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Abstract. The purpose of this research is to investigate the influ-
ence of rotational speed and rotational direction of stirrer on the
hydrodynamics and compare behavior against previously simulated
numerical results in the dissolution vessel with fixed stirrer. The
numerical simulation of two-dimensional incompressible complex
flows of Newtonian fluid passed a stationary and rotating single
stirrer within a cylindrical vessel is presented. The context is one,
relevant to the food industry, of mixing fluid within a cylindrical
vessel, where stirrer is located on the lid of the vessel eccentrically
configured. Here, the motion is considered as driven by the ro-
tation of the outer vessel wall, with various rotational speeds of
vessel and stirrer. The numerical method adopted is based on a fi-
nite element semi-implicit time-stepping Taylor-Galerkin/pressure-
correction scheme, posed in a cylindrical polar coordinate system.
Numerical solutions are sought for Newtonian fluid. Variation with
increasing speed of vessel, change in speed of stirrer and change in
rotational direction of stirrer in mixer geometry are analysed, with
respect to the flow structure and pressure drop.

Key Words: Numerical Simulation, Finite Element Method, Mixing Flows, New-
tonian Fluids, Rotating Flow, Co-rotating Stirrer, Contra-rotating Stirrer.

1. Introduction

The rotational mixing in stirred vessel for the optimal design is of industrial
importance, usually industrial problems are much harder to tackle, particularly
in the field of chemical process applications, such as powder mixing processes [1],
granular mixing, mixing of paper pulp in paper industry, mixing of dough in a food
processing industry [2, 3] and many other industrial processes. In many mixing
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processes the complicating factors are the use of the fluids which exhibits very
complex rheological behavior, the use of agitators with stirrer in fact that the
agitator may be operated in the transitional regime and the direction of rotational
speed of stirrer. The present problem is one of this form, expressed as the flow
between an outer rotating cylindrical vessel wall and a single stationary and rotating
cylindrical stirrer in both co-rotating and contra-rotating directions. Stirrer is
located on the mixing vessel lid, and placed in an eccentric position with respect to
the central cylindrical axis of the vessel. Under two-dimensional assumptions, the
vessel essentially is considered to have infinite height. Elsewhere, the finite vessel
problem in three-dimensions [3]-[7] has been analysed. In two-dimension, similar
problem is also investigated with different number and shapes of stirrers [8, 9].
The motivation for this work is to advance fundamental technology modelling of
the dough kneading with the ultimate aim to predict the optimal design of dough
mixers themselves, hence, leading to efficient dough processing.
This problem has similarity to the classical journal bearing problem, associated

with lubrication theory, involving a degree of eccentricity between outer and inner
cylinders. The journal bearing problem has been solved for viscoelastic fluids em-
ploying finite element methods [10, 11] and spectral element methods [12]. Dris
and Shaqfeh [10, 11] with finite elements, observed purely elastic flow instabilities
in eccentric cylinder flow geometries. The velocity profiles vary as a function of
eccentricity, azimuthal coordinate, and the ratio of cylindrical rotation rates. The
local flow dynamics span over the entire range of flows from Taylor-Couette flow
to Dean flow. The onset of flow instabilities has been shown to be the result of
non-local effects in the flow [10]. Global effects drastically alter the hoop stresses
in the base flow.
The present study adopts a semi-implicit Taylor-Galerkin/Pressure-Correction

(TGPC) finite element time-marching scheme, which has been developed and re-
fined over the last two decades. This scheme, initially conceived in sequential form,
is appropriate for the simulation of incompressible Newtonian flows [14]-[17].
In Section 2, the complete problem is specified and the governing equations are

described in Section 3. This is followed, in Section 4, by an outline of the TGCP
numerical method employed for the simulations. Simulation results are presented
in Section 5 and our conclusions are drawn in Section 6.

