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REDUCIBLE AND IRREDUCIBLE 2-GENERATOR
SUBGROUPS OF SL(2, C)

By

ABDUL MAJEED
Department af Mathematics
Punjab University Lahore, Pakistan
1. Introduction :
Let a, b € SL (2, C) with tr a=a, tr =8, tr ab=9. In this
paper we give a necessary and sufficient condition on the trace
valuesof a, b and @ b for the group <a, 6> & SL (2, O) to be

irreducible. Also if, for, any triplet o, 8, ¥ of real or complex
numbers Fa 8.4 denotes a subgroup of SL (2, C) which is generated

by a pair of matrices q, b with tr a=a, tr b=f8, tr ¢b=49 then we
shall show that, provided o2 4 2 4+ Y2 — a Py — 4£0, Fa 6.4
is an irreducible subgroup of SL (2; C) determined upto conjugacy. o

2, Notations and definitions :

Throughout this paper GL (n, F) will denote the general linear
group of degree n over a field F. The collection of those matrices
in GL (n, F) whose determinant is 1, the identity element of F,
is a subgroup of GL (n, F) called the special linear group of
degree n and is denoted by SL(n,F). For any aeGL (mF)tr a_
denotes the sum of diagonal elements of a. Also I represents the
identity matrix.

If V is a vector space of dimension » over a field F then the set
GL, (V) of all invertible linear transformations of V to V is isomorphic
to GL (n, F). Let G bea subgroup of GLp (V). A subspace W of V
is said to be invariant under Gifx W € Wforallx ¢ G. G is said
to be irreducible if any and only if the only subspaces of V which are
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invariant under G are the null space {0} and V itself. Otherwise G
is said to be reducible. For various properties of reducible and
irreducible groups and conditions characterising these groups, see Dixon’s
books [1] and [2] and Wehrfritz’s book [4].

3. Two genei-ator irreducible sub-groups :

This section contains proofs of results about two generator
irreducible sub-groups of SL (2,C) mentioned in the introduction
above. i '

3.1 Theorem :
Let a, b € SL (2,C) with tr a=a, tr b=p, tr ab=". Then
G = < a, b > is irreducible if and only if
0 + B2 4 V2 —apN ~4:£0
~ Proof :

Suppose that <a, b> is irreducible. Then a=%1, b=£41 By a
similarity transformation, both @ and b can be brqught into the

o (30007 o

where A - A1 =a=tra +2,pu (F—1) = p3=18=1tr b,
w2 £ 0, p’; 5= 0 because of irreducibility : or

1 0 (F[ B2 ) 5

i(l 1)’ By B—my ()

when tra==12. In the latter case My 7 0 because of irreducibility of
<a, b>. In the case of (1), we conjugate the matrices by

_(8 0
¢ ‘(o s')
and obtain
A0
— e

a =cac (O )L"l)

I= -l = Fl 86'-1 p'2)

W=che (8'18’% p—Hy
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Since u'; % 0, we choose §, §' such that p'3=§§"1. Then

a=o S =(" 5t ®
where p2 = p'2 '3 = — 1 + 1y (B — ).
In case (2), thatis when @ = + 2, we conjugate both matrices
in (2) by

=5 1)

so that v
, 3 0
a’=cac1=i(l l)
” -1 HI-SIJ’Z » 1”';2
b = cb el =
€oc (E#x+"3—82ﬂ2—8(?"f‘1) &“HB—M)
Take §=p4 [/ pa, #2350, Then
s (10N ., [0 opmy
“ ”i(l 1)’b "(—l/uz @)’ #2 70 @)
Now
r e Alq Ap2
b =
¢ (A_l AT (B-m) )

» v_ 0 2
a b = i(—l,’l‘z ﬁ+#2)

in case (3) and (4) respectively. Since tr a’b'=trab and tr a" b* =
tr ab in the respective cases and tr abd = N, we have :

pr=(Y—8/A)(A~A7Y) p2=—(a2+p2+N2—apN —4)/(c2~4), 'v(5)
¢ 7% + 2 in the latter equation in case (3) and
np =" — 8, N' =4 ©

in case of (4). Hence g, b can be transformed by a suitable conjugation
into the forms '

(4\0)’ (P-l ) ),#+A_1=d#ﬂ:2

0 a1 1 f~m
with pq, &, being given by (5); and into the form :
1 0 \] N - p) '
(1 1) (—1/(1'—p) g ) V=EN
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when o = 4 2. By the irreducibility of <a, b>

Pr= = (@2 + B2V aBY — 4/ (@2 -4 E O akE2,
that is .

02 4+ p2+ Y2~ apN —4£0 : (7)
which conforms to the condition

¥ - B£0, V=L ' (8)

for the case (2) when a = + 2,

Conversely, if conditions (7) and (8) are satisfied then ra =0
in both cases so <a, b> is irreducible. Hence <a, 5> is irreducible
if and only if

a2+ P2+v2—-aPfr—4#0.
The following corollary is immediate.
3.2. Corollary :

Let a,heSL (2,C) with tr a = a, tr b= B, tr-a b=" Then

<a, b> is reducible if and only if
2+ p2+ 42 —afV-4=0

3.3 Corollary : :

Suppose that <.a, b> is a subgroup of SL (2, C) and let A 71 ;
u, 1 be the characteristic roots of a, b respectively. Then <a, b>
is reducible if and only if 7

tr ab=An 4+ p/x or A pn 4+ 31yt

Proof : '

By corollary 3.2 <a, b> is reducible if and only if

a2 + B2+ y2 - a BY—4 =0, a=tr g, B=tr b, y=tr ab.

Now a=A+4A7L, p=p+p~1, Putting the values of a,B in terms of
the characteristic roots of a and » and solving the quadratic equation
in ¥ given above we get

Y =[a pt {(@2~4) (B2-4}}] /2
=A/kr+ #/’A or A pu 4 A71p™



3.4 Corgellary :

If a, B, ¥ satisfy the inequality (*) of theorem 3.1 then there exist
a, b € SL (2, C) such that tr a=a, tr b=¢, tr a b=vyand <a,b > is
an irreducible subgroup. Moreover, @ and b are completely determined
upto conjugacy. that is if tr a’=a, tr b’=¢ and tr a’ b’=" then there
exists ¢ € GL (2, C) such that a'=cac™l, b'=cbh c7L
P oof :

From equations (3) and (4) of theorem 3.1 we see that any two
matrices g, b € SL (2, C) can be brought, by conjugation into the form

_(r 0 (" k2
“ _(0 z\"‘)’ b _(1 ﬁ—l‘x)

when tra = o5 +2 py =@ - /A /(A -
My=~ (024 B2+ 12~ 0fy -4) / (12—-4)#0; or into the form

“a= i( i ? ) b1 =<—(1)/m'—ﬁ)7 B p)‘ V=t
when trae;=-+2. If @’ and b’ are any two other elements in SL (2, C)
with tr @’'=a =tr a, tr b'=f=tr b, tr a’ b’=y=tr a b, then a,’ b’ are
conjugate to ay, b, respectively. Henee these exist ¢;, ¢; € GL (2,C)
such that

amy=cyacyl, by=c beyt
and

ay=cy @' 271 | by=cy b 271
and so .
ad=cacl b =chcl
where ¢ = 371 ¢4
4. This section deals with the simplification of generators of irreducibie
groups discussed - in. - section 3.

