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ON A PACKING INEQUALITY FOR PLANE SECTORIAL
NORM DISTANCES

Dedicated to Arnold E. Ross

by
HANS ZASSENHAUS

Iu the geometry of numbers there occur distance functions like

; ! V ]
Nn (P, Q)——-{ rz/;:l (yi—xi)! s (P=X1,..0xn), Q=(p1,. .. )

Nym (P, Q)= (xcos-+ysmj )J ( Q {x,y})

N*5, w (P, Q)= | \/um.vm {’(um:rcos rp, Vi =Fsin Cps70<rp<12r9r/>'0a
- 20 . (2% jmy\ )
PQ™ 5"005 (74’ ;i),rs'ln(,—ne-f— Tn) !
0L ji<mjeZ)

which have the following properties:

(1) N(P,Q,)is a real valued non-negative function of the pairs of
points P, Q of the euclidean n-dimensional space Ep,

(2) (translation invariance):
' - -

N (P, Q=N(R, S) if PQ=RS,
(3) (homogeneity):
> >
N (O, P")=AN (0, P) if OP’=)0P, » > O,
(4) (central symmetry):
- -
N(O, P)=N (O, P) if OP’'= - OP,




(2]

(5) the Ey is the non-overlapping union of finitely many closed
cones Ej, ...., Ep emanating from the origin such that each of
them contains interior points and that, moreover, for any
parallelogram OP; P, P; with one vertex at the origin O and the
other three vertices contained in the same sector E jthere holds
the anti-triangle inequality

N (O, P;) > N (O, P)+N (O, Py).

The pointsets C,, ...., Cp are called the sectors of :the sectorial
norm distance N which is defined by the properties (1) - (5). Or, equi-
valently, the ‘gauge body’ of all points of N-distance less than | from the
origin O is an open region S that is starred and centrally symmetric
about O such that E,—Sis the non-overlapping union of finitely many
closed convex pointsets S, ....,Sp such that for every pbint P of S;
also the ray away from O belongs to S; and the pointset C; formed by
. allrays from O to points of S; contains inner points.

A sectorial triangle is defined as a triangle with vertices P, Q, R
such that the two points X, Y defined by setting

- -5 > -

0X=PQ, OY=QR v
belong to the same sector. Hence there holds the - anti-triangle
inequality. .
(6) NP, Q+N(Q,R) <N(P,R).
Let N be a plane sectorial norm distance. A pointset M is said to
be N-admissible, if the N-distance of any two distinct points of M is at
least 1.

Denote by #(N) the greatestlower bound of the areas of the N-
admissible non-sectorial triangles. For example for N=N, we have #(V)

=14/5, the area of the Ny-admissible triangle OQR where Q=(1, 1),

R:(liii, ]"2‘/§> .
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We consider a finite N-admissible rointset M and a Jordan-polygon

T =P;..PyP| with vertices in M such that every point of M that is not
on the boundary of 7 lies in the interior.

Theotem : The area A4 (7) of T, the N-circumference

C(T)=: g NPy Pic), (Pb+1—P1)
and the number of pomts N in M satisfies the inequality

A(T)

@ 3 r(N)

in the event that #(N) is positive. This inequality has been proved by an

ingenious argument in the never published thesis of Norman E. Smith

- [3] for the special case N= Nz ‘The theorem represents a generalization

—C(7T)+1 | M |

which permits to establish — % (N) as anupper bound for the irregular

packing dens1ty with respect to plane sectorial norm distance. The
bound is sharp in Norman E. - Smith’s case and coincides with the
inverse of the critical mesh. M. Rahman [2] gives two other cases in
which 2t (N) is less than the mesh of the critical lattice. Tt is known
in one case [1] but not in the other one that the irregular packing
Censity cannot be greater than the regular packing density.

Proof of the theorem: If (7) would be wrong then there would be a
counter example M, 7T with minimum value of 6+ | M| .

If there are three points Pj, Piy1, P of M such that P is in the
interior of 7T and P; PP,y is a sectorial triangle contained in T for

which

(8) N (Pis Pi+1) > N (Pia P)+N(P5Pi+1)
then for all points X of A belonging to the triangle P; X P;,), but not
to the straight segment P; P, the triangle P; X P;4, is sectorial again.
Among the points X let Y be a point closest to the line P; P;.y. It

follows that !
N (Pi; Pl+1) > N(Pp Y)+N (Y1 Pi+l)!
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that there is no point-of M contained in triangle P; YP;,; other than
the 3 vertices and that the triangle P; Y P;;; belongs to M. Upon
replacement of the Jordan polygon 7 by
=P, Pz. - YP!'+1 .. Py P,
the number of boundary points is increased by 1 such that all points of
M again either are vertices of T’ or they belong to theinterior of T’

Hence

AT, , '
(9) st C(7r VEL > | M

Let us note that
A(M)=A(T")+AP; Y Piy) > A(T)
C(T)=N(P;, Piy1))=N(P;,Y)=N(Y,Pi41) >0
hence (9) implies (7), a contradiction. It follows that there is no
sectorial triangle P; PPy, containsd in T for which (8j is satisfied such
that P is inner point of M. If, however, P=Pj, where i+ 1< j<b and
where no point of M other than the vertices belongs to triangle P; P P44,

then either 5=3,

A(T)
— it >0+ —4+1=3= | M
5 +— C (TM)-+1 + + | M|
or b>3. j=it}2,
A(7T’)
TH+1 > -1
% (N) C( )+ [ M|
(7T =Py P2 . Pi+2 .. Pb’ Pl)
A(MY > AT,
C(7T) ()= N(P;,P.n) N (P;, P)-+N (P, Piyy)
22 NP, Piy) 22
-hence again (7),
orb>3,j>1i+2,

10) 0ty 5 € (T+1> 1 4 |

2t (N) 2
(T"=Pij41 .. PjPiy1)
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A 7Tl/f .
(1) 7[(W)—).‘- %CUT”')-}—] > My

‘ (7r”'==Pj..PbP1 ..Pin)

M O My= {P}

A(T) > A(T")+A(T")
C (M)~ C(My=C(N")=N (P;, Piy1)—N(P;, P)
~N@®,Pyp) >0
hence upon addition of (10), (11) and subtraction of 1 on both sides once
again (7) is obtained.
Thus it follows that there is no point P of A other than P;, P;4; for
which the triangle P; P P;4; is contained in 7 and sectcrial subject to (8).

If it is possible - to find- a triangulation of T into non-sectorial
triangles using only the points of M as vertices then by Euler’s formula
the number ) of these triangles satisfies :

| | M| +7+1=%7+'%+2
so that
=21 M| -b-2
A(T) > 2t (N)
A(T)
- ‘-—1
2t 2w | M
> C (M) >

1 >1

hence upon addition of the last three inequalities again (7).

The theorem therefore will follow from the following  Lemma:
Given a Jordan polygon T =P; P, .. P, Py and a finite pointset M
containing Py, P,, .., Pp such that every point of M 'distinct’ from

., Py, belongs to the interior of 7. For no point P of M for which
P=£P;, P=%P;,,, the triangle-P; P P;, belongs-to. 7 and is - sectorial such
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that (8) is satisfied. Then thereis atriangulation of T into non-sectorial
triangles using precisely the points of M.

Proof : If the lemma would be wrong then there would Be acounter
example with minimum valve of | M| . '

For any point chain X4 X; .. X) the broken /-path X, X; .. X| is
defined as ihe chain of straight segments X, X, .., X,y X). It is said
tobe an i, M, T, S-path (or sectorial /, M, T -path, or sectorial M,
T -path) from X, to X if

(1) each of the /-1 points X, X;, .., X; belongs to M

. — .
(2) each vector X;X;,1 (0<i<1) is non zero and belongs to the

same secCtor.
—_———

1t follows that each vector X;X; (0<i<{j& /) is non-zero and
belongs i0 S. -

A rvefinement of the I, M, T, S-path is defined as an (/3-1),
M, T, S-path X5 Xy .. X; X Xj41 .. X1

A sectorial M, T -path is said to be maximal if there is no refinement,

If there is a sectorial M, T-pathfrom P to Q then after a finite
number of refinements a maXimal M, T -path from P to Qwill be
obtained. 7

If the vertices Pi, Piyy .., Piyy of T satisfy the condition that the

—_—— ————>
vectors P; Pi,1, -, Piyi_1 Piyi belong to the same sector then the broken

path P; P;; is a maximal sectorial /, M, T-path from P; to P,y 1.
Such a sectorial /, M, T -path is said to-bea boundary M, T -path.

Any subpath X;, .... Xj(where 1<i< j/) of the sectorial I, M,
T-path XoXj....X) is a sectorial M, 7 -path. If the sectorial M,
T-path X X;.... X is maximal then every subpath is also maximal

sectorial.

t We set Ppy1 =Py, Ppyr=Py, .., Pop1=Pp_;.
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If there is a'maximal sectorial M, T-path from one vertex of T
to another one that is not a beundary M, T -path then there is a subpath
Pi K1 X2. .. .Xl_.1 PJ (Whel'e 1<l<]<l+b l<b)

for which none of the points Xj,....X;_ is a vertex of T,

It follows that the two Jordan polygons .
7T1=P; Xl Xz N .X[_1 PJ Pj+1 . e .Pi.‘.lePi,
TMo=P;X; Xp.... X1 P5Pj_y....P;
and the corresponding intersections M= M n Ty, (h¥1, 2) both satisfy
the assumptions cf the lemma such that there is a triangulaticn of 7Ty,
into non-sectorial triangles. The two triargulations together constitute
a triangulation of T iufo non-sectorial triangles

From now on we make the additional assumption that every
maximal sectorial M, 7'-path leading from one vertex of 7T to another
one is a boundary sectorial M, T -path.

If >3 then, after suitable numbering, there will be an index i such
that 2<i<b and that the straight segment P; P; belongs to 7 and that
P, P; are the only points of the straight segment P, P; that are on the
boundary of 7 and that there isthe maximal sectorial M, T, S-path
Py P;....P;and iis aslarge as possible.

If there is a vertex of M inthe Jordan polygon 7T =P; P,....P; Py,
say the vertex P; (where i< j<(b), then there are vertices P/, P;’, of 7’
such that ; <i’ <i< j’<bsuch that the straight segment P,/ P ; belongs
tc 7', bit that it has only the points P;/, P/ with the boundary of 71
in common. It follows that either P/ P/4y....PJ/ or P/ P/ ;...
Py Py, Py_y....Pj form a maximal sectorial path from P;’ to P;. 1Inthe

_
first event the vector P; P;* would be in S and also in the sector that is

opposite to S. 1In the second event the vector P; P;” would belong to §
and also to the sector that is opposite to S. In any case there arises a
contradication. It follows that the vertices Py, P,, ....P; are the only
vertices of 7T belonging to 7T’.
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Thus we have shown -that none of the straight segments P/ Pj
(where 1<i'<i< j'<b) belongs:to M. All vertices: Py, Py, ....P; of T
must lie on the same side.of the straight line P; P;. This is because
the broken path P; P,....P; is sectorial.

Let the ray P; )Emove to the other side of ray P;P; such that
another vertex Pj of 7T is met for the first timein-such a way that the
straight segment P; P; belongs to 7 and the intersection of this
straight segment with the boundary of 7 consists only of the endpoints.
Hence i< j<b. From the argument given above it follows that none
of the straight segments P;” P (1<i’<i) belongs to 7T. Moreover there
are vertices Py, P;" (where .1<i’<<i"<i) such that the line P/ P;"
intersects line P; P; in a point X lying between P; and P; and the ray
XP; is between the ray from X that is 0ppositc ray XP; and the ray

———>
XY with Y bemg defined by the equation XY =P, P;. Since both vectors

—— ————> —_——>
XY, Pi'X belong to C it follows that the vector XP; belongs to S,

—_—
hence also the vector P, P;j belongs to S. Hence j=b because of the

maximal property of i. But in this event there is the sectorial triangle
P; P; P, which is a contradiction.

There remains to discuss the case b=3. ‘If | M| =3 then T itself
is a non-sectorial triangle. Therefore | M | >3.

There is a point P of A/ in the interior of the triangle P; P P3=TT
—_— — —
such that neither the vector pair P; P;, P; P nor the vector pair PP,
—
P, P, are in the same sector.

There is a-sectorial 7, M, T-path P; Q,....Qr_; P connecting P, P
with maximum value of = and there is a sectorial. m, M, T-path
PR,....R, _; P, connecting P,:P, with maximum value of #n. :Because
of the property of P mentioned above all of the points Qy,....Qr 4,
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Ry, ....Ry_; are in the interior of 7. Let us choose P in such a way
that f-+mis minimum. It followsthat the path P, Qp,....Q,_1 PRy....
R;—; Py is a Jordan path.
Hence the two Jordan polygons
T'=P;Q,....Qr_t PRy....Ryu_{ P, Py Py
7T”:P1 Ql‘ .. ‘QT—-I PRI e -Rm._l Pg Pl
respectively satisfy the assumption of the lemma with respect to the

pointsets '
) M=T'"nMM=T"nM
respectively.

As was shown already there are triangulations of 7T, 77" into non-
sectorial triangles using precisely the pointsets 7' N M, " 0 M res-
pectively as vertices. The two triangulations together provide a triangula-
tion of 7T into non-sectorial triangles using precisely M as vertices.
Hence the lemma.

The Ohio State University, September 1965.
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IMPACT OF HOMOLOGICAL ALGEBRA ON THE THEORY OF
ABELIAN GROUPS

by

S. M. YAHYA
Department of Mathematics
University of Karachi
West Pakistan

The object of this article is to describe the important role which
Homological Algebra has played in the development of the theory of
abelian groups. Homological algebra is a branch of mathematics which
has emerged mainly during the past fifteen years from algebraic
topology by abstracting most of the powerful algebraic techniques from
their topological setting. In view of the fact that homological algebra 1s
a highly specialized subject I feel called upon to detail some of its basic
concepts. Because of the limitation of space it will not be possible for
me to describe in detail the latest developments in the field of abelian
groups. I will therefore have to content myself with broadly indicating
how homological algebra has influenced the abelian group theory.

Let me begin with some definitions.
1. Group Homomorphisms

Definitions. A homomorphism ¢: A—>B from the abelian group A
to the abelian group B is a mapping satisfying (a+a’) p=a 94-a’ ¢.
The kernel of ¢ is the subgroup =1 (0) of A, i.e., the subgroup consist-
ing of elements which are mapped on to zero under the mapping ¢. The
subgroup A¢ of B is the image of ¢, the factor group A/¢~1 (0) is the
co-image, and the factor group B/A ¢ the co-kernel of . The homomor-
phism ¢ is a monomorphism if its kernel is zero, and epimorphism if its
co-kernel is zero, and an isomorphism if it is both. If A’ is a subgroup
of A, then the monomorphism i : A’—A defined by a’i=a’,a’ ¢ A, is
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called the inclusion map or injection, and the epimorphism p: A—>A/A’
which maps each element of A onto its coset is called the projection.

Definition. A sequence of abelian groups and honiomorphisms

R FS| Pn
...... '—)An+1 > An An'-l PR (])

is exact at Ap if the image of the homomorphism ¢4, is the kernel of the
The sequence is exact if it is exact at A, for each n.

homomorphism ¢p.

ip
We note that the squance O—->A'—>A—>A/A'—>0O is exact.
Thus we express the fact that A’ is subgroup of Aand A” the quotient
group A/A’ by saying that the sequence O—>A'->A—>A"=0...... )
is exact.

2. Tensor Product, Torsion Product, Hom. and Ext.

Definition. The tensor product A @ B of two abelian groups
A, B is the abelian group generated by elements ¢ X b, a€ A, b e B,

with the following relations :
(a1+a2) ® b=a1 Q b+a, Qb,
a@(by+by)=a@b;y+a @ b.

