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AN INTRODUCTION TO THE STATEMENT CALCULUS
BY
S. MANZUR HUSSAIN
Introduction

In every-day life we make certain statements based on our know-
ledge and information. These statements may be true or untrue depending
upon our own interpretations. It is also quite natural to believe that a
certain statement is true in one context but untrue in another. But it is
definite that a statement cannot both be true and false at the same time.

During the discussions we often make a composite statement con-
sisting of several sub-statements using the words, ‘ Or ’, “ & ’, if and only
if *, etc., as their connectives. Now it is most natural to ascertain whether
the composite statement that we have made is true or false. In the mathe-
matical world also we make similar statements and then Jogically study
their truth or falsehood. It was C. S. Peirce (1839—1914) who was the
first to discover in 1885 a mechanical device known as truth tables by
means of which we can détermine whether such statements are true or

false.

This essay has been divided into three sections. Section 1 deals
with the statement calculus and truth tables. In the next section we
give an introduction of the elementary Set Theory and explain the three
basic operations of union, intersection and comiplementation. The
last section deals with the definition of Boolean Algebra bascd on the
concepts of the Set Theory. The Boolean Algebra is after the name of
G. Boole (1815—1865) who discovered this Algebra in 1847. In the '
end we conclude that the statement calculus is a Boolean Algebra under
the operations of conjunction, disjunction and negation.
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SECTION ¢I°
Statement Calculus and Truth Tables

Notation :

We use the following symbols :—
= for equivalence
P.q, Ih...... for statements or assertions
(p = it is raining).
~—  for negation
A ,, conjunction N\
\Y ,, disjunction
,» One way implication
<-—> , two way implication

Definitions :(—

1. Statement :—It is an assertion which must be true or false but not
both.

2. Truth Value :—The truth-fulness or falsity of a statement is called
its truth value. In case the statement is true we shall represent this fact
by 1 and if false, then by 0. It may be mentioned that some authors use
T. & F. instead of 1 & 0.

3. Negation :—If p be a statement, then — p means ‘not’ p e.g.
p =it is raining, then —~ p = it is not raining. Further if p is a true
statement, then — p will be a false statement and vice versa. But since
there are only two possibilities for p i.e. p can either be true or false, and
hence there are two possibilities for ~— p. i.e. either false or true respec-
tively. This fact can be represented by the following table.

Table No. 1 for — p
p | —~op
0 1

1 0
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4. Conjunction :—If p, q are statements, then ‘p A q’ is a composite
statement known as the conjunction of the original statements :e-g. p =
it is raining, q = the sun is shining. Then p /\ q = it is raining and the
sun is shining. Since p & q have 2 possibilities each, therefore p A q
will have 4 possibilities in all. We can easily see that ‘ p A\ q° will be true
only when both p & q are true but false otherwise. This fact can be
represented by the following table :—

Table No.2 forp N\ q

p | a4 [pPAgq
0 0 0
0 1 0
1 0 0
1 1 1

5. Disjunction :—If p & q are statements, then p \/ q is a composite
statement known as the disjunction of the original statement.e. g.p V q =
It is raining or the sun is shining. ‘p V q’ has also 4 possibilities. We
can easily see that ‘p V q’ is false only when both of them are false but
true otherwise. This fact can be represented by the following table,

Table No. 3 forp \/ q

p | a | pVg
0 0 0
0 1 1
1 0 | 1
1 1 1

One-way implication (——). Many statements in Mathematics are
of the form ¢ if p then q ° or p implies q- This can also be read as ‘p is
sufficient for q’, ‘q is necessary for p’, p only if q. ‘p —— q’ has also 4
possibilities viz.
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(i) A false statement implies a false statement, (true).
(ii) A false statement implies a true statement, (true).
(iii) A true statement implies a false statement, (false).
(iv) A true statement implies a true statement, (true).
Tt is true that a false statement should ordinarily lead to a false con-
clusion but sometimes it happens that it implies a true statement and in
that case also we consider the whole statement viz ‘a false statement imply-
ing a true statement’ a true statement. We would like to elaborate this
point by anexample. Letpbel = 2, (false) & qbe3 =3 (true) "1 =2
~ 2 = 1. Adding both sides we get 3 = 3. Since the conclusion is true,
it is, therefore, logical to consider the whole statement (p —— q) as true.
The statements No. (iii) & (iv) are quite straightforward and need no
explanation.
The above facts can be represented by the following table.
Table No. 4 for p —>q-

P | 4 |p—>¢
0 0 1
0 1 1
1 0 0
1 1 1

Note :—Some authors define p ¥—+,q as eduivalent to~pV q.
Let us construct the table for ~ p V q.
Table No. 5 for (— p V q)

p | ~—Pp 9 |—rVaq
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
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By comparison we find that the results in the column under p ——-q
is the same asunder — p V qand hencep——>q = —p\/ q.

Note :—2.
Example :

p —— q is not always the same as ¢ —— p.

Ifitisa A\ then the sum of its angles isequal to 2 rt. /5
but the converse of the above need not be true. The
above fact can also be verified by constructing table for
q —— p and then comparing it with that of p —> q.

Two way implication :—p «-— q. sometimes we come across state-

Note :—1.

ments of the type ‘p if and only if q or simply ‘p iff q’
then such statements involve two way implications i.e.
if p then q and if q then p or symbolically p «—> q =
® —> 9 A (@ —> p). Necessary and sufficient
condition—is an example of two-way implication. It
is obvious that p «—> q will be true only if both p & q
are either false or true ; otherwise false, These facts
can be represented in the form of a table :—

Table No. 6 for p <—— g

P | q | p<—>p
0 0 1
0 1 0
1 0 0
1 1 1

Truth table is a mechanical device by which we can
judge the truth or falsehood of a composite statement.

If in the last column of a truth table we have all ‘1’ §*
then the composite statement is known as a tautology
(universal truth) and if all o’s then it is a contradiction
eg p \VV — pis a tautology & p A — p is a
contradiction.



6
Table for No.T for ‘p \/ — p’and ‘p \ — p’
p | P PV—~p|[PA—D

0 1 1 0

1 0 1 0
Logical Equivalence (=) Two composite statcments are said to be
logically equivalent if their truth tables are identical. We have
already seen that p —— q = — p V q’ (vide Tables No. 4
and No. 5).
Let us now consider another example in which three statements p, q &
r are involved.
Suppose we are required to prove pV(QAD =@ VYA V1)
We construct their table and find that the columns under p V (q A T)
& (pVq) A (pVr) are identical and hence the result. '

P q r qAr pV(@Ar) pVaq pVr(pVg A(pVr)

0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 1 1 1 1 1 1 1 k
1 0 0 0 1 1 1 1

1 1 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 1 1 1 1 1 1

We can easily prove the following by truth tables.

1. pVp=p, DPADP=P
2. ®VQYVr=pV@VID, PADAI=DPA@AD.
3. pVq =qVp, P AQ =4gAD.
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PVA@AD = @VOA@V I PA@QVD=PAQV (PAD)
(already proved)

pvVO=p, ppAl=p

pvVli=l1, pAO=0

pV—~p=1l, pA—DP=0

— ~— P =P ~1=0, — 0= 1.

~{PVqeY =—~pA—aq, —~@PAQ=—pPV—aq
—~PAD=—~PAQV[—~ (@D (PAD=0—

PVq) =

Sometimes it is easier to judge by truth tables the truth or falsehood
of a composite statement which is quite complicated otherwise. For
instance we are required to determine the nature of the following statement.

“It is not true that if 2 +2=4then3+3 =5&1+4+1=2"
Suppose p,q & rdenote 2 + 2 =4,3 +3 =5&1 + 1 = 2 respec-

tively.

We then see that the above statement can be written as — (p —

(QAD.

We now assign the values 1,0 & 1 to p, q & r respectively. We

consult the truth tables and find that
gAT=0A1 = 0;
P>@AD=1—>0=0;
&finally —~ (p—> (@A) =~ (0) = 1.

.". the above statement is true.

Note :—1. The judgement by truth table takes less time and space.

2. When a composite statement consists of four sub-state-
ments or more the construction of truth table becomes
more tedious and difficult.

3. There are truth tables other than those already men-
tioned for statements such as either p or q but not both,
neither p nor q, etc. but they are less common and have
not been discussed.
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SECTION “II°
Elementary Set Theory

Notation :—We shall use the following symbols

ABC,.............. for sets.

0 for null set

1 for universal set

T N for the elements of a set.

€ & ¢ for ¢ belongs to’ and ¢ does not belong to * respectively.

Definitions -—1.

iff for “if and only if’

< for inclusion

U for union of sets

N for intersection of sets

A’ for the complement of the set A

A ‘ set’ is any well defined collection of objects. e. g. :
A set of all integers ; a set of all rt. angled As, etc.

Null set is the set which has no elements. It is some-
times called an empty set.

Set A is said to be included in Set B in case every ele-
ment of A is amember of Set Bi.e.if x € A then x €B,

A is called a subsct of B. and denoted as A CB, e. g.
A= {1,2} &B= {1,2,3,4} and ACB.

Universal set is the set of which all the sets under |
consideration are subsets. €. g. in Number System all
the numbers. form a universal set ; in plane geometry

all the pts. form a Universal Set.

A UB is a set whose elements belong to A or B or ;

both. Inthe aboveexample AUB= {1,2,3,4}.

A N Bis the set whose elements belong to both A & B.
In the above example ANB = {1,2}.
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7. A — Bisthe set whose elements belong to A but do not
belong to B.

Suppose A = {1,2,3,4,5}
B= {3,4,56,7}.
A-B = {1,2}
8. A’isthe set whose elements are members of 1 (Universal
Set) but do not belong to A, i.e.
Al=1-A,

for example 1 = set of all integers.
A = set of all odd integers
Then A’ = set of all even integers.

A few basic properties of the Set :—The following relations tetween the
sets can easily be verified.

) AUB=BUA, ANnB=BpnA;
@) AUBNCG =AUBNAUGC,ANBUC =
=AnBUMANO;

(i) AUO = A, ANl =A;
() AUA’ =1, AnA’=0.

Note :—If we examine the above relations (i — iv) we discover that
these relations exhibit a duality between the operations of
union and intersection. There is a pair of results in each
relations. Each result in the relations (7)) & (i) is
transformed into the other by interchanging U & n. In
relations (iii) & (iv) the above position will also be true
provided we interchange 0 & 1 at the same time.
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SECTION “III’
Boolean Algebra.

Definition : A Boolean A]gebré is a Set S of at least two clements
including 0 & 1 which can be operated upon by union,
intersection and complementation, such that if A & B
belong to S then,
AUB, A 0B & A’ belong to S; and satisfy the
relations (i) to (iv) of section II. These relations form
an axiom system for Boolean Algebra. It may be
pointed out that the Algebra of sets forms a model for
the Boolean Algebra.

We also give another example of this algebra.

Example :—LetS = {1,2,3,5,6,10,15,30 } (Allthe divisors of 30);
AUB standforl.c.m.of A& B ;
AnB ,, ,, H.C.F.of A&B;

30 .
/ s
A EH] LR A
0 L} L] 1 H
& 1 » 5 30

We pick up any elements from S say 6, 10, 15 & verify the relations
(@) to (iv).
@ 6U10=30=10U6
Now 6N10=2=10Nn6
@ 6UQ1A0N15)=6US5 =230
6 U 10)n (6 U 15 =30n30=30
6 U (10 015 = (6 U 10) 0 (6 U 15);
6N(A0UILS) = 610 30=6 '
6nlUu®Bn15)=2U3 =6
6N (10U 15 = (6n10)U (6N 15).
@iy 6U1 =6 6N30=6
(ivy 6U5 =130 6 n5=1.

B kit Rt

R
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We see that all the axioms are satisfied.

We can similarly verify the above axioms for the other divisors and come
to the conclusion that the above set S forms a Boolean Algebra.

Next we show that the statement calculus is also a Boolean Algebra under
the operations of V, A & — ;

x e AUBIff x €A or X ¢ B;
x e AnBiff xeA & x € B;
& X e A’ iff X9 A

Letp=x€e A, q=x¢€B r =xeC.
We find that AUB = pV q
AnB =pAq
A’ ~— p.

qr

Since x € 0 is false for every x ;

.. 0is a universally false statement.
Again since x € 1 is true for every x ;

. 1 is a universally true statement.

The relations (i to iv) under the above equivalence results and those
known to us from section I take the following forms :—

@ pVa=qVp, PAQ=AqAD;
@@ pV@Aar)=@EVaAlpV,
pA@VE)=@ADV(PAD
(i) pVO=p, PAL =Dp;
() pV—~p=1 pA—p =0






MORSE THEORY AND ITS APPLICATIONS TO THE
THEORY OF TOTAL ABSOLUTE CURVATURE!

BY
B. A. SALEEMI(?)

