\Delta r^6 + 15r^4\Delta^2 - 10r^2\Delta^3 + \Delta^4\right) XY + \left(-r^7\Delta + 6r^5\Delta^2 - 10r^3\Delta^3 + 4r\Delta^4\right) I \\ (XY)^{10} &= \left(r^9 - 8r^7\Delta + 21r^5\Delta^2 - 20r^3\Delta^3 + 5r\Delta^4\right) XY + \left(-r^8\Delta + 7\Delta^2 r^6 - 15r^4\Delta^3 + 10r^2\Delta^4 - \Delta^5\right) I \\ (XY)^{11} &= \left(r^{10} - 9r^8\Delta + 28\Delta^2 r^6 - 35r^4\Delta^3 + 15r^2\Delta^4 - \Delta^5\right) XY + \left(-r^9\Delta + 8r^7\Delta^2 - 21r^5\Delta^3 + 20r^3\Delta^4 - 5r\Delta^5\right) I \\ (XY)^{12} &= \left(r^{11} - 10r^9\Delta + 36r^7\Delta^2 - 56r^5\Delta^3 + 35r^3\Delta^4 - 6r\Delta^5\right) XY + \left(-r^{10}\Delta + 9r^8\Delta^2 - 28\Delta^3 r^6 + 35r^4\Delta^4 - 15r^2\Delta^5 + \Delta^6\right) I \end{split}$$

$$(XY)^{13} = (r^{12} - 11r^{10}\Delta + 45r^8\Delta^2 - 84r^6\Delta^3 + 70r^4\Delta^4 - 21r^2\Delta^5 + \Delta^6) XY - (r^{11}\Delta - 10r^9\Delta^2 + 36r^7\Delta^3 - 56r^5\Delta^4 + 35r^3\Delta^5 - 6r\Delta^6) I.$$

But $(XY)^{13} = \lambda I$, so we must have:

$${}^{12}-11r^{10}\Delta+45r^8\Delta^2-84r^6\Delta^3+70r^4\Delta^4-21r^2\Delta^5+\Delta^6=0.$$

But $r^2 = \Delta \theta$, so

$$\theta^6 \Delta^6 - 11\theta^5 \Delta^6 + 45\theta^4 \Delta^6 - 84\theta^3 \Delta^6 + 70\theta^2 \Delta^6 - 21\theta \Delta^6 + \Delta^6 = 0$$

or

$$\theta^6 - 11\theta^5 + 45\theta^4 - 84\theta^3 + 70\theta^2 - 21\theta + 1 = 0,$$

which is the required condition for $(\bar{x}\bar{y})^{13} = 1$. The six zeros of $f(\theta) = \theta^6 - 11\theta^5 + 45\theta^4 - 84\theta^3 + 70\theta^2 - 21\theta + 1$ lie in F_p if $p = 13m \pm 1$, where $m \in Z$. Corresponding to each zero of $f(\theta) = 0$ in F_p , we can construct a coset diagram using the technique devised in [6]. For instance $f(\theta) = 0$ has six roots 10, 11, 13, 15, 28 and 40 in F_{53} . If we take $\theta = 28$, then the linear-fractional transformations \bar{x}, \bar{y} and \bar{t} are $\frac{35z+29}{29z-35}, \frac{23}{23z-1}$ and $\frac{-1}{z}$ respectively. Linear fractional transformations \bar{x}, \bar{y} and \bar{t} have permutation representations as:

 \bar{x} : (0 34) (1 7) (2) (3 25) (4 42) (5 51) (6 49) (8 43) (9 17) (10 31) (11 19) (12 48) $(13\ 29)\ (14\ \infty)\ (15\ 52)\ (16\ 33)\ (18\ 50)\ (20\ 38)\ (21\ 27)\ (22\ 32)\ (23\ 30)\ (24\ 39)\ (26)$ $(28\ 47)\ (35\ 36)\ (37\ 41)\ (40\ 44)\ (45\ 46)$ \bar{y} : (0 30 ∞) (1 42 31) (2 17 4) (3 51 48) (5 36 9) (6 11 39) (7 23 15) (8 12 50) $(10\ 45\ 46)\ (13\ 28\ 26)\ (14\ 43\ 49)\ (16\ 34\ 40)\ (18\ 22\ 33)\ (19\ 24\ 44)\ (20\ 37\ 38)$ $(21\ 47\ 25)\ (27\ 35\ 32)\ (29\ 52\ 41)\ (30\ \infty\ 0)$ \overline{t} : $(0 \infty) (1 52) (2 26) (3 35) (4 13) (5 21) (6 44) (7 15) (8 33) (9 47) (10 37) (11 24)$ $(12\ 22)\ (14\ 34)\ (16\ 43)\ (17\ 28)\ (18\ 50)\ (19\ 39)\ (20\ 45)\ (23)\ (25\ 36)\ (27\ 51)\ (29\ 42)$

 $(30)(31\ 41)(32\ 48)(38\ 46)(40\ 49).$

Therefore the coset diagram will be D(28, 53) in which each vertex is fixed by $(\bar{x}\bar{y})^{13}$. Thus it will be a diagram depicting α (Δ (2, 3, 13)).

3. FRAGMENTS AND CONNECTING COSET DIAGRAMS

We can use Theorem1 together with the technique described in [6] to obtain coset diagrams depicting those actions of PGL(2, Z) on $PL(F_q)$, which, for a suitable q, evolve homomorphic images of $\Delta(2, 3, 13)$ as subgroups of PGL(2, q). Comparatively, it is a better procedure for obtaining homomorphic images of $\Delta(2,3,13)$ under non degenerate homomorphism $\alpha: PGL(2,Z) \longrightarrow PGL(2,q)$.