Definition. Let O—>R-11>F—IL+A->O be a presentation of an
abelian group A (i.e. A is expressed as the quctient of a free abelian
group F). Then it can be shown that the kernel of the homomorph-
ism ) : RQB>FRB, where B is any abelian group, is independent,
upto isomorphism, of the choice of # (see [11]) and is called the .
torsion product of A and B and is denoted by Tor (A, B) or A « B.

Definition. Let A, B be two abelian groups. Then the set of
all homomorphisms A-»B form an abelian group under the compo-

sition defined by a(p+P)=ap+a¥,a e A, ¢,9: A—-B.
This group is usually written as Hom (A,B) or A nB (the latter

notation is due to E.C. Zeeman).
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u
Definition. Let O—»R—>F—A-—>0O be a presentation of A.

Then it can be proved that the co-kernel of the homomorphism

A FQB—->RRXB is independent, upto isomorphism, of the choice
of 1 (see [11]) and is called the group of extensions of B by A and is
written as Ext. (A, B) (or A 1 B).

3. Projective and Injective groups!.

Definition. An abelian group P is projective if, given any epimor-
phism ¢ : A~B and any homomorphism 8 : P—B, thereis a homo-
morphism ¢ : P—A such that « ¢ =§.

Definition. A group 1 is injective if, given any monomorphism ¢:
B—A and any homomorphism 8: B—I, there is a homomorphism o :
A—1 such that ¢ a=§,

It can be proved that an abelian group is projective if and only if it
is free and injective if and only if it is divisible.

4. Categories and Fanctors

Definition. A set E of elements {~} is called a multiplicative
system if, for some pairs ¥y, Y. € E a product Y1 Y, € E is defined.

An element ¢ € E is called an identity if N7 e=~; and e Y,=",
whenever ¥, eand e ,are defined. The muitiplicative system is called
an abstract category if the following axioms are satisfied :

(i) the triple product (%1 V) Y5 is defined if and only if ~; (Y2 ¥3)
is defined. When cither is defined the associative law (Y3 V2) V3
=9; (Y2 Ys) holds. This triple product will be written as
as 'Yl 'Yz ’(3 5

(iz) the triple product +{ 7, Ysis defined whenever both products
Y; Y2and Ya Y; are defined ;

1. By a group we shall always mean an abelian group.
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(iii) for each W e Ethere exist identities e;, e,, €E such that e
and 7 e, are defined.

Definition: A cotegory E consists of a collection { C} of elements
called objects and a collection {~ } of elements called mappings. The
objectsare in 1 -1 corﬁ\espondence C—>1¢c with the set of identities ot
the abstract category. Thus to each mapping v there correspond unique

objects C; and C; such that (131'Y and (132'Y an defined. The objects
are called the domain and the codomain (or range) of ¥ respectively. We
write ¥ : C;—»C,. We now give some examples of categories :
(i) the category of topological spaces and continuous maps ;
(i) the category of abelian groups and homomorphisms ;
(iii) the category of vector spaces over a field-and linear transforma-
tions.

Definition. Let Eand D be two categories and let T be a function
which maps the objects of E to the objects of D and maps of E to maps
of D. Then T is called a covariant functor if the following axioms are

satisfied :
@) if ¥ : Cy=>Cp, then ¥ T:C; T-C, T,
1
(i) CT=1,p
(@#ii) if N1 ¥, is defined, then (Y1 ¥2) T=(71. T) (¥, T).
Themap Tis called a contravariant functor if these axioms are
replaced by
@) if ¥:Cy—>Cy, then Y T: C, T-»C; T,
1
@) Cl=1,,
(i) if N1 p is defined, then (¥; Y3) T=(", T) (¥, T).

Tensor product is an example of a covariant functor and Hom.
that of a contravariant functor (For details of categories and functors

see [1]).
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S. Direct and Inverse Limits.

Definition. A relation &< 8 in a set M is called a quasi-order if it is
reflexive and transitive. A directed ser Mis a quasi-ordered set such
that for each pair o, 8 € M, 7 @ ¥ € M for which <% and f<H.

Definition. A direct system of sets {X, m} over adirected set M
is a function which attaches to each o € M a set X~ and, to each pair @,
B such that @ < Bin M, a map '

T ﬁ: Xa-—>Xﬁ
a
such that, for each ¢ e M
a . .
= t
Ty identity,

and for «<f< ¥ in M,
I | N

m T =T .
a B o

An inverse system of sets {X, m} over a directed set M is a
function which attaches to each o € M a set Xa, and to each pair a, g
such that & < g in M, a map

T f X -»X
o g a
such that

waa = identity, « € M,

N BN .
77'Fg Te =Ty a < g < NinM.
Definition. Let {G, =} be a direct system over the directed
set M where each G%is an abelian group and each ws is a homomorph-

ism. LetZ D G denote the direct sum of the groups of { G, 7 } .
a o
For each ¢<g in M and each g € G the element
e
g

aﬂ'
g Tq
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of »@ Giscalled a relation. Let Q be the subgroup of X G
generated by all relations. The direct limit {G, =} isthe factor group
G* = ZEG/Q

The natural map X G — G* defines homomorphisms

L GG called projections.

We can similarly define the inverse limit of an inverse system of
groups. (For details see [1]).

6. Exact Sequences
It is well known in homological algebra that if the sequence
0—>A—>A->A"—>0 .. .. .. )
is exact, then for any abelian group B the following sequences
0—A’ * B>A * B>A" * BA/QB->ARB—-A"RB—0 (2),
0->A’AB—AAB—A'\B—A"+B—>A{B—>A'tB—0, (3),
0—>BAA’—>BHhA—>BHAA">BtA’-»BtA—>BtA'—>0 (4,
are exact (see [111)

The exact sequences led to the study of other exact sequences in

o
the theory of abelian groups. We call the exact sequence A’—>A—>A”
pure exact if A'a is a purc subgroup of A (A’ is called a pure
subgroup of A if, for each integer n, n|a in A, a € A’, implies
that #n|a in A’). We can similarly define the group of pure
extentions Pext (A, B) (We shall denote it by A ¢ B), Harrison [9]
showed that if the sequence (1) is pure exact and B is any group then
the following sequences

0>A"AB>AAB—A'AB—>A" ® B5APB—A' PB—0 ),
0—-BAA'=>BAA—-BAA"-B © A’-B PA-BPA" -0 (6),

are again exact.



[17]
Fuchs [4] showed thatif the sequence (1) is pure exact then

the sequences

05A QBARBA'RBS0 .. o o o oo (T
05A’ *B—>A*BA"*Bo0 .. .. .. .. .. (8)
0—-BAA’—~BhA—BAHA" B )N
0—A"AB—>AAB—>A’HB T ( ()}
BfA’>BtA—>BTA"—>0 e e . ooan,
A"1B—ATB—A’'tB—0 e e e e (12),

are pure exact.

I have generalized these concepts (see [25]) and studied P-pure
exact sequences and-the group of P-pure extensions, where. P is a family
of primes. In the same paper I proved the theorem, stated below,
which includes the case of pure exact sequences (7) and (8) as its

special cases.
u

Theorem : If the sequence 0—>A’—>A—>A"—0is pure exact and
T is an additive covariant functor, commuting with the formation of
direct limits, then the sequence
AT pT ,
0—->T(A')-->T(A)-—>T(A")-»0O B ¢ )
is also pure exact, :

For further generalizations we - refer to the' paper of Fuchs [8]

7. Duality

Duality plays a significant part in homological algebra. One may
have already observed duality in the definitions given above, for
example, image and co-image, kernel and cokernal, domain and co-
domain, projective and injective, direct limits and inverse limits. Hom
and Ext. are dual, in a sense, to tensor product and torsion product.
Duality has also led to many new concepts in the theory of abeliap
groups. o



(18]

7.1 Algebraically compact groups. The concept of an algebrai-
cally compact group which has a role, in a sense, dual to that of a
direct sum of cyclic groups was introduced by Kaplansky in his book
(f13] ‘Infinite Abelian Groups’). A systematic theory of algebraically
compact abelian groups is now available (see [4], 5], [7] ).

It is indeed one of the remarkable results of the abelian group
theory that any one of the following properties characterizes an algeb-
raically compact group A. '

(i) A is a direct summand of a group that admits a compact

topology. _

(i) A is a direct summand of a complete direct sum (or direct

product) of finite cyclic and quasi-cyclic groups.

(i) A is a direct summand of every group that contain A as a pure
“subgroup. '

(iv) Ais pure injective ( cf [16]).

(v) Aisofthe form D@ B where D is a divisible group and B
is Hausdorff and complete in its n—adic topology (see [16],

[121)
(vi) Ais of the form A==D P53 * Ay, where D is a divisible group
‘ P

and Ap, for each prime p, is a p-adic module that is Haus-
_dorff and complete in its p-adic topology.

(vii) If a system of linear equations over A has the property that
every finite subsystem is solvable in A, the whole system has a

solution in A, ‘ ‘ ' B
7.2 Co-torsion groups. The theory of another important class
of groups, called co-torsion groups, which are in a way, dual to torsion
groups, was evolved by Harrison [9] . Co-torsion groups are charac-
terized by the.fact that their all extensions by torsion-free groups split.
For example A 1B is co-torsion. They have the following striking

properties (see [5], [6]). V
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(i) a homomorphic imaze of a co-tericn grevp is ce-torsicn;
(i) a subgroup H of a co-torsion group G is co-to:sion if the factor
group G/H is reduced ;
(i) an extension of a co-torsion group by a co-torsicn ‘group is
co-torsion

(iv) a complete direct sum of a family of grours is co-torsion if and
only if every member is co-torsion ;

(v) a reduced co-torsion group G is algebraically compact if and
only if its first Ulm subgroup GJ:Q 4 G vanishes’;

(vi) Ulm subgroups of co-torsion groups are co-torsion and Ulm
factors of co-torsion groups are algebraically compact;

(vii) a torsion or torsion-free ' co-torsion group is algebraically

compact.
7.3. Cogenerators, Cocyclic and finitely cogenerated groups.

Let me add one more illustration of how duality gave rise to a
new concept. It is well-known what a cyclic group is but perhaps it is
not as well-known what a cocylic group is. This concept was first
introduced by Maranda [16] . Let me explain it is some detail. We
observe that a cyclic group is characterized by the property : '

Let G be any group and ¢ any homomorphism from G to A, g an
element ¢ € A such thatif @ € Im ¢ then ¢ is an epimorphism, a being
called a generator of A.

In a heuristicaily dual sense, we call a group cocyclic if it has the
following property :

Let G be any group and ¢ any homomorphism from A to G, g
an element g € A such thatif a does notbelong to Ker ¢ then ¢ isa
monomorphism, a will be called a co-generator of A.

Thus a group A is cocyclic if g a € A, a0 such that every non-
trivial subgroup of A containsa, Such groups are known to be of the
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type Zp’ﬂ(k<oo),p a prime.. We note that a finite cyclic p-group is
self-dual. : :

Parallel to the theory of generaters of a group I have developed the
theory of cogenerators of a group and introduced finitely cogeneiatea’
groups. v 7 -

Let G bea group and let S be a subset of its non-zero elements such
that every non-trivial subgroup of G intersects S non-vacuously, then
we say that G is co-generated by S or S is a set of co-generators of G.
If S is finite, then we call G a finitely cogenerated group.

We know that a finitely generated group is a direct sum of a finite
number of cyclic groups and that its subgroups satisfy the maximum
condition. We thus eXpect a finitely cogenerated group to be a direct
product of a finite number of cocyclicgroups and expect its subgroups
to satisfy the minimum condition. That this is true is shownbya
theorem which we shall only state here.

Theorem. The following statements are equivalent :

(i) G is a finitely cogenerated group;
(77) G is an essential extension of a finite group ;
(m) G is a torsion group of finite rank ; __
(iv) G is a direct product of a finite number of cocyclic groups ;
= (v) the subgroups of G satisfy the minimum condition.
8. Structure of Tensor Product, Torsion Product, Hom and Ext.

" Homological algebra has also contributed to the structural aspect
of the theory of abelian groups. The structure of the tensor product of
two p-groups and that of a p-group ard a torsion-free group were first

~given by Fuchs. in his famous book [2] (Abelian groups). It is shown
“there that if A and B are p-groups and G-a torsion free group then AQB
= UV where U and V are basic subg1 oups of Aand B respectlvely,

and that AQG == EBA where 7 is the rank of G/ pG. !
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U is called a basic subgroup of a p-group A if
"(ij U is a direct sum of cyclic groups;
@y Uis purein A;
(iiiy the factor group A / U is divisible.
Thus if A and B are torsion grdups ARXBisa direct sum of cyclic
groups.
The structure of the torsion subgroup of AXB where A and B are
any abelian groups, was described by Fuchs in [4] (see also [24]). Let

A; denote the torsion subgroup of a group A and Ay the torsion-free
group A /- A;. Then the structure of the torsion subgroup (AQB);of

AQB is given by
(AQB)s == >< EB[UP® VPGBE @AP@E@BP]

where U p, Vp are basic subgroups of the p-components A p, By of Ay, B;
_ respectively and ,, v denote the ranks of Af/p Ay and Bf/p Bf

respectively.

In fact, the structure of A X B when one of the groups is torsion
is comyletely known (cf, [6], [24]). The structure of the tensor product
of two torsion-free groups is not yet known.

For the structure of the torsion product A = B we refer to Nunke's
paper [19] (On the structure of Tor).

The structure of Hom (A, B) is not yet known in the general case
when A, B are any groups. However, it isknown in many particular
cases. Fuchs has proved (see [3]) that the algebraic structure of the
character group of a discrete abelian group A depends only on certain
cardinal invariants of A. Pierce [20] has shown that Hom (A B) can be

completely described if A is a torsion group.

For the structure theory Qf the group of extensions, which is rather
elaborate, we refer to [9], [10], [15], [171, [18], [27]
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9. Generators of A = B (Tor (A, B)).

We observe that most of the important functors in homological
algebra have the remarkable property thatthey can be described by a
canonical system of generators and relations. The first striking example
in this direction is Eilenberg-Maclane‘s description of the functor
Tor (A, B) (see [0]). They define T (A, B) to be the abelian group
generated by the elements (a, b);, where a € A, b € B, and fis an integar
such that # a=o0, h b=o0 ; these elements are subject to the relations :

() (ata’, Dp=(a, D)p+(@, by, ha=o0,ha'=0, hb=o0;
(if) (@, b+b")=(a, b+ (a, b)n, b a=o0, hb=0, h b’=0;

(iii) (ka, b)p=(a, b);.;;, k ha=o, hb=o, k beinganinteger;

(iv) (a, kb =(a, b)ry, h a=0,k h b=o, k being an integer.
Then it can be shown that T (A, B)= A = B (defined as above).

This description led to the study of new functors. For example, I have
studied functors S (A1, Ay, ..., Ap)(see [22)) which include Tor as

- a special case. I havealso introduced functors L”Y I(Al, Ay ..., Ap)
and discussed their properties (c f. [23]). ’

Moreover, the isomorphism T (A, B) = A « B hasalsoled to some
problems in a different direction. We have defined A = B as the kernel

of the homomorphism A: R @ B—F ¥ B, where O—)RAF—l;A—)O is
a presentation of A. We note that the element (a, b), of T (A, B)
corresponds in this isomorphism to an element r ¢ b (we shall call such
an element a monomial) where ¥ A=h f, f € F, f b=a. We thus observe
that the kernel of the homomorphism A: RYB->FRB is generated by
monomials, This observation gave rise to the following question; given
monomorphisms ¢: A’—>A, : B’>B, is the kernel of the homomorphism
pQ Vi A’ @ B'—>A @ B generated. by monomials? The question
was answered by me in the -negative by giving two counter-examples

(see [21]).
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Let me reproduce one of them here.

