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ON TWO DIMENSIONAL FAITHFUL REPRESENTATIONS
OF THE GROUP OF TREFOIL KNOT

By

ABDUL MAIJEED

Department of Mathematics,
Punjab University, New Campus, Lahore, Pakistan.

(Dedicated to Professor B.H. Neumann on his Seventieth Birthday.)
In this paper we determine faithful representations of the group

T=<ab : bi2balblagl=1>
of Trefoil Knot (c.f. [2] ) in GL (2, C) and show that T has no faithful
representation in SL (2, C). ‘ ‘

All notations and terms are standard and can be found in [1]; Z, R
and C respectively denote the sets of integers, reals and of complex
n:mbers.

We need the following lemmas

Lemma 1. [2].
The matrices
¢ —1 1 —1 Q)
”=(1 0)’ b=(1 0)

generate the modular group SL (2, Z) which is the generalised free
product of the groups A = < ag:a2= -1 >, B=<ph:53 = -1 >
amalgamating H ={ + I }.

Lemma 2.

Leta,b € SL (2, C) be such that a” == —I = b7 and < a,b > te
the generalised free product of < a > and < b > amalgamating
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H={+1}. For any 05 ae C, which is not a root of unity, take
B =ammn If
Ag=<aa>, BB=<Bb >

then < Au’ BB > is the generalised free product of Au’ ]3B amalga-
mating :

Haﬂ =< —a" ] = - 1>
Proof

Since G = < a, b > is the generalised free product of
A=<a:am=-1>, B=<b:b* = =]1> amalgamating H=
{ + 1}, each element of G is uniquely of the form

w o= a1 bl31 ..ak bﬁk )

where o < a;<m, o< Bj<n 1 <i<k 1<j<k The only
non-trivial relations in G area™ = —J, b = —Iand their consequence
namelyam b™n = 1. Sofork>1,w # 1L Also

((1 a)m . (ﬂ b)-n = g ﬁ-n am b = A

which is consequence of ‘
(agyn = —anl= —f" L= (B by,

is a non-trivial relation in < Ac,’ Ba > . Let
, a a
w=@a™ . @oft ... @a™ pnP
= a? p? "1 P! e pPe

k > 1, be a non-trivial relation in < Aa’ Bl3 >,0 a0 <m

o g Pj<n 1<i<k 1<j<k. Then

1 blsl e pPe o a P 1
is an element of G < SL (2, C). Hence

detw=0"2" . f2=}

a
w =a
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so that (o B)p? = + 1. Therefore a B is a root of unity. But then
(o B)n = am+n saroot of un'ty, a contradiction. Hence w’ = I is not
a non-trivial relation in < Aa , BB > . Thus < Aa , BB > is the

generalised free product of Aa , B, amalgamating HaB = Aa n BB

p
=< =0"l=—-f1>

Next we prove the main theorem of the paper.

Theorem 1

The group T of trefoil knot has a faithful matrix ‘representation in
GL (2,C).

Proof
The group of trefoil knot has a presentation
T=<a,b=05ba2 ba-1 b! al=1>
Now ba2 ba™1 b1 @71 = 1 implies b22b = aba = u (say)
and u? = aba? ba = aua so that u3 = (au)? |
Put au=v. Then

T=<u,v: w3 =v2>

which is the free prcouct of U = < u > and V = < v > amalgamating
W = < 48 = 2>, Consider now the matrices a and b given in (1).
Then < a, b > is gencralised free product of A= <a:a2 = ~-1>
and B =< b:56% = —I >> amalgamating H = { 41}. For any
o # « € C which is not an nth root of unity for any », take B = o2/3
Then Aa= <aa>, BB= < B b > are such that

?d® = - 21 = -1 = B35

0, by lemma 2, < Aa , B, > is the generalised free product of Au ,B

B B

i == = —2] = -3
amalgamating Ha Aan BB < —a2l B3I >

B
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= < @2aq? = f3 53> and is isomorphic to T. Hence < Ao , BB >

is a faithful representation of T.

It is clear that the faithful representation of T obtained above is in
GL (2, C). One can ask whether T has a faithful representation in
SL (2, C). We answer this question in the negative by proving the

following theorem.
Theorem 2
The group T of trefoil knot has no faithful representation in
SL(2,C).
Proof :
T is a two generater knot group. We take T in the form
T=<uv=r2=ud>,

By a theorem of B.H. Neumann [5], T being the geperalised free
product of torsion free groups is torsion Iree. Suppose that
¢ : T— SL (2, C) is a faithful representation of T such that

$ (M =a, ¢ @ =~

So that @2 = b3in < a, b > and a, b are matrices in SL (2, ©) having
mﬁnite order. < a, b > is irreducible because reducible subgroups of
SL (2, C) are abelian or at most metabelian and < a, b > contains free
subgroups of rank 2 because T does. By corollary II.1.4 [3] there isa
matrix ¢ such that

. ecac l=a'= { A0 »y bl =0 = [ N "‘IJ

£ Al 0
with 4’2 = b'3and < a’, b’ > isomorphicto < a, b >. But then
2 [A2 0 7 ;5 _ [83 n(w4lep2)
a L) a2 )2 b3 = w J

so that a’2 = b’3 implies

E(A+A ) =0 and n(p2+1+4pu2) =0
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IfA +A~1= 0 then a’2 = —I so that ¢’ has finite order. But then
a has finite order ,a contradiction, because < a, b > is torsion free. If
£=0, then < a’,b’ > and hence < a,b > is reducible, again a
contradiction. Hence < a, b > isnotisomorphicto T = < u,v >.
Thus T has no faithful representation in SL (2, C).
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COMPACTNESS OF POSITIVE MAPS MAJORIZED
BY COMPACT MAPS

By

MUHAMMAD NASIR CHAUDHARY
Department of Mathematics,
University of Engineering and Technology, Lahore
Pakistan

Conditions were given in (1) under which K (x, y), the space of
compact maps between two ordered Banach spaces X and Y, is an order
ideal in L (x, y) the space of linear maps between X and Y. It was
shown there that in such cases a positive map in L (x, y) majorized by a
compact map, is itself compact. In this paper a similar problem is
discussed. Some cases are considered where the above is still true but
additional conditions are needed on the majorizing map and the space
involved. )

Let X be an ordered Banach space with closed positive cone X,.
A subset A of X is called order convex if a < ¢ < bwith a, beA,
implies that ¢ € A. -The smallest order convex set containing a subset
B is called the order convex cover of B and is denoted by [B]. In fact
[Bl= B+X.,)n B - X,y). X is a-normal if x < z < y implies
that ||z | < emex{|{x|, | |l }. Equivalently X is a-normal if [ U}
< a . U where U is the unit ball in X. X, is a-generating iff for each
x € Xthere exist #, v e X, with x = u—vand Nall+lv] <o Jxl]
X is directed upwards if for x, y € X there is z > x, y

X is said te be a base normed space if there is a convex subset B of
X such that for x € X,, x # O there is a unique positive number f (x)
with x/f (x) € B, and the Minkowski functional of Co (—B U B) defines
the norm on X. Bis called the base of X,. An approximate order unit
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X is an upward directed set fe,:re A} in X such that for each
x € X, theirexist § € A and « > O with —-ozeS €x<a eﬁ' If the
Minkowski " functional of {x : there exists A € A with —e, € x< e)‘}

is a norm, then X with this norm is called approximate order unit (a.o.u.)
normed.

A linear map T : X —Y is called positive if Txe Y, whenever
xe€ X,.

LEMMA

Let X and Y be ordered Banach spacesand T be a linear map on
X into Y which maps X, onto Y,. Then T (A) is order convex in Y
whenever A is order convex in X, :

Proof

Let A be an order convex subset of X and u, we T(A). There
exist x, y € A with Tx = w and Ty == w.

Letu < v < wwhereve Y. Then o < v —u € w—u and by
hypothesis there are g, b € X, such that Ta = v~u and Th=w~-u ; ie.
0 Tag Tbh, Thusu € Ta + u < Tb +uie. u T (a+x) < w
We obtain Tx < T(a + x) < Tyand v = T (a + x). This implies that
X < a+x<y ButAisorder convex and therefore a2 + x € Ai.e.
veT (A). Thus T (A) is order convex.

Theorem

Let X and Y be ordered Banachspaces, T ¢ L (X, Y),Se K (X, Y)
ando < T < S. IfS maps order convex sets in X onto order convex
sets in Y then T e K (X, Y) provided one of the following conditions
is satisfied :

(@) X is approximate order unit normed

(b) Xis base normed ;

‘ (c) Xis a Banach lattice ;




9

(d) X is 1-normal and X, is 1-generating.

(e) X is 1-normal and the open unit ball in X is directed upwards.

Proof ‘ N _

(@) Since X is a.o.u, normed, X is l-normal and V the open unit
ball in X is directed upwards [4 : Lemma 2]. Therefore [V] < 1. V' g [V]
which implies that V is order convex. e

Let yeT[V], then y = Tx for some x € V. As V is directed
there is # € V. with x, —x < wand hence T (—4) € Tx < Tu. Thus
S (—~4) < Tx < Su. But S (V) is order convex by hypothesis and
therefore y = Tx € S (V) ; i.e. T(V) is a subset of S (V). ' '

' Now the compactness of S impliés that T is a compact map.

(b) Let B denote the base of X, and U be the closed unit ball in X.
Then U = Co(~BU B). '

Since X, is 2-normal [4-Lemma 1], [U] < 2. U and therefore
M = S{U] < 2.8 (U). This shows that M is relatively compact. We
also note that M is order convex.

