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A NOTE ON NON-COMMUTATIVE POLYNOMIAL RINGS
by
, M.A. RAUF QURESHI
1. Introduction

We shall suppose throughout this paper that all rings under
consideration are non-associative with unity element different from zero.

Let R bearing and fo, f1, - . - - . Jt (k > 1) the (k+1) abelian group
endomorphisms of R subject to the restrictions :.
fi (M =1and f; ()=0(iz1).
In [4, Théorem 2.1] it was proved that there ‘exists a polynomial
ring R [x] under a multiplication which satisfies

k
xa=13fi(@) xt............ 4))
0
for all a € R. 7

The question of associativity of R[x] was also taken up in [4].
In this connection an attempt was made to find necessary and sufficient
conditions so that R [x] might reduce to the polynomial ring essentially
defined first by 0. ore in [1]. It was found out that, if R is an
associative integral domain and f; is a monomorphism, then R [x] is
associative if and only if k=1, f; is a ring homomorphism, and f,
is an f —derivation (i.e., fo (2 b)=f; (a) b+/1 (a) fo (b) for all a, b € R).

Here in this short note we would like to show that this result
is valid for any associative ring with unity element, not necessarily
an integral domain,

2. The Theorem

First weshall record here some definitions and results of [4]. We
would like to follow the notations of [2] for the sake of convenience.
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If 20,0 < r < nk andaeR we shall write ay,, for
b I a

01, 0255 On fal‘faz .“fan

where each index is sumined up from O to k under the condition

" ;
r = 3 ai, and stands for f; (fj (@)). Furthermore,
1 ,

N5

apny =0ifr>nk or r <0,

.................... Q).

ag,y = 0 if r5%£0,and ag,y = a
0 . : o
Let P = 5 R;j (Ri=Rforeachi) be the direct sum of abelian

groups R,. Define the multiplication in P by

fg=(A0, Al’ ...... N A[h+m, O, O, ceaee .),
where

are any two elements of P, and

r=01{i=

u ! :
Ay, = 3 . 20 a; (br)i,u"’g

Taking

¢

we can write
0
f= S oa Xt (a,~—=0 for I>I)
0

Then (see [4. Theorem 2.1]) P=R [x] is a ring satisfying (1) and x
is left indeterminate over R. Furthermore, if R is associative, then P
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is associative and if only if, for a, be R, .
w o ] . k - : . _ ‘
riO Sw_p (@bjy) =—a_§_0 Iy @by 1w TZ00<WS (j+D K)...(3)
ko

‘aiofa (a) ba+j,w = 0 forw > (j+1) k.

We are now ready to prove the

Theorem

Let R be an associative ring with unity element 140 and f; is
a monomorphism. Then P is associative if and enly if k=1, f; isa
ring homomorphism, and f, is an f; —derivation.
Proof :

Suppose that P is associative and & == 1. Then, since f; is a
monomorphism,

(i) =0 == 1 =0,
which is contradiction. Hence k=1, and putting j=0, k=1 in
(3) we obtain

s . Fuy @bow) = fo (@) bory + 11 (@) b1y = fuo @B)......(d)
r=

in view of (2). Writing w=1, 0 respectively in (4) we get
fiad) =fo (@) bor + f1(@) byl »
Jo (ab) =fo (@) bo,o + /1 (@) b0 -
Since bo,1 = 0, by,1 = f1 (B), b1,0 = fo (b) it follows that f; is a ring

homomorphism and f, is an fj — derivation.

The converse is proved in [3, Theorem 1.2].
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A NOTE ON AN INTEGRAL INVOLVING BESSEL
FUNCTIONS :
by

G. M. HABIBULLAH
Department of Methematics
University of Ibadan Jos Campus
Jos, NIGERIA

In this short note we discuss an intégral operator

(e 0]

ONOTORS Of @ TN wvarore,

where f € L2 (0, oo) and

N o0
w;"’)t (x) =x7 J Ty ia Oy o G0 A, @)

J; is the Bessel function of the ﬁrst kind.

When a=0 (1) has been studied by Watson [6] Bhatnagar [1] and
Srivastava [5]. An integral of this type has also been considered by
Lowndes [4]. For the detailed study of W:l\ see [1, 5]

The following lemma which is a special case of a theorem due to
Schur [8, Theorem 319] will be needed later.

Lemma 1.
Letf ¢ L2 (0, o) and let g be a function defined- on (0, o0) x (0, o)
such that for any real number a>0 ’

glax, ay)=lal1g(xy),
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and
R ‘
f 1o 0 ix " dx=k<co.,
y |
Then if
w ~
)= [ g £ 0) dy 6]
0 ~ ‘ ,
h:12 (O’ co)—-)-L2 (09 w)’
and .

Al < k] fla- ' SR O

We shall also use the Kober’s operators of fractional integrals
introduced in {3] and defined by

ekl -1

IO Sres f =" e ®

y ® o B
K () O=fy ] 0=0" " 0 @
X B
Lemma 2,

If £ € L2 (0, ), a>0, v> —}, then If and K (f) belong to
L2 (0, ). Also
' r 1 ~'
m (100 ) ==ty ) ©

T @ '
my (K, ()= Forea ms (), ®

where mg denotes the Mellin transform.
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Lemma 3.
M a>0v>—4r>— 4§ then
—1 - - .
x 2(‘%+a)wg)\ (4+/x) € L2 (0, o).
Proof. We write

THF e

7,2
e 0} . 4 ) "
1

- ~z0Q \/x)

=2x 6{J2v+a ® J2A+a( 1)
o0 ) N . .
-1 ta . —ia
=)t (@) J2A+a(4\/x/t)t 2 J2v+a(t) dt.

0
Use the asymptotic formulae
I (x)=0(x—i), when x is large,
and

JG (x)=0(xa), when X is small

a0 B ¢
! 2 lg—
3a f —~4 $a—1 ( 1 )
to see that (')r(t J2v+~a (t)) ando t *t J2A+a Vars dt

are finite. The result now follows from Lemma 1.

Theorem 1.

Ifa>0,v>—%A>— tand fel2(0, ), thean'A

N):
L2 (0, o)}—L2 (0, co) and there is a finite constant such that

1Ty, Ve <k ]Sl

Moreover

AT ()Lt T (A+s)’
ms(T',)\ (N )~=F (v+a—s5+1) T (A+a—s+1) ma—s (f) (10)
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Proof : Define

VN W=t r(%) an
so that o

VD z=1fls VIVN}=T, (12)
and _ ,

ms (V(f)) = ma—s (f). 13
Also set

s, , () (x)=f(xy)_%“ Lyt QVEPISO) Ay (14)
0

It is known [3] that if @ >0, v > — %’“Sa'v (f) €1L2(0, o0) and

ms (S, , () =iy, Man () 13)

Now on changmg in (1) the order integration which is- perm1s51ble '
due to Lemma 3 we see that

T (D=8, VS (! (16)
Since Sa,A (NHel2@0,0)and V Sa,v () eL2 (0, o) it immediately
follows that

T"‘)t : L2(0, w0)—L2 (0, ),
and there is a finite constant k& such that

15, ) e <k ISl

Furthermore using (13) and (16) we obtain.

I (v+5) I (A+s)
ms< yA(f)) F'v+a—-s+1) T (v+o-— S+l) (‘l-—s)(f)

Theorem 2.

Let a>0,v>—%,A>—%. If fe L2 (0, c0) and g € L2(0, o), then

(e 0] (e 0]
of f(x) T:’,\ (8) (x} dx =Ofg(t) T:‘”\ f(@) dt. (18)
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The result follows immediately by changing the order of integration
which is permissible by Fubini’s Theorem.

Theorem 3.
Ifa >0, v > — %1 12> —1and feL2(0, o) then

o o3 (1 o .

Tv,)\ ’ A (=K K, I I f (19
. R a a . ‘

Proof : Since f € L2 (0, o), TV’)t Tv,)t (f)e L2 (0, c0).

Applying Theorem 1 and Lemma 2, it follows that

mS(TOL Ti)‘ (f))

v A
_T(v+s) T'a+s) d
TT+a—s+1) T Fa—st1)a=9 (Tv). (f))
_Tiv+9) T(xn+s) [(v—s+1) Fa=s+1) f)
" T(v+ae—s+1) T'(A+a—s+1) T(v+a+s) T'A+a+s) Ms
T+ T(x+s) Tiv—s+1) T(h-s5s+1) f)
“Torats) TO+a+s) Tofe—s+D) Fafa—sil) s
= mS(K: K§ 1af (f))-

Since both side of the last equation belong to L2 (3—ico,3+i )
an application of inverse Millin transform proves the result. Similarly

we can prove

Theorem 4.
If a>0, >0, v>—1, A>—% and / € L2 (0, o0), then
a a+B a+ﬁ
Tapaes T =T, o (20)
and
¢ P (=K TP ROP (s @1

v\ v+a, A+
I am grateful to Dr. G.O. Okikiolu for useful suggestions,
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ASYMPTOTIC EXPANSION OF MIXED POISSON DISTRI-
BUTION AND THE POSTERIOR DISTRIBUTION OF
POISSON PARAMETER.*

by
ASHIQ HUSSAIN,
Department of Statistics, University of the Punjcb, Lehore.

