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NUMERICAL ITERATION OF SIMULTANEOQUS
SEMI-LINEAR ELLIPFIC PARTIAL DIFFERENTIAL-
EQUATIONS OVER A NON-RECTANGULAR REGION*
: by ,
SHAIKH H. MATIN
Weapons Department, United States Neval Academy,
Anrapolis, Maryland, U. S. A.

INTRODUCTION

~ Point-wise numerical iteration by over-relaxation of finite difference
analogs of the Dirichlet Boundary Value Problem {1)* over rectangular
regions was presented by Young [2]. Greenspan . [3] extended this
method to the - Nuemann Boundary Value Problem over rectangular
regions and the Dirichlet Boundary Value Problem over a region with:
curved boundary. He further reported that the solution to Nuemann
Problem over a region with curved boundary did not converge. *Forsythe
and Wason [4] pointed out that this difficulty was mainly due to the finite-
difference approximation of the normal derivative on the curved boundary.
It was later shown by the author, [5], that if appropriate care was exerc.sed:
in this finite-difference approximation and in the over-relaxation process,
then the method will be feasible for regions with curved boundaries, not
only for Nuemann Problem, but even for the Mixed Boundary Value
Problem. This point is further elaborated later in the paper. In all the
works cited above, attention was focused only on:a single sécond-order
partial differential equation with prescribed boundary-cohditioﬁs.

In some problems of interest. in ‘Fluid Mechanics, a higher order
partial differential equation may arise quite naturally. For instance, the
problem of slow flow of a fluid with uniform density and Visco'sfty gives
rise to a fourth-order partial differential equation in terms of a stream
function [1]. However, an alternate formulation of the-séme problem
in terms of two variables, the stream function and the vorticity function,

* This research was conducted by Hydronautics, Inc., Laurel, Md., and was
supported by the office of Saline Water, U.S. Department of Interior under contract

No. 14-01-001-1246,
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will result in two simultaneous, second-order partial differential equations.
Generally, the later formulation will result in coupled boundary conditions.
This paper concerns the numerical interation by over-relaxation of such a
system of partial differential equations.

STATEMENT OF PROBLEM

In search for high-performance desalination units, one of the sugges-
tions [6] to enhance heat transfer during evaporation of saline waters is
to use rivulet flows on vertical metal plates lined with low surface-tension
materials such as teflon. It is presumed that water will form rivulets
of circular arc shape running down the plate, instead of a continuous
film and hence high conduction rates will occur at the rivulet corners.
Since salt accumulation on the rivulet free surface at any section will vary
along this surface, a surface-tensicn gradient will set in. This will tend to
drive the liquid on the free-surface toward the rivulet corner, which, in
turn, will create a swirling motion within the rivulet.

With proper simplifications, the swirling motion within this surface-
tension driven rivulet is expressed by the following mathematical problem.
The details of the derivation are deliberately omitted here and the interested
reader is refered to [6].

1. Differential Equations :
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Here, y=y (x, y)=stream function
{=¢ (x, y)=vorticity function
R;=Reynolds number, a constant parameter, characteristic

of the flow
X, y=Ilength co-ordinates along and normal to the plate

respectively, in rivulet cross-section.
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2. Boundary Conditions :
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y=0 on all boundaries ®
¢ =0 for x=0 i.e. at the line of rivulet symmetry @
Z_ for y=0, i.e. along the plate surface ©)
and ¢== g;'r+ 2 g\v along the rivulet free-surface (6)

Here, nand s are normal and tangential to the free-surface respectively,
and a is the radius of the curvature of that surface.

3. Equation of Free-Surface :

x2+y2+2y (ggls :) =1

Q)
Here a is the contact angle for the rivulet, a property of the lining
material.
4. Input Function :

The termg; in Eq. 6 is the contribution of the known surface-
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tension gradient and hence itself known. Tt niay be pointed out that Eq.
6 is the direct consequence of the balance of surface-tension and shear
force at the free-surface.

It should be noted that the differential equations in Eq. 1 and 2 are
coupled with Eq. 2 being semi-linear. The boundary conditions on y are
well-defined, but those on ¢ are y—dependent i.e. coupled.

Without getting involved with the physics of the problem, its mathe-
matical content could be summarized in the following question :

Given a function T(x, y) described on the curve represented by

Eq. 7 (a known), Eq. 1 and 2 are to be solved simultaneously with

boundary constraints as in Eq. 3, 4, 5, and 6 to determine functions

w(x, y) and &(x, ¥) throughout the region bounded by the x-axis, the’

y-axis and the curve in Eq. 7.

Even for the simplest possible distribution of T(x,y), the above mathematical
problem is hopelessly complicated to yield to an analytical solution.

The problem, although phrased here quite arbitrarily, is a real physical
one and hence warrants the search for at least a numerical answer.

.SYSTEM -OF DIFFERENCE EQUATIONS
Consider a semi-linear partial diiferential eduation as :

A(x,y) +C(xy) +D( y)

+E (%, ) %‘+F-(x, ») u=G (x, 7) ®

For a known ¢ —distribution Eq. 1 is a special case of Eq. 8 and so
is Eq. 2 for a known distribution of y. Thus, Eq. 8 represents both Eq.
1 and 2, with u being y and  respectively. Hence, for the purpose of
generation of a finite-difference analog, Eq. 8 is considered as defined over
a region R bounded by a boundary B. If R is spanned by a square grid
of mesh size &, then at any interior point (x,, y,) the dlﬁ‘erence equation
correspondmg to Eq. 8is : [7]

age (Xg, Yo) =21t (Xo+s1h, Yo)+-a_u (X0, Yo+5:h) .

+azu (xo— 838, yo)+aqu (Xg, Yo—s4ht)— 1 (xq, ¥o) )]




[5]
Where
ay=(2A (xg, yo)-+hs3 D (xg, ¥o))/s1(s1+53)
ay=(2C (xg, yo) +hs4 E (X0, ¥o))/s2(52-F54)
da3=(2A (xq, Yo) — hisy D (xq, ¥0))/s3(51+53) . (10)
a4=(2C (xg, y.) —hss E (xq, ¥o))/s4(52 +54) :
dg=01+as-+03-+as—F (xq, y,) A2

and -
=G (xJ’ yo) K2,
‘Here :

S1=

no h

=220 5 Yo —hy.4

¥17Xo o X0~ X3 ) (”‘)
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a
Fig. 2)

Referring to Figure 2 the s; (i=1,2,3,4) indicate the relative position
of the neighbours of a point in the square grid. Hence these may be
called the neighbourhood scale fractions. Ti the region R is a rectangle,
then a square grid may be so chosen, that the boundary points coincide
with the nodes of the grid. In that case, all 5; are equal to 1 for each point
interior to R. Otherwise, in general

si<l, for i=1,2, 3, 4.

Eq. 9 represents the required difference equations corresponding to the
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co-cfficients of the given differential equation in Eq. 8. A proper choice
of h will give «; such that

ap=dy+adataztay (12)
Eq. 9 for node in the grid will give a system of simultaneous equations as :

N

.21 aij ui=bj 13)

i=

where N is the total number ot nodes at which the unknown values of the
function are to be determined and b; are the known values contributed
by the boundary conditions. For the Dirichlet problem, N is the number
of the interior points of R, whereas for the mixed boundary value problem,
N is the number of the interior points plus the points on the boundary
on which the normal derivative is specified. The condition required in
Eq. 12 guarantees that the coefficient matrix (aj;) in Eq. 13 is diagonally
dominant.
ITERATIVE METHOD

Among the Point Iterative Methods for the solution of a system of
linear difference equation (Equation 13), Young’s method of successive
over-relaxation has proved to be the [4] most successful. The convergence
of a solution by this method requires the coefficient matrix (a;j;) to have a
special property, which Young [2, 7] has called property—A. For the
Dirichlet problem in a rectangular region, with the boundary passing
through the nodes of a square mesh, the co-efficient matrix of the
difference system does possess that required property. Hence, for that
problem the convergence of the itreration process is guaranteed [2].

The property—A of Young is further relaxed [3,4] and it is shown
that such a method of iteration will converge even for a Dirichlet problem
for a region bounded by a curved boundary. Itis observed that the essential
features of the co-efficient matrix are thatitis : (1) irreducible, (2)
symmetric, (3) positive definite and (4) diagonally dominant.

When the normal derivative is specified on a boundary which is parallel
to the grid lines of the mesh, the extension of the method for the Dirichlet
problem is rather simple, since the mesh points are on theboyndary and the
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normal to the boundary is along one of the grid lines. However, when
the specified normal derivative is to be satisfied on a curved boundary, then
the numerical method adopted for approximating the normal derivative
affects the coefficient matrix quite adversely as shown in the next paragraph.
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APPROXIMATION FOR NORMAL DERIVATIVE ON A CURVED
BOUNDARY

Referring to Figure 3a, the most obvious way to approximate the
normal derivative is to express it in terms of its components-along the-eo~
ordinate axes as : ’ ’

g—: g?{ cos ¢ +%} sin ¢ (14)
B.P. )
It is shown that the co-efficient matrix for the difference equations
employing Eq. 14 loses both symmetry and diagonal dominance [3,4]."
However, if a first order approximation to the normal derivative is used as :
ou Uy —u .
= d ~ as
B.P.

Where .

U =i, %3—{-143 %2« (16)
(dy, dy, dy are shown in Figure 3a).then the co-efficient matrix is at least
diagonally dominant, although not symmetric. It is to be noted that
in Eq. 16 d; and dj; are both to be less than 4. If the normal to the boundary
at a point is as shown in the Figure 3p, then Eq. 16 is to be replaced by

d
Uy =uy h+u3 4 (17)

(ds, dy are shown in Figure 3b) thus guaranteeing the diagonal dominance
of tne co-efficient matrix.