Let A =Z(a) P Zi6(a1), B=Z (b) P Zs (b1),
A'=Z (@)D Zy ({1_1'), B'=Z®")DZy (by),

where Z(a) denotes the infinite cyclic groups generated by g and Z;¢ (a;)
the cyclic group of order 16 generated by ;. The inclusions

A’CA, B’SB are given by

a =4 a4-2a,
b =4b+2 by,
ai'=4 ay,
by'=4b;.

One can easily verify that a’ & by'+a, @ b’ is an element of the
kernel but it is not a linear combinatjon of the monomials present in the
kernel. In particular o’ @ b1/, a)’ & b’ are not in the kernel.

Now the following questions, which are so.simple in form, still
remain to be settled.
(i) What is a necessary and sufficient condition that the kernel of
QR V: A’ Q@ B'—A R B may be generated by monomials?
(ii)) What is a necessary and sufficient condition that ¢ & +:
A’ ® B'-A & B may be a monomorphism? '
10. Some Isomorphisms

We have two important isomorphisms in homological algebra of
abelian groups (which can be derived from the Kiinneth formulae):

HAQB+ODA+*BYC)=ARB) «CHA *B)QC,

(i (ARXBTCPHA «BAC=AAMBTC)PH AT BAC).

Many significant results have been obtained by applying these
isomorphisms. But personally, I have been interested in the structure

of the groups themselves that appear on each side of (i) and (if) and
thus examining these isomorphisms. T have shown the structure of each

side of (i) [24], proving that
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ARBsCDA +BR O
NEEB[UP@)(VP sWp)DUp *» (VyQW)DID (Vr @ Wp)

ap
@2@(W11®Up)@f:@(Up@V}l)@Z(@(?p * Cp)
P Fp f
BIZDCpeAp)D= @(AP * Bp)l,
rp (By) rp (Cf)

AQB)+CH(A=*B)RQC
%ZEB [(Up@ V) « Wy D (Up = V) @ Wy @2 DVy Q Wp)

EBE@(WP®UP)@2(UP®VP)@EE(B(1)3P*CP)

Pp Yy
DZD (sz *Ap) P s D(Ap = By
rp (Bf) rp (Cf)

where Uyp, Vp, Wp are basic subgroups cf Ap, By, Cp, the p-com-
ponents of the torsion subgroups A;, B;,, C; of A, B, C, respectively,
Ap/lUp= 2 D Zf’-" By/Vp= X @ Zp», Cp/Wp=2Z@Zoo,

ap bp vp P
and rp (Ay)=therank of Ay/p Ay.

The structure of each side of (if) is not yet known. I can give the
structure in a significant special case when C is algebraically compact
(see [26]). The difficulty in the general case when A, B, C are any
groups is perhaps because of the fact that Hom, Ext and inverse
limits are not strictly dual to tensor product, torsion product and
direct limits. For example, every abelian group can be expressed as the
direct iimit of its finitely-generated subgroups (A finitely generated
group is a direct sum of cyclic groups). No such result is known for
inverse limits. 1 believe the best result available is: the inverse limit of
reduced algebraically compact groups is again algebraically compact
(Cf. [7]). 1T still hope that it may be possiblc to find the structure
of both the sides of (ii). Perhaps some relevant concepts of co-pure
quotient gtoups and co-basic quotient groups or some modified inverse
limits may have to be found. 1In this connection 1 would also like to
point out that Maclane [14] introduced the functor Trip (A, B, C) which
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is isomorphic to either side of (i). Some one may be able to define a
suitable functor co- trip (A, B, C) which would be isomorphic to each
side of (ii).

I have necessarily omitted even to mention some very important

results.

But even if I have been able to suggest the s1gn1ﬁcamce of the

impact of homological methods I should be satisfied.

Ul
(1]
(2]
(3]
[4]

(3]

[7]
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1. Introduction

Reduction procedures such as those of Brown (1) and Melrose (2)
relate the single loop Feynman diagrams of various collision amplitudes
and, unless it can be proved that single loop diagrams are in some way
typical of the perturbation series to which they belong, such procedures
remain of rather academic interest. . On the other hand if a reduction
procedure which relates Feynman diagrams of different orders in the
perturbation series for a given amplitude could be given then the
analytic properties of the amplitude might be obtainable from the study
of one or several “‘basic” diagrams”. Patashinski ez @/ (3) have given
such a procedure : suppose that z is a point of a Landau curve ¥ for a
Feynman diagram of arbitrary complication whose internal masses m;
are given : than there exists a reduced diagram with the same configu-
ration of external lines and no internal vertex whose internal masses
are M (m; , z) such that the point z lies on the Landau curve N for
the reduced diagram. Thisis a very weak result equivalent to saying
that a complex electrical network of - resistors can be replaced by a
simpler one of the same effective resistance by inserting suitable resistors
between the external terminals and bliminating all internal ones.
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This reduction procedure has proved nseful only when the Mj; are
independent of z.

2. Wigwam Siogularities

The present authors (4) have studied the Wigwam diagram in order
to invastigate some properties of Landau curves previously discussed by
one of us (5). Tne Wigwam diagram-is the vertex graph specified by

P1=q2-+q4— 95, P2=q1— 92, ps=qs—4q4, 0=91-+gs— 45 ¢y
where p; denote the four-momentum of an external line (p;2=z;) while
g; that of an internal line of mass m; . The Landau curve W(zy, 25, zs)

is a pair of quadric surfaces and this suggests that the Wigwam
diagram might be simply related to Triangle diagrams specified by

Pi=Qy—Q,, P,=0Q ~Q,, P3=0Q,-Q (2)
in an obvious notation. One might hope to find a constant set of Mj
wvalues on each quadric. If we fix z; and z, we obtain four points of
N which we denote by z, 1, k=1,234. If we apply the reduction
procedure to find masses Mj (m, zy.3, 2z2,25) for [+ we find that the M
depend on both z;and z,. Further if we compute the points of [
whica correspond to the masses M; and the given values of z, and z; we
obtain two values of z; namely z;,; where. z{1,; does not coincide with
any point zy4, t=1,2,3,4. We thus verify the truth of the theorem of
Patashinski er a/ and convince ourselves that it is totdlly irrelevant to
the problem of finding ““basic diagrams”. '

3. Result

If the value of z; is fixed then the Wigwam Landau curve is a pair
of conics which coincide with the Landau curves belonging to Triangle
graphs having the same value of z, and with masses

M=m; | 3
M:;= L) . (4)

—E =

-~

3 -+-mS— 2c(m; +-q) +21(23)N/ (- mi)/\/ (af ) g (5)
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where g= (mg - m% - mg)/(2m1) (6)

and c satisfies

2 2 2.2
my €2+ ax-+3A2-+a?my —mym =0 (7

: _ 2 2
with A=zg—m3—nm,

where J (z;) has the value -1 for some values of z; and value —1 for
others. The masses M;, M,, M, are different from those given by the pro-

cedure of Patashinski et ai.

4. Conclusion

There is therefore a suggestion that the location of Triangle
singularities is relevant to the location of Wigwam singularities. Possibly
the Triangle graph is a “*basic diagram” for locating vertex singularties :
perhaps by means of suitable sums (or integrales) over the masses M;
the whole perturbation series (or a significant part of it) can be
generated ?
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TOTAL ABSOLUTE CURVATURE OF M; # M,

@
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1. Introduction

o0 .
Let M be a compact, connected, C-manifold of dimension n. Let
fi: M ——— EMWN (N> 1)

bea gimmersion of M into euclidean space ' +N of dimension »-+N,
Let B, be the bundle of unit normals-on M induced by f and Sn_l'N 1 be
the sphere of unit vectors in £’ +N Let

V: B, —o st NI

be the canonical map given by

—
V [, v(?)I=E [v ()] , N
where E is the end-point map which translates unit normal vector ¥(p)

to the origin and identifies its end-point with a point on S +N_l
Let dV, don.-1 and dzn FN—] denote the volume elements of M, the fibre
SN__1 of B, and Sf ﬂ_N —,1 respectively. Then we have

—
(1) (V)*(dSn4N-1)=G (p, v(p)) dV Ndon_1.
The scalar factor G (p, v(p)) is known as the

szsc/ntz-Kll/mg curvature of M at p in the direction of v(p) [4] We

note that G (p, v(p)) 0 where the rank of V <n+N-1

(!) This paper is a part of the author’s doctoral dissertation submitted to "the
University of Liverpool in January, 1966.

(2) Tha author is greatly indebted to his supervisor Professor T. J. Willmore
for introducing him to modern Differential Geometry. . .
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Following S. S. Chern [1] we define the fotal absolute curvature of
M at p by
@) KHp)={ | G (2. (p)) | do

where SN—-1 is the fibre at p € M. -The total absolute curvature 7 s of
M is then given by

() rp=— o [ K@ dV

n+N—-lM
n+N
275
-, N-1
. ) f n-t )
where Cn +N—1 ; (’Zilj is the area of the sphere S,
2

2. Connected sum M;+# M,

O
Let M;, M, be two compact, connected C-manifolds of the same
dimension 7. Then the connected sum MM, is a manifold obtained '
by removing an n-cell from each of the two, and then piecing the two
manifolds together along the resulting boundaries.

[ ] o0
A C-structure can be constructed on M;H# M, from the C-structures of

M; and M, [7]. .

Let 1,°ay,.... an_y, 1 and 1, By, Pa,....Pn_1, 1 be the Betti numbers
of M; and M, respectively. Then it follows from Myer-Vietoris theorem
[3] that the Betti numbers of M#M, are 1, a1+ﬁ1,....,an_1+ﬁn_l,
1. Moreover, if g is the Euler-Poincare characteristic operator, then

(4) XMy HMz)=x(My)+x(Mg)-2.

Let C(M) denote the minimum number of critical points a non-

o0
degenerate, real-valued, C-function can have on M. An immersion

f:M—)En+N

is called a minimal immersion if
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(5) 75=C(M).

Tt follows from Morse-inequalities [6] that

(6) 7y =CO> Z 4; (M)

where ¥; is the ith Betti number of M.
Let = denote the total absolute curvature,

Then it follows that

() "M 2 e,

® *M)>E f,
2
and

©) * MIHEM)SZ a+3 pi -2,

In the special case of n=2, we have
(10) = M) > Yo+ V1 +¥2=2+"1.
Also ‘
1) xM)="g="1+1,=2—-"1.
Hence we have
(12) 7(M)>4—7(M).
Definition : An immersion of a 2-manifold M is said to be minimal
if it gives.
(13) = (M)=4—x(M). K .
'S
Let 7y, 7, be the minimal total absolute curvatures of M; and M,
respectively. Then we have ‘
_ T1=4-%(My)
and 7'2=4—X(M2).
Hence it follows. from (13) that
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T (M13#M2) >4 — (M1 #My)
=4=%(Mp) —x(M;)+2
=6=(4-1)—(4-).
Hence
(14) 7 (M M) > 7 +my—2.
2°1. Special cases
By means of formula (14), we can calcutate the total absolute cur-

vatures of various special manifolds as shown below :(—

(a) Let M;=S"=M,. Then
T (SP#ST) >0 42--2=2,

In general

T (S .. HS" (m times)) >2m~2 (m—-1)=2.
(b) Let M;=82 and M,=2-dimensional torus T2,
Then

T (S2HT2)>2+4-2=4.
In general, the total absolute curvature of a 2-sphere S? with m
handles is given by : ,
r (S2H(T24. ... #TH) > 2+4m—-2m=2 (m+1).
() Let M{=T2 and M,=T2H#T2...... m times. Then
7 (T24...... (m+1) times) >4 (im-+1~2m=2 (m+2).
(d) The Betti numbers of the 3-dimensional torus S!xS!x$S' and
the manifold S1x S2# S S2:4S1xS? are the same, namely, (1, 3, 3, 1).
It follows from [8] that ‘ ' ’
T (S1XS!x St)=7(S). 7(S). (S)=2.2.2=8.
Also from (14) we have
(S % S2:81 X $2 51 % §2) > (S M52) 4 (S x 52 4 (1% ) — 4
=4+4+4-4=8,
3. Convex extensions

n+N e, . Py .
Letf: M—E be a C-immersion where M =(single point). Then
it is easy to see that 7,=1. From this we conclude that the minimum
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decrease in the total absolute curvature of a manifold, when an n-cell is

. . n+N, &,
removed, is 1. On the other hand, if g’ : M—~D"=E is a C-immer-
sion, then the minimum increase in the total absolute curvature of g’

) n+N , .
is 1 when g’ is extended to g : M—E + . Such an extension of g’ is
called a convex extension. »

' » [='s}
Let M, and M, be compact, connected, C-manifolds of the same

dimension n and M;#M, be their connected sum. Let f: MI#M2—>E’1 +N

oo

be a C-immersion of M;#M, into E’H:N. Let f]M;~Cnr and
f | M;—Dn be denoted by f’; and 7, respectively. Then we can prove
the following :

Theorem (3.1). Let 7y and 7, be the minimal fotal absolute curvatures
n+N

of M, and M, respectively. Let f: Ml:i:hM3~—>E be a minimal im-

mersion such that f', f*, admit convex extensions. Then

(15) 7z (M1 HFHM) =1 +72— 2.

o0
forall C-immersions F: My My— En + N.

Proof. Let By (M;#M,) denote the bundle of unit normals

induced on MI#MZ by . Then, from (2) and (3), we have

(16) mp= ‘"r()(n+N 1);

ntN=1B (M, #M,)

e [ 1 (7) (20 n )|

naN-17% »(M; — D)

et ] (7) (5, o) -

CnN=-1 B,(M,—Dn)
or 72T+ '

Letf, : My—nsE" TN
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andf2' . Mz——)'En+N

be the convex extensions of fi’ and f;' respectively.
Then, from (16), we have
(A7) >+ =01 =1)+(G1-2)
=1f1+rfo—2271+72-2,
Since f is minimal, we have
TF;}'rf
n+N :
for all F : Mi#M;——E . Hence, from (17), we have
2T+ 71— 2,
We hope to consider the following problem in our . future research
work. '

In the above notation, what is a necessary and sufficient

Problem.
condition that /i’ and ;" admit convex extensions ?
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A PROBABILITY INEQUALITY

by

W. L. STEIGER
Department of Pure Mathematics,
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Australian National University, Canberra.

In this paper we present a somewhat isolated result of Probability
Theory which illustrates the power of simple results like Holders
inequality.

i

Let X;, i=1, ....., n be random variables and S;=5 X jthe sequence

=1

of partial sums. Take real and denote mathematical expectation by
E. Write vf for E(]X;|t) when this exists and define the random

n
variable St=3 X; | S; [t. We prove the following:-
i=1

(1) Theorem: Suppose vf“ exists, i=1,....,n. Then St has ex-.

pectation and
(n+1) $ it

E (Sc)<(f+]) i=1 !

if 1>21.
To establish this result we prove a lemma which is of independent
interest.,

() Lemma: Let x;,i=1, ...., n be a sequence of real numbers and
i
put s;=3, xj,i=1,....,n. Then
1=1
n (n+i1p
st= 3 xp | & G 3] xg T
=1 l.] l}<(l‘{l) 1:1[ l[

if t>1.
Proof: Take t>1. When n=I1, (2) is true because 2t>r41,
Suppose (2) is true for n=m. Then by assumption
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”
Q3) st= "i:l Xi | 8 |t Xt | Smar [
Si=

(m+1)t

oS (t+1) ;= 2 l Xi [H- T Xmt1 |S1n+1 I[

By Holders inequality ([1], p 19),

@ | smer It < (1)1 2 |A ¢

which, together with (3), shows that

) <O B w140 47 1 o 1914 2 Bt 0]

It is well known, ([1], p 15), that fora, 520, u>1, v=uf(u—1),
" ZE< gty

Puta= | x; [t*1, b= | xp41 [H,u=1+1;tt0see that fori=1,....,n,

lt+1

< 1
(6) lxi Icl-xm+1| t+1 I Yll AR l—[-l l-xm+1

Using (6) in (5) shows, after simplification that
+1
(7) st [(m + 134t +1)7] [z+1 x| 4]

Since (m +1)t+r(m+1)"1L(m+2): for ¢>1 by the binomial
theorem, (7) shows that (2) is true for n=m+-1, and thus for allinteger 1,
which completes the proof.