Abstract :—Asymptotic expansions are derived for the mixed Poisson distribution
and for the posterior distribution of the Poissgn parameter, assuming that the prior
distribution has continuous derivatives in its domain of variation. Expansions are
also obtained for the moments of the posterior distribution. The theory is illustrated
by means of a Gamma pricr. It is shown that the appoximations are valid fcr unin-

formative prior density.
1. Imtroduction :

Let (Xg, Xa2...ont P Xn) be a random sample from the Poisson
distribution with density :

fow=ce M L x=0,1,20 0

It is known that all the information contained in the sample is given
by Y = 3 X;, which has probability density function
i

Ry i) =" @mpppy

Suppose that degree of belief about # consists of the density
g(m), 0 # < oo, which has continuous derivatives in its domain of
variation. In many contcxts, it is important to know the behaviour of
the mixed Poisson probability density function

ke (s M= f (nﬂ)y ey W

* Received : Oct. 1, 1971,
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and the co:responding distribution function

K, m) = 3 kg (x, n), | )

as the sample size is increased. It is also important to know how the
increased sample size affects the degree of belief about p. That is to say,
what happens to the posterior density

A ) =ﬂﬂ‘)ﬁﬂ@ 3)
y!ks (y,n) '

when # gets large ?

One way to investigate this problem is to express (1), (2) and (3) in
forms which show the effect of variation in the values of n. The present
paper attempts to do this. We find asymptotic expansions of (1), (2),
(3) and of the moments of (3).

2. Mixed Poisson distribution :

Let u = n~1ly, g® (x) = di g/dxi, and ri=g® (w)/g (u), i = 1,2.......
For any fixed value of u, we have by Taylor’s theorem :

8(1H=g(1+ :%(M— ) rifi! + Elo—(p-'— u)* g9 (2)/g (u) )

where z = p+6 (H—u), 0< g < 1.

Now, it is easy to see that

co co
‘ffﬁ(”ﬂd p=1/n, g n= G () gy o= D
: y! 0 yi
1 +2)... (y+i)
so that () > ); (r+)
e8]

f (=) €_ (n wY d p=n2 j (#-u)2 e (,ﬂ M d u=n=2 y+2m73,
37,
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(v o]

f(p- Wy e (nu)—“’ dh=5 13 46 11'4f(# we (nﬂ)yd#
v!

—3 3 247 64 y4-24 1S,

R —np,
:‘(u_u)s e (mrY g u=0 (4.
0 ¥
Using these results and (4), we obtain after some calculations
ke (y, y=n"1g (w{l4ay n14-a, n24-0 (173)}, S
where ay=ry+-3ur,, aa=ra-+2 r3 u+% rq ul.
Again, introducing the incomplete gamma function
1 2 ~
____fe—z zy dZ: et ’tx
y!J. x=0 X s
t

| M

- we obtain

o

(0:8)
y —np
K, (y,m)= 3 f‘ e (Mg (p)ydp
= 2= x!

o8] 0(2 v oy
=j{ ey!” dv§g(p)du
U np
O
= nfi‘_(”_"f G (n)dnr
o V!

= G @) {l+17 ApFn2 A2 40 (1)},
where G (u)=£ g(v) dv, A1={g(u)kG (W} {1+3 ury},
0

and A2 ={g(4)/ G ()} {1+ urz + 12 3},
~ Obviously, (n kg (3, —g ()]0, and kg (», ®) =G (), as
n—»0o. Similar results have been obtained for binomial distribution
by Hald (1968).

/
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As an example, consider gamma prior density
g =[TEI™ ws e=wr ps1 4>0, w>0

It is well known that the mixed Poisson distribution, in this case, has
density ‘

ke o) =37 o Gotm T b w1

which can be expanded as (5) with
=451 ut—ws+ iw2u
ay = Frs(s—1) (s=2u~2—} ws2 (s—1)u~14-1 w2 s(3s+1)
— 1 w3 (3542) ut-4 wt ul.

The expansions (5) and (6) held irrespective of whether the prior
distribution has existing moments or not. For example, the truncated
Cauchy prior

gw=Q/I) (14+ry)~2 | 0<u<loo
has no existing moment, but we can find asympto‘uc expansion for
kg (y, n) and Kq (v, n).

The moments of the mixed Poisson distribution can be obtained
readily without using (5). For the existence of these moments, it is neces-
ksary that the corresponding moments of the prior distribution should
exist. For instance, denoting the moments of kg (y,n) by my, (r=1, 2,...).
we have
my =Z%yky(y, m)

_ 2]: V(” P—)’ e (1) du

= f# glp)du
0 ,
My = 3 y2kg (y,))=3y (y—1) kg (y, 1) +3y kg (y, 1)
o [0e]

=2 [ u2 g(w) dutn (ng(udp,
0 0
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from which it is obvious that, if the first and second moments of g(#) exist.

exist, my; and my, also exist. Further, the variance c§ of the " distri-

butions is given by
aj = n2 (variance of prior distribution) -+ n (mean of the prior
distribution). V
3. Peosterior distribution :

1 1

Let V=n* (0.—u)/u®. Using stirling approximation, we find that
the posterior distribution of V has density

/2 )

b

R |y m=g¢ @)1 + §~Ri ()~ 240 (5

where ¢ (v) is the standardized normal density

Ry=(ry w-3%19)
Ro=% u2 v2 ra-u(k rput—a))+ (3 v6—~1 v
Ry=L 3 virs+u2 R ryvs—ay ryv)tu(dgri vVi—%r vi—% a; v9)
+G V= Vi)
Ry=gr td v rg+d(Pa r3vb—L ay v2 rp)+u2 J5 V8 rg—1ry 8=l ag ry v4

2 . . :
~(@p—a})tutavt—(gar—% rVo—rs ry V8ol ry 04 o vi2—

yl0 a7 y8—1 16

These expressions are quite complicated, but we seldom need them
all. In fact, for moderately large valtues of n, it is sufficient to retain terms

of the order 0 (n‘%) only. Further, we do not need (8) in order to evaluate
moments of the posterior distribution of #. Thus (omitting details which

are quite tedious) we have

E(# |y, n=n"1(y+Dky (y-+1, m)/kg (y, n)
=n"t (y+1) {l+n7 ry-+n72 (t;’ +4 r2)+0(n"3)}, )
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E@2 ] y, my=n"2 (y+ 1)+ DK g(y+2.n)/K¢ (3, n)
=n"2 (y+1)(p+2){142 ry vt +n‘2(2¢i’ +2r)+0®3)  (10)
E(3 |y, m)y=n73(y+1)(y+2)(y+3)ky(y+3, n)fkg (v, 1)
=3 (D 4D O3 {143 g2 (3 a4 o)
+0 (3}, - (11)

and in general

E(u™ | y, n):n—m(y+,n)m{1 +mry n 4R 2(md’ + 3 m? r)+C(n3)} (12)
1

In the expressions (9) — (12), prime denotes derivative with respect

to u that is,

a'=r'+% (ur'+r)=4r,—r2+% (r3—r rau
11 2 1

From the forging expressions we can derive asymptotic exyression
for the central moments My p p==2, 3........0f the posterior distribution.

We have, for instance,

mpp=n=1(y+1){n 14172 2ry +u (r2—r2 )+ C(13)},

mpy=n"(y-+1)2m 240 (3},
mpd=n~1(y+1){3u n"240 (n~3)}

Further, it is easily verified that the skewness and kurtosis of A(p | y,n)

1 . .
are of the orders O(n %) and 0(n™Y), resp=ctively. This provides an addi-
tional evidence of the asymptotic normality of A(x | y, n).

To iltustrate, consider again the posterior distribution when the prior
distribution is gamma (7). Tt is immediately verified that

E (e |y m)=(w+n)1 (s+y)
=(u+sn D)l —n"t w+n2 w2 ...)
=u4-S—uwn 1+ (uw—s) wal4 .. ..
=(u+1/n) [1+(—1—uw)u=! n7 14+ {w2—w(s—1)u"
' s —Du2n~240(n3)
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which agrees with (9). Similarly, the second and higher moments of the
posterior distribution can be identified with those given in (10) — (12).

It is evident from (8) that for a fixed u, the probability density function

of V converges to (21’1)“5 exp — (4 v2), so that the posterior distribution
of m is asymptotically normal with mean u and variance #~ 1 u, whatever
the prior distribution provided only that density has continuous derivatives.
(Asymptotic normality of posterior distributions in general is considered
in considerable detail by Jeffreys, 1961, and Lindley, 1968).

