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BANACH ALGEBRAS HOMEOMORPHIC WITH ¢,
By
TAQDIR HUSAIN*

Department of Mathematical Sciences
. Mc Master University, Hamilton Onuario L8S 4K1-
Canada
Abstract.

In this note we give a necessary and sufficient condition on basis for a
Banach algebra with an orthogonal uncqnditional basis to be isomorphic and
homeomorphic with ¢ ~

A basis { x; } in a topological algebra is said to be orthogonal‘
[37 if x; x; = 8;; x; , in which 3;; is the Kronecker’s delta. Indeed,
the Banach algebra ¢, of "all complex sequences converging to zero,
endowed with pointwise operations and sup-norm, has an uncondi-
tional (see for example [ 1] for definition) orthogonal ba31s, viz. (e,)

where e; = {8 }]>1forz—12

Also, the Banach algebra /; of all complex sequences a = {a;}
with jalli=2Z]a;] < and pointwise operations has an un-
conditional orthogonal basis {e;} . For /;, we know the following :

Theorem A. ([2]). Let A be a complex normed algebra with
an orthogonal unconditional basis { x;} . Suppose there exists.eg A’
(topolcgical dual of A) with e(x;) =1 forall i > 1. Then A is
isomorphic with /; iff the basis {x;} is boundedly complete [1]. If
A, in addition, is compléte, then A is homeomorphic with /1 .

AMS (MOS) Subject classification (1970) Primary 46 H 10, 46 H 15, 46H20,
Keywords and phrases : Banach algebras, orthogonal, ,unconditional,

shrinking bases.
* This note was written when.the author was visiting Department of

Mathematlcs IAS, A.N.U., Canberra, This was partially supported by a NSERC
grant,
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In this note, we present an analogous result for c, . But first
recall that if A isa normed algebra with an orthogonal basis {x; },
then for each x & A, there is a unique sequence {; (x) } of complex

numbers depending upon x such that x = Z;O__ 1 A (x) xj . Without

loss of generality we may assume that [[x; | = | for all i = 1.
Thus the convergence of the series implies that

lim [ (%) | =lm [ xN@&x (1 =0

i->00 i—>o0

In other words, the sequence {; (x) } e ¢, for all x e A, Moreover,
each a; (x) == ; (called a coordinate functional) is a multiplicative
linear functional on A, [3]. Hence »; € A’ for all i > 1, provided A is
a Banach algebra. Now we prove the. following :

Theorem. Let A be a eomplex Banach algebra with an uncondi-
ional orthogonal basis {x;}. Suppose there exists an ¢’ g A"
(bidual of A, see [4]) with & (3;) = 1 for all i > 1, where {3;} is
the sequence of coordinate functionals associated with { x;}. Then
A is iéomorphic and homeomorphic with ¢, iff the basis {x;} is
shrinking, [1].

Proof. Since { ¢;} is a shrinking orthogonal unconditional basis
of ¢, , in view of Theorem 1.8 [3!, the “‘only if” part follows. For
the ¢if”> part, assumz {x;} is shrinking. Then, by Theorem 5, § 4,
Chapt. IV [1], {a;} is an unconditional boundedly complete basis of
the Banach space A’. By Proposition 4.1 [3], there exists a multi-
plication and an equivalent norm on A” making it a Banach algebra
with {2;} asits orthogonal basis. Hence in view of the hypothasis,
by Theorem A, A’ is isomorphic and homeomorphic with the Banach
algebra /i . This isomorphism is given by ¢" : A’ - Iy with ¢’ (f)
={a'(f)}eh, where f= 2" (f)x e A, because {};} forms a
basis of A’. On the other hand, the map ¢ : A — ¢, defined by
@ (x) = {%; (x)}, where x =X i (x) x;, is an:injective (by the
definifion of basis) algebra homomorphism (easy to verify). Further-
more, each »; being a multiplicative linear functional on the Banach
algebra A is continuous. Actually, ;| < I forall i > 1, [5].



Therefore
le@N=sup [ M| <lxi,

i=1

shows that ¢ is continuous. Thus ¢ is a co~tinuous embedding of A
into ¢, . We show that the inverse map ¢'-1, I} - A’ is actually
the conjugate (or adjoint) map of ¢. For ‘this let {g;} ¢/;. Then
there is fe A’ with f=2 a;a; fe. «'1({q;})=Ff Now if
x=2X ri(x)x;ie A, then {7 (x)}ec, and we have that f(x)
=X a;n(x). 7 ‘ -

But this equation can be written in the duality form as :

<x ¢ l({a)> = ) =Tarnx=<{N}{g}>

= < ¢{x), {a;} > .

This shows that ¢’-1 is, indeed, the adjoint map of ¢ . Since ¢’
is an isomorphism and homeomorphism and so is ¢'-1, by Theorem
7.8 ([4], Chapt. IV), ¢(A) = ¢, i.e,, A is isomorphic with ¢, .
Since ¢ is already shown to be continuous, by the Banach Open

Mapping theorem, ¢ is a homeomorphism.
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A COMMON FIXED POINT THEOREM FOR THREE
MAPPINGS ON A COMPACT METRIC SPACE
By
BRIAN FISHER

Depart nent of Mathematics,
The University, Leicester LEI 7RH, England,

The following theorem was prdved in [1].

