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DR. MANZUR HUSSAIN (1921-1981)

Dr. Manzur Hussain, former Professor of Pure Mathematics and
Head of the Department at Punjab University Lahore died on Septem-
ber 22, 1981 after a prolonged illness.

Dr. Manzur Hussain was the chief architect of thz departmant of
Mathematics at Punjab University. Being the first full-time Head of
the department and one of the first few ftull-time teachezrs. he started
from wuocatch in mid-fifties and through dedication, sense of purpose
and hardwork built it into a full-fledged teaching department within a
decade or so. He was deeply committed to the cause of mathematical
education and impired his colleagues with the same zeal. He took
pains in attending to his teaching work and administrative duties
and through his personal example inculcated an abiding sense
of duty and responsibility in his staff. He was always kind and
considerate towards his students and attachsd a great deal of impor-
tance to their character-building through personal example and
precept. He was equally kind and considerate towards his colleagues.

He was very particular about the sélection of new faculty members
and merit was the sole criterion which guided his choice.

Here is a summary of Dr. Manzar Hussain’s life and work.
Born on September 15, 1921 in a village in the Jh=lum district, he
passed his matriculation and intermediate examinations in 1936 and
1938 respectively. He then obtained his B.A. with Honours in
mathematics in 1940 and M.A. (Mathematics) from Islamia College
Peshawar in 1942. He served as a lecturer in mathematics at Govern-
ment College Sargodha and Government College Lahore till 1952
when he proceeded to Durham University, England for his doctoral
work in Theory of Numbers. He studied at Durham University for
about two and a half years (1952-54) and returned to Government
College Lahore to serve again as a lecturer in mathematics. He joined
the Mathematics Department of Punjab University as a reader on
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June 4, 1956 and became its Head in February 1957, He was appoint-
ed Professor of Pure Mathematics on January 12, 1963. He served as
Head of the department till the end of 1972. He was th2 aithor of
several research papers and text-books. In a letter to him, Professor
F.J. Dyson, a well-known mathematician made the following remarks
about his research work, “‘your results are of striking beauty and
elegance and comparable with the best of Ramanujan’s work™”.

Dr. Manzur Hussain had a severe attack of paralysis on Novem-
ber 11, 1974. In a few days he recovered from the severity of the
attack but it left him in a demented state. He made some l.iprove-
ment but never fully recovered. He remained on medical/privilege
leave and was not allowed to joim the department. His family suffered
a great deal of hardship. The attitude of university authorities
towards this Professor, who devoted the best part of his life to the
service of University, left much to be desired. He retired from
university service on May 24, 1979. In 1981 he had another severe
attack of paralysis which proved fatal. Hs breathed his last on
September 22, 1981.

May his soul rest in pzace ! (Amin}.

(Khalid Latif Mir)
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DR. MUNAWWAR HUSSAIN (1936-82)

Dr. Munawwar Hussain, Head Mathematics Department Govern-
ment College Lahore died in a road accident on the night of October
11, 1982, In his sudden and tragic death, the mathematical commun-
ity ot Pakistan has lost a decidicated and conscientious teacher, and a
good research worker.

Born in 1936, Dr. Munawar Hussain received his school and early
college education in his native town Sargodha. He received his B.Sc.
with Honours in Mathematics degree from Government - College
raisaiavad in 1955 and then moved to Lahore and obtained his
Master’s degree in mathematics from the Punjab University in 1957,
with distinction, Some of his teachers at this stage of his educational
life were Dr. L.M. Chawala and Ch. Sultan Bux (Govt. College),
Prof. Nasir-ud-Din and Prof. Sana Ullah Bhatti (Islamia College),
Prof. F.D. Anjum Roomani (Dyal Singh College) and Prof. Magbool
Ilahi (F.C. College). He joined Government College, Satellite Town,
Rawalpindi in October 1958 and served there till 1964, when he was
transferred to Government College Sargodha. Munnwar Hussain was
very keen to pursue research work in some field of applied mathe-
matics and his desire did materialize in 1967 when he joined the first
batch of M. Phil, students of the Quaid-e-Azam, University, Islama-
bad. Later he was registered for Ph. D. under the supervision of
Prof. Q.K. Ghauri, who proved a source of great inspiration for his
talented student. After completing his Ph. D. in 1971, Dr. Hussain
joined the newly established Government College of Science, Lahore
as an Assistant Professor. For a period of one year (1973-74) he
served the Quaid-i-Azam University Islamabad before he joined
Government College Lahore as Professor of Mathematics and Head
of the Department.

The last nine years of Dr. Munawar Hussain’s life were spent at
Government College Lahore. His contribution in building the Mathe-
matics Department of that college into a leading department will be

{fii)
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long remembered. He inspired his colleagues through his personal
example of hardwork, dedication and cfficiency. Alongside teaching
and administrative work, he carried on research in his field of speci-
alization and wrote eighteen papers in the period 1973-1982, He also
published a scholarly monograph entitled ‘“Lagrange Equations of
Motion”. He was a reviewer of Mathematical Reviews and of
journals published by Springer-Verlag. He played an important role
in establishing the Punjab Mathematical Society and was élected its.
Vice-President in 1977. A few days before his death, he was busy in
connection with the formation of All Pakistan Mathematical Associa-
tion. He was an Associate Editor of the Journal of Naturai Sciences
and Mathematics published by Government College Lahore, and a
Research Associate of International Centre for Theoretical Physics,
Trieste.

May his soul rest in peace ! (Amin.)

Muhammad Amin,
[ Mathematics Department, Govt. College Lahore.
and

Khalid L. Mir,
Mathematics Depariment, Punjab University, Lahore. ]
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TOPOLOGICAL ALGEBRAS ISOMORPHIC WITH
/; OR H (D)
By
TAQDIR HUSAIN*

Mathematics Department,
McMaster University, Hamilton, Canada and IAS, Australian
National University, Canberra

Abstract

We give some necessary and/or sufficient conditions on bases of
Banach or Fr'echet algebras with orthogonal or cyclic bases which
make them isomorphic and homeomorphic with the standard algebras

/; or H (D).
1. Introduction

Let E be a Hausdorff topological vector space (abbreviated to
TVS) over the complex field C (or real field R, if needed). A count-
able subset {x;} of E is said to be a basis of E if for each x ¢ E there
exists a unique sequence {;} of scalars in C such that ‘

lim n @ .
— : ; == . i X3 .
1.1 X H—>0 I.:l 7\1 x, Z 1=1 71 1}

(See [2], [8], [11]. )
If E, in particular, is a normed space, then 1.1 can be expressed as

follows :

A Xi

[

1 !—>Oasn—>oo.

(*) This paper was written when the author was visiting the Department of
Mathematics, IAS, Australian National University, Canberra, Australia.

This work was partially supported by a NSERC grant.
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By the uniqueness of {a;}, it follows that no member of a basis can
be zero. Thus if {x;} is a basis of E, then x; 40 forall i > 1.
Moreover, by the dependence of »;’s on x, it is clear that each
A; (x) = 2; is a linear functional (called coordinace functional) for
i = 1. 1In general, each »; need not be continuous. Whenever it is
so, {x;} is called a Schauder basis. By an application of the
classical Open Mapping or its sister Closed Graph theorem, it can
be shown that each basis in a complete metrizable locally convex
TVS (in particular, for Banach spaces) is a Schauder basis.
Schauder bases in Banach spaces (more generally in TVSs)
are not unique. In other words, a Banach space may have more than
one Schauder basis, if exist. As for existence, each separable Hilbert
space does have a Schauder basis. There was a longstanding open
problem in Functional Analysis whether or not ecach separable
Banach space has a (Schauder) basis, but this was settled in the
negative by Enflo [3]in 1973. There is a vast literature on bases in
Banach spaces, for example, see [}1] or [2]. The basis theory in
more general topological vector spaces is also extensive. For
example, see [8].

When the basis theory in Banach spaces and its applications in
approximations were growing, there was an upsurge in the study of
topological algebras, particularly Banach algebras. But there was no
effort made to study the basis theory in topological algebras until
this author and his coworkers looked at it. They showed that the
basis theory in topological algebras could be equally interesting, if
not more. For instance, see [4], [5], [6].

Let A be Hausdorff topotogical algebra over C, which means that
an algebra A over C with a Hausdorff topology is a topological
algebra if A is a TVS and the multiplication: (x,y)—>xy is
continuous. Note that some authors define topological algebras as
those in which multiplication is continuous separately in. each vari-
able. But this distinction will not engage our attention here, since
mostly in the sequal we will be dealing with complete metrizable
topological algebras on which this distinction does not exist due to

Aren’s theorem (see [12] or [7] ).




A countable subset { X, }i - of a Hausdorff topological algebra

1
A is said to be an orthogonal basis (¢f. [4] or [5]) of Aif{x;}isa
basis of A asaTVS and x; xj = 8; x; for 7, j > 1 in which §;; is

the Kronecker’s delta. Clearly, x; x; = 0 if i 3= j and xl,2 = x; for
all i = 1.

If one is interested in a weaker assumption of orthogonality of a
basis {x;}, one can assume only that x; x; = 0 for i £ j, or that

x;xj =0 for i~ j and xl?';éo, or that xjx; =0 for i j and

x? == ¢; x; with some suitable conditions on ¢; . For details, see [5].

Some of the consequences of our definition of orthogonality are :
that a topological algebra A with an orthogonal basis is automatically
commutative. For, if x = X 3; x; and y = Z p; x; , then
xy = yx = X (A u;) X; . Each coordinate finctional 2; is multiplic-
ative : X (xp) = 2, (x) 2; () for x, y € A. Usually, a basis in a
TVS becomes a Schauder basis only when the conditions for applica-
tion of the Open Mapping and/or Closed Graph theorems are met,
but an orthogonal basis in a topological algebra becomes a Schauder
orthogonal basis under™ much less restrictions. Specifically, if A is a
locally multiplicatively-convex (LMC, for short) algebra [9] i.e., the
topology of A is defined by a family {Pa }a eT of seminorms satisfy-

ing the submultiplicativity condition :
) <
P (3} <P (9P ()

for all x,ye A and « eI and {x;} an orthogonal basis of A,
then each 3; is continuous [5]. In other words, {x;} becomes
a Schauder basis of A. By using a delicate argument on the
cardinality of the index set T', it is possible to show that each LMC
algebra with identity and having an orthogonal basis is metrizable
[5]. Hence, if A, in addition, is complete, then it is a Frechet
(complete metrizable LMC) algebra with identity and having an
orthogonal basis.

It is interesting to mention that (Schauder) orthogonal bases in
topological algebras, unlike (Schauder) bases in topological vector
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spaces are essentially unique. That is, if {x;} and {y;} are two
orthogonal (Schauder) bases of a topological (in particular, Banach)
algebra A, then {x;} = {y;},[5]. This general phenomenon is the
extension of a well-known fact regarding the uniqueness of the

in R” where e;=(0,...,1,0,...,0) in

orthogonal basis {e; }?—-l

which 1 occurs only on the ith coordinate, otherwise each coordinate
1s 0.

It is also worth noting that the corresponding Orthogonal Basis
‘ Problem in a Banach algebra has a negative answer, because no
non-commutative Banach algebra can have an orthogonal basis,
since, as pointed out above, whenever a topological algebra has an
orthogonal basis then it must be commutative. Thus, B (H), the
algebra of all bounded linear operators on an infinite-dimensional
Hilbert space H cannot have an orthogonal basis. Even for a com-
mutative one ([3] and [5] ), the answer is in the negative.

It is not only that an infinite-dimensional non-commutative
normed algebra fails to have an orthogonal basis, but it is equally
curious to note that an infinite-dimensional, commutative or not,
normed algebra with an orthogonal basis fails to have identity. For,
if {x;} is an orthogonal basis of an infinite-dimensional normed

algebra A and if e is its identity, then e = Z;il X; . Since the

series is convergent, there is a positive integer i, such that for all

i>1i,, Il xi I < 1. By orthogonality of {x;}, we have x; = x;

and hence | xi || = || x,-ku < | x; uk—>0 ask > oo foralli = i,
Hence x; =0 for i > i, , contradicting the infinite-dimensionality
of A. Hence A cannot have identity. This fact is also verified by
the classical Banach algebras ¢, lp (1 < p < o) which have an
.i — where e; = {’b‘ij }j > but no identity.
Although an inifinite-dimensional normed algebra with an orthogonal

basis cannot have identicy, the same is not true for Fr'echet alzebras.

orthogonal basis {e;}
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Actually, most" classical Frechet algebras with orthogonal bases do
have identity. Incidentaily, we have :
1.2 Theorem. ([4] and [5]).

Let A be a complste LMC algebra with an orthogonal basis.
Then the following statements are equivalent :
(/) A has identity.
(ify A is isomorphically homeomorphic with the Frechet algebra s

of all complex sequences.

(i7iy The map ¢ : x »{xi (x) }i - of A into s is surjective.

Thus, up to isomorphism, there is only one Frechet algebra with
an orthogonal basis and having an identity, and that is s. But this is
not the case for Bo —algebras [12] (i.e., complete metrizable locally

convex algebras) with an orthogonal basis and having an identity.

1.3 Exzample

Let D be the open unit disk of the complex plane and H (D),
the topological vecter space of all holomorphic functions on D,
endowed with the compact-open topology. If we define the product

f*gof f, g e H (D) by:
frew=f , _, f@seTh

x| <r<1(herei= x/ ~ 1), then it is not difficult to verify
that H(D) is a BD—- algebra with identity 1. Moreover, the sequ-

ence {1, z, z2 , ...) forms a basis of H (D) by the Taylor’s theorem.

. . . m, n n .
1t is rather routine to verify that z' * z° = an z , i.e., the. basis

{ 2 }n>o is an orthogonal basis. It is obvious that H (D) cannot be
an LMC algebra and hence not a Frechet algebra, because otherwise
it would be isomorphic to s which it is not.

Another feature of Frechet algebras with orthogonal uncondit-
ional basis is that they are functionally continuous [9], thus answering
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in the affirmative an old problem of automatic continuity of multi-
plicative linear functionals on a Frechet algebra with an uncondit-
ional orthogonal basis [4]. The problem for general Frechet algebras,
however, still remains. See [7] for details.

2. [—algebra

It is indeed well-known that the set /; of all complex sequences

a={a;} with E:il | @i| < oo is a Banach space with point-

wise addition, scalar multiplication and the /y —norm :
ban = =7 la |
Actually, with pointwise multiplication, /3 is even a Banach algebra
without identity. The following facts about /; are known :
2.1 (@) lyis a commutative Banach algebra which has an orthogonai
basis, {e;}.
(b) {e;} Isan unconditional basis of /; .

(Note : A basis {x;} ma TVS E is said to be unconditional if the series
in each expansion x = X 3; (x) x; (x € E) is unconditionally convergent
[2]. It is equivalent to bounded-multiplier convergent [2]. ).

(¢) The topological dual lOO of Iy contains an element e such

that e(e;) =1 forall i = 1.

(Note : e={l}e loo \/i and, by duality, if a = {a;}el;, and
b= {b,} Slw s then < a, b> = b(a) = Z;‘TJ:] aibi is the value
of the functional & at a.).

(d) The basis {e;} of I is boundedly complete.

(Note : A basis {x;} in a normed space E is said to be boundedly com-
plete if for all scalar sequences {a;}, the boundedness of the sequence

i E:.l [ % %i }n -1 implies the convergence of E::;I a; x; to

some x € E}.
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Now we have a characterization of those Banach algebras which
are isomorphic to /5 .
2.2 Theorem

Let A be a Banach algebra with an orthogonal unconditional
basis { x;}. Suppose there exists ¢ € A’ (topological dual of A) with
e(x;)=1forall i = 1. Then Ais isomorphic and homeomorphic
with the Banach algebra /; iff the basis {x;} is boundedly complete.

Proof :

Indeed, if A is isomorphic and homeomorphic with /; , then, by
identification, A will have two orthogonal bases { x;} and {e;} and
therefore {x;} = {¢; }, [5]. Since {e¢;} is boundedly complete, the
“only if >’ part follows.

To prove the “if”’ part, assume { x;} is boundedly complete.
Since A is normed, without loss of generality, we may assume thag
ix;l =1 forall i > 1. Foreach x &€ A there is a unique sequence
{n X }z' > 1 such that

e8]

x=2Z_,

A (%) x;.

Clearly, ¢ : x = {3; () }i S 1 is an algebra homomorphism of

A into s. Since the basis {x;} is unconditional, it is easy to verify
that the series :

o0 e@]
T M Ggna) =3, NG

is convergent in the norm of A and hence for each f& A’ and in
particular for e € A’ , we obtain the convergence of

oo

El,=1

RYICINE
This proves that {3; (x) }z' 51 ¢ l; ie., ¢ maps A into /1. By the

uniqueness of scalars {; (x) } for each x, we see that ¢ is a one-one
algebra homomorphism of Ainto /3. To prove that ¢ is onto, let
a={a;}el;. Sinceforall n > 1,



n
=y

by the bounded completeness of the basis, there is x € A such that

axl <3 _ lal Ixl<lal, < o

X = Z:?_—_l a; x;. Hence ¢ (x) = {a;}. Thus ¢ isan isomorphism

of the normed algebra A onto /;.
(Note : We have not used the completeness of A so far.
To prove the homeomorphism of A onto /;, completeness

of A is used). Clearly, for each x€ A, x = Z?;l A (%) x; implies

x| < 2;’; MG =1¢ M) E Since ¢ 1is invertible, we see

1
that | ¢72 (») II < llyll1 forall yely. This proves the continu-

ity of ¢~1: Iy > A. By the Open Mapping theorem, we obtain the
desired homeomorphism of A onto /3 . This completes the proof.

Wote that the above theorem says that a normed algsbra A with
an orthogonal unconditionzl boundedly complete basis {x;} such that
there is e g A’ with e(x;) =1 for all i = 1 is isomorphic to the
algebra I; and if A, in addition, is complete then it is also homeo-
morphic with /1 .

The Banach algebra ¢, , the space of sequences converging to
zero, also has an orthogonal basis {e;}. Since the dual of ¢, is I
and the basis {e;} of ¢, is shrinking [2], itis not difficult to find a
similar characterization for ¢, , using the shrinking property of a
basis. Furthermore, since lp (1 < p < o) is a reflexive Banach
algebra with an orthogonsl basis {e;}, it will be worthwhile to prove
a similar characterization for Ip (I < p < oo0) using James theorem
[2]. Some of these results will appear elsewhere.

3. H (D) — algebra

~ As mentioned above, the algebra H (D) of all holomorphic
functions on the open unit disk D of the complex plane, endowed
with the pointwise algebraic operations and compact-open topology,
is a commutative Frechet algebra with identity. Actually, if we
take D, to be the open disk of radius r > 0 and centre 0, then H (D;)
is a commutative Frechet algebra with identity. In this section we
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want to show that an abstract commutative Frechet algebra with
identity is isomorphically homeomorphic with H () for some open
disk Q in C under some natural conditions.

We note that for any f€¢ H (D;),

S =2 SO .

s

by the Taylor’s theorem. Thus the sequence {1,z,22,..} formsa
basis for H(D;) (See [1]). We want to generalize this feature of a
basis in general topological algebras.

3.1 A subset {zn}n >0’ (z° = e, identity) of a topological algebra

A is said to be a cyclic basis [5] or [10] if for each x € A there is a
unique sequence {a; (x) }i > 1 of scalars such that

x = Z?i__l a; (x) 7t .

Thus, 1, z, 22, ... is a cyclic basis of H (Dy), where z isthe
identity function of D, .

1t is worthwhile to note that the product of x, y in a topological
algebra with a cyclic basis is given by the Cauchy product. Specific-

. 0 i 0 i
ally, if x = Ei:l a; z and y = 2i=o B; z , then

o n n
=2 0 Freo *n-i )z
We elucidate some properties of a Frechet algebra A with a cyclic
. n
basis {z }n >0

3.2 (a) zcannot be invertible.

For, if so, then z -1 2;0__ o« z" and so
-1 o0 n+1
e=2zz = zn:a o« Z

which contradicts the uniqueness of basis representation of e,
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(b) For any complex a, z—2xe is invertable should be iff the series
n
«© (i) is convergent in A. And the inverse of z — e is

n=0 A
given by the formula :

—1 -1 (oo Z \r
(z-2) " =-2 I _, (T) )
-1 [e'e] n
To prove (b), suppose (z — Xe) - ano “?
. n__ © . n+1
Then e = (z =3¢ £ _ o,z =—de+ B (« My 1) ?
and so we have : _MO-_— 1 and ® = “Cn+I =0 for all n > o.

Since z is not invertible, 2 # @ and so @ = -% and

o = ;\—I a for n# > (. By successive substitutions, the latter
ni1 n
equation yields : o = —7\—("+I) for » > 0. Thus the series
o0 zZ \?". i . .

(—) is convergent. The rest follows easily.
n=ea\ i

(¢) If o(z) denotes the spectrum of z, then for any complex
number x ¢ 6 (2), |A| = p(2), the spectral radius of z.

For its proof, we see that o (z} = {f(2): fe M (A)} where
M (A) is the maximal ideal space of A, which is identified with the
set of all non-zero continuous multiplicative linear functionals on A.

Foreach fe M (A),
-1 = f@)\n

fz-109" =1 N EA.

~

o~
N

N’

is convergent and so < 1 for all fe M (A).

Thus
p@)=Suwp {[f@} :feM@A)}=< [a].

3.3 Clearly, 3.2 (c) implies that if r = p.(2), D, C 6 (z) ¢ D, (the
closure of the open disk D, of radius r and centre o).
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34 Now from 3.2 we can define a map ¢ : M(A) - o (2) by
¢ (f) =F(2) forall fe M (A). Clearly, ¢ is bijective and continu-
ous when M (A) is given the Gelfand topology.

3.5 (a) If Vis a subset of M (A) such that ¢ (V) has a limit point,
then for any x & A, f(x) =0 for all f ¢ V implies x = 0. Moreover,
A is semi simple iff sgould be iff p (x) > 0.

For, if x = Z?i_o a; (%) z' , then for any fg M (A),

fx) = Eﬁo o (x) [f(©) ]l which is a power series converging to
zero on the set ¢ (V) having a limit point and so by the identity
theorem of Complex Analysis a; (x) = 0 for all i > 1. Therefore
x=0. '

Further, if p(z) = 0 then f(z) = 0 for all fe M (A). More-

over, f = w, [5] and so the radical, Rad A # {0} i.e. A is not
semisimple. On the other hand, if x € Rad A, then f(x) = 0 for all

f&eM (A). Since Dp @) < 6(2), p(z) > 0 implies by the first part
that x = 0. Hence A is semisimple.
(b)) o (2) is homeomorphic with M (A), provided o (z) is open.
Put x (1) = x (<i>"1 (r)), where x is the Gelfand transform of x
and ¢ defined in 3.4. Since ¢ is bijective and continuous, we have

W= gz @ 1) = 2 % () (" which repre-

~

sents an analytic function of f € o (z). Hence x is continuous on
o (z) and this gives the continuity of ¢ ! because the Gelfand topo-

logy is the weakest topology making each x continuous. From this it
fcllows that o (z) is homeomorphic with M (A).

Using 3.5 (a), (b). we prove :
3.6 Theorem [10] A Frechet algebra A is isomorphic and home-
omorphic with H () for some open disk ( < C iff A has a cyclic
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basis {z”}n - with ¢ (2) open. If p(z) = oo, then A is isomor-

phic and homeomorphic with the Frechet algebra E of all entire

functions.

Proof

Indeed, the ““only if”’ part being trivial, we assume that A has a
cyclic basis {z" }n >0 with o (2) open. If % denotes the Gelfand

~

transform of x € A, we define x = x o¢—I where ¢ is defined in

3.4. Using 3.5 (b), wesee that A = { x: x & A} is a subalgebra of

H (c (2) ), consisting of functions x and equipped with the compact-

open topology. If we deflne w: A - A by ¢ (x) = x, in which

,& = {;c : x g A}, then using 3.5 (b) again, we sec that ¢ is an
algebraic and topological isomorphism. If g : A > A is the Gelfand
map, then we want to show that v og is the desired isomorphism on
H(c (z)). Since o (z) is open (hence p(z) > 0). Ais semisimple
(by 3.5 (@) ) and so g and hence y og is injective. Now if f& H(o (2) )
then by the usual functional calculus for Frechet algebras [9],

there is y € A with ¥ (¢) = f(z($)) for ¢ &M (A). Equivalently,

f@ = ; (¢ (1)) for tec (z). Thus f= [)\z and this proves that v og
is onto H (o () ). Furthermore, g as well as y being continuous
implies ¥ og is continuous. Now the continuous linear map ¥ og of
a Frechet algebra A onto the Frechet space H (o (2) ) is open by the
Open Mapping theorem. The other part being similar, this completes

the proof.

Note that the assumption that the spectrum o (z) be open in the
above theorem can be weakened if we consider unconditional cyclic
basis. For instance, we prove the following (see [10] ). For comple-

teness, we give a proof here:
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3.7 Theorem
If {z7 b s 00 is an unconditional cyclic basis of a Frechet
algebra A, then o (2) is either open or compact. Moreover, M (A) is
homeomorphic with o (z).
Proof

As shown above, Dp (@)co(2c B-p (z). If .o{(z) contains a

boundry point u, say, then for each x ¢ A, the series E:O_o a; (x) ut

converges absolutely because the basis is unconditional. Hence if
w e C is such that | w | = | u |, then the convergence of the series

E;‘)O_l o; (x) wi implies that f(z) = w is a multiplicative linear
functional. Hence we o (2) ([9], Lemma 6.1 (a)) and so the disk
o (2) contains all its boandry point. This proves the first part. = For
the second part, if ¢ (z) is open then it is 3.5 (b).

This leads to the following, the proof of which is similar to that
of 3.6. ’
38 Theorem

Let A be a Banach algebra in which the spectral norm p is
equiyal,en_t to its given norm. (In ,Qrther words, A is a Function
algebra). If A has an unconditional cyclic basis {z"}n S0 then A

is isomorphic to the algebra A (D,) (r = p (2) ) of all analyfic funp-
tions on the disk D, with the norm : . '

2 (0

We end with a problem.
3.9 Open Problem. ’
~.Let A be. a -Fre'chet algebra with identity and a basis

n Am TR ‘
{1 1 s eer s Zm }, where n3 . ..., #p run over natural numbers, 7.e.
the algebra of polynomials’ in m variablés is dense in’ A,  When is A
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isomorphic and homeomorphic with H ((3™), the algebra of all holo-
morphic functions in me variables on a suitable open domain Q™ in

Ccn?

10.

1.

