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86962 Futuroscope Chasseneuil Cedex, France

Email: said.hilout@math.univ–poitiers.fr

Abstract. We prove semilocal convergence of Werner’s method for ap-
proximating locally unique solution of nonlinear equation in a Banach
space setting. Using our new idea of recurrent functions, we provide es-
timates on the distances involved and information on the location of the
solution.A numerical example shows that our results can apply to solve
equations but the Kantorovich’s sufficient convergence condition is unap-
plicable [7].
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique
solution x⋆ of equation

F (x) = 0, (1.1)
where F is a twice Fréchet–differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y .
A large number of problems in applied mathematics and also in engineering are solved by
finding the solutions of certain equations. For example, dynamic systems are mathemati-
cally modeled by difference or differential equations and their solutions usually represent
the states of the systems. For the sake of simplicity, assume that a time–invariant sys-
tem is driven by the equation ẋ = T (x), for some suitable operator T , where x is the
state. Then the equilibrium states are determined by solving equation (1.1). Similar equa-
tions are used in the case of discrete systems. The unknowns of engineering equations
can be functions (difference, differential and integral equations), vectors (systems of linear

19



20 Ioannis K. Argyros, Saı̈d Hilout

or nonlinear algebraic equations), or real or complex numbers (single algebraic equations
with single unknowns). Except in special cases, the most commonly used solution meth-
ods are iterative–when starting from one or several initial approximations a sequence is
constructed that converges to a solution of the equation. Iteration methods are also applied
for solving optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the same recursive
structure, they can be introduced and discussed in a general framework.
We revisit Werner’s method [9], [10]:

xn+1 = xn −A−1
n F (xn), An = F ′(

xn + yn
2

)

yn+1 = xn+1 −A−1
n F (xn+1), (n ≥ 0), (x0, y0 ∈ D).

(1.2)

The local convergence of Werner’s method (1.2) was given in [9], [10] under Lipschitz
conditions on the first and second Fréchet–derivatives given in non–affine invariant form
(see (2.52) and (2.53)). The order of convergence of Werner’s method (1.2) is 1 +

√
2.

The derivation of this method and its importance has well been explained in [9], [10] (see
also [3]). The two–step method uses one inverse and two function evaluations. Note that if
x0 = y0, then (1.2) becomes Newton’s method [1]–[11].
We provide a semilocal convergence analysis using our new idea of recurrent functions.
Our Lipschitz hypotheses are provided in affine invariant form. As far as we know the
semilocal analysis of Werner’s method has not been studied in this setting. We are mostly
interested in finding weak sufficient convergence conditions, so as to extend the applica-
bility of the method.
Our new approach can also be used on other one–step or two–step iterative methods [1],
[3], [4]–[11].
The semilocal convergence is examined in Section 2 and a numerical example is given in
Section 3.

2. SEMILOCAL CONVERGENCE ANALYSIS OF WERNER’S METHOD

It is convenient for us to define some auxiliary functions appearing in connection to
majorizing sequences for Werner’s method (1.2).
Let ℓ0 > 0, ℓ > 0, α ≥ 0, η > 0, η ≥ η and β = 1+α be given constants. It is convenient
for us to define function f1 on [0,+∞) by

f1(t) = ℓ tβ + 4 ℓ0 t− 2. (2.1)

We have:
f1(0) = −2 < 0. (2.2)

There exists sufficiently large u > 0, such that:

f1(t) > 0, t > u. (2.3)

It follows from (2.2), (2.3) and the intermediate value theorem that there exists v ∈ (0, u),
such that

f1(v) = 0. (2.4)

The number v is the unique positive zero in (0,+∞) of function f1, since

f
′
1(t) = ℓ β tα + 4 ℓ0 > 0 (t ≥ 0). (2.5)

That is function f1 is increasing and as such it crosses the positive axis only once.
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Moreover, define function g on [0,+∞) by

g(t) = 2 ℓ0 t3 + 2 ℓ0 t2 + ℓ ηα t− ℓ ηα. (2.6)