PROCEDURAL REMARK

Since all the conditions required of the co-efficient matrix for the con-
vergence of the iterative solution are only sufficient and not necessary,
ther: is no reason to assume that:the convergence of the iterative method
may not be possible even if any one of the properties is not present in the
coefficient matrix. Based on this conjecture, Greenspan conducted
numerical experiments on a Laplace equation with normal derivatives
specified over a circular boundary and found that the iteration did not
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converge [3]. However, a précedural modification of the iteration
scheme has been reported [5] to converge and was utilized here. This

procedure and the mechanics of.grid generation on-digital computer is
described in the Appendix at the end.

METHOD OF ITERATION

 For a given T(x, y) on the free-surface of the rivulet, the differential .
equations and the boundary conditions in Eq. 1-5are discretised according
to Eq. 9 and 15. The iterative procedure is started by first assuming an
arbitrary distribution of y and ¢ in the region. For this ¢, the finite-
difference analog of Eq. 1 is solved at each point to re-estimate y, conform- .
ing to" the -boundary. conditions in Eq. 2. With this re-estimated y— dis- -
tribution, the co-efficients of Eq. 2 are evaluated ateach point,and boundary :'
conditions on-¢ are estimated according to Eq. 5 and 6. The given dis-
tribution of T on free-surface is also employed in Eq. 6. Having established
these, the finite-difference analog to Eq. 2 is solved at each pointinthe region
to :givéja.sep_gndvestimatq of ¢ distribution. Hopefully, this second estimate
of ¢ will conform to the differential equation and the boundary conditions
better than the first one assumed arbitrarily. It this process is repeated
again and over again, solutions to the original problem should be

approached.

COMPUTATIONAL RESULTS

Figure 4 shows a distribution of T on the free-surface given by «=90°
in Eq. 7. The abscissa of this plot is the arc length of the free-surface.
Here, for computational experiment, T is assumed as

T=Cos? (/2 (1—s) (18)

T T
For this assumed distribution of %? and R;=50, the above
iteration scheme was carried out on an IBM 1130 digital combuter.
"The iterations were repeated for about 100 times. The final distributions
of v and ¢ are shown in Fig. 5 and 6, respectively. The distributions seem
reasonable intuitively, and the results of heat transfer obtained by this
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same procedure are being reported separatzly elsewhere [8]. Here it is
intended to emphasize that even if this is only a numerical experimentation
on a digital computer, it does open a way to handle the simultaneous semi-
linear partial differential equations with coupled boundary conditions which,
otherwise, will not, in general, be tractable. The numerical experimenta-
tion has shown a definite trend of convergence of iterative scheme ;
however, a proof of convergence is lacking and needs further research and

exploration.
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APPENDIX I
GRID GENERATION

In order to achieve a point-by-pointiteration on the difference equations
in Eq. 9, the co-efficients «; for respectivé points will be needed. These
depend on the co-efficients of the differential equation Eq. 8 and the scale
factor as shown in Eq. 10. For the interior points, S;’s are all unity, but
for points near the boundary, these should be estimated as for Eq. 11.

This could, in® principle, be done by: laying out a grid graphically,
and picking off the ce-ordinates for the various points manually. However,
in practice, ‘this is rather crude and cumbersome, if not impossible,
especially if the grid size is to be decreased for increased accuracy, and
various regions with different o’s are to be investigated. In view of this,
an automatfc computer routine was developed which picked off all the
internal and boundary points of the rectangular grid network imposed on
the aeutal region, labeling ‘the different points as shown in Fig. 7. The
points are classified as : (1) Points on the x-axis ; (2) Points on the y-axis ;
. (3) Points on the curved boundary and vertical grid lines ; (4) Points on the
curved boundary and horizontal grid lines; (5) (6) and (7) are points interior
“but adjacent to the curved boundary with a nelghbourmg pomt as 3
“or 4; or 3 and 4, respectlvely The points interior to the region, with all
its neighbours also interior, are labeled as 0. _ . :

These choices are required in order to estimate the normal dérivatives
on the curved boundary using Eq. 14 or 15, and generating automatically
the.appropriate scale factors for finite difference equation, Eq. 9.
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APPENDIX IT

Finite-difference equations of the form in Eq. 13 are obtained for each
interior point only. Even if the boundary condition involves the speci-
fication of the normal derivative at the curved boundary, the function
values at the interior points are relaxed to conform to the differential
equation by solving Eq. 13. Having found the new function values at the
interior points, the values at the curved boundary are changed so as to
remain conformed to the boundary conditions. '

Essentially, this amounts to iterating or relaxing first a Dirichlet
type problem and then, after the interation, forcing the values of the
function at the boundary points to conform to the prescribed conditions,
if the normal derivative is specified. Hence, mathematically, the value
of the function-at the boundary points changes from iteration-step to
iteration-step. Putting it another way, for the Nuemann or Mixed Boundary
Value Problem, Eq. 13 is actually replaced by

I; aij 1™ =p (18)

1=
where N is always the number of interior points and » is iteration-step
number. For more detail, the reader is referred to [3].
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SYMMETRIES AND DYNAMICS IN HIGH ENERGY PHYSICS

By’
" JOHN CUNNINGHAM
Department of Applied Mathematics,
University College of North Wales,
Bangor Caernarvonshl're, U K.

The purpose of this rev1ew is to indicate the kind of mathematics
used i in high energy physics and to survey the sub_]ect as it enters the
seventies. Some of the or1g1na1 work referred to has been carried out by
the author in co_llaboratlon with M. Rafique, University of the Punjab,
Lahore. » ’
1. Introduction:

In ordinary non-relatms’uc quantum mechamcs the elast1c scatterlng

problem , , ,
- Catb—>a+b : RN €Y

15 studied using ‘the one-particle Schrodingér wave equation appropiiate
to the motion of a relatlve to b (w1th h equal to Planck’s constant

d1v1ded by 271)
- E Py V@ y=Ey

where w is the reduced mass of z and b, V() is a pOtCntll fucntlon E the
energy, «L a probablhty amplitude. One seeks solutlons of the form
vo=""re.n<"
the first term représenting a plane wave propagatig in the direction of
the vector k and the second an outgoing spherical wave (there is an overall
time dependence exp (—iEt/h)). The physics of the problem is-contained
essentially in'the amplitude f whose squared modulus | f | 2-isthe so-callaed
differential scattering cross-section which measures the ratio of particles
emerging at 4, ¢ (considering a specific direction and looking at the spherical
wave) to particles m the incident beam (the plane wave). The problem
is in principle solvable being mathermatically well defined — given V (r)



[18]

solve equation (2) to ﬁnd f(8, ¢) the amplitude describing the result of a
countmg process

In relativistic high energy physics the problem is somewhat ill defined
and often one knows fairly little about the amplitude T (the analogue
of f) in detailed terms. We treat T as a function of serveral variables

s, t, u; I, B, Y 6]
whose meaning I propose to explain. The semi-colon in (4)
divides the world of high energy physicists into two camps peopled by
persons whose activities are significantly different and whose inter-
relationship is generally unproductive. The variables i, B, Y refer to
internal quantum numbers i.e. to the detailed nature and properties of the
“elementary’’ or ‘“fundamental’’ objects which are involved in the scattering
process. This kind of physics is called symmetries. The variables s, ¢, u
correspond to the scattering itslef (energies, momenta, etc) for given values
of I, B, Y. This kind of physics is called dynamics.

Perhaps one should say that *‘clementary” is a misleading term t
apply in particle physics. Very few objects (such as the proton) are
stable and most (such as the neutron decaying via n—-p+e+v) decay
spontaneously into other objects. The division of objects into “‘elementary’
and “composite” is quite arbitrary depending on an arbitfary statement
of what one means by a short decay time. Short lived objects are usually
thought of as non-elementary. Rather than make a distinction of such
blatant artificiality a common philosophy is to regard no object as
fundamental and every object as being composed of other objects (inculding
perhaps itself) — bootstrap philosophy-

In dynamics one accepts as given some set of basic objects 50 in this
sense dynamics treats every object as fundamental.

2. Symmetries :

The quantum number B is probably the easiest to explam roughly
to the layman. It stands for baryon number i.e. the number of particles
of a family of objects (to which belong thie familiar objects kown as
proton and neutron) whose number is conserved in some sense in processes
of the type considered.

T —
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The properties of proton p and neutron » are very similar and there is
evidence from scattring theory that forces p—p, p~n, n—n aré charge
independnet. It is convenient to treat p and » as two different charge
states of the same particle the nucleon (Q=-+1 for p, Q=0 for n).

If one introduces operators apt, ant which create respectively a
proton and a neutron (the operators ap, an destroy the corresponding
particles) one may construct four ope;ratorsrb

apTap, apTan, anTapa anTaﬂ (5)
which leave unaltered the baryon number. The commutation relations
for these operators are

artataiapt =86
aya;+ ajap=0.
Convenient combinations of the operators (5) are

B=atpap+anta, < 6)
the baryon number itself and
7.=aptan
T_=anptap @)

7,=% (aptap—anta,)=Q—1 B
where 7. changes a neutron into a proton and 7_ does the reverse ;
Q is the electiric charge.
A possilbe representation of these operators is provided by the matrices

0 1 0 0 1 0y
S SR ST
0 0 10 0 -1

operating in the space spanned by vectors

() =)

representing respectively the proton and the neutron. The charge operator

boj

for example is represented by

o ().
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The commutation relations for the operators (7) follow from those
for the a’s and are familiar to everyone with an elementary knowledge of
angular mometum theory. They are

[7o, 74 ]=74
[T, 'r_]=——1'__ ’ . (8)
[T, 7_]=27, '
identical to those for angular momentum operator
Ji :inin, I.=1;. . ©
The relations (8) define a Lie algebra isomorphic with the usual angular
momentum algebra..

