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A SET OF n-DUAL INTEGRAL EQUATIONS*

By .
M. IFTIKHAR AHMAD

Mathematics Depertment
University of the Punjab, Lahore

Dual integral equations have their origin in the mixed boundary value
problems arising in potential theory. Weber [8} was perhaps the first to
consider dual integral equations but the systematic treatment for the solu-
tion of such equations was initiated by Titchmarsh [5]. In the current
decade Erdogan and Bahar [2], Westmann [9], Szefer [4] and a few other
authors have considered simultaneous dual integral equations. In this
paper, a solution for a given set of n-dual integral equations is found in
terms of a Fredholm’s integral equation of the second kind. The matrix
notation and the following discontinuous integral [7] are used

o0
0 t
W [ 3@ ey @0 da= | (<x
0

t‘l’

provided Re v > 0.

The method is a direct extension of Szefer’s solution [4]. It is
primarily based on the method used by Copson [1] and later on extended
by Lowengrub and Sneddon [3].

1. Transformation : Consider the set of n-dual integral equations
with Bessel function kernels

[o o]

(2a) f D (@) ¢ () I, (ar) da=£(f) 0<r<1
0
o0

@) [ E@ ¢ @Iy (@)da=g® ¢ >1

0
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where / (x) is an unknown vector. Substituting the value of X (a) from
(6) in (5a), we get

o0 o0 o : : o
fx” f 1) Ty (@x) Ty (@) dx da 0<r<1
0 1
Inverting the order of integration, we have
[0 0] [e0] .
%) f 1 1 (x) dx f Ty (at) Tyuy (ax) dot 0< <1
1 c

Since x>1, we observe that 1< x always; hence applying the d_iscontinuo_us
intergral (1), the integral (7) vanishes identically and hence the equations

(5a) are statisfied.

Now substitute (g) in (5b), then we have
0 0 ‘
®  [L@r (1931 @ a1l @) da—g@®  1>1
0 1

Assuming for the matrix L (a)
® L@=I+V ()
where I is the unit matrix and

(Vig (@), Li2(@), ...... ,Lin (@)
(10) V(@)= ceeeerrieiiiiiiiiiiiiioiies b V@) =Lyp(a) =1
ULy (@), Lng (@), - s Voun () )
we obtain form (8) that
0 0
a1 g(t)ufl[z"f 1) Iy (at) Ty (a%) dx] da
0 1 ,

- o0 [e 0]
+ f V () [1” f 1) T, (@) Tyt (%) dx] da
0 ) |
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Inverting the order of integration in (11), we get

o o0
2 ()= f ¥ 1) dx f T, (@) Ty_y (a%) da
1 0

a0
+f[fV (@) Jy (@) Jy_y (ex) dx ] ¥ (x) dx.
1 0
Again applying the discontinuous integral (1), we obtain
t o N
12y g@®= fx"fl I(x)dx+ t"f{fV(a) Ty(a £) Ty_s(ax) dx} 1(x) dx
1 1 0 A

Putting
t

(13) f xv-1](x)dx=Q (¢) g
1

and assuming that

(19 Lim Q' (=0
{—>0oo

we have

(15)  -1i@®=Q(».

Substituting (13) and (15) in (12) we get
[0.0] a

16) g2(H=Q@)+1" f { fV(a) T, (af) Ty_i (ax)dx }xl"’ Q'(¥)dx
i ‘o

Putting
o0

an [ V@Jy @) Jy_; @) da=N (x, 1)
] _

equations (16) may be written as
e}

(18) gO=Q)+"| N.(x,)xv Q" (%) dx.
i
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Integrating by parts and making use of condition (14), we get
0

19 0=~ [[Neox-v] Q@ dx
1

Taking

(200 [N(x, ) x1-?]=K(x,?)
we finally obtain

a0
@) QW=g®+ [ K(x ) Q) dx
1

This is a set of Fredholm’s integral eqations of the second kind, which can
be reduced to a single equation of that type. Hence the problem is formally

solved.

Notice that for n=1, the problem reduces to Tranter’s case [6].
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ON GENERATING SETS OF INTEGERS
By
B. A. SALEEMI
R. H. TIRMIZI

Mathematics Department,
University of the Punjab, Lahore

The content of this aricle arose as a special case of general

investigation of the following problem : v
LetI ={1,2,3,...., N} and let G,,={g1, 825 - -+ +» &m}

be a set of positive distinct integers. Ifn e IN and n=¢€, g,+€ g+

v -}—e,;t L where ¢; € E={-1,0,1} then we say that »n admits an

E-representation with respect to Gy,.
What is the minimum value of m for which every member. of IN

admits an E- representation ?
§. 1. Set of Independent Integers.
' Here we prove an interesting result based on the following
definition. ’
Definition 1. A set G, of positive distinct integers is called a set
of independent integers if none of its members admlts an E-representa-
tion with respect to the set of its remaining members.
That sets of independent integers exist in abundance is obvious.

- Theorem 1. - The number of positive integers (distinct or coincident)
which admit E-representations with respect to the set G,, of independent
integers is equal to

16"-n. . S
Proof. LetD,={A1,A3, ...., \;} be one of the combinations of

4

r elements of G,,. Consider the expression = §j; Aj;, where each
| S i=1

§J; is either +1 or ~1 and each j; from 1 to r. The total number of
integers (positive as well as negative) which can be obtained by
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considering all possible permutations of the set {I, 2, ...., r} is

: r
clearlyequal to = 7C; It follows from the symmetry of the

i=0
expression

r
3 §Jj; AJj; that half of the integer so obtained will be positive.

== .
Hence the total number of positive integers M obtainable from all the
combination of r members of G, is given by '

M=} s mC, 3 'C; .. .o (1)

r=1 i=0

r .

Since 3 "C;=2", the equation (1) can be written as

i=0

Com

M=} s 27.nmC, . .. RN )]

r=1 )

m o .
Itis known that 3"=1+ = 2" ™C,, therefore the equation (2)
r=1

can be castin form
M=} (3’"—— 1), which completes the proof.

§ 2. Generating Sets.

Our solution of the problem posed in the beginning of this article
utilizes the concept of a generating set whose definition runs as
follows :

Definition 2. A well-ordered set G, ={g|, g2, ....., gm} Of distinct
positive integers is called a generating set of IN if it meets the

following requirements :

m
(i) = g=N, ie g;’sconstitutea partition of N.
_ i=1
(if) Everyn € IN admits E-representation with respect to Gp.
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Note 1. - Obviously for all N, IN

- does not possess a . generating
set. For instance IS has no geherating set. = ©
Note 2. If G,, is a generating set of IN such that its members

constitute a set of independent integers, then it is easy to verifx that
N<i@d"-1 [compare Theorem 1]
Theorem 2. . Let G, be a generating set of IN'i and let .n e IN .

Ifn < gy, then

t .
n= S T (l-¢) g
: i=1
Proof. Let
room '
N-n= 3 € g .. . .. )
i= .
m L 5
Since N= 3 g; it follows that
i=
m ‘
n= X (I1—¢p g;
1=
t m .
= 21 (I-€)gi+ = | (I-€¢)g; .. @

=
where each (1 —¢;) is either 0, 1 or 2.
Lets >t and (1-¢€) 0. Then n > g; which contradicts the
fact that G,, is well-ordered.
Hence we conclude that _
(1-¢)=0fori=¢4+1, 142, ....,m.
Thgrefore' o
n= tz‘, (t—¢) g .. N &)
i= .
Corollary. The first member of every generating set is unity.
The proof of this assertion follows from equation (5) for n=1 t=1.
Following result characterizes the generating sets.
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Theorem 3. Every well-ordered set Gn={l, €283 -viy Em} 4
with distinct members is a generating set if and only if

g < 2 t;: gi+1 for2<e<m.
=
| Proof.‘ Let G,, be avgenerating set of IN .
- 1 ‘
Suppose that gy < 2 - iil g;+1, does not hold fot ¢===s.
s—1

This implies that gg>2 3 gi+1
j==1

=
s—1 H
=2M+1, where M= p g
Ci=1
It follows that
s—1
&s— 2 & >M+l

1=
which implies that M+1 does not admit an E-representation with
respect to Gg.

Let gg=2M+1+K, K >0
Suppose M+1 admits an E-representation with respect to Gyyy.
Since gg+1 > g5, we may write
gs+1=8s+L, L>0
consider the equation
s—1 ‘
M+1)+gge1= = € git€g ot €org Bgrt o (6)

=
Since equation (6) is not valid for any of the admissible value of
€41, it follows that (M+1)+gg4y has no E-representation with
respect to Gy 1.
We may, therefore, conclude that in general

A
M4+ _21 g¢+; does not have an E-representation with respect

1=
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to. Gs Y 1 € A < m—s. Thisimplies that G,, is not a generating

set. This contradiction proves that
t—1
<2 3 gthL2<t<m
i=l1

Conversely we suppose that G,,={l, g2, ...., gn} is a well-
ordered set of distinct elements whose members satisfy
t—-1
g <2 3 gitlfor2 <t m.

I==
Clearly the sets {I, 2} and {l, 3} which correspond to t=2 are
generating sets. Suppose that this result holds for r=n. Now we shall
establish that the required result is valid for t=n+1.

n
~ Sincegn« <2 I g;+1, we may write g,,1=2N+14K, .. (7)
i=1 '

n
where N= 3 g;andK is fixed integer lying between 0 and N.
i=1

We now claim that Gn,; generates I3N 11-K

Since Gn is a generating set of IN , it follows that

n
N-J= 3 ¢g,where 0<J<N .. (8
i=
From (7) and (8) we get
1]

gnei= 3 G g=N+T-K+l | . )
1=

n
and gnyy+ .21 € g=3N-J-K+1 . .. (10)

l=

Giving different values to J in (9) and (10), we obtain the set
{N-K+1, N-K+2, ...., 3N-K+1}
Hence Gy, generates the set I3N—K e By mathematical

m
induction it follows that G,, is a generating set of Iy, where M= 3 lgi
i=
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Let Gu={l, g2 &» +++'r &m} “be a generating set. and let
G,={l, g5, ...., gn} be one of its subsets. Then such a subsét will be
called a primary subset of G . :

Theorem 4. Every primary subset of a generating set isalso a
generating set.

