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SOME APPROXIMATIVE METHODS FOR COMPUTING -
CROSS-SECTIONS

JERZY RAYSKI
Institute of Physics,
Jagellonian Universiiy,

- Cracow* /

Abstract

Some viable methods of computing approximatively the scattering
amplitudes and c¢ross-sections in the strong coupling case are discussed.
These methods consist in combining the procedure of . iteration with an
extremalization, enabling to achieve best fits of some free parameiers.
“The problem of transition from the case of scattering on :an external
potential to the case of a mutual scattering of two particles is discussed

ancew.

1. General Procedure.

A viable method of computing cross-sections fiom-field equations
or from the Schrodinger equation in the strong coupling case is unknown
except for the phace shift analysis. This method is, however, cumber-
some except for the limits of very low and very high eneigies where one
may either restrict the investigation to the first few terms.of the expan-
sion into the Legendre polynomials or use the asymptotic expansions,

We shall discuss some alternative methods of appreximative
calculations, 'valid for arbitrary values of the energy and of the coupling
constant. Generally speaking, these methods- consist _ig_l a best fit of
some free parameters introduced into the expression for the scattering
amplitude. The general idea of such piocedures: will be: explained . on
a simple example of elastic scattering of particles withinthe framework

*Address : Reymonta 4, 30-059 Kygkgéy_, Poland. -
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of noa-relativistic quantum mechanics but these methods may be also
extended for the case of relativistic field theories.
Let us look for a stationary solution

W (@, D=4 () e 77 M
of the Schrodinger equatlon The time-independent wave function
satisfies the equation ‘

i .
- %72 9 = . 2
(- o 724Y) § =0 b ) @
Assume ¢ (r) to be of the form
v, § )=y )+ BT @)
‘where the plane wavel satisfies the equation for a free partlcle ie.
m:p_z . ) By ‘ (4)

Introducmg (3) and (4) iuto (2) one gets an equation for the
scattered part of the wave function

(V24P x=2m V (e PT ), )
The use of the retarded Green function
ZP r
G =g, & o ©®)

enables one to replace the dlﬂ‘erentlal equation (5) by an mtegral

equatlon

x(r)= —Ilqkfdwi%{—'—/‘/ U [x(r)+e’P"] )
with ' S - s :
= U=ImV. 8)
Representing the asymptotic solution for large r in the.form -
. ipe
x (= ®

one obtains the- scattermg amplitude f whose squared absolute value
denotes.the differential cross-section,

1. The absence of a (dlmensnonal) factor at the plane wave means a specnal
normalization : one particle per cm3 in the incident beam.
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In the weak coupling case the equation (7) may be treated by the
wellk known - procedure of iteration starting wi:th a suitably chosen zero-

order approximation. By putting to the right-hand side of (7) x(o)“-—-o
one obtains Born's approximation which, however, is legitimate only if
the interaction is weak. A possibility of improving the approximation
consists in introducing to the right-hand side of (7j,‘ instead of zero, a
function dependent on a certain number of parameters

0 : : N
x( )=E (", P; Uy e GN) ) ) (10)
and trying to make a possibly best fit of the parameters.

The equation (7) is of the form v o
, - x=F (%) ‘ ‘ ‘ 11
where F means a linear functional. Let us consider, more gererally,

the linear relation :
21=F (£). : , - (12)

The function 7 may be regarded as an approximate solution of the
equation (11)if it differs little from £ Of coursé, one has to define
properly the sense of ““y differing little from £, 1f these functions were
squai'e integrable, then we could use, as a criterion, a small quadratic
deviation in the whole space but, unfortunately, the outgoing wave,
being a solution of (11), is not square integrable. The way out of this
diﬁiculty is possible due to the short range of the interaction. In fact, "
depends only upon the values of £ in the region of small r, of the order
of magnitude of the range of interaction (unless one assumes £ to
increase unreasonably with 7). Therefore it is sufficient to secure

AEMD=[d3r|n—-¢]2 R (13)
r<R o -

to be small, where R denotes the range of interaction, in "order to
guarantee 1 to be an approximative solution of (11), provided £ has
been chosen to be a decreasing, or at least, not increasing function for

r?R.
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A very simple possibility of obtaining an approximate solution of
the “equation (1 1) or (7) will consist in intrcducing into the rlght hand

side'a constant -

EX(O')=a, - 2 (14

computing 'nEX(l), and trying to minimalize the integral (13) with
respect to a. Another possibility is to start with a constant (14),
compute the total cross-section in the first and second iterative a‘pproxi-
mation and fix the value of a from the condition }

A D . S s)
A crude but still simpler possibility consists in the following: supposing %

to bz a slowly varying function in the ‘domain r<R we ‘may determine

the parameter a by computing x( ) at the pomt r== _-0 and equatlng it to a
' 1 o

" = as)

- Better approximations may be obtained with the ‘help of suitably

chosen multi-parametric funciions of the type (10) and minimalizing the
expression (13), 7.e. determining the parametérs from the equations

M -
oA =0 where A( ) fd3 , x(") (O)I . (16/)
9 o -
with j=1, 2‘ , N. This procedure of minimalization may be still

reﬁned by combmmg it with higher orders of the prOCedure of lterauon
ie. performmg n rteratrons and requrrmg -

n : .
aaA(, )'—0 where A( n)_ fd3 r x(n) (" r) | 2 v*’(16‘)-
. rgR . P
Alternatively, starting with an N-parametric function (10):the parameters
may be fitted at the pomt r=0 by performmg N iterations and
demandrng L S
1D 0= ® ©=... .4 <0> L
It should be stressed that for large values ‘cf ihe coupﬁng constant
the convergence of the iterations to a solution is not guarant‘eed‘
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Novertheless, the conditions (16') er (17) do provide us iWith ‘Bpproxima-
tive solutions. The question whether this approximation: is. gcod or
poor. depends essentially upon the proper choice of the starting-point
function (10). This choice .is limited by the requirement of obtaining
a viable procedure. To this end the function (10) must bte: chosen
sufficiently simple for the integrations to be performed effectively.
Moréover, in order to get simple conditior.s (168’) or«(17) ¥or the para-
meters it is advisable to introduce (10) in the form a linear function of
the parameters. ‘In the chse’of spherically symmetric  potentials “a
plausible and sufficiently flexible form of the function (10) seems to be

19 (1, cos f)=s3a e~ Pargvpr - (18)

: TRy kv -
with p=0,1, ...., M, v=0, +1, ...., =N, and a.is the reciprocal of
the interaction range R-1. . . R ,

A drawback of the above described procedures is that they do not
provide us with estimates of the limits of accuracy of the approximations
but, at any rate, they yield a criterion enabling one to estimate which
one of a set of approxlmatlons is the best. Considering two starting-
pomt functions ¢ and ¢ of say, quite a different form and di ifferently
parametrized, and computing » and n 1 fiom the (general) formula (12) it
may be ¢laimed 7 to constitute a better approximation then n if

AEDSAE (19)
with A (£, n) defined by (13). Then also the value of -the cross-section
cagnputed with the help of u will be more reliable than that computed
with the help of n. Thus, A (E, M) may be called -the “index of ‘re-
liability”. The existence of a criterion (I9) enables one to undertake a
moie systématic search forsuitable forms of starting point fx_nctlcns

In many cases (especially in relativistic Ih-.OrlﬁS) it is edsier to work
with Fourier transforms y (&). For the Fourier transform’ equations
of a similar type as (7) or (11) hold true aswell. If we happened to

choose for x(o) (B) the'true solution, then x(' ) zk) would be identical
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with x(o) (k).  Herefrom it is seen that introducing a suitably chesén
starting-point function

xO)=¢ &, p, 01, .:..an) oY)
we shall obtain-an approximation to the true solutmn by -Tequiring the
following conditions upon the parameters

L 16

210D i

These conditions correspond to the condrtrons (16’) because the region
k R in the k-space corresponds roughly to the region 7R inthe
Xx-space.