LetbeB,then Tb < Sb and T( ~b) > S(—b)ie. S(=b) <
T(+ b) < Sb. Since + B < U, weseethat S(+ b)eM and there-
fore order convexity of M implies that T(+ b)e M.

Nextletye T(U);y=Tx,xe Uand x = Ab— A" b for b, b ¢ B
and o < AN < 1. Then -b' < x < b and T(—b) < Tx < Th.
But Tb and T(—5’) belong to M which implies that Tx ¢ M i..
T (U) =M. Thus T(U) is relatively compact and therefore T ¢ K (X, Y).

(c) Let U be the closed unit ball in X as in (b). Since X is a Banach
lattice, X, is 2-normal and [U] < 2. U (3 : pg. 153].

Let M = S[U). Then M < 2.S(U) and therefore M is relatively
compact. It is also order convex.

IfzeU, theno<Tz <Sz  so that Tz ¢ M. Similarly T (-2z) € M.



10

Now let y € T (U) and y = Tx for some x ¢ U.” Then X=x*t — x"
and x|, 7] € 1;ie. *, xx" € U,. As -x" < x < x* we have
T(—x") € Tx < Tx+t. But T(—x7), T (x*) ¢ M which implies that
y=TxeM. Thus T(U) € Mand TeK (X, Y).

(d) Proof as in part (b).
(e) Proof as in part (a).

Corollary

LetTe L(X,Y)ando < T € W where W isa w-cbmpact map on
X into Y. If X satisfies one of the conditions in theorem and W maps
order convex subsets onto order convex subsets then T is also w-compact

map.

Proof
The Proof is similar to that of the theorem.
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ON A STONE-WEIERSTRASS THEOREM FOR
VECTOR-VALUED FUNCTIONS '

By
LIAQAT ALI KHAN

kDepartment of Mathematics, ;
Federal Government College, H-8, Islamabad.

Let X be a topological space, E a topological vector space with a
base W for closed balanced neighbourhoods of 0 and C (X, E) the vector
space of all bounded continuous E-valued functions on X. Let Co (X, E)
be the subspace of C (X, E) consisting of those functions which <vanish
at infinity’ ; that is, if - fe Co (X, E), then, for any w e W, the set
{x € X : f(x) does not belong to w} is compact in X. When E is the real
or complex field, these spaces are denoted’'by C (X) and C, (X) IfXisa
compact -Hausdroff space, ' then clearly C, (X, E) = C (X, E). We shall
denote by C (X) ® E the vector space spanned by the set of all functions
of the form ¢ Q) a, where ¢ ¢ C(X) aeE,and (¢ ¥a) (x) =¢(x)a
(x € X). The uniform topology s on C (X, E) is the linear topology which
has a base of neighbourhioods of o consisting of all sets of the form :

N@,w)={feC(X,B): f(x)ewforallxeX}
where w varies over W, :
In this paper we establish 'Stone-Weierstress type theorem for
Co (X, E) which extends the results of Buck [1] and Shuchat [4].
We begin w1th the following deﬁmtzon '

Definition ([3], p. 9) Let U be a collectlon of subsets of a topologi-

cal space X. For any x € X, we define ordy U, the order of U at x, as
the number of members of U which contain.x ; ord, U =.sup {ordy U},
x € X. The covering dimension of X is defined as the least positive integer
n such that every. finite-open covering of X 'has a open refinement of
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order < 7 4+ 1. 1If no such finite n exists, then we say that X has an
infinite covering dimension.

Theorem 1 o S .

Let X be a locally compact Hausdorff space of finite covering dimen-
sion and E a Hausdor ff topological vector space. Let A be a C (X)-sub-
module of C, (X, E), and let feC, (X, E) Then the following are

equivalent :
0¥ belongs to the o-closure of A
{#i) for each x ¢ X f (x) belongs to the closure of A (x) {g x):
geA}
Proof o
(1 )y implies (u) Suppose that f belongs to the c-closure of A, and let

x be any point in X Let { f } be a net in A such that f — f Then in
partlcular f x)—>f (x) in E. Smce 4 f *)} = A (%), it follows that

f(x)e A (x).

(ii) implies (/). Suppose that, for each x € X, f(x) ¢ A (x). Suppose X
has a covering demension of order n, and let we W. We show that
there exists a function g in A such thatg — ¢ N (o, W). Choosea V
suchthat V 4V ... 4V (n + 2)-terms) = W. ‘Since feC, (X;E),
there exists a compact set K in X such that f(x) e V if x ¢ X—K. It
follows from (i) that, for each x € X, we can choose a function gy in A
such that gx(x) - f(x)eV. Now g, —f is contmuous and S50 there
emsts an open nelghbourhood U (x) of x in X such that

- g8x (Y —-f(y) €V forall yeU(x).
Since K is compact, the open covering.{ U (x) : x € K } of K has a finite
saboovering, { U (x;) 1i = 1,...., m} say. The collection U= {X—K,
G )ti=1,....,m} form afinite open covering of X, andso, by
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hypothesis, there exists an open refinement V of order < # + 1. Choose

a finite number of members U1, U, ...., U, (say) of V which cover K.

Moreover, for each 1 < j < r, there exists a zj, 1< zj < m, such that

U<xU (xi ). Let{ <i>j j=1 , r} bs a collection of functions
j . .

in C (X) such that o < 9 < L, ¢;=0 outside of U , 21 $. (x)
: J =

=1 for x € X, and z ¢ (x) < 1for x eX ([2}, p- 69, Lemma 2).
j=1
Let g be an E-valued function on X defined by

g (’Y) = E ¢ (X)g (.X),
j=1 l]

where g, ’s are the functions in A choosen earlier. Then g € A since
i, ‘ :
AisaC (X)-submodule Let y be any pointin X. If y € K, then
g =) = 2 9 0) (& ( . O -f(y))e 5 ¢ MV < w
j=1 i j=1
J
Ify e X—K, then

f0 0= T ¢, 0 (e, =10 2 4,0-1)70)

cV4+ V4 ....4V (atmost (n + 1) —times) + V = w,
Thus g ~ f € N (0, w), and so it follows that f belongs to the o-closure’
of A.
Corollary 2 |

Let X and E be given as in the theorem, andlet A be a C (X)-éub-.
module of C, (X, E) such that, for each x ¢ X, A (x) is dense in E. Then
A is o-dense in C, (X, E).




Proof - 7
'Let f € Co (X, E). It follows from the hYpothesis that, for each

xeX, f(x)e A (x) (x). Hence, by the theorem, f belongs to -the o-closure
of A, and so Ais o-dense in C, (X, E)
Corollary 3

Let X and E be as given in the theorem. Then C, (X ) ® E is
a-dense in C, (X, E).

Proof

Since X is locally compact, it is easy to see that, for each x e X,
Co (X) ® E (x) = E. Hence, by Corollary 2, Co (X) & E is o-dense
is C, (X, E).

Remark
If E is assumed to be locally convex (with a base w for closed
balanced ‘convex’ neighbourhoods of 0). then the above results hold
without restricting X to have a finite covering dimension.
The author wishes to express his sincere gratitude to his research superviscr Dr,

K. Rowlands of the University College of Wales, Aberystwyth (U.K.), for his help
and encouragement.
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ERROR ESTIMATES FOR THE FINITE ELEMENT
APPROXIMATION OF VARIATIONAL INEQUALITIES

By
M. ASLAM NOOR

Mathematics Department, Islamia University, 'BahaWdlpdr,
Pakistan

Abstract :  For the piecewise linear and conforming elements, we prove ' that the
error estimate for the finite element approximations of mildly nonlinear variational
inequalities is of order 4 in the energy norm.

1. Introduction

Variational concept play a fundamental role in the theory of partial
differential equations. Variational formulations can serve not omly to
unify diverse fields, but also to suggest new theories. Variational methods
are usually used for approximation. Recently variational theory has
been enriched by the development of the theory of variational inequali-
ties. Stampacchia [ 15 ] has shown the equivalence of the weak and
the variational formulations of linear elliptic boundary value problems
in the constrained case. Since then it has been shown that the theory of
variational inequalities has had a significant impact in the theory of
partial differential equations, mechanics contact problems, optimal con-
trol systems, convex programming, and many other branches of mathe-
matical and engineefing sciences, see for example :

Lions[7),  Fichera[5], ' Noor [10, 13],
and many otheT research workers. A

In this paper, we derive the error estimates for the finite element

approximations of mildly nonlinear elliptic bovindary value problems having
auxiliary constraint conditions. - A-much used approach with any elliptic
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problem is to reformulate it in a weak or variational form and to appro-
ximate these. When a constraint is present, such approach leads to a
variational inequality, Which is the weak formulation, see Noor [12]. An
approximate formulation of the variational inequality i then defined,
and the error estimates involving the difference between the solution of

the exact and the approximate formulation in the W; —norm is obtained
which is in fact of order 4. This result is an extension of that obtained

by Falk [4] and Mosco and Stang [9] for the constrained linear problems.

The general and basic theory of mildly nonlinear variational in-
equalities has been studied by Noor [10], where one finds the inequalities
bounding the error in the approximation and the convergence theorems
regarding the internal approximation of these inequalities. Also for
related results on variational inequalities, see Janovsky and Whiteman
[6] and Noor [11]. ‘

2. Preliminaries

We are concerned with the numerical solutions of. nonlinear pro-
blems of the type :

—Au(x)=f(xu, xeQ) ‘

. )

u (x) =0, x€0Q J

4
Where Q is a simply connected open domain in " with boundary 3 Q
anditsclosure Q0 =QU 30, f(@ =S(x, v (x) isa nonlinear
function of & and u. It is assumed that the boundary 3 @ and f(u) are
smooth enough to ensure the existence _an'dk uniqueness of the solution
u of (1). We study this problem in the usual sobler space W; Q@ =H,

the space of functions which together with their generalized derivatives of
order one are in L, (Q), The subspaceé of functions from H!, which in
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a generalized sense satisfy the homogeneous boundary conditions on 3 Q

- wi 1
is W, ()= H,.