Proof. Let Gp be a prlmary subset of a generatmg set G,,..
Since G, is generating set it follows from theorem 3 that

t-1

gr<2 % gitlfor2<t<m
1= .

" For n < m, we have
Cot-1 ' o
i=1
Hence it follows from the converse of theorem 3 that G,. isa

generating set.



ON THE NUMBER OF GENERATING SETS
By: ; i
B. A. SALEEMI
R. H. TIRMIZI
Mathematics = Department,
University of the Punjab, Lahore
1. Introduction
The concept of a generating set of IN ={1, 2, ...., N} was

introduced in [1] and the following result was established.
Theorem. Every well-ordered set G,,={1, g2, &, -+ -+, 8m}> &~ &J
for i 54, is a generating set of IN , where

m
N=1+ = g; if and only if

1=

t—1
g;<2(.21 gi)+1, 2im. - 0]
1=
If G,, is a generating set of IN , then m will be called the order of

the generating set G,,. In the note we have proved a result which
gives the exact number of generating sets of IN of order m,

2. Number of Generating Sets
- Let N be a given positive integer. Then the total number of
generating sets of IN of order m will be denoted by A(N, m).

Theorem 1. - { m-2 ?
| N—-1- Z g
r\. L i=l I
8 m-1= N
2 m-—3 i m=2
2 2 g+l 2 2 gi+l gma=2 Z g+l

- Sm~1

AN, m)= D JE ) & o

. ’ g m-1
. &=2 g=gH+] gmo=gmatl Em.1=8m_2+1

m=2
(N+1-33 i)

g' _1=I ._..._L:__:}.___
m L 3
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Where [ ] is the bracket function and § is the Kronecker delta.
Proof: Let G,, be a generating set of ‘IN of order m, Then given

g1, 8 +.-+» &m-1, the last member g,,; is uniquely determined and is
given by
m—1 ,
gmzN-— . 21 gl . ‘e . (2)
1==

Assuming that the first m—2 members of G, are given, then
81 and g, will take all values satisfying the relations : o

m=2
gn-1tgmn=N- . g

i=

3)

_____A{__.__J

and gm_1 > gm2+1; gm 2 gm-1+1 J
From (1) we have
m—1
g < 2 _21 g+l

1=

which together with equation (2) gives
[ m=2 )
IN+1-3 2 g
Em-1> ][\——3—-’—=~L-JI L@
From well-orderedness of G;”,, we get » |

: m-=1
gmatl< gn=N~- .21 &
1=

which easily leads to
' ( m=2 3
| N-1- = g
i=1

|
gnot S lL 5 I . 5

Hence the allowable values of g, —; satisfy the following relations

m-—2
gma2tl Kgm-1<2 Z g+l . . (6)

1=
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m-=2 m—2
an 1= I 1= ,
L 3 ] <gn-1< ’L D) ﬁ @)

Since (6) and: (7) hold simultaneously and g, g7, ...., 8,7 are
fixed, it follows that the number of generating sets corresponding to the
variations of g,,—, and g,, is given by

r m=2
|
|

Em=1
, ®)
& m-1
Em-— -1 _’gm—-2+ 1
n—2
| N+1-3 = g ‘]
— | i=1 |
It is clear that the expression (8) is a function of g1, g3, ..., gm_2.
Since the remainin gg;’s satisfy
m~—j—1
- -1+l <gmj < 2 _21 g +1, 2<j < m=2,
1=
we conclude that the total number of generating sets A(N, m) is given by
: ,' m—2
[ -1- 3 &;
, ] i=1
A el R
2 m—3 m—2
22g,+1 23 gj-ll-l gm—1=2.21gi+1
i=1 = i=

) 8m-1
o £ m-1

g2=2 g=g+t1 gn= gm-S‘T'l &n-1=8m—2+1

(. m—2
‘ N+1-3 =g
' _ 1=
& m~1= L 3 J

Which is the required result. . . 9
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Ilustration ¢

To facilitate the understanding of the above result we write down
the full expression for m=:5.

3 -
I(N 1= 3 g,\,
. i=1
o= )
2 3
25 gitl g4=2 2 g+l
fe) ™

O . g4
A (N, 5)= Z > 2 §
84

82=2 gy=g+1 §4= ga+l

".3 _}
N+1—3 3 g
S =
1 3 J
, N-4 N-——S—
g4~[ 5 ga] g;4,_[ 5 gs]
T g4=2g+7 9  g4=283+9
L &4
= 6+ 5
84 4 4 g4
gs=3 g4=gy+1 g:=4 gi=g3+1
, N-8-13g, , [N—-ll—3g,
g4 3 ] g 4:~ 3
' N"‘7 v - \ ’ __[N-g
84—[—3—] 84—[-2—] 84=| ]
g4=13 g4=15 g4=17
< g4 \ g4 g4
= > 5+ 5+ 5
] g’4 ) g'4 84
=4 84=5 84=6
, _[N-17 , _[N—ZO] , _[M
e N I
, [N-10 , *[N—ll , _{;—_
4‘[ p) ] 4= p) ] g 4= 2 ]
g4=19 g4=21 g4=17

- -



, [N—IO , N-11 , _N-12
g4 19*—'-2 ] g :'2:_————2 ] 4 [‘—r]
84= 8s= 1 g4=23
8 84 < 84
PSS S
- g4 ,47 £ 4 - g's
, _[N-=26 , [N-29 , N-32
O R IS e B R
, N-13 , N-14
&4=| —5— g4=[—2—-]
84=25 g84=27
g4 O &4
+) &+ Z )
g's g
= . g4=]0

It is interesting to note that
() A (15,5 =1 and A (N,5=0 for

N 14,
@) N (121, 5)=1 and A (N, 5)=0 for N

122.

VA

3. Restricted Generating Sets

To investigate the behaviour of A (N, m) when some restrictions
are imposed on the member of G,,, we define the following :

Definition 1. A generating set G, of IN is called an even genera-
ting set if each g;, i % 1 is even.

Definition 2. A generating set G,, of IN is called on odd genera-
ting set if each g; is odd.

o Let- Ae(N,m) and A9(N, m) stand for the number of even and

odd generating sets 'of IN respactively.

Theorem 2.

N(N,m):/\(l‘lg—l,m—l) )



18

‘ Proof : ' - .
Let Gn={1, g2, & .., €n} b2 an even generating set of IN'
Then : _ )
gi=2h 2Lim .. - .. (10
m :
— N=2 3 A+l
i=2
m ,
N-1
- 3 h,=—2—. .. e .. (11

{hy, M3, .., h,,} is a generating set of IN_1*

2

obviously i,=1: Since G,, is a generating set, we have
t—1 -
g <2 z gi+1
1=
t—1
- 2 <4 X mt3
. f=
t—1
— hh<2 2 h+1+4.
iz
Utilizing -the bracket function, we get
t—1
h<2 X hi+l
. i=1" .
which proves that the set {2, hsy, .., k,} is a generating sct of

o1
)

It follows from equation (10) that there is a one-one correspondence
between the even generating sets of IN‘ of order m and the generating

sets of I of order (n—1). Hence we conclude that

N-1

2

/\E(N’ ’n):/\(N;]s fn"‘:'l)’, T ae E . (12)
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Theorem 3.
Ao(N, m)=A (”’+N,m),

where m+4 N is an even integer.

Proof :
Let G, be an odd generating set of IN . Then each
gi=2hl‘—l 1<l<m .e . (13)
m :
-~ 3 m="ER .. . .4
i=1

Using similar arguments to Theorem 2, it can easily be proved

that the set {hy, h;, .., h,} is a generating set of I N Further-
; 2

more it follows from equation (13) that there is a one-one correspondenee

between the odd generating sets of IN of order [m and the generating

sets of I of order m. Hence it follows that
m+N -
2
AON, m)=A ("’+N m) .. .. (15)
which proves our asszrtion.
Reference

1 Saleemi, B.A. and Tirmizi, R.H. ‘On generating sets of integers’;

P. U. Jour. Maths. 4, .... (1971).
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AN ELEMENTARY APPROACH TO PARTITION THEORY
BY
B.A. SALEEMI anp R.H. TIRMIZI
Mathematics Department
* University of the Punjab, Lahore
1. Notations :

For the sake of precision and conciseness we shall acopt the
following notations :

I P(N) =number of all the partition of N.
II PN, m) =npumber of partitions of N into m parts.
III P4(N, m) =number .of partitions of N into m distinct parts.

IV P<r’ S> (N, m)=number of partitions of N into s parts of the
form (ra,—s), where a;’s are positive integeis.

v p° (N, m) =number of partitions of N into m odd parts.
VI Pe(N, m) =number of partitions of N into m even parts.
VII Pd & O(N, m) =number of partitions of N into /m distinct and

odd parts.

VIIL p& ®(N, m) =pumber cf partitions of N into m distinct and
even parts. '

Pd&<r’s>(N,m)=number of partitions of N into m distinct

parts of the form (ra;—s). .

IX

2. Relation between unrestricted and restricted Partitions.
In this section we have established a refation between unrestricted
partitions and partitions into parts of the from (rai —s).

Let N be a positive integer and let Am={ay, a2, . . . , am} be a well-
ordered set of positive integers. Clearly P (N,m) is equal to the
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number of solutions of the diophantine equation.

aqgt+a+...4+a,=N

a; = N
i=1 E
Now let B, = { by, b2, ..., bm } be another well-ordered set of

or

I3

positive integers and let.
F : B,, — A,; be an order preserving bijective map defined by

a; = rb; =s @
werer > 1, s > oand rb; > s. Then we have the following '

Theorem 1.
P< s >(‘N, m) =‘P(N —t ms’ m )

N + ms, .
where ——:{7_——-— is some integer

Proof : We divide the proof of this theorem into two ‘parts
(I) We first put s=o and prove

P<" %> (N, m) = P (-I—:Lm )

Substituting s=0 in (2) and using (1) we get
b1+b2+b3+-...+bm=-1§_— e

But by hypothesis we have ‘ . .
ay+ar+ay+ ...+ ay, =N " @)
Since the number of solutlons of the dlophantmes (3) and (4) are

equal and number of solutions of 4 equals

P<r 0>(N m) we conclude that

p<’ 0>(N =P (N,m> - ‘(S)
(II) Now putting r=1:in (2) and using:(1) we: get :
by +ba by + ...+ b, =N+ ms , 6)

wereay + a2+ a3+ ...+ a, =N M
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Equality of number of solutions of (6) and (7) leads to the result

P<l’ §> (N, m) = P(N + ms, m) 8)
combining (5) and (8) we obtain )
P<r, 5> (N, ) =P(N —};ms’ m ) 9)

which is the required result.
<r,s> . . c e
Note : P (N ,m)=0 if (N+ms) is not divisible by r.
Corollary 1.