Theorem 1. Let T and I be commuting mappings and let T and
J be commuting mappings of a compact metric space (X, 4) into
itself satisfying the inequality. '

d(Tx, TV < max {d(Ix, Iy}, d(x, Tx), dJy, Ty),
d(Ix, Ty), dJy, Tx) } (1)
for all x, y in X for which the right hand. side of the inequality
is positive. If for each x in X there exists y in X such that
Tx =1y = Jy

and if T, I and J are contihuous, then T, I and J have a unique
common fixed point

We now prove the following generalization of theorem 1 which
shows that the condition that I and J be coutinuous is unnecessary.

Theorem 2. Let T and I be commuting mappings and let T and
J be commuting mappings of a compact metric space (X, d) into
itself satisfying inequality (1) for all x, y in X for which the right
hand side of the inequality is positive. '

If T is continuous, then T, I and J have a unique common fixed
point z.

Proof. We note that since T is continuous, T maps compact sets
into compact sets. It follows that since X is compact, T# X is compact
forn=1,2,.... . Further, it is obvious that .

S



Tr+l X c Tn X

forn =1, 2, 3, ... and it now follows that

c0
F=n T"X=TF
n=1

is a non-empty, compact subset of X.

Now lst x be an arbitrary pointin F. Then x isin T# X for
n=1,2,..,andso Ix isin IT*"X =T*1X forn=1,2,.... It
follows that

el o

Ixe n TnIXc n T"X =F.

n=1 n=1

Thus I maps F into F.

Similarly J maps F into F.

Since d is a continuous mapping of the compact set F2 into the
reals, there exist points z, w in F with Tz, Tw in F = TF such that

d(Tz, Tw) =sup {d(x,y): x,ye F} = M.
Let us suppose that
max { d(Iz, Jw), d(z, Tz), d(Jw, Tw)} > 0.
Then inequality (1) holds for z, w and so
M = d(Tz, Tw)
< max {d(1z, Iw), d(Iz, Tz), dJw, Tw), d(Iz, Tw), dJw, Tz) }
<M

since Iz, Jw are in F, giving a contradiction. This implies that

d(Iz, Iw) = d(1z, Tz) = d(Jw, Tw) = 0

or
Iz =Jw=Tz = Tw.

It now follows that

M = d(Tz, Tw) = 0




_ . _ .
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and so the set F = TF consists of the single point z = w where 2
must be a fixed point of T. Since I and Jmap F = {z} into F, z g
also a fixed point of I and J.

The uniqueness of this common fixed point z is easily proved.

The corollaries follow immediately.

Corollary 1. Let T and I bs commuting mappings of a compact
metric space (X, d) into itself satisfying the inequality
d(Tx, Ty) < max {dlIx, Iy), d(Ix, Tx), dly, Ty), d(Ix, Ty),
d(ly, Tx) } for all x, y in X for which the right hand side of the
inequality is positive. If T is continuous, then T andI have a
unique common fixed point z.

Corollary 2. Let I and J be mappings of a compact metric space
(X, d) into itself satisfying the inequality
dix, y) < max {dlx,Jy), d(x,x), dJy, y), ddx,y). dJy,x)}
for all x, y in X for which the right hand side of the inequality is
positive. Then I and J have a unique common fixed point z.

Corollary 3. Let I be a mapping of a compact metric space
(X, d) into itself satisfying the ineqnality

d(x, y) < max {d(Ix, x), d(Ix, y: }

for all x, ¥ in X for which the right hand side of the inequality is
positive. Then I has a unique fixed point z,
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THE JACOBI IDENTITY
By
,H' AZAD
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4630 Bochum 1 BRD, W. Germany

Introduction.

The aim of this paper is to outline an alternative approach to
Chevalley groups which is suggested by results of R. Steinberg,
especially § 11 of [6], and by [1]. The approach we have in mind
works with a system of axioms which involve only a root system and
a commutative ring, and in a sense avoids Chevalley bases. Needless
“to say, this would have been impossible without knowing the contents
of [2] and [6]. An advantage of this approach is that problems like
those mentioned in [2, p. 64] vanish automatically. This paper is
organized as follows : In § 1 we prove an analogue of [1] for a class
of Lie algebras. Then, in § 2, by simply reversing a procedure given
in the proof of proposition (1.1), we construct, for a given root system
“which has no multiple bond§, a function N, defined on pairs of in-
dependent roots (#, v) such that Nu, » is + 1 if and only if u + v is

a root, and verify the Jacobi identity for N. That such a function
exists is nothing new ; see, for example [2, p. 24], [8] or [5, p. 285],
which also gives the briefest solution to date of this problem. We
have thought doing this worthwhile as the function N arises naturally
from the root system. The construction of a Lie algebra for a given
root system is then immediate. This construction may also interest
those who do machine computations as definition {2:3) can be trans-
lated into an algorithm which will produce positive roots and
- structure constants one after the other.
9




10

In the final section we give a system of axioms for Chevalley

_ groups over commutative rings, and making use of results of R.