4.1 Theorem :
Let G = <a,b> be an irreducible subgroup of SL(2,C)
()‘) Iftra=ma=3x2 trb=f=+42 tr ab="7, then a, b
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‘can be put, by a similarity transformation, simultaneously into the from

10 11'_2) .
i(ll)’i(OI V=2

respectively, the signs being taken appropriately.

(i) If the trace of at least one of the a and b, say of a.is
different from - +2, then a, & can be put, by a similarity transformation,
simultaneously into the form :

A0 By o
(03 (1 B2 ) @
respectively, where AdA"l=a=tra, p=tr b, V\=trab
Pr=(Y = B/A)/(A—2r"1), p2=— (024 B2+ N2—apY —~4/(a2—4), a 2.
Proof :
We have already showa if <a,b> is irreducible, « and b can be
put in the from '

10 0 N'—p )
- b=( | ) 1
a=2(1 1) —1(-8) ()
where tr a=+2, the signs being taken appropriately, and
-f A Y ) - By Hy ) y
e(o ai)o=( P @

otherwise; X, B, 7V, £i1, #y are as given above.
In (), if p=+2, then we conjugate b by

=(5 1)

and obtain
evet (T30 ED vE )
-8 (VEJDFB-V'F  —d(W'E2)
Choose 3=7F1 /(¥ F2). Then
cbc‘1=(i(l) Irz), cacl=q
If, however, tra=o#+2 then, as shown before, we have

A 0 ) (™M M2
= (0 ALY b_(l B—ty )

for all p where A, B, M), B, are as given in the theorem



4.2 Theorem :

Let G = <a, b> be an irreducible subgroup of SL(2, C),
A a characteristic root of a and M a characteristic root of 5,
Then a and 5-can be brought, by conjugation simultaneously into
the from

A 0 ) 7
(2 R) (5 ) e

Proof : ‘

We can suppose that the trace of at least one of the a and
b is different from 2 for otherwise the fact that @ and b can
be put in the form mentioned in the statement of the theorem
is part (i) of theorem 3.5. Without any loss of gemerality we can
assume that tr a=a +2. Then, by theorem 3.5, ¢ and 5 can be
brought into the form.

(A 0 ) ( By 2 )
0 A—l ? 1 ?—lﬁ
respectively, A+A"l=a=tra, p=tr b, Y= tr ab,

=T = /AN — A7), Hy=— (a2 2+ N2~ — 4)/(02—4).
To prove the theorem we require an invertible ¢ such that

_ A 0 1 r u *
e 0) cnen(y 1)

Take
(M 3 )
c—( Y2 "4

A0 M FY
a c=c(* ,\-l) = ( . _1:1\_1)
DY A * _ 5 B *\
b c_c( 0 #“)_ (Mz *)

Thus if we choose( ;‘i )as. eigenvector for A~1 for a and( 3;)

as eigenvector for u for b, then ¢! gc and c¢1bc are in the

Then
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required from. Here, of course, the eigenvetors

a)ma(3)
( "z and v,
are linearly independent. (Otherwise, they would span a I-diemsnional

space invariant under <a, > contrary to the irreducibility of <a, 5>).

4.3 Corollary :

Suppose that <a, 5> is an irreducible subgroup of SL (2, R)
with tr g=a> 2, tr b=f> 2. Then a and b can be brought
simultaneously into the form

A 0 M .
(S )‘..1 ) ’ ( 0 Z-—l )s ‘f'}éos '1?50,

where A > 1, u > 1,
Proof :

Just invert the matrices if necessary.
4.4 Theorem :

Suppose that

(¢ = )e=(o =)

then <a, b> is reducible if and only if either
fn=0 or fm=—-(A-r"1) (p~u-1),
Proof :
Here tra b = £ n4r p + A~1 u~1, Hence the condition
a2 4 B2+ N2 —afN —-4=0
of reducibility of <a, b>, after substituting
AA~t for a, u4-p-1 for B, En+-Ap4-21~1 p~1 for ¥ becomes
Enfir+ A+ aH(p -~ =0
ie. £1=0 or fn=-QA—1"Y (e—p).



4.5 Corollary :

Let
(3 S doe(5 1)

If én=0or &1=—(\—2A"1) (p—p71), then <a, b> isnot free on two
generators.

Proof :

Here <a, b> is reducible.
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A NOTE ON CLOSE-TO-CONVEX FUNCTIONS

By
KHALIDA (INAYAT) NOOR
Mathematics Department Jundi Shapur University
AHWAZ IRAN :

o0
1. A function g: withg(z) =z+4 3 ) by zn that is regular in 4:
: n—

(Y= ] z | < |)is called convex if
(zg' (@)Y
Re () >0, ze ¥

%)
A function f: with (f)(2)=z+ 3 ap zn is called close-to-convex
n=2

in v if there exists a convex function g such that
[
Re @) >0, ze
Let C, denote the closed curve which is the image of the circle
| z| =r < 1 under the mapping w = f(z) and let L, (f) denote the
length of C,. Duren [2] has proved that if fis close-to-convex,

L (f) < Ly (K),
where K is the Koebe function.

We prove the following generalization of this result.

Theorem :
Let f be a close-to-convex function. Then for A > 1,

'y A
L () <L (X)
Proof :
By definition

@ _
T =@ Reh@>0.
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The function # can be represented as a stieltjes integral
1 " 27
zels :
T = el dv(s), f dv(s) =1,
0 ;
where v(s) is non-decreasing.
Further if g is 2 normalized convex function, there is a non-decreasing
# (#) such that [2]
2w 2=
g'(z) = exp (f log (1-z e't) zdﬂ(t),f du@®) =1.
0 0

Now, with z =re'ls let
27 27

=f|zf'(z)|da—-rhf|f(z)|4\da
0

A

L, (f)
2w

—rflg(Z)h(Z)l do

27 2n A 2 A
( ] 1 T2¢° v (s) H exp(_)flog(l ~ zeit) 2dut I )d€

- zgis

Using the exponential form of the arithmetic-geometric inequality we
have

x 2T -
neh<f ([T o) s L
27 A,

— zels

To simplify the integral ( f l 14 zeis II dv (,)), we apply the
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Holder’s ineqﬁality with p =) > 1 and %—:1 - %and obtain

271 A 27:1 L 2= plg
(ofll ze'wd())é(o | d"())qdv(g))

2w A
=f | 1+ze | gy (s)
9 | T=zeis |
Hence
L (f); ‘Tt | 14-zebs e" d d u(t)
T < V(s
. of[of 1~ zéis ()f“_zenlzr\]
. 27 27 2w
=f f f | 4re®0+9)
v 1 ] 2
0 o o |1_,et(0+S)IM]|1_,ez(0+t)I A
dp(t)dv(s) dg
2n 2w
f f 1(r,s,¢) dv (s) du(t),
0
where

1 rd0+9] A do
_ { 1 _rez(9+s)lm { 1 — 0+ l 2x

I(r,5,1)=

we need the following.