By analogy with angular momentum theory there exists an operator 12
(analogous to J2=Jx24-J,2 + J,2) having eigenvalues of the form I (I41)
and p—n states can be classified into multiplets — sets of 2I+-1 states with
eigenvalues I, of r_ varying from —Ito I. In the two nucleon system
one finds two isotopic multiplets as listed in the table (10) -

State I, I
P D2 1 1
1 .
ﬁ(l’mz—f'nu?z) 0 1 triplet (10)
mny -1 1
L (pm—n ) 0 | 0 singlet
72 Dy —n1po g

The operator I2 commutes with the elements r +> 7o of the Lie algebra

and is in fact the only Casimir operator of the algebra which means that it
is a rank one algebra (a Casimir operator is one other than the unit operator
which commutes with every element and the number of such operators
defines the rank of the Lic algebra). Just as J,, J; can be thought of as
generators of the group 0(3), the operators =,, 7 can be thought of as
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. generators of a group SU (2) a unimodular unitary group of transforma-
tions in a two dimensional isotopic spin space (spanned by .vectors
representing p and n).

Other baryons are observed and their properties have been catalogued.
For example the reactions . :

' T 4p —> STk an
and
. o 4n—> 57k (12)
though seemingly possible on the basis of considerations of charge, baryon
number, energy, etc. are not both observed despite their obvious similarity.
The operation of this selection rule is conveniently expressed by introduc-
ing a new quantum number S (the strangeness) whose conservation is used
to account for the observations. In the example the strangeness balance is
04+0=-1+1 '
04-0z£—1-1 13
‘Existent in nature is a chargeless particle A of strangeness —1 whose
properties are similar to those of the neutron (strangeness 0) and it might
be convenient to treat n and A as equivalent in a strangeness space as
~differen states of the same particle. This has been done and a U-spin
formalism identical to the above described isotopic spin formalism has been
developed and the same rank one Lie algebra and group SU(2) are involved.

If one combines the p — n equivalence with /A — n equivalence one arrives
at a formalism with abasic p —n— A triplet (three different states of a single
entity the Sakaton) out of which one may build more complex systems e.g.
two Sakaton systems. The underlying group is SU(3) which contiains of
course SU(2) sub-groups and the multiplet structure of composite systems
reduces to a study of group representations.

The Sakata model does not agree with physics in that the permitted
composite structures of the model do not match at all well the observations
of high energy physics. However, an identical model—the quark model—
based on a fictious (or perhaps simply unobserved in the present experi-
mental region) triplet of objects called quarks in whichp, n, A etc. appear
as composite entitties. Not only does this SU(3) model provide a pattern
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fitting observation but also it has proved its predictive value (0™ discovery),

The quantum numbers B, I, Y (¥ is the hypercharge B+S) describe
symmetries of the basic entities. Let us now turn from symmetries to
dynamics and take B, I, Y as given.

3. Dynamics :

In s—¢—u physics it is actually often convenient to discard the selec-
tion rules altogether and artificially reimpose them at the end of the calcula-
tion. 1In any event in a description such as this it is simplest to deal with
chargeless, spinless, particles specified completely by energy-memenfum
four-vectors. Also as I do not wish to have to define the term antiparticle
I shall assume that no antiparticles exist or simply that all my particles
(they have no charge) are their own antiparticles.

The process
at+b—c+d (14)

may be described by four energy-momentum four-vectors p;, i=1, 2, 3, 4,
formally meaured ingoing. There appear to be seven invariants which
one can construct from foux four-veetors with vanishing sum _@enc;gy;
momentum conservation)
pr=mg, i=1,2,3,4 - (15)
the particle masses and
s=(p1+p)*=(p3+ps?
t=(p1+p3P=(p2+p4)? (16)
u=(p1+ p)=(p2+pr3)?
but actually
4
s+t+u=2 m;2 an
i=1
so that there are two independent invariant dynamical variables s, £ (or
s, 4 .or t, u) to be considered.
4. Cressing
In this simple theory the description is completely symmetrical and
* indeed could equally well represent a process (depending literally on .ong’s
point of view) '
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a+d-%b+c . (18)
in which the variable u plays thé role of the squared energy previously
played by 5.

The crossing theorem (discovered in perturbation theory) and apparently
a general principle of physics states that a single analytic (with some quali=
ﬁcations) function T (s, ¢, u) describes all three processes

“a+b—>c+d

a+ic =>b4d ’ 19)

a+d-=sb4c -

'or more précisely that the three amplitudes which a priori describe each
chanrel separately are in fact continuations of one another.

Mathematically the analytic structure of collision amplitudes is a very
important study which finds expression n so-called dispersion relations
(integral representations). These relations provide a set of dynamical
equations which constrain but do not completely determine an amplitude
and ‘expérimental data have been satisfactorily described using dispersion
rélations. Moreover, they have proved to have predictive value (m==
resonancé) and lead to predictions about relationships between particle
masses which complement symmetty theories (sum-rules).

5. Regge Beﬁavxour( ) :
In potent1a1 theory the equation determining the poles of the pamal

wave amplitudes a\(s) defined by
fs, 0= @1+1) ai) Pi (cos 0) o)
. l - -

where ¢ 1s simply related to the scattening angle ¢, comcides with that
defining the bound state energy levels. This leads to the notion of Regge
poles in high ehergy physics. One constructs an amplitude -a (J, 5)
defined for complex  which coincides with a;(s) when /=0, 1,2,....Among
the singularities of ¢ (/,5) are poles corresponding to bound states, resonances;
€tc. in‘the system ‘considered. The trajectory in the complex Il-plane of
sach a pole as's varies 1s given by ,

I=a (5) 1)
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and is called a Regge (pole) trajectory. At various points on such a trajec-
tory occur points which can be associated with bound states, fesonances,
etc. This clearly puts all objects (bound states, resonances, etc.)” on the
same trajéctory into families and remforces the idea that no object 1s
elementary — no elementary particles, -only Regge poles. For example
the N and N*** (pion-nucleon resonance) lie on the same trajectory—the
nucleon was conventionally an elementary particle while clearly the third
nucleon resonance was composite. This dynamical scheme of particle
classification is not of great value because many Regge trajectories pass
through but one point which can be assigned to ah observed object—other
members of the same Regge family presumeably appearing only at energies
above the present experimental range. A detailed review of Regge theory
in low energy potential scattering and its extension to particle calssifications$
has been given by Rafique, M.Sc. thesis, Wales, 1965. N

In potential theory by suitable contour deformation the' Sommerfield-
Waston transformed partial wave series can be ‘manipulated ‘to exhibit
the large ¢ behaviour (properties of ‘Legendre polynomials) :in a form
dominated by a’single Régge pole. = Translated into high energy physics
one attributes high energy behaviour in the t-channel to the exchange of
objects Reggions related to poles in the s-channel corresponding to resonant
or bound state behaviour . k

16,0 = 40)(- t)"‘“)

t—=>00

Not only does this prove 1mportant in discussions of convergence of dis-
persion relations but has been raised almost to the rank of a fundamentat

principle—the principle of duality.
A model combmmg the requirements of cmssmg and Regge bchav1our
has béen invented. by Venez1ano( ) and has received 'much successful

attention from' theorists.
Now neither crossing nor Regge' behav1our have any rigorous basis
but both have weighty support in perturbation theory from the study of

infinite classes of terms,
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6. Difficulties ¢

The terms of the perturbation series are in the form of multiple
intergrals and the problem consists of finding

(a) the points of no-analyticity of each term

(b) classifying the termwise results with a view to making assertions

about the sum function.

The programme (a) is in a reasonable state but the same can only be
said of (b) asymptotically. This may surprise the reader because disper-
sion relations (and the Mandelstam conjecture) have been very successful
and are NOT firmly based even in perturbation theory—they are the
product of intuition aquired in fourth order perturbation theory !
Asymptotic behaviour based on intuition aquired in non-relativistic
theory seems dubious but is indeed very well founded in the high energy
perturbation model.

We (the author in collaboration with Rafique) have tried to do some-
thing about singularity classification by using Plucker’s equations of

algebraic geometry(3’4) .- The points of possible singularity for each term

lie on curves whose implicit equations were first written down by Landau
(5, 6). Only one infinite family of Landau curves (the so-called ladder
diagram curves) have been classified (Regge and Barucchi (7)) and our
studies so far indicate that ladder diagrams are by no means typical. The
main feature not exhibited in Regge and Barucchi’sanalysisisthe occurrence

of cusped Landau curves. Computer drawings(4)
complexity of the problem and the probability of one being unable to per-
form the eliminations necessary to obtain from Landau’s equations the
explicit equation of the curve (which, conveniently, one hopes to write in
terms of a single parameter using automorphic functions). This is

indicate empirically the

so because a theorem of Salmon(s) states that the genus of a curve in
general exceeds by unity the number of independent cii¢uaits which can be
made on the curve. The higher the genus the more complicated and more
unfamiliar are the automorphic functions needed for the parametrisation.
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7. Conclusion. ]

It is always unwise to attempt predictions in any subject and high
energy physics is no exception. The experimental situation must have ‘
more than usual impact on theorists when the new higher energy accelera-
tors (such as the European 300 GeV machine) come into operation. Who
can tell which methods or which “fundamentls” may be discarded ?