(2) can be false if ¢<{1 as can be seen by taking n=1, x;>0,
0<t<1, because 2t<<r+1.

The theorem is proved from (2) by notjcing that

(n . 1)

8) st z | X [+t
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at all points of the relevant probability space for which | X; | t*1is real,
whereas (8) holds automatically when | X; | t*! is infinite. Therefore
expectations can be taken in (8) without reversing the inequality.

(1) need not hold for r<{ as is illustrated by taking n=1, 0<r<1
and letting X; be rectangularly distributed in the unit interval.

(9) Remark : (1) is a useful inequality. Take | X; | <1, i=1,....n,
n
t>1. Then E(S) ¥ it. Applying (2) shows
i=1

NGRS 3 n(n +1)t
(10) E@SI< r+14,§1 ! +1)
nti

whereas by simply comparing the sum with f xt dx
1

(1) ES)<((r4-1) 1= 1) j(1+1)
which is not as good an estimate of E(S ) as (10).

Finally we note that (2) is analogous to an inequality of Bellman
[2] for integrals of periodic functions which is given in discrete form in
[1], » 184. This work has application to numerical integration of
ordinary differential equations,
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VALUES OF SYMMETRIC FUNCTIONS
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§ 1: The sum of the (’}) products of (xq,...., x,) takenj at a
time without repetition of any x; in a product is called the elementary
symmetric function of degree j in the arguments x1, X, ..:., Xxn and is
often denoted by S, the arguments being tacit. In general, a symmetric
function is a function of several variables which remains unaltered when
any two of the variables are interchanged. In the theory of equations,
one learns some properties of symmetric functions, but their arithmetical
properties do not seem to have bezn investigated. Recently Birch [1]
while discussing the sums of the d* powers in p-adic field points out
that symmetric functions are useful for the determination of sums of
d*h powers in any field. In his paper he proves.

Theorem 1: Given a set x of integers of p-adic field KX we can
find a set v consisting of at most 416 integers such that
Si(x)=S:i (v) fori=1, 2, ...., d.
Combining this result with the fact that there exist polynomials F

with rational integer co-efficients such that #;=F; (S, ...., Sj) identi-
cally, he deduces that every element of K expressible as a sum of dth

powers can be expressed as a sum of at most d14® such dih powers.
He also proves theorem 1 when K is a finite field of pf eiements, with v
containing % (51—1)elements. But in none of the fields has he identified
the set of possible values for the first d symmetric functions. Our
object is to identify this set. We also wish to find how many variables
may be necessary in the set x for S;(x),...., Sg(x) to take a given
d-tuple of values in this set.
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Let R be any field ; let R4 be the set of d-tuples of R and let R% be
the set of infinite sequences of elements of R with only finitely many
non-zero terms. By taking the d-tuples of R4 as the first 4 terms of
sequznces of R” we have natural maps.

R —»....—>Rd——»RI1 5> . .. — Rl

We give R* an additive group structure by defining for two

sequences {a;}, {bj} of ROC,
{ai} @ {bjy={cy}

: k-1 '
with cy=a;-+ = a, by_j-+by. Since the power series with only finitely
=1

many non-zero terms are really polynomials this corresponds with
formal multiplication of the power series

o o o
(1+2a;x-")(1+zbjxf>=<l+ b ckxk)
i1 J=1 k=10

If xe R andj is any positive integer, then, as usual, let S; (x)
denote the elementary symmetric function of weight j in x. Write
S(x)=(S¢, S1, ....). Here, itis convenient to take S;=1, so that if x, »
are two sets of elements, S (x) S (v)=S (x, v). Thus if 5 denotes
the set of all sequences of R which can occur as values for the
symmetric functions of a set x of elements of R, then 3 is an additive
sub-semi-group of R%. Write s (d) for the set of values taken by
[S, (%), ...., S4 (x)] ; there are obvious homomorphisms

E—>2 [d)—>Z d~1)—......
We wish to identify 3 (d); and if possible we wish to show that for
each element (61, .... 63) € X (d) we can find a relatively small set of

elements x with
S,‘ (x)=o,~ for i=1, 2, e, d.

We will have made a good start on our problem if we can exhibit a
system of generators for X.

§ 2: Presently we consider symmetric functions over a finite field
K=kpf with pf elements. Our main object is to identify the set 3 (d)
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of values taken by the first d symmetric functions ; we also wish 1o find
how many variables xi, ....x, may be necessary for Sy (x),....S; (x)
to take a given d-tuple of values in 3 (d).

Ouridentification is in two parts. In sectfon 2.1 we solve the
rather easier problem of identifying the values taken by sums of powers.
Having done this, in the section 2.2 we apply the results to the identifica-
tion of symmetric functions; the main extra difficulty occurs when we
consider S; (x) for j divisible by p. We obtain rather good estimates
for the number of variables necessary in terms of p, d and f ; unfortuna-
tely we have not been able to find a good estimate depending on d
alone. We cannot even improve appreciably in the } (5¢—1) given
by Birch [1]. In fact, the task of determining the number of variables
necessary is not so easy as it seems. For example in the congruence
field mod 5, S; (x)=S, (x)=0 (mod 5) and S; (x) not congruent to 0
(mod 5) cannot be obtained with less than six elements in x.

§ 2.1: If x is a set of variables, we have written 7 (x) for the sums of
the jth powers of the x’s. Let k=kp be the prime field with p elements,
so that K is the extension of k of degree f. The Galois group of K over
k is cyclic of order f, generated by the Frobonius automorphism o :x—x?,

Theorem 2.11.

Ler b=(b,, ....by) be a set of d elements of K satisfying b,,,,=bf:
e

whenever m=n p (mod pf —1)
then we can find a set of x of at most
min (fd (p—1), (p =1) (p= 1)
elements of K such that
tn (x)=bnfor n=1,2, ....,d ..
Conversely, if x is any set of elements of K, then :
tm (x)=(tn (x) )? whenever m=n p (mod pf —1) )}

Proof : We prove the last bit first.
Suppose m=n p (mod pf —1)
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Then =3 x7, $O

(tn ()2 =3 x)o= Z AP =2 X" =1,y (x)

by the binomial theorem and since x?f:x for all x € K.

Now for the main part of the theorem; suppose that by, ....by
satisfy (1). Write Q short for p-—1, and let x;, .... xq be an
enumeration of the non-zero elements of K. Consider the set of linear

equations.

Q
Zrs X'=bn form=1, .... d; 4)
s=1

we have b,,=bn for m=n (mod pf — 1), and

det (1) =TF (x,— x)£0,

m, s=1, ... Q
so the equations are certainly consistent, so we can solve (4) for
ry, .- ..rq in K. Unfortunately, this is not good enough ; we want
(4) to be soluble with ry, .. .., rq in the prime field k; that is, we want
Fis ..., Fqto beleft invariant by Gg/k. :

So consider instead the larger set of equations

Q St t
S rex™ :bzl form=1,...., d
5=1

s
t=0, ...., 7—1; N E))
By (1), no more than Q of the equations are different and they remain
consistent, so they are certainly soluble for ry, .... rq in K; and
since the set of equations (5) is left invariant by Gg/k, we can find

Ply «».-5 FQin k.

So each of ry, .... rq is represented by an integer between 0 and
p—1; take x as the set of elements of K consisting of x; repeated g;
times, . ..., Xq repeated gq times; then '

tm (X)=2g5 -x:z:bm for m:“_l, ceney d
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as required. We note that the set x contfains at most
(p—1) Q=(p~1)(pf = 1) elements.

Iffd<p'—1,there are only fd equations in the set (5); even
those need not be independent. Suppose there are F independent
equations in the system (5), say

Q
X re X "k=b, fork=1, ..., F.

5=1
Then we can select yyq, ...., yg from xj, ....., Xq so that

det ny,
k,j=1,...., BV #0;

and then we can solve
F’ m 4
31y, k=bk for k=1, ...., F
=1

with ry, ...., rg in k. We can thus find a set x of at most
(p—1) F<(p—1) f d elements of K with t,, (X)=b,, for m=1,2, ...., d.

This concludes the proof of the theorem.

Our theorem, of course, enables us to identify the values of a
single sum of mth powers. Given m, let r bs the least positive integer
such that mp”=m (mod pf —1); so that p" is the least power of p such
that pf—1 | m (p'—1). Then by our theorem we can find a set x of

T
elements of K such tn (x)=by, if and only if b, =h" . 1In general f=r,

and this is no restriction; but, for example, an element of kg is sum of
4th powers if and only if it lies in the prime sub field k;. In particular,
if m is equal to a prime number g, then from our theorem we can find

T
tq (x)=bq if and only if qub; where p” is the least power of p such
L
that (p"~1) | g (p"—1). 1f g is not of the form ;,;i then f=r and

t
bq=bg for.all elements of K. Therefore every element of K can be
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expressed as sum of gth powers. But if g is a prime of the form

fe
i’) »r——; then only those elements can be expressed a sum of gth powers

which satisfy the equation xt'=x and hence the g+h powers form a
subfield of p" elements. We deduce.

Lemma 2.1.

Suppose ¢ is a prime. Then every element of K is expressible as

f—1 .
sum of g*h powers of elements of K unless q=}‘l: ] for some divisor r

of f in which special case the gth powers form a subfield of p” elements.

Hence from our theorem we have deduced a result of Tornhein
[2], and theorem 1 of Bateman and Stemmler [3]. From our theorem
we can also deduce the following result of Bateman and Stemmler
f3, Theorem, 3]. Let K be the set of integers of an algebraic number
field and suppose that ¢ is prime. If g is expressible in the form
pf—1/pd -1, where p is prime and f and d are positive integers, and p
has in K a prime ideal factor of degree f, then some element of K is
not a sum of gth powers. The reason is that if Pis a prime ideal in K
of degree f which divides p, then the finite field with NP elements falls
under the exceptional case of our lemma 2.1. Thus by lemma 2.1 not
all residue classes module P contain sums of ¢:h powers. Therefore,
the set of elements of K expressible as sum of gth powers is properly
contained in K. In tnis case, Bateman and stemmler found it easyto
prove the converse, namely that if every element of K is not expressible
as sum of q:h powers, then either ¢ is ramified or ¢ is expressible in the
form pf —1/pd—1 where p is a prime and fand d are positive integers,
and p has in K a prime ideal factor of degree . Of course, we can
hardly hope to obtain a good estimate for the number of variables for
- representation by a single sum of powers by means of a theory designed
for simultaneous respresentation by several sum of powers.

!
Before we pass on, we remark that if 4 =p~1=Q, then the cquations
(4) must beleft invariant by Gx/; if they are to be soluble with ry, ... .,
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r; € k; and the determinant det x_" of the coefficients on the

m,s=1,....d.
left hand side is non-zero, so there is one to one correspondence
between d-tuples (ry, ....rg) of elements of kd and possible values
by, ....bg forty, ....,t3, Inparticular, there is one particular d-tuple

(b?‘, b;, bj) for which rq{==rs ....=rg=—1; and then to solve
tw (X)=b* m=1, ...., dthe set x must contain each of xj, ...., xg

repeated at least (p—1) times, accordingly our estimate (p —1) (pf —1)
is the best possible. For instance, we ean only solve ¢, (x)=0,
m=1, ...., 7, ty (x)=1 by taking x as the non-zero elements of kg each
repeated at least twice. '

§2.2. In this present section we want to identify 5(d) when R=K,
the field with p/ elements.

Write E(p ) for the subgroup of 3 consisting of sequences {o;} with

T :
6;=0 for (i, p)=1. More generally for r>1, let 5, () be the subgroup
of = consisting of sequences {o;} with ;=20 unless i=0 (mod p"); in

(1)

The following is well known [see for example (4)}

" Lemma 2.21. (Newton’s Formula)
fk —Ik-1 S]’{“t}@-z Sd;—}— R N I)K K sg=:0

particular 5" is 1.

identically.
Thus there are polynomials with rational integer co-efficients such
that ¢tj=F; (S;, ...., Sj) identically. Conversely if j<p, there are

polynomials F; -whose co-efficients are units mod p such that
Sj=Fj (11, ....,t;)identically.

Suppose d<p and that (a1, ...., ag) is any d-tuple of K. Write

b;=F; (ai, ...., ai) for i=1, 2, ...., d. By theorem 2.11 we can

determine a set x of atmost /'d (p—1) elements of K-such that # (x)=b;
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for i=1,2, ...., d. The restriction b,,,,=bz whenever m=np (mod

pf—=1) is not relevant if d<p. Thus we can determine a set such that
t(x)=Fi(aj, ....,a) fori=1,2, ....,d; which implies that we can
find a set x such that S; (x)=a; for i=1,2, ...., d. We deduce

Lemma 2.22. If d<p, then given d-tuples (aj, ...., ag) of K, we

can find a set x of atmost f'd (p—1) elements of K, such that S; (x)=q; =

for.i=1, ...., d.

Thus if d<p, = (d)=Kd. We see that 'S;, S,, ...., S,_; are
independent. ‘ :

In what follows we suppose that d> p.

Suppose that S; (x)=0 whenever i<pf—1, (i, p)=1; then from
Lemma 2.21, it follows that the first p/ —1 sum of powers of the same
set x also vanish. Cansider the set of equations linear in ry,... ., "p( 1

(pf—_;l):Q "
. rs x; =0form=1,2, ....,Q

A

1

8=

|

then
det (x™)=T (x;— x50

mys=1, ...., (pF=1)
hence the equations have no non-trivial solution for the r’s. Hence
each r,=0 (mod p) and consequently the sum of m:h powers of the set x
consisting of each x, repeated r; times vanishes for all m. From
Newton’s. formula, it follows that

Sm (x)=0 whenever (mn, p)=1. We deduce

Lemma 2.23. ‘If S; (x) =0 whenever i< p/—1 and (i, p)=I1 .then
Sm (x)=0 whenever (m, p)=1.

‘Lemma 2.24.

N NP N,
( = a,-rZ‘). =X a; Zi? for ay, ....,axn€eK
=0 i=0
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N
Suppose then that = a; Zi=0-is:an equation with roots xy,.... .., XN;
=0 _ :

i:

N - :
then the equation » a}’ ZiP=0 has roots x, X, ...., xn each repeated

p-times. Ifc e X so that. S; (x)=g¢; for each .i, then the x's are the
roots of the equation- % (—1)i o, fi=0. Denote the set consisting of.

(p).

elements of x repeated p times by x*’; then the equation with' roots
x(P) is
X(—1)P c’i’ZIP;O, so Sip (x(p)jr—-cf' for i=1,2, ...., p.

»

, " " :
So whenever o € = there is a sequence o € 3~ with o;=0for (i,p) =1

A
and ¢jp=a ;P
and if o are the symmetric functions of a set of F elements of K, then

% are the symmetric functions of the same set:repeated p- times.

iro e P thens (=1 o: Zic h i
Conversely, if o € 377, thens {(—1)! 6; Zi is -a pth power, so0 its

A . :
roots are p times repeated; so o can occur only as the symmetric
functions of a set of elements p times repeated. ‘

. v §
In a similar way, the sequences of Z(p ) are obtained by reﬁeating

p’ times. We deduce
Lemma 2:25. Suppose that S; (x)=o; for i=1, 2, ....