12.
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THE VECTOR SPACE OF MULTI-ADDITIVE
ARITHMETICAL FUNCTIONS
By
L.M. CHAWLA

Department of M athematics
Kansas State University,
Manhattan, Kansas 66506, U.S.A.

Abstract :
An arithmetical function f(xI y e s xr) , r > 2, with values in

the field C of complex numbers is called here multi-additive, if
(xl.,y[_) =1,i=1,2,...,r implyf(x1 s X, yl., ,x’_)

=f(x1 peee s Xps o ,xr) +f(x1 y ene ,yi,...,xr).
In this paper, we first prove that the set (xl s e xr) of all

multi-additive functions is a vector space over C. Next for disjoint

sets {x, ,...,x. },{x, ,..,x, } of distinct arguments we prove,
i 1 J J
1 r 1 s
Q@, ,...,x,)< Hom (Q (x, ,...,x, ),
Jl JS l1 lr
Qx, ,...,x, , X, ,...,%x,)).
gl oo Is

For a proper subset{i,j, ..., k} of the set {1,2,...,r}, we
construct certain H-homomorphisms H, . of Q(x,,...,x )
i,J , k 1 r

s s eve

into Q (xi . xj y s ,xk) and prove that each H, , p can be

s Jy oon

decomposed uniquely to within order as the sum of certain irreducible
H-homomorphisms and then develop a theory of H-homomorphs 7.e.
H-subspaces of Q (x; , Xpes X )

15
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§ 1.
Definition 1. A real or complex vaIued arrthmetlcal functlon f (x .o xr)
of r>2 arguments defined for all ordered lists (x Y en xr) of
positive 1ntegers X i=1,2,...,r, is said to be multi-additive if

N=1i=1,2, ...,r impl
(xl.,yl) ! rlmpyf(x15 5xl-yl, x)
—_-f(x1 y e ,xi,... ,x,r)-{--f(x1 y eee yz_,...,xr).

Since f(x1 suve s Xp o I, ..., xr) =f(x1., o Xisoons xr) +
f(xI oo s Ly eeey xr), it follows that f(x1 yoe s 1y e, xr) = 0, for
all xj, j=1,2 .., i-1,i+1,...,r, and hence f'(x1 y e s xr)=0
when 1 is substituted for one or more of thc arguments.

It is evident that the multi-additive arithmetical functions
fx., x ) introduced here are different from the additive arith-

metical functions of r > 2 arguments studied in [1] or in [3].
Let Q(x,,..., xr) denote the‘set of all z'nult_i;additive functions,
In Q(x [ xr) define addition and multiplication by elements of
the field C as usual. Thus,' forany f,geQ and a¢ C, define
(fH @0 s X)) =) s X )+ 8 e, %)
(@.f) (xl", X )= af (X))
-Let- (xr ,y.) = i=12,...,0r .

"aMMFu,JJQ=U}@@VMJQV .
=f(x],--.°’xr) "+g(:xI’>"'L'5x’).

Then

F(x xi,yi,...,x’r):f(xl,...,.xiyz.,...,x )

19"'5
—}-,g(x1 e s xiyi,...,xr).
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By expanding and rearranging the terms on the R.H.S. of the
above equation, we get

F (x .,xl.yi,...,xr)=F(x , X

10 [0 i""’xr)
+ F(x1 s s Vs xr). Thus, F is multi-additive and hence
FeQ. '

Further the addition in ) is easily proved to be associative and
commutative. Finally define (— f) (x1 s eee s xr) = —f(xl, e xr)
as -the additive inversz of f(x1 ) e xr). Thus (x1 s e s xr)

together with the addition as defined above is an additive abelian

group with the zero element 0 (x , xr) =. 0 for all (x-1 > oers xr).

Lo
By the definition of (a . f) (x1 e X )= af (x1 s en s xr),
it follows that a . f is multi-additive and hence @ . f&  and further
l.f=fanda.(f+8)=a.f+a.g,
(a+b).f=a.f+b.f,for all f,geQ and all a,beC.
This completes the proof of '
Theorem 1.1. The set (x1 s aee s xr ) of all multi-additive arith-

metical functions is a vector space over C.

Examples of multi-additive arithmetical functions.

(1) Let f1 (x1 ), f2 (x2), ’fr (xr) , be any r>2 g_iven;

additive arithmetical functions respectively of the distinct argumeﬁts
x,,i=1,2,...,r. Consider the function formed by their product
namely f(x1 s eee s xr) = f1 (xl) .f2 (x2) s oes ’fr (xr). It is evident
that f(x , ..., xr) is multi-additive and hencee Q . However,

every mulii-idditive function in Q need not be of the above form,
since if -f(xl sy vee s xr) =f1 (xl ) -f2 (x2) o e 'fr (xr)

and g(xl,...,xr) =g1 (xl).gz(xz).....gr(xr)
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are in (@ , it is not true that a f + bg is necessarily a product of r
distinct additive functions. However, the same conclusion is reached

by the next example.
(2) Let !i(x1 ) e xr) be any multi-multiplicative function {2],

in the sense that 8 3£ 0, for any positive integral values of the argu-
ments and further (x‘. , yl.) =1,i==1,2 ...,r imply

ﬂ(xl .= X Vs ,xr) = t)(xl woree s Xpy e ,xr);

Then the function defined by f‘(x1 y een s xr) = log e(xl sy X))
r

is easily verified to be multi-additive.
Following the notation for the vector space Q(xI s ey x ), let
r

Q& 5% )y and Q(x., ..., X, ) denote respectively the vector
11 r Jl s
spaces of all multi-additive functions f(xi , .-, X, yand
1 lr
g(x. 5% ), where the arguments involved are all distinct and
J
1 s
the two sets {xi > X }, fx. .....x, } are disjoint. Consider
J J
1 r 1 $
the function p(xl. s X ey xj. ) of the r 4 s arguments
1 r K
defined by ,
PX, s s X 3 X 5y X )=f(x, ,....x, ). g(x, ,...,x, ).
: lr Ji ]S ‘1 lr ',1 ]3

1t is immediate that the function p is multi-additive and hence it
belongs to the vector space (xi s e 3 Xe 5 X, 5eee s X, ) Let

I S| Ts
then Q(x. , .-, x, ). Q(x, ,...,x. ) denote the set of all
i i i J
1 r 1 s
product functions p, for all fsQ(xl. ""’xi) and all
1 r

geQ(x, ,....,x. ). We shall denote by
]I Js

—
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Q (xi s X ). Q(x, ,...,x. )], the subspace of
[ 1 r /1 Ts ]
Q. ,...,x, ,x. ,..,x, )generated by the subset
i 1 J J
1 r 1 s
Q. ,...,x.). Q(x. ,...,x. ). Note neither of the -vector
7 i J J
1 r 1 s
spaces £} (xi s s X, ), Q(x, ,...,x, ) isa subspace of
1 Y 1 s
Q(xl. s s Xy Xy, X ) and nor in fact that of
1 r 71 Is
Qx, ,...,x. ). Qx, ,...,x,)].
[ ‘1 Y I I ]

We summarize the above conclusion in
Theorem 1.2 :
The product Q(xi s X, ). Q(x, . ,xj ) of the vector

1 r 1 s
spaces Q(x, ,...,x, Yand Q(x, ,...,x, ) is a subset of the
i i J J
1 r 1 s
vector space Q(x. , ..., X, , X, , ..., x, ) butneither of the vector
1 1 J J
1 r 1 s
spaces Q(x, ,...,x, ), Q(x, ,...,x, ) is a subspace of
i i J J
1 r 1 s
Q(x, s Xy 5 X , .« » X, ) nor that of
B r 1 Ts
Qx. ,eox, ). QCx, , ., x. )] -
[ 1 't I1 Is ]
In contrast to Theorem 1.2, the vector spaces Q(xl. soes X ),
1 r
Q(x, ,..,x,)and Q(x, ,...,x, , X, ,..,x ) are related to
71 Is 1 o Ts

each other in an important way as proved in
Theorem 1.3 :

(@ Q(x, ,...,x,)¢C
7 Jg

Hom (Q(x. ,..., %, ), Q(x, ,...,X ,X. ,..,%X.))
i i i i J
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® Q(xl. s X ) C

1 r
Hom (Q(x. ,...,x, 0, Q(x. ,..,x, ,x, ,..,x.))
4| Ts 1 ' JI Is
To prove (a), let f(xl. s X ) and g(xl. s s X, )
1 r 1 Y
eQ(x, ,...,x., )andlet A(x, ,...,x. )eQ(x. ,..,x. ), then
‘1 ey Jl Ts 4| J.g

f(xi "\"’xi )h(x:] ,...,xjs)=f(xl_ ,...,xi,,x, R

1 r 1 1 ro L Ts
is multi-additive and e Q(x, , ..., x ,x. ,...,x. ) (Theorem 1.2
i i J J
1 r 1 Ky
above). Further forall £, g e Q( Xp oo X ) aud a,bsC, we
1 r
have

(@a.f+b.89).h=af . h+bg.h

=af+bgeQ(x, ,...Xx. ,x. ,..,x,).
11 " i Jg
1t follows that each element 4 of _Q(xj y eee ,xj ) is a homomor-
1 s
phism of Q(x. ,..,x )into Q(x, ,...,x, ,x. , ... > X, ).
g L gl L J._s

This proves (a) and then (b) follows by symmetry.

Corollary. For any vector space Q ( Xps s xr) we have
Q(le , ,le) € Hom (-Q(xi1 , ...,x'_k), Q(xI y eee ,xr))

where il ) i2 e s ik ; jl s ey jI is any partition of the r integers
1,2, 3, ..., rinto two disjoint subsets. R
Theorem 1.3 gives a certain class of homormorphisms of the vector

space Q(xI y e s x’) into the ‘higher” vector space

Q(xI y e ’xr’xr—}—l ""’xr—}-t
a class of homomorphisms of the vector space Q(x1 . e s xr) into

). In the next section, we construct
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the ““lower” vector space Q (xi R xj Y e s xk) where {i,7, ..., k}is
a proper subset of {1,2,3, ... ,r}.
§2.

Let {7,7, ..., k} be a proper subset of s integers of the set
{1,2,...,r}, 1 < s < r. For agiven ordered tuple

a=(al9"'9ai 19’ai+la'“aak_laak_l_l’"',ar)

of r — s positive integers a’s, define the mapping Hi j k(a) of
the vector space Q (xl e x’_) into the vector space
Q(xi , xj, ceiy Xk) by

. , (@)
) f(x1 Y eee s xr) Hi,j, Lk

=:f(a1 b B K G g G X s ,a.)

= f(xi , xj e X ). say.

@) @ S, x))H L ,(l:)

:a,(f(xl ,--~’x,))Hi,j,.-- ,(I(:)

for all f%:Q(x1 Y e s xr) and all a¢C.

It is easily verified that T(xi s xj s eee s xk ) is multi-additive and
hence it & Q (xl, , xj , .--,x, )and further forany f, ge Q(x1 s eers xr)
(@)
and @, be C, wehave (a.f+ b.g) Hij ok

aay.f+b.gEQ(xl.,xj,...,xk).

Thus, we have proved
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Lemnra 2.1 : The mapping Hi L (Z) is a homomorphism of the
vector space Q (x1 e xr) into the vector space Q (xl. R xj yeee xk)-
Definitior 2. The homomorphism Hi ; (l:) is called

irreducible, if each coordinate of the tupte
o = (al . rer s ai—l ,,al._}._1 s ey ak_1 . ak—L-l y re

or a power of a prime.

- 8 } is a prime

We denote the homomorph of Q(xl_ e s xr )} under the homo-

’(Z) by @(x;,....x ) H (@)

0 j, . k
by Q(aI yene ’az‘—I ’xz"ai'—LI s X afc—l—I .-

the situation may require. It is evident that each of the homomorphs.

morphism Hi T or explicitly

s Js oo

. ,ar)as

() Hl. ; (Z) , for variabke o’s, is a subspace of the vector space

a( Xy Xoomm s Xp ). We call each such homomorph an H-subspacs:

of O (x1 s xj s Xy ). An H-subspaecz of Q (xt, \ xj e s xk ) s
then called irreducible H-subspace if it is the homromorph of

@)

Q(x R xr.) under an irreducible H-homomorphism Hz‘ ; P

fy o

R

(o)
Lk
decomposed uniquely to within order as the sum of irreducible

H-homomorphisms.

Theorem 2.2. Any H-homomorphism Hi . can  be

sJs *°

. a, )s

Let @ = (a , @

I A Ry 20 By > S

then

(fOr X)) Hi,j,... ,(I:)

=f(a1.’""ai—l.’xi’ai—{-l. y oo s ak——l- ’ka’ak—i-l ,...,ar)




o ‘1 -1 ¢it1 k=1
=f(n s ’ n s X., n ’ 5 ” s Xy
7y P Piyg Pp.y Kk
ek+1 er
11 s I1.)
pk+1 P,
: e e e
1 -1 -1 k-1
=Zf(p . . p T, ,pl+', , D , X,
1 i1 i k—1 k ,
ek-l-l er
. y e s D ),
k41 r

the summation extending over all the greatest powers of primes which
divide each of the a’s in f. Thus

.’(Z)=Zf(xl,...,xr)H. .

(SO 5V iy K
e e e e
1 i—1 i+1 r
Y eee s , Y eee s forall f(x, ,...,x ).
(p1 | Py P p) ACH )
Hence H. . () = YH. . (Y), where each H., . 5 is
i,j ...,k i,j, ...,k iLj, ...,k

irreducible and this sum is uniquely determined to within order,
because of unique representation of the a’s in « as products of primes.
This proves the theorem.

Let o (n), as usual, denote the number of distinct primes which
divide the positive integer #» with @ (I) = 0, we then have

Corollary. The number of irreducible H-homomorphisms in the sum of
()
I e e R B S R N R S

Gy ar) is given by W (z) = co(al) . .co(al._l)

m(ai—}-l) o .co(ak_l)co(ak+l). .co(ar).
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Theorem 2.3. Each H-subspace

Tet1

of Q (xz' , xj Y ey xk) can be decomposed uniquely to within order

o(a ..., a. ,X., 4. g oer s @ , X, ,
1 i—12707 i1 k-1""k ’ar)

as the sum of W (a) irreducible H-subspaces of Q(x., x., ..., X ).
L §

This follows directly from Theorem 2.2 and the corollary above.
We need hardly point out that the converses of Theorems 2.2 and 2.3
are not true, since the sum of any two or more irreducible H-homo-
morphisms need not be an H-homomorphism.

| : (@
Let Sz',j, Lk Q(x;, -, x ) or briefly Si,j, g denote
the linear sum of all the H-subspaces (Q (xl ,-»X))YH. . (02
r N A
. Q
of Q (xl. s Xy e s Xp }. One may characterize Sl., i ,(k) by any

one of the following ways.

. @ . "
() Sz‘, ook is the subspace of Q (xl. , rJ s e s xk) generated

by the logical union of all the H-subspaces of Q(x. , x_, ... xl)
i’ >

(i) Sz’ i @ is the intersection of all subspaces of
Q (xl. s xJ_ Y e s xk) which contains each of the H-subspaces of
Q(xl,, xj y e s xk ), or in fact, by Theorem 2.3, it is the

intersection of all subspaces of Q(xl. N x} . e k) which

contains each of its irreducible H-subspaces., Thus we have

Lemma 2.4. Every element of Sz‘ ; ((Ii) is either of the form

5 sev g

€ i1 i1 k-1 k1 €
.0 )

f(pl,...,pl.__I ’xi’Pi—}—l ’”"pk-l ,xk,pk~H s P

or is a linear sum of such functions.
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Le: S. . , Q(x ,...,x )yand S, CQ(x e, X))
11’12""’lk 1 r Ty s dp 1 r
be respectively the linear sums of all the H-subspaces of Q (xl. s e s Xy )
1 k
a Q(le s v le ) where {zl soeea iy ¥, {]1 , ,]1} are proper
disjoint subsets of {1, 2, ... , #}. Then by Theorem 1.2,
[ Sz‘ (Sl,)) .S, (9) is a subspace of

12 e Iy
Qx, ,...,x, ,x, ,..,x, ) but neither of the subspaces
sl 1 7] J
1 k71 l
s, @5 ©
1 3t e k .]1 ’ * ’]l
Q(xl. s oo 3 X, ,X, ,..,%, ) nor in fact that of
1 k1
[S. ‘ (9) .S, (Q,) ] . However, they are related to each
~11 y e lk ]1 y ee s ]l

other and to the subSpace generated by their product in a special way
as proved in the next Theorem, for which we need the following.

is a subspace of

Lemma 2.5.

S (S (19))=s (Qe) where (e, ¢, > - » e}
€ s €y A sy €1y s

is a proper subset of the set {i1 y e s ik-} .

By Lemma 2.4, any clement of S, (?) is either of the form
. 1 3 *t 1 .
¢ ‘i -1 i +1 %, -1
S suesp P Xy o B e B LN
- i -1 1 L -+ L k
i +1 °r
¢ )
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or is a linear combination of elements of this form. Hence
s s, Dyes (©)

s s €y s By e s s &
The reverse inclusion follows by the definition of Se (il) . This
12
proves the lemma.
Theorem 2.6,
(@) S; i ([Si . (?)' 5 (%) } )
177k 17777 'k 17777 ‘
=S, .G j ...Kj‘))zsi ' (Qi)
1 > > k 1 ] > k b 1 > 2 I 1 2 >t 2 k
Q )1
®) S. . ([sl. . s, (j),:)
]1,,_]2. 1,..,,k 1,...,[
=S St T Sy
]1,"'51 1,7""5 k, I;-""l 172,"’1

The second equality in both (@) and (&) follows directly from
Temma 2.5.  Fo prove the first equality in («), consider any element

h Q S
of the subspace l Si (i) . Sj1 (jl) ] , it is of the form
P g ey

(0) (®)

Ta, [, 8, wherecach e 5, 7 andeachg eS|
1 k 1 !

and A€ C. Hence by definition of Sl. ;

k
])isoftheform Su,f,,

TR , any element of

([s. W g ()

Lo s 87 Ty s
Q

where & C and fteS’.I N ’(ik) .

@ s @ ]') cs. @

jl""yjl 11,...,

S, .
i i

Fhus

S, .([s. :
11""’lk ll""’lk

Conversely taking any element of Sj (?) in the form = At ft
LTk

where 7\‘8 C and
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Q) -
ft £ Sil . ik and then writing each A=c, . uy Where ey is the
1 fae . (9)] .
value of a given g, in S. . by replacing each x, , ..., x,
JI PR ] .]l J J
1 l
by powers of any given primes, it follows that ZAt ft =X ¢, “tft
isin S, . [ s @ s @ }
IR 11,...,1k ]1,...,]1

and hence the reverse inclusion holds. This proves (a) completely.
Then (b) follows by symmetry. :

Corollary.

@ s, (18, @50 ) =56, @) =50

S, (] 5,@.5, ,@]=s,
(b) J,k(l S; (©Q) Sj,k( ) Sj,k (Sl,j,k )
= Sj, k ©@) .

In conclusion, I would like to add that the properties of the
vector space Q(x1 y ey xr) established in Theorems 1.2, 1.3 and
lemma 2.1 held for the parent vector space of all arithmetic functions
f (g 50 X, ), r = 2 as well, but they are not true for every sub-
space of the parent vector space. For instance, these properties are
not inherited by the subspace of all additive arithmetic functions,
f(x1 s e xr), r=2,

Further the properties of Q (x1 y ren s xr) proved in Theorems

2.2,2.3,2.4,2.5 and 2.6 are neither shared by the parent vector space
nor by the subspace of all additive arithmetic functions.
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SOME COMMENTS ON CATASTROPHE THEORY
By
B.A. SALEEMI*

Faculty of Science, King Abdulaziz University,
Jeddah, Saudi Arabia

I. Introduction.

According to- Thom [6, p. 4 ] , the catastrophe theory is
the qualitative study of the natural processes occuring in the space-
time fnanifold R4 via their postulated ‘differential models’. A model,
as defined in l 1 ] , is an absfract. simplified, mathematical con-

struct, related to a part of reality and created for a particula; pur-
pose. For instance, if P is a natural process and M is its postulated
differential model, then a study of the properties of M can enable us
to draw qualitative conclusions about the nature of singularities of P.
In explaining the philosophy behind ths catastrophe theory, it is

claimed in { 3,6,7 ' that the only part of a natural process which

can be observed, is its ‘catastrophic set’—a philosophically plausible
speculation because of the complementary relationship between the
observable and non-observable parts but mathematically it is' an
unproven assertion. It .is not unreasonable to surmise that a catas-
trophic set may itself have its own catastrophic set and so on. An
analogous situation is the process of peeling off an onion ; and it is
also probably related in ‘some way’ to the concept of stratification

* The author wishes to express his gratitude to Professor E.C. Zeeman and
the referee for their helpful comments and suggestions.
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of manifolds [ 3 ] . To circumvent this rather recondite and ticklishk

problem, Thom [ 6, 1 .3} asserts that our local models do not

imply about the <ultimate nature of reality”. I, for one, would like
to make a frank confession that I do not know whether the aforesaid
feature of models be recognised as a merit or a limitation vis-a-vis
their applicability to the study of natural laws.

In [6, 7 ] it s unambiguously asserted that the catastrophe

theory #s a ‘method” which is amply powerful to provide an explan-
ation why continuous causes give rise to discontinuous effects. For

example, the phenomenon of shock waves { 4 (2) ] which is of para-
mount importance in engineering and physics or the ’phenomenon of
aggression [ 7 ] in psychology can be explained by using catastrophe

theory. - Presumably “it- would have been more interesting if one
could have been able to use ‘continuous models™ instead of differential
models to give rational justiflcation for the occurrence of discontinui-
ties during a continuous process. One common reason for choosing

differential models given in [ 3,6, 7'] ts that all natural processeé

are supposedly governed by their °gradient dynamics” and hence the
only mathematically justifiable practical approach to model nature is
to postulate differential models. This argument seems sound because
almost all known physical processes occuring in R4 are governed by
potential functions and, as a censequence, have their associated
dynamics with them. However one insurmountable difficulty inherent
in the theory of models is the amount of ‘“inexactness’’ involved in
the choice .of governing potential funcdons. To give an appraisal of
the effect of this “uninhibited choice” of potential functions which
govern a particular process, we cite some very familiar and elementary
cases in the sequel.
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2. Algebraic Equations.

Let C and X be two planes with coordinates ¢, » and xj, xp res-
pectively. Let ¢ : X —— C be defined by :

¢ = X1 X2, (1)
b=—%(x1+x2).

Then the Jacobian matrix of ¢, namely, ¢, » 1s given by

f X2 x1 )
| J ¢)
L-+ -

The matrix ¢, has rank 2 except at the points along the line

Pu =

x1 = xa2 (See Figs (7), (ii)).




\ﬁ C
Fig. (1)

The line x; = xs corresponds under ¢ to the parabola 42 = ¢ in the

C-plane. We may write
C=K- yK, UK;,
where

K-={(e,b)ecib2<c},
K,,=={(c,[7)eC:b2=c},

and K, = { (¢, h) e C: 52>c},

The set C—Ko has two components K_ and K. which are both
open in C. Observing that the points (x; , x¢) and (xz, x¢) have
the same image in C, we conclude that ¢ is mot globally injective.

Let Uy = {(xl,xz):x:z} xl'}‘, and

U = { (Xx1,X2): Xa<< X1 } . Then /U, and ¢ /U- are

both injective maps.
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Since
4% — )= (x1 - x2)3, 3
it follows that
¢/U+ : Up —>Kiand ¢/ U- : U —> K§

are both diffeomorphisms. Hence no point of X under ¢ has its
image in K-.. Itmay also be noted that ¢ / X-¢-1(K,) is an

immersion.

To give an alternative interpretation of the behaviour of
¢ : X — C, we may think that every quadratic equation

X2 4 2bx + ¢ =0 “)

is represented by a point (¢, b)) & C. Let
A=0b—-c %
be the discriminant of equation (4). Then the quadratic equations

represented by the points of K- i.e ; A < 0, have no real roots, For
equations represented in K- we have

w=-bdi (-0, i= VL

xg= —b — i (= A ©)

and hence

b= —1% (1 + x),
¢ = X1 X2,
Now b2 L ¢ impiieé— that
(x1 — X2 )2 <0, )

which is impossible for real numbers x1, xz .
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Remarks.

I. The function ¢ : X —- C does not map any point into K_
without telling us why. Further the definition of ¢ remains unaffected
whether x;, x2 are real or a pair of complex conjugate numbers.

2. The quadratic equation (4) defines x as a two-valued function
on C. These two valaes x1, Xg are :

(/) real and distinct on K,
(i7) “Real and coincident on K,
(iii) complex conjugates on K_ .

Let l"e be the intersec.ion of the loci
x1=—b+VKandx2=-~b—VX. (8

Then 1"6 does not depend upon the nature of ,\ and always projects

onto K, . A routine computation shows that, in general, the Gaussian
"curvatures of the surfaces

x1=—b+ \/K

and

xo=—-b— A
are unequal. However when we try fo approach U, (i.e. when
(52 — ¢) =>0) along these surfaces, the Gaussian curvatures of both
the surfaces tend to infinity. This observation, though apparently
simple and trivial, is of great consequence because it brings to surface
a hitherto unsuspected relationship between curvature and the cata-

strophe theory.
To assess the impact of the arbitrariness involved in the choice
of potential functions on the final outcomes, w2 now apply the above

analysis to the Example 1 [ 7. p- 3 J pertaining to the dogs behaviour

under varying circumstances. Let

x = behaviour variable,

¢ = fear,




and
b = rage.

The variable x is usually called the ‘state variable’ or ‘internal vari-
able’ and ¢, b are known as ‘control parameters’ or ‘control vari-

ables’. Let
x3
Vix,c, b) = 3 + bx2 + cx

be the potential function governing the behaviour of the dog. Then
the surface of equilibria M is given by

%=x2—l—2bx-i-c=0;
and the singularity set is the subset of M represented by
2
ny=2x+2b=0.

Hence the bifurcation set B, obtained by eliminating x from T 0

dazv . . T
and ¥ 0, is precisely the discriminant

A =b~¢=0.

- The two sheets x; = — b + 4/ b2 ~¢
and
xp=—b—-b-¢c
fold along l‘6 and the catastrophe is the fold-catastrop{her. Along
U, (i.e. x1 = x3), the dog can change his mood from 'attaébk to flight
or vice versa without being detected (see Fig. (iii) (a) ).



bfurcation Set X(

Fg Gii } ca»

Let us now postulate that the dog’s behaviour is governed by the
potential function

4 2
V(x,e,b)=%+—g3c—+cx. @)
Then M is given by
W4+ bhx+c=0 8"y

and the singularity set (2 subset of M) is
3x2 4+ b=0. (8"
Elimination of x from (8" and (8") yields that
A = 4b% + 2Tc2 =0
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is the bifurcation set and the catastrophe is the cusp-catastrophe
(see Fig. (#ii) (a') and Fig. (iif) (a’’) as given in [7].