Surely, despite past failures, theorists will continue to seek a marriage
of the successful SU(3) symmetry schemes with schemes for Lorentz space ? ‘

Despite the difficulties hinted at in section (6) will not theorists persevere
with that seems to me to be their only model formally satisfying
the axioms of quantum field theory—the perturbation series ? New

avenues of approach such as that of de Alfaro et al.(g) using differential
equations instead of integrals may lead to success. Personally I favour
attempts to build upon the sort of expertise gained in single term analyses
(typified by the work of Rafique, Ph.D. thesis, Wales, 1967) to study infinite
sets of terms with a view to finding Landau singularities for suitable sum
functions. As for asymptotic behaviour generalisation from termwise
behaviour to that of infinite sums has largely been achieved and this in
itself is some guarantee that perturbation theory and the Regge theory
of high energies will continue to excite interest in the seventies.

The Work of Olive and Negrine (in progress in Cambridge, England)
suggests that Landau cruve analysis and asymptotic behaviour are
intimately connected and this too encourages a belief -that perturbative
methods developed in the sixties will have relevance in the seventies.

A definitive account of the subject is given in ref. (10).
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ON THE MOBIUS INVERSION FORMULA

by
‘M. R. CHAWDHURY
Institute of Mathematics University of Islamabad,
, Islamabad, Pakistan.

A galance at the Mobius inversion formula suggests that one has to
do with some sort of inversion, but apparently none of the books on
number theory points out explicitly what this inversion in reality is. The
purpose of this note is just to do this.

The formula can be looked upon as an illustration of a very simple
and basic fact of group theory. All we assume on part of the reader is
some familiarity with the group concept and the elementary divisiblity
properties of natural numbers, in particular the fact (“the fundamental
theorem of arithmetic) that every natural number >1 can be expressed
uniquely, upto the order of the factors, as a product of powers of
finitely many prime numbers.

The Mobius inversion formula is concerned with arithmctical:
functions. By an arithmetical function f we shall mean a function
defined on the set, N, of all natural numbers, with values in the real, or
even compiex, numbers, such that f(1)=1. (More abstractly, we could
allow f to have values in any commutative ring with identity element, 1.)
Some examples of arithmetical functions are :

(1) The divisor function T (n); o .

T (m)=The number of (natural) divisors of #, including 1 and n.

(2) The ¢ function (or, totient function) of Euler ;

@(n)=The number of all positive integers m <n, which have no

common divisor with n, except 1.
(3) The function € defined by & (n)=1 for every n € N.
(4) The function i defined by

. 1,if n=1,
iM=10,ifn>1.

Consider the set, A, of all arithmetical functions f : N—D, where D
is the set of all integers, or of all rational, or real, or complex numbers -
(or, for that matter, any commutative ring with identity, 1).
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For any f, g € A let us define a function f*g by the equation

| ) (f*g) (n)— 2 f(d)g( ) for each n € N,

where the summation extends over all the natural divisors of n ; (d | n is
read “d divides n’"). Obviously f*g € A, for any f, g € A. Thus the set A
is closed under the operation* definied by (I). (This operation is an
arithmetical analogue of that of convolution in Analysis).

Of great importance in number theory are the muitiplicative arithme-
tical functions. fe A 1s called multiplicative, if for every pair of rela-
tively prime or as we shall say, coprime natural numbers m, n, we have -
) Sfmn)=f(m) f(n) for all m, n € N with (m, n,)=1
(m, n are called coprime, it their greatest common divisor, (m, n), is 1.)

The functions € and i defined above are both multiplicative; so are
T and . A proof that ¢ is multiplicative can be found in any book on
elementary number theory, e.g. [l], Theorem 60, page 53. We shall
be interested also in the set, M, of all multiplicative arithmetical functions
f 1 N—»D, that is, in the subset

M={fe€ A: f is multiplicative}
of A. We assert that M, too is closed under the operation *; that is;
f*geM for all f, g €« M. Indeed, for any pair of coprime numibers
m, n, we have '

e e m=( 3 1) ¢(4)) (k s 0 (1))
‘=d|zmkz] CYCHEAHE)

(
T dfm ] nf(dk)g ‘”‘)

= 3 fOg(™
llmnf()g(,)
= (/*g) (nn).

The last step deserves a word of explanatioi}. Since (mn)=1, I=dk
runs through the divisors of mn, as d and k run through the divisors of
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m and n, respectively. Moreover, then (dk)=1 and (d- A ) =1. Thus,

= 3 .
Ilmn d|m k|n
Hence,
(f*g) (mm)=(f*g) (m). (f*g) (n)
for all mn € N with (m,n)=1.
We may now enunciate the
Theorem. A is an abelian group under the operation *, and M is a
subgroup of A.
Proof. It has been shown that A, as well as M, is closed under *. Let
us prove first that * is a commutative operation, that is, f*g=g*f, for all

f,-g € A. This is clear if we observe that with 4, also % runs through

all the divisors of #, so that 5 = 3
dln n !
Pak
Hence in (1) we may replace 4 by 7’; in the right hand side to obtain
n fn ' n
2 g (g)= 2 /(7)) sd= 3 a@ (%) =@ @
d|n ( d n ( d d| ng( ( d ¢ (
d
Thus, (f*g) (n)=(g*f) (n), for each n € N. This means, f*g=g8*f.
As for the associativity, we. calculate (f, g, # € A),

(P9 ()= x (/)@ h (%)
=dzln( s w0 ) n (%)
dlznkldﬂ)g D n()

(* (@H) (=(*W*) ()
= * ny .
=€ n@7 (%)

On the other hand,
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TiTnk Izdf<%) ¢ (%)h ©-

Now, k | d and d | n, if and only if %‘ﬁ and 2

1. Hence in thelast
k k" :

hd .
. no__. .
summation we may replace k by % and d by T without altering the sum

(;—j« remains thereby unchanged); this shows that ((f*g) *A) (n) is equal to

(f*(g*h)) (n), for all n e N. .
The element of A, which serves as the identity with respect to *, is the
function i defined earlier ; for,

= s /@ f(-5) =),
@pm= 3 @ r(F)=r®

since i (d)=0, as soon as d>1.

The existence of an inverse element (and its uniqueness) to each
S e Ais easy to sce. We have to exhibit, for every fe A, an element
h € A such that f*h=i. But, this requirement automatically furnishes us
with the function, 4, sought, because putting n=1,2,3,.. in the equaticn

U= 3 () h@=io,

we can successively calculate £ (1) =1, hv(2), h(3)...... and thus effectively
determine . S

With this, we have completely proved that A is an abelian group under *.
To show that M is a subgroup of A, that means, M is itself a group under *,
it remains to verify that for any fe M, its inverse, 4, also belongs to
M. We prove i (mn)==h (m) h (n), for allm, n e N with (m, n,)=1, by
induction on mn. The assertion is trivially ture, when mn=1. Assume
now mn>1, and that A(lk)=Ah(l) h(k) holds for all coprime pairs I, &
with 1k<mn. Then ‘
@ R Em=hmm+ 3z f(d) h(";—”) :




[33]

where 3 extends over all d>1, which divide mn. As remarked eariier,

5 = s s, ; using the induction hypothesis and the fact that
dimn [lmkin
is multiplicative, we see

i OH(T)= (, 3 S0 w(7))( ERCLERICHC
=(/*h) (m) (/*8) ()~ ) ho).

Hence the equation () becomes :

(F*B) Grm)=(/*B) (m) (f*h) (1) + b (mm) = (m) B (n) ;
but f*h=i is multiplicative, hence we must have A(mn)=A(m) h(n). This
establishes the assertion, and the theorem is completely proved.

We now want to compute the inverse of the element &€ ¢ M, where
g (m)=1, for all n ¢ N. We assert that its inverse, #, is the function
characterized by the following equations : ' '

1, ifn=1,
3) H(n)=-£ 0, {pr | n, where p is some i)rime nurnb.erT '
| (- D% if n=p;..p;, where the pi’s are all distinct prime
= numbers (k > 1).

By virtue of the fundamental theorem of arithmetic, the equations
(3) do really determine a unique arithmetical function, p.

Now, obviously #(1)=g(1) ﬂ(l):(s*#) (D=i(1)=1. Letp be any
prime number ; then 0=i (p)=(e*#)(p)=1--(p). Hence, p(p)=-—1.
Further, 0=i (p?)=(c*n) (p2)=141(p2), whence u(p?)=0 foliows. If
k > 2 is any integer, then

0=1 (PY=1+~ (P +.. +1 (P D+ (Y ;
hence,, by induction on k, we see that

m(pk)=0, for all k>2, and any prime number p. ,

1, being the inverse of a multiplicative arithmetical function is itself
multiplicative. Hence, if py, ....,p; are all distinct prime numbers
(k>1), then

k _
Mpy-. . P)= ,wlﬂ(pi)==(—1)’<-

1=

Lastly, if n € N is divisible by the square of a prime number p, then there
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is an integer k>2 and a natural number m not divisible by p, such. that
n=mp*. Then p(n)=p{m) #(p*)=0, since (p, m)=1 and p(pk)=0.
Thus we have determined the inverse, u4, of the element & ¢ M.
We are now ready to obtain the thzorem known as the
MOBIUS INVERSION FORMULA.
Two arithmetical functions f and g are connected by the equations
g(n)=d§|‘, f(d), for each n € N, if and only if they are related
n -

by the equations _ .
=3 g@dn (7’; ) for alln € N, where  is the Mobius
din

function defined by (3).
Moreover, in tnis situation, g is multiplicative if and only if fis mul-

multiplicative. ' ;

There remains nothing to prove but only to interpret the abave
enunciation and assertion in our framework. In our terms it means :

For two elements f, g, € A, the relation g =f*¢ holds, if and only
if the relation f=g*u holds. This is, however, completely clear. If
g=f*g, then g*p=(f*e) *p=1* (e*p), by the associative law,

—f¥i
=f.
The converse is similar. Since €, 1 € M, if g=f*g, then g is multiplicative,
when fis so ; conversely if f=g*# and g is multiplicative, then f is multi-
plicativé too.