P(N,m) = P<1’O>(N, m)
Corollary 2.
PN, m) = P<PO> (N, m)
= P(;, m ) where N is even (10
Corollary 3. '
<2, 1> :

PO (N, m) = P (N, m)
== P(N;'_m, m) ‘where N+m is even (11)

-.Note.—It is obvious from (2) that if ,’s are distinct, then ai’s are
also distinct and hence with similar arguments we get

d& <r ' !
P <’9 s>(N,m)=Pd(NTms;m ) (12)

3. Unrestricted Partitions,
-In this section we have established a result which gives an exact
formula for P (N, m). We have given three independent proofs of the

following.
Theorem 2.
(.m=3 1)
i . | N— % a;|
[E N-ag | i=1 |
m J [ m-—l] L 3 J

( m-3 b
PN, m) = E e E | N+2-= Za;—3an-2 |

| i=

a=1 ar=aq, A2 =0qp 3 L 2
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Proof 1. Since A, is well-ordered, it follows that

ag > a;_1 for2Lt<m - (13)
"
Now 3 aizN
i=1
m—1 -
a,=N- 3 g : (14)
i=1
Hence (13) and (14) give
[ m—2 0
| N- 5 | (15)
' i=1° sl a >a
L2 JZ " m-17"m=-2
Similarly
( m-3
I N - ) 3 a; |
| = |
L 3 JZ7"m=-2="m-3
and hence, in general
e m—r—1 7
IN- s
,! i=1 i [ <4 , B
N r+1 JZ Yy = -1 (16)
If a, a2, ...,da,-, are assigned fixed values then it is clear that

to each allowable value of a,,~;, there corresponds a unique partition

of N. Equivalently the number of pariitions of N for fixed values: of
a;, Qi ..., dm-2 equals the number of allowable -values of a,_

satisfying condition (15). Hence for fixed valuesof ay. a2, . . ., am-3,

the number of partiticns of N is given by :

'(]7)
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Similarly for fixed values of ay, a2, ..., a,_3, the numbéer of
partitions corresponding to the admissible values of a,,,_, and a,,_, is

s m-=3
| N— = a |
L i=1 |
3 J .
( m—
E | e 'E a3 =34y \,
| =1
; Am-2=m_3 L 2—; )

Hence the total number of partitions of N into m parts correspond-
ing to the permissible values of all a,’s is given by

(
N1 [N RAT=LA
-a | i=
[ﬁ] [m—ll] L 3 J
O [ m—3 )
P (N, m)= E E 2 N+2— 3 g-3an, |
J

t
a=1l a,=a Amn=0m_s

which is the required result for m 2> 3.

Our second proof uses the following lemma.

Lemma : PN, 2) = []—;]

Proof : Clearly P (N, 2) is equal to the number of solutions of
the diophantine equation ' '
ay+a,=N 19)
since a; >a; >0, it follows that
[¥]zas
! which implies that P (N, 2) = 7] 4

This conforms to the result given in [3].
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Proof H :
We know from [2] that
P (n, k)y=P(n—-1, k= 1)+P (n-k, k),
or in general ;

P (n, k)=P(1—1, k=1)+P(n—1—k k—1)# ... [%] terms.

According to our notation, the last equation can be cast in the form
P(N, m)=P(N—-1,m-1)+P (N-1~-m,m—1)+P(N=-1-2m,m—1)

4. N terms (20)
[]

or

N
=]
s PWN4-@m—-D-—may, m—-1)
a =] o (21)
which determines the allowable values of a;.
To determine a,, we apply the above recursion formula to
P(N+(m—1)—may, m—1) to obtain
N-g
m—1
P(N+(m—-1)—ma, m—1)= s PN+(m-2)

a=m

P (N, m)=

—-(m-1) az——ma‘l‘, m-2).
To see this we note from the recursion formula (20) that there will

be [w{&;}})—-’—@l ] terms in the expression for P (N--(m—1)—may,

m—~1). Hence our a, will satisfy the relation:

[N+(m—-1)—-ma1
m—1

]>az >L : (22)

In order to allow repetitions and to introduce well orderedness in
the sets representing the required partitions, we may add (a;=1) to
both the bounds of a2 without altering the recursive character of
P(N 4 (m-1) ~ ma, m—1},
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Therefore from (22) we havée
,[NJF (m-1) "”“‘] =) >a >+ a-1

m=1
’I:iall.l}az >a1.
Thus
P(N+(m—1)—may, ni=1)
N—al
m—-1] ) ‘ ,
= b P(N4-(m—2)—(m—1)az—ay, m-2). (23)
azx=a;
Similarly
P (N+(@m—-2)—(m—-1)ag—a;, m—2)
N—(an+az)]
m—2 ;
2 y
== PN+ (m=3)—(m—2)az;— 3 a;m=3). (24
, .
a;=az
Substitution from (23) and (24) in (21) leads to
r 2
|IN= £ a |
N [N—al] | =1
[ m ] m—1 L m-2 J
P (N, m)= b5 b 3
: a;=1 ar=a, ay=az )
PN +m—3 - (m-2)a3— 21 a;, m=3) (26)
. i=
Repeated application of the above procedure, in general, gives theé
following ‘
(.3t 1
} | N- 2 g
N N—a,] 1 i=1
[—r;] m—1 U m=r+1
P (N, m)= 2 P (N4(m~r)
ay=1 a,=ai a,=a;—
r—1

—(m=-=r+a, - P ai,m-—r). (26)

=1 .
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putting r=m—2, equation (26) yields the following

( m—=3"
N—- ¥ al‘]
SN ISR
m m—1 L 3
PN,m)= = b e 3 .
a;=1 am=a . Upn—-2=0p-3
m-1
P(N+2‘3am—2 - ‘2 i a;,s 2)" (27)
. i—

Heiice by the preceding Lemma equation (27) gives
o m—=3
N- > a; ‘
Ee

m m—1 L 3 J

: o ? ) { m—3 1

P(N,m)= Z L i N+2- R | a; =3y, |
l=

=1 a=q © Gmp=ay-y 2 J

which completes the proof of theorm 2.

Proof Iil
Itis clear that the number of solutions of the diop_haﬁine equation
a +a+a+ ..+ a, =N ' (28)
is P.(N, m)
Then given ¢y, the number of solutions of
- .azr+a3+---+.am=N—-ax (29)

is P(N—a;, m—1). Since a; s are positive and are well-ordered it
follows that 1 ' S
N
1< <[;ﬁ ]

Equation (29) is equivalent to [%Iz—] equations which correspond to

different values of a;. Obviously the sum of the number of solutions
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of all these equations will be equal to the number of solutions of the
1 equation (28)

N

: m
P(N,m)= = P (N-a, m-1).

'al':]. ‘ (3])

This provides us with a recursion formula which is, of course,
different from the recursion formula given in [1].

§i The recursive character of this formula gix'es
( 2
A
Um=2 )
2 3
P(N- 2 a, m=2) == P(N- = 1az‘,m—3).
i=] . S =

a3=a

and hence in general

L“E{—r ;
r . N |
P(N- 3 a,m—r)= P(N—- 3 ai,m—r—1). (32)
i=1 ' i=1
ar+1=a,
r iterations of (31) yield
[ r=1 )

N N- az =l
[m—-l] m—r+l1
P (N, m) 2 2 2 P(N—- £1 a;, m—r). (33)
1=

a;=1 ay=a; ar=dr_1
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For r=m~2, expression (32) reduces to

( m—2
| N- 2 Ay,
i== |
72 J
m—-2 m-1
P(N- 3 4,2)= P(N- 5 a 1).
i=1 7 i=]
An_1=dani=3
([ m—2 )
[N—- = a; , ;
| i=
L 2
m-3 }
== 1. = {N+2— b a,-—3am.2
f i=1 l
aAm-_1=am-2 L 2 J

Hence for r=m—2, expression (33) becomes

) |
g e

-1
P =) )

a=1 a2=q am_2=am-3 | 2 J L

which establishes the theorem.

| N
Corollary 1. P(N) — 2 P (Nym) + [);—] + 1
m=3 ‘ :‘

The Corollary 1 may be used to compute the exact numbgr of
unrestricted partitions of a given integer N.
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Corollary 2.

In Theorem 1 we established

P< rs >(N, nl)=P(Nj-ms , m)

N-+ms
r

[N-l-ms] [ N-+-ms -rg ]
rm rim—1)

Substituting (

P<f, 5>

(N,m)=
- o
dlzl ay=da
m=3
N4ms—r 3 aq ‘
i:
L 3r J

)

s m ) for N in theorem 2 we get

N+ ms+r(2—~ '2 ai—3am_2

———

am.-_2=0dm_»
As special cases of corollary we have

Corollary 3.

—
PY (N, m)= \
a1=1 a2=a1
( m=3
{N=2 3 qg; |
| i=1
6
o ( m-3
2 N+4-2 3 aj—-6am_2
l r=1
dm—2=0dm—y 4

} (33
J

(36)
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Corollary 4.

N+m [N—;—m—2al1
[ 2mJ 2m—-1) |

— =
PO(N, m) = Z 2
a;=1 a,=ap
[ m=3
| N+m-2 3 a|
| i=1 |
L 6 J ,
o ( m=3 b
Z [N+m+4—2 = a,'—ﬁam_zll
| _ i=l
Am_y=am-3 L 4 .J

4. Distinct Partitions

In the following we shall be concerned with the number of partitions

of N into m distinct parts and prove the following :

Theorem 3.
[2N—m(m— I)J [2N-—(m—— (m—2)—24;
2m 2(m—1) :
d ~—
P (N, m) = z >
ol
alzl ﬂ2201+1
[ m-3
i 2ZN-6-2 3 a;|
| i=1 |
L 6 J
o ( - m=-3 ]
: 2N=-2-2 h a,‘—‘6ﬂm_2 |
L i i=1
am-—zzam—j«)‘f‘l I L : 4

where a;=0 fori O and also m > 2.