The condition (16*) may also be replaced by a still simpler condition
for the parameter fits, namely :

fda | 4™ @) 2= D @) | 2=min (6%

at the surface of a sphere £ R=1 or (k R)2=
2. 'The Yukawa Potential.

The above described procedures may be illustrated by an example
of scattering on a Yukawa potential. With the simplest choice (14; we
have in this case '

I G ip|la=+'| ,—ar TR
()(}_ 2 g3 ’el,.._,.r, er’ (q+.€lrp_",k) - (0)
with |
’ 2m a2 m :
C=2 #=%, - )

where m denotes the mass of the incident . particle (nucleon) and a is
the pion mass determining the range of nuclear forces. In this case G
is very large, almost two hundreds (or, replacing m by the reduced mass,
still of the order of one hundred).

From (20) we get

| '( . e )
X(l)( 0)= Gafd3 erlprza)r +ezp.r). Y @)
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With the abbreviation

=2 : -
the condition (i5) yields ~
X
dn (1=ix) 1—17 '
a=iG SR p ’ 249
1-G- ii - .

The parameter o becomes fnﬁnité for G=1 and p—0 which, however,
is very far from the experimental value of G in the case of scattering of
nucleons subjected to nuclear forces. For large values of G the para-
meter o bscomes actually independent of G
1ima=-—(1-i—)ln(l-—ix)-—->—]. (24")
Goo * 2 p—>0

In order to compute the scattering amplitude and cross-section we

have to evaluate x( ) for ar 2 1 and find

O =1 o) @ @
where ‘ ‘
g) Gaa elpr fd3r fipr'cos o' - (26)

while Xg) is the term well known from Born’s approximation. The
scattering amplitude defined by (9) also consists in two terms

f(” ff\)+f”) , : o)

| . N ‘
where fAl) follows_from (26) and fl(SI) is the usual Born’s amplitude.

f(l) a a + 1 - S - (27)
. 1—!~——x2 14x2 sin?—i— _ o

with a ﬁtfed from the condition (24).

Hence,
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The differential cross-section following from (27) is

46V _G 1 2 Re el »
dQ S <1 +x2 sin2%+ (l +—i~x2) (1+x2 sin2%)% (1 -+—41Tx2)2>.(,‘8)

where

(G—l——)iz) arc g x+ /n (1+x2)

2Rea=~ %G Z(G vy 2 (28"
b *4—' ¢
and ) '
: 2 B “ B B
G2 (1+%)[fln(1+x2_,s)2+(arc tg X)?] o .
|| 2== : (-8")

x G174 %z

From the above formulae it is seen that, contrary to.the weak . coupling
case, where the order of iterative apprcximation coincides with the order
of the power series expansion in G, our approximation exhibits a
complicated dependence upon the coupling constant and has nothing to
do with a power series expansion in G. Of course, for very small
values of the coupling constant (G < 1) the parameter o is proportional
to- G so that the first terms in (27),'Ab¢ihg“ of the order G2, may be
neglected in comparison with Born’s term which is ofthe crder G.
Heénce, for small G our formulae go over into Bern's-approximation.
For G 2= 1 the absolute value of o becomes very large so that the cross-
section would assume a resonant character (which, however, may be
regarded as a sign that the assumption (14) constitutes a bad starting
paint in this case). For very large values of G in;c'omparison to unity
the cross-section ificrease again like G2 inasmuch-as, according to (24"),
the parameter a becomes 1ndependent of G.

By evaluating the following integrals

' 1 4
f do——— =Y (), f do

"y
2 5in2-Z.
1+4x2 sin 5

1 _ 4n
i : 2- 2
(1-4+x2 sin? %) I+x

29
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we get an exp’ress'ion for the total cross-section i
2 2) oF o S
(l)~ 41: G { +2 Re In (l-l-lx ) + ad 2} (30
) x2(1+4x2) (l+ x2) S
where Re o and | a | 2 are given by (28°) and (28"). Thus, we obtalned
closed formulae for small as well as medium and high values of

14-x2

momeantum.

For small momenta our expression for the differential cross-section
(28) shows that the scattering is less anisotropic than according to the
corresponding formula of Born. By developing Born’s expression for
thp differential cross-section into powers of x one encounters an

anisotropic term x2 sin2 g— whereas in our case (for very larée G) this
term is cancelled by a similar term arising from the secoxd term in (28)
£ . i gt - - 3 - . . . . ‘ . ! 2
so that'thé lowest order anisotropic term in :28) is (x2 sm2%) .

Of course, owing to the crudneéss of the assumptions (14) and (15),
it cannot be expected the formulae (~8) ard (30) to describe accurately
the differential and the total cross-section. In crder to obtain a better
agreement one should intrcduce more sophisticated starting-point func-
tions and more elaborate fits of the parameters. Nevertheless, this
crude approximation alrzady exhibits some qualitative and quantitative
features of the elastic cross-sections in the strong coupling case. '

3. Transition to the c.m.s.

In most text-books about scattering problems it is stated that .the’
transition from the case of scattering on an external potential to the
case of séattering of two rarticles (interacting by means of a potential
of the same form)may be achieved simply by replacing the massm by
the reduced mass. The proof of this fact has been achieved by separat-
ing the relative motion from the motion of the centre of mass. However,
in this case one has to do with a description of the motion of one of the.
two colliding particles in a non-inertial frame of reference whose origin
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is fixed at the position of the other particle which gives rise. to- doubts as
to whether this: procedure remains ' valid also for the case .of highly
éﬁergetic collisions in the relativistic theory. Besides, this approach is
certainly unphysical since one never measures the relative coordinates
but always coordinates of the particles with respect to an inertial frame of
reference. B '

Therefore we shall discuss the problem of transition from the case of
scattering on an external potential to the case of a mutual scattering of
two colliding particles anew in a more methodological fassion. To do so
we may start from a Schrodinger equation for two particles