4. Posterior distribution with uninformative prior :

Now suppose that « has uninformative prior distribution with density
g(u) oc 1/u, which implies that » s has uniform distribution over the
positive real axis. (For the definition of a uniform distribution over
infinite domaine. see Lindley (1965) pp. 18-19).

Evidently,

kg (y, m)yac 1)y,

which agrees with (5), because, in this situation, agy=a,=o0, etc. Note
that k4 (¥, n) is not defined for y==o, and that K, (y, n) is not defined for
any value of y. This is also obvious from the fact that the prior density

is not proper.
The posterior distribution of y has density

, —np y—1
h(e |y, m=ne @

(y—-1D !

so that the posterior distribution of n g is | (p). Confidence limits for
# can be found by using the fact that (2z ) is %2 with 2y degrees of
freedom.

Further,

E(#m | y, jy=n=m(yp4-m—Dp=u=" p(y+1)...(y4+m—1),
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m=12,...... , which agrees with (12). It follows that the mean and
variance of the posterior distribation with vague prior knowledge are u
and n~ 1y respectively. This shows that Bayesian sestimator with quadratic

loss function and uninformative prior distribution is unbiased.

. 1 . .
The posterior distribution of V=n2 (#—u)/u'k can be derived either
directly or, alternatively, from (8) by substituting
==l ful, i=1,2...... , and g;==g2 = o; its density function has
the same form as (8) with
Ry=—v4+} v3, Ry=v2— 5 v+ 5 ¥6
Ry=—v3+4f v*— 5 v+ v

Ry=vi—38 Vo280 v8—Jfs VIOt 45 vi2

1
3

)

s

]

5. TImportance of K, (y,'n) and h (¢ | y, n).

One final remark about Kg (y,n) and A(p. y,n) may be made. The two
distributions play different roles in statistical inference. The former in-
corporates prior information or belief and, might, therefore serve as a tool
for determining a sample size which is optimal in some sense. To take a
very simple case, suppose that we want to determine a sample size n such
that, with constant per unit cost of sampling, the variance of u = n™ly

does not exceed a pre-assigned value og. Let the mean and variance of

the prior distribution be a and 42 respectively. Recall that the variance
of Kg (¥, n) is n2 b24-na, so that the unconditional variance of u is b2+
afn. Therefore, the optimal sample size is the integer just exceeding af

(og — b2). Tt is evident that as n increases without bound, the variance

of u approaches that of the prior dis‘gribution, whichY is a further evidence
that Kg (¥, n) ——> G () in limit. ’
The posterior density 4 (# | y, n) provides a check on one’s prior

knowledge in the light of the information derived from the sample. In
order to find how far the prior information agrees with the sample



(19]
information, one might compute
Ey E(#2 |y, n)—E2(# | y, )=Ey (my)).

which is a measure of concentration of A(x | y, n). We have from Section
3 that this is of the order O(x™1). Therefore, with the increase in sample
size the area under A(p | y, n) tends to concentrate about a single ordinate,
In other words, the larger the sample, the more precise our knowledge

about the true value of the parameter.
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O (3,1) SYMMETRY MODEL AND DIP STRUCTURE IN
«~p ELASTIC SCATTERING BETWEEN 1.7 AND 2.5 GeV/c.*

by

M. SALEEM

Department of Physics

Punjab University, Lahore
and
M. RAFIQUE AND KHALID L. MIR
Department of Mathematics
Punjab University, Lahore.
Abstract :—Tt is shown that for small angle scattering, the dip structyre in T™p

elastic scattering between 1.7 and 2.5 GeV/c can be explained by O(3, 1) symmetry

model.
1. Introduction :

Recently the differential cross-sections in #~p elastic scattering have
been measured at incident pion laboratory momenta of 1.70, 1.88, 2.07,
2.27 and 2.5. GeV/cl. These measurements show dips at

~1=0.6~0.8, —r=1.6—1.9 and —¢=2.6—2.8(GeV/c)2.
So far no satisfactory explanation for this dip structure is available. In
this article we shall show that the appearance of these dips follows as a
natural consequence of O (3, 1) symmetry model.

2.0 (3,1) Symmetry Model :

The helicity amplitudes for elastic forward scattering of strongly
interacting particles possess symmetry with respect to homogeneous
Lorentz group O (3,1). Toller2 has shown that these amplitudes can be

expanded in terms of principal series of unitary representation functions
of O(3,1). This scheme has been extended approximately by Delbourgo,

*Received : Jan, 1, 1972,
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Salam and Strathdee3 to inelastic non-forward scattering processes. In
this scheme the reduced amplitudes TS’A’S)L (s, t) for the ccattering

process 142344 of particles 1,2, 3,4 having unequal masses and

spins Sy, Sy, S, Sy, are expressed in terms of a set of helicity non-flip
. S’ '

amplitudes T.(I’)L)S (s, as

lA /2

4)(5'5 t) <S’)\.'l| A I AJ’)\,>T(,)(St)’ ([)

V1812 534

where A=) — A3, A =Ade=As A=N"—A,
S=|S{=S3!,...,.51+853, 8= | S3—=84 | ,..., S+ 854,
| a2

J'=iS’-— | A \,..., S+ ] A |and ¢ (s 0 is a kinematical
S12 834
. (s"H .
factor. The amplitudes TJ'A g are then written as
S _ S J
™) 3 s FG2 - ) fg ot ddsy @
IAS™ poles j. <min(i’,S) ° I'S SAJ

S+ i,
+ (fl) T Ty, TyT s dS.,(; (?ft)]

where Ty, M2, M3, T4 are the intrinsic parities of the particles and

dé" v (¢4) are the unitary representation functions of O(3,1) with

S—=u

20 4ml)=1 3E 2k +0}) -

cosh £;==

i1t €))

In order to get the high energy asymptotic expressions f01 amplitudes

the functions d]sf g’ can be written as
dJo _ [+ o+ —joo [(S— o +D) <
S =G e et D) S T e D @
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where the functions eS S’ have the asymptotic behaviour

PS=a+1) '(S+j,+D

1
2 ’ 2 L~ T Z 2 A Jo @ )
SAS, 7 (&) tz OO[( S+1) (28'+1D)] [p SHr+D) T(S=7,+1)

[ (S'=a+D) P(S'-Ffo-l-l)]%(_ LS

[ S+r+D 'S~ Jj,+D

x D (eA8FD) [ (om0 ()~ e+ 1+ 72
M (Jo=A+D) MEe—-2a+) M(-o+8'+1)

> Z=cosh §;
provided j,>>A. If j,<A the corresponding asymtotic expression is
obtained from (5) by interchanging j, ¢nd A.

3. Calculation and Discussion:

The number of independent helicity amplitudes for =~p elastic scatter-

ing is two. If only a single pole contribution is considered to be signi-

ficant, then asymptotic expressions for relevant Pk Sy Ja, are given by

dogg v € —mah, ©)
R I G )
a0 *W%Z—G_ZJFT(%T)Z""z ®)
R e e )

The corresponding expressions for d]SO’S' are obtained by changing -

¢ to—o in the above expressions (6)— (9).
The helicity amplitudes for == p elastic scattering are given by

(0) —0-1 o—1 )

<OF[T]0F> = B0, ) o (z -z
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(0) ,—o-1 o—1
©, r)[ -]
—c—2 c c—2
<04 |T|0}>=12VE, B4 tori’ ]
—0—1

+ \/ B(O) a, t)L(1+U) z +(1“6)zo-—l ]

+12VE, (0)(1, t)%[zc—l—— z“""3] (11)
A look at equations (10) and (11) shows that some terms blow up at
¢ =1, = —1 and ¢ = 0, making the differential cross-section infinite.

In order to avoid this, the corresponding residue functions must contain
factors 6—1, ¢+1 and . The above amplitudes then become

—a-—2__ o

<0 | T | 0> =B0) ) (@+1) [z =)
~(@+1) c(o) ©, ) [(a+1) (@+2) z~* "% 4a 2% (12)
<04 | T|0i>=1 /2 c(o) O+ Di(at+Dz "4 P 4a 227
v et 4 a2
+124E C(O) L[ "2 = 27%4 (13)

where o=0-—1.

For a=—1, the helicity amplitudes containing only the leading'

terms are
<03 T [04>=B0) 0.0 (041) -7 72 2

c()(o 1) @4+ (e+1) @+2) 2~ %2 4a %

0 —
<0-3|T|04>= \/ [3(1 )(1, D[(a+2) z o 2—-(1 za]
which reduce to
<05 | T|0i>=0

<03 [T]04> =y e p) (1nz!
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- As all the terms except one disappear, we expect a dip at d=—1. The
exchanged trajectory in #=p elastic scattering is p which is parametrised as

o =0.574+096¢4.