We have as above:
g(0) = −ℓ ηα < 0 (2.7)

and
g(t) > 0 (t > ζ) (2.8)

for sufficiently large ζ > 0.
Hence, as above there exists δ+ ∈ (0, ζ), such that:

g(δ+) = 0. (2.9)

The number δ+ is the unique positive zero of function g on (0,+∞), since

g′(t) = 6 ℓ0 t2 + 4 ℓ0 t+ ℓ ηα > 0 (t ≥ 0). (2.10)

Set

δ0 =
ℓ ηβ

1− ℓ0 (η + η)
, ℓ0 (η + η) ̸= 1, (2.11)

v∞ = 1− 2 ℓ0 η (2.12)
and

δ1 = max {δ0
2
, δ+}. (2.13)

We can show the following result on majorizing sequences for Werner’s method (1.2):

Lemma 1. Let ℓ0 > 0, ℓ > 0, α ≥ 0, η > 0, η ≥ η and β = 1 + α be given constants.
Assume:

ℓ0 (η + η) < 1, η ≤ v (2.14)
and

δ1 ≤ v∞, (2.15)
where, v, δ1, δ+, v∞ were defined by (2.4), (2.13), (2.9) and (2.12), respectively.
Choose:

δ ∈ [δ1, v∞]. (2.16)
Then, sequence {tn} (n ≥ 0), generated by

t0 = 0, t1 = η, tn+2 = tn+1 +
ℓ (tn+1 − tn)

1+β

2 (1− ℓ0 (tn+1 + sn+1))
, (2.17)

with,

s0 = 0, s1 = η, sn+2 = tn+2 +
ℓ (tn+2 − tn+1)

1+β

2 (1− ℓ0 (tn+1 + sn+1))
, (2.18)

is non–decreasing, bounded above by:

t⋆⋆ =
2 η

2− δ
(2.19)

and converges to its unique least upper bound t⋆ with

t⋆ ∈ [0, t⋆⋆]. (2.20)

Moreover the following estimates hold for all n ≥ 0:

tn ≤ sn, (2.21)

0 < tn+2 − tn+1 ≤ δ

2
(tn+1 − tn) ≤

(
δ

2

)n+1

η (2.22)
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and

0 < sn+2 − tn+2 ≤ δ

2
(sn+1 − tn+1) ≤

(
δ

2

)n+2

η. (2.23)

Proof. We shall show using induction on m:

0 ≤ tm+2 − tm+1 =
ℓ (tm+1 − tm)β

2 (1− ℓ0 (tm+1 + sm+1))
(tm+1 − tm)

≤ δ

2
(tm+1 − tm),

(2.24)

0 ≤ sm+2 − tm+2 =
ℓ (tm+2 − tm+1)

β

2 (1− ℓ0 (tm+1 + sm+1))
(tm+2 − tm+1)

≤ δ

2
(tm+2 − tm+1)

(2.25)

and
ℓ0 (tm+1 + sm+1) < 1. (2.26)

Estimates (2.24)–(2.26) for m = 0 will hold if:

ℓ (t1 − t0)
β

1− ℓ0 (t1 + s1)
=

ℓ ηβ

1− ℓ0 (η + η)
= δ0 ≤ δ, (2.27)

ℓ (t2 − t1)
β

1− ℓ0 (t1 + s1)
≤

ℓ

(
δ

2
η

)β

1− ℓ0 (η + η)
= δ0 ≤ δ0 ≤ δ (2.28)

and
ℓ0 (t1 + s1) = ℓ0 (η + η) < 1, (2.29)

respectively, which are true by (2.16) and (2.14). Let us assume (2.21)–(2.26) hold for all
n ≤ m+ 1.
Then, we get from (2.24) and (2.25):

tm+2 ≤
1−

(
δ

2

)m+2

1− δ

2

η <
2 η

2− η
= t⋆⋆ (2.30)

and

sm+2 ≤ tm+2 +

(
δ

2

)m+2

η ≤
{1−

(
δ

2

)m+2

1− δ

2

+

(
δ

2

)m+2}
η. (2.31)