(p

\ .
Write x ) for the set of elements of x each repeated p” times. Then

s (x") =0if p" does not divide 7,

and’ S;jp" (x(pr)):a’;r :

("

consist of p'-fold repeats,

Conversely,. if E— €3 and Si.(y.)zé,-,for some:set y then y must

We prove the following for later application;
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Lemma 2.26. If S;(x)=0 whenever i < pf+"and p™*! does not divide i,
then x consists of elements repeated p™1 times.

~ Proof. We prove the lemma by induction on r. When r=0, the
lemma is certainly true by lemma 2 23. We suppose that it is true for
(r—1).. NowifS; (x)=0 whenever i< pf*7 and iis not divisible by p™1,
the case r=0 implies that x consists of p-fold repeats. Suppose that x is y
repeated p times. Then S; (y)=0 whenever i<pf+7"1 and p" does not
divide 7 and since the lemma is true for (r—1), y consists of p’-fold repeats,
Thus the set x, such that S; (x)=0 whenever i< pf*" and i is not divisible
by p™+1 consists of p™+1-fold repeats; this completes the induction,

Definition :

The elements Sy, .... generate I if each element S of X can be
o
written uniquely as a sum of multiplesof Sj, ...., S=3x; S
i=1

We work out the structure of 3 first in the rather simpler case
when K=k, a congruence field.

For m=1,2, .... write Sm for the subset of 5 consisting of possible

vectors of symmetric functions § (x) with S; (X)=S, (x)=....=Sn_; (¥)
=0; 31=2% Then 3/ is in 1-1 correspondence with the

(m+1)
possible values for S, (x) when S; (x)=....=S,_; (x)=0; Write S,,
for this set. In order to find a set of generators for S, it is enough to -
describe S, ==3,,/3 41 for m>1,

If §; (x)=oc is soluble for any value cin k, then it is soluble for
all values of ¢in k ; thus S; either consists simply of the zero vector or
it is in 1 —1 correspondence with k. Further by lemma 2 23, S; is empty
unless i<p or pfi by Lemma 2.26, S; is empty unless i=gp" with
(4, p)=1,9<p; and in this case S;is in1—1 correspondence with £,

So a set of generators of 3, is
(S(l), 3(2,), o8P SOP), )
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where whenever i =¢p" with g<<p, S(!) has Sj\l) =0 for j<i, S,-(l) 0.
This determines the structure of 3 completely.

Let a=(ay, .. .., ag) be an element of 3(d), that is, there exists a
set x such that S;(x)=a;fori=1, ...., d. Suppose that p"<(dp"1,

From Lemma 2.22 it follows that S;, S;, .... S-_1 and hence S,',
Sep’y ue. Sp™tt—p7 for r=1,.... are independent. The number of

elements necessary in the set y for the symmetric functions. S2, Sype. ...,
Spet1— ¢ to have a given setof values is at most p?(p—1)2. Thus the
number of elements necessary in the set x is at most

(P=124p(p =12+ ... +p ¥ (p=1)2=(p"*2=1) (p—1)(p2d = 1)(p— 1)

For the more complicated case K=kyf, we have to proceed more

carefully.
If m=gp" with (g, p) =1, we write X, for the subset of = consisting
of possible vectors of symmetric functions S(x) with
Sipj(X) =01f]<rs (i9 P)=1
Sipr(x)=0ifi<q, (i, p)=1;
then 3;=3 Also =3 =3
= o (pf - 1) TP

whenever g>pf — |, by Lemma 2.26.

Write s / 5 =S forshort, then wesee S = §
]‘:.0 q;.-l qp . TO

ap" (¢+Dp ap’ :
identify X; it is enough to identify qu, whenever p<pf, (q, p)=1. The

set qu,' is in 1—1 correspondence with the set of values of ¢ such that

Sz‘pl (x)=0if j<r (i, p)=1
Sip’ (x)=0fori<gq

S x)=oc are soluble
qp'r( )

Now S; (»)=0 for i=1, ....,4=1 and sq (y)=0; implies that
ti (»)=0 for i=1, ....,¢—1 and #g(¥)=(—1)7"1 g 6, and vice versa.
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pr8 is the least power. of p such that pf—1 lq(pg—-l) then 7 (y)

=(—1)¢"1 go is soluble if and only if o-l:c,l’g. Thus a set y such
that Si(y»)=0 for i=1, 2 ..., g—1 and sq (y)=0; exists only for those

oy with o =0y pd whcrep is the least power of p such that pf — 1 | q(pgn 1.

.
Thus by Lemma 2.26, there exists a-set J(p )—\ such that
(Sip] x)=0if j<r (i, p)=0

I'S. . (x)=0Tfori<q

@2 17 .
I\.qu" (x)=0{P =o are soluble.
if and only if c=c” , where p is the least power of p'suchthat pf—1 |

g (pP~1). 5

For each ¢, let C(q) be the set of 6 € K such that s=cf Let A(g)
be a set of generatbrs of C(q). Then for each of these generators and
for each r >0 we can find x such that (2.2) is satisfied. We thus get a

set A (pq") of generators of qu’ module 3 Then taking A (gp"

(g+1)2p"
when (g, p)=1 and g<pf—1 we get a set of generators for 3. This
determines the structure of 3 completely.

Furthermore if a=(ay, ...., ag)is an element of 3(d), then there
exists a set x such that S; (x)=a; for i=1, ...., d; and if p"<<d<p™+1,
then x consists of at most

flp=1)4pp~=124. .. +p™1 (p—1AL S (p2d—1) (p—- 1) elements.

§ 3. From now on K will be a p-adic field with ring of integers
¢ and prime ideal p=(7). The rational prime above is p, the ramifica-
tion index is e so that (#)*=p and the residue class field g/p=Fk has pf
elements. We denote the set of n tuples of any set E by En,

If the residue class field @/p=k is infinite, then every element of K
can be expressed as a sum of d’h powers. By Newton’s formula, the

identification of =(d) in.this case is trivial,
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Thus we may suppose that k.is finite.

In section 3.1 we have dealt withthe case d<p/; the results are
mainly quoted from [I]. In section 3.2 we try the problem when d< pf
but we are unable to solve it, however we have slightly improved the
number of veriable given in [1]. Section 3.3. deals with the case when
K is a rational p-adic field. By analogy with the work of Ramanujam
[5] one would expect that the unramified case might be easier; we are
unable to give any good results. By the improvement of our -method
it may be possible to lessen the restrictions on the values taken by the

first d symmetric functions.

The identification of 3(d) when K is a p-adic field and d>pf seems
to be distinetly hard. Even in the rational p-adic case we find it
difficult to determine 3(d). We can show that if

By (=S, (x)=S; (x)=0 4)
then S4 (x)=0 (2); but this is the only case in which we know of any
congruence restrictions on the -values of symmetric functions:that is

not implied by the finite field theory.

Our estimate of number of variables necessary is in terms of d, p
and f; one would wish to find it in terms of d alone; but we are unable

to improve matcnally the d 164> given by Birch ! 1]

§3.1. Write D==f(pd—1) (p—1) for short. We shzall -identify the
set 3(d) for d<p’ and given an estimate of the number of variables
X1, .. .., X, which may be necessary for S; (x), ...., Sy (x) to take a
given set of d-tuples of values in x(d). '

We start with a known version of Hensel’s lemma (lemma 3 of [1])
whose proof we reproduce for completeness.
")

Lemma 3.11, Let r>1. Suppose that ueg? yeP, z° 7~ €64 are such

that
GB.h z( ") not congruent to z "( ) (mod ) for i=£j
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and (3.2) Sk (, z (r))EaK (mod #") for K=1,2, ...., d;
then we can find z(rJr D € 64 such that
3.3 D= 20 (mod 1)
and (3.4) Sk (s z(r+ 1))EaK (mod 7"™1) for K=1,2, ....,d.
(r+D_ (@)

Proof :—The congruence (3.3) is equivalent to z
where tegd, so it is enough to show that we can find ¢ such that

+7't

" . L
Sk(, z(l) + 7" f)=ax (mod w(' ‘ 1)) forK=1,2,....,d
:d .
But Sk (3, z" =" )= Sk (3, zT)—:-T:’d S (@ Sife zp) (727)
i=1
So since r>1, it is enough to solve the linear congruence.

@5) 3 tJ [8Sk/e zil=7" [ak ~ sk (. 2] (=)

The determinant formed by the coefficients dsk/ zj is of vandermonde
type; it has value =T (z.—z;); and so does not vanish mod = by (3.1);
s0 (4.5) is certainly soluble.

This completes the proof of lemma 3.11.

Now if d< pf, then we can choose z(l) €64 so that

( ) not congruent to z( ) (mod =) for iz%j.

Let (ay, . ..., ag) by any set of values taken by the first 4 symmetric
functions in the residue class field kp f, and suppose that bi=a; (mod =)
for i=1,....,d. Then by the results of § 2. we can find a set y ¢ gP
so that

Si (y, 2)=bj (mod =) forj=1, ...., d.
Now we apply lemma 3.11, for each r>>1 we find
z(r) EZ(I) (mod #")s0 that
55 (7, 2 =b; (mod =1y
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Finally we let r — o«. By the compactness of 9 the sequence

{z( )} has a limit point, call it z, and then
S; (y,z)=bjforj=1,2, ....,d.

Thus the sequence of values taken by the first d symmetric functions
are just those whose reductions module p are sequences of values taken
by the symmetric functions in the residue class field kpf; and since the
strncture of the latter is known, we know 3(d) completely for d<<p’ when
K is a p-adic field.

Furthermore if a=(ay, ...., ag)is an element of 3(d), then there
exists a set x of at most d+ f (p2d—-1)(p—1) elements such that
si (X)=a; fori=1,2, ....,d.

§ 3.2. In this section we consicer the case when d>pf. Birch {I]
has proved that if ¢ e 61 and y € 9! satisfy

Si(p)=a; (w4 fori=1,2,...., d.
then by a Hensel's lemma type argument we can find a set
v € gm+*d such that
S; W)=aifori=l1,2, ....,d.

Thus the identification of 3(d) when d>>pf reduces to the 1dent1ﬁca-
tion of the sets z such that _—
Si (@) =ai (=) fori=1,2,....,d
Unfortunately, we have not been able to identify these sets.

Birch has also proved that there is a set z such that S; (z)=a; (v4-)

for i=1, ...., dconsisting of at the most p4d2f—p4if+1 elements. We
can improve this number of variables slightly. For instance: if z consists
of a repeated p"*s times, then S; (2)=0 (p") for j=1,2, ....,p’. Thus
one gains nothing by repeating elements more than p™*s times; hence we
obtain all possible sequences of residue classes modulo p" for
51 (2), ..., sp5 () by taking at most p™+s+'sf variables in z. Hence
p-adically we need no more than p84f variables.
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Thus if a=(a;, . ..., aj) is an element of 3(d), then there exists a
set of at most p®f elements such that s; (X)=ai for i=1,2, ...., d.

By examining Birch’s argument more closely, we can do even better;
since Hensel type arguments may be applied to S; (¥)=a; (=R) with R
notably less than 4d.

§ 3.3. In the rational p-adic case, we can do a little better. In this
section, (p)=(=), and the residue class field consists of p elements. So the
residue classes modulo a power p® have representatives which are
rational integers.

We have already dealt with the case d<Cp in section 3.1, so we may
suppose d>p. For convenience in arithmetic, we take d as a power
of p, d=p®.

We prove the following two lemmas whose idea goes back to
Birch [1].

Lemma 3.31.
R St (i

Let a € 94, z€ @4 Let the power of p dividing ‘Tl (z, - z;) be p’ ()

i=1

for each j=1, 2, ...., d and suppose that

J—1 ] .
T (24— 2)=0 (mod p*N) for 2< j<K<d
i=1 -

and g;=0 (pv(d)) for each i<d;
then we can find a set y € 9 such that
Si (s 2)=aifori=1, ....,d.

Proof:—By Newton’s formula-
Si 0, 2)=aq; fori=1, ....,d
if and only if
‘ ti (¥, 2)=>bi; where b;.is a polynomial in
St» S2, .. .., S; with positive rational integer co-efficients

and bi=0 (") for each i<d.
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Let bj=M; pv(d)
Consider the set of equations

d I
3, E)i=nri p* @D fori=1,2, ..., d.
=1

These have solutions
z’;n but ); in place of (z,,)}

det
'ym-_:pv(d) (i, m=1, ....,d )
det z,
i,m=1, ....,d

Obviously, the power of p in r,, is at least p°; so we can find r,, as
So given any power pR we can find rational integers

p-adic integer.
ry, ....,rq each atleast 1 so that

- d o
S Y (Zn)is=hi (P®) for 1,2, ..., d
m=1
Take a set y(r) consisting of z; repeated (r;—1) times, ....; zg
repeated rg—1 times, then

4 (y('), 2)=b; (p®) for i=1, 2,
If R is large enough, a form of Hensel’s lemma is applicable: we

-----

can find sets y(l) , y(2), .... so that

D (mod ps)
and & (y,2)=bi (pR+s— 1) fori=1,2,....,d
1,2,....

]

Let s—oc then by the compactness of 9, the sequence {)*} has a

limit call it y, and then
ti (¥, 2)=bi for i=1, ...., d.

and
Si (3, 2)=a;i fori=1, ....,d.
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Lemma 3.32. (See lemma 7 of [1])

We can find a sequence {zj} of elements of @ such that, whenever

J=1
2<j<K, T (zx ~z) is divisible by at least as high a power of p as
i=1

J-1 J=1 .
[* (zj—zi)and T (z;—z;) is not divisible by p//F-1.
i=1 i=1

Proof :—We simply take z;j=i for i=1,....,d, and the lemma
follows immediately.
Thus combining lemma 3.31 and lemma 3.32, we get
Lemma 3.33 : Let g ¢ g9 satisfy
~ a;=0 (mod pd/p-1) for i<d
then we can find a set z € g such that
Si(z)=a; for i=1, ...., d.
We deduce

Theorem 3.31.
Suppose that d is positive power of p. Let a ¢ 4 be such that for
some set x € §
Si (x)=ai (mod pd/b-1) for i=1,2, ....,d;
then we can find a set z of elements of @ such that
Si(z)=ajfori=12,....,4d
In particular, we can solve S; (z)=a; whenever a;=0 (mod pd/t-1)
fori=1,....,d.
This is a weak result, but no more seems to be obvious. Note that
if d<p~-1, then the theorem asserts that for every a € §¢ we can find z
such that S; (z)==a; for i=1, 2, ...., d. This is not a particular case of
the theorem, since we have assumed implicityly that d>p; but the result
is true by Section 3.1.

§4. We see that the problem 6f identification of 3(d) does not
turn out to be so easy as we thought. The paper solves the problem it




[611

set out to solve, but one would like to find explicityly the relation
between the first ¢ symmetric functions. It is not too difficult to do so
with the help of our theorem 2.11 and Newton’s formula, but it is
distinctly messy.

By analogy with the finite field one would desire to identify the set =
when R is a ring of rational integers, there one has already trouble over
the reals, if S; (x)=ai, i=1, 2, ...., d, then t; (x)=>b; for some b; given
~in terms of a;’s by Newton Formula. Clearly 5; >0 whenever i is even,
and this implies inequalities between the symmetric functions; for

instance &, >0 implies Sf > 2S,. When R is the ring of rational integers,

the congruence conditions interact with these inequalities and one has.
the additional trouble that any non-zero positive integer is at least 1.
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SOME PROPERTIES OF PERMUTATIONAL
PRODUCTS OF GROUPS!