For a=—1, this gives a dip at r=—1.64 in good agreement with experi-
mentl,

For a=0, the helicity amplitudes with leading terms are

<O} |T|Ch>=m ng)(o, 1) (1) 2%~ cﬁ%) ©, Ha(at+1) 2%

<04 |Tich> =-/TBD (1 Da
which reduce to ,

<04 T 04>=-80 0, 1

<0-% | T|04>=0.

Again as all the terms except one disappsear, we expect a dip at a = 0, i.e.
t = —0. 6. This dip has also been observed!.

As mentioned in Section 2, the O (3, 1) symmetry formalism is valid
only for small angle scattering. Therefore, we do not expect an explana-
tion of the dip at z=—2.8 from this formalism.

It may be mentioned that the dips which have been observed at
=—0.6 and #t=—1.7 disappear at very high energies. The simple
Toller pole theory does not give any explanation of this phenomenon,
Perhaps cut contributions play a significant role at very high energy in
filling up the gap and making the dips in the energy range 1.7 to 2.5.
GeV/c disappear.
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A PROPERTY OF SPEARMAN’S RANK CORRELATION
COEFFICIENT
by

AHMED ZOGO MEMON AND MUHAMMAD ASHFAQ,
West Pakistan Agricultural University, Lyallpur*®.

Letl,2, ........ , n be the natural ranking N of a group of objects
A Ag it , Ay according te some quality. Suppose that Xy, Xa,.......
Xy, i the ranking J given by a judge to Ay, Ag,.......... , An. Denote
e;j as the difference between the ith and jth ranks. Kendall (1938) proposes
T= £ aij (9] £ a;; (N) as the measure of correlation
i>j=I i>j=1

between N and J where g; j is taken —1 or -1 as a;; <0 or>0 in a ranking.
We shall show below that if a;; instead of + 1 is taken as such, the quantity

n
g‘. azj (3)/ b a;5 (N) turns to be Spearman’s rank cor-
i>j=1 i>j=1
relation coeflicient p.

Since a;; (J)=x;—xj, it is seen that

n . n
b aij (J) = Qi=1) xi-n 3 x

iMs
o

n B 2
= 6 - 151 (l - .x;) «
In case of natural ranking, we obtain

nm—n

Now the proof is easy to complete.

*Received : Sept., 1972,



128)

The proposed alternate expression of Spsarman’s rank correlation
coefficient is useful for its computation as well as in seeking more know-

ledge about rank correlation.
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A NOTE ON LIPSCHITZ SPACES
by |

G. M. HABIBULLAH
Department of Mathematics
University of Ibadan, Jos Campus
Jos, Nigeria

We use E; to denote n-dimensional Euclidean space and for each

-Xy The

. 2 2 2\}
x=(x1, X2, ..., xp) € Ey, wewrite | x | = Xp o+ X5+ x
space L? (Ep) is denoted by LP. As usual the norm in L? is given by

1ip
llfﬂp=f( [f(x) [P dx) I<p<oo,
E,

171, = inflo sm @ 1 () | >oh=0l,

where m represent Lebesgue measure on Ey.

The Fourier transform of a function f in LP is denoted by fA
and the convolution is designated by f 4 g. '

For some real number o0, 5>50, let G" (., b) be the Function on
En given by

| ’11"'%”2“"1;“"‘OO Wn-a)—1 — | x |2 b4_—2
a _ Hr~a)—1 — | x |2a— 4a
G (x, D)= TG o éj-a v e da.

It has the following properties.
@) G® x, b)=b1G%(x, 1);
@) G* (., b) is everywhere positive and an integrable function
on E, ;

iy G 1 M =m0 T2 4 21T



@ 1% (., Bli=1,
® G (1) =G (., b), . G® (. B) >0, p>0.
Forany f e LP, 1<p<o0, and for any o>0, b>0 the Bessel

potential J* (f) (., b) of order a of f is the covolution G%(., b) # f
It is well known thatif fe LP, 1 p 0,

o) 13D o < 1 f]p-
Also f 1l <p < ®

wi)) 3% (f)— flp=>0 as a—0+,
and

ity | 1% (f) (.. B)= flp=0 as b=0+.
Proof : Using Minkowski’s integral inequality and the property (i)
we get

I3 () G b= @) o< (G (1, 1) 1/ imb)= £ (x) |
E,
>0asbhb o0 4.
If f(x, k) is measurable in x and h (x, & € E,), define

LG 1) Tpa={ [ £ Ge ) I ™ dlilis, 1 < g < oo,
E,
1 f G o= sup - [£ (5B |
lh] >0

For any o > 0, the Lipschitz space A (o, p, q) is the set of
function in LP for which the norm /

AT (xR - +|f
1£1g,p,q = 1F U GH=f WU, + 111,
is finite. .
For a detailed discussion of the Lipschitz space see [1, 3, 4].
We use k to denot: a positive constant depending on the para-

meters involved. These constants are not necessarily the same on any
two occurances,

e i
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Lemma 1.
If 0 < a< 1, then
G o) < kbl "% [ x O 01,0
Proof. In the property (i) use the fact
e b'2‘/4a;< 'k bj a%j,j=9, 1, ...,

to obtain
0

/ 7 1y N ‘
G%x, by< k b’ an,az(n at))=1 = |x %,
—k /T ) (@7,

Lemma 2.
If o > 0, then

iGa(xb)‘<k(l+ ixlb—1+7|)4€ 2p2 b——zG(l
352 D) s | ) b (x, b).

Proof. To prove thz result differentiate twice an alternative integral
representation. ' ,
—im+1) ,—a =67 [ x|

o T
G (x,b)= — —
X 2%—(n+0, I)F(% %) F<n 3 o_ 1)
o8] o
f‘eelxlt(b—l t+%t2)%(n—(l—l)dt’
0 .

and use the inequality b1 ¢ ' b1 t+% 12, t>0.

Lemma 3. '
Let \ be a non-negative function defined over (0, o) and for

>0, p>1, let y (s) be given by either as

s .
v @)= J ¥ () du, 0« <0
0
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or as
)= ¥ @ dia >0,
0

then

[Oj.?{saw (s)}f’ i; 1/p< | o] _l[f{sa+1 \Il(s)}p d_ss.] 1/p

For proof see [2, page 239].
Theorem
fo>a<l1l, 1< p, g < o, then there is a finite constant k

such that
2—-a 92

e+ 187" J(f)( B lpa<I /1, )
. Proof. Set
A= 1" fe+h) = £(%) | pas @)
B= |~ ¢, (x) | par (3)
where for r > 0
by (x)=— f {f(x+rw) f(x)}da, )
Zn

o is the measurement on the surface of the unit sphere £, on E, with
o (Zn)=0n ; and

C=15"* -2 3 () (B g ©

Since
a2
fabz G* (x, b dx=0,
£,
2
O (D) @b = (=D)L G () dy

2 .
=f4>" (x) r‘n"l aabz g (r5 b) dl',»
o .
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where ¢, (x) is given in (4) and g (r, b)=Ga (x, b), |x|=r
r

Using
Minkowski’s integral inequality and lemma 2 we obtain.

a0
-5 390 bl Of 40 o | 8 D) | dr

0

< & 572 f e GIp 177 21, 1) i
0

0

+ 573 s Wlp 0 g (r, B) dr
0

e}

+ 574 19, 0l o1 g () .
0

Also, on using the estimates given in Lemma 1, it follows that
forg = o
SR L b
I 1) & D)

o0 o0
£ k sup r‘a|[¢r (x) ]|p(b—a_2f r2a—1d1‘+b_afr2a_3 dr)
/ r>0 0 ' b

-k 5%~ 2B,

so that forg =

—_ 2n /
7 2% "2 1 () (Bl <kB, ©

Sauppote now 1 < g < .
inequality, Lemmas 1 and 3 we have

[celNee)
c<i Of i Of Iy (9l 7o

Then again using Minkowski’s

02 . q db Y4
s se bl )]
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e b y
< k[of/b_z gl b D

o] o 1
s [0 it P T

e , :
<t [ i eon) 5] = g

It is also known [3] that
B < k A. ‘ (®)

Hence combining (6), (7) and (8) we prove the result.
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SOME THEOREMS ON GENERALIZED BATEMAN
K-FUNCTION#* '

by
T. N. SRIVASTAVA,

Department of Mathematics,
Loyola University College, West Montreal-28 (CANADA)

SUMMARY :

Bateman K-function is a special kind of confluent Hypergeometric
function. In 1953 Chakravarti gave the first generalization of this func-
tion by adding one more parameter. In the present article the author
generalizes Bateman K-function by introducing two parameters and
believes that further generalization is no more possible. Besides the
generalization of the results of Chakravarti the author obtains many
interesting results and the properties of this new function. Its relation
with important sp=cial functions have been worked out and the Integrals ,
involving this generalized K-function have been evaluated and expressed
as a finitz series of the terms involving Hypergeometric, parabolic cylinder
and the well known Meijer G-functions which are of interest to pure and
applied mathematicians.