Steidberg together with those of the previous sections, we outline a
proof of existence of these groups.

The arguments of this paper are of an elementary character and
in essence involve only the Jacobi identity and some technicalities on

root systems.
Our references for root systems and Chevalley groups are [2, 4, 6].

1. A Uniqueness Theorem.
Let R be an irreducible root system with no multiple bonds, R+ a

positive system of roots, S the corresponding simple system of roots
and A a commutative ring. In this section we consider Lie algebras

(L,[,1) over A with the following properties :

(a) L is generated by elements X, (r ¢ R) such that gX, =£ 0 for all
non-zero a g A.

®) Xr,Xs1=Np ;s Xrss, if r+ seR, Ny, ¢ being an element of
A and (X, ,X;]=0if r +s£0and r +s¢R.

© X5, Xs3Xel=<r,8>Xp, s being a simple and r an arbit-
rary root : here < r,s > is the Cartan integer corresponding to

the pair of roots (r, s).
‘Proposition 1.1. There exist units ¢, (r € R) such that 1f we set
Xr'=CrXr,[Xr’, X1 = Nrs Xy (r“[—s # 0) and
Hy = [ X’r, X'~ 1 forall r, s e R then
) [HfF, X 1= <s,7r>XS(r,seR)
Gi) Ny,s==x1,ifr+s5seR
(iii) N’y , s is completely determined once an ordering oa S has
been fixed.

(iv) If [X;,X-q] (a€8) and X, (r ¢ R) form a basis of L then
every automorphism of R extends to an automorphism of L.

(v) Incny case, every automorphism of R extends to an auto-
morphism of the Lie algebra with generators Y, (2 ¢ R) and
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relations [Ys, Ys1 = N4, 5 Yo (a, b being independent
roots).

Proof. (After [1]). Fix an orderingon S. Let 6 e Rt bea
non-simple root and let « be the first simple root such that (o, «) >0.
Then ¢ — « is a rcot but ¢ + « is net a root.

(A) Applying the Jacobi identity to Xoc s X "’ Xo- wc find that

N N = 1. Hence N is a unit ; likewise
%, C — a g, —a o, 0 — o
N is also a unit, so scaling X and X we can
-, -0+ a C —-0C
assume that N N = — 1 : this is the normali-
2,0 —a — & —O0-+a

zation which (i) requires, as we will soon see.
We next show that with this normalization we always have
N N = —1

u, v - u, —v
u, v being positive roots such that u + v is (%) a root.
Let ¢ = u L+ v, let « be the first simple root such that (¢, «) > 0
and let Ruv denote the integral closure of u,v, and « in R. If
o

R i hen u, v form a basis of R SO t or vis
quC1softypeA2t¢ u,v f wvo’ u o,

and (*) holds by definition, and therefore also when height of o is 2.
So suppose Ruv o is of type Az. Choose a simple system of roots,

say a, b, ¢, corresponding to the positive system Ruv nRt. We
o

may assume that < @, b > = < b,c> =—-land <a,¢c > =0.

Then o must be the sum of these simple roots. But ¢ has only two

decompositions as sums of two roots in Ruv N R+, namely
o

c=a+b+c)=(a+b)+c¢, and « is a or ¢ (so
Na,b+c —a, -b—-c¢

N =
c,a—]—bN-—c, —a-b
By the Jacobi identity we have

Nb,ch—l—c,a —Na,ch,a—i—b’

N—b,—cN—b—c,—a =N—a,—bN—e,—a—b'

By induction on heights we also have
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0 b N_ a4, - b= Nb, . N_ b e~ I, so multiplying the
previous two equations and using the parenthetical remark above we

find that Nu N = = 1.

WV —u, — ¥
Let Hr = [X,, X, ] (r ¢ R), with the X, normalized as above.
By assumption, when r is simple, we have [Hy , X;] = < r,s > X,
and [Ho, ,X;] = < —r, s > X,. Assume this is true for all roots
of height less than N and that r is a root of height N. Lecr = « 8,
where « € S and (r, 2V > Q.