( 2m1v1 2mZV2 +V ( | fx"fZ i ))\l’("l, f2, t)-‘-'—‘l—\]l(fl, r2, t) (31)

and look for a stationary solution

v (ry, r2, )=V (1, r2,) e 1© ! SR 1 1)
Let us perform the separation of variables by going;over from ry, 2 to R
and r where R describes, as usual, the coordinates of the mass centre
but r does not mean the relative coordinotes but is defined as follows:

_m . _myry+mary
M (1‘1 1’2), R= _——““‘M (32)
where M -means the total mass of the system
M=m1+mz; (32,)

The physical meaning of the new coordinates » becomes clear by remark-
ing that : ;
r =1 - R(r, r). ) 33)
Thus, r denotes the coordinates of the first particle with r"é’spect to an
inertial coordinate system whose origin coincides with the centre of mass
of the system. - This has great methodological advantages because one
can measure directly positions, momenta, etc. of a particle with respect
to an inertial frame of reference but not with respect to: the other particle
inasmuch as — in the latter case — we should “‘sit on the ‘other particle”
together with.our apparatus of measurement while this particle  itself
undergoes an acceleration. The motion of the centre of mass being
uniform, it may be brought to rest in an inertial system of reference. « If
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the centre of mass coincides with the .origin' of thisinertial frame of
reference, then the coordinates r denote those of the ﬁrst partlcle in

this system of reference.

From (32) we get
° m 0 m2 9 0 mz(_a__ ﬁ) woe 4 (39)

o MaXtMax v M\GX™ ax)
192, L 2 1 Um0
B as  ms , MaRet Mm@ SR ol
,, Xy X3
whence o i : o L
1 2 1 2_ 1 2 \ 1 ms 2 “ .
mvl'*‘%Vz“z—Mvn +51VIE P i (3%
while M
r-r=or 36)
~ so that the stationary equation assumes the form
1 1 m
[-mv: v Vi, r)]m r)-wqf(n no oD

and is separable.
At the first sight the above equatlon may look strange but 1t is

certamly correct. In particular, if ma~»00 then ’%—rl and the above

equation turns over into the usual equation for the first partiele in an

external potential

[- 9 +vovemm=e v ®. @7
The posmon of the centre of mass coincides- with that of the second
particle in this limit and we may simply put into the above equatlon
R==0.
By performing the separation of variables in (37) and assumixig the
centre of mass to be at rest (P =0) we are left With the equation

- g V() o=y o (38)
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“describing the motion of the first particle, or

*2—'n—1V2—‘°1]\P=—V ¥ . . (39)
where ;
M & . My/M\. o
ml_::'—n—z o, V (1‘,=@V('z—2ﬂ‘) ) , - ' (40)

In order to describe the scattermg phenomena we assume 2 solutlon
of (39) in the usual form ‘ R ’
V@)= PT iy (). | (41)
Inasmuch as the total energy is only determlned up to an arbltrary
coiistant, we may choose thls constant $0 that ‘

i | @2)

— =)
2my i

By exchanging the indices 1¢~—2 we find the following: relatlon

wl+w2=% w (42’)

where & is the reduced mass. Introducmg (41) and (42) 1nto (39) we
obtam an equatlon f01 X
(v =T (e’P' +x) @
where , R - '
U=2mV. (44)
. Tt is seen that the equatlon “3)is 1dent1ca1 in form with the equatlon
(5) for the scattermg on an’ external potentlal “the ‘only dlﬁ'erence Belng
that V is to be replaced byV Thus, the rule for going over from the
scattermg on an external potentral to a mutual scattering’ of two'
partrcles is k
V- )
or ‘ . .
=2my VsT=2m V. S L (45)
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Now, in the special case of Yukawa potential we have .

a—r -—G—F I T
e T @M g e
e A B Sy (46)
msy &
where ;
~ M
a==m—l a, CY)]

Thus, the transition from the case of scattering on a external Yukawa
potential to the mutual scattering of two particles interacting by means of
the Yukawa potential consists, originally, in a replacement

~ M a
a-—» a ——mz . (48)
In view of the definition (17) of G we have

2my g2 o~  2my &, mym2 g2 _2n g2
G=—2_ 47r_>G— ~ 47r--2 aM 47  a 4= (49)

so that, indeed, the change of G may be viewed upon as a replacement
of the actual mass of the scattered particle (appearing in the definition
(17) of G) by the reduced mass. Moreover, as is seen from (20) and
(24"), the scattering amplitude involves the parameter a also through the
variable x which undergoes a change

~ 2p 2map
X X=T= Ma (50)

Inasmuch as (in the non-relativistic theory) pyj==mjy v, the above replace-
ment is identical with

m mpmy &
Ve v rakaatik D

which again may be interpreted as a replacement of the actual mass m by
the reduced mass while keeping the actual velocity of the particle and the
value of a unchanged. However, the change of mass may be regarded as
apparent while the genuine physical effect consists in the change “47), ie,
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in a contraction of the ran‘gevR——é ; of nuclear forces by the factor m2/M
for the first particle '

om0 - s
ﬂ_ﬁn | (52)
and, similarly, by the factor my/M for the second particle

Ro=TIR. o (52
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COMPUTER SOLUTIONS OF:NAGUMQ’S* EQUATION
M. IQBAL .
Department of Mathematics,
Punjab University,
Lahore -

Abstract :

We have developed a technique to determine those values of the
parameters in Nagumo’s equati_n which permit non-constant bounded
solutions. These solutions aré then; obtained by  using Hammings’
predictor-corrector formula with the Runge-Kutta Method on a digital
Computer. : # ‘

Hodgkin and Huxley [|] in their fundamental work on pulses in'a
squid axon were the first to give a mathematical .description of this
process. Their model was based on a concept derived from “Kelvin’s
Cable Theo:y” that the nerve membrane is effectively an mductance free
line with a constant capac:tance and a non-linear curreat.flow element,
K.S. Cole et al [2] discussed the problem of Hodgkm and Huxley in
detail for the squld giant axon membrane. More recently a simplified
model for the process has been proposed by Nagumo, A Rimoto and
Yoshizawa [3]. Now the problem is to obtain the non-constant bounded
solutions for the third order non-lin ar ordmary differential equat:cn

P e S s )2 b0 U=, W
where AU=U (1-U)(U—-a), t<agl  ~ : :
To the best of our knowledge no one has so for succeeded in obtaining
the non constant bounded solutions for the O.D.E. (1). “ We shall find
those values of the parameters a, » and ¢ which permit non-constant
bounded solutions of O.D.E. (1) and determine the corresponding
solutions. We shall obtain the solutions:in steps, Firstly we try to
obtain the numerical solution when the parameter 5 is set equal to zero.
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Solutions for 5=0.