2. Problem Specification

The problem investigated here is two-dimensional mixing flows of Newtonian
fluids, of relevance to the food industry such as occurs in dough kneading. Such
flows are rotating, driven by the rotation of the outer containing cylindrical-shaped
vessel. The stirrer is held in place by being attached to the lid of the vessel. In
reality, within the industrial process, the lid of the vessel would rotate with stirrer
attached. With a single stirrer, an eccentric configuration is adopted.
Initially, the problem is analysed for rotating flow between stationary stirrer

in rotating cylindrical vessel, to validate the finite element discretisation in this
cylindrical polar co-ordinate system to compare the numerical results against results
obtained in previous investigations [7, 8]. Subsequently, two alternative rotational
directions (Co-rotating and contra-rotating) of stirrer are investigated in a rotating
cylindrical vessel. Throughout Newtonian fluid is considered.
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Figure 1. Eccentric rotating cylinder flow, with one stationary
and rotating stirrer; Domain and finite element mesh

Domain and finite element mesh for the problem involved is displayed in Figure-
1. In pervious investigations [7, 8], for mesh convergence studies, three meshes were
generated, adopting a hierarchical mesh refinement technique. In this technique,
each parent element of the coarser mesh is divided into four child elements. Between
the solutions of any variable on two consecutive refined meshes, a discrepancy of
order one percent tolerance was fixed. Due to enhancement in power of computation
and based on pervious findings, the refined mesh M3 [7] is reasonably adoption for
smooth and accurate solutions. The total number of elements, nodes and degrees-
of-freedom are 3840, 7840 and 17680 respectively.
To provide a well-posed specification for each flow problem, it is necessary to pre-

scribe appropriate initial and boundary conditions. Simulations commence from a
quiescent initial state. Boundary conditions are taken as follows. For stationary
stirrer the fluid may stick to the solid surfaces, so that the components of velocity
vanish on the solid inner stirrer sections of the boundary (vr = 0 and vθ = 0). For
non-stationary stirrer, fixed constant velocity boundary conditions are applied. For
co-rotating stirrer, vanishing radial velocity component (vr = 0) is fixed and for
azimuthal velocity component is fixed with three different non-dimensional speeds
(vθ = 0.5, 1 and 2 unit). Similarly, for contra-rotating stirrer only azimuthal ve-
locity component is changed and fixed in reverse direction (i.e., vθ = −0.5, −1 and
−2 unit). On the outer rotating cylinder vessel a fixed constant velocity boundary
condition is applied (vr = 0 and vθ = 1 unit), and a pressure level is specified
as zero for both co-rotating and contra-rotating stirrer on vessel wall. For stream
function, outer cylinder is fixed zero and at inner stirrer is left unconstrained, being
solutions on closed streamlines.

3. Governing System of Equations

The two-dimensional isothermal flow of incompressible Newtonian fluid can be
modelled through a system comprising of the generalised momentum transport
and conservation of mass equations. The coordinate reference frame is a two-
dimensional cylindrical coordinate system taken over domain Ω. In the absence of
body forces, the system of equations can be represented through the conservation
of mass equation, as,

∇ · u = 0, (3.1)
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the conservation of momentum transport equation, as,

ρ
∂u

∂t
= ∇ · σ − ρu · ∇u, (3.2)

where, u is the fluid velocity vector field, σ is the Cauchy stress tensor, ρ is the
fluid density, t represents time and ∇ the spatial differential operator. The Cauchy
stress tensor can be expressed in the form:

σ = −pδ +T, (3.3)

where p is the isotropic fluid pressure, δ is the Kronecker delta tensor, whilst T
is the total stress tensor. For constant viscosity (µ) Newtonian fluids, the stress
tensor T is given as

T = 2µd, (3.4)

where the rate-of-strain tensor d = 1

2
[∇u+ (∇u)†], and † represents the transpose

operator.
Relevant non-dimensional Reynolds number is defined as:

Re =
ρVcR

µc
, (3.5)

The characteristic velocity Vc is taken to be the speed of the vessel, the charac-
teristic length scale is the radius, R, of a stirrer and the characteristic viscosity µc
is the zero shear-rate viscosity.
Appropriate scaling in each variable takes the form. At a characteristic rota-

tional speed 50 rpm and zero shear viscosity of 105 Pa s, scaling yields dimensional
variables p = 2444p∗.

4. Numerical Method

As stated earlier, a time-marching finite element algorithm is employed in this in-
vestigation to compute numerical solutions through a semi-implicit Taylor-Galerkin
/pressure-correction scheme [15], [21], [16]-[18], based on a fractional-step formu-
lation. This involves discretisation, first in the temporal domain, adopting a Tay-
lor series expansion in time and a pressure-correction operator-split, to built a
second-order time-stepping scheme. Spatial discretisation is achieved via Galerkin
approximation for the both momentum and stress constitutive equations. The fi-
nite element basis functions employed are quadratic (φj) for velocities, and linear
(ψk) for pressure. Corresponding integrals are evaluated by a seven point Gauss
quadrature rule.
Stage 1a:

[
2M

∆t
+

S

2Re
](Vr

n+ 1
2 −Vr

n) = Lr
†Pn −

µc

Re
{SrrVr + SrθVθ}

n

− {N(V)Vr −N1(Vθ)Vθ}
n

[
2M

∆t
+

S

2Re
](Vθ

n+ 1
2 −Vθ

n) = Lθ
†Pn −

µc

Re
{S†rθVr + SθθVθ}

n

− {N(V)Vθ −N1(Vθ)Vr}
n
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Stage 1b:

[
2M

∆t
+

S

2Re
](Vr

∗ −Vr
n) = Lr

†Pn −
µc

Re
{SrrVr + SrθVθ}

n

− {N(V)Vr −N1(Vθ)Vθ}
n+ 1

2

[
2M

∆t
+

S

2Re
](Vθ

∗ −Vθ
n) = Lθ

†Pn −
µc

Re
{S†rθVr + SθθVθ}

n

− {N(V)Vθ −N1(Vθ)Vr}
n+ 1

2

Stage 2:

θ KQn+1 =
1

∆t
LV∗,

Stage 3:

1

∆t
M(Un+1 − U∗) = −θL†Qn+1,

where Vn are the nodal velocity vector at time tn, respectively; V∗ is an interme-
diate non-divergence-free velocity vector, Vn+1 is a divergence-free velocity vector
at time step tn+1. Pn is a pressure vector and Qn+1 = Pn+1 - Pn is a pressure
difference vector. M is a mass matrix, N(V) is a convection matrix, K is a pressure
stiffness matrix, L is a divergence/pressure gradient matrix and S is a momentum
diffusion matrix. Utilising implied inner product notation < . > for domain inte-
grals, the above system involves matrices of the form:

Mass matrix:

M =

∫

Ω

φiφjrdΩ,

Non-linear advection matrices:

N(V) =

∫

Ω

φi(φlV
l
r

∂φj

∂r
+

φlV
l
θ

ψkRk

∂φj

∂θ
)rdΩ,

and

N1(Vθ) =

∫

Ω

φiφlV
l
θφjrdΩ, where i, j, l = 1, ..., 6

Pressure stiffness matrix:

Kkm =

∫

Ω

∇ψk∇ψmrdΩ, where k,m = 1, 2, 3,

Pressure gradient matrix:

Lmi =

∫

Ω

ψm∇φirdΩ

Momentum diffusion matrices:

S =

(

Srr Srθ

S
†
rθ Sθθ

)

,
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where † is transpose of the matrix and

Srr =

∫

Ω

(2
∂φi

∂r

∂φj

∂r
+

2φiφj
(ψkRk)2

+
1

(ψkRk)2
∂φi

∂θ

∂φj

∂θ
)rdΩ

Srθ =

∫

Ω

(
1

ψkRk

∂φi

∂θ

∂φj

∂r
+

2φi
(ψkRk)2

∂φj

∂θ
−

1

(ψkRk)2
∂φi

∂θ
φj)rdΩ,

Sθθ =

∫

Ω

(
∂φi

∂r

∂φj

∂r
+

φiφj

(ψkRk)2
−

1

ψkRk

φi
∂φj

∂r
−

1

ψkRk

∂φi

∂r
φj

+
2

(ψkRk)2
∂φi

∂θ

∂φj

∂θ
)rdΩ.

Repeated indices imply summation, taken over i, j and l for all velocity nodal
points, and k, m for all vertex pressure nodal points on the triangular meshes. Fn

is a forcing function vector due to body force and boundary conditions at time
tn (which vanishes here). To give the precise second-order form of the pressure-
correction algorithm the Crank-Nicolson coefficient θ is taken as one half. Stage
one and three are governed by augmented mass matrices and solved by a Jacobi
iterative method that necessitates using only a small fixed number of mass itera-
tions, typically three. At stage two, a Poisson equation emerges, with a matrix that
is symmetric and positive definite. It possesses a banded structure, for which it is
appropriate to employ a direct Choleski method. The bandwidth may be optimised
by using an algorithm such as that of Sloan [23]. Here, n denotes the time step
index. Velocity components at the half time step n + 1

2
are computed in step 1a

from data gathered at level n and in step 1b an intermediate non-solenoidal velocity
field V∗ is computed at the full time step, using the solutions at the level n and
n+ 1

2
.