Morse Theory or The Calculus of Variations in the large, was develop-
ed in the papers of Marston Morse, culminating in his famous monograph
‘The Calculus of Variations in the Large’ in 1934. According to this
Theory, the topological complexity of a space is reflected in the existence
and nature of the critical points of a real-valued function defined on it.
The key result used in applying this to the theory of total absolute curva-
ture of immersed manifolds, is Sard’s theorem which states : “if M; and
M, are differentiable manifolds of the same dimension having a countable
basisand ¢ : M;—Mj is of class C1, then the image of the set of singular3
points of ¢ has measure zero in M"; [1]4.

I am greatly indebted to my supervisor Professor T. J. Willmore for
reading the original draft of this paper and suggesting a large number of
valuable improvements.

Part 1. Morse Theory :

Unless otherwise stated all our manifolds and maps will be smooth

(i.e. of class C ) The tangent space of a manifold M at a pomt p will
be denoted by M(p).

(1) This paper is.essentially expository in nature and gives a brief survey of the
theory of *“Total Absolute Curvature”.

(2) The author gratefully acknowledges the help of the Colombo Plan authorities
for the award of a fellowship and the Panjab Univérsity, Lahore, (Pakistan
authorities for granting him study-leave.

(3) The point p € My is called a ‘singular point’ of ¢ if the rank of the Jacobian
of ¢ evalua.ed at p is less than the dimension of My.

(4) Numbers in brackets refer to the references at the end of this paper.
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1.1 Definition. Let M be a manifold of dimension n, and f : M—R
bz a real-valued function defined on it. A point p € M is called a critical

point of fif df = 0 at p. If (x], x2, ...., x") are local coordinates in a
neighbourhood U of p, then df =0 means that
of _ (efy
® (Z)e = - (a—x->p — o

The critical point p is called non-degenerate..or degenemte aceording

- as the rank of the matrix ( - — () \ is equal to n or less ‘thati fiz

Ify =y x},....,x%), j :1, 2,....,1n, is another local co-ordinate-
o _

@ ( ayiay! ) ®) = \Zaax * oy " oy

The equation (2) shows that the non-degeneracy of a crltlcal point
is independent of the choice of the coordinate-system

system about p, then
{9 oxk ox! > ®)

A 1.2 If p e M is a critical point of f : M—R, and (x1,.. .., x") isa local
coordinate-system about p, then we can talk about the index and nullity

of f at p according as p is non-degenerate or degenerate, If p is. non-de—

generate, then the number of negative roots of the equation in A

6) ](agf)(p)wrg:o

oX oX/

is called the index of f at p ; and it gives all the information about the
nature of the critical point p. On the other hand, if p is a degenerate
critical point, then the nullity of f at p is defined by the equation

6 Nulllty = n-rank ((axazafc (b))) ’

1.3 In order to determine the index of f : M—R at a non-degenerate
“critical point p, one can use the following

Lemma of Morse If p is a non-degenerate Crltlcal point of f M—R,
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then there exists a local co-ordinate-system (x!,....,x") in a neighbour-
hood U of p such that
@ x1(p)=....,=x"(p)=0,
and (i) f(Q)=fP)—(x"2..... — &2 Y24+ (x)?

for all q €U, and r is the index of f at p. For the proof see [12].

1.4 Examples.
(@) Consider the real projective plane P2 defined by

X12+X22+X32 =1

(Xb X2, XS) — ('Xl, -Xo» 'XS) >

where “‘~" is the diametrical equivalence on S2, Let

3
f=2

’;in = X2+ X, + %2 + XX +X1X3 + X2Xg
1,)]=

= 14+X1X; +X1X5+ XoX3

be the real-valued function on P2, This function has all its critical points

non-degenerate because

(i) =+

at all points.

(b) Let f: R>R be defined by f(x) = x?. Then df = 0 at x = o.
2

L .\ . . df
Thus the origin is a critical point of f and it is non-degenerate as gy = 2.

(¢) In order to see how the number of positive and negative signs in
the expression for f : M—R varies with the nature of the critical points,
we take as example the height function h defined on the torus T2, Let = be
the plane tangent to T* at p as shown in figure' 1. It is clear from the
figure that the height above p is minimum at p and maximum ats.” We
can take co-ordinates about p, say (x, y) such that .



() h=x?4y? atp;

(B) h=Cy—-x3+y?atq;
(1) h=Cy—x%+y?atr;
®) h=C3-x2—y?ats,

Thus we have four non-degenerate critical points of h of indices 0, 1, 1, 2;
and the number of minus signs (i.e. index) tells us the nature of the critical
point. The situation described above can also be given an interpretation
in terms of Gaussian curvature. The points of positive Gaussian curva-
ture (elliptic points) have either index ¢ or 2 whereas the saddle points
have index 1. The critical levels 1, 2, 3, 4 refer to the points which are
mapped into the same point by the Gauss normal map

v :T3-8?,
This fact has very far-reaching implications in the theory of total absolute
curvature,

From the viewpoint of homotopy, the number of minus signs appear-
ing in the expression for h at each critical point is the dimension of the
cell we must attach to go from h; to hj (i, j=1, 2, 3, 4).

(d) The function

2
f : R>R given by f (x, y) =x2y? has only degenerate critical points.
The set of critical points is the union of x-axis and y-axis. This set is not
even a submanifold of R .

1.5 The Morse inequalities. Let M be a compact manifold of dimen-
sion n whose Betti numbers with respect to any field F are 8, f1,...., Bn.
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Letf : M—R be a real-valued function having only non-degenerate critical
points. Let the number of critical points of index j be denoted by ;.
Then the Morse inequalities are :

) wp—Hpg o, £y > B=Bia + .., £ (1< k<n)
From the inequalities we deduce easily that

(6) my > Bpfor 0 < k < n. Forproofssee [12]. Also, it is known

n n
that (7) y(M) = Z‘g— 1) g = 2'%— 1) H; .

. i—

1

Moreover, it can be shown that if f : M—R has only non-degenerate
critical points whose total number is the minimum possible number of
non-degenerate critical points that a real-valued function can have on M,
then #, = #,, = 1. This can be expressed by saying that such a function
has only one maximum and one minimum. This fact plays a very imporQ
tant role in the theory of immersions with minimal total absolute curvature.

Part 2. Application

Morse Theory has become one of the most powerful tools in modern
researches in Mathematics. Some results obtained in this way are :

2.1 If f :M—R has only two critical points (where M is compact),
both of which are non-degenerate than M is homeomorphic to a sphere.
(Reeb) [12].

2.2 A differentiable manifold can have several inequivalent differenti-
able structures. (Milnor) [14]. o

2.3 M. Morse and N.H. Kuiper generalized critical point theory to
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continuous functions and proved the following :

Let M be a closed n-dimensional manifold and f : M—R a continuous
real-valued function. Let f have only non-degenerate critical points and
let these be exactly two in number. Then M is homeomorphic to a sphere.

[11] and [16].

2.4 Quite recently S. Robertson has introduced the concept of trans-
normal embeddings of manifolds in Eculidean space and has obtained very
interesting results via Morse Theory. For example, he proved [17] :

Any transnormal n-manifold of order 2 in Em is diffeomorphic to
the Cartesian product V; XV, .of differentiable manifolds V;, V,, where
V; is homeomorphic to S- and V; is homeomorphic to E*™/ (0 < j < n).

In what follows, we shall be interested in the applications of Morse
Theory to the theory of total absolute curvature of immersed manifolds.

2.5 Definition : Let My and M, be two manifolds of dimensions
ny and n, respectively. Let ¢ : My — M, be amap. Then ¢ is called
an immersion of M, into M, if the rank of the induced linear map on the
tangent spaces is equal to n; at all points of My. If ¢ : M1-> M; is an
immersion and ¢ (p)=9(q) €= p = q, then ¢ is called an embedding(1)
of Mj into M,. Ifn; = n,and ¢ is an onto embedding, then ¢ is called
a diffeomorphism, and M; and M, are said to be diffeomorphic.

2.6 Let M be a compact, connected smooth manifold and f: M —
EN be an immersion of M in euclidean space of dimension N. Let B,
be (N—n—I1)—sphere bﬁndle(“) over M induced by f and S,N1be the
unit hypersphere in EN with centre at the origin, LetdV, dV A gs N—n—1
and 4 N—1 denote volume elements of M, B, and SoN—I respectively,
Let ’

8 v : By — SN—I1

(1) Note that in the case of an embedding, the topology of Mj must coincide with

the induced topology.
(2) .dimension of By is equal to N-1.

R ke
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be the generalized Gauss-map. Then the dual map v will bring the volume
element dsN—1 to B,. Comparing these two (N—I1)—forms, we have

(9 7 (dsN—1) = G(p, v) dV A dsN—n—1,

We call G(p, v) the Lipschitz-Killing curvature at p, ' It coincides with the
Gaussian curvature when N—n=1. The total absolute curvature at p has
been defined in [2] by the following formula :

10 K@= [|GEv [Nt

where the integration is carried over the fibre of B, at p e M. Then the
total absolute curvature of M is defined by

N-1
(1) (M) = CNL_J-M K* (p)dv, where CN—1 = area of S, .

Let F be the space of all immersions of M in EN. Then we define

] inf.

12) T = fey (M, ) ‘
to be the minimal total absolute curvature of M. 1Tt is clear from the very
definition of 7 that it is a topological invariant of M. In many cases its

value (which is always a positive integer) is given by the formula :

n
(13) =28

i
i=0
where Bc,....¢n are the Betti numbers of M.

On the other hand, if C,, C,....are the homtopy classes of immer-
sions of M into EN, then we can introduce new topological invariants -

7y = Inf. 7(f, M)
fECl

as 1, = Inf. (€, M)
fECZ

and so on,
Are 7y, 75,....integers ? What is their significance ? These are still open

questions,
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2.7 One-dimensional manifolds. Even the theory of the total absolute
curvature of one-dimensional manifolds is very hard and little is known.
W. Fenchel first introduced the concept of total absolute curvature and

proved the followings :
A,. If Cis a closed space curve, then 7(f, C) > 2; and equality holds if
and only if C is a plane convex curve. [6].

Fary and Milnor proved the following result about knots :

B;. If Cis a closed space curve and 7 < 4, then C is not knotted. [5]
and [13].

Fenchel’s result has been generalized to higher dimensions by Chern
but the generalizatiqn of B; to higher dimensional knots is an unsolved
problem [1].

2.8 Two-dimensional manifolds :

The classification theorem states: ‘“‘a compact connected 2-dimensional
manifold M is either (i) homeomorphic to a sphere with g handles and its
Euler—Poincare characteristic ¥, is 2-2g,

or (}'i) homeomorphic to a projective plane with g handles and its
Euler-Poincare characteristic § is 1-2g,

or (iii) homeomorphic to a Klein bottle with g handles and its

Euler-Poincare characteristic X is-2g”,
This theorem shows that the sphere, the projective plane and the Klein
bottle are fundamental objects of study in the field of compact 2-dimen-
sional manifolds. If we use homology with coefficient field Z,, then the
Betti numbers of 2-dimensional compact manifolds in cases (7), (ii) and
Gii) are (1, 2g, 1), (1, 1 +2g, 1), (1, 2+2g, 1) respectively. Chern-Lashof
{31 and Kuiper [8] proved the following :

A, If f: M—E? is an immersion, then

15) 7>242g or 3+2g or 442g.
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(2-2g) or 4—(1—2g) or 4—(—2g), TR

(16) ie. T>4—.

B,. Definition : An immersion f : M—E? is said to be minimal if

2
(17) T = inf. ‘r(f, M) =_.3 ﬁi = 4 - x.
feF i=0
If f : M~ E? is minimal, then it can be shown that for almost every
unit vector z € So2 C E3, the linear function z.f (scalar product) : M->R

has only non-degenerate critica]points If 1y (M, z. f) is the number of
critical points of index i of such a function, then -

(18) T = Zz‘ﬂ,- M™M,zf).

Now, the critical points of such a function are eharacterlsed by the
equation z.df=0, i.e., a critical pomt p is such that z is normal to the
immersed manifold at f (p). If v: M——>S02 is the Gauss normal map
which takes a point p € M into the unit vector through the or1g1n (ie. a
point on S,2) parallel to the normal of f (M) at f (p), then the total absdhite
curvature of M (not necessarily minimal) is the average number of times
S,2 is covered by v. But, if the given immersion is minimal, thenv : M—
S.2, covers almost every point of S;2 an integral number of times which
is equal to the minimal total absolute curvature of M. "This shows the
strong relationship between critical point theory and the theory of total

absolute curvature. Lo

C,. Kuiper in [8]introduced the concepts of topsets and top-l-cycles
and proved ; o

C’y. There are no minimal immersions for the projective plane and
the Klein bottle in euclidean three-space,

In his subsequent papers [9] and [10), he made use of machinery



developed in [8] and proved the following theorems :

C”,. There exist minimal immersions for all closed(l) 2-manifolds
with X € — 2 in euclidean three-space E3,

He actually constructed a minimal immersion of the projective plane
with 2 handles in E3. (in this case

X=1-2g=1-22.=-—3)
He conjectured that “there exists no minimal immersion in E? of the pro-
jective plane with one handle.”