When b=0, the third order non-linear O.D.E. (€9)]
redu:es fo the §€tond’ order différential equation . = ¢: T
d2u du
M e N @

where f=U(1-U) (U-a), 0<a<l
Theoretical (analytical) Solution

Huxley (4) has obtained the theoretical solution of Equation (2).
He has shown that when c= v 2 (3 —a) (called the Huxley speed) and
0<a<%, equation (2) has the solution. L :

U (x¥)=[l+exp. (—x/ V2] - %y

It is obvious from (3) that for large positive values of x; the solution
U (x) is approaching unity and for large negative values of x it'is
.approaching zero. :
Numerical Solation

We have to evaluate numerlcally for each of several values of a, “the
corresponding values of ¢ for which anon-constant ‘bounded solution’
of the differéntial equation’(2) exists. “This value of ¢ can be compared
with the corresponding Huxley speed and the numencal solutlon of
equatlon (3). S

Method of Solution o . , ,
Fixing the parameter a, takmg several vahles of ¢ and solying - (2)
numerically, it is found that for some valu s of ¢ the solution incaeases
indefinitely (giving computer overflow) and for other values of ¢ the
solution after first increasing starts to decrease and continues decreasing
indefinitely (giving-computer overflow) for large values of x. : Two values
of ¢, ‘say ¢y and ¢, such that ¢a2>cy are chosen in such a manner that:
if-we take valués of ¢ less than.c; the solution increases very rapidly
(giving: compater overflow) .for'.large values of x and: if we take the
values of ¢ greater than ca, the sol:tion first increases and then
decreases very rapidly ( giving compiiter overflow) for large valaes of x:
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Now. in the selected mterva} (cy, c2) 2 senes of values of ¢ areagam
tried and we thus obtain a smaller interval (c'y, c'2) wuh ¢'a>c'n;, such
that solutions with c<c¢’y increase indefinitely for large values of x
while solutions with c<c¢’y decrease indefinitely for large x. This
procedure is repeated a number of times and eventually (for a fixed value
of the parameter) a value of parameter ¢ (for which the solution of the
differential equation approximates the desired form) is obtained to some

given accuracy.
From differential equation (2), we find that the linearised equation

near U=0 is
dx? dx

The auxiliary equation of (4) is

a U=0 o )

m2—cm—a=0 : ' )
(a and ¢ being +ive (3) which has only one positive root

my=(c+ vV c2¥+4d aj]2.
This. root (i.e. my) must correspond to the solution for large negative
values of x (near U=0). Therefore, for large negative values of x, the

solution U (x) = A ™% and U’ (x) =~ Amy. eMX—m, U

where U =0 andA is a constant. Thus takmg initial conditions as
U (0)=h, V (0) m h where k is a small step size used in the numerical
solution and my ls the only positive root of (5), we obtain the followmg
solutions : :

For a=0.125, 0.25 and 0.375, values of ¢ are determined as
¢=0.52919, 0.35344 and 0.17649 respectwely The n0nconstapt bounded
- solution corresponding to one of these values is 'shown in Fig.1. The
numerical results are compared with the ‘corresponding theoretical
values, The method of solution explained- earlier is also used for the
third. order. non:-lingar differential equation by fixing parameters ¢ and b
and trying various values of ¢ in a specified interval .(upper -limit is
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obtained by Huxley speed and the lower limit is obtained by an equation
mentioned in [4]). ‘ o

RUIRTYS

4 : 5 : 4
L v L ix

'."I'é Fig.
Fig. 1. Comparison of Huxley’s theoretical solution with numerical solution obtained
for a = 0.375, ¢ = 0.176490
Numerical Solution for third order non-Linear O.D.E.

Solutions fo: b>0: We must now consider the full third order

ordinary non-Linear differential Equation o

U —cU"+f" (U) U —=(b/c) U=0 ©6)
where fU)=U(l-U)(U~-a) 0<a<1
Now the problem is to determine numerically the values of the para-
meters a, b (3£0) and ¢ which permit non-constant bounded solutions
and then to evaluate the corresponding solutions numerically.

McKean Jr. [4] was the first to attempt a solution of (6) and has
produced the graph for the general shape of the solution. We shall try
to find the various values of the parameters, a, b and ¢ which permit
the non-constant bounded solution of (6). The linearised third order
equation is

‘ UII,_C‘ U'__a U""'(b/C) U=0 o (7)
The auxiliary equation is
md—c m2—am=—(b/c)=0 (8)

which is solved by taking the initial conditions as U=h, V=m h and
w=m? h where k is the small step size and a1, is the only +ive root of

the auxiliary equation (8).
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Fixing the parameters @ and b, the lower limit of ¢ is obtained by
considering that b<a2/4 that. ¢ exceeds the largest positive root of the

equation

. (a2-4b) c4+2a (2a2~9b) ¢2—27b2=0
and that the upper limit of ¢ is obtained by Huxley sp:ed diseussed
carlier., We now have an interval in which to restrict our search for
an appropriate value of the parameter ¢ for which the solution U(x)
should attain the desired form,

Results
{I) For a=0.125, b=j=0.001, me=0.45595 the required value of ¢
for a non-constant bounded sclution of the O.D.E. lies in the
interval (0.149660, 0.149665) and to five decimal places the
value of ¢ is 0.14966. The solution curves are deplcted in

_computer graphs shown in Figs. 2 and 3.

ot

Fié. 2. Solution of third order non-linear differential equation for ¢=0.125; 5=0.001

& ¢==0.149660
(for large values of x the solution U (x) is approaching to zero and there is no

room in Computer to print out and drawgraph beyond the value x=26.0).

o e e bty b T et
R e N R

Fig. 3. Solutlon of third order non-liner d:ﬂ'erentxal equat:on for a-O 125 5b=0.001
& ¢20.1496630
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(1) For =025, b=D.001, ¢=0.135272 and m;=0.58475, the
solation ' citve is ‘shoWn ih Fig. 4. For @=0.25, b=0.001,
¢=0,135278 and m=0.58475 the sclution curve is showi in
Fig. 5. From the “results obtained it is obvious that the
required value of ¢ (for a=0.25, b=0,001) lies in the interval
(0.135272, 0.135278).

-1 4

Fig, 4. Solution of third order non-linear differential equatioh for a=0.25, 5=0.001

& ¢=0.1352720

Fig. §

ceal

Fig. 5. Solution of third order non-linear differential equation for a=0.25, 5=0.001

& c=0.135278

(I1I) For a=0.25, b=0.002, m=-0.62010925 the required value of ¢
for a non-constant bounded solution of the O.D.E. lies in the
interval (0.1894685, 0,1894690). Graphs were also obtained.
as in the cases of I & II. '
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(IV) For a=0.375, b=0.001 the values of ¢ are tried in the interval
(0.1 to 0.8) but on each occasmn the solution increases 1n-
deﬁmtely without turnmg glvmg computer overﬂow

V) For a-.O 375 b OCOOI m—O 69905 the requlred value of ¢
for a non-constant bounded solution of the O. D E. lies in the
interval, (0.16020, 0.16025), computer graphs are obtained as
in casesT & II.