It has been shown by Tonti [17] that in its direct variational formu-

lation, (1) is equivalent to finding » € H!, such that
I[up < I[v], forall ve H(‘,, '

where

, :
3v)2? : =
I[] = f{ ( ax) - 2ff(n)dn }dQ_a(v,v)
Q 0
= 2F (v), &)
is the energy functional associated with (1).

We here consider the case, when the solution u of (1) is required to
satisfy the condition u > ¢ where ¢ is a given function on Q. In this
situation, our problem is to find

def
ueK = {v;veHy,v>¢onq}
is a closed convex subset of Hg , see Mosco [8], such that ¥ minimizes

I {v] on K. It has been shown by Noor [10, 12] that the minimum of
I [v] on K can bz characterized by a class of variational inequalities.

aw,v—-u) ><F (), v—u>, forallvek, 3

where F’ () is thec Frechet differential of F(v) and is in fact, see [14],

<F @ v> =ff(u)vdg, | @
Q
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and the pairing < — A u, v > after integration by parts gives the bili-

near forms
Ju av
a(u,v)=f(ax .i—x—)dﬂ
Q

Concerning the regularity of « ¢ K, we assume the following hypothesis ;

(A): {For fL;(Q), y € Hl n H2, u ¢ K satisfying (4) also lies in
H2},
3. Main Result

We assume that Q is a pologonal domain of R2. Let {Tp }h ~ 0

be a regular family, see Ciarlet [3], of triangulation of Q and define :
Sh={vh: vheC°(Q,vn| =0, vy | ePyforallT eTy}
2Q T

where P; is a set of all polynomials on 22 of degree < 1. Clearly Sy, is
a finite dimensional subspace of Hj. The set Ky is defined as :

Kn = {vy €S : vy > ¢ atevery vertex of triangulations Tp}.

It is obvious that Kp, is a closed convex subset of Sp. In this paper, we
consider the case Kp = K Sp, for other choices, see Falk (41,
Noor [11], and Janovsky and Whiteman [6].

The approximate problem is defined by ;

a (up, vh—up) > < F; (dh}, Vh -—'uh >, for all vy € Kp. o)
where
<F @) n>=[ramwmdo ©
2 :

We now state and prove the main result of this paper, which shows
that error estimate u—uy, is of order 4.
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Theorem 1 -
Let u ¢ K and up € K be respectively solutions of (3) and (5) If

F’ is antimonotone and the hypothesis (A) holds, then
| n—up || = O (h).
Proof
Since up € Ky C K, it follows that

a@, u—up) < <F (), u—u >
and , .
a (upy tp —vp) € < F' p), up —vh >, for all v € Ky,.

Adding these inequalities and rearranging terms, we get
a (u—up, u—up) < a(m, vh —u) + < F' (u) =F' (up), u—up >
4+ < F (wp), u=vp >.
< a(up, Vh —t) + < F' (up)u —v;, > by the antimonotonicity
of F’. Thus we have : ‘

a(u—up, u—up) < a (U—up, u—vy) + a(u, vy, —u)
+ <F' (ur), u=vp>

In case of problems (1), the above inequality can be written as follows
a(u—up, u—up) < au=up, u—vy) + a(u, vp—u)

+ [ faw) @=m) de

Since by hypotheses (A), « € H2, it is possible to integrate by parts
so that :

a(u—up, u—up) < a(u—up, u—vy) + f {—Au —f @p)} (vp—u) dQ
- Q ' NG
from which it follows that

. | |
=it gy < =t gy + {1801, g+ 176 lag) L,

x Ina=il) gy < 1=t s + Clomlp, o
see [13]. ®)
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Let I, be the operator of Sp — interpolation. Then, since Q C .22, we
have H2 ¢ C°(Q) and ueH2, 4> ¢ on Q implythat Iy u e Kj.
Taking v = I # in (8), we have

[ u~up IIHx I Thu— ulle +ClIh u=uly o) )

Since u € H2, it follows from the strandred approximation theory results,

see Ciarlet [3] and Strang and Fix [16] that
2—-r
I Mhu=ul, o SCH " Huly o5 (r=01) (0

where C’s are constant independent of # and u. Thus form (9) and (10),
we obtain
|~ unli=0O(@),

the required estimate.

Remark 1
We also note that form K = H, we have the following error bound

Ju—un | < Collu — w |

a well known result for mildly nonlinear elliptic beundary value problems
without obstacle, see Noor and Whiteman [14].

Remark 2

 For the linear variational inequalities involving the abstacle pro-
blems, using the quardatic elements, Brezzi and Sacchi [2] have proved

3 —
the O (k 2 e) convergence. We here conjecture that for the mildly
nonlmear variational 1nequa11t1es the error estimate for u—u;, would be

O h / 2) as in the linear case. .

The problems of deriving the Ly and Loo errer estimates for the
mildly nonlinear problems having constraint conditions are still open.
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Summary

In this paper a general theory of sampling with unequal probability
is presented which allows population units to appear more than once in
sample. The only condition which is imposed on the selection procedure
is that the total number of appearances in sample is fixed., Selection with
replacement (multinomial sampling) and without replacement are special
cases of this. Two possible variance estimators are presented which
may be used in both single stage and multi-stage sample designs. The
application of this general theory is illustrated by a numerical example.

1. Introduction

Hansen and Hurwitz (1943) developed a theory for multinomial
sampling ‘sampling with replacement’. The variance of their unbiased

. : 1 Y . s
estimator ‘=3 of ulation total Y is
Yup = 7 = 7y ofpop X i

L UN Y
OV () = 3 (3 ).
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An unbiased variance estimator of (1) is

, -1 N Vi ’ ’
@ v (yHH) GRS 'iil (7’._ ~ Yum )’

where p; is the probability of selection of the ith unit to be in the sample
and Y; is the estimand variable.

A general.theory of sampling with unequal pfobabilities without
replacement was also given by Horvitz and Thompson (1952). Their
unbiased estimator of population total Y is

3) 5 —E
( y, = b s
HT i=1 i

where =; is the a priori probability of inclusion in sample of the ith unit

in that sample. The variance of yI’{T is

4) -V N YI2 2;.NE T Yi YJ

: ‘ = . . 4 g - 2
A G e e SET I
: : . . 1 T #1 L -J

- For fixed n, the following variance formula was given by Yates and
Grundy (1953).

b Y 2
) VYG( y;“) =% L= ( 15T Ty ) (—-I -—i)
' J#1 ' i

with the unbiased variance estimator (given also by Sen, 1953)

6 v ( , )= 22 mmy = wy (_yf _L)Z
( sy \ Yur H =,JI_,J=1 T ; [

#1 .
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Some selection procedures cannot be categorized as either ‘without
replacement’ or as ‘with replacement’ in the usual sense (that is multino-
mial). The most important of these are intermediate cases where, for
example, one or more of the population units may appear at most once.
In this paper a general theory of sampling with unequal probabilities is
presented which allows population units to appear more than once in
sample. The only condition which will be placed on the selectjon pro-
cedure is that the total number of appearance in sample must- be fixed.

The type of sample design for which this general theory may be
of particular interest include

(i) crdinary systematic selection where one or more of the popula-
tion units is large enough to be certain of selection at least
once.

(#) Deming’s (1960) procedure which selects systematrc samples
with different random starts

{#ii) contsrained methods of selectron, such dumbbeld selection,
where one or more units are subject to multiple selection.

This theory is also applic.ble in principal to a very wide range of
sample design such as simple stratified sampling” with the unbiased
estimator. In particular it is possible in a multistage design, to evaluate
the probability of selection of each possible final stage sample and then
to treat the sampling procedure as though it were single stage. In
practice, however, stratified and multistage samples will probably con-
tinue to be treated best as special cases. An example of this explicit use
of multistage properties is .the derivation of the multistage variance
estimator which will be ‘considered in Section 4.

2. A Generalized Hor+itz-Thompson {GHT) Estimator.
Let S be the number of times the Lth populatron umt dappears in

samople and S the number of times the ordered palr (L, J) appears in
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the set of n (n— 1) ordered pair of sample units. Then

g SI SJ FJ#1

D ’ .
Sl (SI -D otherwise.

The expected values of Sl and SIJ will be written as ® and py Tes-

pectively. Generalized - Horvitz-Thompson (GHT) estimator may be
defined as :

Your = I
which is clearly unbiased. However, many optimal properties possessed
by the Horvitz-Thompson etimator are not carried over to the GHT.
The Hansen-Hurwitz estimator, for example, though convenient and
widely used, is well known to be inadmissible, and this will generally be
true of any estimator for which the SI can take values other than 0 and 1.

The variance of the GHT estimator is

N Yf N Y, Y,
=z'(n +#) + 23 w1 3 y2
I=t \ T U, Li=t Y r »
1
N Y? N Y Y
) = _1 23 R 1 Ty
I=1 & I,J=1 BB
The expression (9) may be written
, N LR
(10) V( yGHT) =1 IS,'Jil( Bp ¥y 7 le) ( by ”J)
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This is similar in form to (5) but more general in its meaning. When
selection is strictly without replacement B =T By = T forJ # I and

v = 0, then (9) is identical with (4).