J.

€2
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Proof : Let An={a), ay, ..., am} bé a well-ordered set of positive
distinct intergers such that ' '

m
% a=N '\ (38)
i=1 ,
Since a; ‘s are distinct, we have
@ ag+ 1for2< e m 39
Writing (38) in the form
m—1
am=N~— b a;
i=1
and using (39) for 1=m, we get
[ m-—2 \
N-1- p a;
i=1 Sy Sam 2+ 1. (40)
L 2 J
Similarly
[ m-3
N-3-~ ) b a;
l§1 >am-y2am-3+1,

and hence, in general,

1 m—r—1
N-'C—(L;_i - 2 a4
i-1 | >ame>amsq+1. @l
- r-}—l _J

It follows from arguments sxmllar to those given in the proof 1
of Theorem- 2, that the number of dlstmct . partitions of N for fixed
values of ay, ay, ..., am_3, is equal to

[ m—3 ) : ,
| N-1- S ay—3am_2 iI ) (42)
i=1

2 J

m—r—1

S
rir+1)-2 z a |
Since i=1 | >am_r>amr_i+1, it

2(r+1) J
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follows that the total number of partitions of N into m
distinct parts is given by

[ZN—-m(m - 1)] [2N—(m— 1) (m—2)—%a1]

2m 2 (m-1)
—
Pd (N, n)= E
al=1 az-‘=al+l
{ m—3
IN-6-2 5 q
i=1
L 6
-3 .
2 {2N—2—-2 '21 a;—6am._, (43)
[==
any=am.3+1 4

which is the required result.

Coarollary 1.

0 PNy =[N
m(m+-1)

(@) P4(N,2) = O for N< 7.

Both these results are easily deducible from (43).
Note : Corollary 1 clearly shows that the diophantine equation
e mm+1), . . . p '
_ Zl a=N< 5 has no distinct solution in positive integers.
= : : ’
Deductions

From (12) we have

pd & <r, S>N, m) = Pd(N -1: ms m)

Substituting(N “i ms

) for N in (43) we get
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Corollary 2.

d&v<r,s~>

P (N, m)=
[2(N+ms)—- rm(m-— 1)] [2(N+ms)-—r(m— 1) (m—2)--2ra,]
i Zin ) 2r (m—1)
d1=i (Q’—'ﬂi-{-l
m=-3 3
V(Z(N+ms)—6r—2r ‘21 aj
I==
e
o ( m-3
I 2(N+ms)—=2r—2r 3 a;—6ram_2 | (44)
i=1
am_s=am-g+1 L 4r

Corollary. 3.

[N =b] [Mohened —20)

m—3
N-6-2 = ai

m—3
...... N-2-2 % “ai~ans (45)
i=
am_2=am_3+1 4
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Corol]ary 4,

N+m—-m(m—1) [N—{—m‘—(m—l) (m—2)—-2a,J
2m ] 2 (m=1)

Omy= E

a1=1 ‘ d2?01+1

m—3
N+m—-6-2 2 g , 4 )

i=1
L 6
™ ~ m-3
Ni+tm—-2-2 2 a;—6ans
i=1 (46)
am-2=am_s+1 L 4 .
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UNSTEADY EXPANSIONS OF A RELAXING GAS*
‘ BY \

KHOSH MOHAMMAD
Department of Mathematics,
University of Dacca

Abstract -—The structure of a centered rarefaction fan geaerated by impulsively
withdrawing a piston from a vibrationally relaxing gas is examined. Equations of
motion are solved in the neighbourhood of the crigin of the piston path in the time-
distance plane. Expansions are used in series in powers of the radial distance from
the origin, with coefficients depending on the transverse coordinate. The zero and
the first order solutions are given, and it is shown that the solutions are continuous -and
uniformly valid throughout the flow field, that is, the tajl of the fan does not develop
into a shock in the near-frozen region.

1. Introduction. .

Let us consider a medium of a single diatomic gas in which the
rotational mode is in equilibrium with the translational mode and the
only non-equilibrium effect which is present is that due to the vibrational
relaxation. A centered rarefaction wave or ‘fan’ bounded by a ‘head’
and a ‘tail’ is generated by withdrawing a piston with velocity Up (>0)
“from such a vibrafionally relaxing gas. In space x and time z coordi-
nates system the initial position of the piston is taken to be the origin.
The gas is at equilibrium at rest for ¢ << O and occupies the whole
-region x< O. For ¢>0, there are three distinct regions O, r-and. g
Fig. 1. _ , 4

In region o is the original undisturbed gas at given temperature,
.Too and pressure, Pog. Region ris the rarefaction fan in which the
gas is rapidly expanding. The extent of the fan depends on the condi-
tions in region o and the piston velocity Up. g is the region between
-the tail of the fan and the piston, which we call the ‘post-tail region’.

* The paper is. based on the work reported in author’s Ph,D. Thesis submitted to
Maiichester University in 1967. -
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The relaxation process is described by the linear equation

Ty =P (e—9) ' - )
where "D/Dr’ is the subtantive derivative foilowing a particle path, o
is the vibrational energy, ¢ its local equilibium value, p, the density
and 8= (T), a function of the translational temperatrue T only, is
the relaxation frequency. The quantity [p 171 has the dimension of
time and has been termed the relaxation time, = by many authors.

On the basis of the assumption that De/D¢ remains finite, it follows
that as -0, 0—g5, leading to the establishment of a local equilibrium
as a fluid element moves through the flow field. On the other hand,
when r— o0, Do/Dt—0O or ¢ remains constant. along a fluid element
irrespective of the value of (¢~ o), and the flow approaches the so called
frozen limit. :

It can be shown [e.g. Broer (1958)] that in flows with finite non-
zero relaxation time the characteristics of the equations of motion are
those determined by the frozen flow and any disturbance propagates
with the local frozen speed of sound @, defined by a.= (—O~p—) ,

i J R
p being the pressure and s being the entropy. Only when the relaxation
time is zero, the propagation speed is the equilibrium speed of sound

am(22)t

op S, =0

2

But the:development of the flow as r decreases from infinity to zero -is
not immediately obvious. As a result most of the works are confined
in predicting how this transition takes place along the wave head, and
hence these analyses are concerned with the propagation of weak
disturbances in an undisturbed region like o [Chu (1957) ; Jones ('1963)],
‘assuming 7 constant. Wood and Parker (1958) have studied this
problem in some gre'ater detail showing that the flow tends to become
isentropic at large times due to the decrease of the gradieats through
the wave ; they have also pointed out that the more quickly relaxing
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the gas is, the repid is the decay. These analyses do not throw much
light on the flow pattern in the neighbourhood of the tail.

From the characteristic solution of the present problem, Johan-
nesen (1965) suggested that a de-excitation shock develops at the tail
near the origin. Clarke (1964) considered a similar problem in which
the piston is not withdrawn impulsively but it is withdrawn with con-
tinuous monotonically increasing velocity. He found that no shock
wave formation takes place in the expansion region.

In the corresponding two-dimensional problem, Glass and Tokano
(1963) studied the structure of a Prandti-Meyer fanin a non-equilibrium
flow of dissociated oxygen around a corner. They found from their
characteristic solution that a recombination shock wave is generated at
the tail of the fan. The shock wave is strongest at the corner and
decays with increasing distance. Glass and Tokano’s analysis, how-
ever, contradicts their assumption that the vibrational excitation is in
equilibrium with the translational and the rotational modes and is
always at its ground state. They have taken the vibrational mode to be
frozen at the corner, while it is in equilibrium with the translational
mode elsewhere. This means that the vibrational energy is transferred
to the translational mode at an enormous rate. Again they have used
irrelevant boundary conditions. The same problem for an ideal, disso-
ciating gas was discussed before‘by Cleaver (1959) and (Appleton
1960), but neither of them discovered the existence of such a recombi-
nation shock at the tail.

In their experimental investigations with shock heated gases,
Holbeche and Woodley (1966) found that a ‘breakway’ of the observed
pressure variation from the computed profile occurs at the tail ; but
this happens when the flow is alrezsdy near equilibrium. They do
not think that this isa de-excitation- shock associated with the vibra-
tional relaxation. Recently Blythe (1969) has discussed the possibility
of shock formation both within and down stream of the fan.
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3. Equations of Motion

In formulating the equations of motion we have used the heat
sink analogy of Johannesen (1961) which gives the correspondence
between a real gas of variable specific heats and his o —gas of con-
stant specific heats to which heat is added at arate equal to that at
which energy is released by the vibrational mode of the real gas. P, p,
and T, having their usual meaning in gas dynamics, are the same for
both the real gas and the a—gas as these depend only on the trans-
lational mode which is in equilibrium. The sound speed a of the a —gas
is identical with the frozen sound speed of the real gas, but the entropy
s is a property only of the a —gas: it is related to P and p by the

equation

p=cp¥ exp {(s—s*)e.), 2)
where & and ¢y are respectively the ratio of the specific heats of the
o —gas and its specific heat at constant volume. Consequently these
are constants. s* is some reference value of s and C is a constant.

Following this ‘— Do/D¢" is a heat addition term and the equations
of motion are ‘ '

%&Lugﬂg; -0 3)
P 2o @
ot ©
PD—f:P'qa(o—?) | N - ©)
p=pRT ) 7

where R is the gas constant.
The harmonic oscillator expression for o is

zg, ,
* =7 (B~ 1] -
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& is given by [see Phinney (1964)]
sfag —(T/B.).cxp (~B (/B -1) )
where & @ is the value of @ at T=8,, B, being the

v
characteristic temperature of vibration of the gas, and

B=3.211 xlog, 10=7.394 (10)
Following Johannesen et al (1967), we take U=+/XH, as a

3/2
characteristic velocity, L=[R &,] ! / (Pog ® a, ) as a reference length

define the nondimensional variables each denoted by a circumflex by
the following equations :

L«
X—Lx, ="ﬁ—t

P A
P= POOP p=— U’ -p, T= @u

s——?%s e=R @v . , b= @@v@ Cy= ‘Rcv (A)
O u= Uu a=Ua
The double suffix ‘0O’ represents the constant values of the variables in
region o,
From equations (7'), (8'), (9°), we get

A A A -
=pT , )
o (’i‘):___._!.____, ' (8)
e /D 1]
& (D=T. exp. {~B (I-8-1)} ©
without loss of generality we may assume that
S$*=S,0=0 : (€3]

which is clearly compatible with the relations (A).