1. Introduction :

The Bateman K-function was first introduced by Bateman [1] in the
form
(1.1) K, (x):% f:rlz Cos(xtang—ng)dg

and then generalized by Chakravarti [3] in the form

. 2
(1.2) K *x) = j‘n/2 24 Cos# g Cos (xtang—n g) dg, u>-~1

- * Received : Nov., 1971
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The object of this paper is to generalize further this Bateman K-functicn

in the form
ws v 2 w2 . -
(1.3) K7¥ (x) =— sin g Cos* g Cos (xtang—ng)de
and to make a systematic study of this new function. We will in general
take », u, v to te positive integers. The following symbols and notations

will be used.

The classical Laplzce transform of f (#) as defined by
(149 Fp=p [© etf® dr R(p)>0

is symbolically denoted b)} F(p)=f@®
The symbol D (f) denotes the zth differential coefficient of the

function f (x) at the point x=a.
The expressions F (F x) and F (4= x) are defined as follows

(1.5) F(xx)=F@®) + F(-x»
F(x)=F® — F(=x
Many interesting special functions have been used in the study of
the generalized Bateman K-functions. Corresponding references have
been given, wherever they occur, by writing (for definition see [ ]).

2. Basic Properties, Recurrence relations and the Differential equations
Satisfied by Generalised Bateman K-function :
In this section the recurrence relations and the differential equation

satisfied by K.Y is obtained. It will also be shown that by giving
special values to the parameters and the variable x the function K¥¥(x)
can be expressed in terms of the Hypergeometric function ;F, [Zr; x]

and 3F2 [Z’b’bc ;x](for definition see [7], pp 182).
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Theorem 1 :

If n, u and v be positive integers and K}¥¥ (x) is defined by (1.3)
then

u—1

wt o, 1)
2.1) Kn 1 x= X (_‘)-‘[K:;+u+21__{_'1(x)_Kn—u+27'j’__1 (x)]

wtt+1
r=0 2

where

Ky = K] D+K_, (%)

l+m

If we take v = 0 in (2.1) we then obtain

u-1
(/2] _ 12
K:+1,o (x) = rio (_21712_1 [Kn+u-2"$1(x) "‘Kn—u+2ri (x)]

Theorem 2 :

If K3 (x)is defined by (1.3) then it satisfies the following recur-

rence relations.

Q2 K*vH (x)=%[K:1‘jr’{(x)+ K;::‘;(x)]

(23) Dy K2Y(0)+Dx K'Y (=K} ()-Kp [ (x)
2.4 KpY (x)=%[Dx K;;;f’””(x)—DxK;:j’“” (x),]
2.5) Dyx K v (x)=g[K::§’(x)—K;‘;;’(x)]

(2.6) K’,f’*’(x):K:’" -2 (x) ~ KZ”’”'Z(x)

=K:l;_2’v (x) _ K:—2> v+2(x)
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Theorem 3 ¢
If K¥Y (x) is defined by (1.3) the

e Ky = 2 () S KT @

@9 K w=2"[Kig -kt @]

[2a
2
[o}] _— 2 (x)
(29) KO u(x) "'\/;P (V/2+1 T V—I-l (X)
2

Theorem 4 :

If K¥V(x)is defined by (1.3) and R (n—u—v)>0
l—p —
T e +1)P(”—Jﬂ+2>F L R xt FY
(2.10) K*Y(0) = — .
n 7 (H_u—l—v—[-n) 3 1 l—z—n

Theorem 5 :
If n is a positive integer and K*™ (x) is defined by (1.3) then

(2.11) K:’”(x)=["é23 [( ){A,(x)+Bf(x)} (2 +1)
(D A+ DB |

¥ ==

(/2] [(Z"r)‘ {Ap(x)+By(x)} - (2:%1)

@.12) K¥%(=x)= i
(D4 ()+-DB, (93

¥ =
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where

Apx)="— I—y—n, > 4

1 1 1
ciy M=oy s
1F2 ;
+1,}

(R

(- 1)1 M- n+v“1)r'(2) (x )1+’v+n—2r
pa+dton L2

u+2v+n+1
X 1F2 ;3 x2
vin +1-7, v-;—n -r-+%

2
Proof of Theorems 1-5 :

r(x) =

To prove theorem 1 use the expansion of Sin¥ g and Sin® ¢ in the

definition of K’Y (x). To prove theorems 2 and 3 use the definition

of K,‘;’v (x) and proceed. The results follow after a little computation.

To prove theorem 4 put x=0 in (1.3) and use the expansion of Cos ng.
After a little simplification one obtains

[”/21 (=)' (n+1)
CP@r+D) [ m=2r41)

+9 1 (v+” oy

u+v +n

@2.13) K¥* (0) =

rl(u—{—l

X

+ 1)

M(

On using the various properties of Gamma function and the definition

of 3F, (;11 :22 *3 ; 1) the equation (2.13) reduces to (2.10) To prove

theorem 5 expand Cos (x tan @ — r @) in (1.3), use the expansion of Cos
ng and Sin ng and then evaluate each integral with the help of the result
of Erdelyi [6, pp 14 (29)]. Calculations being lengthy but straightforward.
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Theorem 6 :

The generalized Bateman K-function K*'¥ (x) as defined by (1.3)

satisfies the following diff :rential equation.
(219 XDIKF*()+(1—v) DIK}*(0)+n—x) DK™ ()
(4w K¥Y (=0
Proof : Let us corsider the equation
2.15) f ”/2D6 [smu 0. Cos?*?g. Sin (x tan e—ne)]d 6=0
From (2.15) we can write

- (2.16) fﬂ/z[u Sin#—1 @ Cos*+? g Sin (x tan g—n )
O-—(v+2) Sinut1 e Cos*+1 g Cos (x tan § —n9)—n Sinu g Cos?*+2g
x Cos(x tan @—n@)-}- x Sinu g Cos® @ Cos(x tan —ne)]d 6
Integration and the use of (1.3) and (2.2) yields

@17) (=n+2) KpM @)= 0+t KR () +2x K ()

n+l

_ “[K‘r}z:sza(x) — K #~2v+3 (x)] =0

On using (2.6) in (2.17) and then simplifying with the help of (2.2}
we obtain

(2.18) %(v+u—n+2)[Kf;:;(x)+K;“”(x)] —3+utn+2)

x [Kg*V(x)+Kg;g(x)] 2% K*Y () —u

(ki -kizemn] =0 ;
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On differentiating (2.18) and using (2.3) and (2.4) we find

(2.19) " (vFu—n+2) K25(x) + (v-+u+n+2) K¥4(x)

n+2
+2(u—=v)K(x)+4 XDy K2 (x)=0
Now from (2.18) and (2.19) we can see

en

2.20) (+u=n+) K@+ =n—v+2) K (x)

+1 n—1

+2xD<K ™ () + u[K:‘z’"“(x) —K“'z"i.“(x)] =0
If we differentiate (2.20) and use (2.6) we then find
(221) 2(x—v)DxK®” (x)+2x D2K*” (x)+2(1+u) K (x)

On substituting the value of K}"7 (x) from (2.20) in (2.21) we have

(222) 2% DIKRPY(x)=2v DK™ (x)+2(1- %) K™ (x)
12 2,
=u[Ku v+1(x) —_ K:_l v+l(x)]

n+l

The result now follows on differentiating (2.22) and then using (2.4).

. Theorem 7 :

If K;'Y(x) is defined by (1.3) then we have the following

integral and differential formulas,
@23)a f P e K (x+a)d x =KX (a)
b [Pk dx =K @)

2.23) ¢ Dg [e‘“ ng.;.n (@) e=(— 1 0 sz (a)
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Proof: To prove (2.23)a substitute the value of K}**¥ (x+a) from

(1.3) in the integral of (2.23)a and evaluate the double inte 3ral so obtained
from the results of Erdelyi [6, pp 72 (1) & pp 14 (1)]. The result (2.23)b
follows from (2.23) a and (2.23)¢ follows from-(2.23)b.

Theorem 8.

Let K¥'¥ (x) be defined by‘(l.3) then

(2.24) Dy K@U*? (x)=KX4 () - K"‘"’ )
Pioof : It is not \‘/ery hard to verify that. . i ‘
ofoo ey [K;"”(x+y)+ kz’v(x—y)]d y=2 K42 (x)
o [Te [K;;’"(x+y5— K4 (x y)]a’ y=2 DK% *2 (x)

On adding the above equations and using (2.23)a the result (2 24)

follows at once.

Theorem 9.