N

Applying the Jacobi identity to X , X ,X we find that
o - =} :

B a—-B
NaBHa—i—p:Nﬁ,—a—pHa+N—a—B,aHﬁ' (**)
A.s[Ha,Hﬁ]=<ﬂ,a>XBasweIIasNa BNOH-@—aXB s

we have < ¢, > = N

Boaa B~

Similarly, < — a, — B > =N_ 6, _aN_ w—p B
By induction on heights we have :
[HB’Xa]= <a,B>Xa,so
< =B, —a> ZN—%—BN—%—B,“'

Multiplying (**) by N _ . _'B and using Na, 8 N o —B8=" 1

we have :
B R Ry
' ='<»a,(3>Ha+ <B,<x>HB.
Hexce Ha—i—ﬁ = Ha+HB , and therefore [H,, X;] =<r,s > X,

for all s ¢ R. This proves (i).
(B) To achieve (ii) we normalize Xo_ and X _ - (hto = 2) so

= N =—1. i in (.
that N“, o —a I and N _ “ — 0+ a 1. Arguing as in (A}
we find that this normalization determines all the constants N vif

u + v is a root and %, v are both positive or both negative. More-
over, Nu VN vis still — Iso'[H,,X;]= <r, 5> X for

> u,

B
S
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all », s ¢ R. This implies that < u,v > = N N ;

vwu v+u, —u
considering the roots in the integral closure of u# and v we find that
the remaining structure constants are also completely determined.

(C) The proof of the remaining assertions is implicit in steps (A)

By

- and (B) and is left to the reader.

The following corollary has been known for quite some time :
See [8, p. 51].

Corollary 1.2. [Steinberg]. The existence problem for semi-
simple Lie algebras is equivalent to the existence problem for Lie
algebras whosz root systems have no multiple bonds.

Proof. Given a root system R with multiple bonds there exists a

~

root system R with no multiple bonds and an automorphism p of R

such that twisting R according to p one obtains R : see [6, p. 175]

for details.
-As a semisimple Lie algebra corresponding to the root system

~

R is of the type considered above, we can extend the automorphism
to an automorphism of this Lie algebra and consider its fixed points :
this will be a Lie algebra with root system R. All of this follows
from (1.1) and [7, p. 873-877]*.

Corollary 1.3 [3, p. 147] Let R be a root system with no
multiple bonds, L a semi-simple Lie algebra whose root system is R,
S a simple system of roots and p an automorphism of R which maps
S into itself. If Loc (x € R) are the root spaces of L then there is an

automorphism ¢ which maps L into L_oc (x &€ R) and which com-

mutes with p.
Proof. We can choose a system of generators Xa (x € R) such that

[Xa’X]=Noc X (x4 B % 0) and

g atp
]l=<B,a>X

e
[Xa,X_m; XB 8

[4, p. VI-2]. The automorphisms o - — « (« € R) and o commute
and by ('.1) extend to commuting automorphisms of L

*  See appendix,
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2. A Construction
Let R, R*tand Sbe asin § 1. Denote by Rab the integral closure

of the roots a, b, ... in R. We wish to reverse the procedure given
in the proof of (1.1) to construct a function N, defined on pairs of
positive roots such that :

(2.1): (a) Nu,v = — Nv, u’

{b) Nu p = 0 if u+v is not a root and Nu y = + 1 otherwise:s

b

© N‘u; v Nu—]—v, w + Nv, w Nv’-,\—w, u+ Nw, u Nw+u’,v =0,

for all 4, v, w ¢ R*.

We first record some properties of R which we réquire :
Lemma 2.2. Let u, v, w be distinct positive roots :
(i) If <u+v,w> >0 then either < u, w > = 1 and
<v,w>=0,0or <u,w> =0and <v,w> = 1.
(ii) If u + v 4 wis aroot then exactly two of # + w, v + w,
w 4 u are roots.

This is a consequence of the assumptions on R, namely, if a, b
are distinct roots and @ + b 5= 0 then the Cartan integer < a, b > is
0,1 or — 1.

The following definition is more or less dictated by (1.1).

(2.3) Definition. Fix an ordering on S. Let u, v be positive roots
such that ¢ = u + v isa root. Let « be the first simple root such

that 0;0) > 0. SetN =L N__  =-1

1f u, v are distinct from o« define Nu v and Nv w’ by induction

b

on height of (u 4 v), by the identities :

(*) Nu_a,aNu,erNv,u—aNO'—ac,a=0’
N, ,= =N, incase@a) =1 ¢,a=0, and
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2 [ =
(*) Nu,v—ocNG—a,a+Nl’—oc,och,u 0,

Nu v=—Nv,u’ in case (#, «) = 0, (v, ) = 1.

>

If u 4 v is not a root, set Nu v=0'

(2.4) Proposition. Let u, v, w be positive roots and let N be as
in (2.3). Then
*» N N +N N + N

N =0.
w,v u-v,w v, W ov4wu w,u w4 u,v

Proof. If ¢ = u + v+ w is not a root then there is nothing to
prove. So let o be a root. We may assume that u +v, v} w are
roots but ¥ + w is not a root (2.2) : call such a triple (u, v, w) an
Aj — triple. Denote the left-hand side of (*) by J (u, v, w). Let «
be the first simple root such that < ¢, « > > 0. If « is one of u, v
or w then (*) follows from the definition of N. So assume g is
distinct from », v and w. Then, by (2.2), we have < u 4 v, & > =1
and < w,a > =0 o0or <u-+4v,a>=0and < w,a > = 1. Now
we express, using (2.3), J(u,v,w) as a linear combination of
J(@',v',w') with height of (4’ + v + w') less than height of
(u + v 4 w) and apply induction. The details are as follows :