Lemma [1]
If F(9) and G () are non-negative integrable functions and F?o),

Gzo) are their respective symmetrically decreasing re-arrangements as
defined in [3, p 278}, then
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L T
[ FO 6@ < '[ Fo)Glords
-1 . T
Applying this lemma, we have
I(r,s,t) <1I(,o0,0)
Thus
A A 2T A
L) =r [ 1/)]1ds
0

2m | :

|1+ all)‘
< ((12Tre 1 _ g4
(‘)J- }1_,.8'0%3)~

A
= L, (K)
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SIMULTANEOUS DUAL INTEGRAL EQUATIONS WITH
TRIGONOMETRIC KERNELS

By
M. IFTIKHAR AHMAD
Department of Mathematics
University of the Punjab, Lakhore.

Dual integral equations arise in the solution of mixed boundary
value problems. Szefer (1) and a few other authors have solved simul-
taneous dual integral equations with Bessel function Jy, (¢) as kernel
where Re v > 0. Here, we shall consider the following simultaneous
dual integral equations.

(la)o;o D (a) ¢ (o) sin at da = f(t) Ot

(1b) 0(}0 E (a) ¢ (o) sin at da =g (1) t>1

where D (a) =| D ||, E (@) = || E; || are non-singular 7 x n matrices
of known functions ; f(¢), g (t) are columns of known functions (with
n coordinates). ¢ (a)—a column of unknown functions (with » coordi-
nates). The solution is obtained in terms of a Fredholm’s integral
equation of the second kind.

We require two lemmas which are generalized transformations of
the well known solution of Abel’s integral equation (cf. [3, p. 229]) under
conditions which are sufficient for our purposes.

Lemma 1.

If £ (x) is continuously differentiable in the interval [1, c0) and
0 « p <1, then the solution of

1oe)

= g (@) »
k() f e dt x> 1)
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is given by
2si i )
_ —2sinpw 4 x h(x
g =——rr J: xZ=12)i-n dx
t
Lemma 2.

If %(x)and A’ (x) are continuous in 2 € x € band 0 < p <1,
then the solution of the integral equation

t

h(x) = [ (zg(ﬂ))y a<x<b

is given by
t
__2sinpr d xh (x)
g = ™ dt (12— x2)l— ¢
a

Solution

We shall solve these integral equations in two steps. First, we
shall put f(¢) = O and then g (f) = 0. The solution of the set (1) is
then obtained by just adding the two solutions.

Step I.
[+ o]
(2a) Of D(t) ¢(0) sin ¢ do=0 0O0<r<l
@
(2b) Of E(o) ¢(a) sin at da =g (1) t>1

Let us put D (0) ¢ (o) = % (a), so that equations (2) reduce to

©
(3a) Of x(a) sin at do =0 o<1

(3b) 0fooL(ct) () sln at da =g() t> 1.

where L (a) = E (a) D71 (0).
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We now consider the solution in the form
o0
@ x(e) = lf I(x) Jo (o x)dx

where /(x)is an unknown vector. Substituting (4) in the LHS of (3a),
we have

o [ o 1
[ |f 1(x)J(ax)dx| sin ar da=0
0 1 J

which gives on inversion of the order of integration

0 o0
&) l/ I(x)dxof Jo(ax) sin at da =0.

From the Weber-Schafheitlin integral

=) 127x2)7 t>x
®) [ Jitax) sin (at)(da) =

0 t<x

Since in (3a), t < 1, we have ¢ < x and the integral vanishes identically
On substituting (4) in (3 5), we obtain

o) 0
) 6[ L (o) { i[ I, (axydx}sin at da=g(t) t > 1

Let us put
@ aL(e) =14 V()

where I is the unit matrix and _
(Vu (d) & le ((1) ........ al.ln ((l) )
I Veema Ly @
Lo Lnt(a) aLp2(a) Vnn (@) )
then we have
00 00

©) g = f _E {14 V() f 1(x) Jo (0x) d} sin at da 1>1
i

oo )
L(10) -5 g () =f %1_ {f 1(x) To (@x) dx} sin ot da
0 i
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L o
+ f] Y V(a){lfl(x)J,, (ax) (dx)} sin atda t > 1.
0

Inverting the order of integration, we have

0 0
(11) g =f’ {(x)dx f {TJ., (ax) sin at do,
0

—d

(v 0] (2 0]
+1_[ 1(x) dx Oj_ % V (@) Jo (ax) sin of da t > 1

Differentiating both sides with respect to ‘" and making use the of
fact (cf. [2, p. 405]) '

© ((x2—12)y~} t < x
(12) [ ¥, (ax)cos at da = |
0 L 0 t>x
we have
, o . .
(13) g'(t)=f A& ax 4 [ 1) dx [ V(2) T, (ax) cos at da
h (x2=12) 1 0 _

Making use of the integral representation for J, (ax)

[+o]

a9 Jo @) =2 | -(;z“‘_—:;‘)% dy
we get ’
s g @ = fw 1@ ey Cimyax
SIPENCETT 0
e .
Vi) % f SV % 4y cos at da

1 (r-xt
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Inverting the order of integration

16) g' (1) = Y% g 1(x)d _ i
o e tf (2 -2y} e f ® x;c[ (}’z-fxz)*()fj

V () sin ya cos atda
Let us substitute

o o]
an v(r,oH = Oj V (a) sin ya cos ar da and g’ (t) = G (¢)

then we have
fe'e)

(18) G (1) = f ) g 4 Zfl(x){ _ V(y,t) dy; dx

(x2—2)} (2—x2)4

If we put

o
(19) f ! (x) 7 dx = m (1), where m (1) is a vector
(x2—12)¥

and apply Lemma 1, we have

Q0
(20 IA(x)——-zi f —(;—:";(:))Tdt

Substituting (19) and (20) in equation (18), we get

[« « I
sy z m(z) \AS X))
@) G (@) = m (f)— f { = f G 2)_dz xf e dy} dx

Putting

vy '
22 dy=N{(t x
22 f ot ly (¢, x)
and assuming that

23 Lt N (4, x) = 0 (zero)
X 0
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we obtain

24 G () =mt)-4 fdxj‘z.z_% dz N (t,x) dx

Since the vector m (2) is bounded in (1, o), the integral in (24) can be
calculated by parts. Theref'orv

o0

d zm(z) d

(25) lf = f Gl dz - N (1, x)dx
X

o0 oo o0 00
- ZmG) NG, | - 2MG) 4N 1, %) dx
‘ 1

(- xib DT ) e
o0 00
- zm(z) -z m(z) ' -
N, 1) f o dz f xj (zz_xz)%dzN (t, x) dx
—— N1 zm(z) zm(z) N, (t, %) dx |
. )f e f U(zz_xz)z o) ds i

Substituting (25) in (24)

zm(2)

(z* ——1)%

(26) G(:)_m(z)+~§ N (@, 1) f dz

+ fzm(z)dzf N’(tx)d ;
1

(22 — x2) 2

=m(t)+% { fcjozm(z) {N(t’1)+ f oty x)dx}g dz

; (22— 1)% (22 _xz)

Putting
@) z {N(_UL+IN (tx)d} K z2)

(z2—-1)% (22 _x2)2

spii iR
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we finally obtain
4 o]
(28) G(O)=m() + { K@, 2)m(z)dz

This is a set of Fredholm’s integral equations of the second kind which
is known to be eqﬁivalent to a single integral equation of that kind.
So, we can determine the coordinates of the vector m (t) and hence that
of I (x). Therefore y (o) is known.