ABDUL MAJID?

Department of Mathematics,
University of the Punjab, Lahore.

1. Imtroduction : The concept of permutational products of groups
was introduced by B. H. Neumann in [1]. This group theoretic
construction is based on a method given by him in his famous essay [3]
for the embeddability of an amalgam with a single group amalgamated,
in a permutation group. Use of this construction was made to answer
various questions about the embedding theory of group amalgams
(cf. [1], [2), [3]). The present articleis divided into four sections. In
section 2, the definition of permutational product of groups together
with some other concepts related to it is given. A fundamental lemma
which forms the basis of the theory developed latter and called hereafter
Neumann’s lemma is also given in this chapter.

In section 3, we examine the structure of a permutational product
of an amalgam in which the amalgamated subgroup possesses in both
the constituents transversals that it centralises and show that for this
kind of amalgam the permutational product corresponding to transver-
sals centralised by the amalgamated subgroup belongs to the least
variety? containing both the constituents.

Some analogies between the generalised free product and permuta-
tional product of groups with an amalgamated subgroup are discussed

1. This article forms a part of a thesis submitted to the Australian National
University for Master’s degree.
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3. A variety is a class of groups closed under the operations of taking sub-
groups, epimorphic images and cartesian products (cf. [8], [12]).
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in section 4. A result similar to theorem 1.1 [3] is proved for permuta-
tional products of groups.

Following B. H. Neumann, let F* denote one of the following
properties of groups: being locally finite (LF), of finite exponent
(FE), or periodic (P). Tt is known that a soluble amalgam, that is, an
amalgam of soluble groups or an amal'gam of groups having the
property F* need not be embeddable in a soluble or F* group respectively,
(cf. [1], [2]). However under some sufficient conditions on the con-
stituents, B. H. Neumann has shown it to be possible. These
results are given in section 5.

§ 2.1. We begin by defining the notion of an amalgam! and its
embeddability. An amalgam A of (for convenience only) the groups A

and B with a common subgroup H is an ‘incomplete group’ whose
elements are those of A and B with the elements of H thought of as
identified in the two groups. The product of two elements of A is

defined if and only if they both belong to A or both belong to B, and
its value is as in that group. If there is'a group G containing A and B
as subgroups such that in G the intersection of A and B is the prescribed
group H, then we speak of an ‘embedding’ of the amalgam A=am

(A, B;H) in G. A and B are called ‘constituents’ of A and H the

‘amalgamated subgroup’.
By a transversal of a subgroup H of a group A we shall mean a set
S < A such that every element of A is uniquely representable in the form
a=sh,s €S, he H
We say that H centralises S if the members of S and H commute.

2.2. Permutational product of Groups. We now come to the
definition of a permutational product (cf. [1]): Let A=am (A, B; H)

1. This term was first introduced by Baer [10]. A deeper account of resuits
concerning group amalgams and their embuddability can be found in [3],

[4], [5] and [11].
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be an amalgam of the groups A and B. We choose transversals S of H_
in A and T of H in B. Form the set product K=SxXTxXH. The
elements of K are ordered triplets (s, ¢, #), s €S,t ¢ T, h e H. For
each a € A, we define a mapping p(a) : K—K by
s, 6, DY =, 1, )
where s* €S, i’ € H are determined by the equation sha=s"h’
Similarly for b in B we define a mapping p(b): K—K by
s, 1, PO =s, 17, 1)
where
thb=t"1I".

It is easy to verify that for a=b ¢ H no ambiguity arises in the
definition of p. Moreover, the mapping p: A—p(A)is a homomorphism;
for if a, a’ are two ¢lements of A, then

(S, l, /1)p(a) p(a ):(S', l, llr)p(a)
:(SH’ t, /1”)
where sha=s'h', s'h’a’=s"h" so that shaa’=s"h" which means that
(S, t, ll)p(aa ):: s!/’ hn).

Thus p(a) p(a@’)=p(aa’). The prcof for p(b) p(b')=p(bb’) is similar.
It follows, therefore, that p(A)={p(a); ae A} and p(B)={p(b); b € B}are
groups. However the homomorphism p : A—p(A) turns out to be an
isomorphism, for if p(a) =ik, the identity mapping of K, then

(s, t, h)p(a) .,:(s’ t, h)

for all (s, ¢, ) € K means that sha=sk for alks € S, h ¢ H and therefore
a=1.

The above remarks show that the mappings p(a), p(b); a€ A,beB
are infact permutations of K. Furthermore, the intersection of p(A)
and p(B) is p(H), because if p(a) € (B) then p(a) leaves the first com-
ponent of each triplet (s, ¢, /) fixed and so :

G, 1, DPD=(s, 1, ha),
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therefore ha ¢ H, thatis a ¢ H.

The permutation group P of K generated by p(A) and p(B) contains
isomorphic copies of A and B with p(A) n p(B)=p(H) isomorphic to H
and, therefore, embeds the amalgam A. P is called a permutational

product of A=am(A, B; H). We use here the indefinite article because
P depends not only on A but also on the choice of transversals S, T of H
in A, B respectively (for details see [1]). By P(A; S, T) we éhall denote
the permutational product of A corresponding to the transversals S, T

of H in A and B respectively.

- 2.3. Next we define the free product of groups as follows: Let
{Ga}, be a family of groups indexed by a set I offinite or infinite

cardinality. A group G, which we shall write as n*G , is said to be
ael
the free product of G, (¢ € 1) if
(i) the subgroups G , generate G, that is, if every element g=%! of
G is expressible as a product of a finite number of elements from
the G : B
88y, 8ay ay’ Eay € Ga,- i=1,2, veeeiy (A)
where v .
gaﬁél, di7=a;j for j=i41; and
(i) the expression {A) is unique for every g=%=1 in G.
If the set I is finite, we shall use the notation
.G=G, *G, *.... *Gq.
The subgroups G, of G are called the ‘free factors’ of G while the

-

expression (A) is called the ‘normal form’ of an element g of G.

2.4. As stated above, a change in the transversals of the amalgamat-
ed subgroup greatly alters the nature and character of the permutational
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product of an amalgam A. However, under certain conditions .on the
amalgam, the isomorphisn] type of permutational product of A is
unaltered. -

The following result which plays a key role in what is given later,
mentions one such condition.

2.41. Neumann’s Lemma!: Given two groups A and B with
an amalgamated subgroup H. let B be a transversal of H in A which is
centralised by H, then the isomorphism type of the permutational
product P (A; S, T) is independent of the change of transversals T in

the other constituent, 7.e. in B.
Proof : Let T and T’ be two distinct transversals of H in B and
P(A;S,T), P (é;‘S, T’) permutational products of A, B corresponding

to the transversals S, T and S, T"of Hin A a_nd B respectively. We
define a one — one mapping ¢ from K=SXTxH to K'=SxT'xH
in the following manner:
If (s, 1, 1) € K, then
| (s, 1, )" =(s, ', 1)
where (s, ¥, h') € K’ and th=¢' h'.
Let a € A, then, since ¢! exists,
-1
G, 1, 1)? P@P_ (s ) P@?
=(s1, 1, h)”
=(sp ', by 1)

where sha=gyhy, th—t', thy—t'hh, (1)
!

AlSO (S, t,, h’)p (a):(s27 t,, hl,) » '

where sh'a=s,h,’ o V)]

Now from th=t'h’, we have t’=thh'~1 and putting it in t=¢t'h,,
we get t=thh'-1h,

1. For an original version of this result see theorem 2 [1]. -
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so that Ah'-1 h,==1 j.e. &' =h_h.

Therefore :
sh'a=shyha=h,sha, by assumpticn that [s, #]=11
‘ forallheH, s € S.
=hyshy  from (1),
=s1hyhy by assumption
=5k, from (2).

Therefore sy=S5,, hahy=hy', and o=l p(a) o=p’(a) for all ae A.

For b ¢ B, we have
_1 E l ’
(s, t, h’)i f ( ) i:(s, z, h)p( );

=(s, 11, )"
=(s ta', hy')
and
s, #4107 O (s, 1 1y
where in the first case
thb———flhl:tl/hl'
and from the second equation,
vhb=tyh,.
Since th=t'h’, therefore,
thb=t'W'b=t"h\’ =t,"hy’'
Hence 1,'=ty/, h,'=h,’ so that ¢~1 p@®) ¢=p'(b) for all b € B, i.e.
©~1 Po=P’ and therefore P and P’ are isomorphic.

This gives us

2.42. Corollary: If H is a direct factor in A, then the isomorphism
type of the permutational product is independent of the change of
transversals in B.

Proof : This is immediate: choose a complementary direct factor

as a transversal.

1. [s, k) denotes the commutator s~ A~ sh.
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2.43. Corollary. If H possessesin both A ‘and B, at least one
transversal which it centralises, then all permutational products of the
amalgam formed with transyersals of which at least one centralises H,
are isomorphic.

Proof . Let Sy and T be transversals of Hin A and B respectively
which are centralised by H, and S and T any arbitrary transversals.

Then by lemma 2.31.
P (A;S, Ty) =2 P(A; Sy, T) = P(A; S1, T)

as required.

One may, quite naturally expect that when the amalgamated sub-
group has transversals which it centralises in both the contituents,
there is only one isomorphism type of permutational product. However,
the following example shows that this is hoping too much.

2.44. Example: The groups A and B are taken as isomorphic to
the dihedral group of order 12 which can be considered as the direct
product of the dihedral group of order 6 by a cyclic group of order 2.

Thus ;

A=gp {a, b, ¢; 3=b2=c2=(ab)’=]a, c]=1b, c]=1}

B=gp{d', V', d; a3 =b"2=d2=(a' b')2=[d, d]=[b’, d]=1}
We take H as

H=gp {g, h; 8=h"=(gh)’=1, g=a=a', h=b=b'}

The transversals S=(1, ¢), T=(1, d) are centralised by H.

The permutational product P (A; S, T) is the direct product of the
Four group by a group isomorphic to H and so has order 24. However,

if we choose the transversals as S’ =(#, ¢), T'=(g, d), the permutational
product P’ (A; S, T') turns out to be of order 72. P and P’ are

obviously non-isomorphic.

As already mentioned, when H is central in both A and B and so
centralises all its transversals in the constituents, then the isomorphism
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type of the permutational product is unique. In fact it is then the
generalised direct product of A and B amalgamating H (cf. [1]). The
examples given by B. H. Neumann [1] also show how drastic the effect
of a change in the transversals can be if tke amalgamated subgroup is
not central in both the constituents. It may therefore be asked whether
in all other cases, excepting the one above (i.e. of H being central in
both A and B) permutational products of A and B always depend on
the choice of transversals of the amalgamated subgroup. This, however,
is not the case, as the following example constructed by B. H Neumann
in a different context (cf. [2]) shows:

2.45. Example: Let H be the restricted direct product of an infinite
number of cyclic groups of order 2, that is

» B2 _Th Bel—
He=gpthy, by, hy, .5 by =[hi, hi] ”I’J‘, i=0,1,2,....}

Let «, 8 be the automorphisms of H defined by
o o ,
hzi:hZiH, ]’2i+1:hli’ (i=0,1,2,....)
and
B B, N T
hy =h,, hZHI =H3i 12, 112!.+2-—-l121+1, (i=0,1,2,....)
We now extend H by cyclic groups Ci=gp {a; a2=1} and C,=gp
{b; b2=1} corresponding to these automorphisms to get two groups A and

B respectively. Thus
a a
A:gp {a, H; aZ:hiz :[hi, h]]:13 h2i':h2i+1’ h2v+1 =My}

B=gp {b, H; b2=h =[hi, hil=1, b} =ho, K%, =sira, 2, =hyisy}

Let P be a permutational product of A and B amalgamating H,
then in P, ab is an element of infinite order, because for any non-zero

integer n:

h)n b.(ab)n=1 _ b(ab)n—1 byn—1
hga ) _—_hff (ab) =h1(a) =/z§ab)" = =hynthy
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If F is the free product of A and B amalgamating H then, by the
definition of the free product, there is a homomorphism of F onto P. To
show that F and P are isomorphic, it is, therefore, enough to prove that
it is impossible to add an additional relation in F different from those
already implied by the relations of A and B, without making any of the
groups collapse.

Now it follows from the general theory of free products with one
amalgamated subgroup that a genecral element of P can be written

uniquely in the form

r=hatl bab . ... ab%

&=0or ], i=1,2and h e H. Hence a relation r=1 gives
h==b"2 abab . .... ¢
If the right hand side is equal to 1, then this is a relation in H;
hence we may assume it to be different from 1. Then ¢, g, cannot
simultaneously be 1 or 0, for the right hand side in such a situation
becomes (ba)"+! or (ab)m for some integer m according as g =gy=1
or g=¢,=0. Therefore, because ab and ba are of infinite order in any
group embedding the amalgam, they are of infinite order in P whereas
& is of order 2. Thus either g or g,iszero. Without any loss of
generality, suppose that g,=:0, then & =1 and
h=ababa .... ba.

The right hand side has an odd number of factors, each of order
2, hence it is a conjugate of the central factor, ‘¢’ in our case, by a

power of ba:

B :a(ba)k
for some integer k. But H=gp {A;} is normal in each of the constituents
A and B, hence transforming 4 by (ba)—k gives a € H, which is impossible
because this leads to the collapse of A. Therefore no proper homomor-
phic image of F embeds the amalgam of A and B. The kernel of this
homomorphism being trivial, an isomorphism between F and P is estab-
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lished. As the free produet of an amalgam is unique to within isomor-
phism this amalgam possesses only one permutational product but for

isomorphisms.

Thus the case of the amalgamated subgroup being central in one
of the constituents is, by mno means, the only one for which we get a
unique permutational product of an amalgam of two groups.

The above example al:o proves another interesting fact; that in
some cases the free product of two groups with amalgamation may
coincide with their permutational product.

However, the free product of two- groups with trivial amalgamation
can never coincide with their permutational product because the
permutational product of such an amalgam degenerates into their
direct product and since by a theorem of Baer and Levi [7], a group
which is decomposable into the free product of its subgroups cannot be
decomposed: into- their direct product, we conclude that in such a case
(amalgam with trivial amalgamation), the permutational product of A, B
is always different from their free product.

Finally we mention that there exist amalgams of two groups such
that their permutational productis different from their free product, the
amalgamated subgroup is central in none of the constituents and stiil
we have only one isomorphism type of permutational product. This is
shown by the following example:

2.45, Example : Let

A=gp {a, b; a3=b2=(ab)?>=1}
B=gp {¢, d; c3=d?=(cd)?=1}

and H=gp {h; =1, h=a=c}

All the permutational products of A and B are different from their
frec product (this is due to the fact that a permutational product of a
proper amalgam of the finite groups being subgroups: of the permuta-
tion group on a finite set K=SxTxH where S and T are coset
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representatives of H in A and B, is finite whereas their free product is -
always infinite). Moreover, the amalgamated subgroup is central in '
none of the constituents. But the only different looking permutational
products of this amalgam corresponding to distinct transversals, are
given by :

Pi=gp {a, b, c; b2=c2=(bc)=1, (bc)*=a}

Py=gp {a’, b, ¢’; a’3:b’Z:c’2:(b’c')2=(c’a’)2:(a'b’)2:1}‘
P can also be generated by b and ¢ alone. The mapping

b——>bda,c—>c
is an isomorphism between P; and P,.
§ 3. We now examine the structure of the permutational product

P (A;S, T)of A corresponding to the transversals S and Twhich are

centralised by H. It will be shown that this particular permutational
product possesses the properties of the generalised direct product of
groups. In fact, we shall prove that this permutational product s
itself the generalised direct product of some groups isomorphic to s_ub-.‘

groups of the constituents in A.
Let us denote by Ca (S) the centraliser of S in A, then we: have:

3.1. Lemma: Let H € Ca (S) n Cg (T), then in the permutational
product P (A; S, T) of A, p(S) and p(T) commute elementwise -

Proof : Let (s, t1, h) e K=Sx TxH, then for any se$S and 7 e T,
we have, :
G 11, 5P PO s, 11, 1) =5, 12,1y

where sjlys=s,h,, tiht=1th; )
AISO t § ’ ’ ) r ' ’
(Sls th lll)p() p(“):(‘gla t2; h Za)p(S):(S 29 t2’ h 3).
where sy7' )5 =5'yt'y, iyt =t'sh'y S I 2)
From (1), and (2), we have, o
Sis=splphy T =5 T e, sy=5"4, ol Ti=h G )T NE))

and 11t=1h"1 hy=t">h "1 I’ :
t;zllz, ]ld»_l h3:/11—1 h'z (4)
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From (3) and (4), hy=hahy ™1 I'y=h's.  Therefore p(s) p(f)=p() p(s).