Noting that a2= (——a—‘”——)s ==—\—g£ and év (¥ — D=1, we deduce from

op
(2), (11) and (A), the following relations :
2¥
A a Y—-l A
P=(—.—) . exp (—5) : - (12)
do L
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p=poo (alaoe) ¥ ™ L. exp. (~3)
Henceforth we shall omit the use of circumflexes and all variables will
refer to nondimensional variables.
Introducing (A) in (5) and (6) we see that along the particle paths, C,
given by (dx/dt)=u, we have '

Ds 1 De ~
D: T D¢ (13a)
and Do — .

Again substituting relations (A) and (12), equations {3) and (4)
become respectively
2 {(2a ou es 3% \_
y—l(““L ) et a(Zrredr)=o.

i

ou 2a da a o5
A I Rl R A
By addmg and subtracting these, we see that there are two sets of

characteristics C and C_ such that

du 2 (da _I(ds __vy-1 Do . ..
(G) s 2omilar) e 7y (a) o= 75 (3¢, )

.t d . ® =N
where ( a )i._?t—-}(uia) T

These show that any disturbance in thé flow field propagaté with the
speed a, thus confirming aur ‘earlier comment that for' non-zero finite
sound speed is that determined by the frozen flow.

The fan is formed by the family of the C_ characteristics all originat«
ing from the origin. Thus the head which moves into the undisturbed
gas at rest in region o, has equation

X= = a0l (14)
The head is therefore a straight line for all values of ¢

* The upper signs correspond to equation (13c), while the lower signs correspond
to equatlon (13d). .
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4, Solutions by the Method of Series Expansions.
To describe the state of meotion in the neighbourhood of the origin,
O, we introduce new independent variables R and ¢ defined by
x=R cos ¢
t=R sin ¢
so that R and ¢ are the polar coordinates in the x~—¢ plane with the
positive direction of the X — axis as the initial line,
Following the solution of a corresponding flow problem for the
case of a non-relaxing gas, we assume series -expansions for u, a, s and o
of the form ' :

(o8]
up= 3 ukn(4) R®
n=o

8}
ap 3 apn(g) RP (15)

R¥0

Sk= 32 Skq(9) R"

ork= 3 o@okn(g) R"
n=og
where the suffix & has been used to denote the values of the respective
variables in region k ; so k=0, r or g.
Tk, pr, pr are then obtained by iterating these upon relations
Tr=a?y/y and (12). Hence.

Tro=ay, [<¢; Te1=2ak, arl/¥ (16)

2 N
: —Z— =50
=1 2
PEO=P.0 (ar0/a00) ¥ e ;Pk1=PkO(Y_lakl/akO"Skl) (17

8RO

~=0 ~ 2 '
pko=(ako/aoo)(Y Je ; pk1=pko(Y:‘_/1ak1/ako—sm) (18
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~B (T3 -1
sro=Tioe ° ko )»; ¢k1=(1+BT‘”3 13). (®ko/Tx0)- Tat - (19)
- 1/T; -1
0A0=[e/ ¥0_1) ;°k1~(0ko/Tzo) / k0, 1y, (20)
Also letting
Fr=p; @k (05— 01) , D

we have \

F10 = pro €10 (10 — 930) (22)

Fry = (P10 ®41 + Pki ®k0) (9k0— 9k0) + PRO 2kO (oh1 — oky)
4.1. Equations in (R, §) Coordinates

Recasting equations (13a) — (13d) in (R, O) coordinates, we have
respectively,

[cos § —ur, sin 9] 8sk + R [sin g +4up cos g] aSk_ = - g: R (23q)
[cos 3 —up sin 0]— +4- R [sin ¢ -+up cos 9]~ ~ =FrR (23b)

[cos 8 — (urtar) sin g][ = (k+y2ak1)$ i\l} .aa%,]

", 2 2ap, ar oSk
+ R[sm 6 + (urtar) cos HJ[aR (uk + 1) F v ’ﬁ(}

- :4:-(1‘7]?& R @3¢, d)
Substituting (15) in equations (23a4)—(23d) and equating the co-
efficients of like powers of R from both sides, there result the following
systems of equations : |
Zero Order Equations
(cos § — ur@ sin 9] 6',o=0 ‘ . (240)
[cos § — upQ sin 6] s'Lo=0 ‘ (24d)

[cos 6 — (uro-targ) sin ¢ ][ ko j—_

ako+—~sxeo] o,
(24c d)

2
-1

where primes denote differentiation with respect to g, that is / =4, k=
o, rorg.
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First Order Equations
[cos @ — uro sin §lo'k1+[sing +uko cOS §] or1—uk; sin g ¢’rg=Frg

(25a)
[cos § — urp sin §1s'ky +[sin § +uro cos§] sky— Uk Sin § $'ko=Fro/Tro
' (25b)
’ _ , —a ,
[cos 8 —(urp tarp) sin 0] [u’m + i/a kll F _t_n;o SRy F % s'kO ]
. 2 — aro ]
— ’ [ =M 5 O
(ury ary) sin 4 [ u'r0 iY—l RO+ Sk

. 2 - =1
+[sin g +(ukoiako) cos 4] [ukl =+ i %Q*Skx] =7 (\i—-)Fko

k =o, rorg.
4.2, Solutions in region o.

Since in this region the gas remains undisturbed for allt > O,
%0, 400, G00, So are constants and are given by w,0==500=0, g0 =

(¥ To0):, ooo=[exp (1/Too)—1] "1 (26a)
and ‘
uon:aon=00n=son:0 forall n > 1. (2617)
4.3. Boundaries and Boundary Conditions for effecting solutions in regions
r and g.
The head of thefan is a straight line and isrecognised by
=0y (—a00) (@0) )

independently of R [from (14)].
The flow 'quantities are continuous across the head. Hence from

(262) and (26b),
uro(GH)=Sro(QH)=O, a0 (0 H)=£700 =(y TDO)%: Oro (GH):
" [exp(l/T,0)— 11! | (284)
and
Upn (§p) =9 (0H)=0 (0H)=S;,. (O=0;n>1 (28b)
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The piston path is also a straight line and has equation

6 =0p=Cot"I(up) 29

Thus
ugg (0P)=MP, (30)
Ugn (0P)=O, forn > 1.
The tail, that is, the last minus characteristic of the fan is not a
straight line. Let us assume that the tail is given by

0=07=80+6R+ . ...
Then since the siope of the tail is (%;i) =U, (9T,-R) a, (ﬂ,r, R), 9,1. will

satisfy the equation
dfr _
({48 R) =@ (0.2 R)} cot g + 1] R o= cot 6.0 —{ur(0 R) — g

(6pR)} , 62
Substituting (15) and (31)m (32) and making use -of Taylor series €x-
pansions, we obtain, .
So=cot" [4p0(t0) —a:0 (§0)] (33a)
1= —[up1 [§0) —arp (§0)] sin? &g (33b)
Noting that the quantity :

Ck=uk+%, k=o,ror g 34)

remains constant and continuous throughout the flow field in the corres-
ponding flow problem for a non-relaxing gas. We assume that {, ¢ and s
will remain continuous across the tail at least upto the first order. That is,
ér (GT ’ R)Zgg (OT ’ R) > Or (gT ’ R)zog (0T1R); ST(BT » R)

or iterating (15) and (31) on these,

ro (§0)=8g0 (§0) ; o0 (§o)=0g0 (§4) ; Syo ()= Sgo (60) ..(350)

En (To)+ v (E0) §1 = Ca1(60) + L'g0 (£0)- §1 3 o1 (Fo) + °r0 (50) b1
=0g1 (§o)+o’ go (80). 813

Srl (ga) +8'r (50)‘ SI—Sgl (50)‘*‘5 g0 (E o)~.81 (35b)
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- The solutions obtained on the basis of conditions (35) will be

uniformly valid provided the tail of the fan and the first C_ characteristic
of region g are concident lines to a first order of approximations. This

is true if
uy (aT s R)y—a, (a,r » R)=u, (aT , R)—a, (0,1. » R)
upto first order : that is, if
%0 (§0) — @0 (E0)=ug0(E0) — 750 (€0)
ur1 (§0) = ar1(§0)+{u'ro(€0) — @' 1o(80)]. §1=[ttg1 (E0) —ag1 (€0)] + ['go (£0)
—a'g0 (£0)]- &1 (3€b)
4.4 Solutions of the Zero Order Equation.