If K%Y (x) be defined by (1.3) then

(4 (1+v+n) ut1 "

u,v+n _ 1
(225 K (a)_7[

(1+u+v —{—n) l—v—n > 4
AR
rer = g R
+ n (v+n+1) (E_) . 1F v+n+1 v+n +3° 4
‘ ' 2

Proof: The result (2.25) can be obtained from (1.3) and the result of
Erdelyi [6, pp 14 (29)]. :
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Theorem 10. _ : :
If n is not an add integer and KZ’” (x) be defined by (1.3) then

. n-1
(2.26) Ky, (a) = /2_ ? (" Dr Dn*[ (Zi) 2 Kn+1(a)]
N T [ 5 +1)
- where Ky (z) is a Modified "Bessel function "of -the second kind. (For
definition see [10] rp 372).

Proof :
Taking #=0, v=0 in (2.23)c, substituting K;'" (a) from'(2.25) and

then using the following well known result [8]
oF1(v+1 5 224) = (Z/2)=* ' (v+D 1w (Z)
we obtain after a little simplification

P (%41 R (@= 7 (=D
sin —— (n+1)

nt1
(3) 7 e pi0-100]]
[e (2) = @-1,,,@
| T 2
provided #z is not an odd integer. Now on using the result ([6], pp 371)

10 @) ~1@ =5 (sinv m) Ky 2) |
in the abb've equation the result (2.26) follows atonce. I, (z) being the
Modified Bessel function of the first kind. (For definition see [10] pp 372).
3. Laplace Traunsform and the Generéting Function of the Generalized
Bateman K- Functlon
Theorem 11.
The ¢lassical Laplace transform of K“’" (x) as defined by (1.3)
Is given by
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(B.0)  2(=ID)m p2m+1 ((II:F ?)Zti:r,g;” = K2m 2 ()

provided that R (p)>0, (n —1—m—1)>0. m and n—1 being positive
intege.s.
Proof: From (1.3) we can write

2ms 21 2 M orm : /2
(3-2) :KZn1 x)= 3 rio( r )(*1)7 ofk
Cos2+27 (2 g) Cos(x tan g —n ) d g

Now using (1.2) in (3.2) we obtain

m
2m, 1 1+2
6y Ktw = 3 ()

provided 21-+2r>—1.
It is well known that [3]

(34) p. 22521 (1= py=i=T=1 (I4p)=n-1=T-1 = K22 (x)
By virtue of (3.3) and (3.4) one can easily verify

N |
K ?@=2 3 (=1 (2)p(-pymt=r=1 (14 pymis

r=

B e C NN
=2, % ()0 A=

=2(—1)m (1 — p)p=t-m-1 (I_I_p)—n—l—'m—-l pam+l
This completes the proof.

Theorem 12,
If KZ’“ (%) is defined by (1.3) and ¢2'a, b, c,; z; o, B, r) denotes the
generalized Hypergeometric series function (for definition see [6], pp. 385)

then the generating function of K" (x) is given by
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o
- amsal o 2(—T)mg2lel )
69 3 (= K= 5T ST ey [—-l—m-—l,—l—-m,—l,
c. _l-I—x
QI+1); ¢, —t, = t]

provided that | x | <1,
Proof: On multiplying (3.1) by (—1)nx" and summing from 0 to oo

we find.

a0 — 2m+1 QO 1 — n
3.6 - 2ms 2l oy 2 (=1)m p2m+l [_p
( )niO( D Ko =" =y n“o( D T

. © I-p\" 1+ ’ 14+x
1nceni0( mx 5 = +1 T—x
hence (3.6) reduces to

. @© ‘ 2m, 2l
3.7) I (=DrxnK5P S (x)
n=0

2(=D" _a-r— 1 mimm _1_—_[ l+x
=P P ( 2 1+ 14— ( _x)]
Now wsing the result of Erdelyi [6, pp 222 (5)] we obtam
(3.8) t21+1qbz[—l—m——l,—l—-m,-—1;(2l+1);b,—t,—if;t]
B 1 \=—m-1 1 \~l-m I 14 x\"1
—= pn (2] I P - ( - )
plr@+2p ( p) (1+p) T

On comparing (3.7) and (3.8) the result (3.1) follows atonce.

4, Connections of Generalized D.teman K-Function with the other

Special Functions.
In this section K:‘l’v (x) has been expressed in terms of whittaker

Confluent Hypergeometric function Mg,x (x) and also as finite series
of the terms involving parabolic cylinderical function Dy (x) and

generalized Laguerre function Lr? respectively. The infirite series
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involving the sum K" (x) + K’ ” (—x) have been expressed in terms

v

of the Hypergzometric function ;F; ( Z 'x) 1F2 (Z

Bessel function of the second kind Ky (x) and the Weber function E; (x).

), the Modified

For the definition of the special function M (x), Dy(x), L (%)
and E; (x) see Wittakar and Watson ([10], pp 337 & 347) and Erdelyi
({71 pp 369 & 372) From now and onwards we- will write K" (+x)
for the sum K77 ”(x)—l—KZ’” (—x). This fcllows from notation (1.5).
Theorem 13,

The generalized Bateman K-function KZ’”(x) as defined by (1,3)

. : . ) (x).
is related to the Whittaker confluent Hypergeometric function Mg, ,u)

according to the following identities.
o wamal . 2Tm(=Dnel=l o
D Ken™ O ="rarram+y - Dx
[Xl T

where m is a positive integer and 1+m >-1

I+%

n,l+m--} (Zx)]

(4.2) Kgg 2 (x) —(— 1)@-1( 326_)
< 2 (NG v

_ [ Mn—l— 5L l+r
- Proof : From (3.1) it is easy to see that

2¥)-M "

-4, 13135

: 2ms2l — _ 2-{—1 —l™2 —L)ﬂ_l_m“l J— —n—l—‘m—'l.
43) K x)=p2(-=1)°""p (1 , (1+p)

where R(p)>0, m and (n—1) are positive integers and R(n—1—-m—1)>0 i




- [47]
Also by virtue of the result of Erdelyi [6, pp 215 (10)] we may write

! , RSS!
@h =™, 13 @D =0 o1 amy2)

p—-2] 2m—'2(1_1_)n-[—m—1 V(I+L)~n—l“m_1
p p -

where R (p) >0 and R (1 4m)>— 1.
Now by virtue a well known property of Laplace transform [6,
pp 129 (8)} and (4.4) we have

2 [ I+m »
Dy [x Mn,l+m+%(2x)] , ;
—_] ~l~m~ ~n~l~m~
=p[21+m4l—1[](214_2’”_]_2)1) 2[-2 (1_%)n m 1 (1+L).,n I~m=1

p
provided (1—m) >-1.
On comparing (4.3) and (4.5) we obtain the result “. 1) under the

conditions mentioned 1n the theorem. ,

4.5)

Remark :
From (4.2) it is obvious that

1
KiZ”Z’ (®)= 0 (x +2) as x>0

Also one can Verrfy that (3.1) can be simplified to -

m - —l=r-1
(4.5) K%;"’Zl (x) = 720 [xr(:n) gp(l_p)n mr

F= )
—n—Il- n—Il—r ~n—=[—r—-1
(a+p " p-p""" " (1+p) g]
Now from the result of Erdelyi [6, pp 215 (10)] one can deduce

@n At *M' L Iy 2 %)

Zlere Clmre1
=p(-1)"""" 12’+r+’r'(21+2r+1><1—p)” = 1
| ST
and
@8 KTTE @ %)

n+414r
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—I- ] —l—=r —n—=Il-r-1
—p=" R p ey a-p)t T T
On using (4.7) and (4.8) in (4.6) the result (4.2) is obtained without
any difficulty.

Theorem 14.
If K™ (x) is defined by (1.3) then

—2l—2r
ms ol n—Il-1[{m 2 7
49 ¢RI AG 0 = : (- D) (r)["(n+l+r+1)

r=0
x[(n+l+r) D;‘_l-’_l (xn—}—l—}—r— ‘e_x) + D’;_l" (xn+l+r e’—x)]

Proof : From (4.6) it is not very hard to verify that

-1 m —1-1 —21=2r
@10) ¢ EX KA (—’2‘«)= s (-1t (’”)2 !
r=0 ¥ ;

-1- —-n—I- —l=r41,
.[pn I—r (1+p) n r+ pn r (1+p)
On using tae result of Erdelyi [6, pp 144]
@iy Drfafe = pr@tn s a4n T T LR (> -1

and the equation (4.10) the result (4.9) follows after a littles computation.
Remark : From the equation (4.9) it is a easy to sée that

(e,—-—lg X xm-}—n-}—l)

-—n-—l—-r—l'J

K2l (x) = 0 as x—»00
Theorem 15

The generalized Bateman K-function K' (x) as defined by (1.3) is

related to the Laguerre function L: (x) according to the following

identities.