We shall only show (2.24), since (2.25), will then follows (as (2.28) follows from (2.27)).
Using the induction hypotheses, (2.24) certainly holds if:

ℓ (tm+1 − tm)β + ℓ0 δ (tm+1 + sm+1)− δ ≤ 0

or,

ℓ

{(
δ

2

)m

η

}β

+ ℓ0 δ

{1−
(
δ

2

)m+1

1− δ

2

+

1−
(
δ

2

)m+1

1− δ

2

+

(
δ

2

)m+1}
η − δ ≤ 0,
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or, since β ≥ 1

ℓ

(
δ

2

)m

ηβ + ℓ0 δ

{
2

1−
(
δ

2

)m+1

1− δ

2

+

(
δ

2

)m+1}
η − δ ≤ 0. (2.32)

We are motivated from (2.32) to define functions fm (m ≥ 1) on [0,+∞), for v =
δ

2
and

show instead of (2.32):

fm(v) = ℓ vm−1 ηβ + 2 ℓ0 (2 (1 + v + · · ·+ vm) + vm+1) η − 2 ≤ 0. (2.33)

We need a relationship between two consecutive functions fm:

fm+1(v) = ℓ vm ηβ + 2 ℓ0 (2 (1 + v + · · ·+ vm+1) + vm+2) η − 2
= ℓ vm ηβ + ℓ vm−1 ηβ − ℓ vm−1 ηβ+

2 ℓ0(2 (1 + v + · · ·+ vm) + vm+1 + vm+1 + vm+2) η − 2
= fm(v) + ℓ vm ηβ − ℓ vm−1 ηβ + 2 ℓ0 (vm+1 + vm+2) η
= fm(v) + g(v) vm−1 η,

(2.34)

where, function g is given by (2.6).
We have by (2.33):

f1(0) = ℓ ηβ + 4 ℓ0 η − 2 < 0, (2.35)

fm(0) = 4 ℓ0 η − 2 < 0 (m > 1) (2.36)

and for sufficiently large v > 0:
fm(v) > 0. (2.37)

It follows from (2.35)–(2.37), and the intermediate value theorem that there exists vm >
0, such that fm(vm) = 0. Moreover, each vm is the unique positive zero of fm, since
f ′
m(v) > 0 for v ∈ [0,+∞).

We shall show
fm(v) ≤ 0 for all v ∈ [0, vm] (m ≥ 1). (2.38)

If there exists m ≥ 0, such that vm+1 ≥ δ

2
, then, using (2.6) and (2.34), we get:

fm+1(vm+1) = fm(vm+1) + g(vm+1) v
m−1
m+1 η

or
fm(vm+1) ≤ 0,

since fm+1(vm+1) = 0 and g(vm+1) v
m−1
m+1 η ≥ 0, which imply vm+1 ≤ vm.

We can certainly choose the last of the vm’s denoted by v∞ (obtained from (2.32) by letting
m −→ ∞ and given in (2.12)), to be vm+1.
It then follows sequence {vm} is non–increasing, bounded below by zero and as such it
converges to its unique maximum lowest bound v⋆ satisfying v⋆ ≥ v∞.
Then estimate (2.38) certainly holds, if

δ

2
≤ v∞,

which is true by hypothesis (2.15).
Finally, sequences {tn}, {sn} are non–decreasing, bounded above by t⋆⋆, given by (2.20).
Hence, they converge to their common, and unique least upper bound t⋆ satisfying (2.20).
That also completes the proof of Lemma 1. �
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We can also provide a second majorizing result.
Let us define function hm (m ≥ 1) as fm by:

hm(s) = ℓ sm−1 ηβ + 4 ℓ0 (1 + s+ · · ·+ sm) η − 2, (2.39)