Step 11.
Consider the set of n-dual integral equations given by :

(29a) ({OOD (x) ¢ () sin at da = £ () O<citgl

(29b) Ofoo E (@) ¢ (x) sin af du =0 1>1

Putting « E () ¢ («) = y (a), reduce the set of equations (29) to the
form '

o0
(30a) f é](a)\y(a)Sinatda:f(t) 0<txl
0

[0 0]
oy | L (@) sin at de =0 t>1
0

o

where J (o) = D () E71 (a)

Consider the solution in the form
1
B y(@) = Of u (%) Jo (ax) dx

where u (x) is a vector to be determined later. Differentiate equation
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(30b) and substitute (31) init. Making use of lemma 2, equation (12)
and the following integral representation

(D) Jo (ax) = f _COS zoL

(x2 — 22) 2

we obtain a set of Fredholm s integral equations of the second kind. The
prooedu_re is exactly similar as in step 1. The form of the integral equa-
tions is given by

(33) v(t)+ f] K(t, o) v(e)yde =f1(t)=P (1)
where
t
(G4) w(t) = f——"-(")—a’x .
0

(2—x2)}

The problem is therefore formally solved by superposing the two results.
The simple vector addition may be used for this purpow and hence ¢ («)
is determined.

Consider the following sets of n dual integral equations with trigono-
metric kernels

(350) Ofo D(x) (@) cos of du = f(f) 0<r<l

(35b) go Ew ¢(@) cos af da =g(f) t>1
and

(36a) f D@ ¢@ 5 arde =) 0<r<t

[s o] .
(36b) Of E@@) ¢ (0) gootde=g (1) t>1

- evisteet o kR
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The equations can be solved in the similar way by reducing the
equations into proper forms by integrating or differentiating the equa-
tions and by proper substitution for the matrix involved.
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VARIATIONAL INEQUALITIES AND APPROXIMATION
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Abstract :—The existence and uniqueness of the solution of a
class of nonlinear variational inequalities is considered, and methods
of approximation of the solution are given using the linearization of
variational inequalities.

Some elementary results concerning bilinear forms are given in
the appendix.

Let H be a real Hilbert Space with its dual H’, whose inner product
and norm are denoted by ((.)) and | .| respectively. The pairing
between feH’' and weH is denoted by (f, ). Let F’ be the Frechet
differential of a nonlinear functional F on a closed convex set M in H.

Consider also a coercive continuous bilinear from a (#, v) on H,
i.e. there exist constants a>0, >0 such that

a(v)>al|v)? for all veH, )

{a@,v)] < 8luf v for all u, veH. )

Furthermore let F be a given ¢lement of H’. We now consider
a functional I[v] defind by
I[vl=a (v, v)—2F (v) for all veH.
Many mathematical problems either arise or can be formulated
in this form. Here one seeks to minimize the functional I [v] over a
whole space H or on a convex set M in H. It is well-known [I] that
if F is a linear functional, then the element u which minimize I {v]
on M is given by k
a @, v—-u)y > (F, v—a) for all ve M. ®3)



26

For a nonlinear Frechet differentiable functional F, it was shown
[3] that the minimum of the functional I[v] on M is given by ueM
such that
a(,v=u) > F (u), v-u) for all ve M. “
Such type of inequalities are known as variational inequalities
[I]. Lions-Stampacchia [I] have studied the existence of a unique
solution- of (3). The motivation for this report is to show that under
certain conditions there does exist a unique solution of a more general
variational inequality of which (4) is a special case.

Let us consider the following problem.

Problems 1
Find ueM such that
a(u, v—u) > (Au, v—u) for all veM, &)

where A is a nonlinear operator such that Au e H'.

For M=H, the inequality (5) is equivalent to finding ueH
such that
a (u,v)=(Au, v) for all veH,
and thus our results include the Lax-Milgram lemma as a special case.
Definition :
The operator T : M—H’ is called antimonotone, if
(Tu—~Tv, u—1)<0 for all u,veM,
and is said to be hemicontinuous [4], if for all u, v € M, the mapping
t € [0,1] implies that (T (u+¢ (v—u)), u—v) is continuous, Furthermore,

T is Lipschitz continuous, if there exists a constant 0<<¥<1 such that
[Tu—Tv| < Y fu—v] for all u, veM.

- Theorem 1

Let a (u, v) be a coercive continuous bilinear form and M a closed
convex subset in /[H. If A is a Lipschitz continuous antimonotone
operator with Y<a, then there exists a unique u e M such that (5)
holds.
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The following lemmas are needed for the proof.
Lemma 1.
If A is an antimonotone hemicontinuous operator, then v € M is
a solution of (5) if and only if u satisfies
a(u, v—u) > (Av, v—u) for all veM (6)

Proof

If for a givenu# in M, (5) holds, then (6) follows by the antimono-
tonicity of A.

Conversely, suppose (6) holds, then for all r€[0,1] and weM,
w=u+t (w—u)eM, since M is a convex set. Setting v=v¢ in (6)
we have

alu,w—u) > (Avy, w—u) for all weM.
Now let r—0. Since A is hemicontinuous, Ay—>Au.

It follows that
a(,w—u) > (Au, w—u) for all weM.

The map v—>a(u, v) is linear continuous on H; so by Reisz-
Frechet theorem, there exists an element 7=Tu € H’ such that

a (u,v) = (Tu, v) ‘ for all veH )]
Let A be a canonical isomorphism from H’ onto H defind by
(fiv)y= (AL ") for all veH, fe H' ®)

Then IANT=I A1 =1. We note first that by (1), (2) and (7),

it follows that
@ [Tl< g
#H a<p
The next lemma is a generalization of a lemma of Lions-Stamp-
acchia [1].
Lemma 2

Let { be a number such that 0<C<2(ﬁl q) dC<~. Then



28

there exists a @ with 0<@<1 such that
I ¢ )—9 (up) | < ¢ fn—u2l for all ug, uz € H,
where for ueH, ¢ () e H' is defined by
(), VV=((u, V)= a (u, V) +{ (Ay, v) for all ve H. )
Proof :
For all u;, u2eH.

(¢ (@)~ ¢ (2), V)=((uy— 1, V))— & @ (uy~u2, v) + {(Auy—~Au2, v)
for all yveH

=((u1 - u2! v)) - C(T(ul— u2), 1’) + C\AUI - Auz’ V), by (7)
=((uy — u2, ) = GUA T, — u2), )+ C((AAu; — NAuy ,v))
by (8)
=((uy ~u2—- AT (ug —u2), v)) +L(A Auy — AAuz, v))
Thus

F (@tuy) ~ dluz), ] Jug —u2— L ATy ~u2)] V) +E[Auy—Auz [v]
for all veH.

Now using (7) and (8) we have

Moag — 213 — S AT (g — u2)[2< |1ty — g2+ C2| T2y — ]2 — 28 @iy — u2,t0y = 112)
<(1+82 p2-280a)luy —up}2, by coercivity of a (u, v).