»b
° - .
/J Fig Ciir) &)

Fig (iii) (&)
Thus we see that the ‘postulated model’ introduces drastic changes in

our final conclusions,

3. Supply and Demand Analysis. ;
Let S and D be the supply and demand diagrams (see Fig. (i) )

’[1,4J.’
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The price p, is called the equilibrium price where the curves.S and D
intersect. Let us postulate that the supply s, demand d and price p
are connected by :

s=2bp +cp*and d = % . (10)
Then the equilibrium price p, is given by

s=d
or

epd + bp? — k= 0. (1n

Starting from s; and following the arrows, we obtain the following

two sequences { pzﬂ} and { Pon+i } with '(See Fig. (v))

/
D
4+
3
3 42 -
A
<t -
[
S
VST
Li Li ‘
nl_l:loo_ Pen = P = nznoo (pan+1 ) (12)

Thus the supply and demand adjust by the passage of time towards
p, . Further the bifurcation set corresponding to

b
Ve, b) = 4 pt+ — PP —kp
is
A =ckd (4B% 4 27¢2) = 0. - (13)
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Hence the catastrophe is a cusp-catastrophe as A = 0 gives
4h3 = — 27¢2

If we postulate that the supply-demand process is governed by the
potential function V (p, ¢, b) with -

A =b-ct+ 22, (14
then. there. will be two absolute minima (see Fig. (vi)) and conse-
quently ‘economical explosion’ will . take place [6] . Thus the unwel-
come factor of ‘personal bias’

A’

T

\/ w C
Y
° Fi3 W)

in the choice of potential functions affects our conclusions drastically.
Probably something is still lacking in our comprehension of postulated
differential models because the amount of subjectivity present in the
choice of models makes our studies a little dubious.
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Abstract
Unification of Quantum Electrodynamics (QED) with Quantum Chromody-
namics (QCD) based on local gauge group SUc¢ (4) is considered. Some con-
sequences of this unification are cxamined.

1t is believed that quarks carry colour. The interactions between
coloured quarks are mediated by massless vector coloured gluons.
The underlying theory for these interactions is a gauge theory called -
quantum chromodynamics (QCD). It is believed that QCD is the
best candidate for a theory of the strong interactions. Each quark
carries three colours. Thus the colour gauge group is SU, (3) and
QCD has a non-Abelian character in contrast to quantum electro-
dynamics (QED) which is Abelian.

On the other hand, one sees a remarkable similarity between
QED and QCD. Both belong to Iccal symmetry groups which are
exact. It is, therefore, natural to consider the unification of electro-
magnetic interaction with strong interactions given by QCD. Both
photon and eight coloured vector gluons being mediators of electro-
magnetic and strong interactions [which are given by exact gauge

41
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symmz:try groups] may be the only fundamental mediators in the sense
that they are not composite of other elementary entities. This is
another reason to considzr that these interactions may originate from
a single fundamental interaction.

It is the purpose of this paper to consider such a unification.
Although it is possible to unify QED with QCD, but the scale at
which it happens is low enough to make proton life-time apparently
inconsistent with the experimental limit. Other consequence of this
unification is the mass relations between quarks and leptons which
are in reasonable agreement with experimental values.

It is natural to take gauge group for the unification of QED with

QCD as Pati-Salam group [1] SU; (4). The fermions are then assigned
to representations 4 and 6 of this group :

r ] ( c ¢ I
d 0 — _
1 3 “ *
d o c c _
) . u3 0 ul u2
> \V - ==
v,= | 4 ¥ V2| ¢ ¢ B (W
d 3 Uy u1 ¢ u3
:
.
e ,
ul uy u3 0
L J L J

The superscript ¢ denotes a charge conjugate state. The subscripts
1, 2. 3 denote the three coloured states. We note that

4% 4=1+15
4><4=6A+10S

6 x6=121 15 20"

There are 15 gauge vector bosons belonging to adjoint representation
of SU; (4). The charge operator for the fundamental representation
4 is given by

2 4

Q="shs = 5 s
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where F; = (1, ..., 15) are generators of the group SU; (4). The
co-variant derivative for the fundamental representation is given by
i

D =0 A.G
w =%t 282 %

1

72:8,-0 ®

@ @
G“ is a 4 X 4 matrix representing 15 gauge vector bosons. It then

follows that gauge invariant interaction Lagrangian is given by

L =i %G —
t —
" vz d YuGuwd
ig
+ S (T (y, v, G v+ T, v, v,G ) ) @
v 2 u o fpopu u pu o p

The symmetry is spontaneously brokena by introducing Higgs scalars
H belonging to adjoint representation 15 of SU. (4) : '

SU, (4) - SUs (3) X Ugn (1)

‘We can represent the 15-plet Higgs scalars as 4 X 4 traceless matrix H.
Then its vacuum expectation value can be put in the diagonal form :

r)
| i
|1 l

<H> =v | | (5)
l o
l I
L -3 J

The gauge invariant Lagrangian for Higgs scalar is given by
H 1
int =~ 7 D H; P My (6)

where

D H;=90 H +¢g Tiik G Hy

By breaking symmetry in this way, the 15 gauge vector bosons split
into the following representation of SU, (3).



The eight coloured gluons GLL and photon AUL remain massless, but
6 lepto—quarks XLL ’s have acquired superheavy masses. From Eq.

(6), L ass for gauge vector bosons is given by

Hence we see that six lepto-quarks Xu ’s have become superheavy,

with a common mass,

whereas 8 coloured gluons and photon remain massless.

44

G =8
©

X =3,X =3
“ “

A = photon
@ p

12
L = &g [Tr (G, H G,H) - Tr (HH G G,)1

12 = -
-7 8gU6M 21X X +X X +X, X, 1

le 20 " T3 T3

[y

2 2

_ 2
x =38g"7 )

M

In the broken symmetry, the interaction Lagrangian is given by

e ® T, Lo
Lint—lgs[q:u,qugZqu'gy.
+ie ( —7 d’«{——z—-u— u
L1_123. 3, G T
- et A
+e+ YE’- ] .
ig
G +
zdye X h.c.
+ 75 13 e
lgG[Ee*y d X —i—hc]
V2 u
ig
G —c
- —[&.,u . X h.c.
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In the symmetry limit, viz. at unifying mass MX

2 2
gL My) = gg (10)
2 2

e My) = 3 85, (1)

The fermion mass term arises from two sources. Since, it is a
vector theory, the ¢“bare * mass term is also possible ; the other source
of mass is the spontaneous symmetry breaking. For d-quarks and
electron, the mass term is given by ‘

~o, [2d, d;+ee) = f v[Ed, d, - 3ee] (12)
1 l
Hence, we have
my=my + f1v 13)
m,o=my —3fiv '

For wu-quarks, the bare mass term is given by
-m', Tr @u lyu)
. — —c
=-mol[7;_](u‘ui.+ui ulf)] (14)

The mass of w-quark could also arise from an invariant of the form
T

Saﬁy3 v
vo

From the 15-plet Higgs scalars, there is no contribution to mass term

C "'aB , but it can be understood to be included in m’y;.

for u-quarks.

From Eq. (14), we have then

m,=msy (15)

We have written all our equations for the first generation (u, d,e).
But these equations are of course applicable for other generations
(c, §) and (¢, b). The mass relations given in Eqgs. (13) and (15) are
at the unification mass scale MX and are subject to renormalization.
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We now derive the scale at which this unification oecurs. We
note that fine structure constant is given by [2]

a—I(MX)=ec— ~ 3w Qg (16)

For the three generations, with 3 charged leptons, three coloured
triplets of quarks with (—1/3) unit of charge and three coloured

triplets of quarks with (2/3) units of charge, X Q2 =8. For SU; (3),
~ s f

f
we have
: 12 47
s X 2><(33—-2Nf)In MX//\ 7>(21r1MX//\
an
where A is QCD constant of few hundred MeV (g ~ 0.2 GeV to 0.5
GeV).
Now using Eqs. €16), €17) and {11), we have
M ;
X 3x 2a 2
: = - = X A '
- s ( I- 5 fo In . ) (18)
From this equation, using g = 0.5 GeV, we have
MX = 3.5 x 102 GeV approximately (19)

Similar result follows from the renormalization equations considered

below. It is convenient to define {33 [Nf = 6] and pem[z Q; = 8],

where
t . 2 7
b= U TN = -
1 {32 3
b = 75 (3 = 2m (20)
Then, we have “ '
—t1 -1 . X
0y () =ag +2yIn—=
8 —1 My

en

afl(g)=TaG + 28 In
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From Egs. (20) and (21), we have
M

X ix 8 « ) ‘
=== ( R (22)

With « () = 0.2, u = 10 GeV, we have again
’ MX = 3.2 x 10'2 GeV (23)
Th: masses of fermions are also subject to renormalization. The
masses given in Eqs. (13) and (15) are the masses at MX . The

masses at w = 10 GeV (say) are given by [3] (With three generations).

ﬂ@_ (asw) 4/7(M)—1/3z,q=d’s’b

mq(MX)= %5 3ocG
24)
Mg () \-9/32 1
mong TS g ) e
25)
mq(MX) e 3 %5

g =u,c,t (26)
From Eqs. (24) and (25),

mq (lJ‘) _ mq (MX ) ( “S (U*) )4/7 (_8_ a(“) )8/32’
m, (w) ", (MX ) %G 3 %5
=a mq (MX )/ ", (MX ) 27
4/7( 8 « 8/32
where 0=, W/ag) / (7 —%(L“—)) / (28)

G
For % (w) = 0.2, MX ~3.2 x 1012 GeV approximately, °; ~1/34.5,

a = 2.7. The finite mass effects tend to reduce the quantity a. It is
therefore good estimate ¢o take a ~ 2.5.
There are three layers of matter, the bottom layer of the matter
being the heaviest. It is, therefore, natural to take
Mog > > Moz > My1 29)
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We will now assume that Higgs scalars are coupled to each generation
of fermions with a universal coupling so that fi = fa= fz = f.

Then we have

fr fv fr A
< =
Ma < P < oy r (30)
Let us define,
m
Rg = 22
3t P
mg2
Roj =
21 M, (1)

We now estimate r, Rsa and Rg; . For this purpose we take

"a I m m
% «~ —. and use experimental ratios for and —%_ . Then
m 20
s w -
from Eqs. (24) and (25),
my o omy Mgy
= M ~ 1/20
s s ( X )
Mo Me (MX)
T Tm Mgy ™ 1/200
© po X
m m (Mg )
e e X
= ~ 2.8 x 104 32y
m_ T Tm_ (My)
Thus from Egs. (32) and (12), one obtains
r ~ 029
Ra1 ~ 25.5
Ra; ~ 460 (33)

Hence from Eqs. (27), we have
m

d _gl+r o9

m 1-=173r
e
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s 14+ rRy
T TRy Y 1O
®
’nb _ 1 + r/R31 (34)

m_ T 3Ry "

Then the quark masses come out to be as follows with ¢ = 2.5
m, = 12.4 MeV

d
m_ =276 MeV
m, =4.5 GeV ' 35)

These mass relations are in good agreement with their experimental
values.

Thae lepto-quarks X’s carry an electric charge of 4/3 units. They
give rise to processes for which AB = 1, AL = 1. The effective
four fermion interaction for such processes is given by (see Eq. (9))

2
gG e N + A
—2_1\/;3([ (gijk u, ‘:’“ ”j) (dk Y“e )+ he ] (36)

Such an interaction is responsible for proton decay of the type

p——>e++x0

Since in this case MX X 32 ~ 1012 GeV, Eq. (36) gives a decay rate

too fast to be consistent with the experimental limit on the proton
life-time. However, proton decay may be avoided by suitable
Cabbibo like rotations in lepto-quark couplings. This point will be

considered elsewhere.
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Summary.

In this paper we use the method described in Kazi [1976] to
determine the spectral representation of the two-dimensional Love
wave operator associated with the propagation of monochromatic SH
waves in a structure consisting of two uniform layers overlying a
uniform half-space. The representation is useful in tackling a class
of Love wave diffraction problems in horizontally discontinuous

structures involving three-layered models.

1. Introduction.

In a series of papers Kazi [1978a, b], Kazi [1979], Niazy and
Kazi [1980], the authors use a method, based upon an integral equa-
tion formulation together with the application of Schwinger-Levine
variational principle to investigate the two-dimensional problems of
the propagation of plane, harmonic, monochromatic Love waves,
incident normally upon the plane of discontinuity in laterally discon-
tinuous structures involving step-wise change in surface topography
or change in material properties. Diffraction of Love waves is
described by means of a scattering matrix and approximate expres-
sions for its elements are sought through the variational principle.
Reflection and transmission coefficients are then obtained through a
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transmission matrix related to the scattering matrix. The method has
the advantage that it takes into account the body-wave contributions.
However, the method pre-supposes the existence of a complete set of
proper or improper eigenfunctions, in terms of which the displace-
ments on either side of the discontinuity may be expresszd. In order
to accomplish this Kazi [1976] gave a general method for finding the
spectral reyresentation of the two-dimensional Love wave operator
associated with the propagation of monochromatic SH waves in a
laterally-uniform layered strip or half-spacs. However, specific
spectral representations were found only for two-layer models.

Recently, Kennett [ 1981 ] has discussed the spectral representation

of the elastodynamic operator associated with coupled seismic waves.

In this paper, we follow the same procedure as in Kazi [1976] to
determine the explicit spectral representation ot the Love wave opzra-
tor associated with monochromatic SH-waves for a three-layer model
comprising two homogeneous, infinite strips overlying a uniform half-
space. This representation will find usage in tackli :g a class of Love
wave diffraction problems associated with three-layer modals by the
method described above.

2. Equations of motion.

We wish to represent the two-dimensional motion of a laterally
homogeneous structure consisting of two uniform layers over a
uniform ha'f-space in a general way ; the motion will consist of waves
propagating along the direction of the x-axis in the coordinate system
shown in Fig. 1. We consider a layer of infinite depth, rigidity pg,
shear velocity Bs3 and density pg, overlaid by two infinite strips, con-
sisting of a layer of finite depth Ha, deusity ps, rigidity wa (< pg) and
shear velocity Bs (< f3), and another layer of depth H; (< Hy),
density p1, rigidity p; (< @e) and shear velocity §;, (< B2) (see Fig. 1).
We suppose the density and the rigidity of each layer to be constant,
and the top plane surface to be stress-free,

We choose the axes in such a way that the upper free surface
coincides with the plane z = — H; and the xy-plane coincides with
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the plane of welded contact between the two upper layers as shown in
Fig. 1.

z = ~H)

LRI
77T

Figure |- The geometry of the problem

" We shall consider horizontally polarized shear waves only, which
means that there are no displacements in the x and z directions and
the motion is in the y-direction only. -Let v (x, z, f) be the y-com-
ponent of displacement. It must satisfy the differential equation.

P @Gy =5 # ()ax)+ +(v@ %), @b

where . ‘ _
(@)=, —H <z<0
=y, 0 <z < He 2.2)
= {3, Hz < Z
and

p(z)=p1, ~Hi < z2<0
= p2,0 < z < He - . 2.3)
=P3,H2<Z



54

For convenience we label the intervals ‘{ z:~-Hy <z <0},
{z:0 < z < Hp} and {z:z > Hj}as I, I and I3 respectively.

In order to obtain a general representation, we first of all examine
harmonic waves, travelling in x-direction with positive real frequency
o and wave numbers k :

v(x,z, 8 =V (z)exp [i (wt—kx) ]. VX )]
(We shall assume  to be fixed and choose k "o satisfy the propagat-
ion conditions).
Equation (2.1) becomes

d avy ‘
L= 5 (#@ G) + @e@-kme@) V=0

2.3
V(zy=Vil2), zel;, i=123,
L being the Love wave operalor.
Vi (2}, V2 () and V3 (z) satisfy the following equations :

d_v—i' + 612V]. = 07 Glz = (E‘o'; Sl 3 ), l=k27

dz?
Bi2= -, -Hi <z <0 (2.6)
dQVZ tv.)z
d'zz*"}- 022 V'Z = 05 Gg” = ( Bz.z - )&
B
Bo?= "=, 0 <z < H: 2.7
vy 2 2 2\ 2
7£T-G3V==O’ 03=(‘7\—&)—2\)B3=£37)H2<Z
33 ‘ Ps
(2.8)
with the inferface conditions :
V1 (0) = V210) (2.9)
w1 V1© (0) = p2 Vo' (0} (2.10)

and
V2 (Ha) = Vs (Hz) (2.11)
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ue Vo' (Hp) = us V5’ (Hp) (2.12)
and the boundary conditions.
Vi (-Hi)) =0,
o0
f L) {V(z)]|2dz < o0, (2.14)
-H,

where u (z) is given by (2.2) and (') denotes differentiation with
respect to z.

The system (2.5), (2.9) -(2.14) is a SINGULAR Sturm-Liouville
system with two points of discontinuity and corresponding interface
conditions. Such systems have been discussed in detail in Kazi [1976]
The boundary condition at infinity (2.14) is taken to be the require-
ment that the solution must be of finite w-norm, so as to ensure the
uniqueness of the so'ution as explained in Kazi [1976].

3. Green’s function

Let G(z,8(; 2) ] 2ol Lol = Gjj, where i,j =1,2,3 (see

Fig. 2). Gjj determine the Green function G (z, { ; a) completely,
provided the following conditions are satisfied :

(Gy) Gij\z, £ ; 2) is a continuous function ofzforallzel;.

(Go) G;j (z,8;2) (i j) possesses a continuous first order
derivative of z at each point of I;; Gjj (i = j) possesses a continuous
first order derivative at each point of 1; except z = {, where it has a
jump discontinuity, given by :
! 1
+,0:0) -Gl (L, =5

G &M = G L8 =
(Gs) Ifi£j, LGy =0. If i=j L(Gjj)=0 for z£¢.
(Gay) G (z, §; ») satisfy the interface conditions (2.)—{2.12) and
the boundary conditions 2.13) —~ (2.14).
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G, . C.a E
~H L Hy)

C,, G, [
t-H ,0)

1 ’ ; (0,00

G Ag‘l Cs,

t-H,  -H)
(Q,-H Y Vo =l
Figure 2 The character aof the Green tunct ion

The Green function is unique and symmetric. We now proceed to
construct the Green function explicitly..
(N If ¢ €1, then Gi1, Gar and Gg satisfy the differential equa-
tions :
22 Gy

2
222 + o) Gu=3(-¢ 3.1y
Gy | 2
oz T 6Ou=0 (3.2)
and
792G 2
5z~ 03 0n =10 (3.3)
together with the following conditions
G,=0atz=~H; - - (3.4a)
Gi=Gunatz=0 ' ' 4 (3.4b)
p1 G =u2 G, at z=0 o (3.4¢)

Gar = Ga1 at z = Hy (3.4d)
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pe Gy, = 3 G'31 at z = H, ' (3.4¢)
Gu € ,8:;0)=Gu - ,5;n . (3.4f)
Gyy (" 5 ) =Gy & 85 = (3.48)
and ‘
©
f w(z)|G(2)|2dz < . {3.4h)
-H,

After considerable effort, we find

G, = M2 02 COS 61 ({+Hy) cos a1 (z+Hy) U3 O3 :
11 A cos? o; Hy (1+ 3 O3 tan o3 Hy)

m {cos 61 (z+Hy) sin (01 ) 0 ({ ~2)
4+ cos o1 ({+Hy) sin(012). 6(2-)}, ze 1) (3.5)
where 7
A == p1.01 po Oz tan (0; Hl) + #1013 O3 tan (o2 Ha) <
tan (01 H)) —pg Oapeos + s O5tan(aHy)  (36)
and |

6 (;—z) =1,{> =2
=0,{ <z
is the Heaviside unit function ;

cos 61 ({+H,)

5 {pa &2 cos (62 (z—Hy))

Go1 = A cos (o2 Hp) cos (o, Hi

~u3 ogsin(oz (z—Hp) )}, z € Ia, 3.7
and .

Gy —_t20zcos(oiiltHy)) ,-os(z—Ha)

"~ A cos (62 Hp) cos (61 Hy)
zels. (3.8)
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(i) If € &s, then Gia, Gaz and Gs; satisfy the differential equa-~
tions
02 Gys 2

gzt Cuz=0 - 69
3‘ Gzz ‘
- —}—0' Goza=23(z - Q) (3.10)
and
0% Gag 2 '

together with the conditions (3.4a) — (3 4h) suitably modified. We
obtain

cos {oy (z+H) } . B () .
A cos (oy Hy) cos (62 Ha)

where /A is given by (3.6) and
B (§) = p, o2 cos (o2 ({—Ha) ) — ps oy sin (o2 (§ — Ha) ),
(3.13)

Gz = zely (3.12)

B (D) B(z2)
M A co<? ooHy)

(B sin(022). 8 C=2)+B (2). sin (62 7). B 17-0)
M us 62 cos (o2 H;) },Zﬁlg

Goo =

(3.14)
where A, B (2) are given by (3.6), (3.13) and
M = po 62 4 p3 63 tan o2 Hy,
1
Gz = /A cos oz Hg
- 03 (Z Hz)

{ue 02 c0s (2 §) ~py oy tan (o1 Hy) sin (a2 §) } e
zels __ (3.16)

(iii) If L& 13, then Giz, Gps and Gas satisfy the differential

equations
0% Gy 2
@t toia=0 o)
2 Ggg 2 e
"oz T0;Gm=0 - (3.18)
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and

92 Ggs 2 '
?32—23*— 0'3633 =8 (Z—C) (3.19)

together with the conditions (3.4a) - (3.4h) suitably modified. We
obtain ‘

__paoacos {oy (z-+Hy)} =0 (£~ Ha)
Gla h A cos (Ul H ) CcoS (0'21‘[2) , ZE& Il.,
' (3.20)
Gog = B\Z) P2 G2 € -0z (§—Hy) e—°3(C—H2) zgl
23 M A cos? (0‘2 Hg) - M COS, oa H2 s 2
(3.213
and 7
“2 0’26-63 (C-Hz).cl—cz (z—Hy)
: 272 - : -

M A cos? (o5 Hy)

e~ 08 (—Hy) e O3 (z—Hpz) {#3 o3 tan (o2 Hz) — u2 03}

2}1.3 O3 M

e~ O3 (£-2) —o3(z=0)
- {—2H3 O3 A e 2uz o3 0(z-9) }
zels,. (3.22)

where A, B(z) and M are given by (3.6), (3.13) and (3.15) respecti-
vely.

We note that Gy (2, { ;2) = Gji (§, z;2), 4,7 = 1,2, 3 i.e. the
Green function is symmetric. ' '

4. Spectral representation :

The essential step in obtaining the spectral representation js to
integrate the Green function G(z, {; A) obtained in the pre{/ious
section around a large circle | A | =R in the complex A—plane. The
Green function has, in addition to simple poles, a branch-point
singularity. The spectrum is the disjoint union of the point-spectrum,
giving rise to proper eigenfunctions, and the continuous spectrum,
which yields improper eigenfunctions. The continuous spectrum will
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be the set of points on the branch-cut along a portion of the real axis
and the discrete spectrum will be the set of poles lying on the real
axis. The sum of residues at the poles and the contribution from the
branch-cut yield the following representation of the-delta function in

terms of proper eigenfunctions {‘]:(m (z) } and improper eigenfunc-
tions § ¢ (z, 2) } (see -Kazi [1976]) ; such a representation is useful,
because it enables us to find the corresponding eigenfunction from.the -
knowledge of Green’s function.

: -1 ¢ . , (m) (m)
i{mémﬁl”=R_G(z,€,_l)dl=2n¢; @ " ©
+ 1N EE N dr
_8@z=0)
= w® “h

(i) First, we consider

. -1
111 = lim ?ﬁ | 2 I _RGH (Z, C ;) dx
R>w -
- lim - 1' . [M cos {o1 {{+Hi)} cos {oy (z+H;}}
R oo 2ni Fa| =R A cos? oy -H;

13 01 cos o1 Hy {cos-(6112+Hy)) sin(o1 ) 6 ((~-2)
1 cos (o} (C+Hi1) ) sin (01 2) 6(z-0) } 1 ., (using 3.5), (4.2)

it

- 1 Love Ples

/

- e

Figure 3. The contour of integration in the complex

A-plane. .

|
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where A and M are given by (3.6) and (3.15) respectively, We hote
that ) = m%/ﬁg is the only branch—boint singularity of the integrand
of (4,.'2) and the boles are the roots of - W
A = ol pz o2 tan (o1 Hy) + @10; ps o3 tan (o2 He) tan (o1 Hy)
R p%oi tan (o2 Hy) = 0 @3

which is the dispersion equation for Love wave propagation in two
layers over-a half-space [see Bwing et al. 1957, p. 229]. The poles are -
all simple, finite in number and are located in the interval

(w2 /Bg , 0?2 ] [3‘12 1. The continuous spectrum is related to the integral

over the branch-lines /+, [~ in the complex )-plane, and the path of
integration is shown in Fig. 3. These remarks are valid for all the
- -integrands we shall encounter. ‘We assume that Re?_(c-gl > 0 for

1(3) # 0. This means that on the branch-line /+, o3 = is3 and on I,
1
O3 = — is3, where s3 = (02/ {53 —2)* is real and positive-...for

r< (|)2/B§ .