Naturally we have proved much more than would be needed to esta-
establish just the Mobius Inversion Formula. But the little extra effort
involved in our treatment is more than well paid by the insight it gives.
Not only does it reveal the inversion formula as an illustration of a-simple,
~ purely group theoretic phenomenon, but it also serves to introduce

in a natural way (being the inverse, with respect to a certain group law,
of a very trivial and natural element) the Mobius function g, while in the
customary way it is introudced off-hand without any motivation.
' REFERENCE
[1] G.H. Hardy & E.M. Wright: Anintroduction to the theory of number, Oxford
University Press, 4th edition, 1960, _




AN INTEGRAL EQUATION INVOLV]NG A HYPERGEOMETRIC
FUNCTION

By
G. MUSTAFA
Institute of Mathematics, University of Islamabad,
Islamabad, Pakistan

Introduction : Recently E.R. Love ((3)) solved some integral equa-
tions involving hypergeometric functions by means of fractional integra-
tion. This followed A. Erdelyi’s investigations ((1)) into the solutions of
an integral eqution which contains the Legendre function as kernel.
Srivastava ((5)) also used fractional integrafion to discuss certain integral
equations with polynomial kernels. Here we shall employ the fractional
integral operators to solve the integral equation

X
Jo-0 T M) A0 de=gei, 0<a<a<o, @)
a

where Mu'\ (2) is a function derived from certain polynomials which are

special cases of Jacobi polynomials, A >—1, Mu'\ (%) is defined for

’%— -1 §2, g is a given function and £ is to be determined.

Fractional Integration : Let C, be the class of those continuous
functions on the interval (a, b), open at a, where 0 < a < b < o, which
are integrable at ¢, and C, where # is a positive integer, be the class of all
those functions which are n-times continuously differentiable on (g, )

and which satisfyf(k)(a-{—)=0, k=0, 1,2, ...... , n—1, while /7 is

integrable at a.
Let I be the operator of integration defined by

If =ff(t) dt,(a < x<b < ) .1
h .
so that the operation of k — times repeated integration is expressed as
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X .
. _ Ak—1
Thf= (_’(‘k_’)l)! ) dt k=1,2, ..., 2.2)
a
and set ‘
fmf, 1 e/ ® ko, @.3)

The most important properties may be summarised as follows. For
feCy k=0,1,2, ...., we have ‘
.k
f(x)=I<f( )(x). 2.4
IffeCj j=1,2,....,and k is an integer (positive, negative or zero)

for which j+4+k > 0, then Ik f exists and belongs to Cj.z ; if /is a
further non-negtive integer which does not exceed j+k, then

(42) 1 fr=17 cx) @9

exists and belongs to Cj,z_;.
We shall now extend these ad other results to non-negative values
of the index. For « > 0, we follow Riemann and Liouville in

defining integration of order a as
" X (x—t)a—l
I f(X)=£7E)_—f(t) dt, (0 La<x<b< w) (2.6)

Many authors have proved the existence almost everywhere of (2.6)
for integrable tunctions. Under heavier restrictions upon f i.e. feC,,

laf exists and belongs to C,.
Fora >0, > 0,feC,
b Gy AR LD S S | @)
This can be proved by interchanging the order of integration in the repeated
integral indicated on the left hand side of (2.7).

We now define Idf for @ < 0 as inverse operation to 1~ ¢ ,i.e. define
gzlaf for a < 0 and f € C, to be the solution in C,, it it exists, of the

i —a
integral equation f=I ~g. Hence, {or any real «, the statement that
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Idf exists implies that fand Iaf both belong to C,. With this extension
(2.7) holds for all real a and B (positive, negative and zero).

A sufficient condition for the existence of Iaf, where o < 0, is that
feCy for some k >—a ; and

1@ =1" "% o, @.8)
Moreover, if j is a non-negative integer not exceeding k--{a], where [a] is

the integral part of « then
(ég)jI%KX}=I¢—{ﬂx¥=la_j+%f(k%x) 2.9)

For o > 0, let us denote Cal the class of functions representable in

the form Iaf with f€ C,. This definition gives the class Cn of funptions

when a=n. If a>0,. B8>0 and f ¢ Cathen Iﬁfeca—}—ﬁ' If

0<B<a andfeCa, then f € C,, and it follows that for 0 < B < @,

B
Ca ccC ¢ If d= —n, n is a positive integer, then Iaf exists and belongs
to C,if and only if f e Cp. If o =—n-+", wheren is a stitive integer
and 0 < § < 1, then fe Cpn_; is necessary and f € C,, is sufficient condition
for the existence of Iaf in C,, while a condition that is both necessary and:

sufficient is that I§ feC,.
A new Function : We begin this section by defining polynomials

M, (x) by

o .
3 Mp(x) t"=(1—-)(1-2x t+2)! . @a3.1)
These polynomials are special Jacobi polynomials. In detail
1 —1 1 . :
MMP%WJb”m, 3.2
(Dn

where Pn(a’ F) are the Jacobi polynomials. - To prove (3.2) we usc the
following relation for Jacobi polynomials ( ( (4) ), p. 256)
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© (a+b+1)n Pn(a’ b)(x) t"

> o (+an

n=0
—1—a—b -
=(1-1) Fi (1 Qath) § Qa1+ HEDD), 63
where ,Fi(a, b; c; z) is the hypergeometric function.

0o ,
b 0 M, (x) fr=(1-9) (1-2 xt-+12)7!

n=
_ 2t (x=1)\"1
~a-om (1=555)
—-0 oFy (b L )
and with a=—}, b=}, we obtain from (3.3). '
By equating the coefficients in the last equation we prove (3.2). This
relation shows that many formulas on Jacobi polynomials can be converted
into results on M,-polynomials. These polynomials can also be introduced

by the relation,

M, (x)=2F; (—n, n+1;%; 1‘2"), (3.4)
and Ma(cos 6)= Mg—%)—” _ T35
CcoS 2

(3.5) follows from (3.4) and 2.8 (11) of Erdelyi ( (2) ).
The Tchebicheff polynomials Ty(x) and Up(x) are often defined by

the relations ( (4) ).
They satisfy the equations

Tn(X)';‘Un(X)‘-x Uﬂ—l(x): (n > l)a (3.6)
(1 =x%) Up(x)=x Tn(x) — Tna(x). 3.7
The generating functions for Tn(x) and Up(x) are
o :
(1-2xt+2)1=3  Uyx) (3.8)
=0 , o
el

(I=xf) (1 =2xt+£2)"1=3, oTn(x) tn. S (39
n=

e




|
|
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Using (3.8) and (3.9) we observe that

5 [Ta)+G=1) Up@] r=x 5 Ma() 17
n= n=0
Comparing the coefficients in this equation we obtain
x Mn(x)=T ,(x)+(x—1) Uy(x):
Using (3.7) we have
Mp(x)=U,(*)—Un_1(x), (n > 1). ’ (3.10)
Similarly, making use of (3.7), we get
(2= 1) Ma()=Tpno®) = (14+2) Tas1 () +x Ta®).  (3.11)
We now define two functions by the formulas ‘
My()=oF; (=, v+1; 5 3 (1-2)), ¢.12)
and
M, ) =yFi(=v, v+1; A+3; 3 (1 =) G.13)
Various relations involving the functions (3.12) and (3.13) can be

found by actual computation, and we shall discuss these in an other paper.
The integral equation. We shall now investigate the solution of the

integral equation.
x . -
S =0 M (3) 2 de=goo, @1)
a

X

where 0< a<< x< b<< 0, A> =1, Mv)‘(—;) is defined for Jtc-—l ’(2,

g is the given function and f'is to be determined.
We write

M) =eF1 (=9, v-+15 04433 (1=2))

_ PO+
JTOFD TO—v=D

1 o
.f,,)»—v—3/2(1—v)v (r1-v (x=1))’ de, #2
0
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We shall now establish a result on the fractional integral of Mv)‘(x).
In these lines a >0, r and x vary over the interval (g, b), H is
Heaviside’s unit function defined by
Hw=1,ifu >0, =0ifu <0.
Consider, for ¢ >0, ¢ > 0, and for each ¢, the function of x
H((x-1)

1 {HES0 s | - 2D

NG
fj(x—-u) -1 (L12-—t2)c—-1 du.
t

Write #=x —(x—r) « and obtain

a(H(x—t “onC 1

RS

' —r)“.”‘l 1 a—1 c—1 c—1

=%W N (1-v) (x+t-(x—1)r)" de
. 5

On account of (3.2), we thus have
a (Hx-9 20—-1;
e e
-1 1
@° a+tc—1 a+C"§(x)
=H (x— -~ M —=]. 4.3
¢9 ey 70 -1 \r) @D
o In @), if A+ > vl >0, then the conditions for (4.3) are
satisfied, thus its application to (4.1) yields

X
A—v=1 [ TQ+D) =Y oy
g=1 o He=0@ -0 | fod. @49

’ —p—1
If it is permitted to interchange the operation I)L Y72 with the
integral with respect to ¢, we use the operator

X
a —
I, f(x):F% [ 2= a1
a
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to obtain
& )—lﬁ‘gig " f(xz—ﬂ) e S HE=D i (4)
= ro+p I T e T e | 46)
which leads to the solution :
S M T5% R S
O S A AL ) @)