C”’,, Letf: M—ES be a minimal immersion of a closed 2-manifold
properly into(?) ES. Then M is a smooth projective plane, f is an em-
bedding, and f (M) is a real Veronese surface.

An unsolved problem is the generalization of Kuiper’s theorem (C”’)
to P2(C), P?(Q) and P2(IH).

D,. Chern-Lashof in [3] proved the following results :

D’;. A compact orientable surface embedded in E? lies on one side
of the tangent plane at each point of positive Gaussian curvature if and
only if the total absolute curvature is 2+2g.

‘D”,. A compact orientable suiface immersed in E3 with Gaussian
curvature > o is embedded and convex.

A part of the result D', was géneralized in the same paper to n-dimen-
sional manifolds immersed in Ent1,

2.9 n-dimensional manifolds :

The following are the main known results about the total absolute
curvature of immersed manifolds : . '

A,. (Chern-Lashof), Let M" be a compact smooth manifold

(1) ““closed” means “‘compact without boundary™.
(2) “properly.into*; means “f(M) is not contained in any hyperplane of E5”.
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immersed in EN, and let 8; (0 <i < n) be its ith Betti number relative

to a coefficient field. Then the total absolute curvature (M%) of Mn
satisfies the inequality

| MB

19 (Mn) >

3B (M)
1=0

Moreover, if the equality signs holds in (17) with the real field as the
co-efficient field, then M has no torsion [3].

This is in fact a generalization of the following result of Chern-Lashof
in [2} :

If f : Mn—EN is an immersion of a closed manifold, then

20) T(Mn) > 2.

A, If2 < (Mn) '<3, then Mn is homeomorphic to a sphere 24,

A’n. If 7 =2, Mn is a convexly embedded hypersurface [2].

B,p. (Willmore-Saleemi). If 3 7 < 4, then Mn is either a sphere
or else it is a projective plane in the sense of Eells.and Kuiper [4]. [19].

B,. The results A,, A’, A”’,, B, remain valid if the receiveing
space E"*N is replaced by a complete, simply-connected Riemannian
manifold of non-positive curvature. [19].

C,. (Kuiper). If f:Mn«— EN is a minimal, proper-into immer-
sion, then N < in (n+3). [7].

C’n. (Kuiper). Let f; : Mjnl—EN!

and f, : M,™ — EN2 are immersions with total absolute curvatures 71y
and 7y, respectively. Then the total absolute curvature of

fi xfy : Mynl X Mjn2 —» EN1+N2
is given by the formula : o

(21) T1Xfy =71 X752 [T].
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For its generalization and a simple proof see [19].

Almost all the above results have been obtained through the applic
tions of Morse Theory. To see how Morse Theory can be used to obtaj
the total absolute curvature of an immersed manifold in euclidean space
we shall give a detailed proof of A, (section 2.9).

Proof. Letf: Mn— EN be an immersion of a closed manifol
M in euclidean space of dimension N. Let B, be the bundle ¢
(N —n—1) —spheres of unit normals on Mn induced by f. Let

¥ : B, —> SN-1

be the map defined in (2.6). The total absolute curvature of M™ is th
volume of the image of B, under v. The singular points of 7 are thos:
where the matrix z. d?f = — dz.df, has rank less than n, that is, the point:
where G(p,») = 0. The image of such points on S,N7! is a set o
measure zero (Sard’s theorem). Hence for almost every unit vectos
z€S;N-1 the linear function z.f restricted to M" has only non
degenerate critical points. Hence, it follows from the Morse-inequalitie:
that

n

py (M1, zf) >3 p; (M.

(22)
i=0

=
| MB
[=]

Now, the image of B, under vy is the same as the set of point:
z € S;N-1 each counted a number of times equal to the number of
critical points of the function z.f on M". It follows that

B, S,N-1 n
Am (v (B,)) on - Y hom

@) =" C
( N—1 26

n
Thus T3 kM.
1—

fI R is the field of reals and Zp (p a prime) is a field mod p, then.
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B; Mn, R), and by equation (23)

(24) Bi M™%, R) < By (M, zp), (0<i<n).
n
But by hypothesis, T =73

i

n
r> X B (M, Zp). Hence, this is only possible if

i=0

B; M, R) = B; (M, Zp), (0<i<n), which means that M" has no

torsion.
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THE LAW OF MAGNETIC FIELD PRODUCTION
BY
G. T. P. TARRANT

Endless trouble is caused eventually by teaching to beginners laws
which are insufficiently general and which apply only in a limited field.
Thus teachers who neglect # or k in electromagnetic theory merely because
they are talking about free space and have chosen to work in systems for
which u or k is unity, have to repeat their work completely when
ordinary media are under discussion.

The whole of Maxwell’s displacement current idea is, in essence merely
a complexity produced because the usual e.m. basic law of electromagne-
tism,

i §ssin O

0 §H = a4z
is not sufficientiy general to cover all situations. One wonders, in fact,
if it would not be better to start the subject from the even simpler
law which exists and which is of sufficient generality to cover all situa-

tions. It is, if consistent units are used throughout,

. (Rate of cutting of number of
() (Magnet-Motive Force) = fH.ds = g lines of electrostatic induction g

d (kX)

or CuI‘l H = 'T

History favours equation (1) but it was only a matter of chance that
Ampere was not sure that electric currents were due to a flow of electric
charges and had therefore to describe his results in terms of current.

Virtually the same discovery might have been made by an experime-
ntalist leaning out of a train which was very close to another parallel train.
If the one train was charged electrically relative to the other-then the
experimentalist could have detected a horizantal electric field between
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the two trains and could also have detected a vertical magnetic field when
the two trains moved relative to each other. This experimentalist would
undoubtedly have announced his discovery by saying that a movement of
d (kX)

i ds.

an electric field produces a magnetic field proportional to f
If he had previously defined X in electrostatic units but had not previously
defined H he would undoubtedly have written H = fd—(lgs)— ds and thus

obtained H in electrostatic units. If the contrary had happened he would
have obtained the same equation with (kX) and H being both expressed in
electromagnetic units.

Several important results can be obtained quite easily from
equation (2). : ’

Amongst these are :

(@) If there are n charges of magnitude e per cm. length of a wire
and if they are flowing so as to constitute a current i of (nev) then the
number of lines of induction cutting any loop we draw round the wire
will be 4 7 (nev) in each second. Hence

SfHds = 4wi
provided again that H is measured in units consistent with those of e and i.
This proof seems of some interest in view of the great importance of the
result and that the present proof is quite general and does not involve
the doubtful conception of a unit magnetic pole.

(b) If the system has complete cylindrical symmetry about the wire
— as will occur, for example; if two oppositely charged spheres
are connected by short straight wire, than

4ai
2m7r

H =

(¢) Thé same formula should also be valid whenever we have a
battery driving current in a closed circuit providing the circular loop is
drawn close enough to one wire to ensure that the electrostatic lines of
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induction leaving the moving chafges do not have their symmetry &isturbad
by the corresponding lines coming from other charges coming from other
parts of the wire. . ) »

(d) Although law (2) cannot be derived from law (1) without the
additional assumptions of Maxwell’s displacement current, yet it is per-
fectly easy to deduce law (1) and all that follows from it form law (2).

To do this consider a charge ¢ moving with e a —-l
velocity v as shown, then the number of lines of

induction, N, entering the circle is

(Area of spherical cap contacting circle)

4myq 4 mr?
- 4wq21r::7(r1r2—— c0s9) A
dd?el = 2 wq sin 6 (%’) = 211' q sing
(S_ig%_jt"_) since cot 9 = X
Because the system is symmetrical about the line of velocity -
dl;‘*l =2ma d(dktX) =ZwegH

if we write § H instead of H because the field is certainly very small and
because we may later find the total magnetic field due to a long stream
of charges similar to q flowing in the same line and thus constituting a

current in a long straight wire. Then:—

_2mgq sinﬁev__quine__ igssin @

6 H 2 a a r r?

It therefore follows that the statement that H= f D ds tells us

everything that the more conventional relation gives.

It does this AND MORE and is therefore MORE SUITABLE as a
fundamental relation. To understand this consider the following :
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-Imagine two metal plates each bent at , .
right angles as-shown and placed near together j
in a vacuum to form a parallel plate condenser of
area (ab). Assume this can be charged by a
battery and discharged through a resistance.
Then it is known from equation (1)—that {H ds
round any loop surrounding the wire or the metal |
plate should be always 47 i. This should be so
for the loops A A’ B'B, CC'D'D, NMM'N' and
RR'Q'Q (where the primed letters denote points
directly underneath the corresponding unprimed
ones and near the other edge of the plate).

On the other hand [ Hds round either of the *
loops RR’P'P or PP’Q’Q should be only 47 (} i) ( )
because these loops are drawn round only one ‘
plate of the condenser at a point half way up **
the overlapping portion where the current flow
should be only half as great. This shows us
that f Hds along PP’ must be zero. ] o 1

Now we come to the crux of the matter. Consider the loop C C'P’P.
The f Hds along PC and C’P’ must be zero so that { Hds round the whole
loop must be 2 7 i. But if equation (1) is really true it should be zero
since no ordinary current threads the loop.

On the other hand the matter is obvious from the point of view of
equation (2), for one half of the lines of induction coming from the charges
passing the strip between C and D will cut the wire CC’, while over the -
portion PP’ the movement of the lines of induction produced by the current
flow in the strip between P and Q will be exactly balanced by those coming
in the opposite direction from the current flowing in the strip between
R and P.
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The derivation of Maxwell’s equation is exceedingly simple if we
employ equation (2). We have merely to consider a closed loop in space

and to state that § Hds = d—dlji = f)r (kX) dS if there is no con-

duction current or will be (f{k Xp+4 (current density ds

if there is a conduction current. The application of Stokes theorem then
shows immediately that curl H=kX + 4 = (current density).

A final advantage comes from the adoption of the basic equation (2)
is that it is equally applicable to the complete electrostatic or complete
electromagnetic Systems or to rationalized M.K.S. bzcause if X is written

e ids sing . . .
s = 23 2
as 4 2 then §H 47 2 follows immediately from equation (2)

without any other changes bzing required.






A NEW USE FOR DIMENSIONAL ANALYSIS
BY
G.T.P. TARRANT
Mathematics Department, University of the Panjab

Mathematics deals with the consequences of (a) the actual laws of
nature as we believe them to be, and () hypothetical laws which may, or
may not, be found in the future to occur in the physical world.

Dimensional analysis is a mathematical tool which has so far bzen
employed solely in dealing with () and has, as far as the author is aware,
never been used to elucidate the consequences of purely hypothetical laws.
This is probably because the mathematician gets his main pride in handling
more complex operations than those of dimensional analysis while the
physicist and the engineer tend to refuse to waste time on laws unless they
are believed to be correct.

The protlem discussed below illustrates how dimensional analysis can
be applied to hypothetical laws to give results which are of genuine scien-
tific interest. It is a problem which we can solved in two minutes by
dimensional analysis but which took Darwin the major part of two years
to solve by ordinary methods.

In 1911 Rutherford published his theory of the single scattering of
a particles and showed that the proportion of a particles scattered at a

given angle depends on (Area) (:—5) (3m V2?2 (Ze E)?

Here (nt) denotes the number of scattering atoms per sq. cm. and the re-
maining obvious symbols are those given by Rutherford, Chadwick and
Ellis, Ch 8. This theory was based on the assumption of the inverse square
law of repulsion bztween positive charges was true even though the dis-
tances involved were of the order of 1013 cm. Did the fact that this
formula agreed with experiment prove that the law of force which was
known to be true between, say, 1 cm and 100 cm. also applied at distances
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as small as 10-13 cm? Might it not have bzen possible that nearly the
same formula could have bzen derived from some other law of repulsion ?
It was to answer these questions that Rutherford asked Darwin to deter-
mine what would be the proportion of « particles scattered if the law of

fore was the inverse nth.

If this is the assumption, that (force) = 2‘ ::f , then the dimensions

of (e;e) must te [M L T-?k Ln] =[M Ln+! T-2 k] instead of
the more usual [M L3 T-% k]. '

We will now make the assumption that the fraction of the « particles
scattered depends on :— '

. .
) (No of scatte.mgrzatoms per sq cm) (m V2* (Ze E) bke

(area

Then the fact that the dimensions of a fraction are zero tells us that

g 2L pmee T ML T 1P = o

[L4
From this we see that :—
InM a+b=0
InL ~2+4+2a+bn4+1=0
InT —2a-2b=0
Ink b+c=0
From which we find that b= 32——1 = —a= —¢, so that the formula

2
becomes f oc (area) (:Lj) (E_fg/gk >rT:1

This agrees with that found by Darwin more rigorous calculation.
To compare with Chadwick’s experimental results that, over a variation of
V* of 4 to 1 the product (f V#) varied by less than 3 % we put the above

equation into the form
2—n)
(n—1)
This shows that the law is within 1 ¢ of the inverse square at the most,
even at these extremely short distances.

log (f V¥) — log (V¢) = constant.