For a>} i.e. a=0.75, b=0.001, 0.0001 and calculatii{g the proper
interval for ¢, the solution increases indefinitely without turning, giving
computer overﬂow every time, as shown in Tables 1, 2. These numerical
calculations support the conjecture proposed by H.P. McKean JR. [4],
thatif ais greater than 0.5 and b is greater than zero .then no non-
constant bounded solution exists for the third order O.D.E. Further
support could be given to the conjecture by trying a large number of
different values of 5. The underlying idea is that parameter ‘e’ plays
the role of a doping parameter and the disappearance of the non-
constant bounded solution corresponds to the physical fact that if too
much of novocaine is injected, the whole nerve goes dead.

TABLE No. 1
For a=0.75 5=0.001
x represents that value where computer overflow occurs.
¢ X '
p 00] 9.0 . 08 57 9
0.009 6.0 0}936 %
0.015 7.0 0.915233
9.10 79 O.Slf‘.‘hl
0.135) 7.0 0.94459
0.1353 7.0 0.94472
;030 6.0 1 03099 ..
0.40 5.0 1.09015
0.50 5.0 1.15235
0.60 5.0 1.21726
0.70 4.0 1.28467
0.80 4.0 1.35442
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TABLE No. 2
For a=0.75 b==0,00(1
X represents that value where cd’mputer overflow occurs.
¢ X my
0.1 7.0 0.92635
0.2 , 6.0 0.97356
0.3 6.0 - 1.02936
0.4 ‘ 5.0 1.08899
0.5 3.0 1.15149
0.6 5.0 1.21724
0.7 4.0 1.28442
0.8 4.0 1.35412
REFERENCES

1. Hodgkin, A. L.and A. F, Huxley, J. Physiology Vol. 117, pp. 500-544 (1952).-

2. Cole, K. S. et al., J. Soc. Indus. Applied Math. Vol. 3, pp. 447-458 (1955).

3. Nagumo, J. etal., Proceedings of the LE.R. Vol, 50, pp. 2061-2070 (1962).

4. Mckean, H, P. Jr. “Nagumos’ Bquation”., J. Advances in Mathema
'Vol. 4. No. 3, pp. 209-223 (1970).

5. Burnside and Panton “Theory of Equations” Vol. 1 (1899) Doublin
University Press Series. .

6. Hodgkin, A. L. “The Conduction of the Nervous Impulse”. Liverpoo
University Pregs (1971).



P.U. Jour. of Maths. Vol. VII, Pp. (33~33), 1974

VARIOUS APPROACHES TO ESTIMATING A LINEAR
FUNCTIONAL RELATION

AHMED ZOGO MEMON,
W. Pakistan Agriculture University,
Lyallpur '

1. Introduction

We consider a linear functional relation Ye o+§ xwhere X, Y are
mathematical variables and a, p are unknown parameters. Suppose that
X, Y are not observable but we can observe x, y where x=X+-¢, y=Y4f
and e, f are errors of observation. The problem of estimating the para-
meters @, § which was possibly first investigated by Kummell (1879), has
been studied by many statisticians since then. A variety of estimators of
@, B proposed over the years are now available in the literature, We
shall briefly review here various approaches that have been pursued from
time to time for estimation of a linear functional relation.

2. Notations .
Let X;, Y; be the values of the variables X, Y for the ith  individual.
We take our linear relationship as -
Yi=a+B Xl (1=1, 2, ... 71).
Similarly xj=X;+¢;
yi=Yi+ ;.
where we observe xy, ¥;; and ey, f are errors of observation, If we have
a replicated situation, x;;, and yir shall be the values on Ath and kth
replications of xi and ¥, so that here the assumptions are
xin=Xi+eh (h=1,2,...., 1)
yie=Y+fir  (k=1,2, ... )5).
We shall use the following quantities in a replicated situation
X=R"! 3 r; Xi, Y=S-135 Y



o4

31 (;-'.._;)2, Wxx— 22 (x,h-x,)z

B""zn--l
1 =T . )2,
. BW=~n_—12 51 (= Y32, WW:S:ﬁ pb (})lk"yi)'z"
1 . R ~ P
Bxy=,;'__12 ry (xi—x)(vx-j"),

1 -
B’x,=,—1:~12 5 (xj— x) .Vi ,V)y

where R=3r; S=3 5
» ;:=2 xll}/’( };=E}’Vik/34 ‘
X=3r %R y=3 5/ y//S

If r,_=s,-=1 for each i, it ‘may be neted: ‘that't'he situation is not
replicated one. »
3, Estimation of 8. .

Since; without loss of generality, we can shift the origin by an
introduction of a dummy variable and reduce the linear functlonal relatlon
to one contalnlng only B, we shall conﬁne our attention only to estlmatlon
of this parameter.

3.1. Maximum Likelihood and Least Squares Method,  The problem
of estimation of # has bBeen attacked through the use of, maximum
likelihood and least squares by Kummell (1879), Lindley (1947),
Madansky (.959), Graybill (i961), Ord (1969) and other statisticians.
We give below estimators as suggested by Llndley and Madansky when
rj=s;=1.

We assume that. ei, f; are normally and independently distributed
with zero means and variances o and o° ¥ The likelihood function is

L=f (e, e2 .... en,fl,fz,....f)
=Qo, of m)" exp.[-j -,Z—{g(e, A/af,),+z (f? /c?-)}]

Substituting into it e;=x;—X;, fi=yi~Y;=yi—-a—pX;, and taking
partial derivative of log L with respect to ea’h of the 7 +4 unknowns




sl
X1, X9, oo, Xpy @, B, a: and cr} , we obtain
A 1 A Aﬁ 2
O = 2 (n—o-PBXy)
i
3§=—n~ 3 (- Xi)?,

from which -it follows that

ﬁz=0’f 2
Since this result is unreasonable, so in order to get a satisfactory result
the need of making some assumptions about error variances obviously

arises.

Lindley makes the assumption that A =a}3 / a»;f’ is known and gets his

=01+ \/Of +2

3 (i=yP=2 3 (%i—x)
22 (= x)yi—-Y)

provided that the denominator of 04 does not vanish. The positive or
negative sign is taken when 3 Qxi—.;c)(y,-— y1<0or >0. When z(x;-})
(y,~—§)=0, the maximum likelihood estimate is. %‘:-O' provided that
A% % (1i—Y)Y% (x,—X)2. This method fails to" estimate B if we have
A==E (Y= P)Y3E (X = x)2.

Madénsky considers several assumptions and obtains 'following

S A
estimator g,

where

estimates.
(i) When a} is known

y Z0i=»)2-n of

P=2 =X i-y)’
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(i) When u: is known

83 a=x)0i=))

(%~ x)2 =1 0'3

(iif) When A= } /oz is known, the estimate is the same as that of Lindley.
(iv) When both o: and a;- are known
X (yi—y)2=no’
A S
F='—_*"~:——'——2 5
%, (xi =x)2~no,
the sign to be taken as that of 3 (xi—x)(yi—¥)-

Dorff and Gurland (1961) propose an estimator of § when ) is
unknown. They consider the situation when replicated observations are
available and s;/ri=g. They first take ,A\=W,,/Wxx, and then they
suggest following estimate, assuming that e;, f; are nomally distributed.