Necessary and Sufficient Cenditions : To find necessary and sufficient
conditions for the existence of the solution f, in C,, of the integral equation
(4.1), we use the following result ( (1) ). For every fin C,
L% /=1% 4,
where A belongs to C..
We shall now show that the necessary and sufficient condltlon for the
existence of solution f in C, is that g belongs to C

Indeed, if fe C, and v < —1, then
1 —y—1
L' e =t

Where £ is in C, and from (4.6), we see that

c=r o P i oy e,

Thus g € C is the necessary condition.
husgeC, 14 y

A+H3

"),

1
On the other hand, if g (x)=IA+ 2 h(x), forhe C,, ;
31 — 1
AR g AT o =1 T R ),
where k€ C,.

1
_(2x)er —y=1 vl
Th}ls f(x) |—1 (v_l_l) I k (x)’
1
, _en't
so that f(x)= HEE=)) k (x)

and this belongs to C,. Hence g € C is necessary and sufficient

A+E
condition for the existence of the solution in Cg.
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Explicit Solutions : The explicit form of the solution (4.7) is different
according as v, A—v—% or both of these numbers are or are not non-
negative’ integers. First assume A—v—%=m, wherem is a positive
integer, then ‘
v—X m o .
A )= ™. 6.1)

If, in éddition, also v=n, n is an integer, then (4.7) may be written as

N(r+m+1)

o) n+l
fx)= Q—~(dxz)n+l (m)(x) r=n+m, v=n. (6.2)
If v is not an integer and y < n, then )

—v-—lzl‘,.-—n—l n—vy

I 2 L,
and we get
+1%
2 (2%) " n=v=1(m)
fix)= Nn- v)["(m+v+l)( ) f(xz =#) @) dt

, 6.3)

for r=m-+v+3.
v—A+3

Now if A—v—1 is not an integer and ,\—v-% < m, thenl
- A+z+m

™ and accordingly

1"‘*+%g(x)~ N e G

Nn- )\+m+

If, in this case A=n is an integer then (4.7) may be transcribed

— . (2x)n1 y= A+m— (m)
TO=F 6= A+m+1)l"()\+%)(dx~) f( .

(6.5)
for v=n, A < n+m+§. :
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ELEMENTARY PARTICLES AND TOPOLOGICAL CONCEPTS

B.A. SALEEMI and M. RAFIQUE
Department of Mathematics
University of the Punjab, Lahore

M. SALEEM
Departnient of Physics
University of the Punjab, Lahore

A new approach involving the use of topological notions. in Physics
has recernitly been suggested by Campbéll! anid Antoiné2.

This short note contains a brief discussion regarding the -usé of
topological concepts for the characterization of elemeritary particles.

Let a be a physical system and S, be the set of all physical states
of a. At the time r=0, let s be the state 6f the systém. The othéf
states of the system can be obtained from s with the help of an operatof
U; in thé sense that Utl(s) represents the state of the system at =1t

It follows that the set {U,} is a semi-group under the successive
application of operator as multiplication. We shall denote this
semi-group by A. Let {S} be the sét of all physical systems and let {A}
be the set of all semi-groups corresponding to the members of {S}. We
shall define an equivalence relation over {8} to chatacterize elementary
particles. ’

Let C be a category* whose objects are the members of {A} and
whose multiplicative system M is the set of morphisms of A’s. Let C’
be a sub-category of C whose objécts are miembers of {A} and whose
multiplicative system M’ of morphismis is the subset of M consisting of
those mappings which aré iso-morphisms. With the help of these
morphisms we can introduce a relation over the set {A}.as follows ;

Let A, Aze {A}. Then A, is said to be related to A,, abbreviated
as “Aj ~ A,”, if there exists an s € M’ such that h: Aj—>A,isa
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morphism between A; and A,. That this relation is an equivalence

relation over the set {A} can be seen as follows :
(i) Every A € {A} is equivalent to itself under the identity morphism

(whose existence is guaranteed by the definition of a category), i.e.
A ~ A forevery A ¢ {A}.

@) If h: A;—>A, is a morphism then A~1: A,—>A; is also a
morphism and hence A, ~ A, implies A, ~A,. That is the relation
is symmetric.

(iii) If Ay ~ Ay and Ay ~ A,, then there exist morphisms A, g € M’
such that h: Aj—>A, and g: A,—>A,.  Since gh € M’ by the definition
of a category and gh: A;—A,, we conclude that A1‘ ~ Asand A, ~ Ay

together imply Ay ~ A,.
This substantiates our claim that the aforesaid relation is an

equivalence relation over the set {A}.

Now let ay, a, € {S}. Then we say that q; is equivalent to a, if and
only .if A; ~ A,, where Aj and A;arethesemi-groups associated with a;
and a, respectively. One readily verifies that this is an equivalence
relation over the set {S}. Thus we have induced an equivalence relation
over {A} as described above. Then by the well-known property of an
ecjuivalence relation it follows_that{S} can be partitioned into mutually
exclusive and collectively exhaustive classes of physical systems, where
each equivalence class consists of physical systems equivalent to each
other. An equivalence class shall be called clementary if each of its
members is a single particle system. The elementary classes so obtained
will represent elementary particles. This provides us with a procedure
for characterizing elementary particles.

~ It may, howover, be pointed out thatif we consider that category
C with its multiplicative system M (consisting of all morphisms), then
the following difficulty arises in regard to the definition of an equivalence |
relation over {A}: in case of a homomorphism (not isomorphism) many
elements of its domain may be mapped into a single element of its
codomam and hence the invertibility required for establishing the
symmetry (u) ‘of the relatlon (as defined above) is not possible. By
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reinterpreting the concept of invertibility regarding morphisms, it may
be possible to overcome this apparently difficult situation. We hope to
di-cuss this in some later article.

An alternative approach to solve the above problem could be to
introduce an equivalence relation over {S} without resorting to the
set {A}. To accomplish this we may proceed as follows. Two
systems a; and a, are equivalent if and only if a; and a, have the
same number of particles. It can be verified thatitis an equivalence
relation over {S}. Lete; be the equivalence class of singleton systems
(a system is called singleton system if it has just one particle) of {S}.
Let {A;} be the set of semigroups associated with the systems in ey,
Let C; be a category whose objects are members of {A;} and whose
multiplicative system is the set of isomorphisms of Al’s. We can .
partition e; into equivalence classes by inducing an equivalence relation
over it as described above. These equivalence classes wil! correspond
to elementary particles and hence the consequential characterization.
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ON THE FUNCTION C (n)=gq¢(n) — q°(n) AND
SOME INEQUALITIES IN PARTITION THEORY
By
~'S. MANZUR HUSSAIN
Definitions. p(n)=Number of unrestricted partitions of »

q’(n)=Number partitions of » into just  distinct parts < k.
[
"(0)=1

7.0

q‘;(n)zNumber of partitions of n into an odd
Number of distinct parts < k.

0
q,(0)=0
qZ(n):Number of partitions of n into even Number of
parts < k..
e —
4(0)=1
0
am=cm)= 3 (=D ¢ #n).
i r=1 k
c(g) =1.
I. The following properties of q;(n) & c(n) are obvious from
definitions.
' (m=0, k<r. (1.1)
’ rir+1)
q;(n)_—_O, n> ‘_2._ (1.2)
g,(m)=0, n >’(~21‘5L+—1) and
k>r>1. 1.3)
Py _r(r+1 rRk—r+1)
qk(n)'—l’ Il———z‘— or __‘2,,I_ &
k>r>1. (1.4)
om)=(-1)", n="C 'ZH) or ’sz(;%itl? &

k>r>1. (1.5
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clp)=0, n,>iﬂ‘7—;2'~r—+—l~2 &

k>r>L (1.6)
2. We have found a few more interesting properties of ¢(r) which
we state in the form of the following theorem :

o
Theorem 1. (@) = c(m)=0.
‘ n=0
®) c(9)=+c(n—s), k =even,
— —c(n-—s), k=o0dd,
and.0 < 5 < n:k(kz——"';g
© ¢ (D=cy(r), 0<r<k

GaD=cu(r)—cr (r—k+1),
)

k+1<r< k(kjl

Cp(=—cp (r—k+1),

KRED, |, K+ DE+2)
2 T = X 2 .

d) ¢;.,()=0, : k+2=0 (mod 4),
=0, (mod 2) k41 =0 (mod4),
&.I‘:W .

k(k+1)
—5
e = n ¢(n)=0, k>2
" n=l1 ’ o
kk+1)
N oz c(2n)=0, k(k+-1)=0 (mod 4),
n=uU
k(k+1)—2-
—g
z c(@n)=0, k(k+1)=2(mod 4).

n=0
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In order to prove the above properties we first show that c(n) is

.
the generating function of 7 (I—x"). In other words we prove the
n=1

following :-—
k

Lemma:— If ¢;(x)= T (1-xm)
1

oo
then ¢p(x)= =  c(n) x"
n=0
Consider the identity '

k o
T (=xW)=1=(x+x2+4. . xk)L(x. 224 x.x34. . pxk-T xF)

=
~(x.x2.x34x.x3. x4 . Fxk™2, xk)

................................

(= Dk(x.x2. . xk), (¢A))
where the general term on the right hand side of (2.1) is the sum of

k a ap .. ‘e
¢_terms of the type x x5 and where a; < k afe all distinct.