Writing for convenience PI = p.I/n, PIJ = p.U/n (n-1), (9) and

(10) may be written

(n V'( YGur )=7( I__S‘__l_p—l - )

n-1 U
— 2
+ n I,zjil( PI PJ YI YJ Y )

For sampling ‘with replacement’ (multinomial sampling)

By =" (n— I)Pl PJ and (11) reduces to expression (2).

Expression (11) may be written as

a3y v (¥ )=V(y‘ )- =L pe (),

* GHT HH n
where
(14 D2(y')= - ZNS jﬂ Y Y + Y2
I, J=1PI PJ | R
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Expression (14) 'is nearly independent of sample size ; since the
PI are not, and the PIJ need not be, functions of n.  To simplify the

discussions we will assume that a sampling procedure is being used for
which the PIJ remain constant as # increases and hence that D2 ( y’ ) is

not a function of #.
The generalization of the Sen-Yate -Grundy variance estimator is
1 n n Di D Vi yi \2
15 v( ‘ )=— s s (— Pibj 1)(_'_——1)
(5 Yont iy \n=1 pi pi Pl
If PIJ > 0 for J == I, this estimator is unbiased for (12). If, how-

ever, Pu = 0 for some { I, J }, J =4 I, then the bias is non-zero and

(16) Ev(y’ )—V(y’ ):.};Ng n—1p p
GHT GHT 1. J=1 n I J
AR
P~ P )
1 3

3. An Alternative Estimator of Variarce.
Since the mr,; are involved in (15), that e pression is not usually easy
to calculate. A simpler but biased estimator is

-1 . R Ve ’ 2

an w (') = o—7 = iil (Te - y).
The expectation of (17) is

(18) Evb@’)%L( I; i - Yz)— L

BN 1=1 P "
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Assuming that the PIJ are independent of s, the magnitude of the

resulting bias is also independent of ». Hence

(9 Ewon-V( y, ) =D o0 ="

[ (i) = (e )]
The bias of the simple variance estimator (17) is seen from (19) to
be directly proportional to the difference in variance between the estima-
tor actually employed and the corresponding multinomial sampling .
estimator. Paradoxically the lower the variance of the estimator em-
ployed, the higher the expectation of its variance estimator. Further,
whenever this estimator is more efficient than the corresponding multi-
nomial sampling estimator, it will always tend to appear less eff cient and
vice versa. This result was obtained for the special case of sampling
without replacement by Raj (1954).
A practical application of the above result is that the ¢fficiencies of
Y' under various sampling procedures may be compared using this biased
estimator, the actual efficiencies bearing an inverse relation to the
apparent efficiencies.
The following diagram may be used to illustrate the relationship
between the actual variance of Y’, the expected value of its biased esti-
mator, and the variance of the k:orreséponding Hansen-Hurwitz estimator

Yl
HH.
: «————=D2(y) ————
- ]
v . E v, (')
V ( im)
— I D) —
S R | D2 (y)
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Since D2 (y’) remains constant over », it functions in the same way
as the finite population correction does in simple random sampling with-
out replacement,
The correction factor may be obtained by using the following super

population modet : -
lr'YI =By’l+el'

' 2

I. E* EI=0’ E*EIGJ —_ ’{( al J%I
(20) 1 L O otherwise

‘l. clz:cz Zi\!’ 1<yl

where B, ' and o2 are constant and E* denotes the expectation overall
possible hypothetical populations. Then

Z

. / , 2¥ N 2¥ 1
@ BV ( gy ) = () E ) b

' Z \2¥ N -
E* D2 ’ =2 [ 2 2Y _ 2% 2
@) E* D2 () =o () ey (& - w72

and

2y N -
@) E*Ew () =o(—)" 3z 271
n I=1 |

From (21), (22) and (23) we obtain
N
>

Y 2Y "2
) 1 I=1 ' Pty ) ]

(
N (
P>
I=

:
(24) E V( yé}

2 =1
1 “

E* E vy ()
The correction factor, in braces in equation (24). corresponds to the

finite population correction ( 1- ——;—t) in simple random sampling
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without replacement ; when v = 1, and by = 0 for all I, it actually

takes that value.
4. Application of the GHT Estimator to Multistage Sampling

Selection with unequal probabilities is very frequently used in multistage
sampling. A multistage variance estimator suitable for use in sampling
without replacement was used by Durbin (1967) and given in explicit
form by Brewer and Hanif (1970). The idea. underlying this multistage
estimator is very general in application, and may be expressed

as follows :

‘An unbiased estimator of variance in multistage designs may
be written as the sum of three terms, of which the second must
be prefixed by a minus sign. The first term is equal to the
estimator of variance calculated on the assumption that the
first stage units have been measured without error. The
second term is an unbaised estimator of the contribution
made to this first term by variances from lower stages of
samplmg The third term is an unbaised estlmator of the
veriance from these lower stages.’

When this principle is applied to the Generalized Horvitz and
Thompson estimator, the resulting variance estimator may be written
as follows :

1 n RS Y. Y. \2
0= 73 (G ) (- )
: i, j=1 ‘ Pij Dj pj
2 2
1 n - 5 s
@5 ——252—22(7”?%.&““1)(;4' i)
= - ij 2 2
] 1 p' P,
J
2 2
1 n 1 5 55
+ s (—+ )
2n2 l,]=1 n-1 2 2
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where y, is the costribution to y" from the ith first stage sample unit in

the population, and sf is an unbiased estimator of S[2 the variance of y;

due to sampling at the second and lower stages. 7

When sampling is without replacement, expression (25) is the same as
that given by Brewer and Hanif (1970). For ‘sampling with replacement’
it reduces to the familiar formula :

—_— -

n ( A Y; )2
Di pPj

1
(26) v( e )————~ z s
‘ HH ] 2n2(n—1) Q=1
5. Numerical Example :
Consider the case N = 5, n = 3, po= 3, 4,5 .6,1.2, Yl —=5,6
8, 10, 11, 19. Using the Randomized Systematic Procedure the
probabilities of selection of each possible sample of three units are
given by - Where

10 = 10 14
™25 = 120 T35 = 10 ° Ty45 == 120
2 _ 14 _ 18
Tiss = {20 ° 7"?35 = 150 T245 =120
255 = 7139 ° T35 = T2 ™355 =120
10
T4ss = 130
The b, are therefore
10 10 24
B12 = "5 B3 = Ty M4 = 55

38 14 18
s = T_—s 23 = 1% 24 = TO‘W
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e = __ 30 66

s = 120 * 34 =120 ° H3s = 120
82 48

k45 = —T3p> ks =35

The variance of the GHT estimator using (12) is 0.5563. This may be
compired with the variance of the Hansen-ﬂurwnz estlmator fo
multinomial sampling with the same values of PI Whlch is 0 8333

]

A sample was selected by cumulatmg the - above dand choosmg a

random number in the mterval [0,1). Tb,lS sample contamed the Ist,

4th and 5th population units. The unbiased estlmator of the populatlon
total (Y = 48) was Y’ = 49.167. The generallzed Sen-Yates-Grundy
variance estimator usmg (15) was 0.1120. The biased variance estimate
using (17) was 1.2732. The correcuon fgctor (24) to be applled to this
biased variance estimator was calculated using three values of y. For
y'= } it was 0.4667 ; for y = 3/4it was 0. 4230 and fory = 1it was
0. 3667 The three correspondmg estimates of variance were 0.5941,

0.5385, and 0.4668. These bappened to be, by chance, remarkably close
to the true variance. A second sample was therefore selected consisting
of the 3rd unit once and the 5th unit twice. The unbiased variance
estimate for this sample was 0.0505, and the biased estimate 0.25. The
correction factors, being independent of the particular sample selected,
remained as before, yielding estimates of variance 0.1167, 0.1058, and
0917. These are underestimates of the true variance but still closer than
the unbiased estimate.
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1. Introduction

In recent years the Bessel potentials first introduced by Aronszaju
and Smith {1] have sttracted much interest. Calderon [2]  has

investigated Bessel potentials' in LP-spaces and Stein [ 6 } has discussed
its characterisation.

In this paper we introduce Bessel potentials with weight functions
and prove some its of properties. These are related to Fourier operators

with weight functions of the type (b2 4 tz)h; with b = o, these operators
reduce to those studied by Okikiolu [3]. A few results involving
relative boundedness of Fourier operators and Bessel potentials are
also obtained. ' o ’ '

2. Bessel potentials

Given reals numbers ¢ > 0, b > o, n > 1, let

o
G* (%, b) = n—%"% gr—a)=1 = | x| 2u—b*du
Cdu (2.1

It posseses the following properties
@ G* (.,b) is everywhere positive, decreasing and integrable

function on n-dimensional Euclidean space E,.
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@) G* 61 x,8) = 817" G (x, 1) ; 2.2)

i) G N W= P e x9S 2

where A denotes the Fourier transform;
@ [G" (., =" @4
@ 6B _ gt . Gk 2.5)
where #  denotes the convolution.

Now for g function f measurable on Ej, we define the welghted
Bessel potethal by - :

=@+ | x| G707 "fb=+| PRale
(x =nd)SMdy 2.9
am} dcnotg Jg’g by J:b‘ . | |

Theorem l
Letp,q, a, v and A be real numbers such that

1 1
I, ——=—n0 =,
7> ;.
o 1 ‘ ‘
@0 < A<a<i,——1<v<—11,— ~q

‘ pp
or ‘
MHosA<a+vrv< ~—;—<1, —;~—-l<v_,,\<a.

Then

. _4

VD PEE SU% SR
Y4 I
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and there is a finite constant k = k (#, A, a,'v; p) ihdependent of b ‘such
that fe LP[ = LP (En) ] such that

nJ“’ ()N, kIS - R
Proof
Using the fact that, for 0 < a << 1,
|G wh | < | x"@ ” (se¢ 4.2)
we have
4 A—a—-v)n

1392 (@ <k@+ 31

179" 121"V ro)1 gy
E,

I‘:j,‘ (f) (*), say.