By connecting smaller graphs representing groups of smaller degree we can obtain a bigger graph representing a group of larger degree. It is then easy to study the properties of a new group just by studying its graph. We shall use some special types of fragments of coset diagrams depicting α (Δ (2, 3, 13)) to stitch together two or more coset diagrams still depicting α (Δ (2, 3, 13)). Hence, it is useful to find conditions for the existence of these special fragments in a coset diagrams representing α (Δ (2, 3, 13)). We shall find these conditions in next section.

Any two coset diagrams can be joined together to obtain a coset diagram of an arbitrary size provided they are joined together in a special way. The new coset diagram thus produced will still preserve all the inherited properties of the component coset diagrams. To join coset diagrams together one needs coset diagrams containing fragments γ_1 (Figure 3) and γ_2 (Figure 4).

FIGURE 3. (γ_1)

FIGURE 4. (γ_2)

We note that D(11, 53) and D(36, 79) are the coset diagrams containing both fragments γ_1 and γ_2 such that each vertex of these diagrams is fixed by $(\bar{x}\bar{y})^{13}$.

By $|D(\theta, q)|$ we shall mean the number of vertices in a coset diagram $D(\theta, q)$ and by $PL(F_{q_1}) \cup PL(F_{q_2})$ we shall mean a set having $q_1 + q_2 + 2$ elements.

Theorem 2. Let l and m be the number of copies of the coset diagrams D(11, 53) and D(36, 79) respectively containing both γ_1 and γ_2 . Then for all n which are expressible as n = l |D(11, 53)| + m |D(36, 79)| the coset diagram D(n) of n vertices depicts $\alpha (\Delta (2, 3, 13))$.

Proof. We choose either of the coset diagrams D(11, 53) or D(36, 79) and label vertices of the fragment γ_1 with a, b, c and d. We place another copy of D(11, 53) or D(36, 79)with vertices $\dot{a}, \dot{b}, \dot{c}$ and \dot{d} on a common vertical axis of symmetry, one above the other, and join the vertices a to \dot{d}, b to \dot{c}, c to \dot{b} and d to \dot{a} by x –edges. That is,

FIGURE 5

Similarly for the coset diagram D(11, 53) or D(36, 79) containing fragment γ_2 labelled with a, b, c and d, we take another copy of D(11, 53) or D(36, 79) containing fragment γ_2 labelled with $\dot{a}, \dot{b}, \dot{c}$ and \dot{d} on a common vertical axis of symmetry, one above the other, and join the vertices a to \dot{d}, b to \dot{c}, c to \dot{b} and d to \dot{a} by x –edges. That is,

The resulting coset diagram will be one of the following

- 1. D(11, 53) + D(11, 53)
- 2. D(11, 53) + D(36, 79)
- 3. D(36,79) + D(36,79)

depicting an action of PGL(2, Z) on $PL(F_{53}) \cup PL(F_{53})$ of 108 elements or on $PL(F_{53}) \cup PL(F_{79})$ of 134 elements or on $PL(F_{79}) \cup PL(F_{79})$ of 160 elements respectively. Let $(\tau, c_1, c_2, ..., c_{j-1}, \sigma, c_j, ..., c_{q-2})$ and $(\mu, d_1, d_2, ..., d_{j-1}, \lambda, d_j, ..., d_{q-2})$ be cycles of $\bar{x}\bar{y}$ in the representations of α (Δ (2, 3, 13)) depicted by D(11, 53) + D(11, 53) or D(11, 53) + D(36, 79) or D(36, 79) + D(36, 79).

Here $(\mu, c_1, c_2, ..., c_{j-1}, \sigma, c_j, ..., c_{q-2})$ and $(\tau, d_1, d_2, ..., d_{j-1}, \lambda, d_j, ..., d_{q-2})$ are the cycles of the element $\bar{x}\bar{y}$. The rest of the cycles of $\bar{x}\bar{y}$ remain the same, that is, of the length 13. Thus resulting coset diagram D(11, 53) + D(11, 53) or D(11, 53) + D(36, 79) or D(36, 79) + D(36, 79) will again be a coset diagram for α (Δ (2, 3, 13)).

We can join l copies of D(11, 53) and m copies of D(36, 79) in a similar way. After joining these coset diagrams together, we obtain a coset diagram D(n) with l | D(11, 53) | + m | D(36, 79) | vertices representing $\alpha (\Delta (2, 3, 13))$.

Remark 1. The vertices of the coset diagram $D(\theta, q)$ can be relabelled by different symbols, because any two finite fields of the same size are isomorphic. Therefore, the vertices of coset diagram D(n) can be relabeled avoiding repetition of labels.

FIGURE 6

Remark 2. Note that D(n) still has γ_1 and γ_2 . Therefore one can continue stitching more diagrams containing γ_1 or γ_2 or both but possibly different from D(11, 53) and D(36, 79).

4. EXISTENCE OF FRAGMENTS IN COSET DIAGRAMS

In the coset diagrams for the actions of PGL(2, Z) on $PL(F_q)$, where q is a power of a prime, no non trivial linear fractional transformation fixes more than two vertices. Thus, we should look for fragments of coset diagrams in which more than two vertices are fixed by a linear fractional transformation so that their existence in a coset diagram for the action of PGL(2, Z) on $PL(F_q)$ ensures that the linear fractional transformation $(\bar{x}\bar{y})^{13}$ is trivial. Their existence, therefore, ensures coset diagrams for the homomorphic images of $\Delta(2, 3, 13)$. Since some of these fragments contain γ_1 or γ_2 or both, therefore, we are enabled to join them together to obtain a larger coset diagram of size n = l |D(11, 53)| + m |D(36, 79)|.

Existence of some types of fragments in $D(\theta, q)$ for an action of the extended modular group on the projective line over a finite field has been discussed in [4]. The coset diagrams for α (Δ (2, 3, 13)) also contain some special and useful fragments. In these fragments more than two vertices are fixed by ($\bar{x}\bar{y}$)¹³. In the following we determine conditions in terms of θ and q, for the existence of the fragments in $D(\theta, q)$ depicting homomorphic images of Δ (2, 3, 13).