This being true for all (sy, ¢}, ;) € K, and s, €S, #; ¢ T, we have
[p(S), p(M]=1. '

3.2.  Theorem: Let H possess in A and B transversals S and T
respectively which it centralises, then the permutational product
P(A; S, T) of A=am (A, B: H) can be represented as the generalised

direct product of any of the following three sets of groups.

(i) The groups K, L, and p(H) where
K=gp {p(S)}, L=gp {p(T)}; or

@) p(A) and L; or
(iii) p(B) and K.

Proof: To prove (i) we first note that since p(S) and p(T) commute
clementwise (lemma 3.1), so do also the groups K=gp {p(S)} and
L=gp {p(T)}. Let K n L=R, then Ris central in K because R is a
subgroup of L which centralises K; so also it is in T because then we
consider it'as a subgroup of K, and L and K commute elementwise.

Moreover, R being a subgroup of both K and L and so also of
p(A) and p(B), R is contained in p(H). Furthermore, R is central in
p(H) because it is a subgroup of K and L which are centralised by p(H).
Since K, L and p(H) contain R as a central subgroup and P is generated
by these groups it is their generalised direct product amalgamating R.

We now proceed to the proof of (if). The group P which is generat-
ed by p(S), p(T), p(H), can also be generated by p(A) and p(T) i.e. by
p(A) and L only, where L=gp {p(T)}. Let now p(A) n L=R;. SinceR;
is a subgroup of p(A) and L, R, is contained in p(H) (the meet of A and
B being only H). As a subgroup of p(H), R;, L commute elementwise
because H centralises T and so also L. Also R; is central in p(H)
because R; is in L. Since p(A) is generated by p(S) and p(H), and L
centralises p(S), thereforc Ry centralises p(S), that is R, is central also




[75]

in p(A). P being generated by p(A) and L with their meet central in
both, is their generalised direct product amalgamating R.

The proof of (iii) is exactly the same as that of (if)
The theorem is now completely proved. _
The following theorem gives the nature of subgroups generated by

elements of A and B contained in the centraliser of H in A and B
respectively, in a permutational product P of A and B amalgamating H.

3.3. Theorem: Let {a;} and {5;} be two sets, finite or infinite, of
elements of A and B respectively such that each a; ¢ C4 (H), b; € Cg (H)
and H abelian, then in any permutational product P of A and B, A,,=—gp
{p(ay), -. .., p(am)}, Ba=gp {p(h1), ...., p(bn)} generate their generalized
direct product.

Proof : Let (s, t, i) e K=SxTxH, then we have to show that
p(ai) p(h))=pb;) p(ai) fori=1,2, ....,mj=1,2, ..., n

Now (Ss Z, h)p(ai) P(bj):(s/’ z hl)p(bj):(sla t',h") -
where sha; =sah=s"h" and th'bj=tb;h’' =t'h" - : (1)

Also (s, t, h)p(b.;')-p(ai):(s, t, /11)0(01'):(31, ty, 1)
where shyai=saihy =s,hy, and thbj=thjh=1h, . (@)

From (1) and (2), we have,
sai=shyy " =s'h~! and thj=tmh~1=t'h"h'"!
Therefore s;=s', oy "\ ="K\, t;=¢t, hh™I=h"h""1
that is, iy,=h"h~} hy=hJ' k'=h" (because H is abelian).
Thus p(ai) p(bj)=p(b;j) p(ai) and consequently, A,, and B, generate
their generalised direct product in P.

Remark 1. If aj=s*h¥, bj=t*h*, then for all s ¢ H,
J

h*
i

%
I=lai, hl=[s7h*, h=[s¥, h] ¢ [k}, hl=][s], /1]]7i

gives, [s7, h=1
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Therefore s,* € Cy (H) foralli=1,2,....,m
similarly: t* € Cy (H) for all j=1,2, ...., n
i

Thus if S*={s* s* € Cs (H)}, T*={* ¢ Cs (H)} then since
[p(s*), p(t¥)]=1 forall s* € S*, r* ¢ T*, if K*=gp {p(S¥)}, L*=gp {p(T*)},
then K* and L* generate their direct product in any permutational
product of A and B amalgamating an abelian subgroup H.

Remark 2. The condition on H about its being abelian Is necessary.
Example 2.44 would suffice to show this.

§ 4. Although the concept and nature of the generalised free pro-
duct with amalgamations is entirely different from that of a permuta-
tional product of a given family of groups still there are some results
which exhibit certain analogies in the behaviour of free products and
permutational products. Forexample, itis known that if{Ga} and {G’a},

(o belonging to an indexed set I) are two families of groups each having

a common subgroup H and H’ respectively, and a system of homomor-

phisms 2. of Ga onto G’ where any two ?, and <pﬁ agree on H, is given,
(48

and further if F and F’ are the free products of {Ga} and {G’a} amalga-

mating H and H' respectively then there exists a homomorphism ¢ of F
onto F' which extends all the ¢ . The proof of the above theorem is due
. a

to Hanna Neumann (c¢f. for example [3] Theorem 1.1) We. prove a
~corresponding result giving a relationship between the permutational

products of two families of groups Ga and G'a amalgamating H and H’
respectively. We have, of course, to choose the transversals in a

particular manner.. It is sufficient to show this for the permutational
products of only two groups because the proof for more than two groups

is not at all different.

Let A, B and A’, B’, be the given groups having common subgroups
H and H’ respectively. Let S and S’ be coset representatives of H and
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H’ in A and A’ respectively. Let ¢4 be a homomorphism of A onto
A’. 1€ S’ isthe set of distinct elements in the image Sos of S under
this mapping, then we say that S and S’ are ‘“‘cquivalent transversals”
of H and H’ in A and A’ respectively. We similarly choose a pair of
equivalent transversals T and T’ of H and H’ in B and B’ respectively
corresponding to a homomorphism ¢p: B—B’ which coincides with
oa on H.
~ We now prove the following:

4.1. Theorem: Let 95: A—>A’, ¢p:B—B’ be homomorphisms of
A onto A’ and of B onto B’ such that ¢, | H=¢p | H, and further
A=SH, B=TH. If a pair of transversals §', T of H' in A’, B’ equi-
valent to S and T respectively, is chosen then there exists a homomor-
phism ¢ of the permutational product P (A; S, T) of A=am (A, B; H)

onto P’ (A’; S, T) of A’=am (A’, B’; H’), which extends both

¢4 and ¢p.
Proof: First we show that in the permutational products P (A; S, T)

and P’ (A"; S, T’), the mappings
p(@)—>p'(a) and p(b)—>p'(b’)

PA B
where gq—>a’, b——b', ae A, beB, a'e€ A', b’ € B, are homomor-
phisms of p(A) onto p'(A’) and of p(B) onto p'(B’) respectively.

Denote by p~! the inverse of the isomorphic mapping a—>p(a) of A
onto p(A) for a € A. Then if

?a L2
aj——>a 1, Ay——>a

we have p(a)) p~1 o4 p"=(a1) 9a p'=(a'y) p'=p’ (a'y
p(ay) P71 os p'=p'(a’y)
and p(a1) P(az) P71 9a P'=p(may) pa~! p’
=(a1a,) ¢a P’
=(a'1a’y) p’
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=p'(a’1a’y)
=p'(@'y). p'(d">)-
Thus p(a)—>P'(a’) is a homomorphism of p{A) onto P'(A’), a €A,
a e A’. - Similarly p(h)—p’(s’) gives a homomorphism of p(B) onto
p'(B).
To prove that P’ is a homomorphic image of P, we have to show

that any law which holds in P also holds in P'. Let (s, 2, 4) ¢ K=
SxTxH and let w be a word in elements from p(A) and p(B),

that is
w=p@) L p(by) ... plan) Pbr)®®

—p@ Y p(By) .. .. P(ay) P(bA®?)

where §;and §, are0or 1, and a; € A, bj ¢ B. Then

(s, 1, hye=(s, £, )P (algl) p(by).. - plan) P(bngz)

=(s51, t» /ZT )p(dz). ces P(an)p(bngz)

................

:(S‘n, tn, h:).
Here Shafll =s1hy and thiby =ty *

SlhTaz”;Sghg 11/12b2:t2/1;

....................

Also if the elemehts s”, t' of S/, T’ correspond to the elements s, ¢
of S, T under the homomorphisms ¢4, @p respectively and a’i=ai@a,
b';=bh;ops, then
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! lgl 1Lt ’ , . ,52
(s, t, /z’)p (a 1 )P (') p' (@n)p(0)))
P (all ¢a) p'(by 0B)....p'(an04) p/(,bgz%)

:(_S‘Pm 9B, h(,DA)

)
bn2

204) P'(b2%B). . . . p'(an®a) p' (b, “¢sp)

"(a
=(5194, 1198, 1}Qa) P

............

............

=(SnPAs n®Bs N7 9a)

because soa fioa aid ga—(shay D Yoa —(s1n)ea—s1 2o

and siQalt} ©ais1Oa=(sih¥air1)oa=(Si+1 hic1) Pa=Si+19ali 119

Similarly toph;opb 9p=(1h161)98=(t1h]) 9a="1,98h] ¢5.

and 7;98 hiH‘PBbiﬂ(PB"—"(fihi+lbi+1)(PB:(tth;l:_l) mB:itiﬂ(thf”(PB

Thus if
Y (..., pa), p®), ....)=1
is a relation in P (A; S, T), then it is also a relation in P'(A’; §', T'),

By van Dyck’s theorem, there exists a homomorphism ¢ of P onto P"
which extends both o and ¢g. This complete the proof of the theorem.

If we are given an amalgam of two groups A and B amalgamating
H and if
A=A XA,X....XAp, B=B;xByx....xBy,
in such a way that
A nB=H=H;xH;Xx....xH,

where Hi=A; n B; for all i=1, 2, ...., n, one will expect the
permutational product of A and B to be the direct product of the
permutational products of the amalgams am (A;, Bi; H;) provided the
transversals are chosen in the natural way. The following theorem for
which we suppose the groups to have, without any loss of generality,
only two factors, confirms this guess.
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4.2. Theorem: Let P (1}1; S;, Ty) and PZ(A:; S., T;) be permuta-

tional products of A;, By, amalgamating H; and of A,, B, amalgamating
H,. Let further, A=A XA, B=B;xB; such that H=H; xH,. Then
the permutational products P(A; S, T) of A and B amalgamating H is

the direct product of P; and P, if S=S8; xS, and T=T; X T.

Proof. We first prove that in P, the group P’y generated by p'(Aj),
p'(By) is a direct factor of P. For this we have to show that p'(A;),

p'(B,) and P'(A,), P'(B;) commute elementwise.

Since the transversals of H in A and B are taken as S=S;x8,,
T=T; x T, therefore, every (s, , h) e K=SXTxH, can be written as:
(8251, tita, hihz) '
where s; € Sy, ti € Ty, h; e Hy, i=1, 2.
Let a; € Ay, by € By, then v
hlhz)p,(al) p’(b.?)____(-szsll, tts, hzhfl)pl(bZ)
=(528"1, 111"y, H'ok'1)

(5281, tit2

where $,81/iah1a1=5,81ha1hy==548"1hylt' 1 =58" 11" 1hy
ie. sihyay=s"1h'

and f1thoh by =t1thybolt =1t 5 h SR
hence tlighy=t">1"5

'(b2) p'(a1)

However, also (251, !5, 112/11)p =(828"1, tit's, H'50'1).

Therefore, [p(a;), p(bo)]=1 and consequently in P, p’(Ay), p'(B,)
commute elementwise. By symmetry p’'(A;) and p'(B;) also commute
elementwise. Hence if ‘

P'y=gp {p(A1), p(B))} and P',=gp {p'(As), p'(B2)}
then P’y and P’y commute element by element. Also, since A, A,;
By, By; Ay, By; A, B all interesect trivially therefore P’y n P’y ={1}.
Since P is generated by P’y and P’, together, P’; and so also P, is a
direct factor in P. Thus P=P'| xP’,. We now show that P’j=P;,
where P; is the permutational product of A;, B; amalgamating Hj
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corresponding to the transversals S;, T; of H; in A; and B; respectively,
(i=1,2).

We take a word
w=p(a11) p(b11)....pain) p(bin), a1i € Ay, byi € By, in Py
Then if (51, 1, h1) € K;=8; xT{ xH;y, we have
1)P(au) p(b11)- - - plarn) p(b1n)

, /l’z)p(bll')' () 'p(aln) p(bln)

(s, t1s B

:(525 5]

= (5 L2y 112)p(012) p®12). . . .p(@in) p(bin)-

=(Sn+15 Ini1> fn+1)
where slhlall :Szhlz and flhlzbll :tzhz
Solsapp=s5h's  ,,  tLhsba=tsh;

............

........................

Sphn@in="=5n11 h/n+15 fnh’nﬂ bln:twrl hniq
Also if (S2S1, £, hZhI) ¢e K=SxTxH, then

(sa51s 310, By @10) PO1D)- P @) P (o1e)

=(528n+15 tatns1s Mohnsq)-
Therefore if w=1 is a relation in Py, it is also a relation in P’;, but
the converse also holds. Since the relations of P; and P’y are in one
to one correspondence therefore they are isomorphic. Similarly P,=~P’,.

Thus
P=P; x P2
as required.
That the choice of transversals of H in Aand B in this particular
way is necessary, is shown by the following example.

4.3. Example: Let A; and B, be symmetric groups of degree
three, that is
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Ai=gp {ai, ci; af‘ :clz =(aici)?=1}

Bi=gp (b, ci; b =c? =(bic)y =1}
and - A=A xA,, B=B;xB,and H=H,; xH,
where H;=gp {c;; cf =1}, Let P; be the permutational product of A;, B;
amalgamating H; corresponding to the transversals S;={c;, a;, af} and
Ti={1, b, b?}. Then each of the P'ss’i=1, 2, has order 162 (cf. B. H.
Neumann [1]) and therefore the order of PyxP,is 162x162=26244.
However, the permutational product P of A and B corresponding to the
transversals S={l, ay, al}x {1, ay, a3} and T={1, by, b*} X {1, b, b3}, be-

ing an-extension of an elementary abelian group of exponent 3 and
order 81 by the four group is of order 324. P is, therefore, not isomor-

pth to Pl XPz.