THE ACCURACY OF THE INVERSE SQUARE LAW IN
ELECTROMAGENTISM

BY
G. T. P. TARRANT,
Mathematics Depariment, University of the Panjab.

Newton's work on gravitation made many workers in the 18th century
suspect that an inverse square law would also apply to the forces between
magnetic poles and between electric charges. To show the intrinsic diffi-
culty in asceitaining the truth of these guesses by direct measurement of the

. 1 .

forces let us assume that the force, F, varies as an We will also assume
that measurements conducted at two distances d; and d, gave forces
F,* §F and F,+ §F where F; and F, are the forces that would have been
obtained in an ideal experiment with zero error and §F is the constant
instrumental error in making the measurements.

Fi+§F <ﬁ) n+§{n
F.XtsF — \d;
between the true exponent, n, and the value, (n+ §n), that we find as a
result of our errors. Hence

Then we find were {n is the difference

[ )
Fl(li—g—?) {l(ﬁ)n\!}l-p%é (5 +§nll
P, (14-8F) V& r.)
( _Fz.) L J

The limiting values of §n are then given by

Jog <1+5rlj) —1log ( —STIZ) . n%lj(l+—]il)

5 (7) i

F F
This has a minimum value of 3.55 n ST or 7% when . 3.55,
; . 1 1 Iy
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or whsn gle .88. Asmost students know, it is generally hard to measure

deflections with an accuracy much greater than 2 % of the largest deflection
encountered. We must therefore agree that Coulomb did remarkably
well in proving in 1767 that the law of force for electrostatics was within
3% of bzing an inverse square. This is especially so because it is unlikely
that he had the benefit of the above analysis and would therefore bave teen
almost certain to have fallen into the common trap of making d, much
larger than the optimum.

A tremendeous step forward was made in 1773 when Cavendish devised
an indirect experiment based on a theoretical argument that there should be
no field inside a charged, completely closed, metal box if the law of force
is an exact inverse square. This well known experiment is usually dis-
cussed today in connection with Gauss’ theorem in spite of the fact that this
theorem was not put forward until some 60 years later. Maxwell used the
same method in 1870 and concluded that the exponent cannot differ from

2 by more than TIG()“O The most recent test, by Plimpton and

Lawton (1), showed that that the law of force between electric charges at
ordinary distances is an inverse Square to the almost unbelievable accuracy
of 1in 10°. This makes it to be, almost certainly, the most accurately known
law in the whole of science.

The law of force between magnet poles is in a less satisfactory state
largely because magnets are heavy and have poles that are ill defined and
nebulous. It is, however, easy to show that if the magnet has poles, {m,
at symmetrical distances L from the centre and if the law of force is the
inverse nth then the fields in the ‘end’ on and ‘broadside on’ positions are

(1 n+41 12
n2Lgm{ , (@+D@n+2) L2 oL gm\' "2 TZ)
M+l + 6 2 A
respectively.

Integrating, we find for a real magnet that these two fields are
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(n+1) (n+2) 1 n+1 (. 1
M @FD O (1 g | L and (M-r—efvdm) o

respectively.

The ratio between the two is then

oo ey S

f 1.3dm17 . . . .
=1 [1 +7 —W] since n is near to 2. This ratio can now
be written as n (1+k/r?). This means that a graph of the ratio of the fields
against 1/r2 should be a straight line from which n could be dctermined
with tolerable accuracy in spite of the maget having a continvous distribu-
tion of poles over its length. Unfortunately this analysis does not appear to
be known and no experimental graph of this nature appears ever to have
been plotted. Because of this lack of knowledge Gauss (1833) felt
compelled to work at large distances from his magnet which meant that the
angles of deflection of his tangent magnetometer were very small, varying
from 2° 13’ 51.2" to 0° 2" 22.2" of arc. The accuracy of his measurements
was however of the order of 1” so that his measurements gave the law of
force between poles as the inverse square with an uncertainty of less than
1 in 2000

Compared with either of the above two laws our expetimental know-
ledge of the law governing the production of magnetic fields by electric
current elements is much less satisfactory. In the first place there is still
a discussion (2) as to whether Ampere’s formula for the force between two
current elements i;§s; and i §sa is to be preferred to that of Biot-Savart
or Grassman. Ampere’s formula is expressed in terms of the angle €
between the two current elements and the angles B, and f; made by the
two current elements with the line, r, joining them, It says that the force
is in the direction of r and is
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§F = pij §s11; §83 (2 cos € — 3 cos Py cos ﬁz)rlT

This law has the obviously attractive feature that action and reaction are
equal opposite but is so less convenient mathematically than that of Biot-

Savart, Sﬁ = H(il gsl) X <i2 g_sz>>< % or (il 551) X Sﬁ where ‘

- A - T
SB:MIZSSZX}?“

that it is hardly ever used. On the other hand the Biot-Savart law makes
action and reaction between current elements to be urnequal and not even
in the same direction. This difficulty is usually ignored on the ground
(a) that we can never 1solate the contribution to B from one portion of a
circuit §s; from that produced by the remainder so that in practice we

are concerned only with i, §s;X f B (iy §85) % ;rz_ and (b) that the
Ampere formula gives exactly the same result for the equivalent integral
so that it does not matter which formula is used.

However, independent of this controversy, it is fair to ask what is
the experimental or theoretical accuracy in the inverse square law involved
in both equations. The answer is rather amazing. I can find no re-
ferences or indications anywhere that the question has ever been considered
seriously since the original work of Ampere—which could hardly have
had an accuracy greater than 5 or 10 %. Undoubtedly any major departure
from the inverse square would have been detected more or less accidentally.
Most electrical experiments, however, do not have the accuracy to show
up small departures from the law and the really accurate work with current
weighers was done with apparatus of somewhat similar geometrical con-
figuration of the coils or relies on electrical methods for measuring such
quantities as the effective radii involved. The contrast between the
accuracy of the law for electrostatics of 1 in 109 with a 10 % (or perhaps 1 %)
accuracy for the law of electromagnetism justifies an examination of the

problem.
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“The first obvious step in ascertaining the accuracy with which the
exponent of r is, or can be shown to be, two is to consider the field
produced by a long straight wire.

H= f(lds) sing fgjfizg—)%e_

sing -

p

3 f(l —cbs%))%z d (cos 6)

=%I<1_ _%)_ cos2g + ;’ <_2b_—1 )cos‘*@..)d(cosﬁ)

. 1
n—14'}r51nn—19d9 = =

2
if b=n-2
2
-1
Experiments at two different distances r; and ry would then give,

instead of the true fields H, and H,, the apparent fields, Hi+ § Hand H:
+ §H, so, following the argument on page 37 ,

H:ix§{H ( T, )"—Hgn

Hy*§¢H ~ \71
where §nis the difference between the true exponent, n, and the value that
we find as a result of our errors. Hence :—

if the wire is infinitely long and b is very small.

H, (HEII:I) _ ((&)"—I}HE—EI: g%g 1+ri£—%
H, (li‘fiﬂ) .{'L n)o H,
2
% 18{‘2}‘1 SH (”gﬂ

8n=(n—1) log (g:)_ - Hy log(

which is 3.535 (%) when at its minimum value corresponding to H;/H,=

3.55 or dp/d1=3.55.
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As we have discussed earlier such direct measurements are not likely to
allow us to determine n with an accuracy much better than 1 %,

The accuracy of simple null experiments in which the fields of one long
straight wire is exactly balanced by that produced by a larger current at a
larger distance are unlikely to be greater because of the dimensions of the
measuring apparatus and the rapid change of field with position.

—

One ingenious scheme that deserves
consideration is described by Maxwell(®)
who, unfortunately, does not say if it was
actually carried out—though one suspects
that it might be the method used by Biot-
Savart. In it a magnet is placed radially |
on a cardboard disc hanging horizantally

from a long, vertical, current carrying,
wire which passes near to the centrs of the
cardboard disc.

Then, if the field on the nearer pole +m at a distance r1 from the wire
is Hy, Hy=2i/(r)" and Hp=2i/(t)™
Hence, if the three supporting wires allow the disc to rotate about a pomt
distant a from the wire centre the resulting moment of the forces causing
the rotation will be :— :

§M=mm Hi (1 +2)~ m Hy (rp+2)=2 im |

rnta rz-'l-a}

" AL

am (53 1253 22
So %—4: 1 - %‘ g—: andnlog(l) ( —SVM)—long—ig)
wnog ()=~ §F +1g() - (£ - o)
o (@) )

It seems unlikely that we will be able to rely on a being less than Imm. on
a radius of, say, 10 cm. Hence the accuracy is likely to be of the order of
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1 in 400 whatever the accuracy in detecting the small difference in the
moment of the forces.

Considerable improvement will, of course, be effected by replacing the
balancing weight by an identical magnet as Maxwell actually indicated
partly because this would eliminate effects produced by the earths magne-
tic field. If the magnets were truly identical it could probably be arranged
to eliminate completely the terms dependent on a in the above expression.
Even so, however, the accuracy can hardly be made very high.

A possible method that does not appear to have been considercd
involves the use of two pairs of Helmholtz coils. We start our discussion
by noting that if one pair of coils is arranged in the Helmboltz position
(for which x=R/2), then

H 4T NiR;2 47T N,i
1= v  \nil = T & n+lio. .
e T (PR

Consequently if we set up a second and larger pair of Helmholtz coils
with the same current passing in opposite directions we would expect zero
field at the common centre if H; =H., i.e. if

Ny N

R™ R”T
1 2 :
However we will again have an instrumental error of - § H in determining
the field equality and a measuremental error in determining the radius
of §R, As a result we will calculate not the true value n but (n+ §n),
such that :—

4 T Nii ' AT Noi -

(f)ﬁ%ﬂﬂ (RliSR)msé-l-— (i)gtﬁg_n (RziSR )n+5n.—1 x

5; 4
Hénce,‘ diyiding by the value of Hy Which is
4T Noi

()5 (ragr )"0




we see that :—
EL( RziSR‘)fHSﬂ—l — 1+ §H
N2 \R;+§R H,:
{ (li %2) = sH
So (n+gn-1 ) IOg(li Séj = log (11 -2)
— log gﬁi(%)mgn—l g
(ror=) (=B £18) = = - ea )
o e 7 g ()] -2
o) (2 87 )
, SR §R
| ¢H R, Ry

{n = « R + R
2 =2
l Hy log R; (log R; ) [
Since with modern apparatus we should be able to detect §H of 10—5
gauss on a field of perhaps 10 gauss with coils having log (Ra/R;)=1, we
conclude that

§n =2 % 10_6+(%+ 811:11”

The possible accuracy in the determination is thus set by the measure-
ment of the radii which could, with ease, be 1 in 10%,

Limitations of the same order of magnitude appear in other typical
experiments so that it is very reassuring to have an argument based on the
special theory of relativity which indicates that the law should be inverse
square to the same accuracy as that applying with the law of electrostatics
(1in 10%). This argument is based on a paper by Rosser(%).
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The Relativistic Approach to the Problem :

- Suppose an observer S’ has a charge ¢y fixed at the origin of his
coordinate system and observes a second charge to be moving relative
to him with velocity components u,’,uy and u’;. At the instant that
this charge crosses the x’',, y', plane at the point x’, y’, the observer
measures the force on this second charge e, and finds components

e, e, x' , e e, ) ,
F'y = _",2_; ’Z’i_%; Fy=—f3_;’y'2"% ;F,=0
k(xu yu) k(xu yu)

(This statement involves the assumption that the only forces involved bet-
ween a stationary and a moving charge are purely electrostatic ones;
but if this were not true we would surely have found some peculiarities in
our treatment of the motion of an electron round a stationary nucleus
when the electron velocity is enormous.)

We will next suppose there is a second observer S moving relative to the
first with a velocity of v in the x direction and carrying his own instruments
to measure forces and velocities. Assume there is a coordinate system
which is stationary with respect to him and which is placed so that its axes
are parallel to those of the first observer and so that its origin lies on the
x axis of the first observer. '

Then this second observer will see the charge e, moving with a velo-
city of vand the second charge e,, moving with different velocity components:
ponents Uy, Uy, Uz . Assume that he measures the components of the force
on ey, (Fx, Fy, Fy), at the instant that he sees that charge crossing the
X,y plane at the point x,,, y,,. Assume also that at that instant he notes
the position of e, on the x axis and finds it is at x,,.