(A) Suppose < u+v,a > =1 (and < w,a > = 0). Then

<u,a>=1and <v,a>=00r <v a>=1and < u,a > =0.
In the first case J (u, v, w) is, by definition of N,

N N (N )—1 +

u,v u+tv-oa.w autv—a

y—1.

v, W Nv+w,u - (Ntx,u—tx
Hence (Noc w—g) TV, W) =T(u—a v, w (using 2.3 (*)).
Incase (u,a) =0, (v, ) = 1, (W, ) = 0 we have
Jw,v,wy=JTW,v - a,w).
(B) Suppose < u+v,a > =0and < w,« > = 1. Then

<t a>=<VvV,a>=00r<u,a>=1 <v,g>=—~1:
< 7V,a > cannot be 1, else < v+ w, « > would be 2, ie., v+ w
would be a simple root.
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The first case folows by symmetry from (A). So suppose
<#ya>=1<v,a>=—1. Then (¥ - «, w, V) and (W—«. u, V)

are Az — triples. In this case

TQy.wy = Nu, v Nu—l—v,w—-a (Noc,w— oc)—I T
v,wNv—|-w,u—oc(Noc,u-—oc )—I )
Now O=J(u.— X W, V) =
U — a, wNu—l—w—a,v‘+ Nw,VNw—l—v,u—oc
0=J(W—auy) = Nw—oc, u Nw—oc—l—u, y T Nu,v Nu+v, w—e”
Dividing the second equation by Na’ Wo— the first by Na’ Y
setting ¢ = Nu W and subtracting we see that
0= (N (N ylowN N y le
W —o, U o W—-« U—ao, W o, U—a.
+ J(u, v, w)
i.e.,
0=1J(a, u —a, W—a)c+ Na, y—a Noc., N J(u, v, w).

Since J(a, 4 — a. W — o) = 0 we see that J (u, v, w) = 0.

This completes the proof of (2.4).

We now extend the fanction N of (2.3) to a function N, defined
on all pairs of roots u, v such that (u +v) = 0, and having the
properties (2.1) (a, b, ¢). This extension is again forced upon us by

(1.1).

(2.5). Definition. Let u# be a positive root and v a root such

that # & v is a root. If v is positive, set Nu y = Nu v and define

3
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2

N . =—1. If » i tive defi
N—u,—vby'Nu,vN_u’_v 1 v is negative define

~

N by the equation :

u,v
~
N N <v,u> =20, in case u 4 v is positive,
u,v u-{-v,—v+ i ’ P
and by :
N N — < u,v> =0, in case u 4+ v is negative,
u,v u-+v, —u ’ ’ + g
~ ~
Set N = — N .
v, u u,v

Finally, let Na =0 if @+ b is not a root.

b

(2.6). Corollary. Let N be asin (2.5). If u, v, ware roots and

R is of rank 3 then
U, v, w
% ==
) Nu,vNu+v,w+Nv,wNv+1v,u +Nw, uNw+u,v 0.

~

Proof. For notational convenience, denote N by N. It suffices
to assume that ¢ = w 4 v 4 wisaroot. As in (2.2), we may also
assume that 4 4 v, v - w are roots but # 4+ wis not a root. Denote
the left hand side of (*), by J (u,v, w). ‘

Now (*) 1s true when u, v, w are all positive or all negative, so
"we may assume that v is positive. As Na b=~ Nb a for all roots
a, b we may also assume that ¢ Rtand we R~ . So we have the
following possibilities :

+ . = ’
(Ayv+weR " : Herel (u,v,w) = Nu,vl‘rc,,_wJr Nv+w,—w-

yw, We have J (u, v+w,—w) = 0. Writing this out and mul-

tiplying by Nu, v w Nv, , e find that the relation so obtained is

equivalent to J (u, v, w) being 0 .



18

B)v+weR andu+ (v+ we R : Here the relation to be

h i =
checked becomes Nu, » Nc, —w, T N_ v—w, v No,_ v—w 0.

T

N — —_— )} — :1ti h. b \ -
owJ (o, — v—w,v) = 0. We multiply this YNG,__W G, ~V—w

to get the desired result.

O v+ we R ,ut+ (4 we R : Inthis case the relation
J (u, v, w) = 0 is equivalent to

N N (=1) + N N yyw=0>

u,v C, —u—v vV 4+ w, —v

i.e.to N N . -+ N =0,
uv —c.u-+v —o, U

s

the left hand side of which is J (—o, u#, V).
This completes the proof of (2.6).
(2.7). The Lie algebra Ly (A) . Let A be a commutative ring.

Using (2.5), it is now easy to construct a Lie algebra LR (A) such that
every automorphism of R extends to an automorphism of Lp (A). We
take Ly (A) to be the free A-module with basis Ha (ae8), X, (b&R).