Let

_M _ w2 G2 + @3 o3 tan (o2 He)

L A "
Then »

2i u. o, pa 53 sec? (6 He) |
+ - L 2 2 B H
Ty =2 Ik )= P+ ¢
@.4)

where

p =y 01 p2-0g tan (o1 Hy) + p.g oy tan (o2 Ha) 4.5

g = p1 01 pa 53 tan (o2 He) tan (o1 Hy) — 202 ps 53, (4.6)

and the superscripts 4+ and — refer to the values at the. branches T

A

and /- respectively.
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The contribution to Iy; from /+ and /- is

. _ -1 rotfgl
dZ—J Gn d) Zﬂlf 3( +—G-)dx i
- - 1 ;

ax

. fﬁ/% (¢ T =¥ cos (o11L+Hy) cos (ox 12+ Hy)

2w

P
— 0 cos? oy Hx

o g “2 fm?/ p§ ) 022 cos (o1 ({+Hy)) cos (o1 (z+Hy) )
Kl (p? + %) cos? (o2 Hz) cos? (61 Ha)

(using (4.4) )

k24

. w?/ ﬁ3 : S
= = f - 'lbl (z’ 7\) ‘pl (Ca l) d;\’ (4_7)
- ‘where
_ p20z 3 3 COS (o1 (z-+H;) ) cos 9_ '
brmn = p \/ ™ pa 53 cos (03 Hy) cos (o2 Ha) 4.5
and

6 — tan | (@/p.) | 4.9y

where p and g are giv_en by (4.5V and (4.6) respectively. The sum of
the restdues at the poles {xn} is given by

cos (01( m) ({ + Hy)) cos (01( ) (z +Hi)) (M)

N
Z_: cos? (01( )H)l 3£ J =
—« A= n

. )
u" @0 @ o . (4.10)

n=1

ol
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where
oo (2, )%,02“) (<o, )*,
pr " g "
03(”) (ln_%)%' and
B3
Q)]
()()_::c(r;(n)(:)H) [{a _}A_ ](411)

From (4.2), (4.7) and (4.10) we obtain

v o wig2
Ty = Z b1 n) (2) 6, n © - f 2 41 (z», 2) 4'1. €, 2 da,

n=1 =00
(4.12)
where ¢y is given by (4.8) and $,(" is given by (4.11).
(if) Next, we consider
N .
Ly = lim ,— - Ga (7,650 dx

R 2578 |21 =R |

. -1 B (z) cos oy ({ + Hj)
= ]. Fmere - 1 d )\,
Ru_r:oo 2mi , I =R A cos (02 HZ) 095 (0.1 Hl)
(using (3.7)) (4.13)

where B (z) is given by (3.13),
Let v = BE—Z). Then
+ -+
vy =1y =21(7)

o 2pzoapsssC(2)
Y e o ) ° (4.14)
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where

C (z) = p, 02 c0s (02 z) — 3 61 Sin (o2 z) tan (o1 Hi) (4.15)
and p and g are given by (4.5) and (4.6) respectively.

The branch-line contribution to the integral is given by

2 2 '
e (e sco@ei) co
(p% + ¢?) cos? (o2 Hp) cos (o Hy)

s
—

v ety
o - f T o (z, 1) ¥ (G 0) da (4.16)

- @
where ¢3 ({, %) is given by (4.8) and

uass C(z)cos 6 -
S : 4.17
P cos (o2 Hg) '\/ T 43 53 - ( )

" where 6 is given by (4.9) and C(2) is given by (4.15).

i 'PzI(Z; 2 =

Contribution from the poles is éiven by e

N o s o™ ¢+ HY} B@]

- 7\———7\.71
p=1 cos (62(n,) Hg) cos (01(’1) Hy) [%"A‘n]
‘ i
-1 #" e 0 “.18)
- n=1
where ¢z (¢) is given by (4.11} and
1 3

[ {

(B e (4.19)

S

4’2(") (2} = —
Mo——(= A) " 2=hn

cos (0‘2(") Hy)
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From (4.13), (4.16) and (4.18) we obtain

N
o1 = Z ¢2(”) (2) 4’1(”) ©
n=1
w8
- f ¥a (z,2) 1 (G ) @, (4.20)

— o0

where ¢1(n) , 4:2(") , $1 and {» are given by (4.11), (4.19), (4.8) and
(4.17) respectively.

(iii) Next, we consider

-1
Iy = lim  —— ﬁ Ga1 (2, £ ;) d2
R > [2] =R
. -1 gz cos (o1 (§+Hi)) e—0'3(2— Hz)
= lim 2wi A cos (o2 Hg) cos (61 Hy) &
R-> |2l =R 2
“4.21)
Let i
—o3(z—Hby)
Y3 = A
Then
+ - . +
T3 Y3 =% 1(73)
_=2iDC)
I ol
where

D (z) = p sin {s3 (z—H3) } + g cos {s3 (z — Hg) }

(4.22)
and p, q are given by (4.5) and (4.6) respectively.
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The branch-line contribution is given by

2
2
e @ /§3 &3 €08 03 (£ - Hi) cos 0 . sin {8 4 53 (z—Hb2) } B
T f p cos (o2 Hs) cos (o1 Hi)
- 00
w2/ {55 .
= - f $3 (2, 2) 41 (G, ) (4.23)
-~
* where
—~sin (0 4 53 (z — Ha) }
(z,2) = 4.24
ba (2, 2) VT | (4.24)
and ¢; is given by (4.8).
Contribution from the poles is given by
N 03(”) (z — Hy)

w2 5™ cos {61(") (C+H) e
21 cos (6™ Ha) cos (0, Hy) [% AJ

A=1n
N rg
- T 06”0 (4.25)

where

W

()
(m) . _ b2 0‘2(”) ¢~0s  E-Hy)
cos (o2 ' Hg)

1
[ { M %(—A) }x=zn]
(4.26)

and $;® () is given by (4.11). From (4.21), (4.23) and (4.25), we
obtain

N m . . n ‘02/@2

$3 (2) 61" (&) ~ f 3 sz, )41 G, N dr,

Iy= ],
=1 o

n
(4.27)
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where 6,0, 3o, 41, g are given by (4.11), (4.26), (4.8) and (4.24)
respectively. ‘
‘All the other integrals can be manipulated in the same manner as
in (i) — (iii). The final result is
-1

~— Gij (2,852 da
2xi 2] =R

Ijj = lim
R0

b 018,
= T #0600~ [ Buenycna,
i=1 —
(4.28)

(1,j = 1, 2, 3) with G;; given by (3.5), (3.7, (3.8), (3.14), (3.16),
(3.22).

From (4.1) and (4.28), we obtain the following representation of
the delta function :

e © M@+ @
1

3(z-0) =

n

I 2 =z

w?] 8
LOYEVVGCH D, (@29)

|
~—

- OO
where © ({) is given by (2.2),
W =6"@, -m<z<o,
=™, 0<z < Hy,

— 3P @), Ha <2, (4.30)
aré the normalized eigenfunctions, and
¢z, V=49 (z12), —H1<z<0,
={2(z,3), 0 <z < Hy,
=49¢3(z,2), Ha < 2 (4.31)
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are normalized improper eigenfunctions.
If f(2) is of finite p-norm over the interval (- Hj, o), then the

tepresentation of f(2) in terms of eigenfunctions {qb("’) ()} and
improper eigenfunctions {¢ (z, 2) } can be obtained on multiplying
(4.29) by f () and integrating with respect to { from - H; to co.
We get ’ )

o0 N [s.0]
[ rotec-pa= L 4?0 [ w0ro® o
-H;  on=1 —Hy
o)z/{iz fo'e]
- f 3¢@ﬂdzf B (DN Q)
-® -H
whence
N 2
() L
f@= ) He @- | g Y00 &, (432)
n=1 — o0 )
where
0]
fi=<£9"> = [ w0r0sP0da e
-Hi
and
o
L=<hvGN>= [ w@QvGHIO& (4349
._I—I1

In particular, if f(z) = ¢(m) (z) or ¥(z, 1), then (4.32) - (4.35)
yield the following orthonermality relations :
o«
[ e@3P @ @a=s = <™ g0
-H,
l<mn<N (4.35a)
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a0
[ e@YENVEN)dE=30-2)=< V(%N V(1) >,
-,
~ 0 < MA < m’zlﬁg ' (4.35b)

o0
f u(2)¢(m)(z)\v(z,x)dz=0= <¢('"),\v>, l1<m<N,
-Hl
2
-0 <A< w2 [33 (4.35¢)

5. Conclusion

We have obtained the spectral representation of the two-dimen-
sional Love wave operator associated with monochromatic SH-waves
in a structure comprising two homogeneous layers overlying a uniform
half-space. The spectral representation enables us to tackle classes of
problems associajed with the transmission and reflection of Love
waves at a horizontally discontinuous change either in elevation or in
material properties of three-layered models, using the. method based .
on an integral equation formulation together with the application of
Schwinger-Levine variational principle as in Kazi [1978a, b] and
Niazy and Kazi [1980].
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Abstract.

The main problem in Bayesian analysis of the adaptive expecta-
tions model is the assignment of prior distributions of parameters
when very little is known a priori about them. Various approaches
have been suggested to assign prior distributions in such a situation. .
It is shown that these approaches are applicable to the parameters,

B;’s and o-i in the adaptive expectations model but not to the

parameter A. Furthermore, it is shown that the assumption of
taking implicitly uniform prior distribution for A is not too bad for
small n. However, for large n the prior distribution of a is sug-

gested a binomial prior with P = 71 0 <P < 1.
Introduction
An adaptive expectations model in general can be written as
k -1 ;
i
yr = Z B Z A Xit_j-i-mx tu,t=1,2..,n,
i=1 j=0

71
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where, yt is an endogenous variable, X't . is an exogenous vari-
i

able ; m (the initial condition), B,’s and 2 are unknown parameters

such that, — co < m, B; < o, 0 < » < | and u; is the disturbance
term and is necessarily assumed to be normally distributed with {
mean zero and common vdriance 0-5 . This model can be represented
in matrix notation as
Y=mp-+CXB+ T, J
where, I
T T :
Y = (}’1, Vo, ieennn s Vn ), A = (7\’ ;\2’ """" s 7\"):
Ixn Ixn
T T
ﬁ = (ﬂla 32’ """ s Bk ): U = (Ula U2’ ------ s Un ) E
Ixk Ixn |
and
1 0 0 ' , ;
‘( ]l l( X 1 X12 ..... X1 k]l 3
l Lo | I
C= A 1 0 |, X= X ) G X ;
nn } ll ns k } 21 22 2k ,I ,
| Tl 2 ' x X X | |
L J L X R nk |

The maximum like lihood function of this model can be written
[Rao (1963) ] as :
1
2
(cu )

LO|Y) = o

_ 1 _ BT _ B
-exp{ 202(1' mA=CX)" (Y=mp-CX )}
u

where

T 2

9T =(m,BT,x , 0, )

Now, in Bayesian analysis the estimation of parameters and
inference is based on posterior probability density function of the
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parameters say Pz (8 | Y), which may be obtained by multiplying two
input functions, the likelihood function L(6 | Y) and the prior density
function, say, P; (6) as :

The main problem in the Bayesian analysis of the adaptive
expectations model is to formulate the prior density P; () when no
information is available about the concerned parameters. To carry
on the Bayesian analysis in such a situation we examine the applic-
ability of various approaches that have been suggested by Jeiferys’

(1961), Raiffa and Schlaifer (1961), Lindley (1965), Novick and Hall
(1965), Jaynes (1968) and Lindley and Smith (1972).

We will see below that the above approaches for assigning prior
distributions are applicable to £’s and cri in our case but not to the
parameter A.

JEFFERYS’ APPROACH

First of all, we shall employ two well known-rules of Jeffreys’.
According to his first rule the prior distribution representing the
state of ignorance for a parameter vector OT = (m, ,BT , )\T , 02 ) is
u

taken to be

2 |
Pl(m’g’)HGu)oc G 4

—oo <mpB< oo,
0<x<l1,

0<o,< o,

where m, B, A and log o, are assumed uniformly and independently
distributed, (the implicit uniform prio\r for A does not accord with
Jeffreys’ principle). Jeffreys’ second rule of assigning priors repre-
senting a state of ignorance (i.e., priors obtained by taking the
square root of ihe determinant of the information matrix) does not
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always give acceptable results. In our case the information matrix,
say I (8)

1) =

T T T & T )
[ ATAATCX . ma A Dxp o |
xTcPex. mxTct aA+x c' pxp.o

.................. I T L R TR R g O Y

(m A 1 Dxp ) (m—~+ DX p) :

2n |

~

(Where, I(8) is obtained by taking minus the expected values of the
second order partial derivative of the log likelihood function of the
model with respect to parameters and then :

=a_ . D and deleting the n's), depends

= 9C
\/— R N
on the data and involves a large number of parameters hence, it
would be impracticable to use Jeffreys’ second rule. Taking invari-
ance for each individual parameter is also impracticable since a is not
separable from the X’s. However, if we consider a more general
model, of which an adaptive expectation model is a special case, of

the form

Substituting

k .
yy=03_,+ ) 8 X T A
i=1

and assume y fixed, ¥ not fixed and apply an orthogonal trans-
o o pply

formation used by Pesaran [ 1973 ] to the variance-covariance matrix

0-12‘ G say, where




-

IS

0

-2 0
1+ a2 -2
-2

......

- A
1422

If GT now = (61 B, Gi ) we obtain a simple form of the in-

formation matrix, that is,

f T -1
_ x' a7 lx
I1 @) = 5 0 0
o
u
K
n K n 2t
0 2 w2 g
Z 2 Z 1t
= 122 Gu =]
. 2n
0 2 i Ko )
~ Klt c
o
U1 “
where,
Tt
Ky =7\2—27\COS(7T}_—1)+ 1,
Tt
Ko =K—Cos(m),
A=T6T, A~ = 6~ 11T
T T 2\
G=T AT, T =(m)2(t1,t2, ...... s i),




_ jm 2= njw
t (sm _H,smn_{_1 y eecreeees , SIn n+1),
— .2 _ J= , —
Al}‘ 22 27\009( PR ) 1 =7
=0 i
L j=1, ... n
2n--2 n
1 —2 ( 2 ( nt )
— R 22 — 23 cos 1
|G 1 —22 tEI n-+1 +;)

1f we now apply Jeffreys’ second rule we can obtain priors ,which
seem to be practicable. Assuming 8 to be independently distributed
of » and o, we have :
Py (82 ou) o P1(B) P1 (b 0u)
P; (8) is assumed uniformly and independently distributed as
Py () « 1
Where, I; () is obtained similarly as 1(8). The log likelihood func-

tion in this case is

. 1
Log L ="~ %loan -nlog oy —%log |G| — ——Z—(Y-xB)T.
%u
(Y - xe).,
1
n
5 z Ky;2 2 Ko;
P1 (0, 04)
2
2 z Ko: 2”
- L Ku o
U t_-:_-l

We now have a choice. We can treat each parameter separately.
This is equivalent to making our posterior inferences invariant under
reparameterizations of the form
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* *

A =x (),
* *

c =0 (o),

*x %
but not of the form (A , o ) = ¢ (3, 0), i.e. under joint transforma-

tion, Separate treatment yields

Kas?
Pi() o Z K

l=

N

n

Py (c4) < 2
(o
U

Alternatively, we can treat a, oy jointly to have

3( : 24
Pl()t,O'u)OC—::: } f: Ef: —n [ %] |
= J
and thus
([ n 2 214
: | K Kot 1 |
P, (l)OCt t§1 [ Kf: ] ~ [ Klzt ] Jl ’
where

is mean of the ratio —Ilzi [ .
1¢ J

( Ko
| K

e



f, ()~ unscaled

Non _informative prior distribution B (1)

P (N

Unscaled =

scaled

30

.83 1.20 88

'.58 1.5 .77 .

66

1

”n

Ky

i

We have computed P1 (a) and Pi* (3) for # = 2, 10, 20, 30, and
40 (-1 5 x < 1). These are plotted in Figs. (1) and (2).
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This set of assumptions : y, fixed, 4, not fixed (as var (3 ~2 4,)

= ((1 4+ 2?) Gz ) is mildly contradictory to the A.E. model as it

requires yo % m 4 uo,, where m. is non-stochastic, However, the

A.E. model is a special case.

Now we assume u, also fixed, and zero. This isto obtain
E (W) = 0 where, w; == s — Auz-1 . Under these constraints the

. . .2 . 2
variance-covariance matrix o-u G given above becomes Gu V, where,

(1 - 0.0
—2 1422 - A
V= 0
: -
L -2 1422
_cle T
- X
1 0. 0
- 1...... 0
c = 0
i a1
L J
and v 1=clc,
T A e ks
0 :
cf =
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the i-jth element of V—l say v is

Jio =i =200y
=) =
_imj 120 Im0y
= A 1=
=3 |
Lji=12,.... , n

The information matrix in this case Iz (0), say, is -

% — *
x v ix" 0 0
02

u |
12 (9) = 2 2 2” ;;
0o n__20-x) 4 |, 1
1-22 (1-22)2 ,

2n

0 0 2

Uu

The information matrix Iz (8) looks much simpler than I; ().
Applying Jeffreys’ second rule we obtain the non-informative prior
for a say Py (3) as

2n %

. n a-17)
Py (7\) o 1—2 - (1 — )\?.)2

P:'’ (3) has been computed for n =2, 10, 20, 30, 40 and plotted
in Fig. 3. From the figures it looks that the assumption of taking
implicity uniform prior is not too bad, since prior distributions are




£ - unscoien
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fairly flat within the range —~ .8 < » < .8, particularly, see for
example, P;"”” (3) plotted in Fig. 3.

£ 1M scaiea
LR ] 0 20 0 &0
0 r . 150 190 1% 13t wn

i 128 128 2028 1675 La2%
250 1900 L% 1w
1.95 275 1008 858
10 50 60 SR

48 425 a9 188

1 ky)
° 1 i 1 1 —d e 1 1. I o s & ° ]
-1 -0.0 -08 0.4 02 -] 02 0.4 0.8 LA} 1.0 —, 2
Fig:3  Non.informative prior distribution R (1)
Fig. 3

From these figures it appears that the prior distribution for A
depends on n, for example, for large ».

1 )\Zn 1 1
o n — . —
Py () « (=22 = (= behaves like 4/ 1 —- 2

In econometrics we are likely to have n large, so that the prior sug=

gested is \/1—;7 . This is exactly the binomial prior with
P= #, 0<P<l.
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OTHER APPROACHES

The ““indifference rule” of Novick and Hall (1965) for assigning
prior distributions in a state of ignorance requires the existence of
the family of natural conjugate distributions ; such a family of
distributions may be obtained if a sufficient statistic exists. In our
case, we do not have a sufficient statistic hence we can not construct
a family of conjugate distributions.\ This suggests that indifference

rule is not applicable.

Strictly speaking, one can always write

L(_>i‘\6) = L(i<_\6) x !

and the set of observations x becomes a set of sufficient statistics.

However, what we require is a set of sufficient statistics of fixed
dimension, Raiffa and Schlaifer (1961, p. 44) and this is not available.
A set of sufficient statistics of fixed dimension would be available if”
we assume A to be a known parameter, in which case a family of

. . 2 T
conjugate priors for 8, o, can be constructed and the indifference

rule can be applied. The suggestion of letting o, — oo in conjugate
distribution made by Raiffa and Schlaifer (1961) and Lindley (1965).
for assigning prior distribution in a state of ignorance will also be.
workable if 2 is known.

Jaynes (1968) employs the principle of maximum entropy to
allocate priors for discrete parameter spaces. For continuous para-

meter spaces this is not directly applicable. Accordingly, he also
employs considerations group invariance. Where the number of

parameters in' the transformations is equal to the number of para-
meters in the prior, a unique prior is specified : there is no need to
invoke maximum entropy. He employs the device of invariance under:
a group of transformations to derive the usual non-informative priors.

for the Normal and Poisson cases, and P_-I(I—P)___1 for the
Binomial, but his choice of transformation appears adhoc. For
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Jaynes® proposal, there does not seem to be any immediately appealing
choice of transformations groups for a in our case.

CONCLUSIONS

The application of Jeffreys’ rules for assigning prior distributions
(o parameters of the adaptive expectations models requires generalis-
ation of the model. The other approaches suggested for assigning
prior distributions representing prior ignorance are applicable to £’s

2. ' . .
and o, in the case of adaptive expectations model but not toa.

However in the case of a smaller number of observations a uniform

prior distribution for a can be used, whereas for large n the prior

distribution of » is suggested a binomial with parameter P = A g ! s

0<P«< 1,
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Abstract.

In this paper the null and non-null distributions of partial and
multiple correlation coefficients are derived when the sample is taken
from a mixture of two p-component multivariate normal distributions
with mean vectors u; and Pz respectively and common covariance

matrix . Some special cases are also given.
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1. Introduction

The study of statistical relation between variables occupies an
important place in the subject matter of statistics. One aspect of
this study is the theory of correlation based on the various correla-
tion coefficients which was mathematically developed by Fisher

[1915 !
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The very extensive study of the simple correlation coefficient
contrasts sharply with the little attention given to the partial and
multiple correlation coefficients. The distributional problem of
partial and multiple correlation coefficients has been left virtually as
it was found by Fisher in the normal case. This appzars to be due
to mathematical difficulty involved in non-normal cases.

In this paper we derive the null and non-null distributions of the

partial correlation "2 34 » and the multiple correlation R2 when

a sample of size N is drawn from a population with probability
density function (p.d.s), given by

F(x)=re(x;p, D+{A-N P (x512, %), 0<ar=<1 (LI
where ¢ {x ; p, X) denotes the pds of multivariate normal distri-

bution with mean vector v and covariance matrix £ and a stands for

the mixing proportion (contamination, 1 — 2).

It should be mentioned that G.A. Baker (1932) was the first to
derive the distribution of Student ; t-statistic for a sample of two
items from a composition of two normal functions with different
means. The distribution of the simple correlation coefficient (null
and. non-null)‘ has been derived by Srivastava and Awan [1980]. The
posterior distribution of the location parameter and the effect of shift
on location from such a model has been carried out by Awan and
Srivastava [1980]. The null distribution of Hotelling’s T2 has been
used by Srivastava and Awan [1982] to study the robustness of Hotel-
ling’s T2 test. A numerical study of these results is planned for a

subsequent publication.

2. Partial Correlation

Let x; , Xz, ... , X be a random sample of size N on a p-com-
N

penent random vector x= (x; , Xz, ... , Xp ) With pds given by (1.1).

Let the sample mean and the sample covariance denoted by x and S

respectively be given by



— -1 N . N — -
x =N X xijand S= X (x; -x)(x —x), 2.1
i=1 i=1
We partition S as
r ’ "
s s S
11 12 13
! 2.2)
S= | s s S
12 22 23
S S S
13 23 33
L J
where s :1Xx1,s 1X1s cI1x1,S:(p-2) x1,
11 12 22
S : (p-2) x 1 and S33 : (p—2) X (p—2), the sample partial
correlation coefficient 12 .34 ... p between X, and X, given
X3 = (X3, - » xp) is defined as

cov (X1, X2 | X3 )
(2.3}

T .34...p° {var(xi | X3 yvar (xz | X3 )} %

ol
27513 833 5,5

=

’ ] 7 1 I
- S - S z
S33 8 13) gy = Sy3 8337 Sp3)}

{6y 13 °33

The population partial correlation co-efficient between x, and

Xy gjven Xs is defined as

r _I - .
12 " %3 %33 %3
p - —— 7
12.34...p _ 1 _ -1 3
{Coyy =9, Ta3 913) (Ogp = Gpy 233 03 )3

2.4
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where X_is partitioned as in S, that is,

[ o o c' A
11 12 =13
2= c c c’ 2.5)
12 22 -23
c c X
-13 -23 33
L J

If x ~ Np (u, %), then it is well known, see for example

Srivastava and Khatri [1979] or Anderson [1958] that the distribution
12.34..p is just that of ordinary correlation (in the bivariate

case) on (N — p 4 1) degrees of freedom (hereafter called d.f.).
In this section we derive the null and non-null distribution of
when a sample of size N is drawn from a population

of r

"12.34 .. p
with pdf given in (1.1).

The partial correlation co-efficient is invariant under the group G of
transformation g, given by

¢ 0 0o 1
| 11 -
l
gX=x +4+a ,x,+a,,x +a x| 0 g O
1 1’72 277 30 27 -
|
{ 0 0 G
L - - 33
where &1 # 0, &5y # 0, G33 :(p — 2) X (p~—2)is anonsingular
matrix and aI:le, a:1x1, a (p—2) x1 are real
3
vectors.
We assume without any loss of generality that
n =0, = § and
E_)..I EZ _
[ 1 p g )
1 )
3 = B 1 g’ (2.6)
1 -3
B 1
L -2 -3 (p—Z)J
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For fixed k, the sample covariance matrix can be written as

S= X
N (x ——x)(x-—x),
i=]
k _
=‘E(X—X)(X~X),
i=1 1
N - _
+ X (x,-x,)(x,-x ), - (2.7
1=k+1 I3 2 [ 2
k(N-k) - - - =
+— (Jb:1 xz)(x1 x2),
_ -1 k -1 XN
where, x, = k z X; andx =N -~ k) z X,
! i=1 =kt !

Then for fixed k,S has a noncentral wishart distribution
Wp (I, n, Qk) with n=N — | d. f. and non-centrality matrix

Qk=N—1k(N—k) =715

which is of rank one. Hence the pdf of the sample covariance

matrix S is given by
N k
= k N-k
fN (S) o ( ) A (1 =) fN S) 2.7 A)

where the sample is taken from (1.1) with p= 0, by = dand X is

given in (2.6), and f (8) denote the non-central wishart pdf
Wp (Zs n, Qk )'

From (2.7) we can write

~

e

S =YY =

<
<

(.8

~
—
[\
A

<

———————
)

———————
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where Y isan p + n matrix with n = (N —-1), Y;: n X 2and Y, :
n X (p —2). The n columns of Y are independently distributed with
common covariance matrix X. The mean of the first column random

1
vector is ck§ where ¢, =kN=k)] N)? and the means of the

remaining (n — 1) column random vectors are zero.
In terms of Y’s

-y _ ’ -1y

S12 7Y ( =Y, (Y, Y,) Y, )YI 2.9)
: where
‘, S
11~ 513533 Si3 S127 513533 P23
S -
1.2 r r o —1
12 = 813833 Sa3 557553553 Sy
! )
(2.10)

and, correspondingly, the population matrix 21 ) is given by
. s -
‘ ' I=8 B B~ By B

T, = , , @.11
ﬁ1—92£'53 1_9393

L J
Then by definition, the partial correlation coefficients "2 34 »

and piy 34 p 2 just equal to the simple correlation coefficient

obtained from Sl.2 and 21.2 respectively.

’

Let Y1 =(gl,:_42,---,gn),Y2 =(fl,32,---,gn)

and § = (91 ,92 ) where (_91 = (81 , 82) and 92 = (33, 84,...,8p)




Note that

’

£

My

First, we derive the distribution of S

tional distribution of Y1’ given R,’ and fixed k is given by

(
|
z,n(ﬂl-i- %
l

L

Where N " (n,X)isa multivariate normal with mean n

2
and covariance matrix X.