Theorem 3. (i) The fragment γ_3 (Figure. 7) will occur in $D(\theta, q)$ if $\theta^2 - 2\theta - 3$ is a square in F_q . (ii) The fragment γ_4 (Figure. 8) will occur in $D(\theta, q)$ if $\theta(\theta - 3)$ $(\theta^2 - 3\theta + 4)$ is a square in F_q . (iii) The fragment γ_5 (Figure. 9) will occur in $D(\theta, q)$ if $(\theta - 1)^2(\theta - 3)(\theta^3 - 5\theta^2 + 7\theta + 1)$ is a square in F_q . (iv) The fragment γ_6 (Figure. 10) will occur in $D(\theta, q)$ if $\theta(\theta - 4)$ is a square in F_q . (v) The fragment γ_7 (Figure. 11) will occur in $D(\theta, q)$ if $(\theta^4 - 6\theta^3 + 11\theta^2 - 6\theta - 3)$ is a square in F_q .

Proof. The vertices v_1 , v_2 , v_3 , v_4 and v_5 are fixed by the elements

 $\bar{x}\bar{y}\bar{x}\bar{y}^{-1}, \ \bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y}^{-1}\bar{x}\bar{y}^{-1}, \ \bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y}^{-1}\bar{x}\bar{y}^{-1}\bar{x}\bar{y}^{-1}, \ \bar{y}^{-1}\bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y}$ and

, $\bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y}^{-1}$ of α (PGL(2, Z)). Notice that det (X) = Δ , trace(X) = 0, det (Y) = 1, trace(Y) = -1, det (XY) = Δ , and trace(XY) = r. Following equations can be easily derived,

$$XYX = rX + \Delta I + \Delta Y \tag{4.1}$$

$$YXY = rY + X \tag{4.2}$$

$$YX = rI - X - XY \tag{4.3}$$

from the equations

$$X^{2} + \Delta I = 0$$
$$(XY)^{2} - r(XY) + \Delta I = 0$$
$$Y^{2} + Y + I = 0$$

where X and Y are the matrices corresponding to the linear fractional transformations \bar{x} and \bar{y} respectively.

In fragment γ_3 vertex v_1 is fixed by $\bar{x}\bar{y}\bar{x}\bar{y}^{-1}$ and its corresponding matrix will be $M_1 = XYXY^{-1}$ and $\det(M_1) = \det(XYXY^{-1}) = \det(XYXY^2) = \det(X) \det(Y)$ $\det(X) \det(Y^2) = \det(X) \det(Y) \det(X) (\det(Y))^2 = \Delta^2$. As $Y^{-1} = Y^2$ so M_1 can be written as $M_1 = XYXY^2$. On substituting the value of Y^2 in M_1 we get $M_1 = XYX (-Y - I) = -(XY)^2 - XYX$. Now by putting values of $(XY)^2$ and XYX from the above equations in $M_1 = -(XY)^2 - XYX$ we get $M_1 = -rXY + \Delta I - rX - \Delta I - \Delta Y = -rXY - rX - \Delta Y$. So the trace $M_1 = \operatorname{trace}(-rXY) - \operatorname{trace}(rX) - \operatorname{trace}(\Delta Y)$, that is, trace $(M_1) = -r^2 + \Delta$.

So the discriminant of the characteristic equation of M_1 will be $(-r^2 + \Delta)^2 - 4\Delta^2 = r^4 - 3\Delta^2 - 2r^2\Delta$. But $r^2 = \Delta\theta$. That is, the discriminant will be $\theta^2\Delta^2 - 3\Delta^2 - 2\theta\Delta^2$. Since Δ is a square if and only if θ is, we can eliminate Δ^2 , as we are in the field F_q . So the discriminant of the characteristic equation of M_1 will be $\theta^2 - 2\theta - 3$.

Similarly, we can calculate the discriminants of the characteristic equations for the matrices corresponding to the elements $\bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y}^{-1}\bar{x}\bar{y}^{-1}$, $\bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y}^{-1}\bar{x}\bar{y}^{-1}\bar{x}\bar{y}^{-1}$, $\bar{y}^{-1}\bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y}$ and $\bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y}^{-1}$ as θ (θ – 3) (θ^2 – 3 θ +4), (θ – 1)² (θ – 3) (θ^3 – 5 θ^2 + 7 θ +1), θ (θ – 4) and (θ^4 – 6 θ^3 + 11 θ^2 – 6 θ – 3) respectively.

(i) The fragment γ_3 (Figure 7) will occur in $D(\theta, q)$ if $(\theta - 3)(\theta + 1)$ is a square in F_q .

(*ii*) The fragment γ_4 (Figure 8) will occur in $D(\theta, q)$ if $\theta(\theta - 3)(\theta^2 - 3\theta + 4)$ is a square in F_q .

(*iii*) The fragment γ_5 (Figure 9) will occur in $D(\theta, q)$ if $(\theta - 1)^2 (\theta - 3) (\theta^3 - 5\theta^2 + 7\theta + 1)$ is a square in F_q .

(*iv*) The fragment γ_6 (Figure 10) will occur in $D(\theta, q)$ if $\theta(\theta - 4)$ is a square in F_q .

(v) The fragment γ_7 (Figure 11) will occur in $D(\theta, q)$ if $(\theta^4 - 6\theta^3 + 11\theta^2 - 6\theta - 3)$ is a square in F_q .

In the following, we give a list of triplets \bar{x} , \bar{y} , \bar{t} such that $\bar{x}^2 = \bar{y}^3 = \bar{t}^2 = (\bar{x}\bar{y})^{13} = (\bar{x}\bar{t})^2 = (\bar{y}\bar{t})^2 = 1$ for all q < 1300. Here q is a prime such that $q \equiv \pm 1 \pmod{13}$ and $f(\theta)$ denotes the polynomial $\theta^6 - 11\theta^5 + 45\theta^4 - 84\theta^3 + 70\theta^2 - 21\theta + 1$.