~ ~

For u, v both positive or negative let [Xu , Xv] = Nu, ’ Xu Ly N

being asin (2.5). MaeS,setH =[X ,X_ Jandifce R and

(5, a) > 0, set HG =Ha + Ho-—'a , and [X_o_, X . 0_] = Hc'r' De-

fining, for a simple roota and aa arbitrary root b [H,, X;3] to be
< b, a > X, , requiring this operation to be bilinear and anti-sym-
metric (i. e. [X, X] = O forall X & Ly (A)) the reader will find that

LR (A) is now a Lie algebra over A with the stated properties.
3
. Clearly LR (A) = LR (Z) ®Z A. Moreover ad Xa = 0 (a eR) and

1 ad XZ maps L, (Z) into itself. These remarks, which are trivial to
2 a R

1o check, will play a role in the folowing section.
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3. THE FUNCTOR GR (A)

Let R be an irreducible root system of rank = 2, A a commuta-
tive ring with unity and A* the group of units of A. Let Gbe a
group with generators x, () (@ € R, u ¢ A) which satisfy the follow-
ing relations :

RD x,(u+7v)= x4 W) x; () (u,ve A,acgR)
(R 2) If a, b are linearly independent roots then the commutator
(xa (u)’ xp (v) ) = 11 Xiatsb (Na’ bs 45§ ut v‘i)’
ia +jpe R
i,j>0

where Ng, 4, ;, j are elements of A and the product on the right

hand side is taken in some ordering of theroots ig + j; (i, >0
(R 3) 1IfJ is an integrally closed irreducible subsystem of R of rank

+

at most 3, J a positive system of roots in J and an ordering of
. + :

the roots in J has been fixed, then every element x of the

+
group generated by x, (%) (r € J , # € A) has a unique expression

x =[] 4 xr(ur)
rel

the product on the right hand side being taken in the chosen

ordering of roots in J+. [In case R has no multiple bonds we
nzed only assume that rank (J) £ 2 ].

(R 4) 1If a, b are independent roots and # ¢ A* then
wq () Up wy ()1 = Uwy ()
where w, (1) = xg () x-g (—u) xg (4), w, is the reflection
along the root a,and U, (re R) is tae group gencrated by
x, (u) (u g A).

It is shown in [1] that every group with the above properties is a
homomorphic image of a single group Gp (A), which is determined

upto isomorphism by the system R and the ring A : in particular,
every automorphism of R extend to an automorphism of GR (A) (see

remarks following statment of the proposition in [17* ).

*- For the casc of Gg, see [ 9, p. 295 ]
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To prove the existence of Gp (A) we first assume that R has no
multiple bonds. Let Lp (A) be the Lie algebra as defined in (2.7).

Recall that the Steinberg group Sty (A) is the group with generators

xg' (w) (2 € R, u € A) subject to the relations
(A) x/ (ut+u) =x/ (Wyxs W) (wue A . aecR)
(B) (x4 (u),f xp (V)) = Xg1p Napuv) , ifu4vekR
=1 , ifudvé¢R,
Here the N’ab are as in proposition (1.1).
This group has a representation in Aut (LR (A)), namely, map

X4 (w) into the formal exponential

ad (xa) out .

~ Here x,is a basis element of L (A) as givenin (2.7), and the

Yo () =1+ (ad Xg) ® u +

formal exponentlal has only two terms because R has no multiple
bonds.
Straight forward calculations show that the group Ga IR (A)

generated by xg (#) (2 € R, u € A) satisfies (R1), (R2)yand (R4). In
fact wg (u) xp (v) W @)1 = Xg46 (N'g, puv) if a4 b is a root. To
see that (R 3) holds we need an auxiliary lemma.

Let U, (r ¢ R) be the group generated by xr (u) (u ¢ A), let R+ "be a

positive system of roots and let a; , ..., aN be all the elements of R+

listed so that At (a,) £ ht (a;) if i £ j, Let U be the group gene-
rated by the subgroups U, (r ¢ R ).

Lemma. (2, p. 39] Every element x of UJr has a wunique

expression

x = X (w) .
i=1, .l.-l.,N e )

Proof. The commutator formula (R 2) implies that x has an
expression of the above form. Let S be the simple system of roots
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+
which corresponds to R and let LR (A) be the Lie algebra as

. +
defined in (2.7) with H, (@€ S), Xp (b ¢ R) as a basis. Let U and

U be the subalgebras generated by x, (r € R+) and X, (*'e R~),
respectively.

Now if u, v are positive roots and At (u) > ht (v) then either
u — Vv is not a root, or else it is a positive root ; and if At (u) = ht (¥)
then v — v is not a root. Moreover, if ¥ and v are distinct then

= . fore if
x, @ X—v X—v+ tNu, . Xu—v Therefore i

X = I x  (u;) then
i=1,...,N %

x(X_'_al) = xa1 (u1) (X__a1 ) (mod U+)
=X_, +mlX X_,1mdU)
= 1y Hy (mod U +U )

+ ~ .
As LR (A)=H+U +U we see that u1 Hs; is uniquely

determined by x. As rank R = 2, there exists some root b with
< b,a > = 1. This means that #; is uniquely determined by x.