Then

o ()= ¢ (ug), v} € VI+E2B2—2Ca) Jluy—ua| [v]+8 |Auy—Auz] |v)
: for all veH.

<6|uy—uy| |v], by the Lipschitz continuity of A,

and g= /TF T2 FZ=20a+ 4 <1 for 0< L<2- 2= B2 ” —and { < 11,

- ‘bécause a<<y. Hence for all u, w2 eH

g =4 ] = o0 ‘““‘ﬁv‘"”‘”’)’ | <oy —ual.

The following results are proved by Mosco [2].
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Lemma 3
Let M be a convex subset of H, Then, given z€H we have
x=Pyq 2,
if and only if
xeM: ((x—z,y-—x))>0 for all ye M
where Py is projection of H in M.

Lemma 4
Py is non-expansive, i.e.
|Pm 23— Pum 22| < [21=22] for all z;, z,€H.

Using the technique of Lions-Stampacchia [1], we now prove
theorem 1.

Proof of theorem 1

(a) Um‘quéness
Let u;, i=1, 2 be solutions in M of
a(u,- , V‘U,))(AM,‘, y—1i) for all veM.
‘ Setting v=u3—; i=1, 2 in the above inequality, by addition
we have
aluy—uz, u—u2)< (Aug— Aua, u;—u).
Since a (u, v) is a coercive bilinear form, there exists a constant
a>0 such that
afug—u2]?2 < (Aup—Auz, ug—u2) < 0,
by the antimonotonicity of A. From which the uniqueness of the
solution ueM follows.
(b) Existence

For a fixed { as in Lemma 2, and weH, define ¢ (u) eH' by (9).
By lemma 3, there exists a ynique w € M such that
((w,v=w)) > (¢ u), v—w) for all veM,
and w is given by ‘ k
w=Pyu A ¢ () = Tu,
which deﬁnesk a map H into M.
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Now for all u;, u, € H,
[Tuy —Tuz|| = |[PmA ¢ (u1)—PuA$ (u2)]
S[A¢ @)~ A ()], by lemma 4,
<) — ¢ (@22,
<8|uy—wuzf, by lemma 2.
Since g<<1. Tu is a contraction and has a fixed point u=Tu, which
belongs to M, a closed convex set and satisfies
(o, v =) (1), v—u)=((ut, v— 1)) = §[alu, v~ u) — (Atty v— 1)]
Thus for § > 0,
a(u, v—-u) > (Au, v—u) ’ for all veM
showing that u is a unique solution of problem 1.

Remarks

1: It is obvious that for Au=F’ (u), the existence of a unique
solution of a variational inequality (4) follows under the assumptions
of theorem 1.

2: If A is independent of u, that is Au=A’ (say), then the
Lipschitz constant ¥ is zero, and lemma 2 reduces to a lemma of
Lions-Stamacchia [1] and § is a number such that 0 < ¢ <~;—(21

Consequently theorem I is exactly the same as one proved by Lions-
Stampacchia for the linear case. It is obvious that our result not only
generalizes their result, but also includes it as a special case.

Method of Approximation

Suppose that the bilinear form is non-negative, i.e.

a(v,v) >0 for all veH. 10y
Assume that there exists at least one solution v ¢ M of '
a (u, v—u)>(Au, v—u) for all veM V3))

and X is the set of all solutions of (11), Let, finally, & (x4, v) be a
coercive bilinear form on H, that is there exists a constant a>0
such that

b(,v) > alv|? for all veH (12y
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First of all we prove some elementary but important lemmas.
Lemma 5

If @, v) is a non-negative bilinear form and u €M then the
inequality (5) is equivalent to the inequality
a@,v—u)> (A W), v—u for all veM., (13

Proof :

Let (5) hold, then
a(v, v—u) >(Aw), v—u)+a(v—u, v-—u) (A @, v—u)y by (10
Thus (13) holds :
Conversely let (13) hold, then for all ze€[0, 1] and weM,
ve=u-+t (w—u) e M. Setting v=v¢ in (13) it follows that
a(u, w=u)+t alw—u, w—u)>(A ), w— u) for all we M.
Letting #—-0, (5) follows.

As a consequence of lemma 1 and lemma 5 we have the following
result.

Lemma 6

If a(u, v) is non-negative bilinear form and A is hemicontinuous
antimonotone operator, then the inequality (5) is equivalent to
av, v—u) > (A(»), v—un) for all veM
Theorem 2

If b(u,v) is a coercive continuous bilinear form and B is a
Lipschitz continuous antimonotone operator with % < o then there
exists a unique solution u, € X such that

b(uo, v—1tg) > (Buo, v—1uo) for all veX (14)

Proof :

Obviously X is closed. In order to prove theorem (2), it is enough
to show that X is convex. Since a(w, v) is non-negative, so (11)
is equivalent to
a (v, v—u) > (Av, v—u), by lemma 6.
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Now for all te[0, 1] uy, ugeX,
a(v, v=uz2—1t (uy—uz))=a (v, v—u2)—t a(v, uy —uz)
=a (v, v—up)~1t a(v, uy—v+v~—u3)
=a (v, v=ud+tt a(v, v=1uy)—t a(v, v~ u3)
=(l—=t)a (v, v=up)+t a (v, v~uy)
>(1 -8 (Av, v—ug)+t (Av, v—1uy), by lemma 6.
Thus for all ¢ &[0, 1), uy, u2€X, t uy+(1 —t)uz € X, which implies
that X is a convex set. Hence by theorem (1), there does exist a
unique solution w, € X satisfying (14).
Theorem 3
Assume that (10) and (12) hold. If a(u, v)+€b(u,v) is a con=

tinuous bilinear from and A, B are both antimonotone Lipschitz
continuous with Y<a, then there exists 4 unique solution uaeM

such that
a(ue, v-u€)+€b (ue. v—u8)>(Au8+s Bue, v-us) ‘
for all veM (15)
Proof : .
Since for ¢>0and by (10), (12), the continuous bilinear form
a(u, ¥)+eb (u, v) is coercive on H, then by theorem 1, there exists a
unique U € M satisfying (15).

Using lemma 1 and the methods of Sibory [4] and Lions-Stamp-
acchia [I], we prove that the elements of X can be approximated.

Theorem 4
Suppose A, B : M—H’ are both hemicontinuous operators and
the assumptions of theorems (2) and (3) hold. If u, is the element
of X defined by (14) satisfying : _
a(tie, v—1to) > (Aug, v—1u,) for all veX. (16)
and u_ is the element of M defined by (15), then

U —>Uo strongly in H as &—0.
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Proof :
This is proved in three steps.

(4} U is bounded in H.
Setting v=u, in (15) and v=u_ in (16), we get
a(ue, uo—us)+sb(u8, uo—u8)>(Au£+eBus, Ho =)

and
a (o, u—1o) > (Ao, ue'"”o)

By addition of these inequalities, it follows from (10) and the anti-
monotonicity of A that
b (ue, uo—ug) > (Bue, uo—-ue). an
Since b (ue, ue) is a coercive bilinear form, there exists a constant
o > 0 such that
o ||u$[|2 <b (ue, ug) + (Bue’ “g';"f’)"
It follows that ||u8||< constant, independent of €. Hence there
exists a subsequence Ue which converges to §, say.
@n ¢ belongs to X.