We can easily see that the above identity can also be written as

r2k--r--1)
k 2
aW=1+ 2 (-1y Z esas. e
r=1 SZC(;;{:L)

We now have to determine the coefficiént ¢s of -x5. Let us suppose that
ar-+ax+..+a,=s. This set of r distinct integers contributes just one
to the coefficient ¢;, The same is the case with each such set of
integers a; taken r at a time whose total sum=s. Thus. tlié total
contribution to ¢;=the total no. of such sets and this by definition is

equal to q; (s). Therefore, we have c,=q.;(s). Consequently (2.2)

can be re-written as
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rQRk—r4-1)
k 2
ou(x)=1+ 2 (-1) Z  que)x (2.3)
r=1 iG]
p)

k 2k—1
=l= 2 ¢@®x+ Z ¢gEx+....
s=1 k §=3 k

rCk—=r+1)

2 .
(=1 z q;(s)xf—{m...
Gy

k(k+1)
2
+(=Dk.x
Re-arranging the terms on the right hand side of the above identity
in ascending powers of x and using the properties from (1.1) to (1.6)
we have finally the required form, namely : '

k(k+1)
5 :
dp(x)= c(n)xn. i2.3)
n=0
os)
= 3 *c(n) x"
n=0

Incidentally we have also proved that

r(2k-r41)
2 k ; ,
b)) 4 (s)="c Q4
e+l k r
S= _2—“

~ We are now in in a position to prove the theorem :

"C(n)=q;(n) -4, ), vide 11,
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Proof of (a) Since ¢1(1)=0,

)
therefere = ¢(m)=0
=0

k(k+1)
s}

(b) Since ¢p(x)= X c(s) x—s
=

Kk -+1)
3
and x 7 . ¢ VH)=¢pu(x), k=even ;
= — ¢ (x), k=odd.
After substituting the values of ¢p(x) and ¢3(x™1) in terms of

finite series on comparing the coefficients of x5, we have that required
results.

kik +1)
2
(¢) We know that 2 cp(m) xn (1 —xk+1)
n=0
(k+1)(k+2)
2
= ni ck_'_l(n) xn,

By equating coefficients of equal powers of x on both the sides of
the above identity we have the relations in (c). These relations may be
called recurrence formulae for c¢(n)

(d) From the recurrence formula we know that

ck_H(r)—_— ck(r)—— ck(r—(k+-1), k+l1gr < ﬁ(!c';_l)

There are two cases to be considered.
(1) Let k=even, o (= ck(r_-(k_{_l))

provided - (lillfj_%) .

Since r is an integer, we place further restriction on k and
say that k+2=0 (mod 4).
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Hence under the restrictions mentioned above, we have
L n 1(!') =0,
(2) Let k=odd. ck(r): - ck(r —(k+1))
provided r:Q"_f‘]}f‘_‘kQ

As above we place further restriction on k and say that
k+1=0 (mod 4) and consequently we have

ck+1(r)§(} (mod 2).
(e) Let k > 2
k(k+-1)
5
Since '¢"'fk(x)-= Z  ne(m) xnT! and ri)’k'(I):O‘
n=1
0
therefore 3 nce(m)=0
n=1
Wecan easily verifythat the generalised form of thie property is
0
s, [(r—m4+-2)(n—m+-3)....(W)] c(n)=0 .5)
n=m—1
when &k > m.
k(k+1)
4 .
(f) Since ¢k'(x)+q‘bk’(—x)=2 20 ¢2n) x20, k(k+1)=0 (mod. 4),
e
k(k4-1)=2
. 4 ,
=2 F c(2n) x2n,
n=>0
k(k+1)=2 (mod 4).
* For instanceg(5, 0)=2ie. ..... and ...

Now corresponding to the above partition of q(5, 0), we have the partitions
...... and ..,. of g(6, 0) respectively in addition to two more partitions of

9(6,0) viz. .. ‘and ..
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By substituting x==1, we have the required property.

4. In this section we prove some inequalities involving the function-
p(x) in theorem 2.

Theorem 2: (o) p(n)-+p(n—2) > 2pn—1), n> 2.
®) p(n) > pln— I +p(k) n>k>1.
Kk )
2

© 3 aan=r k>0 n EEDGLD)

r=
and g(n, k)=p(m)— p(n—k+1).
(«) We give a combinatorial proof.

Let g(n, k)=p(n)—p(n—k+1).
We can easily see that generating function- of g(n, 0) is- given

by the expression——l— . In other words g(n, 0)=No. of
TP -x7)
r=2
partitions of # into parts >2. Now g, 0)>qn-1, 0);
because for each partition* = enumerated by g(n—1, 0) there
exist a partition enumerated by g(x, 0) obtained by adding one
to the largest part of .

(b) From-(a) we know that

pm)=p(n—1) >pln~1)—p(n-2), n>2.
or p(m) - p(m—1) > p(k)—p(k—1), m>k >1
or. p(m)+p(k—1) > p(k)+p(m—1).
If k=2and-m=n—1,

then p(n—1)+p(1) > p(2)+p(n—2).
If k=3 and m=n-2

then p(n—2)+p(2) > p(3)+p(n—3) and so on.
We have ultimately ’

p(n=1)+p(1) > p(k)+p(n—k).

But p(n) > p(n—1)+p(1).
Hence p(n) > p(k)+p(n - k).
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We have also a very simple combinatorial proof of the above
inequality.

Let p(n—k)==m and plk)=n.

Pick up one of the partitions of (n— k) and one of k.

Combine the partitions in any manner. This combined partition
will be a partition of ». The total no. of such combination will be
mn. Butmn>m—+n (m&n>2).

Hence p(n) > p(n— k) +p(k).

The generalized form of the above inequality will be

p(n) > ptk)) +p(ka)+. ... +plkn)

when n=k;+ky+....}Fkn.
1 [o0]
(¢) Since —= 3 pm)xn.
TPA=-xn n=0 =
r=1
xhk+1 o
Therefore - =xk+1, 3 p(n)xn
TP (1-x7 n=0
r=1
S —
= b p(n—k-4-1)xn,
n=k+1
From the above equations we can easily see that
(1-x%+1) K ®
e et = % ()X b q(n, k)xn,
TP (-5 n=0 n=k+1
=
1 k o]
or = I prx"+ 3 q(m,k)xn,
K % n=0 n=k-+1
T (1=-x) T (1-x"
r=1 r=k-2
k(k+1)
1 o2 { k o0 b
of = =% (x| 3 p)an+ X gmk)an |
T (1=x7) n=>0 Ln=0 n=k+-1 J
r=k+42
k(k-+3)

=terms upto x =+
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k(k+1) ]|
!

2
b e(r). g (n—r), k)
=0 J

xh .

(

% |

s, |

CERCE I
o 2

Since the coefficients of x5, where s > k-2 in the expansion of the
left hand side are always positive ; therefore

r

k(1)
27;) e(r). gq(n—r; k) > 0, Whenever n > %w) 4.1

"~ Incidentally we have also prove that
;Eo c(r) p(k—r)=0, 4.2)

which is obtainable by equating coefficients of xk on both the sides of
the above identity.
We now consider a few cases of the inequality in (4.1.).
Ist Case. If k=1, then
P)+p(=3)> pli—D)+p(n=2),  n>3 4.3)
2nd Case. If k=2, then
PO)+p(n—4)+p(n—5) > p(n—1)+p(n=2)+p(n—6), n>6 (4.4)
3rd Case. If k=3, then
Pm)+2p(n—5)+p(n—10) > p(n—1) +p(n—2)+p—8)+pn—9),
n>10, (4.5).
and so on.
On a careful study of the above of inequalities we observe that
(f) On each side an equal number of terms are involved
(if) the sums of the integers whose partitions are being added are
the same, and

(#ii) these integers belong to the block of [(k+—l)2(k~l_—2)+l]

consecutive integers.
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DISTRIBUTION OF THE CLASSIFICATION STATISTIC
Z WHEN COVARIANCE MATRIX IS KNOWN
By
AHMED ZOGO MEMON
West Pakistan Agricultural University, Lyallpur

1. INTRODUCTION :

Consider the situation where the vector observation x is knowa to
belong to one of the two p-variate normal populations w7y : N. (1, 3) and
7y ¢ N (4p, 3), the positive definite matrix 3 being known. The

samples xi1, X12, .., xlN1 and xpp, - ..., ZNz drawn respectively from

7y and 7, are independent of each other. The parameters p; and #y,
where 1y £ut,, are unknown, and so they are estimated from samples by

the sample means

N, _ N,
x1=(1/Nyp) Z' Xy x=(1/Ny) 2 e
i=1 1=

Then

Z= Ni (x-—- Al)' 71 (x— x)-, (x— xz)’ sl (x— x,)

N; +1 i N2+1

is a criterion: proposed by Kudo (1959) and John (1960; 1963) in discri-
minant analysis for classifying the ebservatipn x into its.corregt population,
the procedure according to which is to assign x tothe population = if
Z < 0and to the population w, ifZ >0. Memon (1968) studies this
classification critericn when 3 is unspecified. This. paper obtains, for
the case when = is fully known, an asymptetjc- expansion of the
distribution of Z with résp,ect to N;~! and N,~1 by the studentization
method of Hartley, as also used in- Han (1969), Expressions for
probabilities of misclassification whkich arise due to the use of this
criterion are also derived therefrom for the purpese of numerical
computatians.
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2. THE MAIN RESULTS :

Let F(y) be the distribution function of the random variable (Z— p)/¢

under the assumption that x comes from the normal population ;.
The parameters p.=—D2 and ¢2=4D2 are mean and variance of the

asymptotic distribution of Z given that xe=; where D2is the Mahalanobis
distance between 7; and =,.