Therefore if x = [] “‘—’“i ;) = [1 xq (u;") then »; = uy’ . Cancelling
xqa (w1) we continue and conclude that u; = »;’ for all i,
1

From proposition (1.1) it is clear that if o is an automorphism of

~

R then it extends to an antomorphism o of LR (A) as well as of StR(A)

and we have :
ch=CaX ,c(xa @) =x (cau), ca=:{:1 and

g (@) o(a)

€Qp € _4= 1 (because Ha = [Xa , X..a] and o (Ha) = Ho-(a)'
~ ~_1 ~ ~
Moreover o (adXq) (6) = ad (o X,) and this means that ¢ nor-

~

. +
malizes Gad R (A) . Suppose o fixes a positive system of roots R in
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R. Tt follows by vsing (1.1) and [6, p. 172-175] or [7, p. 875-8771

that the fixed points of ¢ in G (A) contain a group which satis-

ad, R
fies the relations (R 1), ... , (R 4), with R replaced by the root system
obtained by twisting R according to ¢* . This proves the existence of
the groups in question.

Finally, let K be the normal subgroup of StR(A) generated by

Wa (t) x°a () We (1)1 X'_p (—1-2u) and
b (18) B ()1 he (1)1 (aeR,t,t' e A*, ucA),

where W', ()=x"a (#) x'—s (—t—l) xX'g (D) and bg (H)=wa (f) Wa(—12):

note that ¢ (K) = K.
It is shown in [6, p. 66] that when A is a field the group

St R(A) [ K is isomorphic to the universal Chevalley group correspond-

ing to the system R, and hence (StR (A) / K) o is isomorphic to the

universal Chevalley group corresponding to the system obtained by
twisting R according to ¢ [cf. 6, p. 172].

~

Therefore the groups (StR (A)/K) o — o being any automor-
phism of R —are appropriate generalizations of Chevalley groups. For
example, in this way, one obtains the maximal compact subgroups of
some real Lie groups. In this connection, see also [2, p. 65].

Remark. For some applications it is usefulto replace the relations

(R3)of §3by
(R 3) (a) : If Jisan integrally closed irreducible subsystem of

+
R of rank at most 2, J a positive system of roots in

+
J and an ordering of the rootsin J has been fixed,
then every element x of the group generated by x, ()

+
(r € J , u € A) has a unique expression

X = H+ xr(ur)
rel

* see appendix, [p. 22—23].
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the product on the right hand side being taken in the

+
chosen ordering of rootsin J .

(b): Ifa, b, c are positive roots such thata+ b, b ¢
and a - ¢ are not rootz then every element x of the
group generated by x, () (r = a, b, c,uc A) has a
unique expression
x ==Xz (u) xp (V) x; (W) . [In case R has no multi-
ple bonds we need only assume (R 3) (a)].

4. APPENDIX

LetL,R, S, Aand X, (r € R) be as in § 1. Assume that [X,, X_,]
(a e S) and X, (r eR) form a basis of L over A. In view of (1.1) we
may, after a suitable normalization of the generators, also assume
that for all roots r and s

*) [[Xr, X, Xs]= <5, 7> X

It then follows (cf. (1.1) ) that if 8’ is any simple system of roots

in R and ¢ an automorphism of R, then the mapping Xa———> X(y (a)

(ae 8" U—S8’) extends to an automorphism of L, and of the group
GR (A) of § 3, and this extension is unique.

From now on, we assume that the generators of L have been
chosen so as to satisfy (*) . Furthermore, that ¢ is an automorphism
of R which maps S into itself (so o is of order 2 or 3) . The unique
extension of the mapping X,—— Xo_ (a € SU —S) will be denoted

(@)
by ;.
4.1. ; (X7) = X, whenever o (r) = r, unless R is of type Aom,
in which case;’ (Xy) = —X, whenever ¢ (#) = 7.

Proof. First, suppose that ¢ is of order 2 and R is not of type

Aom. Let r be a positive root fixed by 6. If 7 is simple then o (X;)

+
=X;. Soletr=oa+B(xeS,BeR ). Denoting images under ¢
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by primes, we have r = r’ = «'+8’, so R is an irreducible root

off o
- + “, . 3
system, with Raﬂ o0 R as a positive system of roots, and «, o

remain simple roots of this subsystem.
IfR 8o is of type A2 then we must have « =«’, otherwise a4’
ap o -

would be root, and since «, «' are both simple, this is only possible if
R is of type Agm. Hencea =o', B=p"and o [Xa , XB] =[Xa,XB]

(by induction on heights). If Roc , . is of type Ag (so a £ «’) then

Ba
there is a root u of this subsystem such that o—o—o is its Dynkin
a u o

~

diagram, and such that r = ¢« +u + &’ . As# = u’ we have o (Xy)

= X , by induction on heights. Moreovers (X ,X ;X , ] =
u o u [+ 4

[Xa, Xu ; Xa] = [Xa . Xu 5 Xa,] (by Jaqobi), hence ¢ (X; ) = X, .