P(A; S, T) is, of course, isomorphic to P’y X P’y where
Pll: ,l' (é‘; s’ia T’i) with s,i:{ls aj, a? }: T,i:{ls bi, b;’- }

§ 5. LetP be a property satisfied by the groups of a certain
amalgam A, (e.g, the property of being finite, soluble, etc.). As is

shown in [1] and [2] an amalgam with a property P may not always
be ‘embeddable in a group having the same property. Sufficient condit-
ions of one kind or another on the amalgam are, therefore essential.
~ A condition which is fairly close to the hypothesis that the amalgamated
subgroup be central in both the constituents is the existence of trans-
versals, one in each of the constituents, which are centralised by the
amalgamated subgroup.

We have seen in theorem 3.2 that when the amalgamated subgroup
H has, in the constituents A and B, transversals S and T respectively
‘which it centralises, the permutational product P (A:S, T) of A and B

amalgamating H is the generalised direct product of K, L and p(H)
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where K=gp {p(S)}, L=gp {p(T)}, amalgamating K n L=R. But then
in such a case P (A; S, T) belongs to the least variety containing both

A and B, so thatif A and B are in a variety y, we have :

5.1. Theorem: Let A=am (A, B; H) be an amalgam of two groups
belonging to a variety V, then A is embeddable in a group beloning to
X provided that H possesses transversals S and T which it - centralises in

both A and B.

B. H. Neumann (cf. [1]) has shown that an amalgam of two soluble
groups is embeddable in a soluble group if the amalgamated subgroup
is central in one of the constituents. The above remark slightly varies
this result. However, going further, we prove that, as suggested by
Neumann’s lemma 2.41, the condition that the amalgamated subgroup.
is central in one of the constituents can be replaced by the requirement
that it possesses in one of the constituentsa transversal which it centralises.

Some more results concerning the embeddability of a soluble
amalgam (that is, an amalgam of soluble groups.) in a soluble group
using a different sufficient condition will also be obtained.

We first repeat some of- the definitions in [l]. Given two soluble
groups A and B with a common subgroup H, by S and T we shall
denote arbitrary but then fixed transversals of H in A and B respectively.
By BS, we mean the set of all functions on S with values in B. This is
turned into a group by defining the multiplication of any two functions
f, geBS as

fal(sy=f(s) g(s) for all se S

Definition: A mapping ¥ of the set K of all triplets (s, f, h) s €S,
teT, heH, into itself is a quasi-multiplication (or more precisely a
quasivB—S multiplication) if there is a function fon S to Bsuch that

1,0 =(s, £, 1) .
with EH =thfi(s).
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The mapping ¥ associated with fis denoted by ¥(f) The set of all
such functions are known to form a group [7 isomorphic to BS
(cf. lemma 5.1 [1]).

To see that the results in [1] and [2] hold under the weaker condit-
ion, namely the existence of a transversal centralised by the amalgamat-
ed subgroup in one of the constituents, it is enough to show that the

fundamental Lemma 5.2 [1] holds.
We restate the lemma making use of the new hypothesis.

5.2. Lemma (Compare with Lemma 5.2 [1]). Let H possess in one
of the constituents, say A, a transversal S which it centralises. Then
p(A) normalises [?. More precisely, forae A, y=7 (f) € [ there is an
element ¥'="% (f’) of [ such that

p~H@) N(f) p@=N([")
for ' € BS and p a permutation of K=Sx T x H.

Proof : The proof is essentially the same as in [1] except that here
we just use the condition that H is contained inthe centraliser of one
of its transversals say S in a constituent A,

We compute

A =p@ () p@) =pla) A(S) p(@)
forae A,N(f)e ", feBS. Let(s, 7, h) e K=SxTxH,then
6, 1, WP p@_ () pl@)

:(Sla 11, hz)p(a)
_ =(52, 11, hg}
where sha~1=s1hy, thy f(s))=11h2, s2a=5:hs @)
Also (s, 1, BT s, 1, 1)
with thf '(s)=t'h’ (i)

We have to show that s=s,, ¢'=t;, h'=h; to prove that v(f")
—p(@) ¥(f) pla).

Now from (i) we have
sh=sihja=sihihy s sshy=55hi ;™
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(' [s1, by b~ 1]=1[s,, by hy"1]=1), Therefore s=s,
and h=hh,1 h,, thatis
hy=hyly"1h )
Also  tihy=t1hyh"1h from (i)
=thy fis))hy"1h from (7)
=thh~1h; f(s)) h, "k
=th(h"1h)71 (s A
Thus t1hy=thc
where c=(hy "yt f(s) A
which depends only s; and A; 7. If we write
(slza’l)G:(sa”l)G:s], (sha)~ o+l
we see that s; is independent of 4. Also from sha™l=sh; that is,
hy71 hsa~l=s;, we have,
hl'lh:slas"lz(sa")c as™1
which depends only on @ and not on 4. Thus if we define the elements
f, & /' of BS by
W) £1(6)=fs)=/sa™)’]
2) g(s)=h"Vh=(sa™1 )cy as™1
then  f'()=(h B fls)) I .
=(g()) ™ f1(5) &(s)
for all s € Sand we have
f'=¢1/ &
and N=N(f)="1g  f1 &
where f; € BS, g e HS. This completes the proof of the lemma.,

:hl

This gives us
5.21. Coroltary (Compare with corollary 5.2, [1]). If H € C, (S),

then
[p(A), NPT & [

Here [K, L] means the group generated by all commutators [k, /]
keX, le L. The proof of the above corollary follows from the fact

that p(S) normalises 7.
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5.22. Corollary (Compare with corollary 5.3 [1]). If H € C, (S),
then
(A, M1’
where [/ denotes the derived group of .
5.23. Corollary (Compare with corollary 5.3. [1]. If H € C,4 (S,

then
[P(A), p(B)] € [

Consequently, we have,

5.3. Theorem (Compare with theorem 5.4y [1]. If, in one of the
constituents, say A, the amalgamated subgroup H possesses a transversal
S which is centralised by H, and if further, A and B are soluble of length
I and m respectively, then the permutational product P(A; S, T) of A

and B is soluble of length n where » satisfies the relation
n<l+m—1.
We further remark, without going into the detaiis, that the results
proved in |2] based on lemma 5.2 [1] still hold under this weaker
assumption. -

Let F* denote one of the following properties of a group; being
locally finite (LF), of finite exponent (FE), or being periodic (P)_ We
discuss here the embeddability of a soluble or F* amalgém in a soluble
or F* group respectively, making use of a sufficient condition of some-
what different nature. The following lemma plays a key role in the
discussion that follows.

54. Lemma : Let the groups A and B be extensions of a normal
subgroup S of A by H and of a normal subgroup T of B by H respec-
tively. Then S and T serve as transversals and jhe permutational
product P (A; S, T) of the amalgam A=am (A, B; H) belongs to the

least variety containing both A and B.

Proof : We first show that in P, p(S) and p(T). commute element-
wise. Let (s, 71, ;) € K=SXTxH, then for seS§,¢ ¢T,we have
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P PO _s, 5, 1), )" D

:(Sl Sl: ] t’s /71)

(515 115 h1)

and 5 hl)p(z) p(s)—‘:(vh syt Iy
where sihys=sy 8" h, tyhit=tt" Iy
in both cases. Therefore [p(s), p(H)]=1 forallse S, r ¢ T.

Before going further into the details of the proof of the above
lemma we remark that for a slightly more general situation when
S n T=Z#{1} is central in both Sand T and S;, Ty, given by S; Z=S,
T, Z=T are taken as transversals, p(S;) and p(T;) still commute ele-
mentwise in the permutational product P('é; S;, T;) of the amalgam

ézam (A, B: {Z, H}).

Since P is generated by p(S), p(T) and p(H) and moreover p(H)
normalises both p(S) and p(T) and hence also p(S)xp(T), P isan
extension of p(S) X p(T) by pH).

Next we look at the amalgam of the groups A and B rather
differently. We regard these groups as generated by S, H, and T, H1
respectively and suppose that there is a fixed isomorphism between
H and H; so that the amalgam of A and B consists of quintuplets
(A, B, H, H, 9; Hp=H;). We take the direct product G of A and B.
Since A=SH, B=TH, and S, T are normal subgroups of A and B
respectively, Sx T is normal in G. Take the ‘diagonal’

H' ={(h, h))=(h, ho); h € H, iy € Hy, hy=ho}
of the direct product Hx H; in G. H'is clearly isomorphic to H. Also
the groups A'={(sh, ho); s € S, 7 ¢ H} and B’ ={(h, tho); heH, t e T} are
isomorphic to A and B respectively under the isomorphisms
a=sh—>a'=(sh, hy), b=the—>b'=(h, thy) and since (sh, ho)=(k’, th'p)
implies sh=h', he=th'q which give s=1=t, h=H’, the intersection of A’
and B’ is precisely H'. . '

The groups A" and B’ can also be taken as generated by
S'={(s, 1); s € S}=S and H’ and by T'={(l,7); e T}=~T and H’
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respectively. However, since
L' =L, hle)(s, V)(h, ho)
:(Shr 1),

and B R =, zh@).

W eH,s €S,t eT;H induces the same automorphisms in $ and T’
an H and H; do in S and T respectively. The group P’ generated by
S’'x T’ and H’ in A X B, therefore, contains isomorphic copies A’, B’ of
A and B, intersect in a common subgroup H’ isomorphic to H and H,
and is an extension of S’ x T’ by H’ corresponding to the above auto-

morphisms.

As shown above P also is an extension of p(S)xp(T)=S'xXT’ by
p(H)=H'. Further, these two extensions correspond to the ‘same’
groups of automorphisms as induced by H in S and T and are, therefore

‘equivalent’. (cf. Kurosh, [14]).

Thus P’ is isomorphic to P. Since Pis a subgroup of AxB and
belongs to the least variety containing both A and B, P (A;S, T) also

has this property. This completes the proof of the lemma.,

As a consequence of the above remarks, we have :

5.41. Corollary : A soluble or nilpotent amalgam of two groups
A and B which are extensions of their normal subgroups S and T
respectively by a group H, is embeddable in a soluble or nilpotent group.

5.42. Corollary : If the groups A and B of lemma 5.4 have the
property F*, then their amalgam is embeddable in an F* group.

5.43. Corollary : If the groups A and B of lemma 5.4 are p-groups
for the same p, that is, very element has order a power of p, then their
amalgam is embeddable i a p-group.

In the case of finite groups this is a very special case of a4 result of
Graham Higman. [13].
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ON A SUM FUNCTION OF FUNCTIONS OF PARTITIONS
By
S. MANZUR HUSSAIN & M. H. KAZI

Department of Mathematics,
University of the Punjab,
Lahore.

1. Introduction :—Some congruences involving functions P, (n)
were;aproved with respect to mod. p in [1}; where -

Py () =k§0 P(k) P(n—k),
P,(.4)=§ P(k) P,_ (n - k), and P(n) are unrestricted partitions of ». In
k=0

P
this paper we introduce the function S(n)=S(n, p)=> P, (n) & prove a
v =l
few congruence properties of S(n) with respect to mod. p.

2. Theorem I :

mp+r -
3 PO S(mp 7~ k)z:zilP(k) P,(m—kp +r) (mod. p),

where m>1 & 0<r<p~1
We prove the following lemma :—

Lemma: Pp (n)_ P(k) P(n— pk) mod. p);
where rp<n<(r+1) p.

Proof:—Py ()= é}o () Py (n-k)— §0 Pp_s (k) P(n—k)
p-1 _
= kio Pp_i(k) P(n—k)-+Pp_i(p) P(n—p)

271
+k=2p+1 Pp_1 (k) Pln—k)-+Pp_1 (2p) P(n—2p)+....
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(m+1p—-1 —_—
5 Py_q (k) P(n--k)+Pp_1 (mp) Pl(n—m+1p)
k=mp+1
_|_
rp-1 . ‘
+ 2 Ppk) P(n—k)+Pp_;i(#p) Pln—r1p)
k=T-1pP+1

n
+ 3 Ppy(k) P(n—k)
TP+l

mr] p—
2

r 1
=Pra(@PO)+ 3 3 Ppa(k) P(ri—k)
+1

m=0 k=m

r—1
+ _2'_,() Pp_i (m+1p) P(n-—~(m+1) p}

m=0

n )
+ 3 Pp_1(k) P(n—k). O 28 )
P41

We have already proved in [1] that
Pp_1(m)=0 (mod p), if p does not divide .
=P (m) (mod. p) if n=wmp.

using these relations (2.1) we obtain

Pp(n)EkéoP(k)P(n-—pk)(mod.p) e

Proof of the Theorem :
By definition
mp+r
S (mp-+r)= l go P(k) [P(mp+r—k)+ S(mp+r—k)—Pp(mp+r—k)];

WD +r MmPAT
0:12 . P(k) [P(mp + ¥ - k}]—l—al 5 P(k) SGmp-+r—k)
= =1

r p+r
—[kéo PU) Pympr =KV X P(R) Py (mptr =)

(s+1)p+r mp+r
P(&Y Ppmp+r—-k)+..+ 3 P(k) Pp(mp +r - k)] ;
k=sp+r+1 k=m=1p+rs1

using (2.2) we obtain
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mp+r

. mp+
0="3 " P() B(mp =) + zlr P(k) S(mp+7—k)
k= k=

=[5 P & Pl Pompr - phy)
= k=0
1

P+r m—1 )
S k=THL k1=0
G+Dp+r m—s—1 i )
s Pk s Py Pmptr—k-pk)+....
k=sp+7+1 1<1=0
mp+r ' T
+ b3 P(k) P(mp +r— k)] (mod. p).
(m—=Dp+7+1 ]

On simplification, we get
'"ETP(;{) S(mp+ r— KY=P(m) Py(r) + P~ 1) P1(p+ 1)+ Plm—2) P (2p 4 1)
F. AP Pym—kpir)+....
+P(1) Py(m—1p +7) (mod. p)
;kx_l P(k) PiGn—kp+7) (mod. p). .. .. (2.3)

Sm+i
Cor: '3 P(k) S(5m+1-k)=0(mod. 5);

.4
when 7=2, 3 & 4.

In [1] we proved that Pp_, (pn+)=0 (mod. p) when ¢ is a
non-residue off(lg—-‘l)‘z‘z (mod. p) and Pp_4 (pn+p-5b)=0 (mod. p)

when b is a least positive residue of 86=1 (mod. p).

When we substitute p=5 in (2.3) & use the above-mentioned
results we obtain (2.4).

3. Theorem 2.
(a) S(n)=0 (mod. p) 0<n<p-2

®) S(p—-1)=1 (mod. p)
(¢) S(p)=0 (mod. p)
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We prove the following lemma :—

Lemma 2. ;l P(k) S(1~ KY=0 (mod. p) 1<n< p—1
Proof : S(n) ::2 P(k) [P(1—k)+S(n— k)~ Pyln — k)]

—Py(n) +P(0) [S(r) —P()] +;£ P(k) [S(n— k)= Po(n—1)]
or kgl P(k) S(n— k):é  PCR) Py = k)+ Pyl Py ()

. P(k) P(n—k) ~Py(n) (mod. p)

=~
M3

(using Lemma 1)
=0fmod.p) .. .. .. .. .. .. (3D

Proof of (a) _
Since S(0)=0 (mod. pj
&  S(1)=0 (mod. p),

the proof follows from (3.1) by induction,
Proof of (b) & (¢)
From Theorem 1, we obtain

P .

ké: P(k) S(p+r —k)=P(k) Py(r) (mod. p).
When r=0, we have

P

2 P(k) S(p—k)=P(1) P{(0) (mod. p).

or S(p-1)=1 (mod. p).

(using (a))
When r=1 we have

1
E_] Pk) S(p+1-k)=P(1) Py(1) (mod. p)

or P(1)S(p)+P(2) S(p—1)=2 (mod. p)
(using (a))
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or S(p) =0 (mod. p)
(using (5))
In the end it may be mentioned that it would be interesting to
investigate further congruence properties of S(n).
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