2.1. Case NI # Nz.

Theorem. If D >0, then an asymptotic expression of F(3)
is given by '
’ [Ny~ (G113 A)+Ny=1 (G+3 B
+N;=2 {Gii44 (A1G1+A) -+ D1}+N, 2{G2
+1 (B;G.+By)--} Dy}
+NIN,) (G} (ArGo+Ag) 4 (B1Gy+By)
+iDgjteii ] @ (),
where d=d|dy, ®(y) is the edf of N (0, 1) and
Ay=D~2[d*4-p (d2-Dd)],
Ay=D"3 (d=D) [2d%- pd2— pDd),
A3=—D73 12d54-2Dd*+-pd?)
By=D-2 (+D) [d3++Dd 2+ pd],
B,=D"3 [2d5++2Dd4+pd’),
By = ~ D3 (d+D)? [2d%+2Dd2 1-pd],
Dy=D~*[{d*+ pd2—pDd }24-4d6—4Dd5--2p (d2 — Dd)?],
Dz=D"* (d4-D)2 [{d®-+ Dd2 pd }24-4d*--4Dd3+2 pd 2},
D;=D"*[(d-F-D) (d*-+-pd? - pDd) (d 3--Dd?-|- pd)
+-4d 6 4-4Dd3 - 2pd),
1=4 D1 (d34pd),
=—} D1 [d34-2Dd2 4 (D24p)d),
G“._l D-2 [(d3--pd)2-+4d4 ~4Dd3 -2 pd2— 4 pDd],
© Gip=~} D2 [(d3--pd) {d*-+-2Dd2+(D24-p)d}
© -+4d4+-4Dd3 - 2pd 2],
Ga2=4} D2 [{d3--2Dd24-(D2+4-p)d}2
+4d*4-12Dd3--2 (6D2+4-p)d2 -4 (D2-+p)Dd].
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Proof. We can express the statistic Z in the form
bGr=xi+a (¥a =X} 57 {x—x1+0 (u =)} —a (a+1) Q]

where
b=(Ny~ Nz)/(Nl +1) (Na+1),

a=Ny (N;+-1D/(N; ~ Ny),
Q=(x;=x2) 571 (xy--x3).
By using this expression it can be seen that the conditional charac-
teristic function of Z when xl, x2 are fixed and the observation x comes

from T4, is given by

2 gbvy p .
exp [—§ ba (a+1)Q+ 3 I — L log (1-2¢b)],

where
0= it:

y=Clt—x+a (x—x)],
C is a p xp nonsingular matrix such that C 5 C’'=],

Q=(x—x)'s~1 (x1 = x2).
Due to invariance of the distribution of the Z statistic undér any
nonsingular linear transformation, we may suppose without any loss of

generality that

p1=0, pa=py, 3=1,

where 1/ is 1 X p vector (D, 0, ..,0). These substitutions now simplify

the conditional characteristic function of Z to

4 by2;
exp [~gbo (4t Q+ 3 — Tyl — T log (1-20)]
J= : :

where
v=[—(a+1) x1+axgl,

Q =(;1 - .;6-2)( (-.;C]_ - ;'2_).
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The characteristic function of (Z—p)/s under the assumption
that xe =y is

#(9)=E [exp. {} D71 (Z+D2)} | Mi]=E- _  [I(x1, x2)]
X1, X2
where E_. _  indicates expectation w.r.t. the joint distribution
X1y X2,
of (';Ii ;2)’

§ (x1, x2)=exp [A (%1, x2)],

and
bot (a1 P 6b vy
A(xbxz)--.—- le—FZD 211_;_1,‘
» 0b
) log (l—ﬁ)

Now since ¢ ()—cl, ;2) is analytic about the point (J—tl, ;cz)z(O, Eo)s
so in a Taylor expansion about an origin (0, #,)

exp [A (x1, x2)]

P -
ST gt S G s 4 G o,

i=1
where] is the valu€ at the point (0, 1,). So

Al x
¢ (0)=E. _ [~
X1y X2
A M

(3.1) — QA HI),
where

N 2 1 32 1 2

O —1+2—N—1 f éﬁzl—r_!_ mzr 3’222;—{_ 8N?, r’zs M2, M2 ¢
3.2) +_g__;-_3_4_;+__1..4v__iﬂ_.

’ 8N2 ¢ 22y, ANGNI ,."'S M2y, 3022

where each subscript runs over the range 1, .., p.
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We consider now

3.3) »6)=0

where A (141, #2) comes to

eA(,u,, ﬂz)] .

9D gho (a-+1) 1 p V45 »p ,,(,,ﬂi)
77w Utz e T ael-p )

and
v=[=(a+1) #jt+ap],
Q=(uy=#2)" (11— 12).

At the point p; =0, k3=, it can be shown that

(1,61, G2, Gy, Gn, Gp 4712
Gd) A po D=1+ i+ Rt a0
The constants appearing in the expansion of ¢ (¢) are functions of ¢ and
are same as defined in the statement of the theorem for ¢ =—d.

. 1 . .
The coefficient of N, in (3.2)is

A
), =l G
%a”zlr o_% 8#21r+ aulr o )

Since
_aé_] __02b24(oc+1)6
oMy, o D(l-‘;—é—b) 1r »
DV .
2A) _blat) () b
A" p (-%) ol
D
so on simplification the above comés to
A1Gi+Ar | AGa+A, ) 92/2.
(3.5) At == S e e
The coefficient of 2‘%13 in (3.2) obtained similarly is
A o
(3.6) 3 22e _( B;G,+Bs, B;G2+B; 682
r a‘uzzr]o— B;+4 N 4 N2 —i—....)e
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We can show

32A BA A PA

a’Llraf‘%s Ok 0% "*ziraf*ls orpontyy
3 54

A _ A =0 forr;ésandizl,Z

ouT T puty”
Using these we have

348 [ { aZA ]
s oM 21r oM 21s ok, '“zr a“zzr
A ‘2 92A . O2A A,
* 2{ ay ) au2,,.+2 (B/ﬂi,) }]o €

which on simplification gives the coefficient of §N1°‘2
i

02
2 .
) =D iF1=1
92
(3.9 =Dze ifi =2.
On using
3 3A 4
0°A 0 0'A =0 forr=£s

8#]ral’~225~ aﬂzjrall‘Zs - a["‘zlraf‘LZZs
we have

] [ {GR)+ 283
,,sazﬂ,,auZzs o oMy ciﬂ]r

{
s
+ { aA 0A 82A ( )2}]
3#1,« anu‘Zs 3.“1,-8;&23 ap'lraf‘z_g
aA ] #_62b2a(cﬂ-,—1)8
NI 2( _6by T8
D2(1 D)

we obtain the coefficient of

and since -

4NjiN2
A 0
3.9 e -D eT
g 021 0R22 8

3#2;) 6"22s}]
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The characteristic function ¢ (¢) of the random variable (Z— u)/o
on the assumption that x e =; is obtained from 3.2to 3.9.

The technique for inversion of a characteristic function of the form
(—6)" ¢ (6) is well-known (see Cramer’s result, 1946, pp. 225) and was
used by various authors. According to it, the cumulative distribution
function corresponding to (—4)" ¢ (8) is given by d" F(y). It is now
easy to see that the cumulative distribution function is expressible in
an asymptotic expansion as given in the statement of the theorem.

Corollary 3. 1. If Z is the classification statistic used in
discriminating an observation x, then the probability of misclassifying
the observation into the population 7, when it comes in fact from the
population =, is given by

[ (H— a, a2+ a Qg oy fll?_ ,_,)q) (y)]y=D/2

where

L .
2
az:% D2 [d¢4-Dd3~(D2—p) d2— D3],

D-2 (d*++Dd3+ pd?),

aiy=+ D= [d5+2 Dd7+(D2+2p+4) d+2 (p+2)Dd?
- (4D~— p2—2p) d4 —4D3d3 - 4pD2d2],
azy=g D 4|45+ 2Dd7~ (D~ 2p ~4) d*~2 2D~ p = 2) D

— D342 (p+4) D2—p2-2p} @442 (D2~ p—4) D¥d?
+(D*4+4D2 - dp) D22 4-4D%],

am:%f D4 [d8+2Dd7+2 (p+2) d6~2 (D2=p—2) Dd5

—~{Di(pd) D2—p2-2p} d*— (p+4) D3d3-2pD2 ],

and ¢ () is the cumulative normal distribution function of N(0, 1).
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Praof. Since the probability of misclassifying the observation into
7, when it comes in fact from | is

1-Prob {Z<0 | ﬁ1}=1"F(J’)]y=D/2 )

the proof follows immediately from consideration of the previous
theorem.

2.2. Case Ny=N,. When the sample sizzs are equal it is discovered
that the conditional characteristic function of (Z- #);o given that x €7
is not derivable from the conditional characteristic fphctign found in
the proof of previous theorenmi, We can, however, establish the following
result on similar lines. The probability of misclassifying this observation
x into 7™, when it comes in fact from 7; is then easy to derive therefrom.

F(y)= (14_;_&_{_ 4%22—{—.....)@ ),

where
@ =D~2 [2d4-+-2Dd3 - (D2 - 2p)d2 - D3d]
ar— ;__ D4 [4d8+-8Dd7+-8 (p+2)dS~ 8 (D2—p—2)Dd’5
—(3D¢4-4 (p+5) D2—4p2—8p} d*
+2(D2-2p - 10) D3d3 (D4 +4D? — 12p)D2d 2+ 4D*d |
and ¢(y) is the cumulative distribution function of N(0, 1).

The fact that the characteristic function obtained inthe case N; =N,
is not derivable from that when N =% N,, would then also be true for
their respective cumulative distribution functions. But when we
substitute N;=N,=N into the asymptotic expansion of F(y) for the
case. Ny 5= Ny, it is interesting to find out that the resulting expression
becomes identical with the one obtained in this secticn, so that up to
order N-2 the previous theorem as well as corollary can be regarded
as holding true in general.
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