A
# g2 X
TRV
e 2 g
where
A
____Byy —ABxx
Bxy

provided Bxy=0. The positive or negative signs are chosen according
as Byy >0 0r <0. For the case Byy=0, b;=01s taken provided',‘\=B3y/B,x.v
Dorff and Gurland also obtain asymptotic variance of estimator by
under certain aSSumptions“about the first four moments of the distribu-
tion of errors. The expression for this is lengthy and is therefore not
being given here. ‘

3.2. Method of Grouping

Several statisticians have taken an approach to grouping of observa-
tions for estimation of B. Wald (1940) who was the first to adopt this
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method, makes the assumption that-the errors e; and.f; are uncorrelated.
If i is the order number when the observations are arranged ascendingly

according to values of X;, Wald gives an estimator

n m
3 ﬂ‘%ﬁ
=ttt 1 7
n m 2
5 Xi— 3 X
m--1 1

provided » is even, This estimator has been shown to be consistent if

fim (X1 + X+ ... +Xm)=Kmag+. ... +Xn)n]>0.
n—-»00

- Bartlett (1949) uses the same concept of grouping on the assumption
that » is divisible by 3. His estimator is '

n my
3 yi—= 3y

bn=m2 41 1
n my
5 oxi—3x

ma4-1 1
n 2n SN . .
He shows that this is a more efficient estlmatqr.

where my= 3 ™M= ‘
Gibson and Jowett (1957), Theil and Van Yzeren, Housner and Brennan
(1948) have further refined Bartlett's scheme. ’

Dorff and Gurland (1961) consider the estimator

b 3 wiyi
L=“——“‘

T Wi Xi .
where the w; are weights such that 5 w;==0. This estimator is consistent

provided the expectation of 3 w; x; does not vanish. It is easy to .see
that the family of by includes as special cases of the estimators bw, by,
and the one that of Housner and Brennan (1948) who suggested the use

of by where wi=i—i. Dorff and Gurland obtain following asymptotic

va;iance of br
s 5 wf
wr G0=(op+ B
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They found that this variance is mlmmlzed by choosing.

Cwi=c (XZ—X), ‘
where ¢ is any arbitrary contant other than zero. Since the spacing of
the X; is generally unknown, we cannot find w; and then we may use.by,
or by, or by for estimation of . If the X; are equally spaced, by has the
smailest asymptotic variance. If there are only two levels of X; such

that
. n
=A i=1, SR

. n
| =B 1—-—5+1, |
then Wald’s estimator is best to use. Tf the X; are evenly divided
among only three levels, bp is preferred. They showed that by is more
robust than bw or bp as its asymptotic variance does not greatly exceed
the optimum unless the X; are bunched or badly skewed.

All such methods of grouping should obviously be open to objection
in the sense that the group limits are based on only the observed values
and not on some external criterion.

3.3. Use of Instrumental Variables

Another approach to estimate p is through the use of an rinstrume_xi-k
tal variable 2, that is, a variable which is correlated with X, Y but
uncorrelated with errors of observation. Geary (1949) derives following
estimator of f.

'3 2 Zt y falhad A1
Szt X1 o
where 3 Z;xi —|~»0 as n—=»00. Geary also obtains an estimate of the
variance of ﬁ
3.4. Use of Varlance Components ‘ o

Dorff and Gurland (1961) make the use of covariance a‘na'lysis;in_
estimating B when replicated observations are available. They assume
that at least one of the r; and atléast one of the s; are more than unity.

On the basis of results
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E Bro)=t 3 ri i R4 02

E (Wxx) =0¢

1 _
E (By)=;—7 i (Y;—Y)2+cr;

E (Wy)=0}

s (Xi— )?)(Yi;-Y—;)

1

, 1 % v
E (B'wy)=,—3 % si Ki-X)(Yi-Y),
they suggest that '

B . By=~W. By — Wy Wyy
by=; xY b3=c yy W py= ‘/ xy Yy
Bxx ~W.x 2= 3= g (Bxx - Wxx)

are the consistent estimators of [3 where g-—--——- 1s contant for each 7. It
may be noted that the denominator cannot have vamshmg expectatxons
unless all the X; are identical.

These results, when ri=si=N; for all.i, ~agree with those .of
Madansky (1959) who also uses covariance analysis to estimate B.

Dorff and Gurland also find asymptotic varjanéefé of their estimators
(expressions are lengthy and are therefore béing omitted here). They
compare these variances of the estimators by, b2, b5 when ii==.y;.=r for
each /. They discover that

(#) by is the best estimator if p2<7o A
(i) by is the best estimator if 82>r5 A
(iti) by is the best estimator if ™1 A< p2<ro A

L e o , -
where ro=—r—+ \/(—r—) +3, and A= f/ . The use of by s

recommended when 7, is equal or close to unity.

-Up to this point we have considered the assumption that the errors
e;, f; are independently distributed. We shall now consnder below the:

case where e;, f; are correfated.



Dorff and Gurland (1961) also deal with this situation when r;=
for each i.

where
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The estimators proposed are

B
b xy ™ xy
1= Bixx— Wxx

Byy— W.
B 2YY T Wyy
2 Bry— Way

b3=‘/_]§lv____23
Bx;“wxx

by=04VI+L

o
—_Byy—ABxx
Z(Bxy" R Bxx)

provnded that Bxy-R Byx5=0,

ABxy—R Byy
k Byy"'h Bux

b4l==

si=r

when Bry=R Byy=0 and Byy— A Bex5%0. The estimator by is not used

3 A 1]
when the expression Byy—) Byx is also zero.

All these estimators are

consistent provided expectations of their denominators are nonvanishing.

They find similar results, as earlier stated in case of independent
errors, when it comes to choosing the best of by, by, b3,

3.8. Generalised Least squares Method

Sprent (1966) generalises the least squares principles to deal with the
situations in -which - the departures e;, f; of the observed values x;, y;
from the corresponding values X;, Y; are distributed as follows:

var ej==011
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cov (&g, fi)=a42 for all ¢

var ﬁsﬂzz
‘He assumes that

g [ig N .
Se= ( i ‘2) is nonsingular

621 ox
and e¢;, f; are uncorrelated with ej, fj for izj.
Substituting =~
xi=Xi+e;

— yi=Yi+f;

into ¢ Y -8X=0 (the origin shifted to.obtain it),
Y~ pXj=e;—1;. . '

Taking zi=Y; -~ BX;.

it is seen that
var (z;)==p2 o1y —2 Boy2-4-0q2
cov (23, 25)=0 ],
The sum of squared residuals with weights inversely propotional to
their respective variances is

3 z?
T8 o2 forato

_B*81—2P S+8x
£20,,—2 B 012402

where S;j are elements of sample covariance matrix

sz( Su S").
Sa1 Sz

The procedure for the estimation of f is to minimise U. Tt can be

U

seen that

d

U_,

ap
gives the normal equations and an approximate estimate of ¢ is
S12—n 042

A
p=
S11—n o1



)

where ne=— K+ ‘/K;'!';liz HEIE.

and K=2 Gy3 S12— oy Szz-023 Si1.
Special cases.