Hence, given Y, , Sl.2

(n — p + 2) d. f. and noncentrality matrix

s -1 2 WO
Q, =%, g n o+ [ B, E ¥, —n,) } i
| b, | ﬂ
! |8, | ! i
L S | J ¥
a-v, ¥y 'y [ 400, -n)@,.8,))
2 Yo 2 ‘L"l 27 ") _z’-3j b |
B, |
~ ’ n ’
Let §k=ck\91 - 92) and B = ii v, Xi (2:14)
93J

m, =E(Y1 )=ck(91(_),..l,(_))and

=E(Y ) =¢ (50,

has noncentral wishart distribution with

92

(2.12)

.0)

for fixed k. The condi-

1.2
"
2,
, i Yy, =1, 2, ,, D 213)
By |
I3 J
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"1
Hence
* ~ "~ 1
Q@ =3dA-y( +B1y)s =~
kK k | U k1.2
=35 & /(4+yB-1l,). z-1 (2.15)
“k "k -1 "1 1.2
Since v ,v , ..., v areindependently distributed, with
1 2 ~n
v ~ N (¢, ® ,)andvy ~ N 0,1),j=2,3,..,n
1T -2 D ey v NG g (20D
we find
n-p+4+2 ' ] 2
p=2 -1 S AL

(2.16)

where F ) denotes a non-central F distribution

2
p—2n—-p+2(T
' 2.
with (p —2,n — p + 2) d. f. and non-centrality parameter 1), Which
is given by

2 2
% =%%59

Hence we get the following,

Theorem 1.

Let Xl > X, Xy s XN be independently distributed with

common pdf f(x) given by

S(X)=24(x,0,%) +(1-2)¢(x,55),0<r<1

where ¢ (X, p, X) denotes a p-variate normal pdf with mean vector
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p and covariance matrix X. Then the conditional distribution of

I. in (2.10) for given k and Y2 or F D=2, n—p 2 (yk in (2.16),

*
is a non-central wishart, distribution w (ZJI P n—p+2, Qk , where

o =270 5 8 ju+-222 F )
kT T2 5% n—pt2 p-2,n-p+2 'k

and 21_2 is given (2.11).

Since the partial correlation coefficient is just equal to the simple:

correlation coefficient obtained from S1 ) the distribution of

X = r12.34 ’ » for fixed k can be written as

O
@l = [ @ (=@ O-2p%, ®ay® +d; ()]

0
2(1-p*))

N-ptl ((az(k)—p*al(k)/z))z’"x @p*)

| 2
(1=p*2) N-p—1 11
VAT ((N=p)/2) meo "D (D g

i N-p-2
xi+t(1—x2> 2

]
e | 2@ ®-pta ()
LG R ®m—ra®

——

2j

1
m- i a1 (k) —p*a, (k) |
j§0_ J L as (k) - p*a1 (k) _IJ

. T((N=p+14+i+t+27)/2)

P ( N—p+l+22m+t—i—21' ) . h(F)}dF. Q.17
where
2

ar ) = ¢ 6 =B 3 )/ A+ F s F ),
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iy ) = ¢ 3y = 830" U+ 720y S Fa ).
3_(3 a),a3..(a3,a4,...,3p),,

* and
p p12.34...1)

h (F) denotes the pdf of non-central F with (p—2, n—p+2) d.f. and

. 2
non-centrality parameter T
Let

bl(k)=ck(81 ——@2 §3)—Ck(82—§3§3).p*.

_ _ ’, _ _ ’, ) «
b2 (k) = 2 (82 93 §3) <y (81 {22 83 ). p* and

) ) F 2
by = (€ @ = By 35) +Ck(32‘93§3)

2 p* ! 2,
with a little algebra (2.17) reduces to
fo) = exp(— (B2 +v2 )2

2 h 2 ) 2 m
b G G E S CR OIS
h! 1! m! t!

fi,m, t,1=0
N-p+1
, Noptl
-y 2 :
V' © T(UN=-p)/2) p(E:;;LJr m+1)

N—p-2

3

Z )(2b (k) [ b, (k)) a- x)



6

m—i
C T TG, @ by Gy o (NEPELEEIEY)
i 1 2 2
Jj=0

N—p-+14+2mtt—i—2j

I ( 5 )
-2 N-p+l1 -2 N—-p+1
8 (P57 thtl, 2 g (2, B2
2 2 2 2
(2.18
Thus the pdf of x is given by
N Nk, . N-k
hx/p*)= Y (,)x (1-3) f, (x]p*) (2.19)
L 'k k
k=0
Hence we get the following.
Theorem 2.
Let x L x2 , .-, X beindependently distributed with common
N

pdf f(x) given by

S(X)=2¢(x;0,%) +1-N¢(x;8,%), 0<xr<1
where ¢ (x; p, X) denotes the p-variate normal pdf with mean
vector u and covariance matrix X. Then the distribution of

X=Tra P is given by (2.19).

2.1. Special Cases

! 0 0 I
(@) If X = 0 1 0 thatis, B, =£ =0,8 =0,
— - =243 -7
o o
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then the null distribution of x = "1234 ..., p can easily be written

from (2.19) as

N
h(x|p*=10)= Z (E) % a- x)N“kfk (x | p* = 0) (2.20)
k=0

where

S G lp*=0) = exp (= (2 +12) (D)

2 2

i S E A S OTE i
o hi I m!
ml =0

- - 1
Y R

- —p+1
p(£2_2_+h,E_§L)

1
VT (R T

SERVENY

N-p—-
2

m
T @b @b, ®) S -
i=0

N-p-2
2

m—i

B e Nepettiin
CL 6By @) r (FEEEEE
j=0

r N—p+1—;2m—z—21) @.21)




Here,
bty =cp &
b2 k) = ¢y A2
2 2 2
bk = b1 k) + b2 %) ,
1
2 2 2
Tk =% B3
where A ’s are defined as
2 _ ’ z—l _ "yl

=38 % "3
’ _lr -
_(31,32,§3)z L3,
|
-
| s
I %3
v

2 2 2 .
= Al =+ AZ + A3 , that is,
Al s A\ 5 and A 3 are the square root of standardized distances for the

first, second and the remaining components (3, 4, ... , p).

b If 81 - @2 §3 = 82 - §3 §3 = 0, then (2.19) reduces to

2% (N_p—' 1) (l_xq.z)% (N'—p“' 1)

I(N—-p-2
g(xlp*)= = T (N=p) £ p=2)

1-x%

Qo*x’

t] - P2 ((N=p+142) [ 2), (2.22)

[ it
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that is. the distribution of the partial correlation coefficient under the
normal theory.
3. Multiple Correlation

Let X1, X3, ..., XN be a random sample of size N on a

N

p-random vector x = (X1, ..., xp) with pdf given by (1.1). We

partition S as

!

St Spp

—_—J

S = 3.1)

'
|
|
L S Sp
X

wherc s, : 1 I,Slzz(p—l)xIandS22:(P-1)><(P—l),

11

the square of sample multiple correlation R2 between x1 and xg
= (x2 y e xp ) is given by

2 -l
3 /
RT=8,5 5% 512 'y 3.2)

The population multiple correlation coeflicient, p, between x1 and

xg is given by

2 ! -
p =0 b 1 O12 [ on 3.3)

where I is partitioned, as in S, that is,

[ o c

l 11 21 |

T=1 5 I .4
IL (_;12 22 JI

However, if X ~ Np (@, X), then it is well known, see for example

?

Srivastava and Khatri [1979, p. 90] that the distribution of R2 is
given by
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N-=-1 p-3

— 2 Ty —_p=2

PR? | p?) =

N-I N-1 p—-1 2.2 3

where ,F, is the hypergeometric function. When p2 = 0, this re-

duces to

f@eppr=0 =627, N5y 7 (ks

(3.6)

If, however, the observations are not normal, the distribution of
R2 may not be as given above and the significance level and power of
this test may be distorted. We now derive the null distribution of R2
when the sample is from a mixture of two normals given in (1.1).
The multiple correlation coefficient is invariant under the group G of
transformation g, given by
11 0
3.7

0 G

[
gX =(x +a .% +34,) }
|
L~ 22

e

where 811 = 0, G22 : (p—-1) X (p—1) is a nonsingular matrix and

a1 1 x 1, a,: (p—1) x 1 are real vectors.

Thus we assume without any loss of generality that b= 0, B, = 3

and

]
I| (3.8)
J

j wher
4 write
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As usual, we shall derive the distribution of

= DL R/ (1-RY)

t =1 ! -1
= (81555 S 613 =8, 85y Sp) G-9

where n = N—1, t = n—p+1 and s = (p—1). From (2.7) wecan

write S as

(y1,Y2) (3.71‘0)

i

2 J

where Y is a pXn matrix with n=N-—1, Y, tnx1and Y2 :nx(p-—’l).r

The mean of the first oolumn random vector is 7 $ with 7

1/2 :
(k (N=FKk) | N) / and the means of the remaining (n—1) column
random vectors are zero. In terms of Y’s

’ ’ ___1 ’ ’
RE=[y Y, (Y, Y,) " Y,y 1/y ¥ ,and

’ _1 ’
W=Ly;(Y2(Y2Y2) ‘Yz)y /y,
: .
°1.2 I 1
: 1 _1 ’
( I-Y, (Y, Y,)" ' Y, |
p- ) Y (3.11)

1.2
et Y2 =(p1, M2, Ka)and § =@, 82 ) where y; ‘s and

are (p—1) vectors. Note that

E(yl' ) = ¢ 81 (1,0,...,0), E () =’ck§2‘
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and
E(w; )=0,7i=2,3,...,n
Given Y, , ¥, has a normal distribution with mean vector

< (81 ol §2 )(1,0,..,0)+ B Y2 and covariance matrix ?1.2 I

BB = p2 ). Hence the denominator of w for

10 =1 -

fixed k and given Yz has a noncentral chi-square distribution with ¢
d.f. and noncentrality parameter

, a2
&, —p' 9
2—02;(10 0[I-Y, (YY) !y
nk—' k o H ERLE R ] ) 2 2) 2]
1.2 2
a, o, ..., 0,
n
32 2 o 2 eV
Let 8, =c, @ —8 8,) /o) ,and B= .Laz YW Wi Then
I=
? ’
B~ WS (I, n—1) and Y2 Y2 =w u -+ B.
Hence,
2 ~2 r—1
Ny = Sk (1 —l—‘u1 B ul) (3.12)

Similarly, given Yz, the numerator has also a non-central chi-square
distribution with s d. f. and noncentrality parameter

~ -1
2 s2 B w
1—{—u1 B w

where

¥ =8 Y, Y,B/0,- (319
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But o© 2 72 / B’ B has a non-central chi-square distribution with »

1
d. f. and noncentrality parameter
2 2 ’ 2 ’
= 3.
&, =< G 3) /BB, (.15)
and
v="u B lm~F (%) 3.6
51 1™ %t Yk ’

where Fs y (Yi) denotes a non-central F with (s,#) d.f. and
noncentrality parameter yi given by

2 _ 2y s (.17)

Hence, for fixed k and given v and 2

2
e

t 2 2
W=y rere v B (g Mg) 3.18)

2 2 .
Here, Fs ot Gl k'™ Ic) denotes the doubly non-central F-distribut-
ion with (s, £) degrees of freedom and non-centrality parameters nfk
and nik .
Thus, for fixed k the pdf of w is given by

o0 o0

1 2 2
0

(nf,zz!z)" (nikjl!z)j. (_iw)—%-l-i—l

h-ll'a

't~ 8

i,Jj



t .
S - (%—I—z-l—j)
w) I hlk (V) . hzk (-YZ) dv d‘Y-z.

(H—T
(3.19)
where
1 2
lk(V)~—exP( - TYk). tx
oo ( 2/2 )l ] s+t
) Yk ("v)2+—1'1+i _( )
1=0 o t ( tV)
@(;Jrl,t/z)
and

) PR
(52/2'”0 7 Hmd
L)
g

After simplification, the distribution of w for ﬁxéd.k is gfven by

®© (a /2) (yk/2) (&k 2)"

Z I T m

s M=




oo} z ~ { E‘IE =4
) (32/2)q (E’E+GI.2)
i=0 q=0 - kq' (=g X
5 2im P(—”~+m+i—q)
g (ﬁ’ﬁf"m)z F(%—]—m) )

o( 5+1+a 5+7)

X 5 %
B(7+Z,t/2)
S ori-—1 — i(s+t+2z‘+2‘
s(s )7”"’ (1—{—j-w) 7 J)
. TV ‘
N , .
O0<w< (3.20)
Thus, the p.d.f. of w is given by
5 k
N N-k
M= L GIra-n"""g W (3.21)

k=0

Hence, we get,

Theorem 3. Let x1,X2, ..., XN be independentiy distributed with

p.d.f. given by
f(x)=rp(x;0, D) +(A-NP(x;3,%), 0=nr=1

E

Then the distrlbution of

| P ——
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w= ’:—RZ(I-—RZ)_1 where § = p—~1,t =n=p+1 and n = N-—-1
is given by (3.21).
3.1 Special Cases.

(a) Under the null hypothesis, p2 = 0 the p d.f. of w given by
(3.21) reduces to
N Nk N-k { 2
g = 7 (A a0 e - 5 (e 5+ 3, 3,)

L@ s sy
L P17 I
i, j, I=0
B (5 1+ 5+7)
p(z+0ti2)
> —-(S+t+1+1)

p( 5 +ig+i)
0<w< oo,

This null distribution has been derived by Srivastava (1981) and
has been used by Awan (1981) to study the robustness of R? test.

(b) If 81 - p §2 = 0, then (3.21) reduces to

N .
gw) = Z (}j)lk a- A)N—_k. exp — % gi
k=0

© (ék/Z) (fi.@ 12) 2
z O
m,z==0
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s ,
B (‘i + i, _2') .
This special case has been used by Awan [ 1981 ] to study the

behaviour of power of R2 — test.
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A CLASS OF ESTIMATORS OF RATIO (PRODUCT)
IN SAMPLE SURVEYS

By
R. KARAN SINGH AND GURDEEP SINGH
Lucknow Uriversity, Lucknow, INDIA.

Summary : For the estimation of ratio (product) of two population
means, a class of estimators is proposed, using auxiliary information
.on two auxiliary variables, of which the estimators by Singh

(1965, 67, 69), Rao and Pareira (1968 ) and Shah and Shah [ 73]

are particular cases. The mean squars error of the proposed estimator
is found to the first degree of approximation and a comparative study
is made among various estimators. -

Introduction.
Let y;, y2 be the variables of our interest with populatiou

~ means Yy, Yz and x; and xp be the auxiliary variables with population
" means X; , Xa respectively. Also, let R = Yi/Yzand P = Y. Y,
be respectively the ratio and 'product of the population means Y, and
Y . |
The usual estimators of R and P are r == ;1 /;z and p = ;1 . }72
~where y1 and y, are the unbiased estimators of y; and y2. Let xy

and x; be the unbiased estimators of X; and X; ; S5 be t/he'popula-
tion covariance between x; and xs with s;2 being the unbiased esti-

mator of Sis. .
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When the population means X1 and X, of x; and x are known,

the estimators proposed by Singh [ 1969 J Rao and Pareira [1968 ] and

Shah and Shah [ 1978 ] for the estimation of R (or P) are given by

o

~ o w . _ a2
rn=rx/X1) (@x/X) ,

- - — - a2
re =1r [ W1 (X1/X1) + Wz (X2/X2) ]

- . /Wi «z [ Wa
rg=r [Wl(xllxl) + Ws (32 | X2) ]

ry = [W1 1/ X1) + W (%2 / Xa) ]
where W; and Wz are weights such that Wy + Wy = 1 and «’s are
constants to be determined by minimizing the mean square error of
- the corresponding estimator.

; Similar estimators of the product P = Y; . Y3 can be written by
replacing rby pinr;, i = 1,2,3,4. All the estimztors r; , i=1,2,3,4
may be identified as the particular cases of the generalized estimator

tr=r f(u, v)

where # = x1 [ X1, v = x—z/X—g ; (u, v) assumss values in a bounded,
closed, convex subset I of the two dimensional real space containing
the point (1,1), f is a bounded and continuous function of  and v
with continuous and bounded first and second partial derivatives in I
and (1, 1) = 1.

Assuming that the covariance S5 between two auxiliary variables
x1 and xz is known, an improved estimator is suggested in this paper
which is more efficient than the estimator #; and hence than
ri, i=1,2,3,4.

Denoting w = s12 [ S1a, let (¥, v, w) assume values in a bounded,

closed, convex subset I’ of the three dimensional real space contaiuing
the point (1,1, 1). Let f(u, v, w) such that f(1,1,1) =1, bea
bounded and continuous function of u, v and w with boundcd first
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and second partial derivatives in I'. Then the proposed generalized
estimator is given by
ta=r f(u,o,w 1.2)
2. Mean Square Error (MSE) of Estimators of R.
Let us denote by

Co; = Coeflicient of variation of )—:,- ;i=1,2
C;j = Cocflicient of variation of .7-6:1’ s =12
Cg = Coeflicient of variation of 512
p = Correlation coefficient between » and ¥,
p1e = Correlation coefficient between x1 and xp
po;j= Correlation cozfficient betwsen y; and xj; 7,7 = 1, 2
po;3 = Corrzlation coeffizient bstwsza y; and s49;i=1,2
p;s = Correlation ceefficient bstween x: and s12; i=1,2
Ci=pijC;Cii=1,2;j=12,3
Coij= Poij COi CJ’ i= 1, 2’ J = 1, 2, 3
di =Cot —Cozk s k=1,2,3
2
Also, let Ay = dy C2 —ds Cia, As = ds C% - d1Cys,
2 2 2
A=A1d1+A2dg and B':C] C2 —Clz.
Let yi=Y1(1 +es), 2 =y2 (1 + €5) , 51 = X1 (1 + &),

= X3 (1 + e3), 512 = S12 (I + e3) where it is assumed that the
sample is large enough to make | e’y | and |e;|, 1=0,1,2,3 so
small that the terms of degree greater than two in e’; i § may be
neglected to justify the first degree approximation.

Now



112

MSE (1) = E (1, — R)? from which, to the first degree of
approximation. e

MSE () = RZE_(, ¢ ~ e; toe fu (1,'15 teaf (1) )2
~ MSE () + R2( c? { f; a, 1) }2 +-cf {fv 1,1)}2
+2Ci £, (L 1) f, (L, 1) + 240 £, (1, 1)+ 2da S, (1, 1) Jen
where MSE (r) = R [col +c —72pVC> c, ]

f (1, 1) and f (1, 1) are the first part1al derlvatlves of f(u v) w1th
respect to # and 2 at the point (1 1)
From (2.1) thé mean square errors of the estimators r;, i=1,3,4
can be eaéily written, For Fiu, vy = u** »*2 (wiu™  wy 022 )
ay [ W

(wr u R (Wi + wy 03" ihe. mean _square
€rrors ofthe estlmators rp, i= 1 2 3, 4 are glven by

&g | wa )s

MSE (r1) ~ MSE (r) - R? (c1 oc + c “ 2 20 as+ 24 m

- +2a)
MSE (rz) = MSE (I‘)-— R2 (C2 2 W2 +C2 2 2 +2aq oy, W1 Wo Cl
. 1 71 1 2 %2 2
' + 2dy @3 Wi + 2d3z ag W3)
2 2 2 2
MSE (r3) = MSE (r) = R2 (Cl o + C2 oc2 + 2C12 o1 @ + 2dy o
V + 2ds as )

L 1
MSE (r4) = M?E @ ~ R2 (C o w -+ C2 22 w2 +.2C12 ag Wy W1

+ 2d; aw1+2d2aw2)

The optlmum choice of the. functlon S, v) m1n1m1z1ng (2 1) is
f such that

fu (1, 1) = - Ay/B and fl (1,1) = —Aqy/B
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and
min. MSE (#1) = MSE () — R2 A/B 2.2)

Now expanding f (u, v, w) in a second order Taylor series about
the point (1, 1, 1), we have

fr =R (1 + &) (1+el )'1[1+e1f'u GLLD+ef (1L,L1D

—{—esf (1,1, 1)—{—%( " -+ e;y@ 4 v;a)f(u*,v*:w*)]

where w* = 1 4 Bey, v¥ = 1 4 Bey, w¥=1+Bez, 0 < B < 1 and
S (1,1, 1) denote the first partial derivatives of f (u, v, w) with
respect to the variable denoted in suffix at the point (1, 1, 1).

Upto the first degree of approximation,

MSE (2) = E (2 — R)?
— Rz]g[ e — eO + e1 fu (i, 1,1 + Ez_fv €11

+ef, 0 10]"
— MSE (1) + RZ[ c? {fu 1, 1,1 }2

+G {r,a L}
+Z{n Y rac, 5oLy 7 ay
+C4 f; (1, 1, 1) f;V (I 1, 1) + Cypy f; 41, 1)f:v(1,1,1)

+d [, L) +dy [0 LD+ dy f (L1, 1))]
(2.3)

The optimum choice of the function f(u, v, w) minimizing
MSE (t2) is f such that
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j;'w(l, L1) = 7 ?I |
| - s ldl (C2 § c§3) ) (C2 C12=C13 G3) {
—da(C C,; - C, c23)J i
£, 01,1 =
- _é[ J (Cf C§ - Cfs) =4 ,(ci Cjp = €13 Cp3)
| =4 ‘Cf Co3 = C'1'2,C,13) ] , @4
f;v (4, 1,1) =
- ‘é—[ds(clz c, - sz) - 4 (G, Cj3 —C “12 C23)
— 4, (C Cp3=Ci3 C12) J
where S"C (¢ 2 ; c§3)_c €pC 3 = €13 Cy3)
+C€p3(Cpy Cpy = €3 ) J
and
min. MSE (f;) = min. MSE (1) — R2 T/ T" @.5)

. 2
with T = { (Pozs = Pogg V(1=py, ) + Pia (Poy Po1g — P2z Pgog
+Pis Porz —~ Piz Ppz ) — (Po1r = Poay) P13

2
- (pom = Po2a )pzs } >0

and
S

2
T =(1-p;, )2

i 2 "(‘12
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implying that

min. MSE (#2) < min. MSE (#) ; 2.6)
From (2.6) it is obvious that f, is more efficient than ¢#; and hencs
than r;, i=1,2,3, 4.

Some members of the class of estimators represented by ¢, are

e B3 i _
ey = Wty = [ e @-D+BE-D+3 -1 |
t2(3) —r[ l—a(u-=1) —B@-=1) =3 w-1) J etc.
If «, B and § in above estimators are respectively given by the
right hand sides of the equations in (2.4), t2 ()’ i=1,2,3 attain

the lower bound of the variance given by (2.5).

Next, if we consider a wider class of estimators t3 = g (r, u, v, w)
of R, where g (R, u, v, w) = R and g’ (R. u, v, w) = 1, g’ being the
first partial derivative of g with respect to r, the minimum mean
square error of #3 is the same as that of 7 given by (2.5) and is not
reduced. Also, the regression type estimator r + « (u~1) +8 (v—1)
+ 8 (w—1) is a member of *he class represented by #3 but not of ¢, .
Thus, the minimum mean square error of the regression type estimator
is attained by estimators from the class 15 .

Similar estimators for thc product P can be defined and similar
results can be obtained.
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ON THE GRIEGO-HERSH APPROACH TO RANDOM .
EVOLUTIONS : »
" By

MANUEL KEEPLER
Departmeut of Mathematzes -
and Computer Science
South Carolina State College . -

Orangeburg, South Ca.olina 29117
T . US.A.

Griego and Hersh f 1,2 ] introduced the random evolut1on

of a famlly of semlgroups with swuchmg among semlgroups con-
trolled by a finite Markov chain to provide a probabilistic approach
to the study of a class of Cauchy problems. In[3] the author
showed that the random evolutions of Griego and Hersh were back-
Ward random evolutions and constructed forward raidom evolutions,
Forward random evolutions prov1d, a probabilistic approach to the
study of a different but analogous class of Cauchy problems. The
“proofs 'iu [3-5] utilize the method of “‘rénewal equations’ in Markov
chains.- However it would be of interést: to _directly obtain forward
.random ; evolutrons from the  Markov chain. This would give
add1t10nal 1nsrght as to how the random evolutlon structure relates to
the mechanism of the of the Markov chain. In this note we carry ofat
thlS formulatlon which turns out to be smlpler than the formulation
in{3]. In a forthcomlng paper [ 61, the two formulations are
combined to present random evolutions as Markov processes, <<~

Suppose v =[2(f), t =2 0]is a Markov chain with- state space
... N), statlonery transition probabilities pz_, @), and infinitesimal
martix Q = < ¢ > = < p';7(0) >. P; is the probability measurc
deﬁned on sample paths w(t) for v under the condrtron w(O) =% B

117°
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denotes integration with respect to P;. For a sample path @ & Q
of v, 7j (@) is ihe time of the j;» jump, and N (f, ®) is the number
of jumps up to time £.

Let {T; (£), t= 0,7 = 1..., N} be a family of strongly continuous
semigroups of boundnd linear operators on a fixed Banach space B.
A, is the infinitesimal generator of T; and D; is the domain of A;.

Definition 1. A forward randoin evolution { S (¢, @), ¢ = 0} is
defined by the product

SO=T = ) T, @) 277 T O

v (7N ()
The proof of the following lemma is parallel to that of Lemma

2in [ 2 ] and is thus omitted.
Lemma. If g: Q - B is Bochner P; —integrable for a ‘ﬁxed
i=1,..,N,then for each¢ = 0 the function & = S (¢, ») g () is

Bochner P, — integrable and
E,[S(t)gng](co)—S(t Q)E[gIFt](co), 2.1)

for almost all @ Wwith respect to P;, where Fy is the c—algebra
generaied by the random variables v (), 0 < u < ¢, that is, F; is the
past up to time ¢ for 2.

Let B be the N-fold Cartesian product of B with itself. A typical
element of B is denoted by f= < f; > where f;¢B, i=1, .., N.

'We equip B with any appropriate norm so that || f || -0 as
1 f; | — 0 for each i.

Definition 2. For ¢ = 0 define the (matrix) operator S (#) on E
specified componentwise by
N
SONHE = in SO f; ;o) =k,
i=1

where

BSOS v@)=kl=E | S(®f 1 I
{v(®) =k}
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~

Theorem 1. {S (¢), ¢+ = 0} is a strongly continuous semigroup

of bounded linear operators on B .

Proof. The fact that S (r) is a bounded linear operator follows
by an argument analogous to that used in the last part of the proof of
Lemma 2 in [2[. Also, since v (., w) is continuous at a fixed ¢ for
almost all sample paths @, it follows that S (¢) is strongly continuous
in £. To complete the proof, it suffices to show that

(S(ts) M = (S0 S s
for each k.