Since A and B are antimonotone operators, by (15) and the
application of lemma 1, we get _
a(ue, v-ue)+s b(ue, v— ue)>(Av+s By, v—us) for all veM.

Now let &0, us->E and lim inf a(us, ua)>a(£, £), [1]. We have

ag,v=-£ > (Av, v—§) for all ve X,
which is by lemma 1 equivalent to
a(t, v—{)') (AE, v=§) 4 for all veX.
Thus § e X.

(@)  Finally uusu ~> | E when e—0.



34
Setting v=u¢€¢ X in (15) and v=uan in (11).
We obtain. '

a(us, u— us) +¢€ b(ua, Uu— u8)>(AuS+ 3 Bus, u- us),

which is, by lemma 1, equivalent to

a (ug, u— u8)+ £ ib(us, U~— ue) >(AuteBu- ue).

Also,

a(u, ue—u) > (Au, ua——u)

By addition one has
a (ue— U, u— ua) +& b(us, U u8)>s (Bu, u— us)

Using (10), and for £>0, we get
b:(us, u—us) > (Bu, u—us) for all ueX.

Letting &0, us—->§, we have

b (E: u-—f) > (Bus u"z)
> (BE, u—-§p by lemma 1.

Thus £eX is a solution of (14) and since the solution is unique,
it follows that f=u,.

Also from (17), by the coercivity of b(us, us), it follows that there

exists a constant a > 0 such that

a]]us—uo]]2 <b (ua—uo, ue—-uo)
' ((Bua, U, —uo) ~ b(uio, us—uo)
< (Buo, ua—u,,)—-b(uo, ue—uo), by lemma 1,

which—-0, as, e—>0. Hence it follows that U —>tho strongly in H.
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Theorem 5
If a(u, v), b(u, v) are coercive continuous bilinear forms, M is a
closed convex set in H, and A, B are hemicontinuous antimonotone
Lipschitz continuous operators with o > %, then problem 1 has a
unique solution if and only if there exists a constant L, independent
of €, such that the solution of (15) satisfies
lu f < L (18)

Proof :

If there exists a solution, then from theorem 4, it follows that
(18) holds. Conversely suppose that (18) holds, then there exists a
subsequence “ of Uy which converges to w weakly in H. Since M

is a closed convex set, weM. Further writing (15) in the form
a(u, u—v)+¢ b(ue, U= )< (Av+¢ By, u -~ v) for all veM

and taking g==7=0, we find that

a(w,w) < a(w, v)+(Ay, w=y) for all veM,
which is by lemma. 1, equivalent to
aw, w=nN<Aw, w=n for all veM.

Thus w is the solution satisfying (11).
EXISTENCE OF SOLUTIONS

In this section, the existence of the solution satisfying (10) for
the cases, when M is bounded or an unbounded convex subset of
H is considered.
Theorem 6

If M is a bounded closed convex subset, and A is a hemicontinuous
Lipschitz antimonotone operation, then there exists a unique solution
of problem (1).

Proof :
Let uaeM be the element defind by (15). Since M is bounded,

then Hue“ is bounded, and theorem (6) follows from theorem (5).
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Consider now the case when the set M is bounded. Let
Mg = {k; keM, | k | < R} with R large enough so that Mg # ¢.
Assume that A is hemicontinuous antimonotone operator, then by
theorem (6), there exists a non-empty set,

Xgr = set of all solution of weMg with - 19
alw, v—w) > (Aw, v—w) for all veMg
Theorem 7

Suppose a (4, v) is a continuous bilinear form and A is a
hemicontinuous antimonotone operator. If u €Xg with [u<{R, then
u satisfies (11). :

Proof :

In fact, let w be any solution in M. Then for
0<e<l], utew—u)eM and [utew—u)| < Juf+e jw—uj < R for
sufficiently small €. Thus for 0 <& < g, v=u -+ € (W — u) €Mg.
Consequently such a v is allowed in (19) with w=u and it follows that

a {(u, yw——u) > (Au, w—u) for all weM.

This proves theorem 7.

APPENDIX

Let a(u, v) be a coercive continuous bilinear form on H. The

Cauchy-Schwarz inequality holds for a(u, v) and is given by

ba(u,v) |2 a(u, u) a (v, v) for all u,veH,

Theorem 8

A bounded bilinear  form is continuous with respect to the
norm convergence.
Proof :

Let up—>u and vy—>v, these sequences are bounded. We let &
be their bound, and then | uy| < N.

Now
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| a(uy, va)—a(u, v) | = | a(un, vn)—a(uy, v)+a(un, v)=a(u, v) |
< | a(un, va=v | + | a(un—1,v) |
<C A=) +Cilun—u] Pl
by the Cauchy-Schwarz inequality. But |u,—u]—0 and
|va—v|—0 as n—>o0, and therefore
| a(un, vn)—a(u, v) | =0, ie.,
a(up, vp)—>a(u, v).

From now on we use the norm [u|2=a(u, ¥) on H. We now
prove the following results which are more general than and include

the classical results as special cases.

Theorem 9

Yet v be in H and M be a closed convex subset of H., If
a(u,v) is a continuous and symmetric bilinear form on H, then
ueM satisfies

a (u—v, w=u)>0, for all weM, 20)
if and only if _

lu=v] < [w—v| for all weM 21
P:oof : |

If ueM satisfies (21), then we have to show that (20) holds.

Suppose to the contrary that there is a vector v;e€M such
that a(u - vyu — v)) =€ > 0. Now for all 1€[0,1] and vy ¢ M,
vw=u+t(vy—~u) ¢ M, we have

I ve=v [2=lutt (vy—u)—v |2
=a (u—v+t (vi~u), u—~v+t (vi—4))
=a(u—"v, u—v)+t2 a(vy—u, vy —u)+2 t a (u~v, vi—1u)
= Ju= V2412 [y = w242 £ a(u=v, vi—)

<Ju=v]3



38

for small positive ¢, which contradict (21). Hence no such v;¢M
can exist. '

Conversely let usM such that (20) holds, then for any w#u,
we M, we have '

| v=w[2=[v—u+ u—w|?
=a(v—u 4+ u—w,v—u + u—w)
=|v—uf?2 +2 a(v=u, u—w) + [u—w|?2
A, > v=uf?-
Thus u & M satisfies (21).

We note that for a (4, v) = (u, v), theorem 9 reduces to the
following well known minimum norm problem [6].

Corollary :

Let v be in H and M be a closed convex subset of H. Then
ueM satisfies

(u—v,w—u) >0, for all w e M,
if and only if
lu—vl < [w=v], for all weM.

Our next result is a variant from of the projection theorem,
which has many applications in numerical analysis, sece e.g. Strang
and Fix [5], but has not been proved.

Theorem 10

Let a(u,v) be a continuous symmetric bilinear form on H and §
be a closed proper subspace of H. If ugH, then there exists a
unique u,&S such that

a(u—uo, v) = 0, k for all veS.