Figure 7. (γ_3)

Figure 8. (γ_4)

Figure 9. (γ_5)

Figure 10. (γ_6)

Figure 11. (γ_7)

q	Roots of $f(\theta)$	\bar{x}	\bar{y}	Ē
13	4	$\underline{34z+3}$		-1
	-	3z - 34	23z - 1	z
53	10	$\frac{34z+3}{2}$	23	$\frac{-1}{-1}$
		3z - 34	23z - 1	$\frac{z}{2}$
	11	$\frac{31z - 4}{z}$	$\frac{4z-28}{z}$	2
		2z - 31	14z - 5	
	13	$\frac{4z+6}{2}$		
		6z - 4	23z - 1	z
	15	$\frac{46z+88}{2}$	$\frac{z+10}{z+10}$	$\frac{-2}{-2}$
	10	44z - 46	5z - 2	z
	28	$\frac{35z+29}{2}$		$\frac{-1}{-1}$
	20	29z - 35	23z - 1	z
	40	$\frac{36z+9}{2}$	23	-1
	40	9z - 36	23z - 1	z
79	8	60z + 198		$\frac{-3}{-3}$
13	0	66z - 60	37z - 1	z
	19	$\frac{57z + 21}{2}$		-3
	10	7z - 57	37z - 1	z
	20	$\frac{47z+70}{2}$	z + 32	-1
	20	70z - 47	32z - 2	\overline{z}
	36	20z + 51	z + 32	-1
	00	$\overline{51z - 20}$	$\overline{32z-2}$	\overline{z}
	42	6z + 11	z + 32	-1
	42	$\overline{11z-6}$	$\overline{32z-2}$	\overline{z}
	50	67z + 48	z + 32	-1
	00	$\overline{48z-67}$	$\overline{32z-2}$	\overline{z}

103	14	$\frac{87z + 19}{2}$	z + 10	
		19z - 87 28z + 126	10z - 2 93	$-\frac{z}{-3}$
	41	42z - 28	$\overline{31z-1}$	
	46	$\frac{22z+66}{22z+66}$	$\frac{z+10}{10}$	$\frac{-1}{-1}$
		$\frac{66z - 22}{18z + 246}$	10z - 2 93	-3
	58	82z - 18	$\overline{31z-1}$	
	79	$\frac{7z+57}{10}$	$\frac{93}{21}$	$\frac{-3}{-3}$
	0.2	19z - 7 28z + 183	31z - 1 93	$\frac{z}{-3}$
	82	61z - 28	$\overline{31z-1}$	
131	15	$\frac{80z + 256}{120}$	$\frac{28}{14}$	-2
	20	128z - 80 84z + 208	14z - 1 28	$\frac{z}{-2}$
	38	104z - 84	$\overline{14z-1}$	
	45	$\frac{41z + 105}{105}$	$\frac{5z+10}{10}$	-1
		105z - 41 69z + 68	10z - 6 28	$\frac{z}{-2}$
	64	$\overline{34z - 69}$	$\overline{14z-1}$	
	117	$\frac{8z+132}{cc}$	$\frac{28}{14}$	-2
	105	$\frac{66z-8}{96z+79}$	$\frac{14z - 1}{5z + 10}$	<u>-1</u>
	125	79z - 96	$\overline{10z-6}$	\overline{z}
157	3	$\frac{81z+8}{4}$	$\frac{2z+92}{4c}$	-2
	60	4z - 81 5z + 290	40z - 3 2z + 92	$\frac{z}{-2}$
	68	145z - 5	$\frac{1}{46z-3}$	
	117	$\frac{114z + 172}{200}$	$\frac{2z+92}{4c}$	$\frac{-2}{-2}$
	100	$\frac{80z - 114}{140z + 288}$	$\frac{40z-3}{2z+92}$	-2
	120	144z - 140	$\frac{1}{46z - 3}$	
	144	$\frac{20z+39}{20z-26}$	$\frac{28}{28 - 1}$	$\left \frac{-1}{2} \right $
	1.47	392 - 20 154z + 124	$\frac{282 - 1}{28}$	-1
	147	124z - 154	$\frac{28z-1}{28z-15}$	
181	34	$\frac{110z + 140}{70z - 110}$	$\frac{2z+138}{70z-3}$	$\left \frac{-2}{2} \right $
	55	10z - 110 125z + 170	192 - 5	-1
	00	170z - 125	$\frac{19z-1}{19z-1}$	
	94	$\frac{1282 \pm 238}{1192 - 128}$	$\frac{22 \pm 100}{702 - 3}$	$\frac{-2}{2}$
	114	91z + 166	192 - 3 19	-1
	114	166z - 91	19z - 1	
	119	$\frac{1282 \pm 238}{1192 - 128}$	$\frac{22 + 136}{792 - 3}$	$\frac{-2}{2}$
	138	119z - 120 119z + 104	192 - 3	-1
	190	104z - 119 167z + 409	19z - 1	
233	9	$\frac{1072 + 432}{1647 - 167}$	$\frac{z+207}{89z-2}$	$\frac{-5}{7}$
	49	$\frac{50z+166}{50z+166}$	89	<u> </u>
	45	166z - 50 94z + 564	$\frac{89z - 1}{z + 267}$	
	91	$\frac{342+304}{188z-94}$	$\frac{z+207}{89z-2}$	$\left \frac{-3}{7} \right $
	112	$\frac{164\tilde{z}+197}{164\tilde{z}+197}$	89	<u>-1</u>
	114	197z - 164 30z + 168	89z - 1	
	217	$\frac{362 \pm 100}{168z - 30}$	$\frac{65}{89z-1}$	$\left \frac{-1}{\gamma} \right $
	232	$\frac{7z+79}{7z+79}$	89	<u> </u>
	202	79z - 7	89z - 1	<i>z</i>