Now the special theory of relativity provides us with a nymber of
‘transformation formulae’ by which we can determine what the second
observer will see if we know what is seen by the first observer. These are
best written in words as “The value of x as seen by the second observer
is ¥ times the value of (x'+Vt') as seen by the first observer. For
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conciseness we write it as X = = ¥ (x’ +vt’) where ¥ where stands for
. y2\—1 : : : :

(1 —% ) 2, where V is the velocity of light in free space. This double

sign = = seems a useful idea because it emphasises that this is not an
ordinary equation but is a transformation formula, and has to be read
not as x equals ¥ ' X vt') but as ‘the value of x as secn by the second
observer is ¥ times the value of (x’+vt’) as seen by the first observer’.

Then with this understancing we may write the transformation for-
mulae with which we will be concerned as :— : :

¥ ==y@-vt) ; YVY==y ; Z==z
W — — (ux—v) V2 e V2 e V2 u,
X, VZ—vy, 77 Y(V2=vu) > " P T v (V2=vuy)
v , . V2 F' .
Fx = .= F'x+_v‘2+v u,x (u ¥ F,y’]'u'zFlz) B Fy:'. = Y————-—(Vz—lzvu/x) ’<
Fo oo V2 F, ' '
T 'Y(V2+Vulx)

It is important to note that all these formulae may be deduced from general
considerations assuming only that true physical laws and the velocity of
light in free space remain the same whatever the relative speeds of different
observers. The proofs do not even mention such quantities as B,H, or E.
We now start. Using the first equations we argue that :—

Xy == ¥ (xu—VD) 50 == (xo—Ve), X'y == ¥ (X ~x,)
Then, using the force transformation formulae, we see that :—

’ ’
Fx - = €y €y X y . + (Vz_l\ivul ) g u/y i €y lyyu g__l_o g ;
: k (x;2+y,2)2 e (x'2+y 2)‘
u [73 u
V2 ‘ eu evy:; V

Ty (VEhvu) (x,2 +y,2)s-
u u

We also see that
(ux"v) V2 g = V2 (VZ_VZ)

Vitva'y = = V24 Vg V2—v u, V2=V u,)
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and that
. , , V2 )
XY, = = N2y = x)2 y2 and Wy = *i(VZuivux) ’
R V €y €y - \L('\&—‘ v uX)—
B = e Ty b U e x) g V2=vy)
V2 u:)' Yu
“{(VZ A ux)
. e, €, s V2 (V-vudye g _ o
Fy -k {A{z (Xu_Xv)"Tyvz} Ll & (V2—u2) Fz —©

Note that it is now no longer necessary to use the sign==because
it is obvious that the only way in which the S man can see things the same
when they are both in the same system is if they are truly equal to each
other. -

We now simplify the above force equations by remembering that
1

N2 = (I—f) and by noting that
v2

2 xu—xu)2+yu,,2 = ng (xu‘xv)2+(1_ —VV;—) .Vuzg

TN

v2 .2
A

v2
= N2r2 EI——s1n2 9u§

if 9, is the angle between the radius vector and the x axis or the direction
of movement of e,. So the components of the force on e, are :—

\
F, = €y ey (xu—xv+ Tzujyu.)' y; €y €y (VZ'—V ux)yu

3
2

vz . . vz o, 2
kﬁ§r3§1— ~y sin? eug k2 '351‘ VTsngu}-vz
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These equations, virtually those first obtained by Tolman(5), degenerate
when the velocities are low, so that Y=1, into the components of a huge
electrostatic force plus other forces of the order of Vvsmaller. It is there-
fore unlikely that they can be tested as they stand. Rosser(4), however,
gave a lengthy explanation showing that the force can be regarded as being
produced by the electrostatic field of e, and the magnetic induction o ve,
The following argument seems much simpler and more directly applicable

to currents in wires. ’,
L e
| s
Suppose that we have two short ele- .
ments of wire §S, and §s, containing /”',
electrons e, and ¢, which are in motion " !
as above and equal positive charges which !
are at rest. Call these A, B, A’, B’ as !
shown. Then the total force, F*, on §s, !/
should be that ::::ﬁ‘:\. :-::S\r_:'::.
+ e+ B 1 r
bs, '

(from AA' with (from BB’ when (from AB’ when v) _
v & u present ) v & uabsent ) present, u absent

(from BA’ when v\
absent, u present;

Then, using the formulae given above, we find that :—

[ ( 1
. e, e, l’.{’ Xy —xy)+ V‘ Uy Yu L .\ .<| Xy =X,y L
x —“I—(_;f v2 sin2 eu g i , V2 I
(RTINS




49

[ (V2—vuy) ¥y l
F*, = SvCu 2sin2 g\ 2 VZy,
I ked '{L N2 V2 (1__V 81\1/12 90) T+ vz

V2y,
- v2sin2 G, \ 2
o g

F*, = ef( Cu Viy Yy \
r3 v2 sin2 9,\ ¥
N2 V2 (1_. —\2 u)
e, e vu
and F*y = - —Y " x Yu
k3 v2gin2 g, \
122 (1- LS00 ) 3
So, since .};" = sin 9,
(eyv) (e,) sin O,
%* 2 * 2 = :
F*, =\/F“ +FY kr2~12v2(—vzs\729U>%

G, Ssv) (iy £sy) sin Gy (1_ \‘;_i)

k2 V2 (1_ _YiSin"'_‘)v-) 3

V2
whilst its direction is at right angles to (i, §sy).

This conclusion deserves some comment.

(1) It shows that, if the force is expressed as B, (e,u sin 6,,) then the
value of B, is the standard formula for the magnetic induction from a
relativistically moving charge (6). The difference is that here it is ob-
tained without using Maxwell’s equations or any other electromagnetic
formulae which are based implicitly on the law we are trying to prove.

. n 6. '
(2) At low velocities B, becomes % which can be

] i, ds, sin C g .
written as '#—"——1‘_’2—9” which is the normal Biot-Savart or Grass-

man expresssion.
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(3) The average speed of electrons in wires carrying ordinary currents
is, surprisingly enough, only of the order of 10~2 cm. per sec. This occurs
because 1 cm. of wire of area of cross section 1 mm.2 contains 8.5X102°
atoms and a similar number of free electrons. Each electron has a charge
of 1.6.X10-19 coulombs. -Hence for a currenit of 1 amp the electron

. 1 - L
VCIOCIty must be (8.5X 1020) (1.6X 10—19) - 135

sec. For this reasons in any conceivable wire experiments the relatavistic
correction terms can be forgotten.

cm., per

(4) We now have a definite argument showing that if the law of force
between electrostatic charges is an inverse square then the law of magnetic
field production must also be an inverse square with equal accuracy or

certainty,

Thsse conclusions are valid only if it is proper to think of the fields
of currents in wires as being produced by the the slow motion of.the whole
number of electrons contained in the wire. This seems a little doubtful
since we know that currents in straight wires are propagated with the

velocity of light.
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SECTION 11
_Probleﬁs for solution.

I. Prove that the co-efficients of all the terms except those of

R 2 D
oy Alyee v onon ap-1, in the expansion of the circulant
!
(24 ap—1
! : .
Ap—1 +« Qg .+ Ap—3 . of prime order p, are
ai . ao

divisible by p-
. (Proposed by S. M. Hussain
Mathematics Department,

Panjab University).
II. Prove that a necessary and sufficient condition for an immersion
to be minimal in Euclidean 3-space is that f K ds=4 7, where
k>o0
K is the Gaussian Curvature, of the surface.
(Proposed by B.A, Saleemi

Mathematics Department,
Panjab University).

ITI. Find a general formula for calculating the number of proper

Ideals in Jom.
(Proposed by B.A, Saleemi

Mathematics Department,
Panjab University).

IV. If 1 cm?2 of surface emits normally an energy E in the form of an
an electromagnetic wave, it produces during the short time §t
of téle emission a pressurée ofc—];t and thus carries a momentum
off. If this plane wave passes into water and then falls onto an
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absorber it produces a pressure of _E and thus carries a
E vt "
momentum of’ v What happens to the remaining momentum?

(Proposed by G. Tarrant.
Mathematics Department.
Panjab University)

Explain why a cyclist can ride without falling off (@) when he is
holding on to the handlebars, (b)) when he is not.

(Proposed by G. Tarrant
Mathematics Department,
Panjab University).



SECTION III

ON CERTAIN EXPRESSIONS INVOLVING FTH RCOTS OF
UNITY

BY

S. MANZUR HUSSAIN AnD A. SHAFAAT

Notation. p = an odd prime.
_ p—l
1 = 73
w = apthroot of unity other than 1
u, = w'+t :
n wn

m is a primitive root of p if p is of the form (4k+1)
and belongs to q or 2q (mod p) if p is of the form
(4k —1)

Introduction :

1. While evaluating the determinant of 11th order in [1] which

is specially related to the Partition Theory we had to find the values of
expressions of the form X a% pby° §¢ € , where o = w+ % ,

1 5, L 1
ﬁ = w3+ % = w2 _i_@— , 8 = w4 %,( =W4+’_;V—4, 2 extends over

cyclic permutations of (@, B, ¥, § € and w stands for an 11th
root of unity. The values of these expressions exhibited an interesting

congruence property, namely,
Za® byt §d ¢ = —2%tptctdie—1 (mod 11),

a, b, ¢, d, e being non-negative integers. In this paper we
generalize the above expression for any p and its congruence
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property. We also prove some results concerning the value
of this generalized expression.

We shall prove the following Theorem
Theorem o If. ai o=yt o</ <q, then

P
Sa?la® .. aq9= -2 rbegtetegl (mod p), where 3 extends over

all cyclic permutations of «j, ¢, -., ¢q and not all a; are zero.

We begin with the following Lemma,

Lemma: “ng .............. , ¥ng are permuted cyclically by every
transformation w—w", (n, p)=1, if and only if (*ng, *n,,....
....%nq) is a cyclic permutation of (“s , ¥n%...... , “mg-1).

Proof :  Wefirst prove that if (¥ny,...... , Ung) is a cyclic permutation
of (Banl, Yyl L ..., ¥yd71) then Ung,...., “ng are permuted

cyclically by every transformation w—w" , (n, p)=1. We
note that ¥;=1Y,, if and only if I=+s (mod p) and that the
transformation w—>w", (n, p)=I, transforms ¥j into ¥;,. We
now prove that n = + m:* (mod p) where o < i< q—1 and
(n,p)=1. If p is of the form 4k +1, then m is a primitive
root of p. Hence we haven=m' = —m+*), o<j<p—1 and
either jor -+j—p+1can be taken asi. If p is of the form
(4k 1) and m is pr1m1t1ve root of p the proof is the'same as
before. If, however, m belongs to ¢ (mod p) then mv, ml,.

m77 1 are all the quadratic residues of p. Since—1 is a non-
residue of p, either n or -n is congruent to one of the integers
mo,ml, ......, m+~1, This establishes the required congruence;

n=+m (niod p). Thus the transormation wW—W"is equivalent

to w—w *m! which obviously permutes Yl

Und71) cyclically. Since (“ny,......,%nq) isa cyclic permuta-, -
tion of (Ym', Ywl,...., ¥»%7Y) any cyclic permutation of
Cnl al. .., “,,ﬂ‘l) is a cyclic permutation of (*ny,....,
Ung), This proves that (¥ny,.. .., ¥ng) is permuted cyclically
by every transformation of the form w—>w", (n, p) = 1.
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 Next suppose that (vny, ¥ny,. .., ¥ng) is permuted cyclically by every
transformation w—w", (n, p) = 1. Choose n such that n.n; = I(mod p);
then w—w" transforms (%n,, ..., *ng) into (1, N0y, oo von. .. , ¥nr g).
Clearly #;=vn; for some, 1< 7 <q. Let *njy1 = UA; then 'by 'Qur
supposition (¥An_q ,-- .., ¥ADj—1" ¥\, ¥ADj4q,.., ¥ANg)is @ cyclicpermuta-'

tion of (¥ny, ...., ¥n;_y; ¥, ¥XA, ¥Dijze .., “Ig) Hence “n,-n:“)\z
u>ni+3=u)\ni+2=u)\3v ey unqzu)\n—;——ls unlzu/\Q-—i ______ un;_q =4)4-1,
uy=u)4, So that (*n;, .... ,mq) =upd—i L My, L w\EmiD)
is a cyclic permutation of (*A ,%A2, ...., A49.) The relation # 9=1

shows that A?=+1 (mod p.). Hence A belongs to q or 2q. The proof
will be complete if we show that 19541 (mod p) if p is of the form
4k +1. Suppcse otherwise; then — A is a quadratic residue of p. Let
n be a non-residue (mod p). Since p is of the form 4k+1,—n is also
non-residue. Hence neither n nor -n is of the form A (mod p) for any i, so
that (*ny,. . ¥ng) = (A4, ...» ¥\, ..., #2947+~ 1) is transformed into
(DA, oL, 0N, ..., BnA9-i-1) by w—wh, which is not a cyclic
permutation of (*A9~%, ..., , ¥\, ..., ¥A9~i=1) This proves the lemma.