(i) If o1;=0, the estimate cf § reduces to %‘2 which is an estimate
. . s i1 ‘
of regression coefficient of y on x. i

i) If 032=0, then

o1y Spp—022 Sgy + 1/ (@11 S~ 02, Sy)2 44 011 022 8,
204y 513 '

A
=

' 3 . N ) A . .
(iii) If oy =09y, it is interesting to see that pis independent of oy
and o32. :
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THE NUMBER OF PERMUTATIONS ON N SYMBOLS
WHICH CONTAIN AT LEAST ONE CYCLE OF '
LENGTH i>1

M. A. RASHID
Department of Mathematics,
Islamabad University,
Islamabad.

The total number of permutations on # symbols is # . However, if
we look at the permutations with the cycle-structure given by the

partition. o .
L oog+2. a24....+H. ay=n - : ®)
of n, their number is _ . -
n! -
_ #)
al-!az!....an!lal. 2%2 %

An interesting problem that arises in this connection is to find the
number of those permutations which contain at Jeast one cycle of given
léngth i>1. One method of attempting to solve this problem would be
to look at all the partitions of » with a;>>1 and to sum expressions of
the type given in equation (2) over such partitions. This procedure does
no seem to be immediately applicable. Our solution below uses
difference-equation techniques. :

Let the required number be represented by the symbol P; Evidently
S =P, =0 o ?)
Pi=G=D!" @

~ We divide the » ! permutations on # symbolinto # sets Sy, S2,....8,
such that the set S; consists of. those permutations which contain the
symbol “1” in a cycle of length j. Then the set S;(1'<Jj € n,j% i)
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-t z‘ . i : .
contributes (n-1) ! ,permutatmns to Pn, whereas the set S; contri-

CEDIA
butes (n—1 )‘ penmuta.tlon( to P» Thp_s P; satisfies the recursion

relation

“(’7 1)‘!’[1'*:]_5: ])'
3 J?E.l’ "

(.. P;=0, the sum on the right hand side is effective only upto n—1).

] 4

Setting _ , :
. i i .
e=n! i N :

Pn n: Qn ' . (6)

We obtain from 5 _ .
1 i i ) - i

Q Qn—l _Y[Qn—:i—Qn-—i—l] o ™

| The initial conditions (3) and (4) for P’lz result in the following initial

conditions for Q; :

i1 ' o )
Q=7 . , S . O

Writing

n=mi+i’,0<i’ <i—1,m>0
we obtain from equations. (7) — (10)
G i

Q Q 11)
_] 1 i xjl
for n>i. For n<i, Q’7 =0 consistent :with equation (8). Thus
. -1
—1)/ .
P - 'y YT (12
s . mi+i J=1 l.]x]' : it )

«0-{1"{1—"—1 B
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for n>{ while for n<i, P; =0,

Using our previous results we can also compute the number of

permutations on n symbol s which contain exactly one cycle of length i.
This number comes out to be

3 (13)
P j=0 i/xj!
for n>i.

The right hand side of equations (12) and (13) are equal for #=i to
P;::(i- )
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A NOTE ON DIRECT SUMS OF QUASI-INJECTIVE MODULES
JAVED AHSAN
Department of Mathematics,
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. We shall assume throughout that R denotes an assouatlve ring with
1dent1ty and that all R-modules are unitary rlght R- modules For the
definitions and fundamental results on quasmnjectlve modules, we refer
to Johnson and Wong [71.

The following two theorems give necessary and sufficient condition
on modules for a finite direct sum of quasi-injective modules to be quasi-
injective. It may be remarked that both these theorems are; in fact, easy
deductions from a fundamental result of Johnson and Wong [7, Theorem
1.1] on quasi-injective modules. However, their proofs are also included
here. '

Theorem 1. Let R be any ring and M= G} M; bea direct sum of

i=1
quast-m_]ectlve R modules Then M is quasi-injective zf and only if M
Homg (E (M), E (Mj)) c M;j for each i, j=1,...... s 13 where:, E (M;).

denotes the injective hull of M.

. Proof. We have M= G} ‘M;. Let F be the injective hull of M and
i=1 ,

E;=E (M,) be the injective hull of M. Then E= @ Ei. LetA -HomB

=
(E, E). By Johnson and Wong[7, Theorem 1.1] M is quasn-;njectlve if
and onlyif MA © M. In other words, M is quasi-injective if and only
if m) € M where m and A are arbitrary elements of M and A respectively.
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Since A€ A, A==(2ij) where (Aij) derotes an n x n matrix and );j is
the composition of the restriction of A 10 E; with the projection from E to
E;j and so Aij e Homy (E;; Ej).

If m is an element in M then we can write m=(my, ...., m,) Where

v n
my € My; i=1, ....,n. Then it follows easily that m; A= = m; Asj
-=1
J

In order that m A € M, it is necessay and sufficient that aA;; € Mj.
In other words, for mX to be in M for all A, it is necessary and sufficient
that M; HomR (E,, Ej)g M; for all ;5. This proves the theore‘m. ‘

Corollary (). Let M= EB M; be a direct ' sum of quasz-m]ecnve

1._

modules over any ring. Then M is quasi- m]ecnve if and only zf M; Homx
My, EMj))c M; G, j=1,...... , W\

Proof. Clearly M; HomR (M;, EMj) ¢ M_, 1mphes HomR (E (M,),
E (Mj))c Mj. Hence by the above theorem, Mis quasi-injective.

Conversely, let us suppose that M is quasi-injective. Then, by the
above theorem, M; Homy, (Ei, Ej)c Mj (i, j=1, ...., m). Let¢ ¢ Homy
(M;, E;j), Since M is a sutmodule of E; and Ej is injective, it follows
thaty extends to an R-homomorphxam ) frorn E; to Ej. . ;l‘hen M; 8
=M; $c M; Homy (E;, E)c Mj. -

Therefore, M; Homr (M;, Ej)c M;j which proves the corollary.

_The above theoréem also -yields the following two :corollaries “which
are already known.

Corollary (ii):- Let R be any ring and N a quasi-injective R-medtile:
fM= @ M;, where each: M,—N then M is quasz-tnjectzve (See Jans'

l__

and Wu [6], Pro,pomtmu 2.5). .
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.Corollary (ii). Let M be any quasi-injective module and E=E (M)
be the injective hull of M. Then M@E is quasi-injective if and only
if M=E [See Har da [5], Proposition 2.4]. Y

We now state the following lemma which vias proved by Matlils [8]

Lémma 1.. Let R be a right Noetherian ring and M= @ M; be any

: iel
direct sum of R-modules M;. IfE (M) is the injective hull of M then
EM)= @ E (M,) where E (M,) denotes the injective hull of M.

iel

Using the above lemma and arguments similar to those which we

used to establish Theorem 1, we can prove the following theorem.