δ+ =
−ℓ ηβ +

√
ℓ2 η2α + 16 ℓ0 ℓ ηα

8 ℓ0
, (2.40)

δ0 =
ℓ ηβ

1− ℓ0 (η + η)
, ℓ0 (η + η) ̸= 1, (2.41)

δ1 = max {δ0
2
, δ+} (2.42)

and
v∞ = v∞. (2.43)

Then, with the above changes and simply following the proof of Lemma 1, we can pro-
vide another result on majorizing sequences for Werner’ s method (1.2), using a different
approach than in Lemma 1:

Lemma 2. Let ℓ0 > 0, ℓ > 0, α ≥ 0, η > 0, 0 < η ≤ η and β = 1+α be given constants.
Assume:

ℓ0 (η + η) < 1 (2.44)

and
δ1 ≤ v∞, (2.45)

where δ1, v∞, δ+ are given by (2.42), (2.43) and (2.40), respectively.
Choose

δ ∈ [δ1, v∞]. (2.46)

Then, scalar sequence {vn} (n ≥ 0), given by

v0 = 0, v1 = η, vn+2 = vn+1 +
ℓ (vn+1 − vn)

1+β

2 (1− ℓ0 (vn+1 + sn+1))
, (2.47)

with,

s0 = 0, s1 = η, sn+2 = vn+2 +
ℓ (vn+2 − vn+1)

1+β

2 (1− ℓ0 (vn+1 + sn+1))
, (2.48)

is non–decreasing, bounded above by t⋆⋆ and converges to its unique least upper bound t⋆

with t⋆ ∈ [0, t⋆⋆], where t⋆⋆ is given by (2.19).
Moreover, the following estimates hold for all n ≥ 0:

sn ≤ vn, (2.49)

0 < vn+2 − vn+1 ≤ δ

2
(vn+1 − vn) ≤

(
δ

2

)n+1

η (2.50)

and

0 < vn+2 − sn+2 ≤ δ

2
(vn+1 − sn+1) ≤

(
δ

2

)n+2

η. (2.51)

We also need a lemma due to Werner [9, Lemma 1, p. 335]:
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Lemma 3. Let G : D ⊆ X −→ Y be a twice Fréchet differentiable operator.
Assume that there exist a positive constants L1, L2,α and α ∈ [0, 1], such that:

∥ G′(x)−G′(y) ∥≤ L1 ∥ x− y ∥ (2.52)

and
∥ G′′(x)−G′′(y) ∥≤ L2,α ∥ x− y ∥α (2.53)

for all x, y ∈ D.
Then, the following estimates hold:

∥ G(x)−G(y)−G′(z) (x− y) ∥≤ L1

∫ 1

0

∥ (1− t) y + t x− z ∥ dt ∥ x− y ∥

for all x, y, z ∈ D
(2.54)

and
for θ ∈ [0, 1], x, y ∈ D, zθ = θ x+ (1− θ) y:

∥ G(x)−G(y)−G′(zθ) (x− y) ∥ ≤
(
1

4
+

(
θ − 1

2

)2)
L2,α ∥ x− y ∥2+α

(α+ 1) (α+ 2)
+

L1

∣∣∣∣θ − 1

2

∣∣∣∣ ∥ x− y ∥2 .

(2.55)

We can show the following semilocal convergence result for Werner’s method (1.2):

Theorem 4. Let F : D ⊆ X −→ Y be a twice Fréchet differentiable operator.
Assume:
There exist points x0, y0 ∈ D, L0 > 0, α ∈ [0, 1] and L2,α > 0, such that for all x, y ∈ D:

A−1
0 ∈ L(Y,X ), (2.56)

∥ A−1
0 [F ′(x)− F ′(

x0 + y0
2

)] ∥≤ L0 ∥ x− x0 + y0
2

∥, (2.57)