IfA <o+ v,v<o, then I V. b (f ) < %V and the result follows
from Theorem 4.4.15 of [4].
Ifv>o,0 <A< a,then
. I L =-d)n - -1 n
12N =k @ 5 DO [ a0
? En

P (PR VoM™
Since the kernel in the last integral is radial and the function
—- 2
¢, v) = u()‘ a) | u=v | (a l)_" [l+ —EZ—P v
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- is homogeneous of degree (A — 1) » and

0 n_ 4 (a—=1)n ' } nx
ky =f|r| A=Mp" " o1 172 g I-age
o

is finite if o < pi — o, the application of Theorem 3.3 of [5] yieldé
that if o < % - v 2> o,L = Tl — A and f e LP, then

195 5 () e < kISl @8)
Similarly if v < 0io < A < « we have
1:’2 () @)=kp2+ | x l?)i()““) n f [t—x| @ Dn

En

T P o) s < ks QT [y @D

En
[tr15r ] o e
Since

o n__ L (a-1)
kz"f'lrlil_'\)p [1+11’_]71-A [ r—1| I-A 4
o

. . 1 1 ) .
is finite if v = e La< —p " using the same theorem it follows

1 1
that when f € LP, —_—— e | -
I Tq 2 A

n'J’f,;}'ly <kl @9

We now obtain the resﬁit by combining (2.8) and (2.9).
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Theorem 2
Let a, B, v, p be real numbers such that ¢ > o, ﬂt >0+ pB<l,
p>1, L _ 1 < v<—11,— — o — B. Thenfor feLP
B a o+
Ja +v,b Jv, b Jv, b (2.10)
Proof

Since G* (.» b) € L', the result follows by changing ' the order of
integration and applying (2. 5)
3. Fourier Operators
We define fourier operators by the formula
. - 1
B, (0= @0 ¥ @rg x| 9t CTON
@2+ 119 & e a G.1)

where x.t =x, ¢, +x3 1+ ... -+ Xp ta.

Since F: b with b = o have been studied by Okikiolu [3)we shall

restrict ourself to the case b £ o which assumed in the rest of paper.

Theorem 3 : _
Letp,g,v and obe real number such that 1 <p < ¢ < o0, %
: ' 1 1
-l <v<min@, —9), — =1- — —o. . 3.2
( o') q P [} C ( )

Then F: p can be extended to a bounded operator from L# ‘into
’ . N .

La and there is finite constant keFk (p, v, 0, 1) i;idepepdenp _‘ of b such
that, for feLp, S '

WE 5 (M lla=klflp- » - (33)
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Moreover, there is a constant %4 independent of 5 such that for

1 1
LY, —= o — = 1,
B¢ g vt T

IE, - :,,’ p @l < klgld (34

Proof
Okikiolu [3, Theorem 6.5.11] proved that with b5 =o¢ and
conditions (3.2) :

I Fu, o (Nlla < kNS ' (3.5)
IFY (1) = (62+ | £| 9" and ¢ (t) = [ £, then
Fy , (N =" ] ¢ TV ) d.
Since v< 0, v+ o< 0,(3.5) yields

WFy LN la < 14774 1

< e el
=1/ lp-

Alternatively, we can use analogue of Stein’s proof [5] of Pitt’s
theorem by interpolation, To prove (3.4) replace f (?) by '

p'—1
¥ o @ fsen B0, © 2 X (~N,N),
rearrange the terms and let N —» oo.
4, Relatlve Botmdedness

We shall DOW prove some 1dent1t1es and usmg thcm deduce certain

estimates whlch show that F v b with different 1nd1ces and alsp. opgsators

Jv b exhibit relative boundedness.
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Theorem 4
Let p, vy, vy, @y, a1 be real number such that

1
p>1,vo>—;-l,—1<v1+vo+co<o.

If f € L is a step function, then wé have

1 (/] . — (B2 2 % (01—00) n
By Frop (D@=0+x?
=Vt —Vo =00 oy .
Joo, b (f) (—=x). @10
Moreover if F*¢ | is bounded from L? into L‘1,~1 =1= L — 0o
Vo, b q I4
and F°! s bounded from L4 into L',—lw =]- 1\ - o1, then the
v, b r q
result holds for all f e L?.

Proof
Forx >0,0 < 0 <1, use

IR T =fe-u|t[2 ix.t g
E,
to obtain, with b,
= |x|2b,
a=lxion [ M gy Tt g
E,
g7 o0
= 151" g f Tl oTh HGrh
0 .
1

ST YET

o uy

—0 as A —0.
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Let f be step function. Using Fubinis theorem it follows that for
A>0

al{F‘“ (f)e -l 3 (x)—(zﬁ) Mg | x| @D
f B2+ |1] 2)'} (V1+Vo+°o) Ry

'I

Vxe—xltlz lxtsf(y)(bz_l-lylz)%n"o l+ydydt
E,
= @) " @t | x | DO p ) g [ x-p ¥
E,
x S eiy't e_A ' tl 2 (b2+ I t l 2)%" (vl+?o+”o) dt dy.

Since fis a step function, the integrand on the right is in L, using
(4.2) and Lebesegue Convergence Theorem we prove the result.

Theorem 5
Let p, o, a and vbe real numbers such that p >1,0 < a < 1,

_1_ -l<yv< ——;ﬁ — a. LetfeLP bea step function. Then
we have o »

Fo o (DI=F, (N @3

If F7 can be extended to a bounded operator in LP then F°
vtab v,b

can be also extended to a bounded operator - in LP and the result
holds for all fe LP, :

Proof.
The result follows by using Fubini — Tonelli’s theorem and (2.3)
Similarly we prove L
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Theorem 6
Let «, v, p, g and ¢ be real numbers such that
1 1 1
) 1,0 < a LLyv>— =, — =1 —— —=o0.
p>1no<as< P q r

If fe L? be a step function, theﬂ ’
mvmab Fnp D =F_ () @9
If F:,b can be extended to a bounded operator from L? into L4and if
—%— —-l<v - a < —11,- — «, then the résu!t'holds fqt.""illfeLlJ.
Theorem 7

Let a, v, 6, p and ¢ be real numbers such that

1 1 1
>lLo<a <], — =1 K — —gy—— = 1 —
P I < r< 7 o 7

—1 - > 0.
P

Assume that F: p cam be extended to a bounded operator from

b a,
Lt into L9. Then there is a finite constant k = k (n, p, v) independent
of b such that, for fe LP.

¢ @
IES s ()l <k, (DI, .
Proof ,
Using Theqrem 5 we obtain '
IFy 5 OOy =16, g Tp (D1,
. v | B
CSHET O, .
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Theorem 8

Let a, v, ¢, o1, p, g and r be real numbers such that -
| B 1 1

1, <1, — -1, - =1=-—— = 0,
P> o< a V> 7 p 7 o>
1 1 ‘
- =1-T -0y >o0.
Assume that F°1 e &_ b can be extended to a bounded operator

‘from L9 into L*.
Then there 1s a ﬁmte constant k=k (v, a, p, G, 01, n) independent
of b such that, for f eLb,

1@+ 1519 7 037 (@1, =kE (D

Proof

Using Theorem 4 we have

He+ 1219 @70 (e

g1 L4 - [/
= I]F-,el’—ﬁ—a, b FV,b (f) "l’ .< ”Fv,b (f) ”q
Theorem 9
Let oy, G, a, V, P, g and r be real numbers such that
P>l,0<0‘1-'—0'l<(l<lk,%»l{v-—a< ;}- - a,
—l—-==l_'l—"(l,—l—=l—- —l—-—ﬁl,
q p r p

Let f be any step function in LP. Then there is a finite constant
k =k (v, 0, Oy, 0, p, n) independent of b such that

IFyL Uy SENE, L (g

v—a, b
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If F: p can the extended to a bounded operator from L? into L4

then the result holds for all f ¢ LP.

Proof

The given conditions implies that

1 1 1 1
N | —_— — 1< - -
7 <v<p 7 < = (4o < 7 O

1 1 1
0<0oy —0‘<T< L, o — 0‘<(1<1,-r—='7—' (01—0)
Use Theorems 1, 6 to obtain

IEL (D)l = 1 @2+ [ x| 9 C1=9) 7 o F, 3D

-v—0,b
SKIF] 4 (f) g

I thank Dr. J. O. Okikiolu and Professor L.T. Flett for useful
suggestions.
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ESTIMATION OF Pr (Y < X} FOR THE POWER FUNCTION
DISTRIBUTION ‘:

BY

M. A, BEG
- Institute of Statistics, University of the Punjab,
New : Campus, -Lahore. -
Abstract : The Blackwell-Rao and Lehmann-Scheffe theorems are used to derive

the minimum variance unbiased estimator of Pr (Y < X) when the independent
random variables X and Y follow the power function distribution,

1. Intreduction -

An extensive amount of work has been done on the problem of
estimating P = Pr {Y < X} in both distribution-free and parametric
frameworks (see, e.g., Birnbaum [1956], Church and Harris [ 19701,
Downton [ 1973 ), Enis and: Geisser { 1971 ], Tong [ 1974 ], and others).
The problem originated in the context of religbility of a component of
strength X subjected to a stress Y. The component fails if at any time
the applied stress is greater than its strength and there is no failure
when Y is less than X. Thus the problem here is to find an estimate
of the probability that Y is less than X where X and Y are both random
variables having some known or unknown probability distribution. -

In this paper, we estimate P for the power function distribution by
applying the Blackwell-Rao- and Lehmann-Schéffe 'theorems. The
distribution has been studied before by Rider [ 1964 ], Likes [ 1967] and
Malik [ 1967]. o _
2. ‘Mihimum‘Va'rian‘ce Unbiased Estimation of P _

Lot the random variables X and Y follow the power function
distribution with probability density functions (p. d. f.’s) '

CAesae =0 7Y, o<k <o 630, 050, @1




48

- -1
reigo =" #7 0<y<p 650, p>0, @2
B It can be shown that
[ 1@’ sio+e. i B<a
P = .
“{, @B ole+$) » if a<p 23
L /(6 +9) o, il a=p
Suppose that X, ..., Xp and Yy,..., Y are two independent
random samples of sizes # and m from the p.d.f’s (2.1) and (2.2)
respectively. Further, let X(n < . . . S X(nandYp < ... <Y
be the corresponding order statistics of the samples. If we make the
transformation W = — 1n X in (2.1) , then the p. d. f. of W is

gW; 0, 0) =gexp{—0 (w—1n(/0))} , w>1n(l/a).