Proof of the Theorem,
Let f(w) = a(%L...aq%
The relation

. q
Sa®l L lag® =% f(W")
r=1 o
follows immediate]y from the Lemma. We first prove that f (w)=no X

~—) o (W 3 1 w3)+.-4ng (w?+wlq—)

(we +
where No, Ny o vnnn. ng are non- negatwe integers such that

No+nj+...+ng=2 a1+ .+aq_1
Now: #x #p= s(A+p)+ #«(A—p) ,

uapy = Hx-FpF)t u(afp =) e ptv) L(,\ /L—v)
This shows that the product of any two of the numbers can be expressed
as the sum of 22—1 of them and the product of three numbers among uo,
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Uley eeveennnns , Uq as the sum of 231 of them. By induction it follows
that the product of n numbers among uo, Ug,........ , Uq is expressible
as the sum of 2"~1 of these numbers. Hence a;°l...... aq*? which is
the product of a;4........ +aq of the numbersu,, uy., ....,ugcan be
written as the sum of ;% *.. %1 u’s.

1
Thus f(W) = ¢1%...aq%=no (Wo+ w—la) +m (Wit —5) + -

1 @1 ....4%1 Hence
wa

+ng(wi4—;) where ng+ny+...4nq=2

q
1
Zl {no (w0 %) +ny (Wl-}-—w‘l‘)—}-- .

q
Za1%...04% = Z'lf(wr) =
. r—

+nq (W9 +v:—q) g

= 2qny+n (—l)+...+nq(—'])
= nmyp—(no+....+nq).
— 211+"-+"q—'1 (mod p)

il

This completes the proof of the theorem.
The proof also shows that, if %;>1

Ta,®l, . agtl = pyp—2°1te- 4,1
where no=no (@g,............ aq) = numbers of integers of the form
M:(m! +.., £m!) + (& m2...+m?) + ...+(Em=x.. .t m9) which
are divisible by p, where m occurs a; times.

Itiseasytorelateno(ag,.......... aq) to the number of solutions of a
linear congruence (mod p). Let x; be the number of timesm' occurs with a
negative sign in M. Then, if

M= (a1—2x1) m—4.... -}-(aq-'ZXq) mi
where 0o x> a1—1,0Cx <, v e e ,0&Lxq <K ag ceniinnnns @)
For every integer n 5= 0 (mod p), define n—1 as the unique solution of the

congruencen x = 1 (mod p). Now
M = 0 (mod p)
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iff xitmxy+. . AmTlxg = 2-1 (g, +am+. ..+ mi-1 aq) (modp)

D0 (AL,eeevennernns , aq) is, then, the number of g-tuples (X1,....+... Xq)
which satisfy the congruence (i) together with restrictions in (i).

We now deduce some results. We shall suppose that a;>1. It is
clear that whatever is proved for aj is true for all non-zero a;. When we
fix our attention on a; alone we shall write n, (a;) for no (ag,...... ,aq).

I n, (ag,...... , aq) <a;(ax+1) ...... (aq+1)
IL. no (4 p)=4; n, (p) =4; (a+1)...... (ag+1)

For corresponding to'any one of the (a2+1) ...... (aq+1) ways
of choosing x,,........ Xq We can choose Xp in just a; ways so as to make
(X1,.. .., Xq) satisfy (i) and ().

IIL If a;=s; ptry, 51 >1, 11 >1
1o (81 p+ry) = 1o (51 ) +1o (11)

The proof is similar to that of II.

It may be noted that a cyclic permutation of the arguments of no
does not change the value of no. Hence by a repeated application of III .
the calculation of n, (ay, ...... , aq) can be reduced to that of n, (ry,
...... , Iq) where 1; < p-1. ‘

IV. no (a;)+no (P-3;) = no (p), where a; <p-1.

Fo prove this we define N (ay,...... , 4;; /) to be the number of
i-tuples (x1,...... ,Xi) of integers satisfying
, x1tmxyt. o Ami=lx, =/ (modp)........ (i)
and ok <aq,0K LA, ... ,oL < a (i)
When we fix our attention only on a; and / we write Nj (a; ; 1) for
N@gy,...... ,»ai; ). We first note that
(@) Ni(p-1;!)=(ar+1).. .. (Q;+1)

ap —_
® NQ@y....,a;1) =sN(ay,....,a ;l-xym™1)
n=o

(¥) 1 (a1) =Ng(ag1;27 ay+aym+-. .. +agm 1)
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Proof of (o) is similar to that of II. (B) follows by noting that the num-
ber of i-tuples satisfying (iii) and (iv) is same as the number of (i—1)
tuples satisfying '

0 X3 < Ay, ,0< xi < a; and any one of the congruences

Xotmxg+. . Fmi—2x; = (l—o) m—1 (mod p)

Xo+mxgt. .. tmi—2x; = (—1)m-! (mod p)

Xp+mxg+. .. 4mi-2x; = (l—a) m~1  (mod p)

(v) is obvious, k :
By (B) we have, provided a; <p—2.

p-1 , L
Ni(p-1;1)=3 N (ay....aq;;lxy m=1) =

X1=0
@ - r-1 -

=3 N (@y..q;;(-x1m-1)+3 Na,...,a;kxym1)
*1=0 xy=a;-+1
a . p-2-ay o

=3 N(a...,a;lx; m~)+3 N (ay,. . .ai; Fx-ar-] m—1)
X1=0 X1=0

= Ni(a1;/)+N;(p-2a;la—-1) ..ooon.. ®

Now by (), () and (§) we have, if a;-1 < p-2,
n, (p) = Nq (p-1 ;2-la;+aym-+...4agmi-1)
= Ng(p-1;2-1. ay+maz+...+mi-tag) + Nq (p-ar-1;

2-Lajtam+...+agmi-l-ay)

= n, (a;) + Ng (p-a1-1; 2L aj+a;m-+-. .. +aq md " t—a,)

But 27 (g t+am+...fFagmi™)—ay =2-1 (p-a;+asm+-. ..
+ ag mT1) (mod p)

so that Ng(p-1-a1;27L (a1 taym+. ... +agmT™Y) —ay)=n,(p-a;)

This proves

ny (p) = n, (p-ay) +no (@) for a; < p-1.
We express our gratitude to Prof. H. Davenport of Cambridge Uni-
versity for his valuable suggestions for the improvement of this paper.
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ON THE EFFECT OF VISCOSITY ON EDGE WAVES ON A
SLOPING BEACH:

BY
M. H. KAZI
Introduction

In (1), the author formulated and solved the problem of Edge Waves
on a sloping beach, when a boundary layer is incorporated in the descrip-
tion, previously discussed by Stokes on the assumption of no viscosity.
If Z-axis is taken along the length of the beach, Y-axis as vertically down-
wards and X-axis towards the Ocean, then for irrotational ideal flow, the
formulation of surface wave problem for small amplitude motion requires
that the velocity potential should satisfy : V2¢=0, alongwith the
boundary conditions : :

pu—g Py=0 aty=o
Jy ox
0 < ¥y < X tana, « being the slope of the beach with the horizontal.

A solution of this B.V.P. is given by ¢ = elt ¢lkZ% —k (x cosa+y sina)

with o2=gk sina, which is referred to as STOKES EDGE MODE. Tak-

tana at y=Xxtana

- v
ing the velocity vector Uy corresponding to this solution as the INTERIOR
SOLUTION, the boundary layer solution obtained in (1) is

— .
up; =(—k cosa,—k sin«, ik) Exp [i(ot-+kz) — ]fna — (14i)

% ¢ \/ o sina ]
where §=x -y cota, y=n, z=2.

The components of the force of friction on the sloping beach are calculated
and are then distributed over the depth as components of Body Force.
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The problem is then reformulated in accordance with the shallow water
wave theory, taking into consideration the body force obtained from the

preceding theory.

Calculation of Stresses and Components T :

=
Uy = (~k cosa, — ksina, ik)  (t, z, y) Exp [- (1+i) §8]

where (b (ts z, y) = Exp [i(0t+kz) - Slll(lya ]

o sina
and p = ‘\/T

Let Ty, Ty, Ts denote the components of the force of friction on the
points of the plane y=x tanda, in the directions of x, y and z— axis respec-
tively :

T; = o;5nj
Calculations of Ty :

T; = 011 0y + 012Dy + o130,

np = sina
n, = — CosSd
ng =0

Tl = 011 Sin(l -~ 015 COSa
= Oyy SINA — 04y cOSA

Oxy = V(g; + —%) : In the new
co-ordinate system o,y (§, V,2) = v (g—; — cota g% + %)
ov

Since g—;l is negligible in comparison to o

3 '
and 2k we get :

oxy (£, Y,2) = ¥ [ — cota g—g + 7{]
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"xx(EaYsZ) = ~-p +2v %
. . u u
. Ty = —psina+2v sina %E— — v Cosa [— cota —g? + —ag]

u (1-+sin2a ov
= — p Sina —{—va‘E gjinTg vcosaﬁ

u = —kcosa d(t,z y)Exp [ —(1+1) FE ]
— k cosa (1+i) f & (t, z, y) Exp [-(1+i) & \/ asm]

BE
% — ksina (14D F® (62 Y) Exp [-(I+D E £ ]
u g .
aE/ = k cosa (1+i) p & (t,z,y)
£ =
%/ k sina (1+1) § @ (t, 2,)
£ =
' (TI)E —o = —P sina vk [ (1--sin2a) cota — sina cosa ]
(1 ’Jf‘l) p o (t; z, Y) )
Tif = - b Sina + \/i"_glﬂ k (1+i) cota
£=0 .
Bxp [16t 42 = 505 |
Caleulation of Ts e )
T, = Oyx Ny+0yy Oy + Oyz Dz
= oyy Sina — COS 0 oyy
\4
Oyy = — p + 27; %y—
— - o _ OV p—
= p+2v%a17 Cota agg P 2vcotaaE

ou ov
Also oyx = v [-—cota OE o ]

ou v ov ]
= t S - p- ta —-
Ty=v [ cot a—— 2 02 ] Sina. —cosa [ p—2vco 2
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_ ou v 1 -+ cos?a
= pcosa v cosSa Y + v T §aa

o e y ou ov
Substituting for ok aqd T we get

T2/= p cos a — vcos2a k (1+i) p & (t,2,y)

£=0 + v (14 costa) k (1+) £ & (tzy) |

. k
o= pcos a -+ k(1-+i) v g Exp [l(a t+kz) — STXEJ
. i . k
Tz/ = P cos a-+k (1-i) \/figln ¢ Exp [1 (ot-+kz — SiT):x]
E=0

Calculation of T = eeieiieiieeen .

Ty = oxg Ny + ozy Dy
= 047 SN & — COS & 0yy

_ ow ou
Txz =¥ (ax + az),

" Oxz (5,}’, Z, t) =V (% 4 g_g]
w = ik & (t,y,2) Exp [~ (141 £

- g%-= —ik(1+) @ (t,2,y) Exp [~ (14+) £ 7]
Voxe [ = = k(1) Py tzy)

£=0

— ow v

=Y (a—y + 3;)

ooy Eyat) = v [3),— — cot a %—‘; -+ g—:

= - v cotaiv-gﬂ
05

"oy [= ik (14) v cot a £ & (t23)
£ =0
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cos2a %

o Tof =ik (1 - Sina -
of =ik (1-+D) v & (t2) 5 Sinot = g

§=0

= —~ ik (1—]—1),\/

TO SUMMARIZE :

-~ Exp [ i(ot4kz) — & ]

Sina

..............