∥ A−1
0 [F ′′(x)− F ′′(y)] ∥≤ L2,α ∥ x− y ∥α, (2.58)

y0 ∈ U(x0, t
⋆) = {x ∈ X , ∥ x− x0 ∥≤ t⋆} ⊆ D, (2.59)

∥ A−1
0 F (x0) ∥≤ η, (2.60)

∥ A−1
0 F (x1) ∥≤ η, (2.61)

where,

x1 = x0 − F ′(
x0 + y0

2
)−1 F (x0) (2.62)

and
Conditions of Lemma 1 hold, with

ℓ0 =
L0

2
, ℓ =

L2,α

2 β (1 + β)
. (2.63)

Then sequence {xn} defined by Werner’s method (1.2) is well defined, remains in U(x0, t
⋆)

for all n ≥ 0 and converges to a unique solution x⋆ of equation F (x) = 0 in U(x0, t
⋆).

Moreover the following estimate holds for all n ≥ 0:

∥ xn − x⋆ ∥≤ t⋆ − tn, (2.64)

where, sequence {tn} (n ≥ 0) is given in Lemma 1.
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Proof. We shall show using induction on the integer m:

∥ xm+1 − xm ∥≤ tm+1 − tm (2.65)

and
∥ ym+1 − xm+1 ∥≤ sm+1 − tm+1. (2.66)

Estimates (2.65) and (2.66) hold for m = 0 by the initial conditions.
Let us assume (2.65), (2.66) hold true and xm, ym ∈ U(x0, t

⋆) for all n ≤ m+ 1.
Using (2.58), we obtain:

∥ A−1
0 (A0 −An) ∥ ≤ L0 ∥ xn + yn

2
− x0 + y0

2
∥

≤ L0

2

(
∥ xn − x0 ∥ + ∥ yn − y0 ∥

)
≤ L0

2

(
(tn − t0) + (sn − t0)

)
= ℓ0 (tn + sn) < 1 (by (2.26)).

(2.67)

It follows from (2.67) and the Banach lemma of invertible operators [4], [7], that A−1
n

exists so that

∥ A−1
n A0 ∥≤ 1

1− ℓ0 (tn + sn)
. (2.68)

In view of (1.2), we obtain the approximations:

F (xm+1) = F (xm+1)− F (xm)− F ′(
xm + ym

2
) (xm+1 − xm) (2.69)

F (xm+2) = F (xm+2)− F (xm+1)− F ′(
xm + ym

2
) (ym+1 − xm+1). (2.70)

By composing both sides of (2.69), (2.70) by A−1
0 , using Lemma 3 for θ =

1

2
, G =

A−1
0 F , we obtain:

∥ A−1
0 F (xm+1) ∥≤

L2,α

4 (α+ 1) (α+ 2)
∥ xm+1 −xm ∥2+α≤ ℓ (tm+1 − tm)1+β (2.71)

and

∥ A−1
0 F (xm+2) ∥≤

L2,α

4 (α+ 1) (α+ 2)
∥ xm+2 − xm+1 ∥2+α≤ ℓ (tm+2 − tm+1)

1+β ,

(2.72)
respectively.
Using (1.2), (2.68), (2.17), (2.18), (2.71) and (2.72), we obtain:

∥ xm+2 − xm+1 ∥ ≤ ∥ A−1
m+1 A0 ∥ ∥ A−1

0 F (xm+1) ∥

≤ ℓ (tm+1 − tm)1+β

2 (1− ℓ0 (tm+1 + sm+1))
= tm+2 − tm+1

and
∥ ym+2 − xm+2 ∥ ≤ ∥ A−1

m+1 A0 ∥ ∥ A−1
0 F (xm+2) ∥

≤ ℓ (tm+2 − tm+1)
1+β

2 (1− ℓ0 (tm+1 + sm+1))
= sm+2 − tm+2,

which complete the induction for (2.65) and (2.66).
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By Lemma 1, (2.65) and (2.66), sequence {xn} (n ≥ 0) is Cauchy sequence in a Banach
space X and as such it converges to some x⋆ ∈ U(x0, t

⋆) (since U(x0, t
⋆) is a closed set).