@12 &F K2l () x) = néo i 1( )( o)

r 7

2142

P(n—i—

oy [+ BEE - =) B2 )]
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n—l—1 T[(n—1=m)

22! — y 1Y .
(413) K (n)=2(-1) TGt EEm 1)

provided 1 m>-1.
‘ 1
Proof : If we multiply (4.9) by e* * and use Rodrigues formula

¢ D" [xn+a e—x]= ntx® LY (x) we obtain (4.12)

X

Again from the definitions of M 1. %) and L: (%) ie.
P‘ — k +V2 R x)

2u-t1 ’

F(a+n+lL ( -n
T+ VI 1+’a’x)

(4.14) Mk,;L (x)=x“+%e_%x 1F; (

(4.15) LZ )=

we obtain

@.16) M _TQr+ 1)k ~r+1) p,_{_% _%x 2“ e

P S e R Le—u-4

On s:.ubstituting the value of Mn, Im+} (2 x) from (4.16) in (4.1)
we obtain (4.13). '
Theorem 16

The generalized Bateman K-function Kz‘” (x) as defined by (1.3) is
related to the parabolic cylinder function Dy (x) as follows
). m (=1 (" ) U= el

4.17) K22 (2 )= N A 8
( 2n (2 =9 2,1_1_,._*_% r.(21+ 2,._%) l"(n-i—l—l—r—l—l)

Celer—1 . .
) (=1 21417 Q21 4-2r +j—1%)
_[(n+r+l) 2 I(G+Drn=1-r-j) .

Jj=0
D2 n=l=r=j-3) (5/7 X)

n——l—r I3
(=1 2TQI+2r+j-1)
—r=] i 2
to=r=h E TGHADT@=I=r=j5h) -

P2-tmr- ey VT ]
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provided m is a positive integer and m  n—1-1,
Proof : We know that [8, pp 209]
. P @=bt) b o
a s :
(4.18) Lo (x)= E Ta=BrG+D —, ()
From (4 18) 1t can be shown
Con=l-r=1 x. —n+ltr+l
(4 19) Lzl 2: (x) (_- 1) | r— - %e%xz 7+r+2
-1 T Q+2r=)
y n—l—zr—,1 (=D rQl+2rtj-5 T3
20 TGDL=1=r=0) D2tn-l-r=j-p V2
n—l-r —% i-x -—n+~l+r—1}‘ :
21+ 2r _ (-1 X
“420) Lo ()= I"(21+2r—l)

A y 2T @l +2rtj=8) 1 :
j=0 I"(]'i'l)r'(n iy - r—J—H) 2(n l—r—]+1

" Use.of thése results in (. 12) ylelds (4 17).

)(\/2 x)

Theorem 17 : . T
The sum of the series mvolvmg generalized Bateman' K-function

K”’v (x) as defined by (1. 3) can be ex-ressed in terms of one of the spec1a1
functions, 1F2,( B, r ; gc),_lﬁ ( gl )and E, (x) as follows

- |
( 1) fn u+1 V+1 e
w2 +1K *1” ”( 3 )

utl

o B e G KRR
R, o)t T e )
5 3 — r1+5) , .

o fEEY
: ik ' ST
TR <:1 +v v+3 4‘>

272

vii{héfe v is an'odd positive integer.
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amen_l_
2l+1(_)m1n"2m’e't B -2m
= T Twm—2mt1l) 1‘1(n+1—‘2m’ ’)
provided R (n-2m--1)>0
o) ,
A D" 2,0, — 2 (e )
(4.23) nil'—Zn—Kzn (+ W=—Ile* + xEi(-x)—1]

Proof : Using the definition (1.3) of K2'” (x) we have

Qo —n
@2y 3z DU gwo + %)

=0 Zn4-1
/2 '
-—-—*meu § Cos® § Cos (x ton 0)[ gn—[—i Cos (2n4-1) e]da .

Since the series under the integral sign has the sum v}(see‘ [4], pp 98)
hence ' . ' ' '
. /2
(4 25) 2‘, 5 -}-)l K“’ +1(+ x) —-f Sin% g Cos® ¢ Cos (x tan 0) dog

Now on evaluating, this 1ntegral with the help of the reSult [5, pp 172]
the result (4.21) follows atonce.

To prove (4.22).consider the result of Erdelyi [6, pp 215 (10}] in
the form

n t
T =y | %
e
(4.26) = -M oy ()= pmei(l4p)TnTl
; 2 . 2 ,
Also it is not very hard to verify that
1

@) eyt 3 () gt ()
; j=0\J/ " .. o
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Now if we take the inverse Laplace transform of (3.1) and use (4.26)
and (4.27) we then obtain

! 1 2ms n-l-2m-1
428 s ( ; ) gz bt )
j=0 \J
2 1
1+1 g T
l:————z (+n—-( ml-)l-ml) t? e T M . " ®
‘ o ptmEhy o

On using the result [6, pp 386]
Mkl -3 x (%-Hl+k,‘ )
Mk, u(x)--x e 1F1 Ml P X |
in (4.28) the result (4.22) follows under the conditions stated in the theorem.
In order to prove (4.23) abserve that

0
) i ("’ ])n Usv —
(4.29) El o K, (+ %
/2
= 4 f 6 Sin% g Cos% § Sin (x tang)[ I) Sin 2n 0]0’0

Now 1f we substitute —§ form the sum of the d series under the

integral sign [4, pp 102] and take =2, v=0 then (4.29) reduces to
wf2

(4 30) 2 o G I) K‘2 (F 0= —\f r2-(tan™1 /) Sin x ¢ dt
Evaluating the integral on the rlght with the result of Ditkin [5, pp
278] the result (4.23) follows after a little simplification.

~Thearem 18 :

The series involving the sum K" (4 x) can be expressed in terms

of the Modified Bessel function Ky (x) as follows.
If

_m@m=1).. (m—n+1) 2.4.. 2m
ol )= (m+n)’ﬁ( " =35..0miD)
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Then '

m
4.31) s, a (m,m) K"”’ (+ x)
n=0

v+1

=(3) [ﬂ(m SR /Y ¢ )

TV ( +m+2) vJ2r1+

1

®© (_ ])TL Uus v
4.32) nio Inrl Kono1 (X %)

K +v+3 (x).] ’

(_1)u VA 'Du[ utv-+4
Proof : Iti is well known that
®
4.33) 2 5  a(mn) Cos2ng==¢(m,n) Cos2m g -1,
n=0

where o (m, n) and B (m, n) are defined above.

From the definition (1.3) of K’ ” (x) and (4.33) we have

I 48

(4.39 a(m,n) K" (£ x)

n=0

/2

=——me“ g Cost g Cos (x tan 9)[ b a(m n)Cos2ngldo
n=0
0

= B (m, n) KPV*2"— K7 (x)

Now setting u=0 and using (2.9) in (4.34) the result (4.(31) follows
after a little simplification.
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To prove (4.32) observe that

® (=D" v
K2° (£ x
nio T2l Tamelb (=%

/2
oo
-——meZu g-Cos? g Cos (x tan 0)[ 22 ( ) Cos (2n+1)9]

~ On SubstltutmgT for the sum of the series (see [4] and using the
result [5, pp 172] the result (4.32) follows without any difficulty.
5. Integrals Involving Generalized Bateman K-Function :

If f (x, £) is a known function of pand ¢ then -
w -

8 def [ f (5 0 Kp () d x
0

is called the integral transform of K;;'* (x) and f(x, #) is called the kerne!

of the transform. In this section a féw integral transfornl\s of K?Y (x)
have been obtained by choosing kernels in different forms. The Laplace.
and Mellin transform of K" (x) have been obtained and expressed

as a finite series of Hypergeometric functions. It has been shown that

—-x— x/2t

taking the kernel f(x, )=e . D (2x/\/21) the transform of:

K“’U(x) is a finite series of the terms involving G-function G o g( dis- Z;)

(For. the deﬁnmon of -G-function see [7], pp. 206) - Kernels 1nvolv1ng
exponenﬁal and the Bessel funct}on of the first kind J,, (x) have also been
considered. (For the definition of Jy (x) see [10] pp 355). It has also
been shown that by giving special values to . the ‘parameters the product

K %) Kp v

(x) can be lntegrated and expressed asa ﬁmte series of

the generallzed Bateman K-functlons
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Theorem 19 : 
If K'Y (:x) is defined by (1.3) then
o n—1

sy flrp@ =G @7 - %~O[K§;’ii‘ _(x).]‘?Z

yr=
0
Proof : From (2.3) we have
(5 2) Dx Ku;‘v(x)_*_Dx z:—vz (x) Ku v (x) th s (x)

On multiplying both" sides by K”’v (x) and then by K 1”2 (x) we
obtain after addition C
g 2
e o) i 2 <x>J
On repeating this process it is easy to see that
n-—1

(53 3Dy g s . [K;}v (x) +K5° 2]- z [Ku, v(x)] [Kum(x)]

==

~ Since Kg;lv (x)—-0 as x—-oc hence the integration of (5.3) with u=0

gives
(5.4)][K°’”(x)] d x— f [K° ”(x)] d =1 2 [K”’”(0)+K§’r’i 2(x)]