T1/ = ‘\/lsziiik(l i) cot o Exp [i (ot+kz) — SI;ZaJ— P siq a
£=0
T2/ = pcos & + k (14i) 4\/” Sin o Exp [ (ot-+-kz) — Slfya]

£ =
T3/ = - ik (1+1)\/ ~ Esp [i (ot-+kz)~ S%]
£ =

DISTRIBUTION OF components of force of friction over the depth
as components of body force can be accomplished by dividing the expres-
sions for them by x tan « : we want to reformulate the problem in accord-
dance with the shallow water wave theory, taking into consideration the
body-force obtained from the preceding theory, neglecting the pressure
terms in the above expressions. We anticipate the effect of T, to be
negligible. We shall relate the other two components to the expressions
for the interior velocity components at § = 0:

Fo = — ./ 22 SO0 (1) cot « Exp [i (ot-+kz) — sikny:]
X tan a
u, = k cosa Exp [ i(ot+kz) — 11]
= Sina
Foy — = (149) | ov Sina u, Cos &
=) X NT 2 Sinfa

ogv cot d

= — (14D ua’\/ZSma X
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_ —(14i) ug'\/av/ZSinoc

Xtan @ e @av)

ik (140) : k
Ro = San a s B [ o= 7|
. . k
w, = —ik Exp [1 (ot+kz) — sinya :I
ay
—(1 +i)wo\/2Sin o« rmeeaeas EEERR M
Fo = "anda
AU
Fog = = =" e (VD)
and Fpy = — LXW_O
where ) = (1+i) ,\/L;HL cos a
.............. (VIT)

‘Reformulation in Linear Shallow Water Wave Theory’

We shall now formulate the problem in linear shallow water-wave theory,
in which we take into consideration the effects of viscosity rather indirectly,
by using F(xy and F(z), whose estimate is given by the preceding calcula-

tions, as components of body-force in the following:

The equations of linear shallow water wave theory are: (IN
same co-ordinate system)

The conservation of mass equation :

07 0 0 —
?t—+a_x(uh)+55(hw) =0

where h=xtan ¢ and 7 L handu £ 1, v £ 1

du 1 9

- B - 9P

at (x) p ax ..............
ow 1 op

?z F(z)— T az ..............

Assuming that the vertical acceleration is negligible
p=Dpotpe(y+n) .

the
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$0 that (2) and (3) take the form :

3
a_;l = FQG) — 7% ... 5)
and g_:v = Fl) — &7 e (6)

Now we make the following assumption—we take

Au

F(y) = — ~ and
AW . .
Fix) = — -~ where A is given by equation (VII) of the

previous theory :
We then have the following formulation :
M L2 D () =
S 2 ) - (w) = o

h = x tan «
ou __ Au

5 = -5 T 8Mx @)
AW AW '
= p Mz eeeeeieieniaas (8)

We anticipate a complex time factor eiot in the expressions involved
so that these equations can be further simplified. Thus if we suppose

u = eietu’
etc. and
w = eiotw
then drop (') we shall obtain :
(io-—]——)L) U= — gM,
X
, A .
(lo+7) W= — g
.. o1
so that we have for the boundary condition, Sy = O

ony=xtan &, i iiiiiieeeieraeen e )]
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Equation of conservation of mass now gives
. o [—ghx ] , 0 [—ghx _
PO o [ Ariox * T az[ A ixo ’71] =0

h=xtan « : )
..we end up with the following final form of the formulated problem:

[ X 7 J—l—[—ﬁ—’? ] ~Z;g77cota
Atiox' I LIatixe * 1, T g

7, = 0 at y=x tan BN 10y

It has been possible to reformulate the problem according to
Shallow Water-Wave theory, taking into consideration the components
of body force obtained from the preceding theory. The author believes
that the solution of the reformulated problem may reveal the extent to
which the viscous effects are important for Edge Waves. Efforts in that
direction are being continued, and it is anticipated that the effect of
viscosity is to cause attenuation of waves in the Z-direction,
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THE USE OF DIMENSIONAL ANALYSIS FOR CONVERTING
ELECTRICAL EQUATIONS FROM UNRATIONALIZED TO RATION-
ALIZED FORMS
BY
G.T. P. TARRANT
Mathematics Department, University of the Panjab.
Summary

Electrical equations expressed in unrationalized units commonly differ
from those in rationalized units by factors of (4 7). Students often have
need to convert equations which are proved in one system into the one in
which they desire to work. This awkward process can be dealt with very
readily by a simple extension of the theory of dimensional analysis.

INTRODUCTION

The possibility of using method of dimensions to convert unratio-
nalized electrical equations into rationalized ones (or vice versa) depends
essentially on understanding clearly the relation between the theory of
dimensions and the theory of the names of units. Since this paper is
intended to be read by students I may perhaps be pardoned for clarifying the
initial simple ideas.

We can add, subtract or equate quantities only when they are expressed
in the same units. A volume of 1000 cc may, or may not be equal to
(1 pint +14 fluid ounces); the statement cannot be tested without the rele-
vant conversion factors.

In most scientific work derived units such as ccs. are preferred to
arbitrary ones such as pints. This is convenient in part because the name
of the unit of the new quantity can be obtained immediately by inserting
the units as well as the numbers into the equation employed. Thus if the

momentum of a body is written as (20 gm) (10 :—z% ) we obtain not only

the number (200) but also the unit ( gn;;zm )
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Commonly the full names of such derived units are so lengthy that
we often coin shorter words such as dyne or erg instead of the full derived

m-~cm m-cm?2 . .
names (g~S€02—) of ( g?zz— ). This habit often helps to give a better

understanding of the nature of the more complicated physical quantity.,
For this reason work done per unit area is usually said to bave units of
(zrrngZ) instead of (S%g— .
important thing is to develop the ideas which follows from the realization
that every derived unit can, in principle, have its name expressed in terms
of the names of the original arbitrary units of mass, length, time, tempéra-
ture., The words ‘in principle’ are used because we have no actual name

for the unit of dielectric constant.

However for our present purpose the

The fact that the multiplication and division laws apply to the names
of those parts of an equation where szveral factors are multiplied or divided
and the fact that we can add, subtract or equate quantities only if they are
in the same units allows us to made a valuable check on the reliability of
equations after the numbers have been inserted. As an example, consider
the expression for the pressure at a depth, h, inside a liquid of density D
when the surface tension, T, is taken into account

P = (hDg + —zf—)
2( _gm'_cm_)
a2 on 52+ 2 (0 die
mm

_ _gm A
= 19620 om — sec? + 160 mm — sec2

The units reveal the mistake immediately and we are left to decide
whether this mistake occurred in the algebraic equation or in the process of
inserting the numbers.

This old technique is not driven home in teaching as much as il
deserves, possibly because senior teachers are so used to using consistent
units throughout that they do not appreciate how frequently mistakes are
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caused in elementary work by the use of mixed units. Thus the dominant
interest of the advanced teacher is in checking the reliability of the alge-
braic equation alone.

As Focken explains in his ‘Dimensional Methods and their Applica-
tions’ this can be done most concisely, providing we do not use mixed units,
with the aid of the convention in which (L) is written for the unit of length,
etc. These symbols are called ‘the dimensions’ and are usually written in
square brackets so that [Density] = [ML™?], etc. We can, therefore test

the algebraicequationP = ( kDg + ;I_T ) by writing

[P] = [(L) ML) (LT 2+ g wf—z g L‘1] = [ML‘l T"3+ML‘1T—2]

which appears correct since we are adding quantities of the same

‘dimensions’.

This is the essential reasoning behind the ‘method of dimensions’.
The method gives correct results because it is part of the more general
analysis of the names of our units. It is short and easy but it does not
normally cover protlems produced by the use of mixed units or Constants
of Proportisnglity. The formalism of the method of dimensions can,
however, readily be extended to cover the use of mixed units if we
remember that arbitrary and derived units are always connected by an equa-
tion of the type.

@ in cals) — k@ in joules)
which is one equation involving two new quantities Q cal and k. We

could therefore write formally that [Q ca]s] = [k] [Qjoules]'

This formalism involves a generalisation or extension of our previous
understanding of the word ‘dimensions’. If T say, ‘the dimensions of heat
measured in calories are those of k multiplied by those of heat measured
in joules’, I am using the word ‘dimensions’ in a more abstract and general
way than has normally bzen done.
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There are several ways of discussing dimensionally the equation
Q=S M ¢g. Amongst these are :—

(1) Measure heat in joules. Then [ML2T2]=[S][M][¢] so
that one new quanitity, say S, can be said to have the dimensions
of (L? T~? ¢~1). One new ‘dimension’ is introduced because the one
defining equation contains two new quantities. S then has the units of
joules per gm per °C.

(2) Measure heat in calories and regard this as a ‘dimension’. Then
[S]=[QM™1¢~1]. Two new ‘dimensions’ occur because the one defining
equation now contains three new quantities. S then has the units of
calories per gm per °C,

(3) Measure heat in joules but regard the constant of proportionality,

K = ( Q cals

Qjm) as a ‘dimension’. Then

kQ Jjoules (Which in Q cals) = SMyg

The dimensions of S will then be [k L2 T2 ¢7!] and again two mew
‘dimensions’ occur. This method is necessary if, for any reason, we insisted
on measuring S in calories per gm per °C in spite of measuring Q in
Joules.

This shows that the notion of regarding a constant of proportionality
as a ‘dimension’ is, in fact, only a new way of putting an idea which has bzen
current for half a century. If I wish to measure S in cals/gm/°C I must
use either [Q] or [k] as a dimension and must make my choice according
to my selection of the units in which I wish to measure Q.

Because this type of formalism complicates dimensional analysis it can
be of interest only when mixed units are involved and more than one logical
system of units is employed. ~This is, however, exactly the situation which
occurs in the inter-conversion of rationalized and unrationalized electrical

equations,
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Rationalized and Unrationalized Electrical systems :

In the old electromagnetic or electrostatic systems there were really
three fundamental equations introducting four new quantities, ¢ & k,

1 & m. These can be written :(—
m; m, ifssing

lu d‘Z d2
Because these three new equations connected four new quantities one of

e e
Force = ﬁf— ; Force =

; Force = mH =m

them had to be taken as a dimensional primary; if the choice was k we
said we were working in the complete electrostatic system and if it was # in
the complete electromagnetic system.

The new rationalized M. K..S. system embodies a completely different
line of approach and t-nds to ignore the conception of magnetic poles.
Nevertheless the system can be shown to lead to the following equations:—
IH:THEZ ; Force = mH = m 125:5121_9

Occasionally people have followed the old e.m. or e.s. logic in their
teaching but have made their results applicable in the rationalized system
also. This can be done by accepting as basic the three equations :—

T L T —
Force = dnk d2° Force =

igssing

€16 my my | _ _
,FOI'CC = mH=m —Adz—_

Akd? ° Aud:
providing A is put equal to unity for results in unrationalized systems and
to 4 = for rationalized ones.

Force = Force =

Now from the point of view of dimensions these three equations can be
regarded as introducing five new quantities,e and k, # and m and, for the
fifth, A. Two quantities must therefore be regarded as dimensional prima-
ries A and either k or # according as to whether we wish to work with
dimensions of k or #. Any other pair out of the five could theoreti-
cally have been selected but it is certainly a great advantage to select as
dimensional primaries quantities which you are unlikely to use frequently.
This is because such quantities can bz ignored complet:ly whenever they

-are not wanted because this cannot then affect any other dimensional
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factors in an equation. It is therefore important to retain A as one of the

‘dimensions’.

The dimensions of e2 can thus be regarded as being those of
L 1 1.1 1 3
Akd? (Force). Sole]= LA%k% L(ML T—Z)%] = [A’kzMZLS T-1 ]

From this, with the help of the third equation we see immediately that the
dimensions of m will be those of :—

(Force) A d2
Tigs

(MLT™ A (L)

1 2 -2 -
At vt L

1 1
2 2

5

1
k “M*L

Proceeding in this way the following table of dimensions can be drawn up :

Dimensions

in terms of k

in terms of u

Electric Charge
Electric Potential
Electric Field
Dielectric Constant
Capacity
Resistance
Inductance
Magnetic Field
Magnetic Moment

Permeability

MIpET1 it oY
1 1 -1

M2 Lz T—1 k 2 '%
1 .1 <1 e

ME LAY

k
LkA
LTTk 1A
LTIT?k™ A7

M? L2 T2kt A2
1 8 1 1

M2 L2 k 2 AZ

L2 k=1 T2

|
I

1

1 1 _1
M2 L!lu 2
1 3 1 -1
M® L2T? u? A2
M? L2 Tzt A
L72 T2 u~?
L7 T2 u~t A
LT!A '
L Alu
1.1 I N
M?*L2T1p?2A"
1 5 1 1
MELE Tl u? A2

I

Equations which have been derived in the A system (that is from

(Force) = A k42

1 € etc.) will, in general, contain A implicitly and explicitly.
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Implicitly, because A is hidden in the different terms, e, X, H, etc., and

explicitly as a free power of A on one side or the other. Thus the field at

. . . . . 2w ni
the centre of a circular coil of wire carrying a current is H = AT

Sﬁch equations must balance as far as the total powers of A are concerned
if we include both the explicit and the implicit powers. Thus in our

example the left side contalns A ¥ implicitly in H while the right con-
tains A~ explicitly and A2 implicitly in i.

Equations which have been derived in a complete electrostatic or
electromagnetic unrationalized system or in rationalized M.K.S. can be
regarded as containing A only implicitly. The fact that the dimensions
of A on the two sides must balance thus allows us to determine the missing
explicit power of A. Another example should make this clear. Consider
the non rationalized formula for the field on the axis of a finite solenoid.