For pressure this leads naturally to a second step, where a Poisson equation is
solved for the pressure-difference from a non-solenoidal velocity field V* over the
full time step. Solving for temporal pressure-difference has some specific advantages
with respect to boundary conditions at the second step, see [15]. On a third and
final step, a solenoidal velocity is captured at the end of the time-step cycle, com-
puted from the pressure-difference field of step 2. For finite element approximation,
the generalised weighting function wi replaces φi, for the Galerkin formulation of
momentum equation. In general, the time-step, ∆t, is taken as 10−2, so as to sat-
isfy a local Courant Condition constraint [18]-[21] and a relative solution-increment
time-step termination tolerance of 10−5 is enforced. The implicit splitting of pres-
sure terms in the pressure correction leads to the factor θ, and a second-order
scheme if taken as 1

2
. In addition, the Crank-Nicolson splitting of diffusion terms

at stage-1, incorporates the implicit diffusion contribution to the left-hand-side of
the equation.

5. Numerical Results

The numerical results are investigated from two distinct points of view: changing
rotational speed and direction of stirrer. This leads to analysis with respect to
increasing viscosity levels (decrease of Reynolds number) and comparison of flow
structure and pressure variation across problem instances.
The predicted solutions are displayed for Newtonian fluid through contours plots

of streamlines, and pressure isobars. Pressure isobar patterns are plotted with
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eleven contours, from the minimum to maximum value, over a fixed range. Stream-
lines are plotted in two regions: first from the vessel wall to the stirrer perimeter,
seven contours are plotted (Ψ = 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 2.95 units) and second
from the stirrer to the centre of the recirculation, 3.05 ≤ Ψ ≤ Ψmax at increments
of 0.3 units. Comparative diagnostics may be derived accordingly.
Various increasing levels of zero-shear viscosities µc (characteristic) are consid-

ered, from which Reynolds number is computed, as defined above. For Reynolds
numbers of Re = 8.0, Re = 0.8 and Re = 0.08, the corresponding zero shear vis-
cosities are µc = 1.05 Pa s, µc = 10.5 Pa s and µc = 105.0 Pa s. Of these levels, a
range of material properties is covered from those for model fluids, to model dough,
to actual dough, respectively.

5.1. Flow Patterns and Pressure Differential for Stationary Stirrer with

Increasing Inertia. The effect of increasing Reynolds number upon streamline
patterns on left and pressure differential on right isobars are represented in contour
plots for stationary stirrer in figure-2. Computations are carried out at Re =
0.08, Re = 0.8 and Re = 8. At a low level of inertia, Re = 0.08, an intense
recirculating region forms in the centre of the vessel, parallel to the stirrer and
symmetrically intersecting the diameter that passes through the centres of the vessel
and stirrer. Flow structure remains unaffected as Reynolds number rises to values
of O(1); hence we suppress this data. However, upon increasing Reynolds number
up to eight, so O(10), inertia takes hold and the recirculation region twist and shifts
towards the upper-half plane, vortex intensity wanes and the vortex eye is pushed
towards the vessel wall. The flow becomes asymmetric as a consequence of the shift
in vortex core upwards. The diminishing trend in vortex intensity is tabulated in
Table-1.

Table 1. Vortex intensity for Newtonian fluids: (µc = 105, 10.5
and 1.05 Pas)

Problem Speed Re=0.08 Re=0.8 Re=8.0
Min. Max. Min. Max. Min. Max.

Stationary Zero 0.00 5.091 0.00 5.087 0.00 4.852
Stirrer
Co- Double 0.00 10.259 0.00 10.294 0.00 11.482
rotating Same 0.00 7.295 0.00 7.299 0.00 7.299
stirrer Half 0.00 7.295 0.00 7.295 0.00 7.295
Contra- Double -2.884 2.865 -2.897 2.857 -3.913 2.171
rotating Same 0.00 3.734 0.00 3.731 0.00 3.557
stirrer Half 0.00 4.340 0.00 4.340 0.00 4.160

Similar symmetry arguments apply across the geometry variants in pressure
differential, at Re = 0.08, symmetric pressure isobars appear with equal magnitude
in non-dimensional positive and negative extrema on the two sides (upper and
lower) of the stirrer in the narrow-gap. As inertia increases from Re = 0.8 to
Re = 8, asymmetric isobars are observed, with positive maximum on the top of the
stirrer and negative minimum at the outer stirrer tip (near the narrow-gap), see
also Table-2.
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Asymmetrical flow structure is observed in all variables and across all instances
as inertia increase from Re = 0.08 to Re = 8.0, recirculating flow-rate decrease
by just five percent. In non-dimensional terms above Re = 0.08 (noting scale
differences), there is increase in pressure-differential rise by as much as twenty-two
percent, at Re = 8.0, whilst pressure differential increase on the lower part of the
stirrer. For Newtonian fluid, the extrema of recirculating region along with vortex
intensity and pressure differential, are tabulated for completeness in Tables (1 and
2) at all three Reynolds number values.