Let 6; © be defined on Q by the requirement that v (4, 05 ) =
v(u + s, @), thatis, 0; shifts paths. Define go 05 by (go 6y) (0) =
g (85 ). Then the Markov property of v is expressed by the formula

E;[g° 8] Fs](0) =E s, o) L& (2.2)

for almost all ®[P;]. We can omit @ and write simply E; [go 6; | F,]
= EZ} (S) F4P
Now, it is easy to see that S (¢) satisfies the equation

S (t+s, ©) = S (¢, 05 ©) S (5, ®)

or
S (@+s8) =S ()= 0 S (s). 2.3)
Also,
I{v (t+s)=k}=I{v(t)=k}°6" Q4
As a result, for fixed k, we have
S (t+9) i

N
= ) E;[S(t+s) f; 5 0(t49) = K]

i=1
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= V0 B [B[S(t+s) fi 3 v(t4s) = kI Fs 1] B
e > - N
=) EIE [S(t) A {z,(,)_k}oeSS(s)f | Fs 11
- i—I £
s e : (by23and24)
= ) B [Ev(s-)[sa)l{v(,)ﬂ} E; IS (S)f,-lFs:]]] (by 2.2
i=1 - ) -
N L N;; 5
= LEBOL gy L " [S(S)“{us)—l}”
I e - T =) I
e T by 2.D)
= (SOSEfk. .. QED.
' ’gheorem 2. The Cauchy problem for an unknown vector; ),
t>0, .. _

a ~
. i=1 7 s T

issolvedby u () =S (® f .
Proof Let v denote the last jump of v in the time interval (0, #).

Now,
(S ® f)k
5 o N o G
=) ) EBOS; N(@) =1, 0(6) =k
n=0 i=1 L < woedow el LT I00T
= H T ) B
0 t
+ ¥ N [ B4 N@=no(m)
n=1 i=1 0 ‘ ’

=klo@),s<+1P; cedr)
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+ 7 T ¥ f Tk (¢=5) B; [S () fi ; N(5)
n=1 i=1 jZk 0

— "_l’ v(a;n_l ) =j] gk e"‘]k (t—S) dS

t
=c %t T () fi + f Tk (¢-s) ). (5@ )+
J#k

gjik e‘_qk (#-s) ds.

Let f;eD;. Then,

lim — [(S(t)f)k—fk
t->0

= lim —tI— [e'q"tTk ®fe — fil

t>0
+ lim —-—[f Tr (t—5) Z (S(s)f)J ‘I e qk(t_S)ds
t—>0
JFk
N
= Az [+ + Z qikfi-
i=1

By standard semigroup theory we obtain the resuli of the theorem.
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It is well-known that the Picard sequence of iterates of a non-
expansive mapping T from a closed & bounded subset C of a convex
Banach space into itself need not converge to a fixed point of T.
Therefore, for each point x in C, one considers a Picard sequence
starting from x and generated by T; where T; x =1t Tx + (1-9) x,
t (0, 1). The intent of this note is to present some convergence
theorems for such sequences, which generalize several known results.

1.
In this section two results related with the convergence of the

sequence of iterates of a densifying mapping to a fixed point are
given. For a densifying mapping, one may see Sihgh [9] & [10]. 1t
is also called ‘condensing® (e.g. see Ray [4]).

Motivated by a general type of mapping introduced by Hardy
and Rogers [3], Singh [9] or [10) and Ray [4] independently proved

the following result,

‘Theorem A.
Let C be a closed, bounded and convex subset of a strictly

convex Banach space X. Let T:C = C be a dcnSnymg mappmg
satisfying

(I 1 Tx—-Tyl < allx—yl +b(!|x-Txll+lly—TJ>"Il)'

Fe(ly—Txfi4+1tx~Tyi),
for -all 'x, y in' C and for nonnegative numbers g, b, ¢ with

a+2b+2:< 1. Then, for xo € C, the sequence of interates
¥ Thxs work was partlally supported by the UGC, New Delhi ( Code No. 7574)
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{ T:'xo} , where Tt : C—- C is defined by

Tt==tI+(I-t)T,te(O,l), . ) (1.2)
converges to a fixed point of T.

Several special cases of this theorem have been obtained. We
mention a few. Incase b =¢, a= 1, t =4 we geta result due to
Edelstein [2]. In case ¢ = 0, we get a thesrem due to Singh and
Riggio [11]. 1In case ¢c=0and T is completely continuous, we get a
result due to Barbutti and Guerra [1]. Incase b=c=0, a=1 and
T is completely continuous, the result of Reinermann {5] is obtained.

Theorem A has been generalized by Singh [7]. Theorem 1 of
this note presents another generalization. Let the mapping T on C
be such that ‘

NTx — Tyl <k.max{lx - yi,
P x=Tx +1y=Ty ) + & (Nx=Tyn +1y-Txi)} (1.3)
forall x, yin Cand for k, k' = 0 with k +2k" < 1.

It is clear that (1.1) => (1.3), that is, mappings satisfying (1.1) also
satisfy (1.3). The example in Theorem 1 (xxv) [6, p. 266] can be
used to see that (1.3) does not imply (1.1). Hence Theorem A becomes
indeed a special case of the following :

Theorem 1.

Let C be a closed, bounded and convex subset of a strictly convex
Banach space X. Let T:C — C be a densifying mapping satisfying
the condition (1.3). Then fqr each xg in C, the sequence of iterates

{ T':xo } , where T P C » C is a mapping defined by (1.2), con-
verges to a fixed point of T.

Proof.

The result follows from a well known result (see, for instance,
Singh [10, Theorem 3.3.1]), if we could show that
ITex—pll <Bx-pl for p in F(T;) and for all x in C=F (Ty).
Since T satisfies (1.3), we have
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I Tx—pll =1Tx~Tpll < k. max {Ilx~pll, %l x—Tx B
+ kK (x=-pi+Up=-Txi|)
which implies
(i Tx-pi <lix-pf. (1.4)
A standard argument (see, for instance, {1, p. 30—31] or [9, p. 504] ),
using (1.4) and the strict convexity of X, shows that | T x—p Il <
Px-~p) forall xin C-F(Ty) and p in F (T}).

Theorem 2. ,
With the hypotheses of Theorem 1 if, in place of (1.3), T satisfies
the condition '
P Tx=Tyl < k. max { | x=y I, 3 (Ix=Tyl +hy-Tx§)}
+ K (Ix=Txti+1y=Tyl), (1.5)

for all x, y in C and for k, k' > 0 with k + 2k’ < 1, then { T:'xo}

converges to a fixed point of T.

Proof

As in Theorem 1.

In her unpublished work, the condition (1.5) has recently been
introduced by S. Ranganathan (B.H.U., Varanasi). It is easy to see
that (1.1) = (1.5). Thus Theorem 2 presents another generalization
of Theorem A.

2.

In this section we consider the condition (1.3)and (1.5) with
k + 2k’ = 1. With this special case while conditions on the space are
relaxed considerably, we assume the convergence of {xz}, where
xn+1 = (1 —t) xn +t Txn B
Wong [12] proved the following :

Theorem B.
Let X be a convex subset of a normed linear space B. Let T be

a self-mapping on X. Suppose that there exist aj, i=1, ..., 5in

5
[0, 1] such that ® 4; =1 and for all x, y in X,

l=
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llTx Ty Il < ay | x~Tx | 42 1 7=Tyll +az i x~Ty
T Fally-Txl +aslx-yll . (2.1)
Let o € X, t € (0, 1) and xpy3 = (1 ~¢) x» +t Tx, for each
1nteger n 0. Suppose that the sequence {xn } converges to a pomt
u'in X Then u is a ﬁxed point of T.
Th1s theorem has been generahzed by Singh {8]. Twa. other

generalizations are presented here. Note that 2.1y > (1.3) and
(21):>(15) w:th k+2k’—-l ‘

Theorem 3.

Let X be-a-convex subset of 2 hormed linear space B.. Let T be a
gelf-mapping of X. 7 Suppose that ‘there-exist k in [0, 1], &’ in (0, 1)
such'that k 4- 2k’ = l.and for all x, y in X, (1.3) holds. Let xy € X,
te (0,1 and xpp1 = (1=1) X + ¢t Tx, for each integer n > 0.
Suppose that the sequence {x,} converges to a point u inX. Then

Tu = u.
Proof
Let n > 0. Then .
(2.2) fl Xl " Tull=1(1-1) (xn =Ti) 4 ¢ (Txn;— Tu) |

< (=0 llx, = Tul +£1Tx, ~Tull.

By hypothesis,
(2.3) »u'nxn —zTu < k max lhx, —ull, 3 Cix, = Tx, I
+hu—Tul)}
+k’(llx —Tul|+llu—Tx n.

Since {x } converges to u and X pl = ¥ = t (Txn -x )
{Txm -~ xm } converges to 0. Using (2.3), (2.2) becomes by letting

n-=>o,
Nu-Tul < Q- lu—-Tuj +t (kN u=Tull +&" | u=Tul)
(2.4) = ((1=0)+t(k+k) ) ju-Tul .
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By assumption 0 < k+ k' <1. So O0<1—-t4t(k+k')<l
Hence from (2.4), Tu = u. '

Theorem 4.

With the hypotheses of Theorem 3, if in place of (1.3), T satisfies
the condition (1.5) with k, k&’ = [0. 1] and k + 2k’ = 1 thenu isa
fixed point of T. :

Proof .
Let n > 0. Then by (1.5),
2.5 ||Txn—Tu||sk. max{llxn - u=, %(len—Tull
+ K’ (Jl'xn,—_ Tgf"l I+ llu—=Tul).
Recalling that (2.2) holds and the sequence {Txm - X }"apd
{u - Txm } both converge to 0, we have, from (2.2) and (2.5), by

letting n — oo,
Nu—Tull <A —-0O)u—=Tu)+tk/2+Ek)Hu—Tul
=1 —t+t(k+2k)/2Dllu—Tu} '
g = —-t[2)ju-Tul.
Since 01 ~¢/2<1, u="Tu.
We thank the referee for his kind suggestions to imprové the
manuscript. :
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A COMMON FIXED POINT THEOREM
FOR OPERATORS ON BANACH SPACES
By
S L. SINGH
Department of Mathematics, L.M.S.
Government Postgraduate College,
Rishikesh, Dehra Dun, 249201, India.
A result generalizing fixed point theorems of Lernfeld, Laksh-
mikantham and Reddy, and Naik is presented.

1. Introduction
Let E be a Banach space and E0 be the Banach space of all

continuous functions from a finite closed interval I to E where

fig =sup If@WIg,vSfeE,
0 rel

Let S and T be operators from EO to E. Anelement f E0 is said

to be a fixed point [1] of T if
Tf = f (c) for some fixed ¢ e 1.

Consider the following conditions :
ITf~Tgllg <kl f—glg - v (1)
0
forall f, g E0 where k € [0, 1).
ITf—Tglg=pPlf-glg +a(1f()-Tfig
. 0
Tlgl)-Telg)
+"(Mf(c)-TgHE+llg(C)—Tf IIE) e (2)

forallf,gEEowhere p,qr=0,p+29+2r<<1.
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The conditions (1) and (2) have been introduced by Bernfeld at al. m
and Naik [2] respectively. We introduce the following :

IS/f-Tel g < k. max{nf—gnEEO, I f(@)=Sflg,

lg(e)=Teglg, [lgl)~SSf Ig
+uf(0)—TgHE]IZ} e (3)

forall f,g E0 where k& [0, 1).

We remark that (1) = (2) > (3) if S=T in (3), i.e., operators
satisfying the contraction condition (1) will satisfy (2) and those
satisfying (2) will also satisfy the special case (S=T) of (3). Result of
this note is proved under the condition (3).

2. RESULT
Theorem

Suppose that S, T : E

hold :

(i) Given fO e E0 » every sequence of iterates { fn} satisfying

0o~ E satisfy (3). Then the following

szn =f2n+l (C)’ Tf2n+1 =f2n+2 (C), n=012 . >

for a given ce I and | f

n
- fn @1 | converges to a common fixed point f* of S and T.

(ii) Given f, , g, € E0 , let {fn} and {gn} be the sequences
of iterates corresponding to fO and & constructed as in (i).

Then

thy gyl . @)

If, in particular, fO =8, and { fn YE{ g, }, then

ufn-gn lg =2(1 -k nfl—

fyig -
0 0 B
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(i) Let Ky={feEy: [ f nEO= 1/ g} and let{f }
and {gn} be as in (i), If fn - gn S5 KO for all n, then
lim fn = lim g, .. (5)
Finally, if we define

Kew = {feEy 1 f-1* nEO= Hf@=r*@lg}

where f* is a common fixed point of S and T, then f* is
the only common fixed point of S and T in Kf* .

Proof
Let fO (S Eo . Choose {fn} asin (i). By (3),
1 st ~Dang2 1B =1 oy 1 © =2y @ 1
= uSf2n - Tf2n—}-1 "E
< k. max { | f2n—f2n+1 IIEO,

This gives | f2n+1 —f2n+2 [ E, <kl f2n —f2n+1 I Eo'

Similarly 1 fy, 45 = fopy3 ! E, skl fopry ~ Songa B E,

Hence Il f =/, | B, < kNS, =1, 'Eo’ n=1,2,3..

Consequently, { fn} is a Cauchy sequence and converges to some
f*eEy. By(),

ISf* =Ty ISk mx {4 f*=f) . "Eo’

LF*@ =S * gl fy 1 @O=Th, g
LSy @=S/* g+ 1 *@Q=Tf yIglh
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that is
* _ —
’ll Sf f2n+2 (o) IIEsk. max { | f* f2n+1 ”EO,

/¥ @ =SI* g M fp ) @ =Fp s @l
F 0 Sy @=SST NG+ 0 7*@ = Fy ) @O1gh
' Making n - o0, we obtain

ISf*~f*(c) g = kit f*()-Sr* Vg
implying S f* = f* (¢). Similarly T f* = f* (c). This proves (i).
Proof of (4) is the same as in [2]. If g = fO then
8y () = fO (¢c)and S g = Sf0 . So 8 (c) = f1 (¢). Hence from (4),

Sy =gy g S (=R Cf = o g

0

proving (if).

To prove (iii) we note that fn -8, K0 for n=0,1,2, ... ...

Vonir = Sang1 VBTV o © 7 82041 O Vg

= | Sf2n_Tg2n+l lIE

sk -max{ /)y — 8, 1! E,’
" f2n (C) —f2n+1 (C) "E,
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+ U/, @ =gy @ Mg T}

+ g2n+2 _g2n+1 uE

.
< k. max { | fzn.—~ 81 .IIEO.
U on = Tongr | By’
W &ny1 ~8opgn | E,’
U g0~ ngg ”Eo
+ f2n hf2n+/1 ”” EO _
TV it " mga Ve

+ g2n+2 - g2n+1 I EO'

Making n - oo we obtain

W r*—g* . sklf*—g*l. ,
E Ey

Since fn -+ f* and g, > g*, where f* and g* are common fixed

points of Sand T. So f* = g* and this proves (5).
Iff* gtk ¥ are distinet common fixed points of S and T,
then by (3),

b S* - g* IIEO- I f* () —g* (o) g

- S * __ %
i S/f*-Tg Ig

§k"f""g"ﬂ ]
Fg
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a contradiction, Hence S and T have a unique common fixed point

in Kf*'

Bernfeld et al. [1] proved the above theorem under the contraction
condition (1),rvand Naik [2] generalized their result by considering the
condition (2). Thus, in view of the remark preceding the above
theorem, the above theorem presents an interesting generalization of
their results,
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THE INVERSE SPECTRAL PRCBLEM FOR A SYSTEM
OF THREE COUPLED FIRST ORDER EQUATIONS
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Abstract

The spectral transform has proved to be a powerful tool for
solving non-linear evolution equations. In this paper we consider a
spectral problem. We define a set of speciral data and show how we
can recover the potentials from this data. As an example the non-
linear Klein-Gordon equation is solved- by using the spectral
transform.

§ 1. Introduction

In this paper the spectral problem

i, = iCuy = qra (¥) uz + Gz (x) us
= I w?{up = goz (X) Uz + o1 (x) ts ()

us, A+ iw § ug = ga1(x) w1+ gaz(x) 42
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where w = ¢ /3 is considered and solved by using the Spectral:
Transform. A set of spectral data which is sufficient for the recon- -
struction of the potentials g1z (x), qis (=), q23 (%), ga1 (%), gsr-(x);*

g3z (x) is found, and the problem of this reconscruction, the inverse
problem i s, solved.

However, until recently the only spectral problems for. Whlch the
inverse problem had been solved were second order ones by
Ablowitz [1] et al. and their matrix generalisations by Wadati [2] and
Calogero and Degasperls

As an example the non-linear Klein- Gordon equation

o = eZG _ efG
Xt

is solved by using spectral transform.
§ 2. The Direct Spectral Problem

We can define Jost functions which are solu};ions of (1) by the
bou adary conditions

—
o

r
. \

g | 0| wscn e
L o)
{0

e—imgcx<l>2(X,‘C)->|i| 1 as x -+ — o0 ' (2b)
Lo ]
[

lex 30 » | 0 | asx—>—-oo = - 2c)
(1)

and

(1 '1! ‘

e X V(60 > ? 0 | asx =>4 0 - Ga
Lo
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S T T
o @ C‘xipz GO | 1 | asxd Heow [ (3b):
)T
- {01 P T
§ BT ys (x, 0 > ll 0 ll as x ->+°Q 6o
L1 Jl

Together with the boundary condition (24) cquation (1) is
equivalent to R A ‘ G

e g ) =1+

e gy . —ily
: f [ g1z () e $12 (3, )+ quz (V) e $13 (¥, 0) ] dx
-i{x o
e :: d12 (x, §) = f

— 0 i .

eV INEETY

(o e o5 0+ m e a0 fa

e—iqu513 x, 0) = ]'

- 0

VAT 1S

{amm e oy +am0r e 400} f @

Ex‘pagdigg-‘_e— itx ¢1 (x, {) as a Neumann series ..
E o . w ‘
T @y = 3 W @Y
n=
o : I
by (x,0)= l 0 ‘
' Lo)



i

D I (a0) K 0.0 + a0 K 0103 v
-~ 00
.
Ry = [ e VIPEETI g0 i 0,6 +
~ 0

+4,0 K209 @

X

B ey = f VIS ) k00 4
- o0
+a,00 K00 dy
)
If we define
X
Q@ = [ max{g; )}, Q () <
-0

then we can show that:

0w sF{+260"} L")
|
ey s 5 { -0} L (n)J
13
Sn

g Sasls -¢

Thus the Neumann series converges for ~ 36“— < arg (g - %-

by comparison with the series

{z 4£2(=1)" } Q" () =1 exp 2Q ()}

+ 3w (-Q@}
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o0
L (-0") L ow="1teaeqm

1 | _
-3 exp { —Q(x)}
It follows that '

e 8 4 0) Il < »%— exp {2Q (0} + % exp { ~ Q) }
and

eT 8 inn ) | 25 e QW) - 1 e~ QM)

-3
13
Thus ¢ (%, §) is uniquely defined for
57

e ™
—Tsargcs———(,—

and is analytic in the interior of this. region. Also by using the
Riemann-Lesbegue lemma it can be seen that

[1
-ilx I
. IC":{M(X,C)—»{O"
S Lo
as { —> oo in the region.

Simijlar results apply for $a (x, §) and ¢35 (x, §) which are defined

I
L1

as X —> — 0

for
_ % < arg { < —76'5 and — -% < arg { < -’li respectively.
0} {'0]
iy .l iy |
szx(#Z(x’c)__)l . '[ and ¢ szxgs(x,C)_> Lo |
- l |
J J

Lo
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Also we have ¢¥; (x, §), ¢2 (x, {) and ¢3 (x, {) as defined by (3) in
the regions

T _ S® T . T 5% -
& S(MEES g Esanls pand Sesanls
—3—“' espectlvely we need more Jost functions,

2
These can be deﬁned as’ follows First we find the Jost functions

g (0 b (6D, 8 0, 0T (D R (50 and

Y3 (6, () of the conjugate spectral problein.

+ . + + +
Ny IV =)V, gm0V

- Gt + *
Voo W0V, = —gn) Vy —qu (9 V,
+ . +
Vg, = iw{V, =-—q13(x)V "‘123(7‘) V _ ©

Usmg the same methods as before we get
& Ex

+ - S -
$1 x> i 0.1 as x— — oo, defined for—}s
lo)

argCS%”- (72)

o .

.]
. l”’§x¢q (x, %) - l 1 ! as X = o0, defined for
Lo
z-—%SargCS % ()
e
szX (x,(;) } 0 | as x - — oo, defined for
L

~

e e WL TE - -%E = e C = %«E (76)
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: Y O ,
itx - . '
e Y1 x0 - l| 0 f as x -» - o0, defined for
| ' LOJ
._5675 < ar‘g@g‘—-’% (8a)
SN
'wdqu;z x, % - { 1 | as x~> + oo, defined for -
Lo
%<arg§<l61 @b)
e zng%+ (x,¢) > | 0 | as x » + oo, defined for

1

-

T ) T ,
-5 Sagls— . {8¢c)
We can now define

0, (v, §) = 2" (1, {) X ¥3° (x,§), defined for -.'.g_g arg{ < ,z_;

| R
B2 (%, Q) = ¢35 (%, § x ¢1* (x,), defined for — —56—7T srarg L< _7”
| | (9b)
B (5, ) = 1* (%, 8) X ¢5° (v, {), defined for 2 < arg { < %’3
| )
1 (x 9) =\£z %, §) X $3 (%, ), defined for T < argg < lgi N
- N (lOa) |
p2 (x, §) = ‘g3+ (x, §) % ﬁfr (%, é), defined for lg—s arrg-Cws —721

(10b)
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ps (4, 0 = vyt (%, §) X ¢2" (%, §), defined for ~ -% <agl

| < -5 (109
where X is the standard vector product. If
L
fmax{lq O 1) e lyldy<oo (1)

- ®©
for all X then all functiona are analytic throughout the complex
§ — plane. In this case we can define a matrix {a ©) )by

3
¥i(x,0) = = 2 ©¢ =0 (12)
o=t § |

and its inverse {a ©1}

A © WD o a

Also we can easily show that

) 3
$: (60 = =
_]:::

det {a;; (§) } = det {Eij ©) =1,

w

P + _ ,, . . " .
v & C)—]E a;; (C)w *, 0) (14)
and- 7 ,
+ 3
¢; (x, 0 = 2 a (C)\P *, 0 (15)

—

J=
We now define F; (x, §), Fz (x, C) and F3 (x, {) which are the rkey

functions in the inverse spectral problem




eiCxFl(x,§)=

.
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?_51 (x’ C)

0 5, 0

ass ()
_\_Vl (xa C)

- an (©)

p1 (%, §)

asz (§)

Sw P

for_-—6~<arg2;<--_6
™

for -5 <agt < &

5w

for g <agl< “

Sw ks

for T<arg§<_6_

Across the boundaries betwzen the various regions we have the

differences.

az ()

9_1 (x’ C)

‘f1(x,§)=_al3 (C) ¢ (x C) onargg_ %
ass () ass ()
Bl (x’ C) -

-¢1(x,0) =—~ @z () $2 (x,¢) onarg{ = — %
az (§) as (©)
Vi (¥ §) 91 x, 8 a2z ()
air @ . = _ pz (¥, §) on arg { = %
T ~ ags (£) a1 (§) a3z (£)
newo  pw S
an O o = S Qa(x,‘C)onargng’t

a1 (§) az (§)



also

eiw C’ch(x 0 =

and

eI ET B, ) =

i44

$2 (x, §)

82 (x, §)

211 ©®)
!’2 (x7 C)

»0’22 ©) ”

P2 (¥, §)

as (©)

?_53 (x= C)
05 (x, §)

az (0)
Vs (x, §)
as G)
s (x, )

an (4}

for = < arg { < —

I

2 6

fof~-—-£61‘<arg§< - %’—

Moy T T
for——-—q~<argc<v—6—-

fér% <arg { < % 7

'l ’ kig
for - < arg { < 5

S5n

for g—<arg§<—6——

for-——g <arg { < — %(18)
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We also define (for real § )
f (e, = 8= Fi(x,-iw2(-10)) =

r e -iwy
e~ WX for £ > 0

ass (— i w2 E) ‘
} $1 (x, -iwz':g)' e~ EX forg <0 (192)
|L .
folx, -8 =F; (X,. —iw (& - 10) )’ =

( fl.(x,—iW&)e—mE"x for £ >0

Bl(x,—ico&)
e P8 forE <0 (19

ass (— i@ &)

Similarly

fa(x, &) = Fa (x, =i 0* (€ - 10)) (20a)
fit, -8 =Fo(x, —ia(E-10)) (20b)
fo (x, = &) = F3(x, — tw? (§ - 10)) )
and

fo(x, — &) = F3(x, - ioE —10)) .(2lb)

F; (%, &) has the following properties.
L
() Fi1(x0 - [0'] as [ {| > ® : QY

Lo

(th) on the boundary § = « i w § (§ real)
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F]_(x," im(§+ 10)) ’Fi(xs"iw(é". 10))

=R13(—§)f5(x:“§)c-i\/3m§x

(23a)
where
Ris® = [ a
13 &) ;—_QM for g <0
533 (i w? &) |
a3 ([ m2 é)
dil (w2 ) for& >0 | =

S

Similarlyon { = — /02 & (¢ real)
Fi(x, = 10? (G +i0)) = F1 (¥, — i 0? (& - i0) )

== P.12(~§)f4(2¢ - &) ei\/302§x (24a)

where

az(iog) for & > 0

222 (lawd \ i}
Piz () = ‘ (24b)

a1z (&)
- E—au(imé) for £ < 0

-

(i) Fy(x, £) has poles (assumed simple) at the zeros

of a5 ©), a11 (§) and a2 (©) in the appropriate regiofs of the
complex { = plane.

For — Z— <arg { < 761 the poles occur
Whete ags () = 0 in which case if (11) is satisfied

?_.1 (x, C) = -+ (;]'3 © ‘?.3 (x; C)
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61 (v, §)

Residue = e~1EX

-;%233 (3
- :713(C) ?a(x’ g)‘e'— igx.

7;Z*~033(C)
-y Fy(x, e V3O @5

this is a residue of second type. If (11) is not satisfied we proceed as

follows,
0, 0 X ds(x,0) = — am (O $2 (%, 0) (25b)
Thus when 233 )= 0
61 (x, )= B ¢a (3, 8)

for some scalar 8 and (2f@) follows without difficulty. Similarly

for —56“ <:crglf < % the poles occur where @3 () = 0. 1In this
case
Residue =B Fo (x,0) e Viagx (25¢c)

we shall call this is a residue of first type.