		$104 \sim \pm 1441$	561	
311	42	$\frac{1942 + 1441}{1912 - 104}$	$\frac{501}{51 \times 1}$	-11
		131z - 194 249z + 2178	$\frac{512 - 1}{561}$	-11
	45	198z - 249	$\overline{51z-1}$	\overline{z}
	50	42z + 1320	561	-11
		120z - 42	51z - 1	
	75	$\frac{1092 \pm 2334}{214}$	$\frac{501}{51}$	-11
	105	301z + 167	$\frac{51z - 1}{5z + 88}$	-1
	127	$\overline{167z - 301}$	$\overline{88z-6}$	\overline{z}
	294	$\frac{301z + 144}{2}$	5z + 88	
	-01	144z - 301	$\frac{88z-6}{2z+565}$	5
313	26	$\frac{1072 \pm 1210}{242 \times 197}$	$\frac{22 \pm 300}{112 \times 2}$	$\frac{-5}{2}$
	70	91z + 13	$\frac{1152 - 5}{25}$	-1
	79	$\overline{13z - 91}$	$\overline{25z-1}$	\overline{z}
	87	131z + 475	2z + 565	
	01	95z - 131	113z - 3	
	200	$\frac{1342 + 60}{96 - 124}$	$\frac{20}{05 - 1}$	<u>-1</u>
		80z - 134 276z + 620	25z - 1 2z + 565	-5
	263	$\overline{124z - 276}$	$\frac{1}{113z - 3}$	\overline{z}
	295	165z + 5	2z + 565	-5
	250	z - 165	113z - 3	z
337	26	$\frac{238z + 143}{20}$	$\frac{3z+70}{14z-6}$	$\frac{-5}{-3}$
		$\frac{29z - 258}{308z + 13}$	14z - 6 148	-1
	75	$\overline{13z - 308}$	$\frac{1}{148z - 1}$	\overline{z}
	181	$\frac{333z + 40}{2}$	5z + 70	5
	101	8z - 333	14z - 6	<i>z</i>
	227	$\frac{172 + 201}{261 + 17}$	$\frac{140}{148}$	<u>-1</u>
	220	201z - 17 233z + 475	$\frac{146z - 1}{5z + 70}$	$-\frac{z}{-5}$
	239	$\overline{95z - 233}$	$\overline{14z-6}$	\overline{z}
	274	$\frac{259z + 960}{2}$	$\frac{5z+70}{5z+70}$	$\frac{-5}{-5}$
		192z - 259 371z + 381	14z - 6	
389	178	$\frac{3712 + 361}{3812 - 371}$	$\frac{110}{115 \sim 1}$	
	109	54z + 388	$\frac{1102 - 1}{z + 108}$	-2
	193	$\overline{194z - 54}$	$\overline{54z-2}$	\overline{z}
	245	$\frac{159z + 750}{2}$	$\frac{z+108}{2}$	$\frac{-2}{-2}$
	-	375z - 159 41z + 332	54z - 2	$-\frac{z}{-2}$
	304	$\frac{112}{1662} - 41$	$\frac{2}{542} = 2$	-2
	210	103z + 600	z + 108	-2
	910	$\overline{300z - 103}$	54z - 2	
T	337	$\frac{107z + 328}{2}$	115	-1
		328z - 107 431z + 228	115z - 1 422	$-\frac{z}{-9}$
443	13	$\frac{1312 + 220}{1147 - 431}$	$\frac{122}{211z-1}$	
	75	419z + 75	$\frac{2112}{2z+128}$	-1
	61	$\overline{75z - 419}$	128z - 3	
	121	$\frac{266z + 225}{2}$	$\frac{2z+128}{2}$	
		225z - 266 124z + 870	128z - 3	$\frac{z}{-2}$
	289	$\frac{1242}{425} \times \frac{1010}{124}$	$\frac{442}{211}$	$\frac{-2}{}$
	41.4	430z - 124 4z + 710	42112 - 1 422	-2
	414	$\overline{355z-4}$	$\overline{211z - 1}$	
	428	150z + 782	422	-2
	120	391z - 150	211z - 1	z