5.2. Flow Patterns And Pressure Differential For Co-Rotating Stirrer

With Increasing Inertia. Equivalent field kinematic data for co-rotating stirrer
with increasing Reynolds number from Re = 0.08 to Re = 8.0 is presented in
figure-3, to make direct comparisons across all instances for Newtonian fluids, with
particular reference to localised vortex intensity and pressure drops are tabulated
in Tables (1 and 2).
In figure-3(i), for co-rotating case, stream lines are shown for decreasing speed

of the stirrer (from left to right), double speed (left), same speed (centre) and
half speed (right), only single vortex is formed, in contrast to the contra rotating
case where three vortexes were formed, see figure 4(i). At Re = 0.08, doubling
the speed of the stirrer the vortex is formed near to the stirrer and is much more
circular and smooth in formation, but as the speed of the stirrer is reduced to
half the vortex moves away from the stirrer towards the right and the centre of
the vortex is circular on one side and on other side is suppressed, also showing an
increase space between the centre of vortex and diameter of secondary streamline.
Streamlines tend to increase in density at the edges of the stirrer. At Re = 0.8, the
centre of the recirculating region is shifted towards the lower-half of the plane. The
diameter of the vortex also increases and leaves no circulation of fluid in the centre
of recirculating region. At Re = 8.0, the shape of the vortex centre is changed and
further shifted towards the lower half of the plane. At the half speed of the stirrer
and Re = 8.0, the shape of the recirculating region is changed and vortex centre
amplifies in the size. Consequently, the fluid pushes towards vessel wall and create
vacuum in the centre of the vessel.
For co-rotating instances, figure-3(ii) illustrates the pressure differential at all

comparable parameter values. The pressure differentials are high and is about
five times in negative extrema compare to stationary stirrer, at Re = 8 and small
change is observed in positive maxima. Reducing the speed of stirrer from double
to single speed, the pressure differentials is very low and remain in order of two for
all inertial values. Subsequently, further reduction in the speed of stirrer to half
virtually no change in the pressure differential is observed and remain unaltered for
all Reynolds numbers values, see Table-2.

5.3. Flow Patterns and Pressure Differential for Contra-Rotating Stirrer

with Increasing Inertia. Corresponding field kinematics data for contra-rotating
stirrer situation with increasing Reynolds number at Re = (0.08, 0.8 and 8.0) the
streamline contours and pressure differentials are presented in figure-4(i and ii)
respectively. In figure-4(i), for contra-rotating case, streamlines are illustrated for
decreasing speed of the stirrer from double (left) to half (right) against the speed of
vessel the three vortices develops, two in the vicinity of stirrer, one in narrow gap
and other in middle of the vessel, and third in the centre of vessel away from stirrer
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Table 2. Pressure drop for Newtonian fluids: (µc = 105, 10.5
and 1.05 Pas)

Problem Speed Re=0.08 Re=0.8 Re=8.0
Min. Max. Min. Max. Min. Max.

Stationary Zero -3.366 3.356 -3.421 3.325 -5.117 3.541
Stirrer
Co- Double -5.234 4.916 -6.734 3.987 -26.117 4.924
rotating Same -1.631 1.553 -1.984 1.209 -1.984 1.209
stirrer Half -1.984 1.209 -1.984 1.209 -1.984 1.209
Contra- Double -11.578 11.380 -12.479 10.498 -28.358 6.906
rotating Same -7.443 7.384 -7.719 7.127 -11.808 5.272
stirrer Half -5.394 5.372 -5.394 5.372 -8.218 4.849

close to vessel wall. In the narrow gap, where stirrer spins in counter direction of
the vessel rotation, a small vortex appear with low vortex intensity, as the speed
of stirrer decrease this vortex strength up to fifty percent high at low Re = 0.08.
The augmentation in minima of vortex intensity is observed with increase in inertia,
however, it suppress in maxima of vortex intensity. As inertia takes hold the second
and third recirculation regions shifts the centres towards the upper-half plane of
the vessel. For all Reynolds number values at double speed of stirrer, the central
vortex rotate in counter direction against two other vortices. These recirculation
regions have different rotational direction which is very important phenomena in
homogenisation of the fluid.
For all three instances, comparable equilibrium influence apply across the geom-