Theorem 2. Let R be a right Noetherian ring. If M= 63 M; is a

direct sum of quasi-injective R-modules then M is quas:-mjecnve if and
only if M; Hom, (E (M), E (Mj)c M; for each i, j ¢ L.

“Again, the following corollary can be denved from the above
theorem. : ‘

Corollary. Let R be right Noetherian and M a qudsi—injectﬁvé
R-modyle. 1If A= @ M; with each M,—-M then A is also quasz-
iel.

injective. B ‘

In [2], Faith and Walker called an injective R-module M %—
(countably 3, -) injective if a direct sum of arbitrarily (countably) many
copies of M is again injective. We shall call a quasi-injective R-module
M 3 —{(countably X—) quasi-injective if a direct. sum of arbitrarily
(countably) many copies of M is also quasi-injective. '

Finally, in form of the following theorem, we formulate a :esult
which is implicitly known in the literature (See e.g. Faith and Walker [2]
and Osofsky[9] and also Chase [1, Proposition 4.1, Page 471]).

"Theorem 3. Let R be a ring such that every injecrive R-module is
countably 3 —quasi-injective then R is rlght Noetherian. ' ;
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. Proof. (Following Faith'and Walksr [2]). Let O=ljcl2c......
clyc......;be an ascending ‘chain of right ideals of R = Let us
consider the R-modules R/I;; i=I, 2, ...., Let Q;=E (R/I,) bt the
injective hwll of R/I;.  Als , let us write Q=¢DQ; and M=7'Q,. Since
any direct product of injective modules is injective, M, is injective.
Thereforé, My, where each M;=M, is quasisinjective by our
aesumptlon - ) _

Let M_’ ’TQ,—-Q_,@ Py where P,- T Q.

=]
ThenGBM:— 69 QD DP
JEN

Thus Q becomes a duect summand of a qua sr-mjectrve module. Hence
Q 1s qgasr-rnjedtrve ]

LetI=V1 2. " Then the n atural homomorphlsm fk I—->R/1; rnaps I
into Q. Alss, if aeI then a eIt for some r and then f3 (a)v:,—O for.
allk >t : : :

Let flay==(f1 (), «.... i @), ....); a€l. Then f(a)e Q since
only a finite number of terms are non-zero. Also, f is an R-homomor-
ph;sm from I into Q,

Smce Ic ke Qlc Q and Q is quasr-mjectwe there exrsts a map 3
Hom, (Q, Q) which induces f. Let us suppose that ,\(l)—-m Where 11

is the xdentrty of R, then A x=m x, for all x € R.

Clearly, me 2 Q; for some t and then f ([)c m Rc 2 Q; Thls'
=1

1= i= .
sho_ws _that Iterm=lty2=.... =l and R is, therefom, right.Neotherian.;
This completes the proof, ' : ' = .
.. The above theorem immediately gives the following corollary which
is. Theorem 2.3 of Fuller [3] (See also fFuller [4] for a cor'r'ection in the
proof of this theorem). ‘

Corollary. Let R be any ring. "Then each quass-wecnve R-n!odu]e
is 3 — quasi-injective gf and oty if R is right Noetherian. - .
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" A NOTE ON THE GENERALISED BATEMAN k-FUNCTION
T. N. SRIVASTAVA ‘ ‘

Department of Mathematics,
Lyota of Montreal, Canada.
1. Introduction. ' _

Recently the author published an article entitled ‘““Some theorems on
the generalised Bateman k-function™ in the Punjdb University Journal of
Mathematics, Vol. 6, pp 35-66, (1973) in which there are a number of
misprints and errors. In the present article the author has peinted out
the misprints and corrected the results. '

2. Corrections.

Page 47, Line 16 from the top ; read equation (4.6) instead of (4.5).
In the equations (3.1), (3.4), (3.7), (3.8), (4.3) to (4.8), (4.10", (4.11), (4.26)
and (5.28) read = instead of =. Beiween the two. terms inside the
square bracket of the equations (2.8), (2.12), 4.6) ard .5.20) read + instead
of — and of the equations (5.21), (5.22), (5.23), (5.28), (5.29) and (5.30)
read - instead of +..

The first term inside the square bracket of the result (2. 1) should be

v
K” tu—2rt1 (x), the second term on the right qf the resglt (2.6) should
' v+1

by 2
be — K:+2’ Y (x) and on the right of the result (2.9) % should be re-

!
2
placed by (zc_ ) . Also on-the right of the results (2.23) @ and (2.23) b

read K "1 (3) instead of K (x), the result (3.4) read K§’ 2

mstead of K 2m+21 (x) and that of the result (3.5) read (= 1) +1 ins;tead

2n



e

K% v+2( X).

In thg result.(3.5) snd the equation (3.8) the functica «;szshould be
read as follows.

of (~ l)m. Intheformula (2.24) read DxK (x) instead of D

T IE TP 5 <)) ]
¢'2[l+7n+1, l+m, L, 21+2;l; - ; (1 x)
On the right of the result (4.6) read (—1)" mstead of xT and the
result (4 9) should be c:rrected as follows. '
~x

' N=21-2r |
2m, 21 g \ n=-l-Y1fm\ 2 N—l=p—1 :
2rr N (F)= ,i’o,(‘l) (Meerrsn P X

g [é -—x‘_,xn—i-l-{-:-r].
On account of the correction in the result (4.9) the result of Theorems
15 and 16 also need correction. But this is not difficult as these results

are the particular cases of (4.9)

Fhe left hand side of (4.23) should be 3 1( 21) K720 ().

though u has been ‘chosen to be —-2 ths mtegral rcpresenhng

Kz—nz 0 (+ x) exists and the series under consideration is absolutely

covergent.

The first term on the right of the results (5.1) and 5.5} should be

rv+3) —%_ .. . . o
o +2)ﬂ: and in the last term of (5.5) x should be replaced by 0. |
Under the integral sign of the result (5.14) read K’ (x) instead

of Ku' (x) and in the result (5.19) read y +1 instead of y:2 l.

274—{-1

I the-c,qua,tlon (5.28) the expression ingide the Square Bracket on

the left should be p* T2 ("I DL T ang o0 e
right-side the Tast term in the second row of the G-functions should be
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—(I+r)+w I4r4w
2 2

read as instead of -

The remarks as given on the pages 47 and 48 are wrong. On using
the result (2.7) on page 38, a well known result of Chakravarti (see Ref
[3, pp 1] of the paper Punj. Jour, of Math, Vol. 6, 1973) and the values

of °F’ [3;3;] for large and small x it is easy to see that the order of

2m, 2
2n
respectively.

X xl+m—n

! (x) for large and small x are given by ¢, d x?‘H'l

X an
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