H= lﬂxﬂ (cos \; — c€os ¥o)

-1 1
The H contains A ? implicitly and the i contains A, so that there must bz
an explicit A1 on the right. The A containing formula is thus,

2# ni
Ax

But in rationalized systems A=4a, Hence the rationalized formula must

H =

(cos 1 — cosy)

bevH = —% (cos ¥y — cos ¥3)

We will now consider an example which transforms in the opposite
direction, Suppose we wish to convert the above rationalized formula
into the ynrationalized form. Then we note as before from the table that

-1 1

H and i contain implicitly A * and A+? respectively. Hence the ration-

alized equation containing A must be : H = i’:{—lA (cos V1 —cos )
. 1 . .

so that by merely writing A = o5 We convert to the unrationalized form

of the equation.
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The real value of the method is in more complicated probléms where
some dozen pages of argument would have to bs written out afresh if one
could find the formula only in the rationalized /unrationalized system which
was not desired.  One example of this more complicated type should suffice.

‘The effective cross section of a bound electron for scattering of
electromagnetic waves is known in the unrationalized electrostatic system
4 pt
tobe o = §melp 5w gl
3KEmE et { (w? - p?)2 <_W_3A)2 2
. (- + 3mk c® Pt}

What will it be in rationalized M.K.S.?.
In answer we note that e is the only quantity involved containing

1
A—and that to the extent of A®. Therefore the unrationalized equation
containing A must be :—

g = 7 D WEeE \2
wam e (v r) 4 (R 7
so that the rationalized equation is :
8 T et pi
¢ = 2 w? ¢4

(47)? 3 k2 m? {(Wz_pz)z+( T )ZPZ}

Warning. The above method of conversion can be expected to produce
the correct rationalized equation only if it is supplied initially with the
correct unrationalized one. Unfortunately many common expressions in
the e.m. and e.s. systems are in fact incorrect because the authors have
ignored u or k merely because these happened to have unit value in
the system of units in which they were working. If there is any suspicion
of this it is wise to check the dimensional equations in both the k and the
u terms and to add in the necessary terms to make the dimesnsions balance.

S]jecial problems of the Gaussian system :

Some authors have written in the Gaussian system in which electrical
units are measured in e.s. and magnetic ones in e.m.u. This is possible
because H,; = (a constant of proportionality ) H.p,
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. Since the constant of proportionality turns out to be 3 x 1010 vm
and since M., for free space = 1 = k... for free space, it is usually
written as c. I will, however, call it ¢ ,,¢0 Or ¢, to distinguish it bstween
it and values arising in other ways which I will call corging,y OF €o. Numeri-
cally the two are the same but ¢, has dimensions of L T~1 while ¢ has not.
Because of this the dimensions of equations written in the Gaussian system
will probably fail to balance by some power of (L. T™!). This will occur
whenever ¢, is involved or whenever ¢, has been cancelled with ¢, during
the deduction. There are two ways of dealing with the situation.

Firstly we can check dimensions asfar as L and T are concerned and
can assume that any failures of powers of LT ! are caused by a ¢, having
been regarded as c,. The equation can then be corrected and converted
directly into rationalized form ignoring completely the presence of ¢,. This
method is rapid and easy providing we know that the original equation was
correct. Its weakness is that it gives us only a partial check on the
accuracy of the equation.

As an example consider problem (3) pg 566 of Ferraro’s ‘electromag-
netic Theory’ where students are asked to prove that a distance

27meceVv
d="n

Let us attempt to convert this to rationalized units. We start by con-
sidering the L T dimensions only and note, with the aid of the table on page ‘
; [LT T,___ = [T]
[L? T [L® T?]
—which does not have the dimensions of a length. The L T dimensions
would, however, have balanced if the ¢ had been ¢, with zero dimensions.

. 2T mc, v
Hence we rewrite it as d = e H

in Gaussian units.

70 that the LT dimensions on the right side=

Next we remember the warning

mentioned in the last section and check on k or #. This shows us that
the author had forgotten a k. (This is unimportant in Gaussian units
for which k for free space is 1 but it is vital in M.K.S. where it is 8.9x10-16).

. 2 c, vk .
We therefore amend it to d = l—n;—l_’l———. A further check is now needed
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that this does balancs as far as the A dimension is concerned. The rationas
Tmvk . .
lized equation must therefore bs d = }T}mﬂ* since the value of ¢, in

rationalized N.K.S. is unity.

That is the first method. The second is to construct a completely
new table of dimensions using in addition to M,L,T,K, and A a new one Cto
to denote the dimensions of the constant of proportionality c,. The
electrostatic, or k containing, form of this table (and it is best to use this
because magnetic quantities are less common than electrical ones) is exactly
the same as in table (1). The only difference will be in the magnetic quanti-

ties which are given below. Dimensions
Magnetic field M% L% T-2 k%'A— 3 C
Magnetic Moment MELE K P AT ot
Permeability L2 k! T? C2
Cr is C

Then all that is necessary is to check the dimensions of C (though
one can do a complete check if desired). Let us return to our previous

Vv . . .
equation d = 2—17—’;;_1—6—, H alone contains C so the equation will not

balance unless c=c,. The conversion then proceeds as before.

Conclusion. An extension of the theory of dimensions to cover con-
stants of proportionality is justified by the uses it can have at present in
converting equations from unrationalized to rationalised forms or in check-
ing the accuracy of equations expressed in Gaussian units. It is, of course,
also always possible that other uses may develop.



ON THE CRITICAL DETERMINANT OF AN UNBOUNDED STAR
DOMAIN OF HEXAGONAL SYMMETRY

M. REHMAN

Definition,

(1) Let R be any region and L a lattice with no point except O, the
origin in the interiot of R. Then L is said to be R-admissible.

{2) The lower bound of the determinants of all R-admissible lattices
is called the critical determinant of R and is usually denoted by A (R).

(3) R-admissible lattices of determinant A (R) are called the critical
lattices of R.

This paper is intended to determine the critical determinant of the
following star domain S :

2]yl W3lx]l =]y )<Lyl <v3]x]|
y2-3x2 <1, ]ly| > v3|x]

oM

4 \val

Y
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S is defined by the following equations in tri-axial co-ordinates,
4 ZX < 1, insectorsI and IV
4YZ < 1, insectorsIl and V
4 XY < 1, in sectors [Tl and VI

Theorem ;

A(S) = \% (@2 - ab - b2), where 4 ab = 1, b2 = 2a2,
Let S be defined by f (x,y,2) < 1 so that in sectors I and IV f(x,y,2)

= fl (X:Y,Z) =2 \/Z_Xa

in sectors [Tand V, f (x,y,2) = f, (x,y,2) = 2 \/¥z,
in sectors Il 2nd VI, f(x,7,2) = f, (x,y,2) = 2 /XY,
We apply R.P. Bambah’s method in proving the theorem.
It is easy to see that f (x,y,z) satisfics the following conditions :
(1) forx > o,z > o,f (x,y,z) is cont'nuous.
f(0o,0,0) = o; fort > o, f(tx, ty, tz) = tf (x,y,2)
@) f(-x,-y,-z) = f(x,y,2).
(3) f (x,y,2) is symmetric in all the variables.

)£ &+ %051+ Y2 21 + 22) > L(x0, v z) + (X2 ¥2o 22)
X >o0,Z>0

(5) for fixed x, f(x,y,z) is a non-decreasing function of z.
(6) for fixed z, f (%,y,2) is a non-decreasing function of x.

(M ifo € r 1, then f (1—r,—2, 1) is a non-increasing function
of r.

&

(8) foro € a-r € +21, fla—t,—2a +%, a-f-—) is a strictly

£
2

decreasing function of r.

(9) f(03_353) < f(1>'—2, I)'
Consider the following points (fig. 2) and define a, b by the relations.
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@) f; (a,—a—b, b)=f, (a+b,—b,~a)=2,/ab = L.
(i) f; Qa+b,—a—2b, b—a) =2/ (2a+b)(b—a) =1, b>a >o.
A, (a,—a2—b, b), A (a+b,—b, —a), o
B, (2 +b,—2,—b), By (8, b,—a—b), C; 2a+b,—a—2b, b—a),
D, (22+b, b—2,—2—2b) o

E, (2(a2+ab+b2) _ a2fab4b2 a2+ab+b2)’

2b+a 2b+a ’ 2b+ta

T, (1, =4, — 1)

Bs

- - - 5> 5 -
It is easily seen that OA; 4+-OA,=0C;, OB,+0B;=0D; and F, is

the point of intersection of C; A, and D, B,.

1 VZ

From relations (i) and (ii) a = , b=
4__ 4 _
2 V2 2v2

-+ \/’2—

' 2 : 3
-2 A OA; 2 A \/3(3-% +ab) s

It can be easily verified that F, lies below T, or 2 (a24b2+ab)
< 2b+a. :
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LA A AlsoAS)= A ifand only if Ly (A;, A,), and L,
obtained by the reflections of A;, A, into the medians in their respective

sectors, ate S-admissible.

Lemma.

L; (Ay, Ay) is S-admissible, any point of L; has co-ordinates, X=a ¢
+ (a+b)n, Y= —(at+b)é-bn, Z=>bf~—an for integer values
of £, 1. '

4 | ZX | = 4] ab £24+£n{b(at+b)—a2} —a(atb) 2]

= lgz + (1 +i) & — (1 +i)n2’

V2 5
/2 v

(é—vz—n) (g + ﬂﬂn)

On account of hexagonal symmetry it suffices to show that 4| ZX | >1
for £ >o.
Case 1. 7 >o.

v2 1 1 1

1
2 ﬁ:2+ 2_4-....,...;(—71

The convergents Py 1/qn+1 are given by the following relations :-
ay=0,a; = l,a, =ag = ........ =2

p-1 =Po =P1 = L, Pnt1 = 25 Pn + Pn-t

I 1=19=2% = I, dntt = 25 Qn + Q1

Payg = Xq pn + b1, q,n+1 =Xpn% + Y

whete « ,, is the complete quotient for n > |

Clearly «, = +/2+1

Pan_ V2 1 1
h 3 '~ | T 7 =
Then 9n - 2 dn 9 n+t qn (X nqn+9n-1)
1

= A
an[(V2+Dau+ G- V52 |

. 1 .

> gzarvery @
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1 1

Suppose, |- — 5 ‘< WI)T?} ................... (id)
then, = — —‘{2——\ < (—\E%T)TZ
> e
/
o 8> F - oy
>i22_q_mforn>1 .............. (iii)
If 3 = 1, then — —é—f ( < E;—Jlm, impossible.

In (if) We use (iii) to find an estimate on the right. Then we have,

li_JZ1 < - |
T2 vziﬁ 1
- . +\/2+1—n2(v,2+l)—§
< ! i (iv)

72 (V2 | i
2T+‘/2+1_ 4(\/2+1)§

Due to (iv) we find that —gﬂ' is a convergent of -\—/22

We pue 2o = £ Then from (i) and (iv),
Qw7
[N S —
X/Z s %+\/2+1
R R R YV D)
~2-1 v2

1 Y-
o} + = >3
o, v2 +1 > 22 impossible.

Assumption (if) is false.

Case 2. n < o. Put & = — 7

£ o
SuPPOSC> 7 +\/2+li<ln‘\‘f_>f_2,?l
2

e T T T T T e




. 1 i
ot, %—— (V2+D) | < ) @ .
LE+ YD
, _ 11 1 _
,\/2+1 = 2+ —QT 2+ .......... dr, an — \/'2+1

The convergents pPug1/quer are given by the relations :-
P-1 =L po =2,Pn41 = 2patPni;

41 =0,9 =1, Yy = an + 9oy

q,n+1 = (\/‘Z'f'l) qn+q7:_1, qn-_l: qn/2 - qt:_2/2-

"Then, % - (\/2+1)] = 1
D Viegy
_ 1
¢ Yy
Cf 2ty i -
. L (ii)
2 (L 2+149)
From (i), 1%~ (v2+1)l < _2@2_
or, £>(y3+1) ¢ — V{: >,
From, (i) (5 (¢2+1)\ < 1
rom — =
’ ? g 2 ( / _ ,\/_2~ ,\_2 (lll)
e (va+i- 3o+ )
.. d \1 II
From (ii) and (iii), 24143 < NP ESEINT N o3
L2 2
i pu
of, —\C/:;— + 3> %
or, 2 < 4 4 2./2, impossibie if {,=3.
Forn = = 1| (6= 20 (e+ V2410 )| = 2 @©

I

l (‘H’%Z)A(S—‘\/Z—l)f >1 forf>4




85

It can be verified that ¢ (¢) > 1for £ = 0,1, 2, 3,
For 4 = -2,
P2 ) = ((E+v2)(¢E-2v2-2)| > 1 forf > 6.

It can be verified that ¢, (¢) > 1for £ = 0,1,2, 3, 4, 5.
Hence the assumption 4 | Z X | < 1, £ > 0, is wrong.
o Ly (A, Ay)is S—admissible, and A (S§) = A .
311
26
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