Here u, can be considered as a projection of uonS.
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Proof :

Let S* = {ueH, a(u, v)=0, for all veS}. For each veS, the
set {ueH, a(u, v)=0, for all veS} is closed, because it is the inverse
image of the set {0} under the continuous functioual a(v.,) and S*
is the intersection of all these sets over veS. Hence S* is closed.
Let u be any point of H. Since S is closed, there exists a point
nearest to u, say uocS. We shall show that u —u, e S* or in otherwords
a(u—ug, v)=0, for all veS.

Let v=£0 be any arbitrary point of S. The w,+aveS for
all «eR. Thus by theorem 1 [6, p. 50], it follows that

lu—uo 2 < [u=—sro—av |2
= alu—so—a v, U—tg—av)
= a(u—to, u—to)—2 a a(u—ttq, v) + o2 a(v, v)

= fu-—-uo)2=2 a a(u—=uy, v)+a2 |2
that is

—2aalu—us, V)+a? | v |2 >0
Letling «—-0, it follows that
au—u, v) =0, for all veS
Remark :
For the special case a(u, v) = (u, v), we get the well known
projection theorem [6]. _ :
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ELLIPTIC CURVES WITH POINTS OF GRDER 3
| by
SHAMIM AKHTAR

1. In a list of elliptic curves with small conducters obtained
experimentally by Swinnerton-Dyer it is found that many curves have
rational points of finite order. It is desirable to determine the groups of
rational points of these curves, and the rational peints of finite order
make it easier, There are standard methods for using points of order
2 (see Cassels’ report § 24 [1] ), here we will use points of order 3.

It is well known that an elliptic curve I’ with rational point on
it can be written in the homogeneous form

2z =x3-Axz22 -~ B2z

If we write ¢ for the point, (0, 1, 0), then the points of I form an abehan
group with 4 as unit and the rational points form a subgrcup A which
is finitely generated.

Following Cassels [2] we say that there isa 3-covering of I if
there is Curve D defined over the rational ﬁeld Q and a commutatlve
triangle n

u: I /
0
with associated generic points.
x’ dr——— % 2 3 x‘

b7
\l/

where the map X—x is over the rationals and x;«~—X is over the
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complex numbers. Another curve D’ with generic X’ gives the same
3-coverings if and only if there is a birational mapping X—>X’ over
the rationals and a point §onT with 3§ = 0 such that the diagram
is commutative. There is a natural structure of abelian group on the

X —_— Xy

|
|

.-
15 X‘os

3-coverings [see Cassels [2]; under this law the 3-coverings form an
abelian group. G. We are interested in its subgroup G’, the group of
coi'erings for which D has a rational point. Weil has shown that G’
is finite and is isomorphic to A/3 A.

In general, it is not practicable to compute the 3-coverings of a
curve I'. However, sometimes I' will be 3-isogeneous to a curve I’
so that there are maps A, 2’ defined over Q

A »
r'——T; ——T

which are group homomorphisms with kernel of order 3, and with
A x=3xforxon . In this case, we compute the group Gl of

|

|~

D

Aa-coverings of I'y and the group G)‘, of A’-coverings




D
of I'; and we have G o~ Glx G)J

In section 2 we work out when such maps A, 2/ exist. We find that
an elliptic curve with points of order 3 has a A-covering of the form
x34y34-2y 23=bxyz. We note that when dealing with equations of
the type u3 +v3+1v3=ki1vw, we have a choice of using either of two
systems of isogenies ‘

Az A
Ci————l—Iy
w [
I'j—— I3 ——
with A A’ and @ &’ multiplications by 3.

In section 3 we are concerned with the equations of the type
x34-y3 4 z3=dxyz.

We prove
Theorem 1 :

If d is a rational integer such (d, 3)=1, ds=—1, 5, d—3 has
no factors of form 6#n 4+ 1, and 42 + 3d49 is prime, then the
equation x34 y34z3=dxyz has no non-trivial rational integral solutions.

The particular case d=1 has been treated by Sansone and Cassels
{3), by more or less the same method as ours, using the isogenies

A A
r 1 >I's >I" 1
described above. Their proof is completely elementary, using the
classical method of descent. We find it more convenient to use the

isogenies

’

(3 &
ry——I3—I
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We give a completely elementary proof using the classical descent
method. By good luck, this works; however one would be safer to use
coverings and so forth, as described in Cassels’ report.

2. LetI be an elliptic curve Q with a rational point suck that

there is a curve I’y and maps 2, A’ defined over Q.

A A
I——>T'y——T

which are group homomorphism with keérnels of order 3, and with
Mix=3x for xeI.

We may suppose that I' is given by aii équatién of form

yz22=x3+ay x? z+az x 2°+a; 23 ;

the zero of the group I’ is ¢ the point at oc, and the points of order
3 are the inflections. The kernel of a is defined over Q ; it consists of ¢
and a pair (§, + n) of inflections ; then § must be rational and by a
change of co-ordinates we may suppose that § =0.

Suppose that at the inflection y’ = m ; then we have n2=a;,
21 m =az, m?2=a;; so a;=4al a; and we may write I' as
zy2—a (x4n2)2 z=x3

Given I of this form, it is easy to find a curve I'; and a miap
A : I'y>TI. Fdctoring in Q (/ a ), we take
yEVE )= 7 v
z=13
so that x=(u2—avd):
(u2—a ) 4y B=3 42 y+a 13

. t , .
Write v— 5 =Ww; then (t, u; w) lies on the curve

Fp:=3u2 W=(—;7a——n) 13 +aw(w+1)?

essentially of the same form as I.

|
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If in particular I" has two rational inflections, thén a is a square,
say a=b2. If we set
y4-b x+bz=u3
—y+bx+b z=y3
z=—w3
then x=u v w;
the point (u, v, w) lies on a curve
[y ud+v32n bwd = 2 buww,

and we have a map %' : [>T

It is more convenient to take a dlﬁ"erent form for I'. The
equation for I'y may be written as

(Bu+3v4-2bw) (3up+ 3 p24-2bw) (3up2+-3vp+2bw) = (853 —54n b) w3

where p=———1—+—2‘/vl3« . Now let

8563 (3u + 3v + 2bw) =(sb3 =549 b) (A+B+C)3
3up + 3v p2 4+ 2bw =(Ap+Bp24C)3
3up? + 3vp 4 2bw =(Ap2+4Bp+C)3
then 2bw =A34-B34-C3-3 ABC.
and the point (A, B, C) lies on

463 ABC=1 (A+B4C).
The curve I'z is actually equivalent to I'; we have just gwen a map
ATy we getd' : l"--)f'zby
A=u3, B=v3, C=2n w3
We may check that the composite map ¥’ A : I'y-3I'j is multiplication
by 3. ' '

Even more particularly, when we take I') in the form
u3 4v3+ 21 w3=2uvw, 27 may be a cube. It is then sénsible to absorb
the 2 into w3, so that I’y becomeé I'y : u3 + 3 4 w3 = kuvw, where
k is not necessarily irtégral. As beforé wé have