467	23	$\frac{214z + 419}{410}$	$\frac{5z+48}{12}$	$\frac{-1}{-1}$
	0.9	419z - 214 190z + 77	$\frac{48z-6}{5z+48}$	-1
	00	77z - 190	$\frac{48z-6}{5z+48}$	
	221	$\frac{1222 + 153}{1532 - 122}$	$\frac{32+40}{487-6}$	$\frac{-1}{\gamma}$
	317	$\frac{100z}{276z+280}$	$\frac{10z}{5z+48}$	<u>-1</u>
	011	280z - 276 $406z \pm 106$	48z - 6	$\frac{z}{-2}$
	327	$\frac{100z + 100}{53z - 406}$	$\frac{120}{63z-1}$	$\frac{z}{z}$
	441	$\frac{332z + 446}{2}$	126	$\frac{-2}{-2}$
501	-	223z - 332 447z + 485	$\frac{63z - 1}{235}$	<u>-1</u>
521	5	$\overline{485z - 447}$	$\overline{235z - 1}$	
	9	$\frac{495z+642}{214z-405}$	$\frac{z+705}{225 x-2}$	$\frac{-3}{-3}$
	20	33z + 306	2352 - 2 z + 705	-3
	20	102z - 33	$\overline{235z-2}$	
	49	$\frac{1332 + 1074}{358z - 199}$	$\frac{z+703}{235z-2}$	$\frac{-5}{z}$
	125	$\frac{32z + 1329}{2}$	z + 705	
		443z - 32 386z + 518	235z - 2 235	<u>z</u> -1
	324	$\frac{1}{518z - 386}$	$\frac{1}{235z - 1}$	\overline{z}
547	66	$\frac{343z+99}{00}$	$\frac{z+81}{21-2}$	$\frac{-1}{-1}$
	109	99z - 343 41z + 507	$\frac{81z-2}{z+81}$	-1
	165	$\overline{507z - 41}$	$\overline{81z-2}$	
	209	$\frac{348z + 774}{387z - 348}$	$\frac{190}{952 - 1}$	$\frac{-2}{\gamma}$
	267	$\frac{391z}{490z+1086}$	190	-2
		543z - 490 262z + 215	$\frac{95z - 1}{z + 81}$	<u>z</u>
	439	$\overline{215z - 262}$	$\overline{81z-2}$	
	488	$\frac{171z + 106}{106z - 171}$	$\frac{z+81}{81z-2}$	$\left \frac{-1}{2} \right $
571	66	100z - 171 17z + 515	$\frac{81z - 2}{z + 219}$	-1
5/1	00	$\overline{515z - 17}$	$\overline{219z - 2}$	
	99	$\frac{404z+254}{117z-464}$	$\frac{410}{209z-1}$	- <u>-</u>
	273	$\frac{329\tilde{z}+524}{2}$	418	-2
		262z - 329 23z + 700	209z - 1 418	$\frac{z}{-2}$
	353	$\overline{350z-23}$	$\overline{209z - 1}$	
	436	$\frac{457z+43}{42z-457}$	$\frac{z+219}{210z-2}$	$\frac{-1}{-1}$
	407	45z - 457 458z + 282	219z - 2 418	-2
	491	141z - 458 343z + 1456	209z - 1	
599	8	$\frac{3432 + 1450}{208z - 343}$	$\frac{239}{37z-1}$	$\frac{-1}{z}$
	36	525z + 232	$\frac{2z+259}{2z+259}$	<u>-1</u>
		232z - 525 246z + 1001	259z - 3 259	$\frac{z}{-7}$
	139	143z - 246	$\overline{37z-1}$	
	200	$\frac{53z + 571}{571 - 52}$	$\frac{2z+259}{250}$	$-\overline{1}$
	900	571z - 53 565z + 380	259z - 3 2z + 259	$\frac{z}{-1}$
	269	$\overline{380z - 565}$	$\frac{259z - 3}{2z + 250}$	
	557	$\frac{516z+304}{564z-518}$	$\frac{2z+209}{259z-3}$	$\left \frac{-1}{2} \right $
		1 004% - 010	4032 - 0	

677	126	$\frac{550z + 546}{279}$	$\frac{z+632}{210}$	$\frac{-2}{-2}$
	194	273z - 550 545z + 1220	$\frac{316z - 2}{z + 632}$	$-\frac{z}{-2}$
	134	$\overline{610z - 545}$	$\overline{316z-2}$	<u>z</u>
	220	$\frac{232 + 472}{4722 - 25}$	$\frac{20}{26z-1}$	$\frac{-1}{2}$
	482	$\frac{412z-25}{207z+402}$	262 - 1	-1
	402	402z - 207 174z + 460	26z - 1	$\frac{z}{-2}$
	499	$\frac{114z + 400}{230z - 174}$	$\frac{z+652}{316z-2}$	$\frac{z}{z}$
	581	100z + 454	z + 632	$\frac{-2}{-2}$
		227z - 100 198z + 412	316z - 2 z + 380	-2
701	76	$\overline{206z - 198}$	190z - 2	\overline{z}
	132	$\frac{224z+102}{51}$	$\frac{z+380}{100}$	$\frac{-2}{-2}$
	970	51z - 224 473z + 599	190z - 2 135	$\frac{z}{-1}$
	379	$\overline{599z - 473}$	$\overline{135z - 1}$	<u>z</u>
	431	$\frac{436z + 982}{401z - 426}$	$\frac{z+380}{100z-2}$	$\frac{-2}{2}$
	597	$\frac{4912 - 430}{336z + 109}$	1902 - 2 135	-1
	521	109z - 336 $458z \pm 550$	135z - 1	$\frac{z}{-2}$
	569	$\frac{436z+350}{275z-458}$	$\frac{z+360}{190z-2}$	$\frac{-2}{z}$
727	15	$\frac{531\tilde{z} + 29}{531\tilde{z} + 29}$	$\frac{z+164}{z+164}$	-1
	10	29z - 531 495z + 492	164z - 2 z + 164	
	169	$\frac{492z - 495}{492z - 495}$	$\frac{1}{164z-2}$	$\frac{1}{z}$
	263	$\frac{437z + 493}{437z + 493}$	$\frac{z+164}{104}$	-1
	F10	493z - 437 440z + 593	$\frac{164z - 2}{z + 164}$	$\frac{z}{-1}$
	510	$\overline{593z - 440}$	164z - 2	
	529	$\frac{5752 + 1044}{548 \times 575}$	$\frac{891}{207 \sim 1}$	$\frac{-3}{}$
	706	546z - 575 566z + 828	891	-3
	100	276z - 566 678z + 2151	297z - 1	-3
857	92	$\frac{610z+2101}{717z-678}$	$\frac{z+621}{207z-2}$	$\frac{3}{z}$
	282	19z + 810	207	_1
		810z - 19 730z + 1386	207z - 1 z + 621	$-\frac{z}{-3}$
	387	462z - 730	$\frac{1}{207z-2}$	
	413	$\frac{112z+654}{212z+112}$	$\frac{z+621}{207}$	-3
	E07	$\begin{array}{r} 218z - 112 \\ 147z + 569 \end{array}$	2072 - 2 207	$\frac{z}{-1}$
	987	569z - 147	$\overline{207z-1}$	
	821	$\frac{000z+000}{106z-685}$	$\frac{z+621}{207z-2}$	$\frac{-3}{}$
850	20	832z + 680	296	2
009	20	$\frac{340z - 832}{557z + 1270}$	148z - 1	$\frac{z}{-2}$
	249	$\frac{5572 + 1270}{6352 - 557}$	$\frac{250}{148z-1}$	$\frac{-2}{z}$
	324	$142\tilde{z} + 1172$	296	$\tilde{-2}$
		586z - 142 289z + 64	148z - 1 z + 338	$\frac{z}{-2}$
	604	$\frac{-602}{64z-289}$	$\frac{2}{338z-2}$	$\frac{z}{z}$
	626	$\frac{83z + 29}{20}$	$\frac{z+338}{222}$	-1
	-	29z - 83 512z + 1662	338z - 2 296	-2
	765	$\overline{831z - 512}$	148z - 1	