By letting m −→ ∞ in (2.71), we obtain F (x⋆) = 0.
Finally to show uniqueness, let y⋆ ∈ U(x0, t

⋆) be a solution of equation F (x) = 0.
Let:

M =

∫ 1

0

F ′(x⋆ + t (y⋆ − x⋆)) dt. (2.73)

Using (2.58), we obtain in turn:

∥ A−1
0 (A0 −M) ∥ ≤ L0

∫ 1

0

∥ x0 + y0
2

− (x⋆ + t (y⋆ − x⋆)) ∥ dt

≤ L0

∫ 1

0

(
(1− t) ∥ (x0 − x⋆) + (y0 − x⋆)

2
∥ +

t ∥ (y0 − y⋆) + (x0 − y⋆)

2
∥
)
dt

≤ L0

4

(
∥ x0 − x⋆ ∥ + ∥ y0 − x⋆ ∥ + ∥ y⋆ − x0 ∥ +

∥ y⋆ − y0 ∥
)

<
L0

4
4 t⋆ = L0 t⋆ ≤ 1 (by (2.26)).

(2.74)

In view of (2.74) and the Banach lemma on invertible operators, M−1 exists.
It follows from the identity:

0 = F (x⋆)− F (y⋆) = M (x⋆ − y⋆),

that
x⋆ = y⋆.

That completes the proof of Theorem 4. �

Remark 5. (a) The most appropriate choices for δ in Lemmas 1 and 2 seem to be
δ = δ1 and δ = δ1, respectively.

(b) Note that the conclusions of Theorem 4 hold if Lemma 1 is replaced by Lemma 2
and (2.18) by (2.48).

(c) The limit point t⋆ (see Theorem 4) can be replaced by t⋆⋆ given in closed form by
(2.19).

3. APPLICATIONS

Let us provided a numerical example.

Example 1. Let X = Y = R, x0 = 1, D = {x : |x − x0| ≤ 1 − γ}, γ ∈
[
0,

1

2

)
, and

define function F on U0 by
F (x) = x3 − γ. (3.1)

The Kantorovich hypotheses for Newton’s method are [4], [7]:

∥ F ′(x0)
−1 (F ′(x)− F ′(y)) ∥≤ K ∥ x− y ∥, for all x, y ∈ D (3.2)

and
hK = 2 K η ≤ 1. (3.3)
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Using (3.1) and (2.60) (for x0 = y0 = 1), we obtain

η =
1

3
(1− γ) and K = 2 (2− γ). (3.4)

The Kantorovich condition is violated since:
4

3
(1− γ) (2− γ) > 1 for all γ ∈

[
0,

1

2

)
.

Hence, there is no guarantee that Newton’s method starting at x0 = 1 converges to x⋆ =
3
√
γ.

However, the condition of our Theorem 4 under the conditions of Lemma 2 are satisfied,
say for γ = .49.
Indeed, using (2.1), (2.40)–(2.43), (2.60), (2.61) and (3.1), we obtain:

v = 2.749087577,

δ+ = .0723581, δ0 = .008401651,

δ1 = δ+, v∞ = v∞ = .5733, and δ = δ0.

Then all hypotheses of Theorem 4 hold. Hence, Werner’s method (1.2) converges to x⋆ =
3
√
.49 = .788373516.

CONCLUSION

We provided a semilocal convergence analysis for Werner’s method in order to approx-
imate a locally unique solution of an equation in a Banach space.
Using recurrent functions, a combination of Hölder condition on the second derivative and
center–Lipschitz condition on the first derivative, instead of only Hölder and Lipschitz
conditions [9], [10], we provided an analysis with the following advantages over the work
in [9], [10]: weaker sufficient convergence conditions and larger convergence domain.
A numerical example further validating the results is also provided in this study.
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