etry variants in pressure differential, at Re = 0.08 and double rotational speed of
stirrer, symmetric pressure isobars appear with equal magnitude in non-dimensional
positive and negative extrema on both sides (upper and lower) of the stirrer in the
narrow-gap as shown in figure-4(ii). The associated values of pressure differentials
are tabulated in Table-2. As inertia increase from Re = 0.8 to Re = 8, asymmetric
isobars are observed, with positive maxima on the top of the stirrer and negative
minima at the outer stirrer tip (near the narrow-gap), see also Table-3. For the
contra-rotating instance, in contrast to co-rotating case, the pressure differentials
are some what symmetrical in geometry at maxima and minima at twice the speed
of stirrer and at half the speed of stirrer for both inertial values Re = 0.08 and
Re = 0.8. However, upon increasing Reynolds number up to eight, thus O(10), in-
ertia takes hold the pressure differentials are observed asymmetrical, increasing the
speed of the stirrer to double increases the pressure differentials more than twice
in negative minima and in contrast it decrease up to thirty five percent in positive
maxima. Comparing against co-rotating case at same double speed of stirrer in-
crease in minima is merely eight percent and increase in maxima is about thirty
percent.

6. Conclusions

The use of a numerical flow simulator as a prediction tool for this industrial
flow problem has been successfully demonstrated. We have been able to provide
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(a) Re = 0.08

(b) Re = 0.8

(c) Re = 8.0

Figure 2. Streamline contours and pressure isobars of stationary
stirrer with increasing Reynolds number.

physically realistic simulations for this complex mixing process using Newtonian
fluid.
Addressing the rotation of the single stirrer case against stationary stirrer case

in contra-rotating and co-rotating directions are being investigated with increasing
inertia. For stationary stirrer case, it is clearly demonstrated that with increasing
inertia fluid flow structure lose its symmetry and recirculating region move upwards
in the direction of vessel motion and non-dimensional pressure differential increases.
For co-rotating stirrer case, single recirculating region develops in the centre of the
vessel and fluid suppressed towards vessel wall and leave big vacuum in the centre of
the vessel. Whilst at twice the speed of stirrer pressure differentials are higher and
lower at lower speed of stirrer. In contrast to these cases, contra-rotating case flow
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(a) Re = 0.08

(b) Re = 0.8

(c) Re = 8.0
FIGURE 3(i). Streamline contours for co-rotating stirrer case with

decreasing speed of the stirrer from left to right
(double (Vθ = 2), same (Vθ = 1) and half speed (Vθ = 0.5))
against speed of vessel and increasing Reynolds number.

(a) Re = 0.08

(b) Re = 0.8

(c) Re = 8.0
FIGURE 3(ii). Pressure isobars for co-rotating stirrer case with

decreasing speed of the stirrer from left to right
(double (Vθ = 2), same (Vθ = 1) and half speed (Vθ = 0.5))
against speed of vessel and increasing Reynolds number.
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(a) Re = 0.08

(b) Re = 0.8

(c) Re = 8.0
FIGURE 4(i). Streamline contours for co-rotating stirrer case with

decreasing speed of the stirrer from left to right
(double (Vθ = 2), same (Vθ = 1) and half speed (Vθ = 0.5))
against speed of vessel and increasing Reynolds number.

(a) Re = 0.08

(b) Re = 0.8

(c) Re = 8.0
FIGURE 4(ii). Pressure isobars for co-rotating stirrer case with

decreasing speed of the stirrer from left to right
(double (Vθ = 2), same (Vθ = 1) and half speed (Vθ = 0.5))
against speed of vessel and increasing Reynolds number.
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structure and pressure differential illustrates completely different picture. Instead of
single vortex three recirculating regions have been developed with different position
of vortex centres. The pressure differentials are generally higher, and similar balance
in extrema is noted to those flows. However, the position, in those negative maxima
exceeds to positive minima by about four times. Through the predictive capability
generated, we shall be able to relate this to mixer design that will ultimately impact
upon the processing of dough products.
Promising future directions of this work are investigation of rotation of two stir-

rers case in co-rotating, contra-rotating and mixed rotating directions, changing
material properties using non-Newtonian fluids and introducing agitator in concen-
tric configured stirrer.
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