883	38	$\frac{240z + 380}{2}$	42	$\frac{-2}{-}$
		190z - 240 789z + 723	$\frac{21z-1}{z+208}$	$\frac{z}{-1}$
	116	$\frac{7000 + 120}{7237 - 789}$	$\frac{1}{208z-2}$	~
	269	$\frac{123z}{24z+1586}$	42	$\tilde{-2}$
	208	793z - 24	$\overline{21z - 1}$	\overline{z}
	308	$\frac{29z+636}{2}$	42	$\frac{-2}{-2}$
	000	318z - 29	21z - 1	z_{1}
	413	$\frac{6102 \pm 013}{672 \times 076}$	$\frac{2+200}{208-2}$	
		205z + 1028	$\frac{208z - 2}{42}$	$\frac{z}{-2}$
	634	514z - 205	$\overline{21z-1}$	\overline{z}
011	53	200z + 1757	2401	-7
511	00	251z - 200	343z - 1	z_{-}
	251	$\frac{4762 + 1547}{221}$	$\frac{2401}{2401}$	-i
		$\frac{221z - 476}{702z + 415}$	$\frac{343z-1}{2z+332}$	$\begin{bmatrix} z \\ -1 \end{bmatrix}$
	405	$\frac{1022 + 110}{4152 - 702}$	$\frac{22}{3322} - 3$	~
	600	$\frac{413z - 102}{6z + 390}$	$\frac{332z-3}{2z+332}$	-1
	609	$\overline{390z-6}$	$\overline{332z-3}$	\overline{z}
	647	827z + 267	2z + 332	$^{-1}$
	011	267z - 827	332z - 3	z_{1}
	779	$\frac{4902 + 209}{200 - 406}$	$\frac{2z + 352}{200}$	
		209z - 496 885z + 818	332z - 3 196	$\begin{vmatrix} z \\ -1 \end{vmatrix}$
937	12	$\frac{1}{818z - 885}$	$\frac{1}{196z - 1}$	$\frac{1}{z}$
	95	$271\tilde{z} + 139$	196	$-\tilde{1}$
	- 55	139z - 271	196z - 1	\overline{z}
	100	$\frac{377z + 360}{2}$	196	-1
		360z - 377 649z + 3255	196z - 1 2z + 2240	$\frac{z}{-5}$
	152	$\frac{6432 + 3236}{651 - 649}$	$\frac{2z + 2240}{448 - 3}$	
	00.4	360z + 377	196	-1
	234	$\overline{377z - 360}$	196z - 1	\overline{z}
	415	$\frac{180z + 3810}{10}$	$\frac{2z+2240}{2z+2240}$	$\frac{-5}{-5}$
		762z - 180	448z - 3	z_{j}
1013	240	$\frac{3002 + 1032}{846 - 260}$	$\frac{z+942}{971}$	-2
	0.05	55z + 822	$\frac{2712 - 2}{45}$	-1
	305	$\overline{822z - 55}$	$\overline{45z-1}$	\overline{z}
	368	141z + 286	z + 542	-2
		143z - 141	271z - 2	z_{0}
	569	$\frac{4852 + 1508}{604}$	$\frac{z + 042}{271}$	<u> </u>
		- 684z - 483 780z + 656	$\frac{271z-2}{z+542}$	$\frac{z}{-2}$
	639	$\frac{1}{328z - 780}$	$\frac{1}{271z-2}$	7
	020	113z + 733	45	-1
	323	733z - 113	45z - 1	z
1039	395	$\frac{622z + 2133}{214}$	1320	$\frac{-3}{-1}$
		711z - 622 33z + 923	440z - 1 z + 281	$\begin{bmatrix} z \\ -1 \end{bmatrix}$
	543	$\frac{332}{9232-33}$	$\frac{1}{281z-2}$	~
	677	$\frac{525z-53}{291z+1254}$	1320	$-\tilde{3}$
	077	418z - 291	$\overline{440z - 1}$	\overline{z}
	722	19z + 646	z + 281	-1
		646z - 19	281z - 2	z
	852	$\left \frac{5122 \pm 10}{10} \right $	$\frac{2 + 201}{201 - 2}$	$\frac{-1}{-1}$
	0	10z - 5/2 953z + 857	$\frac{201z - 2}{z + 281}$	$\begin{vmatrix} z \\ -1 \end{vmatrix}$
	978	$\frac{1}{857z - 953}$	$\frac{1}{281z-2}$	\overline{z}