Since (cos g —urg sin §) is non-zero, except at the piston, solutions
of equations (24a) and (24b), satisfying the conditions (284) and (354) are

(36a)

6,0 = og0 = constant = [exp. (1/To0)= 1] 37
50 = 50 = constant = 59 = O (38)
Equations (24¢) and (24d) now reduce respectively to

[cos ¢ — (uro+aro) sin al[u'ko + Y%- 1a’ko].—_—o (24¢)
[cds 9 — (uro—arp) sin 0][u'ko —"{2__ la’ko].:o; krorg. (244)

Their solutions appropriate to the region r which is a centered rare-
faction fan fcrmed by the minus characteristics are

24,0

> 1 = CTO = constant_ :::i—a—igi [from (28a)]

UurQ +

and 4,9 — ayg = cotg
that is,

(q00+c0t §) (39)

doe 2

2 y—1
a0 =;;;:‘1(ﬂoo — —5—cot 9) : (40)
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solutions of (24c) and (24d) appropriate to region g subject to the
conditions (30) and (35a), namely, ugo (4p) = up o

)

and £go (§:0) = &0 (60) = \—”_91 are
ugo = censtant = up , (41)
a;o = constant = avo—-\‘/z_ 1 up - (42)

To make the solutions uniformly valid, we have to take
40 () = up and a,0(f0) = 250 |
whence from (33a) and (42),
fo=cot~! [up—-ago]:cot"[Y up — Qoo] (43)

The exclusion of cavitation that is, the exclusion of the sitnation in
which a,0O leads to the restriction
up<Z29. [from (42)] (44)

Thus the zero order solutions are just the same as those for a
centered rarefaction wave in a non-relaxing gas of constant heat
capacity ratio <. The flow field is, therefore, frozen at the origin.
4.5 Solutions of the First Order Equations

Using the zero order solutions, the sclutions of equations (25a),
(25b), (25¢) in region r satisfying the boundary conditions (285) can be
given respectively as '

6, = agg sinia. . Xy (6) (44)
2N
s"l:aro sin 4 Y; (9) : (45)
2 a, N .
G=un + 5 = s +a sin 0.2, (9) - (46)
where
IN= (v+D/i(y-1), ' @7
]
X1 (8) = — fa,,o_(2N+l) F,o0 (9) cosec? ¢ 4 0 (44a)

fn




49

0 o
Y: (6)= Yf aro_(2N+3) Fro0 (6) cosec? ¢ d ¢ (459)
Ou
. 4 :
Z(6)= —f a,-o— N[(m%)ang, ) — YT’—la:é F,()]cosec2 6deg
01 (46a)
Again using the zero order solutions, (254) reduces to .
¥ +3 ap_ Y-Hparo Sr1/Y— ! FrO sin §)=hy1 (SaY)

31T ST T3y
whence from (46) and (48),

3
try = 4—(\{—;1—)[‘3" * Il “
(y=DBy-D[ ¥+5 , _
o =G LR 55T tnmin] (59

- In region g, the zero order solutions have constant values Hence
the solutions of equations (25a) —(25d) can be given as

og1 =Fg0 sin ¢ [t +A; (QOt 8 — up)] (1)
sg1 =—(Fy0/T;0) sin 6 [1 +A, (cot § —up)] (52)
Eg1=tig( + ag11 |

F .
=0 5o~ (% - DI sin g [1-+A3 {cot 0~ (p-+agol] ()
2 v
ugl_?"_%z - af{osgl-l-(\(— 1) Ossin g[1 +A4{cot 0 —(up—ag0)}] (54
Where Aq, Ay, A;, Ay are constants of integration.
From (52), (53), (54) we have

-1 .
Ug =-— 12— . fgg(()) [(A3—Ay) (cot 6 ~up)—(A3+Adayolsing  (55)

-1 ' F
g1 =l7_[ %0 (— —TE% )] - {14A;z (cot g —up)}

—(Y"' Fgo {1 ' A3+A4 (Cot g — llp)"' et ,2ﬁ ago}] Sin [} (56)
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Since org, Skos Cko (k=r or g) are constants throughout the flow
field, the conditions (35b) reduce to

Og1 (ga)=0r1 (So), Sg1 (50)=-’S1-1 (60)’ Egl (go)=§r1 (So) (35b)
Hence, using cot §,=up—ay0, these give

Ay=[1~041 (£0)/(Fgo sin §,)l/ag0 (57a)
A2=[14+Tgo 511 (o)/ Fgo sin §,)l/az0 (575)

As=[14+{lr (o) =L~ Sn(So)} ago/{(¥=1) Fgo sin Eo}]/(Qago) (57¢)

where

51 (60) = =20 [1 - Az agol sin o (58)
Te0 T
Again on the piston path we have ugn (6p =0, n>1. '

Therefore, from (55), : )
Ag=— A, (57d)
Thus Ay, A,, Ay, Ay are determined from the relations (57) and the

first order solutions are specified in region g.
Making use of the zero order solutions and the expression for §;,

we see from (365) that the solutions will be uniformly valid to a first
order of approximation, provided we have,
ugt (€0) —ag1 o) =2[u,1 (C0)—ap1 (€] (59)

which can easily be seen to be satisfied from the following relations :

1 (60) + 27 a1 €)=ty (€ — 2 0 (60)
3\:; > Urq (EO)"—’“Z— ar1 (€o) -—"__'(ugl (60) agl (80)]
(605)

[obtained from (48) and (54)]
5. Results and Discussions :
The solutions given above are analytic except that there are three

integrals X, Y, Z; which are evaluated numerically. The presence of
- —~1/3~ 1 -1
the factors e B(Tro™!/°—1) and [ (e Tpo _ 1) ea,o] in F,o in the

integrand of each of these integrands makes it impassible to give
analytic expressions for them,
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We obtained solutions for various values of Up and Top. The first

order terms for entropy and sound speed, that is sk; and apy (k=r or g)
are positive throughout, except at the head of the fan where these
are identically zero. Hence temperature, pressure and density at points
near the origin have higher values than their counterparts in the non-
relaxing simplé wave. This is ewing to the transfer of energy from the
vibrational to the translational mode corresponding to the negative

. . n
~ opg everywhere. These effects are maximum to the line ¢ =

It is seen that for a given T;o and hence for a fixed position of
the head, the solutions have identical values. at common points in. the. .

fan for all Up and the higher the values of Uup is, the more to the right

is the tail of the far, * Hence the béhaviour of the tail does not
happen to be the same for all cases. ‘For example, in cases (i) uP--——-4,~ -

that is, the tail is initially accelarated, while in cases (iv) uP=1, Too=1;

o) uy=1, Too=2, (i)up=1, Too=0.5, §; > O, showing that the tail

IS mltta]ly decelerated due to the relaxation effects.

The solutions are umformly valid throughout the whole flow field
and the tail remains to be a C_—Characteristic, that is, the tail does not
develop into a shock at least to a first order of approximatioi. :

In order to provide a means of justifying the merits of the present
analysis, the problem was also solved by the method of characteristics
folowing the techniques of Johanneser, Bird and Zienkiewicz (1967).
. Forthe purpose of comparrson of the numerical results given by the

- two methods; a number of points on individual particle paths as de-
termined by the methods of characteristics were chosen and the values
of different flow variables, namely, u, p, T and ¢ were then com-
puted by the method of series expansions. It is seen that the agree-
mient betweet the two sets of solutions are remarkably close. Although
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the series solutions are, strictly speaking, valid for R < 1, it can be seen
that these solutions are in excellent agreement with the characteristic
solutions for larger values of R, even for R = 30 for uP=1 and Too=0.5

(see Table I).
: TABLE 1

COMPARISON WITH CHARACTERISTIC SOLUTIONS

A
up=1
A
ToO=o0.5
Methods x : St u p iy —
Seties 0.124897 0.808839 0.470605 0.156474
———————| 0.147690 0.215063
Charac. " | 0.124896 | 0.808838 0.470604 0.156474
Series 0.374894 | o.518421 0.414507 0.156226
~——————— o0.121819 0.314944
Chatrac. 0.374848 0,518421 .0.414507 0.156227
Series 0.499878 0.410453 | 0.387795 0.156073
———— 0.0911157 | ©.384772 :
Charac. 0.499878 0.410452 0.387795 0.156075
Series 0.750003 0.250991 0.337032 0.155784
~——————— 0,370858 0.586646 - :
Charac. 0.75002 0.250990 0.337031 0.155788
Series . 1.00018 0.147881 0.289813 | o0.155563
————— 0.335450 | ©0.923412 -
Charac. 1,00018 0.147880 0.289811 0.155568
Series ’ 1.00018 0.148104 0.290116 0.154939
1.83482 2.42251 - .
Charac. 1.00017 0.148101 0.290112 0.154947
Series. . 1.00018 0.148699 0.290924 0,153275
———— ' 5.83316" 6.42018 : R A
Charac. 1.00016 | 0:148679 | . ©0.290908 0.153291
Seties :1,00018 . 0,149665 ' 0.292238 | 0,1505710
——— 12,3306 12,9166 - —
Charac. - 1.0001% 0.149588 | ©0.292181 o.150610
Seties - o .00018 | o0.151002 o,‘294057 © 0.1480625
———— 2I.3272 21,9119 S
Charac. ) 1.00013 | 0.150787 0.293904 0.146922
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The series solutions are analytic, and for smaller values of R,
these will therefore given more accurate results than those given by the
method of charaeteristics. . Hence the method of series expansions
establishes that the solutions are continuous near the origin and the
tail .does not develop into a shock at least to a first order of approxi-
mation.

I would like to express my sincere thanks to Prof. N.H. Johannesen,
Dr. I.M. Hall and Dr. B.S.H. Rarity of Manchester University for
their invaluable suggestions and help.
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| GEOMETRICAL INTERPRETATION OF LAGRANGE
MULTIPLIERS IN MECHANICS
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I. INTRODUCTION : ; _

It has been asserted by Gaskill and Arenstein! that Lagrange multi-
pliers can be given a geometrical interpretation. To substantiate their
viewpoint, they have made use of the concepts of differentiable mani-
folds and their tangent bundles. Both of their articles (almost identical
in content) contain conceptual errors some of which are listed below :

(@) No distinction has been made between the generalized
co-ordinates and the configuration space co-ordinates of a physical system.
For example, the constraints on a system could be regarded as hypersur-
faces (surfaces when the configuration space is the Euclidean space of
dimension 3) in the configuration space but they are not, in general, so in
the space of generalized co-ordinates.