A : I'2>Ty by writing I'y as
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(Bu+3v+kw) Bup+3vp2+kw) (Bup2+3vp+kw) m (k2=27) w3
and setting k3 (3u+-3v+kw)=(k3-27) (A4+B+C)3
3up + 3vp? + kw=(Ap+Bp2+C)
3up? + 3vp + kw=(Ap2+Bp+C)3
so that kw=A3+B34+C3-3ABC
and (A B, C) lies on
I'2: (A + B + C)3=k3 ABC.
We get 2’: Ty -I3 by A=u3, B=1v3 C=wuw3. We may also
write I'; as
(Bu+ 3v + kw) Bu + kv + 3w) (ku + 3v + 3w)
=k24+3k+9) (u+v+ w3
Write 3u+3v-+hkw=(k2+3k+9)z3
But+kv+3w=Y3
ku+43v43w=X3
so ut+ v+ w=XYZ
and the point (X, Y, Z) lies on the curve
[: X3+ Y3+4+(k243k+9) Z3=(k+6)XYZ
and we have constructed an isogeny g :I'3->I;. As before, we can
get a map p’ : ['->T; with @ &/ multiplication by 3, by writing I'; as
BX+3Y + (k+6) Z) GpX +(k+6) Z + 3pY?) ((k + 6)Z + 3pY + 3Xr2)
, =(k ~3)3 Z3
and setting 3X+3Y+(k+6) Z=(U4+V+W)3
3pX +3p2 Y +(k-+6) Z=(Up+Vp2+W)3
3p2 X+3pY +(k +6) Z=(Up2+ Vp+W)3
so that  (k—3)Z=U3+V34+W3-3 Uvw
and (k+6) Z=U3+V3+W3+6 UVW
therefore Z=UVW and consequently U3+ V3 4+ W3=kUVW
so (U, V, W) lies on I'y.
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Accordingly, when we deal with curves of the type
u3 + v3 + wd = kuvw
we have the choice of using either of the isogenies mentioned above.

3; In this section we give a proof of theorem 1.

We suppose that x3 + p3 + z3=dxyz has an integral solution
(x, v, z) such that | xyz |s~0. Suppose that | xyz| is minimal,
so that (x,y,z)=1. We have
(3x + 3y +dz) 3x +dy + 32) (dx + 3y + 32)

=(d24+3d+9) (x+y+z)3
we may suppose
Ix+ 3y +dz=cwd
3x +dy + 3z = b3
dx + 3y + 3z = aus
where abc=(d2 + 3d + 9) e3 )
and a, b, ¢ have no cube factors. Then
x4+ y4z=ecuw
and asd + bv3 + ew? = (d + 6) euvw )

If pis a common factor of (g, b,¢), we may remove it from
a, b. ¢, e without disturbing (1) and (2), and so we may suppose that
(@, b, c)=1. If now p|e, we may suppose that pXa, and then that
pl b, p?| c; but this makes (2) insoluble modulo powers of p.

Hence we may suppose e¢ =1, and we have a solution of
au? + bv3 + cwd = (d + 6Gluvw
with abc=d? + 3d + 9. By hypothe51s d24-3d+9 is prime, so we
may suppose a=b=1, ,
w3+ v3 +(d2+ 3d +9) wi=(d+6)uvw
This is GuB3 +CvB3 +(d+6)w)d — 27T (d+6)uww=(d =33 w3;
write Yy=3u+3v+({d+ 6w
o = 3up+3vp2+(d+6)w
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then v o o=((d—3) w)3=( (d‘f’g (‘5‘1‘4&;+v)" )3.

Proceeding much as before, but now working in Q (,/=3"), we
may suppose

y=xa3, o= B3, o=p [33, where A € Q, A #, ¥ are cube free that except
we may have 9 | A, and A g & is a cube, say
App=f3 feQ )
Then [3(d+6)faPBP = [@-3) (x+o+0)B, so
3(d+6)faBB = (d—3) (AaP+ pp3+u B3 )

A common factor of A, p.,(: is either rational, or a rational
multiple of /=3 ; we can throw away common rational factors, so
that " (A, u, ®) = (1) or (=3 ). Suppose that a prime Iz£./=3
- divides A p . The power of T in g is equal to the power of II in g,

(* &, ®) is not divisible by II, and none of A, y, & is divisible by II3;
the only possibilities are

Oy O [u 2400 f
and eri,mllﬁ,ﬂﬂkﬂllf

these are congruentially impossible unless Il | (d—3). This possibility
is excluded by the hypothesis that (d—3) has no factor of form 6n+-1.

Hence, either (A) = (u) = (f_.l.) =1f=1
or A=9, (=@ =(/=3)f=3;
we have ecither 3 (d46) a B B=(d—3) (a3+p! B3 +p! B%) &)

or 9 (d+6) a B P=(d—3) (9a?+p! I3 B3-p V3 P ©)
with j=0, +1. We may reduce case (6)to case (5) by multiplying
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through by 3, and writing @ for 3a and B for /=37 B; so we have
to consider

3(d+6) aBp = (d-3) (a3 +p!B3+p! BY) Y

If 3% a but /=3 | (B, B) orif 3 [abut /=3 g (B, B) then the
left hand side of (7) is divisible by 3 but the right hand side is not, If
V=3 1 aBp, then a3, P2 P3=+1 (mod 9) and the left hand side of
(7) is exactly divisible by 3 ; this is only possible if /=0 (mod 3). If
/=3 | (a,B,B) then 3 |a; we may suppose 3X(B,B), as sucha
factor may be thrown away; we thus have

o B3 + p? B3 = 0 (mod 27)

with ﬁ,f} both exactly divisible by /=3 ; again, we must have
=0 (mod 3). So that only possibility is

(@—3) (@+B3+)=3 @+6)a B B
i.e. (d=3)(@+ B + P —3aBB)=27aB}

Hence at least one of a+p+p, a+p B+p2 B, a+p? ﬁ—!;p B is divisible
by 3 ; hence all of them are divisible by «/=3~ and consequently all of
them are divisible by 3. So we can find rational integers A, B, C

given by a=A+B+C
Bp=A + Bp + Cp2

B=A + Bp2+Cp
and then A34-B34+C3=d ABC.

If ABC=0, then A+B+C=0, so a=0, =0, ©=0, x+y+2z=0,
x yz=0. This has been excluded so | ABC} >1, and by the minimality
of [xyz|, [ABC|> |xyz|.
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But aBB = (d—3) ABC, so remembering that we removed

common factors from a, B, P, Y oo is a multiple of [(d—3) ABC}3;
so w is a multiple of ABC; so 3x + 3y + dz is a multiple of
d2+3d + 9Y(ABC),
Hence - :
P (x+y+2)3 (d2+3d+9) | | 3x+3y+dzl | (d243d+9) (xyz)3 |
so | x+y+z| > |xpz| > 1. It follows that | xyz| < 6, and all
-such cases may easily be enumerated ; we get cases with

xyzd =1,1,-1,-1) 1,L,L,3;  (1,1,2,5);
1, -12,-4); (-1,-1,23); @, -3 -9);
(-1,-273,3); (1,2,3,6).
The cases with d=-1,d=5 are not really exceptions, since the
curves
X3 4+ y3 4+ 234+ xy2=0
x3 4+ 33 + 23~ Sxyz=0
have precisely 6 points, asis proved (for instance) by Mordell [4].
- The case d=—4 is not exccptional at all, since (—4-3) has a factor
7 of form 6n--1,
This compietes the proof of the theorem 1.
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