		0(19) 1 5 95	$C \rightarrow 010$	
1091	21	$\frac{803z + 333}{535z - 863}$	$\frac{6z+219}{219z-7}$	$\frac{-1}{2}$
	76	$\frac{431z + 2022}{431z + 2022}$	1058	$-\tilde{2}$
		1011z - 431	529z - 1	<i>z</i>
	143	$\frac{853z + 1668}{2}$	1058	$\frac{-2}{-2}$
		834z - 853	529z - 1	
	243	$\frac{169z + 1720}{2}$	1058	<u>-2</u>
		860z - 169	529z - 1	<i>z</i>
	258	$\frac{255z + 277}{2}$	$\frac{6z+219}{2}$	
		277z - 253	219z - 7	
	361	$\frac{0302 + 1374}{000}$	1038	
		687z - 630	529z - 1	
1093	103	$\frac{3302+044}{644}$		
		644z - 936 1072z + 460	530z - 1	$-\frac{z}{-1}$
	364	$\frac{10122}{400}$		
		460z - 1072 827 z ± 2162	$\frac{530z-1}{6z+436}$	$\frac{z}{-2}$
	394	$\frac{3272 + 2102}{1001 - 007}$	$\frac{02 + 450}{1001 - 007}$	
		1081z - 827 1030z + 266	1081z - 827 6z + 436	$\frac{z}{-2}$
	644	$\frac{10302 + 200}{100}$	$\frac{02}{010}$	
		133z - 1030 737z + 1510	218z - 7 6z + 436	$\frac{z}{-2}$
	808	755 727	$\frac{0.2 + 100}{219 - 7}$	
		$\frac{135z - 151}{360z + 1048}$	$\frac{218z - 1}{6z + 436}$	$\frac{z}{-2}$
	977	$\frac{6002 + 1010}{524 - 260}$	$\frac{0.2 + 100}{219 - 7}$	
		$\frac{524z - 500}{987z + 852}$	$\frac{218z - 7}{214}$	
1117	12	$\frac{8612 + 662}{852 \times -0.007}$	$\frac{211}{214\pi}$	-
		612 + 989	2142 - 1 214	<u> </u>
	100	$\frac{0.01 + 0.00}{0.00 - 61}$	${214\pi}$	
		$\frac{9892 - 01}{1023z + 246}$	$\frac{214z - 1}{6z + 420}$	-2
	107	$\frac{1}{122} \sim 1023$	$\frac{1}{210} - 7$	
	277	721z + 1728	$\frac{210z - 1}{6z + 420}$	-2
	386	$\frac{1}{8647 - 721}$	$\frac{1}{210z-7}$	~
		87z + 1057	210214	-1
	668	$\overline{1057z - 87}$	$\frac{1}{214z - 1}$	~
	070	449z + 1064	214	-1
	972	$\overline{1064z - 449}$	$\overline{214z-1}$	\overline{z}
1171	0.4	366z + 1924	278	-2
11/1	84	$\overline{962z - 366}$	$\overline{139z - 1}$	\overline{z}
	754	715z + 636	z + 330	-1
	734	$\overline{636z - 715}$	$\overline{330z-2}$	\overline{z}
	898	425z + 1372	278	-2
	626	$\overline{686z - 425}$	$\overline{139z - 1}$	\overline{z}
	860	688z + 107	z + 330	-1
	009	107z - 688	$\overline{330z - 2}$	2
	1078	749z + 304	z + 330	-1
	1078	304z - 749	330z - 2	2
	1082	421z + 751	z + 330	_1
	1002	751z - 421	330z - 2	\overline{z}
1223	157	432z + 2005	2870	-5
1220	101	401z - 432	574z - 1	z
T	181	$\frac{57z+673}{2}$	5z + 78	_1
	101	673z - 57	78z - 6	\overline{z}
	243	$\frac{36z+273}{2}$	$\frac{5z + 78}{5}$	-1
	210	273z - 36	78z - 6	
	488	1109z + 5600	2870	-5
	400	1120z - 1109	574z - 1	2
	600	957z + 671	5z + 78	-1
	000	671z - 957	78z - 6	z
T	788	845z + 255	5z + 78	
	100	255z - 845	78z - 6	\overline{z}

1940	225	1202z + 600	585	-1
1249	220	600z - 1202	585z - 1	\overline{z}
	278	155z + 4795	2z + 4095	-7
	210	685z - 155	585z - 3	\overline{z}
	410	1236z + 783	585	-1
	419	783z - 1236	585z - 1	\overline{z}
	582	302z + 8190	2z + 4095	-7
	002	1170z - 302	585z - 3	\overline{z}
	1018	220z + 996	585	-1
	1010	$\overline{996z - 220}$	585z - 1	\overline{z}
	1996	846z + 608	585	-1
	1230	$\overline{608z - 846}$	585z - 1	\overline{z}

REFERENCES

- [1] G. Baumslag, J.W. Morgan and P.B. Shalen, Generalized triangle groups, Math. Proc. Camb. Phil. Soc., 102, 1987, 25-31.
- [2] M.D.E. Conder, Generators for alternating and symmetric groups, J. London Math. Soc., 22(2), 1980, 75-86.
- [3] A.M. Macbeath, Generators of linear fractional groups, Number Theory, Proc. of Symp. Pure Math. 12(AMS), 1969, 14-32.
- [4] Q. Mushtaq, Coset diagrams for an action of the extended modular group on the projective line over a finite field, Indian J. Pure & Applied. Math., 20(8), 1989, 747-754.
- [5] Q. Mushtaq, Coset diagrams for Hurwitz groups, Comm. Algebra, 18 (11), 1990, 3857-3888.
- [6] Q. Mushtaq, Parametrization of all homomorphisms from PGL(2, Z) into PGL(2, q), Comm. Algebra, 20(4), 1992, 1023-1040.
- [7] Q. Mushtaq, T. Maqsood, M. Aslam and M. Ashiq, Homomorphic images of $\Delta(2,3,9)$ as subgroups of PGL(2,q), Algebras Groups And Geometries 20, 485-500, (2003).
- [8] Q. Mushtaq, and T. Maqsood, Homomorphic images of $\Delta(2, 3, 11)$, Discrete Mathematics 290(2005), 47-59.
- [9] S.J. Pride, Groups with presentation in which each defining relator involves exactly two generators, J. Lond. Math. Soc., 36(2), 1987, 245-256.
- [10] P.R.C. Stephenson, Subgroups of some (2, 3, n)-triangle groups, Ph.D. thesis, University of Glasgow, 1992.
- [11] W.W. Stothers, Subgroup of the (2, 3, 7)-triangle group, Manuscripta Math., 20, 1977, 323-334.