Now evaluatmg the 1ntegra1 on the right with the help of (2.9) and the
result of Erdelyi {6, pp 127 (1)] and s1mphfy1ng with the h‘elp of (2 2) the
result (5.1) follows after a little computatlon

Theorem 20 : o .
If K™Y (x) is defined by (I. 3) then
[ve]
CONN § AFOR Gl X F IR
0
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Lo+ =% _ [gov n=le 32
repe  fre] - s [ @]

Proof: It is not very hard to verify that
o0

fe_y[K:‘U (x+y)+sz (x_».y)]dy=2 Kz””z )

U

) (e 0]

Je‘J[KZ’U;‘(x-I-y)-—K;l’v (x—y)]dy=2 Dy K:‘i’ v+2 )
V]

On adding the above equations and using (2.23) a we abtain the recur-
rence relation

(5.6) Dx K'Y ()=K;? ()-K;" (x)

Now if we multiply (5.6) by K} (x), - take u=0, replace n by 2n
and use theorem 19 we obtain (5.5.) after a little simplification.
Theorem 21 ; |

If K" (x)is defined by (1.3) then its Laplace transform is given by

[o¢]

n—"l n-r—1
5.7 “px K9V () d x= Q:L)-.—[K“’”o Ko ]
( ) bj.‘e 2n (x) L X rio (1+p)" T ( )+ +z(0)
utl v+3 o udl
[ —P]n'l F( 2 ) ( ) By L AT
I+p) = (u+v 4 2) u+v+ )

where | arg p*2 | <, R (p) > 1 and K“’” (o) is glven by (2 12).
Proof : Let us denote S

(5.8) LYY (p) =pf,e‘l”é K¥Y (x).
0
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Using the definition (5.8) and the result (2.3) it can be shown that
(5.9) Ly, (9)-L3" (p)

2n~

[ (o)+K“’“(o>] Oﬁ (K4 K52

From this it follows

G10) L=+ 2 K@+ K )]

Using the formula (5.10) success1ve1y we obtain

(1D LY )-(T+—j§)" L (p)

S n~r=1
+p E Lo [K"’“(o) K, ©]

o I+p" "
Finally
BEe'o) w2
(5.11) LZ’"(p) =% { “Pfomu g Cos® 4 Cos (xtang)dg dx
0 0 ,

~ o
=lf —px _ﬁ_gi(_x,ﬂ__dt dx
o v a+ml

On changing the order of integration, which is valid by de la Vallee
Poussion theorem [2, pp 5041, we obtain :

e
Lo ()= f +v fe“?x Cos(xtydx dt
"0 (1+t2)“ +10
which may be written in the form.
f
o , 2p 1 fu
TP + 12 (1+ﬁ)u+v 1 .
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Now evafuating the integral in (5.12) with the help of the result of
Erdelyi [6, pp 310 (23)] we obtain

r (u-;—l)r(u-;—3)2Fl< 1, u-zi—l;l_p_2>

(5.13) L‘g'”(p)=7_t~ r(”+ v, 2) uv
)

On substituting the expression for Lg’" (p) from (5.13) in (5.11)

prov1ded that | arg p2 | <7 and O<R(u+ 1)<R(

the result (5.7) follows atonce,
Theorem 22
If K”’” (x) is defined by (1.3) then the Laplace transform of

K5, (x) is given by

n+
0 ) ; .
| ’ 1_ D n—T 3 )
(5.14) Uf P K, ”1 (x)dx— 2 (u+ Dind [K“T:’~l(o)+K;‘Tfa(o)]

u+v+3 u+1
u+1 u 2 2,
Z

ut+v+3 u43
‘"(1_,,)nB(u+3 v+1) F 27T \
d+pm 2 27 ) P utvgs TP

2.

where R'(p)>1, | arg p~2 | <= and K}’” (0) is defined by (2.12)

§: “Proof : The proof is exactly'similar to the proof of theorem 21,
Theorem 23 :

If K'Y (x) is defined by (1.3) then the Mellin transform of this

function is given by
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'oo r u s fv+n+1+s
oo e £ I

: l-n —n utl-s
=\ |l 2 2T 2 .
X (C°SzS/-3F2[ —vmn—s 1]

1
z 2

1- 1—-
s 1+
.oom 2 2 .
+ n(Sm TS) 3F2[ u+ n-ts ’ l ]
Lol
‘provided that (n—u—v)>0and {s| <1
Proof : Observe that

w .
fxs‘l KV (x) d x

.

[00] T
?-z’f .I 2 Sinu g Cosu ¢ Cos (xtan §~ng)y do dx .

'rr/2 o0
_—fslnuo Covuafxs 1[ Cos (x tan §) Cos no+ Sm (x tan 4)

Sinn ¢ ]d x,dg
Now evalﬁating the inner integral with the help of the results of Erdelyi
[6, pp 317 (10) and pp 319 (21)] we obtain after a little simplification

o0

" y
(5.16) f X1 K2 (%)
0
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o
= ~7.2__ T (s) l (Cos —;;)j Sir#7s g, Cos"*59.Cosn g dg

71';‘/2 l
+(Sin ; s )f Sinv7s g Cos**s g Sinngd ¢ s
0

By theorem 5 we know that if R (# —u—v) >0 then

/2
(5.17) if Sinu g Cosx 9 Conn § dg
’ T Ji
0
u v+ n l) l—-n —-n u+tl
_ir(2+1)r(2+2 Fz[z ’ 2’2-1}
T = ut v+n 3 , 1l—v—n ?
r(1+ x ) P
It can be easily shown that if R (n—u—v+-1)>0 then
/2
2 . .
(5.18) 7(!811149 CouvgSinnode

T (1 +u—}— v+n)

T (ﬁ;—”)r(l +—§—) ] [1—2-"’1;__"’14%_-1]
— - 312 ’.

3
3, 1-

Using (5.17) and (5.18) in (5.16) the result (5 15) is established under the
conditions stated in the theorem.

Theorem 24 :
If K'Y (x) is defined by (1.3) then
©
o —tiiyt
(5.19) [t RIm G 4

=(—1m 2—=yp)2m (y—-1n"imm=1 2l 27272m
provided that (n—m—1~1)>0, n—1's a positive integer and R( y)<2.
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Proof : From (4.6) it is not very hard to deduce that

— 1
(5.20) TRV K22 3y 1)

=2 2,0 ()G G- G

where (n—1) and m are positive integers and R (n—1—m—1)>0.
The result (5.19) is clearly a consequence of (5.20.)

Particulars Cases.
If we take y=1 and y=2 we then obtain

e 0}

Corr 24.1 fe—tfz K22 3 =0
U

0
cor242 [ K2 (1) d1=0
Y

Also if we set m=0 and y=x2in (5.19) and differentiate both sides
with respect to x and then use the Rodrigues formula for the Legendre
polynomial (for definition and Rodrigues formlua see [10, pp 302])
we then have, ‘

00
. * — 1 2
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provided that 0<x<1 and R (1) >—1.
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Theorem 25 :

If K}’ (x)is defined by (1.3) and D, (x) denotes the parabolic

cylinderical function then for t>0 we have
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Proof : From (4.6) we have
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Now by virtue of the result of Erdelyi [6, pp 133 (35)] and (5.22)

we obtain
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If we denote the Mellin transform of f (x) by F (s) defined by

A @
F (s)=fx-“I f(x) dx
0
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and represent this equation by the symbolic notation F (s)%f (8) then

we have the following well known result (see [9], pp 351)

Lemma :
If £ (t)—s’"— F (s) and g (£) %— G (5) then
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Now with the help of the results of Erdelyi [6, pp. 336 (1) and
pp. 312 (1)] and (5.24) it is easy to Verlfy
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Again from the results of Erdelyi [6, pp. 238 (1) and pp. 133 (35)] it

is obvious that
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On comblnmg (5.25) and (5.26) we obtain a well known result
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- No from (5.27) it is easy to see that ‘ _ :
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On combining (5.28) with (5.23) we obtain (5.21) without any difficulty.

Particular Cases :
If we set w=}% in (5.23) and use the result

m
= m
2 ( i ) m m) e
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we then obtain, after a little simplification, an interesting result ‘
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Again if we use the result
m—1
1 — 2131 2
Aa+vmm=(2)en © e

in (5.29) we obtain another interesting result.
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provided >0
Theorem 26 :
If K'Y (x) is defined by (1.3) and J;, (x) denotes the Bessel function

of the first kind (for definition see [10] pp. 101) then

o
—p—1
63 [xT" T n o0 KM () dx )
0
- -1 —w—} 2w
=(__1)n 2l+w W 2K§£f2w’2WT2m )

Proof: Let f(#) = p F(p)then from the result of Erdelyi [6, pp. 132
(32)] we have
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Now using (3.1) in (5.32) the result (5.31) follows after a little
simplification.
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