(b) Concepts of differentiable manifold3 and tangent bundie4 have not
been used in their proper sense. For instance, if M is a smooth manifold
of dimenéion n, then its tangent bundle, usually denoted by T(M), is also
a differentiable manifold of dimension 2n. Moreover, if (p, X) € T(M),

then (xy, x5, .., xn; )::1, 5:2, ces .;Cn) can be taken as the co-ordinates of
(p, X) via the coordinates (xy, X, .., Xn) in a neighbourhood of p in M,
where <.’ denotes differentiation with respect to some appropriate
parameter t. Hence if the position of a physical system at time ¢=1,is

specified by (xy, X3, .., xn). then .x:1 | tety’ )}2 | s s xn ] 1=t will

tztu
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be the components of its velocity ; and in this sense, T(M) may be
regarded as the phase space of the system. It may, however, be
mentioned that in Refs. 1, 2, the tangent bundle of a manifold is confused
with a vector space which neither conforms to its standard use nor is
justifiable. ,

(¢) The assumption that the intersection of two or more hypersurfaces
is also a hypersurface is, in general, not valid. For example, if

Sp={(x1, x3, .., Xn): @p (X1, X2y .., Xn)=0}, r=1,2, .., k,

are k<<n hypersufaces in the Euclidean space Ey, then

k
S= N S={(1 %2 .., Xp):
r=1 ) o
Q1 (x1, X2, « > Xn)=0, 9, (X1, X2, .., Xn)=0, @n (x;, X3, .., Xn)=0}
will also be a hyper-surface of codimension & if
k,
() S= n S, is non-empty ;

r=

(ii) -the rank of the Jacobian matrix

(8o 8oy = ow)
ox; oxy 7T 9xy
002 692 092
lox1 ¢x; T 9xa |
L ax1 axz ...... aan B
is k at all points of S. The requirement (ii) implies that the vectors
AVATH v ) YR , V¢, are linearly independent. No such requirements

are mentioned in the articles cited above.
~ (d) The concept of an ‘eigenvalue’ is not in consonance with its accepted
definition. :
(e) No geometrical interpretation of .Lagrange multipliers has been
given except that they appear as multipliers of vectors in forming a linear
combination. '
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Because of the aforementioned points, many of the arguments in Refs.
1 and 2, are either ambiguous or fallacious. The purpose of this article
18- two-fold: (i) To give geometrical interpretation of the virtual work ;
(ii) To explain the geometrical significance of Lagrange multipliers. To
achieve this, we shall use the following :
Normal Bundle. Let S be a hypersurface in E, of codimension k. Let
Tp (S) be its tangent space at a point p € S. The orthogonal complement
Np (S) of Tp (S) with respect to Ey at p is of dimension k& which is the
vector space of normals to S at p. Set

N(S)={(p,v): peSand veNyp (S)}.

Then N(S) can be given a differentiable structure and hence can be converted
into a differentiable manifold. The differentiable manifold N (S) is of
dimension # and is called the normal bundle of S in Ej.

2. GEOMETRICAL INTERPRETATION OF VIRTUAL WORK
AND LAGRANGE MULTIPLIERS

Consider a physicdl system consisting of m particles. In case the
system is unconstrained; its configuration can be specified by 3m=n, say,
coordinates xj, xp, .., xp. Let there be k& < n, holonomic constraints
on the system given by

Sp={(x1> X2, +» Xn) 1 @p (X1, X2, .., Xp, D=0}, r=1,2, .., k. ¢))
These constraints shall be consistent if
k

() S= n S, is non-empty ;

r=
(if) the matrix

(001 991 091 )
ol RN o
R TIERN -
. . . ¥)
ok 0% )]
Lox; ex2 "7 9xn)
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has rank & at all points of .S, where S represents the surface
@ (X1, X2, .5 Xn, 1)=0.
In view of these consistency conditons, S is a differentiable manifold
which may be called the state-manifold® of the system. Let T (Sy), T (S,),

cea s T(SH) be the tangent bundles of the surfaces Sy, S2, .., S; respec-
tively. Then the tangent bundle 7 (S) of § is given by :

TOO=TES)NTSHIN ... - NT(Sp)- 3)
Hence 7°(S) may be regarded as the phase space of the consrtained system.
+ Moreover, if N (S;), r=1, 2...., k are the normal bundles of §,, r=1,
2, ...., kand N (S) is the normal bundle of S in E,;, then
N(S,) EN(), r=1,2,.., k. “)
Let pe Sand let Vo, Vo2, ...... , Vo, be the gradient vectors
(which are, of course, along the normals to S, S, .. .., S} at p) of the
constraining surfaces at p. Then, by consistency condition (i), the
VECOIs V@, V92, -, , V¢ are linearly independent and hence span
the normal vector space to § at p. Since ¥/ ¢ is along the normal to
S, it follows that

Vo= VO +r2 Ve2i-...... +ry VO (5)
where g, 12, ... , by are parameters which vary from point to point
on S. It follows from the definition of N (S) that (p, Vo) € N(S).

Let us suppose that F be the resultant applied force on the system.
Then the holonomically constrained system will be in static equilibrium if
and only if the resultant force on the systemis zero. But the only forces
acting on the system are F and the reaction of the surface S§. Since at the
point of equilibrium, the reaction of § is directed along the normalto S at
that point, it follows that the reaction is equal to A Ve¢. Hence
for a static equilibrium of the system

F+ A vo=0. (6)

It is evident from equation (6) that F is also along the normal to S whose
sense is opposite to that of A Ve.
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Let the system be given instantaneous infinitesimal displacement {R
consistent with the constraints. Then £R lies in the tangent vector space
of S. Since F is along the normal to S at the point of equilibrium, it follows

F.{R=0. Q)
That is, the virtual work is zero. This affords us a geometrical description
of the virtual work which appears more logical than the hitherto known

explanations.
Combining equations (5) and (6), we get
Fe=—/A Vo=~ A[# Votup2 Vo2 +...... +HE V4]
=X Vo+2A2 Vo+...... +Ar Vo (8)
where »
A.r:—/\ I‘Lr’ r=1, 2, ...... ,k.
If the system is partially conserved, then we may write
F=~vY V+Fn.. 9)
Hence it follows from the Lagrange formulation® that
n d (BL aL] . k
(=)= é—Fne— 3 A VO,=0, (10)
=1 [dt axi) ox;) ne o r V9r
which shows that A, As ...... , A; are the Lagrange multipliers.
However, it follows from equation (5) that if g1, 42, ...... , dn—p are the

coordinates of p on S, then gy, g2, ..., gn_z; A1, A2, .., Ay, are the coordi-.
nates of (p, V@) in X (S). Thus Lagrange multipliers together with
the coordinates on S, can be used to coordinatize the points of N ().
Therefore, geometrically Lagrange multipliers could be regarded as the
coordinates of those points (p, v) of N (S) for which v=<¢. Note that
this interpretation is very different from the one asserted in Refs. 1, 2.
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ABSOLUTE CONVEXITY IN THE FREE NILPOTENT GROUP
~ OFCLASS3ON2 GENERATORS
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1. Introduction :

If a group G has a full order (for the sake of convenience we shall
simply say ‘“‘order”) relation, <, such that for each a,b,c e G ifa < b
then both-ac < bc and ca < ¢b, we say that G is an ordered group and
that < is an order on G. If Gis ordered by < and Cis a, non-empty
subset of G such that when a, b € C, then all x (¢ G) -between a and b are
also in C, we say that C is convex in G with respeect to < or simply
that C is convex. Furthermore if C is convex in G in every order on G
then we say that C is absolutely convex in-G. ’

~ Vinogradov [5] has proved that the centre of the free nilpotent group
of class 2 on 2 generators is absolutely convex. Moreover Teh [4] has
shown that the set of all orders on an abelian group of finite rank can be
constructed in terms of the natural order on the set of real numbers in the
following way.

Suppose that A is a torsion free abelian group (note that if A is not
torsion free then the set of all orders on A is the empty set) generated
by ay, ay...., a. The set of all orders on A may be described as :

An element x =a11’ t af 2. ... af" (p; are integers) of A is positive if,

and only if]

; SAup Fappt.o... + A1r pr >0, o
Ov Aipi+ .- ooootMppr=0butdy py+ ...+ Agppp >0,
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Or aupr+ ... FAplr=. ., =011 Pt + - oo+ Apotyp £r=0
| butdripr+ ...+ A pr >0
where > is the natural order on the set of. real numbers and A;j
Gj=12...... , r) are some real numbers subject to the condition that
M1 M2 e enn Agr
A = Aoy Az ... A2y 0.

....................

....................

Arl Ara Arr

In this paper we will show that both centres of the free nilpotent group
of class 3 on 2 generators are absolutely convex. Moreover we will
construct the set of all orders on this group.

II. Results.

It is wetl known (See Neumann [3], that all free groups are ordered
groups. We now consider the free nilpotent group F of class 3 generated
by a, b such that [b, al=c¢, [c, al=d, (c, b)=e. By definition d, e, com-
mute with all g, b, ¢, d, e. Thus by straightforward calculation we have

a™n c™ an = c¢m dmn,
b_ﬂ cm b’l e cm emﬂ’
and a—ﬂ bm an p— bm cmﬂ dimﬂ("—l) e%ﬂm(”“—l)
for all integral values of m, n. Now by the repeated application of these
formulae every element f of F can be expressed uniquely as
f = abl bb2 b3 Jbs obs,
where p; are integers.

Denoting the members of the upper central series of F by Z; and Z,

we have
Z, =<d,e> and Z, = <c¢, d, e>.
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The following results will be needed in the sequel.

If x is an element of a group G then I (x) will denote the intersection

of all the normal isolated subgroups of G containing the element x. It
may be pointed out that a nilpotent group can be ordered if, and only

if, it is torsion free.

Result 1 (Kibriya [3]) A subgroup C of an ordered nilpotent group
G is absolutely convex in G if, and only if C is a member of the upper
central series of G, say C=Z; for some positive integer i, and I (x) 2 C for
all xe€ Zi+1\Z‘~.

Result 2 (Kibriya[l]) If the rank of the centre of an ordered nilpotent
group is 1 then the centre is absolutely convex.

Result 3 (Kibriya [2] ). If H is an absolutely convex normal subgroup
of an ordered group G and K is a subgroup of G such that K D H,
then K is absolutely convex in G if, and only if, K/H is absolutely convex
in G/H.

Theorem 1. If F is the free nilpotent group of class 3 generated by
a, b then Z; and Z, are both absolutely convex in F.

Proof : Any element x of Z,\ Z, can be expressed as
= cl dm eﬂ
where I, m, n are integers. Now consider I(x).
By definitiin x and g—! x g (for all g € F) are elements of I(x). Thus

alxa=al[cdd™e)a= cct d" en]d' = xd' € I (x) ; in other words
d!' €1 (x), so that d € T (x).

Similarly 5~1 x a=x &' € I (x), consequently e € I (x).

Thus I (x) D < d, e> = Z;. Hence by Result 1, Z, is absolutely convex
in F.