In this region %— <arg { < —;— the poles occur where a;; (§) =0

in which case if (11) holds
P2 (%, 0) = — azn (§) v1(x, 0

P_Z (xs C)
069 ==
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E”l (x9 C)
Residue = e

rid an §)
22 (X, C)

—-i{x

_ T igx (prov*i'dedyazl ©#0
ds1 (C) dc a (C) '

=v3agx

— _ an(©) . 'ng_(x,‘g)‘e
an (§) via an © ~
- BREmpe V3V

which is a residue of first type. Thus provided aa1 (§) # 0,
we-have a residue of first type. , provice? |

If @31 (§) = O it follows that pg (x, §) = 0 then (using de 1"

Hospital rule).

d
. Fid 82 (%, 0) -
Q) oW | _
. g © ; i
It can easily be shown that
W06 D) X pa (6, 0) - 45 06 0) = a1 ©) o € @

differentiating the equation (27) with respect tbzgrémr'd putting
a1 () = ass () = 0and p2 (x,0) =0
gives the result that vy (x, §) is a linear combination of i_ p2 (x, 0)
- o S g /

and ¢3 (x, ). Therefore
Residue = —— Ly ge” [BF

<7 (@)
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- 3wl x . L3y 7
=phx e v ”Cx+y¢3(xt)e IWELx
. (28)
Wthh is a linear combination of both type< of residues. '

Similar resalts apply for

L S
T<arg§<T

The functions
$2 (x, §) and- ¢35 (x, )
behave in an analogous manner.

Spectral Data.
The spectral data required for solvmg the inverse problem are

(’ Ris (§), P12 (§), Ra1 (§), Paz (£), Rz (£), P31 (§) (— °°<§<°°)~1

| S sop 2B s K=1,2, ... n) ]
LK K"K K ) J

where the CK (K =1, 2, ...n) arc the location of the poles of
$1(x; 0), $2 (x, ) and ¢35 (x, ) and ag » Bg Yi are the co-efficients

in the residues and Riz (&), Pi2 (§), Rau (§), P23 (§), Rsz (§), Par (§)
(— oo & < o0) from the continum part of the spectral data.

§ 3. The Inverse Problem
From the three properties of F; (x, {) we have

)
1 f {Rla (&) /5 (x, &) el'\/3w§x

Fi(x,6)=1- T i E—-iw2g,
- 00 ' i
Pia () fi (v, B) ,— i/ 3W2Ex
+ lg—zfvg,, }dé
F; (x, '
B S SOV
K=1|L CK‘C,,

BK F2 (x, CK )

)
fe WV 30lg X g
k8,
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Putting £, = — i w (§, — i0) in (29) gives

0
L[ Re@fngvaves

filn k) =1= 5 PE
Py (8) fa(x, &) — 14/ 3w
+ 12&-w42§0 e )da
L O
- Z - e K
K=1 CK+IWCD
BKFZ(-’C;CK) }
-/ 3wl x
+————~—~CK+I.W&0€ K J(30)

Putting &, = i w2 (§, — io) in (29) gives
[0 8]
f5(x,8)=1= 271”, f [ Rm&(a{;sg,g)em/ang

— 0
Pia (§) fu(x,8) — i/ 3w Ex
+ IE.rZ‘l" E.ro4" io € }d&

Yie Fs (x, { )
K Ke—\/3w2CKx
C +iw2§o

K
BK F2 (x:v CK)

:
gerrge VKT e

-

Similarly we can find fi (x, &), f2 (x, &), f3 (x, &,) and f§ (x, &,).

The functions fl (x') E.yo)') f2 (x') &0)5 f3 (x5 E.ro)’ f4 (x’ E.ro)’ f5 (x5 go)
and fg (x, &,), together with those found by putting { = — wi;,+«? §;
(j=1,2,...n) forma set of singular. Fredholm/matrix equations
which are linear in the unknowns

fl (x; §), f2 (xs E.))s f3 (xs &.1)5 f4 (x5 E.r)’ f5 (x: E.:)') f;i (x5 E.:)!
FJ (x, — WQK) and Fj (x, w2 Ly ), ]r K=1,2..n ]l .
|

Lj=1,2,...n)
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Thus these quantities can be found if the scattering data are givéﬁ.
Since each of them, when multiplied by an appropriate exponential

of x, satisfies (1) the reconstruction of g1z (), g1z (%), g3 (x), g21 (%),
ga1 (x) and gss (x) are straightforward.

§ 4. A Nonlinear Klein-Gordon Equation.

One example of an evolution equation which is solvable by this
spectral transform is the non-linear Klein-Gordon equation Fordy

and Gibbons [3]
- e26 -6 (2)

we can write (1) as
U, —-ifAU=Q(U (33)

where U is a three-dimensional column vector and A and Q (x) are

the 3 x 3 matrices.

rcol 0 0}

A= i 0w (34)
L0 0 ws)
where w; = 1 R Wy = W2 s ©g = — W
and
0 712 (%) q13 (x)
Q&) = ‘, q21 (%) 0 g23 (%) | (35)
IL gs1 (%) g3z () 0

If the matrix of potential Q (x, #) is a function of time ¢ as well as x
then the solution U (x, ¢, £) of (33) must also be time dependent.

If this dependence is given by
U=Px LU (36)



fs2
éross-differentiation with (33) shows that

Or =Py + {P,(i{n +0)} (37

Putting
{' 0 —-1 1 \l
_ _ ’8A
o) vE; 6x % 1 0 1 } (38)
L -1 1 0 J
and
lr“’l_l 0 o
|
P — 3_11,—(e26+2e“’6) i 0 o) ' 0 (39)
! ~1
-LO | 0 o) ]

makes (37) equivalent to (32), since (33) and (36) are satisfied by

exp (fo; 53 + G o oLy F et (=123 @)

Since (40) is a solution of (36) w2 can write

(_ —‘% - P’) exp ({0, Lx + (i(ojl;)_l (}E (60 =0
(41)
we get the evolution of the spectral data
P (t§) =P12 (0, &) exp (w2 E1y) 4y
Similarly we get P13 (z, §), Ra1 (¢, &), Pas (£, €), Rsa (4, &) and Ps;

(¢, £). It is obvious from (41) that poles do not move

L 0 =0, ©

gnd we gét the residue as
e O =+ exp (v3r un &

Similarly we can calculate B g @ and ag ()
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The solution of (32) consists of three steps.

(/) Solve the spsctral problem (33) at time ¢ = 0 with Q (x, 0)
given by (35) and find the spectral data S.

(ii) Allow the spectral data to evolve to time ¢ according to
R13 (&; t): P12 (t: &): RZI (t: &): P23 (ta &): R32 (t: &)
P31 (¢, &), Ck ®), O‘K ®, BK @), YK ().

(iii) Invert the speetral transform to find Q (x, #), and hence o (x, )

from the spectral data.
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In the following, as in [1], we let (X, d) be a complete metric
space and let B (X) be the set of all nonempty, bounded subsets of
X. The function § (A, B) with A and B in B (X) is defined by

S(A,B) =sup {d(a,b): ac A, beB}
If A consists of a single point a we write
5 (A, B) = § (a, B).
If B also consists of a single point b we write
S(A, B) =3(a, b) = d(a, b).
It follows immediately that
S(A,B)=38(B, A) =0,
§(A,B) < 8(A,C) +8(C,B)
for all A, B and C in B (X).

If now {A, : n=1,2,...} is a sequence of sets in B (X), we

say that it converges to the subset A of X if

(i) each point @ in A is the limit of some convergent sequence
{an} with ay in Ay forn =1,2, ...,

(fi) for arbitrary &€ > 0, there exists an integer N such that

An o As for n > N, where A, is the union of all open spheres

with centres in A and radius .

155
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The set A is then said to be the limit of the sequence {:Ay, }.

The following lemma was proved in [1].

Lemma., If {A,} and {B,) are sequences of bounded subsets
of a complete metric space (X, d) which converge to the bounded
subsets A and B. respectively, then the sequence {3(A,, By)}
converges to § (A, B).

Now let F be a mapping of a complete metric spac: (X, d) into
B(X). We say that the mapping F is continuous at a point x in X
if whenever { x, } is a sequence of points in X . converging to x, the
sequence {Fx,} in B (X) converges to Fx. in B (X). We say that F is
a continuous mapping of X into B (X) if F is continuous at each point
x in X, We say that a point z in X is a fixed point of F if zis in Fz.
If A is any nonempty subset of X we define the set FA by

FA = | Fa.
ag A

We now prove the following thecrem.

Theorem 1. Let F and G be continuous mappings of a complete
metric space (X, d) into B (X) satisfying the inequality ;

SFrx,Gry)<c. max {§(F " x, GS») : 0<r,5s < p} 6))
for all x, yin X, where 0 < ¢ < 1 and p isa fixed positive integer. ’

If F and G also map B (X) into itself, then F and G have a unique
common fixed point z. Further z is the unique fixed point of F and

G and Fz = Gz = {z}.

Proof. Since we are supposing that F and G map B (X) into
itself we note that both sides of inequallty (1) are finite. Further, if
A and B are any sets in B (X) then it follows easily that

S(Fr A,GrB) < c. max {8(F"A,GsB) : 0<r,s<p} (2
both sides of the inequality again being finite.

Now let x be an arbitrary point in X and put X, = F# x and
Y,=G%¢x forn =0,1,2, .., where FOx = G%x = x. Let us
suppose that the set of real numbers o

{8Xn,Yp) :n=1,2,..}




157

is unbounded. Then there exists an integer n > p- such that

(A -¢)8 Xy, Yp) > c. max{b(Y;,Yp, t0<s<p)

‘ and
1 $(Xn,Yp) > max{§(X,,Yp) : 057 <n}
These inequalities imply that '

8Ky, Ys) < 8Ky, Yp) 4+ 8 (Yp,Ys) "
< C&(Xn,Yp)-l— (1 - C)3(Xn,Yp)
‘_‘8(Xﬂ9Yﬁ§

for 0 <r<mnand 0 <s < p. Thus

-

8Ky, Yp) >c.omax §(X,,Ys) 0= r<n; Oéésp}L

However on using inequality (2) it follows that i

§Xn,Yp) s c. max{S(X,,Y;). tn—-p&r&n;0<s<p}
<8 Xu» Yp) .

from what we have just proved, giving a contradiction. This contra-

diction implies that R '

sup {8 Xn,Yp) :n=0,1,2,...} = M| < o.

Similarly we can prove that

sup {8 Xp,Ys) :n=0,1,2, ..} =Mz < @
and it follows that o

sup {8 Xr,Ys) 1,5 =0,12,..}
< sup (5 (XKr, Yp) :r=0,1,2 ..} +8(Yp,Xp) +
+sup {3 Xp,Ys) 15=0,1,2, ...
= My -+ §(Yp,Xp) + M2 '
L.=M< .

Now for arbitrary ¢ > 0, choose a positive integer N such that
gNM <e&. Then if m,n = N, we have with repeated use of
inequality (2)
SXXE,Yp)<cmax{8§X,,Ys)im-p<r<min-p<s<n

= max (3, Yo) im-p<rsmin-2p<ssn
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cN L max {3X,, Xs):m—-Np<r<m;n—Np < s<n}

A

< cN M«<ze
and so
S y Xa) <3 X, Yr) + 3(Y,, X)) <2¢
for m,n,r = Np . Choosing a point x, in X, for n =1, 2, ..,
we have
dGm,xn) < 8XKm,Xn) < 2¢
for m,n > Np . The sequence {x,} is therefore a Cauchy sequence
in the complete metric space X and so has a limit z in X. Further
5(z, Fxp) < d (2, %m) + 3 (xm , Fxp)
d(z,%m) + 3 Xm , Xnt1)
since X is in X and Fx, is contained in X,4; . Thus
3(z,Fxp) <d(z, xm) + €
for m,n + 1 > Np. Letting m tend to infinity it follows that

A

(¢, Fxy) s ¢
for n+ 1> Np. Using the continuity of F and the lemma, it
follows on letting u tend to infinity that

3(z, Fz) < ¢.
Since ¢ is arbitrary 8 (z, Fz) = 0 and so we must have 'Fz = {z} .

We can prove similarly that there exists a point z’ in X such thag

Gz' = {z’}. Then

d(z,z') = d (Fr z, G? 2')

<c. max{8(F'z,Gz):0<r,5<p}

cd(z,z2')
and so z = z' . The point z is therefore a common fixed point of
F and G.

R

Now suppose that F has a second fixed point w so that wis
contained.in Fw and F* w is contained in Frilwfor n= 1,2, ...,
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Then:
d(w,z) < & (Frw, GP2)
<c max {§(F'w,Gsz) : 0<r,s < p}
=c 3 (Frw, Gr2)
and it follows that
Frw = {z} = {w}.
The point z is therefore the uniquc fixed point of F.
Similarly z is the unique fixed point of G. This completes the
proof of the theorem.
Corollary. Let S and T be continuous mappings of a complete
metric space (X, d) into itself satisfying the inequality
dl?x, TPy) < c. max-{d@S"x, Tsy) : 0<r,s < p}

for all x, yin X, where 0 < ¢ < 1 and p is a fixed positive integer.

Then S and T have a unique common fixed point z. Further z is the
unique fixed point of S and T.

Proof. Define mappings F and G of X into B (X) by

Fx = {Sx}, Gx = {Tx}

for all xin X. The conditions of the theorem are satisfied for F and
G and so they have-a unique common fixed point z. The point zis
then the unique fixed point of S and T.

The result of this corollary. was given in [2].

Theorem 2. Let F be a continuous mapping and G be a mapping-
of a complete metric space (X, d) into B (X) satisfying the inequality

S(FPx,Gy) <c max {F'x,Gy), s (F'x,»:0<sr<pr )
forall x, y in X, whete 0 < ¢ < | and p is a fixed positive integer.
If F also maps B (X) into itself, then F'and G have a unique common

fixed point z. Further z is the unique fixed point of F and G and

Fz = Gz = {z}.

Proof. It follows from inequality (3) that
S(FP A, Gy) < c. max {S(F A, Gy), §FA,»):0<r<p)
for all A in B(X) and y in X.
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Now let x be an arbitrary point in X and define X, as in the -
proof of theorem 1. Letting yo be an arbitrary point in X we now
define the sequence {y,} inductively. Having defined the point y,—;

we choose a point yn in the set Gyp-1 = Y, .
The assumption that the set of real numbers
{82, Y) :n=1,2,...}
is unbounded implies that there exists an integer n > p such that
(I ~¢) 3(Xn, Y1) > c. max {8 (yo, Y1), 3 (Y1, Y1)}
andm o ’ - -
§(Xp, Yy > max{§(X;, Y1) : 0 < r < n}:

As in the proof of theorem 1, this leads to a contradiction so that
sup {8 Xy, Y1) :n=0,1,2, .} =M; < 0.
Similarly it follows that ‘ ' 7
sip {S(Xl,j, Ys):n=0,1,2,...} =My < ©

and so

sup {8 Xy, Ys) i r,5=0,1,2,..} <M+ 31, Xp) + M
; =M< .

Again for arbitrary 8 >0, choose a positive integer N such that

N M < s. Thenif m,n = Np it follows that §(Xm, Yn) < &.
As in the proof of theorem 1 it follows that F has a fixed pomt z and
Fz = {z}. ‘Also

d(‘ym>yﬂ) 3(Ym,Y,,)
S(Ym s Xo )+ 38X 5 Yau) <26
for #, n, r = N,. The sequefice { y, } is therefore a .Cziuchy sequence
in X and so has a limit 2z’ in X. Further, if m, n = Np
d(ym,yn) <8 (rm,Yi) < 2¢
and on letting m tend to infinity it follows that

I7AN

IA

8(2,Yn) <28
for n > Np. Thus, on using inequality (3) -
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'd(z, yn) < 8 (F? 2, Gyno1) |

¢. max {8 (z Gyr-1), d (2, yn-1) }

¢, max {3 (z, Yu), 8 Ya1) }

<c max {d(z,2) +38@E ,Yn), d(z ')+ 8", Yp-1)}

o c.[d(z ) + 2¢]

for n+ 1 > N, . On letting n tend to infinity it follows that
d(z,2)sc[d(z )+ 2¢].

Since ¢ is arbitrary we must have z = z’ .

=
=

IA

We now have

3(z,Gz) =& (Frz Gz) < c. 8 (2, Gz)
and so Gz = {z}. The point z is therefore a common fixed point of
F and G.

The uniqueness of . z follows as in the proof of theorem 1. This
completes the proof of the theorem.

The following corollary follows easily.

Co-oliary. Let S be a continuous mapping and T be a mapping
of a complete metric space (X, d) into itself satisfylng the inequality

d(S?x, Ty) < c. max {d(S" x, Ty), d(S"x,y) : 0 < r < p}
forall x, yin X, where 0 < ¢ < 1 and p is a fixed positive integer.

Then S and T have a unique common fixed point z. Further z is the
unique fixed point of S and T.

The next theorem also holds and was proved in [3].

Thecrem 3. Let F and G be mappings of a complete metric
space (X, d) into B (X) satisfying the inequality

S(Fx, Gy) < c. max {$(Fx,»),8(x, Gy), d (x, ) }

forall x,y in X, where 0 < ¢ < 1. Then F and G have & uniqué
common fixed point z. Further z is the unique fixed point of F and
G and Fz = Gz = {z}.

We finally prove a theorem for cothpact metric spaces,
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Theorem 4. Let F and G be continuous mappings of a compact
metric space (X, d) into B (X) satisfying the inequality

SFrx,G?y) < max {§(F"'x,G y): 0<r,s < p} 4
for all x, y in X for which the right-hand side of the inequality is
positive, where p is a fixed positive integer. Then F and G have a
unique common fixed point z. Further z is the unique fixed point of
Fand Gand Fz = Gz = {z}.

Proof. We note first of all that since X is compact every subset
of X is bounded and so both sides of inequality (4) are finite.

Let us suppose first of all that the right-hand side of inequality
(4) is positive for all x, y in X. Define the real-valued function
S (x,y) on X2 by

_ 3 (Fr x, G» y)
S5 = max {3(F x,G*y): 0 <r,s < p} ’

Then if { (xn , ¥» )} is an arbitrary sequence in X2 converging to
(x, ), it follows easily from the lemma and the continuity of F and G
that-the sequence { f (xn , yn) } converges to f(x, y). The function
f is therefore a continuous function defined on the compact metric
space X? and so achieves its maximum value ¢. Inequality (4) implies
that ¢ < 1 and it follows ihat the conditions of theorem 1 are
satisfied. Hence F and G have a unique common fixed point z and
Fz = Gz = {z}.

Now let us suppose that the right-hand side of inequality (4) is
zero for some x, y in X, Then

Fx = Gy ={x} = {y}

is a singleton z and it follows that z is a common fixed point of F
and G and Fz = Gz = {z}.

Finally let us suppose that F has a second fixed point w. If
Fw s {w} then-inequality (4) holds and we have

SEPw,Grzy < max {d(F"w:G'z2): 0 < r,5 < p}

= § (F? w, G? 3)




163

since F»-1 w is contained in F#w for n = 1,2, ... . This gives a
contradiction and so Fw = {w},

If z % w then inequality (4) holds and so

d(w,z)=38F?w,G?z) < d(w, 2),
giving a contradiction, The fixed point z of F must therefore be
unique.

Similarly z is the unique fixed point of G. This completes the
proof of the theorem.

The corollary follows easily.

Corollary. Let S and T be continuous mappings of a compact
metric space (X, d) into itself satisfying the inequality

dS?x, TP y) < max {d (8" x, Tsy) : 0 < r, s £ p}
for all x, y in X for which the right-hand side of the inequality is
positive, where p is a fixed positive integer, Then S and T have a
upnique common fixed point z. Further z is the unique fixed point of

Sand T,
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Abstract :

In this papar is given a new form of the Waring formula which is conveni-
ent for applications. Thus, in particular, for the first time the power sums of the
cubic equation are found in elosed form,

Let n = 2 be an integer and let

ck=Cf[x1,xz,---,xn], (Igk=n ()

be the elementary symmetric polynomials where the symbol on the
right-hand side denotes the sum of products of the variables
X1, ..., Xxn taken as the k-th combinations. If xj,...,x, are

roots of the algebraic equation

x4+ @ x4 a1 X+ an =0, @
then the values of the symmetric polynomials (1) are equal to
or = (=Dt a;, =gk=sn. 3
Let
Sm (n) = XM - xo™ - ... -} x,m (m=1,2, ) (4)
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denote the sums of the m-th powers (abbreviated the ¢“power sums”)
of the roots of equation (2), An expression of S (#) in terms of a;
(or oy) yields the Waring formula

vitmt v, miFmt+n=)! v v
Sm@m =m ) (1) T T A e da (8)
where the sum is taken over all non-negative integers vy, ..., v, for
which
vi+2ve+ ... Fnv,=m, (6)

(See Ch. Jordan [ 1 ] , p. 595, Comtet [ 2 ], pp, 158-159, point
9, rxample (3) and p. 140 and our paper [ 3 ], pp. 82-85, section 2),

The Waring formula is cumbersome and has no applications,
Therefore, it has not been observed so far that even for the simplest
case n = 2 the formula (5) can solve the problem altogether. In
fact from (6) we obtain vy =m — 2k, k! = vy. Since v; = 0, it
follows that k¥ £ m/2,ie. 0 £ k £ [m/2], where, here and elsewhere
in this paper, [X] for an arbitrary X denotes the greatest integer in X.
Thus from (5) we obtain immediately the Newton classic formula

(;l)m_'k( m—k) am—-2k azk %

[m/2]
Sw@=xmtan=m o ) e
k=0

(m=1 v
for the power sums of the roots x1, x2 cf the quadratic equation
X+ a;x A+ az =0, (8)
The above proof of Formula (7) is simpler than the well-known
proofs of the same formula (compare, for example, Comtet [2], pp.
155-156, point 1).

For n = 3,4, ..., and an arbitrary positive integer m, the solu-
tion of the equation (6) depends on 2, 3 etc. parameters and, there-
fore, Formula (5) has no simple form. Thus, the problem arises
whether it is possible to reduce the number of the parameters so that
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we can obtain simple formulas for Sm (n) at least for the initial
valves n = 3, 4, ..., and an arbitrary positive integer m. It is shown
that this is possible if, instead of the Waring formula (5~6), we offer
the following formula :

Theorem 1. Fcr arbitrary pcsitive integers m > landn = 2
we have

m—1
Sm (1) = m Z (- I)m_k(m—k— D!Bm, mtk(@,....an) (9)
k=0
where By, , m—t (@y , ..., ay) are the homogeneous isobaric poly-
nomials
Vi Yn
s _ v 4y e 5 4 J
Bm, m-k a1, ... » @y ) = Z‘ ‘TIT—’—{%"' (10)

of degree m—k and of weight m in the variables @ , ..., ay, i.e, the
sum in (10) is taken over all non-negative integers v, ..., vp satis-

fying
vi+ve+ oot vp=m—~k, vy 24 ... f-nvp=m. (11
Proof. From (6) we obtain
1Svid vt o+, v s m (12)
Tt follows from (12) that we can also join to equation (6) the first
equation of (11) for k=0, 1, ..., m—1. Hence the Waring formula
(5) ean be written in the form (9). This completes the proof of
Theorem 1.
APPLICATIONS QF THEOREM 1
‘For n = 2 we immediately obtain the Newton classic formula (7)
again. For n = 3 we obtain the following new result :
Theorem 2, Let
—ay = x1 FxaXg, @y=xy Xz - ¥y Xy F Xp ¥, =a3 =1 X2 X3 (13)
be the elementary symmetric polynomials of the roots x;, X , x3 of
the cubic equation
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B4 ax2+ayx+a3=0. (14
Then for m = 1, 2, 3, ..., the power sums
[2m/3] .
Sm@) =xmfxmfxm=m ) (= " (m-k—1) !
k=0
k12 m_2k4+v k=2v v
ay as

as -
=2k T (k=2 1 v ] 19
V=3S¢

where s=0 for 0 £ k < m/2 and s = 2k—m for m/2 < k £ 2m/3.
Proof. For n = 3 from (11) we obtain

yi=m—2k4+vyz0,vo=k-220 G!l=v320), (16
1t follows from (16) that v = 2k — m and v £ k2. This is possible
if k£ 2m(3. Hence

‘( 0§V§%for0§ks—%7—,
'L2k—m§v§—§-for izn-gkg—;"—

Thus for nr= 3 the formula (9-11) by means of (16-17) takes the
form {15). This completes the proof of Theorem 2.

We note two important corollaries of Theorem 2.

If in (13-14) we set a@; = 0, @z = p, a3 = ¢, then in the inner
suri of (15) only for v = 2k — m the terms do not vanish. This is
possible for m/2 £ k £ 2m/3. Thus we obtain the following new
formula :

Corollary 1. x;1, X2, X5 are the roots of the cubic equation

, X L px 4 g =0 (18)
then for m =1, 2, 3, ... the power sums
Sm (3) = x1™ + xam + xgm (19)
=m ) (=p"-k ( m—k \ 2m=3k 2k=m
- m=k 2 —m ) 1

m[2 £ k £ 2m(3
Where the summation is taken over the intégers k.
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If in (13-14) weget ay = p, az = 0, a3 = q, then in the innet
sum of (15) only for v= k/2 the term does not vanish. Hence k should
be an even number. If we substitute k for 2k, 0 < k < m/3 in (15),
then we shall obtain another new formuia :

Corollary 2. xi, x2, x3 are the rocts of the cubic equation

x4 px? L g =0, ’ (20
then for m = 1, 2, 3, ... the power sums
[’11/3:[ k ok
Sm (3) = X7 4 x5+ g = (= Drem J! ( m‘]'czk )% @1

k=0

By substituting x = 1/y it is clear that the formulas (19) and
(21) express the power sums of the equations (20) and (18), respec-
tively, when m is a negative integer.

Further, for n = 4, the solutions of the system (11) depend on
two paiameters v and vq and according to our method the polynomial
(10) will be expressed by a double sum. Thus, we can obtain the
corresponding formula for Su (4) of the general equation of the

fourth degree [2 } (n = 4). Here the problem is reduced if some

coefficient vanishes. For example, if a; = 0, this yields vy = 0 in
(11). Hence the solutions of the system (11) will depend only on the
parameter vy and the polynomial (10) will be expressed by a simple
sum similar to Theorem 2. It is evident that our method can be
applied also for n = 5, 6, ... and for an arbitrary positive integer m.
It is clear that the corresponding formulas must be constructed only
if this is necessary.