Thus following Epstem and Sobel [ 1954] it can be shown that for
the p. d. f. (2.1)

(1) if a is known, U; = 2 In (&fX;) is a complete, suﬂic1ent
=
estimator of ¢ with the p. d.f.
, ) -1
&1(ma0)= io" /)] un exp. {—gu},uyy >0 - (24)
(i) if ¢ is known, X(y)is a complete sufficient estimator for a

with the p.d.f.

~ -1
g w8 =nga” " K0T 0<xm <@ @2.5)

n
(i) if both ¢ and a are unknown, (X(n), Z;) where Zy= 3
I==

1 0 X(n)/X(iy), is a complete, sufficient estimator for (o,9) and Z; is
stochastically independent of X(,) with the p.d.f. of X(q) being (2.5) while
that of Z; ‘

@) =" D=1 e (=02} 5 >0 @26)
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Similarly for the p.d.f. (22) in an obvious notification

m . _
Uz = . Z 1n (B/Yi), Y(m), (Y(m)’ Zy),

i=1

m
where Z, == .Z'.'l In (Y / Y@,
=

are complete, sufficient estimators for ¢, B, (8, ¢) for cases (i), (if), (i),
respectively, and with the p. d. f.’s analogous to (2.4) (2.5), (2.6).

Case i) : o, B Known, ¢, ¢ Unknown

The sam les Xy, . . ., Xpand Yy, . . ., Yp can be summarized
by the complete sufficient statistics U; and U, respectively., The
conditional p.d.f’s of f; =1n X, given U; = uy andof 7, =1n Y,
given U, == u, are :

-2 . n-1
hy (ty | u)y=@—1) (¢, + 4y ~ln a)n / u:l ,

Ineg—uy < t; <lne (2.8)

by (2 | ) = (m=1) (tyhua— 1n ™2 1l

lﬂB—-uZ<tz<lﬂﬁ (29)
An unbiased estimate of (2.3) is
1. if 41> ¢
¥4 (th tZ) = .
0, Otherwise.

Using Blackwell-Rao and Lehmann-Scheffe theorems, the MVU
estimator of P is :

P =ffp(tn 6 by (01 | ) By (13 | uz) Aty dts

Ing m]n (]n &, t|) _ '
= ln /] -y -fl (tl I lll) {Sln ?S-'Uz f2 (tz I uz) dtz } Otl
(2.9%).
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Forty <lnd¢ —~u,, the integrai in (2.9*) is zero, and P=0. On the
other Land, for ty > In ¢ — #; > 1n ¢, the integral in (2.9%) is unity,
which means f) = 1. For rema ning cases we have
. n—1
P = (1+4¢/ug)m™t [1- ‘20 {(1=n)j/(m);} {(u2+&)u}], (2.102)
J= .
if Ima~wuyy<lnf—uy<ln a<<lnp
] .
= (14¢&/ug)m™t 2 {(l—m)s/(n)J} {ul/(uz+é)}’ (2.°0b)
]_

if lnB—u2<lna-fu1,<1,na<lnﬁ

]

n-1 '
=gy 2 (=)} Gl — DY, @10
if lna—y <lnp-uy<lnf<lna

= 1=(=gupr1[l- Z‘ {(I_m)J/(n)J} {(uy - &) w2}, (2.10d)
j=0
if InB-w<Ilna-—-y<lnB<ina,
where {@)j = a (@+1) ..(a+j=1), @@= 1, £ =1n(o/p).
When a=8, £=0und (2.10 aj — (2.i104d) rcducé to
_ n=1 o

P=j-2 {(1 —n)j | (m)j} (uafug)!, if uy < 1y
]—.

m—-

—zwwwumnwwﬁmm<a “t

which :agree with the results obtained by Tong (1974, 75).
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Case (ii) : 0, ¢ Known, o, B Unknown
The samples X,..., Xpand Yy, ..., Y, can be summarized by

the complete sufficient statistics X(n) and Y(m) respectively. The con-
ditional p.d.f.’s of t, given X(n)=x(n) and of 7, given Y(n) = y(m) are

-8 .

- 1=-1/m) 9 x@n) ~ exp (9 ty), if— o<ty <l n x(p)

hy (] x(m) = { ( " _ @.11a)
1/n, if { =1n x()

(1-1/m) ¢ y(m) ¢exp (¢ ta), if — 00 < <In y(m)

ha (t2 | ym) = { : : (2.11b)
‘ _ 1/m, ) , if t=10 y(m)

The MVU estimator of P in this case is:

P =[] p(tis t2) b (1] xo)) Bz (12 | Y(w)) Q1 ez
= bt | x@) {f B (2 | yow) dia} dby
(—oo0, In x(n)] - (~ oo, min (I n y(m), 1))

P = (1-1/m) (\(n) ye? {UD+A-1nE/[E+N)  (2.110)
if 1nx@m) <1nym

=1=(1-1/n) (,V(m)/x(n)) {1-(1~1/m)q [ (6+4)} (2.11d)
ifln ym < 1n x@)
- When o = B, -the estimators (2.11c) and (2.11 d) remain un-
changed.
Case (iii) : o, B, 8, ¢, Unknown
' The samples Xy,..., Xpand Yy,..., Yn can be summarized by
the completz sufficient statlstlcs (X(n)s Z;) and (Y(m), Z;) respectively.
The condltlonal p.d.f.s of ¢, given Xmn), Zy) and of #; given (Y(m), Z,)
are
_(1 =1/ny (n=2) (1 +2zi—=1 7 x@)"3/z,"2,
if Inx@) —z1<ti <lnxm (2.12)

Myt | x(n), 21) =
: Vn, . if t1=lnx(,.) g
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(1= 1/m) (m~2) (tg+25 =11 y(m))™"3/zgm"2,
if Inym—-z<t2<lnyy) (2.13)

h2t; | Ym)» 22) = !
- l 1/m, if f2=lny@

The MVU estimator of P in this case is
P= JI p(t1; 12) By (11 | X(n), 21) Bz (22 | Y(m)» 22) dtg dtz

= [ Ity | X(n)> 21) { [ ha(t2 | Y(m), 22) dtg} dty (2.13%)
A7 x@m)=2y, 1‘ nxm)] (0 ym)—z2, min (1 n ym), 1,)]

For f; <l n y(m)— 2, the integral in (2.13*) is zero, and P=0. On
the other hand, for #; > In x(n) —z; > In y(m), the integral in (2 13%) is

unity, which means P=1. For remaining case we have :

2
Jj=0
{z+n)/zY),  (2.14a)
it Inx@m) —z; < ymy—2; < In x@) < In y()

m-2
= (=1/m) (L2/2)72 [+ 1) Z 1@=m)jln= 1))
]=

{z1/(z2+0)}],  (2.14 b)
if Inym—z2 <Inxm)-2z1 <Inxm < nym
: n-2 ]

=10 -1/n) A—n/z)n2 [(1/m)+(1—=1/m) 'ZO {2 - n)j/(m—1) 3
Y= _
{z2/(z1i—m)}],  (214¢)
if hl_x(n)"‘zl_<_ In y(my—z2 < In y(m) < In x(n)

S m—2 ' |
L=(=1m) (=v/z)"2 - (=1fm) 2 {2=m)ila=1)3}
_’=

_, {z1~m)/zz}], (2.14d)
if Inym—z; <Inxm)—z1 <In ym) < In xm)

where 7 = In (X(x)/¥(m))-
Again when a=§, the results (2.14a) ~ (2:14 d) remain unchanged.

P = (1-1/m) (1 4n/z)m"2[1=(1~1/n) nE {2-n)j/(m-1)j}

]
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HARMONIC CONSTANTS IN THE NORTHERN'
ARABIAN SEA
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KHAWAJA ZAFAR ELAHI
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Quaid-I-Azam University, Islamabad
and
MOHAMMAD SHAFIQUE
Lecturer, Department of Computer Science,
Quaid-I-Azam University, Islamabad
Abstract. Knowledge of harmonic constants is important to predict water elevation
at a particular point inside a seaor on a coastal point. Harmonic constants for a
coastal point can be calculated through the Fourier Analysis of a waterlevel fluctuation
data. These values are known only at a very few points on the coasts of Pakistan,
Iran and Oman, whereas, no information regarding Harmonic constants is available in
off-shore areas. To fill the gaps, mathematical model of the northern Arabian Sea is
developed to reproduce the partial tides. Major partial tides Mz, Sz, K; and O; are
used in the study. Harmonic constants for all four partial tides are presented for im¢
portant points on the coastal and in the off-shore areas.
Introduction : :

“The sea ‘area north of 20° N of the Arabian Sea is used in the mathe-
matical model,/Fig. 1/. Hydrodynamical—Numerical method is used to
reproduce velocity componznts and waterlevels as function of time in the
area. This information is used to evaluate values of harmonic constants
as function of frequency for different partial tides.