Clearly the rank of the factor group Z,/Z; is 1 and it is the centre of
the torsion free nilpotent group F/Z;, so that by Result 2, Z»/Z; is
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absolutely convex in F/Z;. "Hence by Result 3; Z, must be absolutely
convex in F.

Theorem 2. If F is the free nilpotent group of class 3 on 2 generators
then the set of all orders on F may be described in terms of the natural
order on the set of all real numbers.

Proof :  Suppose that F.is the free nilpotent group of class 3 on 2 genera-
tors and Z;, Z, are the members of its upper central series. -

By definition Z;, Z,/Z; and F/22 are abelian torsion free groups of
finite rank, thus by Teh [4] the set of all orders on them can be described.
Moreover Z, is absolutely convex in F, therefore every order on F induces
an order on F/Z, and conversely every: order onF /Z, can be refined to an
order on F. Similarly since Z, is absolutely convex in F and therefore in
Z,, every order on Z, induces an order on Z,/Z, and conversely. Hence
the set of all orders on F can be described as :

An element f of F is positive if, and only if, f € F\Z, and f Z, is
positive in some order on F/Z, or f € Zy\ Z; and f Z, is positive in some
order on Z,/Z; or f € Zy and f is positive in an order on Z,.

Corollary.' If F is the free nilpotent group of class 2 on 2 generators
then the set of all orders on F may be described in terms of natural order

on the set of all real numbers.

THE Proor 1s OBVIOUS.

21st March, 1971.
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A NOTE ON TWO GENERATOR FINITE GROUPS
WITH TWO RELATIONS

By
M. ZAFRULLAH
Department of Mathematics, Talim-ul-Islam College Rabwah

In this note we give a presentation of a class of finite groups with
two generators and two defining relations, that is, we prove the
following :—

Theorem : The group

G (n, r)y=gp{a, b; a*=1, (@1 b)'=(ba~1)"*1} (1)
is finite : _ .
First we observe that the relation (a—! b)"=(ba™1)"+! implies that a and
b have the same order :
(@! b)"=b(ab)al
or @b a(@tbyT=>b
Also from the same relation we have
a1 (ba™1)" a=(ba™1)T+1
If ba™1=x, then
a1l x"a=x"+1 . (2
Taking rth power of both sides of (2)
at ¥ g=xt 4D
That is
a2 X g2=g-1 x"THg= (g1 X7 gy H1
, = (xft1)r+l= x(r+D2
Suppose that
a~k x™k gk = x(r+k .. 3
is true.
Taking rth power of both sides of (3)

1
ak x"k+ ak = xT(r‘*l)k



68
That is

I ph+1 - ko
P B L R IS W WaN (R Vs

e e k-1
- .(xr—{—l) (r+1) — x(r—{—l)
Hence by Mathematical induction
‘ a tx = x( +1) for all positive intégers n.
Thus if a®=1, then the orderm of x is a divisor of (r+1)8—rn

Now both r, (r+1) are coprimey to (r+1)%—r® and so x" and x(r+ D

genrate the same cyclic group as x.
Consider now the group
G=gp{a, x; a"=x"=1,a"! x"a=x"+1}
As r, (r41)8—r" are coprime, there exists an integer £ such that
xk—=x. Then "1 x a=a~1 x* a=a! x" g...a™1 x" a (k times).
_ J.r(r+1)k _ xrk—l—k: xk+1

However since (xk+1)T=xkr+r=x"+1, gp { xk+*1} =gp { x } and there-
fore G is an extension of gp {x} of order m| (r4+1)"—rn by

gp {a} of order n.
But as x=>ba"1, G contains together with « also the element b and

so G=G (n, r). Hence the theorem.
We note that when n=2, then for _differ_ent values for r we get all

the dihedral groups of order 2m, m odd. '



ON A SUM FUNCTION OF FUNCTIONS OF PARTITIONS (Il)
By

S. MANZUR HUSSAIN
and -
M. H. KAZI

1. Introduction -
In [1] we proved some congruences mod p involving functions P,(n),

where

Py (n‘).' =

=~
.M =

P(k) P(n—k), -
0

P,(n) =k 20 Pk) Proy (n=k), r > 2,

P, (0)=1,
and P(n) are unrestricted partitions of ». In 2] we introduced the
’ :
sum function S(n)=S (n, p)= 3 P, (n) and proved a few congruencs
properties of S(n) mod p. In this paper we use extended definition of
the sum function : o -
. Ip+s

S(n)=S (n, Ip+s) = 21 Pn), I>1,5>0.

and prove some of its congruence properties mod p.
2. Wefirst prove the following -

Len‘m‘la: Plp +‘sﬁ (n) Ek io P (k) P(I—I)p +S(n-kp‘) (mod p)

wherel}léndr:[—%] . R 21
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. . . . 1
Since the generating function for P,(n) is T——;: , it follows
m(—-x"
that '
n

Pp 5=, 3, Py OPG_1ypps(1=H) 2.2

we proved in [1] that

Pp_y (n) =0 (mod p), if p, does not divide n,

=P (m) (mod p), if n=mp.

Using these congruence relations in (2.2), we obtain the lemma.

We now prove the following
Theorem 1.
mp+r m .
il P (k) S (mp+r—k) = kil P (k) P(,_ 1) ptstl (m—k p+r)

+ P(I—l)p-l-s—}-l (mp+r)—Py (mp+r) (mod p).

where m>1 and 0 < r < p—1.
Proof : By definition

mp-+-r
S (mp+r)= X * P(k) [P(mp+r—k)+S (mp+r—k)—Pjp.s (mp+r~k)]

mp+-r mp+r
0= o P(k) P(mp +r—k)+ ey P(k) S (mp4-r—k)

r p+r 2pir ' Jptr
-[ = + b + b3 +oeie T
k=0 k=r+1 k=p+r+l G-Dp+r+1
(m—-1)p+r mp-+-r
b3 (P(K) Pip.3 (mp+r—k))]

+ b3
(m-2)p+r+1  (@m-1)p+r+l
Using the lemma we obtain
mp+r r- m
0=P, (mp+r)+ 5 Pk)S@mp+r-k)- [ 3 PKk) ( % Pk
k=1 k=0 ky=0
P ( kphy) p+r PW) m—1
_ mp+r—k—p + s (3 ( = P(ky)
(=Dp+s k=r+1 1=0 “
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_P(l-l)p-i-s (mp+r—k—pky) )

jptr Pk m—j . |
Getypirsl O 2o PO Py_nyps (mptr—k—pky
(m—l}g pr
(m—-2)p+r+1
mp+r |
i (m—1)§1+r+1 PO PG 1) pys trptr=0) ]
(mod p). On simplification, we get

mp+r m ’ R
kzl P(k) S(mp+-r—k)= zl PR Py 1ypgs +1(m—kp+r)

P(k) P(l-—])p—{-s (mp+r—k)

* Pu-nptst1 (PEN)

-~ Py (mp+r) (mod p)
1t may be remarked that in the special case when /=1 and s=0, we
recover ‘

- P(k) Py (m—k p+r) (mod p)

mp—+r
b3 P(k) Smp+r-k)= .

k=1 k
as proved in [2].

M3

Theorem 1L

s
5 P, (n) (mod p) when 0<ngp—2
r=

(@) S(n, I p+s)

- s
@) S(p—-1,lp+s) =1+ 21 P, (p—1) (mod p)
r=

8
@iy S(p,lp+s) = sl + 21 P, (p) (mod p)
r

s
@) S(p+1, Ip+s) =l2(s2+3s+4) + 21 P, (p+1) (mod p)

r=
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Proof of {i) & (ii)
When[—;—] = 0, the lemma glves ' _
(n) = P n)-- (mod p)

(-1)p+s
Py(n) (mod p)

lp+s

and 50 S(#, [ p+s) =, .1(1_>,.+P2Jr P,)+ . P, (modpy .

f e =1
: . ;s.
= IS(mp)+ rzl P, (mod p) (2.3)
We proved in (2) that L . o »
S(n, p) = 0 (med p) when 0 < n < p=1  (2.4)
and S(p=1,p) .= 1 (mod p) T (2.5

Using (2.5) and (2. 4) in (2 3), we obtain oongruences @) and (u)
Proof of (iii) and (lv)
When [%]:1, the lemma gives' :
= P »
Pors® = Py_g), P ¢ L, 0-p) @edp) 6
when n——p, we get :
P pts (p)=P - 1) pts (D1 (mod p)
=P (p)+! (mod p)
(- 1)l

S
S(p, p+5)=I(Py+ ... +Pp)+ p + >: Ppt-s I (nod p)

=IS(p, p)+ 3 Pp+sl (modp)
r=1 7
But S (p, p)=0, as proved in [2] .
s
Hence S (p,Ip+s)=sl+ = P, (p) (mod p).
: B A .

When n=p+1, (2.6) gives
Pt sHD=R_yy s P+ + By (1) (mod )
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=P~ p+s (p+D+(s+1) (mod p)
=Py (p+1)+I(s+1) (mod p) '

and so -
S(p+1L,Ip+s) =P (p+ D)+ ... +Pp(p+])
+ {P(p+D+1.2} + {P(p+1)+13}
+ {Pp(p+1)+1(P+1)}
+ {Pi(p+D+22} +H{P2(p+1)+2.3} + ... +{Pp(p+1)+2(p+1)}

+ {Py(p+D+(=12} + Pop+D)+(-13} + ...+ { Pp(p+1)
+(-1) (p+1)}

Py (p+1) +12) + {Pop+1)+3} + ...+ {Pp+1) + 1.
(s+1} (mod p)

S
C=IS(+L )+ zlP,<p+1)+z%3)-s (mod p) @)

r=
When /=1, §=0, r=2 and m=1, theorem I gives

p+2
L3 PUS(+2-, P=P() PA(2) (mod p).

Hence P(1) S(p+1, p)+P2) S(p, p)4P(3) S(e—1, p)
+2
N Z S PO S(p+2-k, 7) = Smod p).

Since S(p, p)=0 (mod p)
S(p—1, p)=1 (mod p) and S(n, p)=0 (mod p), when 0 < n < p—2,
it follows that

S(p+1, p) = 2 (mod p) 2-8)
From (2.7) and (2.8) we obtain

s
S (p+1, lp+o)= {s243s+4) + X B (p+1) (mod p)
r:
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