So far we have considered the applications of Theorem 1 for
given # = 2, 3, 4, ... and an arbitrary posi.ive integer m. Converse-
ly, for given m =1, 2, 3, ... and a fixed positive integer n = 2, for
abbreviation of the calculation, it is better to use the following still
more precise formula ;

Theorem 3. 1. If 1 < m & n, ## = 2, then the pOWer suin
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5~ 1

Sm (1) = m Z: (== )m—k (m—k—1) ! B, m—k (22)
k=0
where the polynomial
v1 VE+1
_ ay .. Gk

B, m-k = Z: vil oo Vgt T (23)
i.e. the sum is taken over all non-negative integers vy, ..., Vi1
satisfying

Vit Ve o F v =m=k, vi + 20p 4 (k1) v =m, (24)
II. If m > n, n = 2, then the power sum

m—1

Sm(n)=m(2 n Z )(-1)’"“"(m-k—1)zBm,m_k 25)

k=
where for 0 £ k £ n — 1 the polynomial

v Vk

1 +1
_ ay e A+l
B, mi = )| T (26)

and the sum is taken over all non-negative integers vy, ..., Vi1
satisfying
vid+ved ook =m o=k, v+ 2ve o+ D) vy =m, (27)
and for n £ k £ m — 1 the polynomial

vy Va

~ a ... a
Bw s -k = ﬁr (28)

where the sum is taken over all non=negative integers vy, ..., ¥, satisfying
Vit vt d vy =m=k, v+ 20+ .. Vv, =m (29
Proof. If we substract the first equation of (11) from the second
one, then we shall obtain the subsidiary equation
n
Z (s=1Dvs =k 02k <m=1). (30
8=2
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Hence if vy > 1 for s > k + 1, then (s—1) vy >s5s - 1>k and
the equation (30) has no meaning. Therefore v =0 fors > k + 1.
Now, if we consider separately the twocases 1 £ m £ n and m > n,
then we conclude that Theorem 1 can be modified into Thsorem 3.
This completes our procf.

Now we shall yield an effective method for solving the system
(24). For k = 0 we obtain v; = m and the polynomial (23) is
equal to

m
B m = % , mz=1. @I

Forl £k £m-~—1, m > 2 the number of the unknowns in the
system (24) can be reduced by one, In fact, here the subsidiary
equation (30) is

va + 23 4 oo - (k- 1) v 4 kvger =k, (32)
from which we obtain kviyy < k, i.e. for vgsp the values 1 and O are
possible. For vge1 = 1 from (32) it follows that vz = ... = vy = 0,
k = 2, whence and from (24) we find v = m — k — 1. Hence the
system (24) always has the solution

V= m._k._], Vo = ... =V =0, 1'k+1=1 (2 é k é m-—l, m 2 3), (33)
vp=m — 2, vg =1 k=1,mz 2.
For vg+1 = 0 from (24) and (32) we obtain the system
Vg Ve At e Ve =m -k, v 20 o kv =m 34

Csksm-1,mz3
and the subsidiary equation
vot+ 34+ o+ k-Di=k QZLkgm-1,mz3) (35

which determine the soluticns of the system (24) having the form
(1.5, 0). Further, from (35) we obfain (k—~1)v; < k. By
this inequality it follows that the possibie values of v; are the non-

regative integers from the closed interval [ 0, k/ (k-1 ] , i.e. the

number of the unknowns in (34) and (35) again is reduced by one.
Thus, by successive elimination of the unknowns we obtain that vy &
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[O,k/(k—z)], Vio & [ o,k/(k—3)],...,v3 s[ O,k/2],

Vi g [ 0, m--—k} .

Hence by elimination and verification it is easy to find all solutions of
the system (34) successive for k = 2,3, ... ,m — 1, m = 3,

By this method we can calculate the polynomial (23) in the
general case. Thus for k = 1 from (33) and (23) we obtain

B, met = ot mz2. (6

For k =2 from (33) we obtain vy =m — 3, v, =0, v3 =1 and
from (34) we find v1 =m — 4, vy = 2 (v3 = 0). Hence the poly-
nomial (23) has the form

a;m-3 qg ay;m—4 gy2

Boom2 = Gy T T @121 m =z 4. G0

For k = 3 from (33) we have the solution v == m — 4, vy = v3 = 0,
vy = | and from (34) and (35) by our algorithm we easily obtain two
other solutions v, =m — 35, vo=1, (vy=0) and vy =m — 6,
vg == 3, v3 = 0, (v = 0). Hence the polynomial (23) has the form

_ alm——4 as a,™5 as az a,m—6 g,3
By m-3 = m—4)1 m—-5) 1 (m—6)13! (m 2 6). (38)
It is clear thaf we can continue in this way also for k=4, 5, ... , m—1

and if m is a given positive integer, we calculate all polynomials (23).
The last polynomial (23) (k = m —1) is

Bm , 1 = dm , (m ; I). (39)
For a given m the system (27) and (29) can be solved by the same
method setting successively n = 2,3, ..., m — 1.

In conclusion we note that in the application of Theorem 1 or
Theorem 3 to a concrete equation (2), the calculations are consider-
ably reduced if one or several coefficients a;j vanish. Then we get
vji = 0 in (11) or in (24) ((34) and (35), respectively), (27) and (29).
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Abstract.
Recently, M.S. Ganesan studied the class P, (A, B) of analytic

functions in the unit disk. In this paper, we shall define the subclass
P‘x (A, B) of Pa (A, B) and a class Roc (A, B) of analytic functions in
the unit-disk. “And- the object of the present paper is to show the
interesting coefficient estimates for the classes 'P& (A, B), :Ra-’ (A, B),

PaC (A, 0) and R“ (A, 0).

1. Introduction,
Let Pa (A, B) denote the class of functions

f@ = Z an z

which afe analytic in the unit disk U = {zt | z| < 1} and satisfying
the condition
flay o 1+ Aw()
£() I + Bw (2)

(z € U),

AMS (MOS) subject classmcatlons (1980) 30 C45, -
175
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where — 1 < B < A <1 and w(z) is analytic in the unit disk U
with w(0) = O and |w(z) | < 1forz & U. Here g(z) is a starlike
function of order « (0 € « < 1) with respect to the crigin in the unit
disk Y, that is,
()
M.S. Ganesan [1] has obfained a distorion theorem, the
coefficieni estimates and a radius of starlikeness for this class, On
taking A = pBand B = — A8 with w(z) replaced by — w(z), this
class becomes the class S)\ («, P) studied by R.M. Goel and N.S. Sohi

[2].
Let T* (x) and C («) denote the classes of functions
0
f(z)zz—z Gn 2" (an 2 0)
C =2

which are analytic and starlike of order « (0 £ « < I) with respect
to the origin in the unit disk U and which are analytic and convex of
order « (0 £ « < 1) in the unit disk U, respectively. '

For these classes, H. Silverman [3] showed the following lemmas,

Lemma 1. A function

0
f @) =z ~ Z ay z" (an = 0)
n=2

is in the class T* («) if and only if
co)
Z n-o)a, s 1~e:
u=0

Lemma 2. A function

%
f(z)::?-—Z ay zf (anzo)

n=2
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is in the class C (») if and only if
00

Z nn—2ao) a £1—a.

n=2

Let P (A, B) denote the class of functions
-4

)
f(@ =z+ Z a zt

n=2
which are analytic in the unit disk U and satisfying the condition
A
Jo 14 an) (z e V). (1

g@ " T+Bv(
where =1 £ B < A £ 1, w(z) is analytic in the unit disk U with

w(©)=0and |w(z)| <1 forz e Uand
o

g(z)=Z—Z by z* (bﬂzo)
n=2

is in the ¢lass T* () \0 £ « < 1). Further let Ra (A, B) denote the

class of functions
0

f@ =z+ Z ap z"

n=2
which are analytic in the unit disk U and satisfying the condition (1)
for g (2) € C (w).
2. Coefficient Estimates fot Pa (A, B) and R (A, B).
o
Theorem 1. Let a function

0
(@ =1z+ E a5 z"

n==2
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be in fhe class P (A, B). Then we have

[az | £
The estimate is sharp. Further for B = 0, we have

as| £ (1 + B)(A~B) -+

Proof. We employ the same technique as used by M.S. Ganesan

[1].
Let
(2 _ 1 4+ Aw (2)
g(@)  1-+Bw(z)
and
0
g@ =z~ ) by (bn = 0).
n=2
Then we have
O = A @
Putting
o
w(z) = Z ep 3"
h=1

and substituting the power seties for f (2), g(z) and w(z) in (2), we -
obtain

(I' o o 3 &
*{’ A(»z'f—z b,,z”)—-B(z—{—Z a,,z") :}(Z bnz")
L n=2 n=2 - J =1
%
=) an+ba) 2", )

h=2
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Equating th2 coeflizients of z2 and z3 on both sidzs of (3) we got
ag = (A~ B)cy — b2 4

and

as= (A — B) ca — (Aby 4 Bas) ¢ — by . (5)
Since |e;]| S 1and |[ea| S 1—fcr|2and Lemma 1 implies that
be (1 —a)/(2—o)and bz £ (1 - ) /(3 —a), (4) and (5) give the

required estimates. Further the estimate for | @, | is sharp for

flz _ 1-Az
g(z)  1-Bz

and

_ I —a ,
g(z)'““z’*_z_““ .

Theorem 2, Leta functionv
0

f@=z+4) @z

n=2

be in the class Ro‘a (A, B). Then we have
l —a
| as | é(A*B)ﬂ‘—m'
The estimate is sharp for

f(z) 11— Az
g(z)  1-~Bz

and
1 —«a 2

g(z)=z—mz .

Further for B = 0, we have
o

mﬂgu+mm_m+7%:ym+m+3gfg.

The proof of Theorem 2 is obtained by using the same technique
sa in the proof of Theorem 1 with the aid of {.emma 2,
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Remark 1. We have not bzen able to obtain sharp estimates for

| @n | (n = 3) for the classes P (A, B) and R_(A, B).

3, Coefficient estimates for P“ (A, B) and Ra (A, B).

Theorem 3. Let a function
0

f@=z+) apz
n=2
be in the class Pu (A, 0). Then we have
ABG - 2) n 1 -«

lan | = 2—a n—uo

for n 2 2.
Proof, Since f(z) belongs to the class Pa (A, 0), we have
[ _
O 1 + Aw (), (6)
where w(z) is an analytic function in the unit disk U satisfies the
conditions w (0) = O and | w(z) | < | for z & U. Let the function

w (z) have the expansion
0
w(z) = Z Cp 2t (z e V).
n=1
Then on substitufing the power series for functions f(z), g(z) and

w (2) in (6), we get
e8]
Z (an + by) 28
n=2

=A(z_§o o ) (L e ). ™
o , .
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Equatmg the coefficients of z* cn both sides of (7),

n-1
an'{’“bn:A (Cn—,l - E bfn Cn—m).
AN
' n-2
Hence we obtain
n—1
lan],ébn'{‘A.( [Cnll-f—z bm|Cn—ml )
’ m=2
Smce[w(z)]<1forzeU]c,,| 1forn—123 and
hence
n—-1
w”§m+A@+Z M)Q
m=2

Further Lemma 1 implies that

Z by < —5—

and b, £ (1 — «) [ (n -+ «), This gives the required estimate.

Theorem 4, Let a function
o0

f(@=1z-+ E a, zn

n=2

be in the class Ra (A, 0). Then we have

. .. A(5=39) 1 —a
la"'é—2(2—oc) + n(n— a)

for n = 2.
The proof of Theorem 4 is obtained by using the same technique
as in the proof of Theorem 3 in conjunction with Lemma 2.
Remark 2. We have not been able to obtain sharp estimates for
| an | in Theorem 3 and Theorem 4.
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Abstract.
A new subclass of close-to-convex functions is defined, and its relationship
with other subclasses, coefficient problem, distortion theorems, arclength problem

and other properties are studied.
o)

Let A denote the class of functions f: f(z) = z —]—n Eza,, zn,
which are analytic in the unitdisc E=[z:]z| < 1]. By S, K, S*
and C, denote the subclasses of A, which are respectively univalent,
close-to-convex, starlike and convex in E. In [9] a subclass C* cf

univalent functions was introduced and studied. A function f be-
longs to C* if and only if there exists a convex function g such that,

for z¢ E

(zf'(2))
g (2)

f& C* is called quasi-convex. It is shown [9] that f& C* if and only

if andonlyif zf’¢s Kand C<c C* c K c S.

>0

Re

We now have the following ;

Definition 1. L3t f: f(2) =z + = a,z* bs analytic in B,
n=2

183
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Then f g K* if and oniy if there exists a starlike function g suchthaf,*

for z ¢ E,
g (2)
Theorem 1.

‘ All the functions f & K* are close-to-convex and hence univalent.
Proof. The proof follows immediately by using a well-known lemma
due to Libera [2].  We have, for ge S* and z ¢ E,

(zf" (@) . zf'(2)
Re ) > 0 implies Re IO > 0.

Hence f & K* is close-to-convex and since all close-to-convex func-
tions are univalent [1], f & K* is also univalent.

Remark 1. From definition 1, it is clear that CcC* ¢ K*CKcS
and it is known [5] that C ¢ S* ¢ K ¢ §. We can thus write

S
\\\.
s > AK/K*
<

7

%

C e ¢

where arrows indicate set inclusion.

Furthermoie {he function f given by fy (2) = _1‘,2:’___1__%

~1;‘H log (1—z) belongs to C*, see [7], and since C* ¢ K* and
50 f € K*, but for & sufficiently small; Reu%"‘(z(—)z—)- < 0, whefe
iz=ele, — & < 0 < 0. Thisimplies f, & S¥.

We now proceed to give coefficient résult and distortion theorems;

st
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'?[heOrem 2.
0
Let fe K* and be given by f(2) =z + = a,z". Then
H—=

2
lag| < 2l%l,foralln.

This result is sharp.

Proof. Since fe K¥, so by definition, there exists a g € S* such :hat
for zeE,

@ @) =g @h(@), Reh(z) > 0.

8

0 o
Let g(z2)=z+ 2 bpzt,and h(2)=1+ = e, z0. Then
n=2 n=1

n% ay = [cp-1 + 2ba cpg + oo + (n=1) by-1¢1| + nb,
Now it is well-known [5] that [ ¢, | < 2 and |8, ] < n, foralla,
So we have

2n2 4+ 1

| an | < W for all .

The function f, , is taken with respect to the Koebe function, belongs
to K* , and defined by

5o @ = 5 g - 5 log (1=2) @
shows that this result is sh arp.
Theorem 3. (Distortion theorem).
Tet feK* . Then .
@) [G+®]1/BA+MI<s | [T@|<B+r]/B0=n]

@) 5 et e 217G 1< 5

I o
= TIog (1-7
The function f, given by (2) shows that these results are sharp.

By letting r ——=> 1- in the lower bound of distortion result for
£ in theorem 3 (if), we have the following covering resuli.
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Theorem 4. Let fe K*. Then f maps the unit disc E onto a domain
that contains the disc | w| < 0.3977157 and this result is sharp.
We shall need the following [10].

Lemma 1.

Let geS*in E and let M(r, g) = thiu: [g(z)] and let «

(0 < « < 1) be the order of g(z). Then « = rl;ml (1-r)
M’ (r,8) | M(r, g 1, where M’ (r, g) is the left derivative.
Theorem 5. (Arclength problem)

Let fe K*¥ and ge S* in (1) be of ordera (0 < o < 1). Let

2z
Lir)=r f | f’ (rele ) [ d6 denote the length of th= image curve
O 4
C(r) of | z| = r. Then thereis a k = k (g) such that

13
L) <k+—M(9)

Proof.
2r 2z r
L= [ lzr@ldo< [ [ |2/ @) doar =
0 00
27 r
=f£ |8 @) h(2)| dbadr,
0 0

where g € S*; Re #(z) > 0 and z = rele .

: . 28 (2 _ e
Since g e S*; 26 =H(z), Re H(z) » 0. So

r 27

Lo s [ [ 1z0r0u@a0)
0 0
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2z o
s [ FCE (o [ h@ 1wl
0 2r
(%f |H(z)|2de)%dr,
0

by using the Schwarz inequality.
Using a well-known result [10] for funciions of positive real
parts, we have

4

Loz [ | Mg 1432,

r 1—r2
0
r
M A(r, 9

By Lemma 1, there is an r, (g) with %0)% < r, <1 such that

(1 -p) —1%44——(%—)—%5)—) > 28(1) o for r, < p < 1. Hence (3) shows that

forr>r,.

t, r
. _
L(r) < 2= f M (p, &) dp -+ 4n -01 f M’ (p, g) dp
0

p(I-p) 00 @

13
In theorem 1, we have shown that f e K* is close-to-convex. We
now deal with the converse case as follows, see [6].

Theorem 6.

Let g € S* and for ze E, and let Re—Z?fG%Q > 0. Then

Re (—Zg,,—((zz))i;yot‘or lz] <2—4/3.
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This result is sharp.
We now prove Livingstone’s result {4] for the class K* .

Theorem 7.
Let feK*inE. ThenF(2)=1(zf(2)) isin K* for | z | <%.

This result is sharp.

Proof. Let fe K* with respect to a starlike function g. Itis
known [3] that G (2) = 4 (zg (2) )’ isstarlikein |z | < §. Now

z

| F’(z)+_zl_z—fF(z)dz——F7(zl
(zf' @) G’
g () = z C)
6@~ [ G@d
0
SincefeK*,Re—(z—];—g;—):=Rep(2)>0,zeE. ®)
From (4) and (5), we have, by using integration by parts,
z .
eI —raese- [ 6@ @]
0o
zZ
tr@ =2l [ 26 @dz]+p @),
0

(6)
Now it is well-known [3] that | p’ (2) | < [2Re p(2)]] (1-r?),
Thus from (6), we have

zZ
| 2G’ (2) dz |
re CF ) pe e 1o 2 {Of |
‘ € GI(Z> = ep(z)l - 1_'-2 l ZG'(Z) I]
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On using distortion theorems for the starlike function g, we have

zZ
R S| @) ], 2
[(z.zG(z))/(Of_zG(Z),dZ”‘“‘ T THET

so that

z

4[sz'(z)dz]/(zG’(z) y | =0 ®

From (7) and (8), we have

! I 3
%>Rep(z)[l—ii]>0for lz| < 1/3

The function f, given by (2) shows that the constant 1/3 cannof be
improved.

We now consider the cenverse case of theorem 7 but in a gener-
alized form as following.

Theorem 8.
- -
Let fe K* and for real « # 0, let F(2) = — *
'
. f z® f(2) dz inE.
0 P
Then F € K* in E.
V4
Fora=4 F(2) = > [ 1@
0

Proof.

Since f e K*, there exists a g e S* such that Re _(ﬂf%_ >0.
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z -
Also it is known [8] that G (z) = j.lt—zl = (1] f A =25 y 4
‘ o |

“belongs to S¥. Thus simple calculations yield

EF (@)
G' (2
z 7
1 1 e AN =200 (1 )01 g
=z°‘f'(z)+(7;‘1)of'z @z (4 -1):
z
A0l - (G-1) f 07 s e
- 0 I
,1‘ Z
5% 5" (2) = (—olc——-l ) fz(l/a) 2 g (2) dz
— p 0 , Where f(z)=s" (z) and
V ‘ fZ(I/a) - lt” (Z) dz : , g(z):tl (Z)
0 .
Now
1 z 1 _ '
[z“s"(z)—(—i—l)fz“ s (z) dz
0 _ (5 (@))
z (@Y
[ f zl— (1/e) t" (z) dz ]
s
@)
g'(2)

Using the fact that f'e K* together with Libera’s lemma [2], we have

(zF' (2))’
Re 57
and hence F e K*,

Remark 2. Theorem 7 has been generalized for « € R, see [11],

>0, zeE,
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L?-CONDITION IN SPACES OF CONTINUOUS LINEAR
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The duality of L”-conditions was discussed by K.F. Ng in [ 5 ]

in this paper, we give necessary and sufficient conditions so that the
space of continuous linear maps between two ordered Banach spaces

will have the L? =conditions.

Let X be an ordered Banach space with positive cone Xy . We
say that X, is gemerating if, for each x e X, there are y, z & X,
with x = y-z. X is order complete if every majorized subset of X
has a least upper bound. X is directed (upwards) if, for each pair
x,y € X, there is z = x, y. The norm on X is monotone if x, ye X
with 0 < y < x impliesthat |y < | x] .

X is an order unit normed space if there is ¢ & X, such that for
x € X there exists a positive integer » with — ne < x < ne, and the

Minkowski funetional of the order interval [ — e, €] defines tho norm
on X.

We say that X is régular if it satisfies :

(Ri): Foreach x,y € X such that — x < y < x, We have
Iyt <lxl;and
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(Rg) : Foreachx & X and &€ > 0, thereisa y € X, such that
y2x,—xand [yl <{x[+e.
The following lemma is due to Bonsall [ 1] :

Lemma 1.

Let X be a real vector space with X, a wedge in X. Suppose P is
a sublinear map from X into a complete vector lattice Y, and Q a
superlinear map from X intoY such that Q(x) < P(x) for all x € X, .
Then there is a lincar map T from X into Y such that

Tx) < P(x}, xe X.
and Q(x) < T(x), xe X, .

Suppose 1 < p < o . X satisfies
(L? — condition (i) 1 if x,y & Xy then [[x +y 2> [ x| 2+ |y 2.
Ly — condition (ii) : if x, y & X and € > 0, then there exists z & X
with | z|? < {ix?+ I»y[?+ ¢ such that z > x, y.

It turns out that the two L? —conditions are dual conditions
[6: 9.24, 9.25]:

1 1

Theorem 1. Suppose v + v = 1, then
(@) X satisfies Lp—condition (ii) if and only if X* satisfies

L1 - condition (i) :

(b) X satisfies L? - condition (i) if and only if X* satisfies

L4 - condition (ii).

We extend these results to L (X, Y). First we give sufficient
conditions so that L (X, Y) satisfies L? — condition (i) ;

Proposition 1 :

Let Y be an order cowiplete, order unit normed lattice. If X
satisfies L» — condition (i), then L (X, Y) satisfies Lt — condition (ii).
Proof.

Let F, G € L(X, Y). It suffices to show that there exists
HeLX Y)with [H|?< |Fll¢e+ (Gl¢andH = F; G,
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Let e be the order unit in Y. We define
Q@) =Sup {FM +GCGO:x,yeX,z=x+y} ze X,
1
and P(2) = [zl (JFle+ 1GI0)7. e ze X

Then Q is superlinear and P is sublinear. Moreover, if z € X,
and z = x 4+ y, then

FX)+ G =UF®I+1GO) ) e
SUIFD UIxli+0GH Iyl e
< (IFje+ IIGHQ)]M (lxi?+ ll)’“f’)l/p . €
(By Holder’s inequality)

1

< (IFLe 4 1GRay . jzy . e
(X satisfies L? — condition (i) )

= P (2).

i.e. Q(z) < P(2), z € Xy . By Bonsall’s lemma 1, there exists a
linear map H : X —— Y such that :

Q@ <H(z,ze X, and
H(Z <P(),ze X
From the definition of Q it is obvious that
F(2),G{z) <H(2), z= X, ; ie.
F, G < H. Moreover, forw e X
THMWI < (1Fle 1G9 )I/q i wi , since Y is 1—normal,
This implies that H € L (X, Y) ; and
IHI < (LFje+ 1G o)l
ie. [He<(iF[24 1Ge).

Thus L (X, Y) satisfies L¢ — condition (if)

Now we consider sufficient conditions for L (X, Y) to have
L? — condition (i),
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Proposition 2. .
Let the closed unit bzll be directed in X. If Y satisfies (Ry) and
L? — condition (i), then L (X, Y) satisfies L? - condition (i).

Procf.

First we prove that if F e L (X, Y), and U is the closed unit
ball in X, then | F{| = Sup { | F(¥) | : x € U} where U, = UnX;.
For, if x € U, then —x e U and there exists z € U, with x,—x < 2
ie, —z < x < z sothat — Fz < Fx < Fz, and since Y satisfics

(Ry) we obtain || Fx || < || Fz .
NowletS, T € L (X,Y):. W< arerequired to show that
S+ Tlhez Ste4 §1Tie.
If S=0 or T = 0, then this inequality holds trivially. Therefore

we can assume that S £ 0, T # 0, so that we take a real number
¢ >0 suchthat 0 < e <||Sy, [ T|. Then there are x, y in U,

with
I1SI—e< [S(x) || and
ITI—e< ITW) 1 .
Since U is directed there is z € U, with x, ¥ < z. Thus

(IS —e)?+(ITlI—-e)?< [Sx)2+ ITy|?
S ISx+Ty|»

< 1824 Tz |2
<UIS+Tizfz)e
= IS+Ti?

Passing to the limit as € —- 0, we obtain

IS12+4+ 1TH2< IS+T)2.

Next necessary conditions are considered for L (X, Y) to have
L? — condition (i) or L? — condition (ji) :
Proposition 3.

Let L(X, Y) satisfy L? - condition (i). Then X satisfies
L7 — condition (ii) and Y satisfies L» — condition (i).
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Proof.
First we show that X* satisfies L? — condition (i).

Let f,g € X, *and y & Yy with |y || = L.
We define

Fx)y=f(x).y, xeX and

G(x)=gx.», xeX.

Then FF.Ge L(X,Y). and (F=1/1,1G§ =lgll. Thus
ffietllgle= jFje+ |1Ge :
< IF+Gie

S I f+gle,since [FL-G<| f4g].
Then X satisfies L¢ — condition (/) by Theorem 4.

To prove that Y satisfies L? — condition (i), we take a, b = Y, .
There exists f & X.* with | f | =1. We define

A =f(x).a, xeX

B(x)=/f(x).b, xeX

Then A,Be L(X,Y):, Al = {lall and |B| = b .
Thus flall?+ Hb17= |Ale+ B¢

< TA-+-BJY

< flat+bl*

Proposition 4.
Let L(X, Y) satisfy LP — condition (ii). Then X satisfies
L9 — condition (i) and Y satisfies LY — condition (ii).

Proof.
let y€ Yy with || y|=1 and ¢t be a pcsitive continuous
linear functional on Y with |j¢|| = 1.

Let f, g € X*  We define
FX)=f(x.»y, xeX
Gx)=gx.», xeX
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Then F,G e L(X,Y)and [Fii=; /1 ,1Gi=igl-
Since L (X, Y) satisfies L» — condition (ii), so given & > 0, there is
HelX Y)withH>=F Gand [Hj? < |F|?24 1G?+ e

We define a functional # onXas 2 (x) =t (H (x)). Then/is
< |H|. Hence

linear, positive and || / ||
< IH|?< |Fll?4 1G?2+¢e

Napge <
=12+ lgl?+e

which implies that X* satisfies L? — condition (ii). Therefore X

satisfies L¢ — condition (7).
Similarly, it can be easily seen that Y satisfies L? — condition

(iD).
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