Numerical Model :

Hydrodynamical-Numerical method by (Hansen 1957) "is used to
solve the system of equations :

——the equatlon of contmulty and

—the Navier-Stoke’s equations.
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The equations can be used to reproduce the tidal processes in the
areas for which the bottom topography and coastal geometery are known.
Vertically integrated form of this system including the whole fuid

mass is :

L 4 %,
Bt +. Yi ax + €ij vj +h ("’ v") W= Ahax, ax,
ol __
teo =0
8¢ , o y - _
(TN =0
(l’j= 1/, 2)

Where V; dre the components of the vertically integrated horizontal
velocity, ¢ the water elevation, / the water depth, ¢, Coriolis tensor, r a
friction coefficient (0.003). Ap an eddy coefficient (2.7 x 107 cm?/sec) and
g the gravity acceleration.

In addition to these equations following initial and boundary condi-
tions have been considered.

As an initial condition the waterlevel and the velocity components
are taken equal to zero.

No-slip condition is satisfied on the solid boundary.

Waterlevels are prescribed as a functicn of time on the open
beundary

Z(t) = Acos(ot + x)

Where A is the amplitude and « the phase with respect tp fre-
quency o. ‘

Ihe velocity gradients in the normal direction are takento be equal
to zero atthe open boundary. The solution of this initial boundary
value problem is independent of initial conditions after a sufficient long
computations. ' o '
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This initial boundary value problem is solved with the help of ex-
plicit finite difference technique discussed in / 1 /. The sea area is cover-
ed with a computational grid with 450 computational points /Fig. 1/.
Grid size is 0.5°. This grid size results in a time step of 120 sec. A
value of 2.7 x 107 cm2/sec is used for a coefficient horizontal eddy
viscosity. Tidal propagation is taken as the only driving force in the
model and is prescribed on the open boundaries. One of the opeﬁ boun-
daries is the inlet of the Persian Gulf and the other is situated between
DIU HEAD and MASIRAH.

Results ,

44 computational points shown in Fig. 2, are selected for discussion
of the results. 20 out of these lie in the off-shore area and 24 on the
coastal line. Out of the comPutational point lying on the coastal line,
5 are the existing tidal gauges, PORBANDR, KARACHI, ORMARA,
PANSI and MUSKAT. These are used to check the accuracy of the
computed results. 19 points are located on the coasts of PAKISTAN,
IRAN and OMAN.

From 20 computational points lying in the off-shore area : 7 points
from A to G are situated in the Bay of OMAN in direction of the
entrance of the Persian Gulf, 7 points from H to N are lying parallel to
Pakistan—India coast, 6 points from O to T are taken parallel to
Pakistan-Iran coast.

 Results are presented in three tables. The results given in Table I
depict the reproduction ability of the mathematical model. The values
of harmonic constants known at the guages : PORBANDAR,
KARACHI, ORMARA, PASNI and MUSKAT are used to check the
accuracy of the computed results. The results reproduced for the guages
PORBANDAR, KARACHI and PASNI are in very good agreement,
whereas there is a little difference at the gauges ORM ARA and MUSKAT.
At the gauge MUSKAT this difference is due to its geometrical situation,
as it is under the influence of two open boundaries, defined in the mathe-
matical model. One can doubt about the observed value at guage
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ORMARA, as the numerical results are in good agreement at neighbour-
ing guages

,Table IT contains the values of harmonic constants for the com-
putational points on the coast. These are important coastal locations
where no observation regarding the collection of data of waterlevel fluct-
uation has been made. These values can be used for prediction of
waterlevels on these places and to check the accuracy of the results of
short sets of observation at a temporary tidal gauges.

Table III contains the values for the computational points inopen
sea areas. The values at the points (0—T) are under direct influence of
the values prescribed on the open boundary between MASIRAH and
DIU HEAD. The values at the points (A—G) 'in the bay of OMAN
are under the infiluence of the values on both the open boundaries. - The
degree of accuracy of these values can be examined only when more
observational values may be available for comparison. The values of
harmonic constants at the points (H—N) can be having a very high
degree of accuracy, as the value at representative coastal guage
KARACHI for these values has been reproduced very accurately.

The values of waterlevels at time of meridian passage at Greenwich
(t=0) and at t=—4T— respectively .§; and §, are also given in tablés.
These values are used to compute the amplitudes and phases (m degree
based on meridian passage at Greenw1ch) :

A 2 2 x =tan~1 il— '

= .J E+E £
The values of the harmonic constants can be used for the places on

the coasts and in open sea, where no measurements are available but on
one’s own risk.




59

Acknowledgment

The work was supported in part by funds provided through Quaid-
i-Azam University under Project URF-MATH-7 and UNESCO/UNDP
PAK/77/0:0/Math. 1.

REFERENCES

1, Elahi, Kh. Z. Brechung Von Lokalen Gezeitenphanomenen in Einem Gebiet mit
geringem Becbachtungsmaterial mit Anwendung auf die Sonmijani Bucht (Pakistan)
Mitt. des Franzius——Institutes der Univ. Hanrover Nr. 48 (1978).



60

T
5d :
IRAN S
01 04uAR. g, : e
«(%w | @ / 5 L.,
MATDANEL z ;3 g Sz
R S IV
{ °
! <
g
o 00 oC
D) ° °
MUSK * ¢
% £° xavspadNDIA
4
Q¥ o °
OMAN Q < Q\,\.\
& ° ° o o 0 ° o 2
' 5 R 0 P O A\ o PORBANDAR
X 4 BA]
/ Y
MASIRAN. [ e e D
% DIU HEAD:
2 B . -
FEr——— ARABIAN SEA ]

Fig.1l. Special points in the Northern Arabian Sea. Coastal Points (% 4.

Existing Gauges (® ) and Points in the open Sea area (@ ¥.



61

"SIUBNITISUQD Yepry iolew

Y3 3o { » ) 3seyd pue ( y ) spnyrrduy ( O ) PaAX88qQ pue ( 3 ) pa3jndwoe)d ‘I *qey
brZbE TLUSPE | YU TIPE 9L°LVE | 8°6B1 €€°66T | 876ST bl TLT ! LuASny
2°02  8bze 8°8¢  00°9¢ L€ TR £°C9  6L'69 | ¥
€°9VE 6L EPE | 0°9%C ZV9VE | 0°261 8V $61 w 0°691 L£°99T | A INSVg
0°%¥2 16°22 01 8E'(Lf 0792  L0°LZ | 069 86'89 | V|
€7 EVE  89°€vE | 0°0vE Ly 9bE | 0°9LT Z°b61 | 1°961 627991 > VEVRYQ
Q"81 . t6'z2 0'€y . TLLE 0°vT  LTULe 0°0L v$5'69 | ¥
ZUEPE €6'€VE | T7ZPE TS'LbE | 6°€6T L9°b6T | L'€£9T € 99T | * LHOYYYY
0°0Z 89°f£g T°1v - ZZ°6¢ 9°62 LYv'1E | 8'6L T6'6L | ¥
0°zve 0T zve | 0°9tc  68°sve | 002z TS T6T | 0°LET €p 19T | » HVaNVENO
0°¥z TT°ve 0°'9t LTI'S¥ 0°vz (stZ2 | 0°Sy Z6'L9 | ¥

0 ol 0 2 0 ) 0 ) aLig

g IN3NILSNOY Tval]f




Tab.IIs . B - .
. ! A ~DIURN ’
N SITE EUST¥1ON | SEM!-DTURNAL T1DH
LAT. {LONG. « M, S,
L. Sir Mouth 23.66 68.127] A 77,15 30.28
B 165.37 1 193.83
¢ -74.65 | -29.40
o 19.49 1 -7.15
2
25 Ma jambro Mouth A 71,50 30.48
249107 | 672321} 1e6.34 [194.03
1 -75.,31 | -29.57
. ;
3 18:31 | -7.39
?
3a Cap Manze 24.80 66.90 | A 37:32 | 28,07 38.60 | 23,34
’ " 163-04 | 190:68 | 344.89 | 342:05
3 ¢ -70:13 { -28:37 37,26 22+20
I 21e39 | -si3s | -t0.08 | -7:19
2
4 Sonmiani 25-27 66334 A 74:2 28.3 34:0 ~21;0
. 17523 205:6 1517 25876
| r70.0 J-2%:6 } 337 -4:2
. 6.1 |-12.2 ] -4.9:] -20.6
ta 8 .
EN rhot River | 2525 65:8 A 71,60 1 28,871 38,360 21:26
- 166554 | 194,34 346.84 ] 343276
¢ -11549 [-27.97 | 37:35] 22,03
< vistn | =7ns | -8 74| -6.51
2
6o Malan 25:4 65:.1 A 70574 | -27:74 38.00 ] 23:08
P 166.69 | 193,99 | 346:54 | 343+59
¢ S68.67 | -26:92| 36,96 | 22:la
. 17:01 ] -6:71( -8.85) -6252
?
16 shor Kalmat] 2943 €46.2 A 69:10 27:11 37.54 4 22,94
« 166:32 |.194227 1 146,40} 343.70
‘ -67.14 | -26:27} 36:49] 22,02
. 16:35 | -6:68| -8.83} =<6.44
a
<} CONT - =
-

|
|




63

Tap.1T. .
] . 9 .
. Ras Shahid | 25.3 61.0 A 68,96 | 27:08 37.23
x 166.69 | 194,70 | 346,42
2 -67.11 ] -26.20 36.19
4 15.85| -6.87{ -8.74
9. Gewadar z5.11 62.33 | A 69.12] 27.16 37.1)
v 166.95 ] 194.99 | 346.47
3 -67,33 | -26,23 ] 36.08
4 15:61 -7.03| -8.68
10. Jiweni .25.20 61.70 | A 69,41 27,28 36.81
« 167:22 1 195.31 | 346.55
14 -67:69 | -26.31 36.00
4 15.36 [ -7.10] -8.61
11. Chah Bazar | 25.30 60.70 | A 70,68 1 27.75 36.81
" 168.79{ 197.06 | 347.08
4 -69.133( -26.53 35.88
4 13,74 -8.14 -8:23
12. Maidanal 25.40 59.20 | A 73.24{ 28.60 36 .84
x 176.06 | 199.61 | 348.25
‘., -72.35] -26.94 36,06
A 11,39 -9.60| -7.50
13, Jask 25.7 57.9 A 81.03 31,43 37.89
« 176,96 | 206.39 ] 351.90
4 -80.91 | -28.15 37.51
4 4,30} -13,97 -5, 34
4. Fuh 25.8 57.4 A 81:50 31,22 38,16
« 179:29 | 209.42 | 354,02
' -81:901{ -27:20 37.95%
4 1:01 ] -15:34 <3,98
15, Hadd 23.95 $9.80 | A 65.79 25.84 35.56
x 169:06 | 197:08 ) 346.50
3 ~64.60 | -24:170 14.58
3 12:49) -7.59| -8.30
L
L 4

22.88
343.88
21.98
-6:39%

22:86
344:00
21.98
-6.30

22:92
344. 1)
22.00
-6.25

22,92
344.81

22,09

-6:00

23.04
145.87
22.34
-5.62
21,86
348174
23.40
-4.66

224.25
350.18
21.90
-q.14

22.19
344,81
22.95
-5.82

CONTQ—J
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rai. 111
POSITION A |SEMI-DIURNAL TIDH DIURNAL TIDE
NO. SHIE <
. LAT. ] LONG. ", S, K, 0,
N OE
[¢] (s}
1. A 24.00 59.5 A 69.04 | 27.02| 36.00] 22.46
x L70.434 198.59 147.41 345 .46
¢ -68.08 }-25.611 35.141 29,74
.
¢ 11.47 ) -B.62| -7.85{ -%5.64
- 2
2. 8 24.5 60.0 A 69.43 | 27.20] 36.28| 22.60
< 169.70 1 197.90 | 347.17 | 34513
¢ -68.31 | -25.89) 35.38| 21.84
g
4 12.42 | -8,36| -8.06] -5.80
2
3, C 25.0 60.5 A 69.82 | 27.39| 36.63) 22.77
’ « 168.77 | 196.99 ] 346.96 | 3144.77
c -68.48 | -26.20| 35.681 21.97
¢: 13.69{ -8.00f -8.26] -5.98
s, 0 231.0 60.5 | A 65.54 | 25.7a4) 35,69 22:21
x 168.49 [ 196.53 ] 346.09 | 144.47
3 ~64.22 |-21.68| 34.62| 21:40
. .
¢,| +13.08| -7.32p -e.59] -5.95
5. E 23.5 61.0 A 66.62 | 26.15] 36.10] 22,39
' « 168.18 | 196,25 ] 346,07 ] 334,31
¢ -65.20 | -25.11] 35.04) 21.56
.
‘, 13.6a | -7.32| -8.69] -6.06
6. F 24.0 1.5 | A | “67.39 ] 26.45) 36.47] 22.55
x 167.76 | 195.8) ] 346.10 | 144.16
L -65.86 -25,45 15.40 21.70
:
, 14-29 | -7.22{ -8.76] -6:16
7. G 24.5 62.0 A 68:01 26..70 16,79 22:69
« 167.32 ] 195518 | 346.18 ] 344.06
2 -66.135 | -25,74 | 35.72}1 21.80
.
| Z, 14.92 |, -7,08) -8B.78] <-b:28
S - NUSI BN SN LIV Wmeas BFSSEE 1)) SRR
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Tab. 1171, -
8, " 24, 65 . A 70.05 | 27.45f 38.04] 23,07
v 165.61 1 193.52 ] 346.18} 343.33
. -67.85 {-26,70| 36.9¢] 22-10
. .
4 17.41| -6.42| -9.08f -6.62
2
9: ) 24. 66. A 69.90 | 27.39] 18:26) 23,11
« 1664.48 [ 192.37 | 345,58} 342:78
3 -67.35 | -26.76 | 37.05] 22,07
.
I3 18.70 | -5.87) -9.53} -6.84
10 J 23. 66 . A 69.11 27.00 38;52| 23.10
. 163.37 1 191,31 | 345,01} 342.42
3 -66.22 [ -26.48{ 37,33} 22.02
;
3 19.77 | -5.30} -9.50] -6:98
2
11 K 23. 67. A 69.16 | 26,951 39:19] 23.21
« 162.93 1 191,04 | 34566 | 342:22
¢ -66.11 (-26.45] 37,97 2210
|
3 20:31 | -5.16] -9.71f -3.09
2
12, L 22. 67. A 67.15 | 26,07 39.72§ 23:12
« 161.09 | 189.40 | 145:64 | 14170
¢ -63.53 | -25572 | 38.38] 21,95
, .
¢ 21,76 | -4.26 | -9.85] -7:26°
2
13 M 22. 68. A 66.02 | 25-66| 40.85] 23:28
« 159.33 §187,95 ] 144,53 ] 340.88
2 -63.77 [ -25.42| 39,311 22.00
1} »
¢ 23,30 | -3.95] -10.90] -7.63
2
14, N 21, 68. A 62,65 | 24,46 | 42:20] 23:31
« 158.60 | 187:77 ] 344:57 | 340:8)
I -58.25 | -24,23{ 40:68 22
, a
¢ 23.07 | -3:30f 11,23
?
5. o 22. 66. A 65.00 | 25.21 35.84
« 163.73 | 191,98 | 145.04
. -62.39 | 24,66 | 34.63
)
. 18.20 | -5:23f -9,25
7




67

AY3 Ul S3UTO4

*¥3S Uetqery UIIGIION 33 7o waay eas uadg

TeuorieINdwo) aysy uo SIUINITISUCD Tepty Joley “111'q=1

€9 ¢~ 2z 01 199~ 9T »1 fy

8612 |Ll6°Le 9Z°%2-} €vrz9- 'y

9Z7TYS | €6°bvE | b2 S6T{ 22 L9T >

80°PZ |ze'6t p1°sz | T0°v9 ¥ S 19 [ e i

68°9~ | ST 0T~ [92°9~ | 86°vT 'y

Z8°'1¢ |oT ¢t TE vZ-| ST °T9- 'y

8b Zhe | OL bYE [ Eb b6T| L¥°99T » i
882z | Lbse 0T°SZ | £€0°%9 ¥ $°29 5722 S 61

6L"9~ |6G0°'0T- {6676~ | 69°51 )

99°1z |pe-9c |ec-vz-| szrze- |9

69°ZvE | SS pwvE | 08°€6T| S8°69T *

69°22 | 1Lttt T1°62 | 6T°¥9 v A X] 522 d ' 81

09°9- L8 6~ ﬁpmmw Ly 91 ”u

v5 12 | 89°s¢ 9% v2-| 81°29- 2

S6°ZFE | €S bbE | ST €6T | 6T°59T >

752z |zo-ee 2152 | ¢y w9 v G ¥9 [ 4 (2} A

yvr9- hist6- evrs- | szeun &

Ep 1T fer°se Jos'pe-| zbrzo- 'y

BZ°EVE | LL ¥bE 165°26T | S5 ¥9T >

le22 u v 9e 141782 § 9.°w9 v 5°69 s ze d ‘91







JULY 5 - 1i¢h, 1982

CONFERENCE ON ORDERED SETS AND ITS APPLICATIONS

LYON (France)

A conference on ordered sets, and its applications will be held in Lyon.
The purpose of the conference is to present the most significant and the
most recent results in these fields :

Ordered Sets and Set Theory (infinite combinatorics, partition calculus,
confinality, chain conditions, topology on ordered sets and lattices, . .)

Ordered Structures (connections with model theory, ordered groups,
Boolean algebras, lattices, . . .),

Algebra and Ordered Sets (algebraic methods, chain conditions in
algebra, clongs, .. .),

Combinatorics of Ordered sets (dimension, Dilworth number, jump
number, Sperner properties, fixed point property, retracts,
enumeration, . . . ),

Ordered Sets and Computer Science (recursivity and algorithms, com-
putational complexity, scheduling, sorting, linear and discrete pro-
gramming, fixed point methods and semantic of programmation, . . .),
Applications of Ordered Sets to Social and Economic Sciences (Social

choice, ...)

The programme will include a few selected lectures intended to survey
some broad areas. As well there will be specialized lectures, contributed

lectures, and problem sessions,




70

Speakers : At the present time, the list of speakers includes :

C. Benzaken (Grenoble) E. Harzheim (Dusseldorf)
E. Corominas (Lyon) E.C. Milner (Calgary)

P. Erdos (Budapest) D. Monk (Boulder)

C. Flament (Aix-Marseille) 1. Rival (Calgary)

F. Fraisse (Marseille) 1.G. Rosenberg (Mcnireal)
G. Griizer - (Winnipeg) J. Rosenstein (Rutgers)
Information : R. BONNET, M. POUZET

Conference on Ordered Sets
Department of Mathematics
Université Claude Bernard (Lyon I)
69622 Villeurbanne Cedex, France.
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