If Ris of type Asm and o of order 2, then o does not fix any
simple root. There is a unique simple root o such that o 4 «’ is a root

and so’; [Xa Xa,J = ~ [Xa s Xa, J. An argument similar to the
one just given shows that o (X;) = — X, whenever ¢ (r) = r.

There remains the case : Ris of type Dy ande® = I, g5 1.
Label the Dynkin diagram of Dy as 0—2<OZ . The non-simple posi-

a 0

tive roots are @ + b, b+ ¢,b+ d, a+ (b + ¢),a + (b+d), ¢ + (b + d),
a+®b+c+d),b+(a+ b+ c+ d). Fixingtheordera <b < c<d
on S and using (1.1) (B), we may assume that Ny, 5 = Ny, o = Ny, 2
=1, Ng p+ce=Na,p+e=1, Ne,psra=1, Na,btcrd =
Np, o+ b+c4d = 1; moreover if u, v are roots such that Ny, y £ 0
then Ny, y Noy,—y =—1. The non-simple positive roots left fixed by
careatb+ctdanda4-2b4c+d.

Now

0 [ X [Xeo |X6, Xdl]] = Nay 6+ 5 Nbwa Nesarb+d Xa+b+c+d
and [Xg, [Xe, [ X5, Xalll=Nayos+b+d Nesvbyrd Nowd Xavbypesd
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Using the above data, one can check that the right hand sides of the
last .two equations are equal. The verification for the root
b + (a + b + ¢ - d), which is similar, completes the proof of (4.1).
The following lemma is well known : a version occurs in
[2, p. 19-20], and 4.2 (i) can also be extracted from [7, p. 877, line
14]. We need it in the following form.
" 4.,2. Let R be not of type Aasm and let 6 be of order 2 Denote
images under ¢ by primes :
() For all roots r, we have r 4 r’ is not a root.
(i) fr=r,sz£s,r ands are non-orthogonal then Rm
is irreducible of rank 3 and o acts as a non-trivial permu-

tation on R R, .

(iii) If r % r', s~ are roots such that r 4 Z:,.és R (E=4+1)
then either » + Es = ¢’ 4 £ s', in which case Ry, is
irreducible of rank 3 and o acts non-trivially or Ry,

R+,ore1se <r,s>=<r,s>=0.
Proof. We may assure that r is a positive root. As ¢ preserves
heights, it is clear that r — r’ is not a root. Suppose r 4 r' isa
root. As R isnot of type Ag,, r cannot be simple, so r = a + B

+
(xS, BeR ) As «+B,a 4 p and r 4 ¢ are roots, w: s3¢

R
that 2B o’ ¥

of type Az, As, Aq or Dy, and o acts as a non-trivial permutation

is an irreducible root system of rank 4 at most hence is

+
on R nR One checks that if 1 is an involutary automor-

o !3 al B’ .

phism of a system of type Ag or Dy , fixing a positive system of roots,

then there is no root r such that (r 4- ) is a root. Hence R o’ @
apa

must be of type Ag or Ay, with «, o' occuring as distinct simple roots

in R o B nR . As Ris not of type Ag, we see that « 4+ «’ is not

a root, hence the Dynkin diagram of R , N R+ must be

afBa B

0—0 ,and r is then « +u or v+ o«. As ¢ must permute
o u
o, o’ and

—0—~o0
v o
u, v, respectively, we sce that u is a root of lower height
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than r such that (¥ + ') is a reot. By induction on heights, it
follows that r 4 ¢’ is not a root.

Iet r = r’, s # s be roots such that r - & 5 is a root(§ = 4 1).
Now Ry’ is irreducible of rank 3 at most ; its rank by (i) cannot be
2 as R,y’ R+ admits a permutation of order 2. This proves (ii).

Finally, let » and s be non-orthogonal roots such thai r # r’,
s#s5. Letr{Es bearoot. As r4-r' and s 4 s are not roots,
we seethat < r 4- &5, ' +£5 > =2& < r, s > . Hence either
r+&s=r +E&s or else <r,5¥ >=<t,s5s>=0. This
proves (iii).

4.3. Remark. The proof of (i) also shows that R is of type
Agpy and 0— ... — 0—0— ... — 0 is its Dynkin diagram then the

o1 oam Am+1 o2m
positive roots of R such that r = r’ are ;
{om + tmy1 » am-1 + am + Gmi1 + amiz 5 oo, X1+
+ oam + wmyr - oo+ oom }

Proposition 4.4. [7, p. 875-877] Let V denote the real span of
R and fix a positive definite innér product on R relative to which
elements of the Weylgroup and ¢ become isometries. Forv g V, let

v denote the orthogonal proj:ction of V on VG, where

VG—_—{vsV[c(V) =v} Then R = {r : re&R} isan irreducible

reduced root system in Vc and the distinct elements of {«:axe S}

~

form a fundamental system of roots of R, unless R is of type Agm
in which case it is of type BCy, .

The reader is referred to (6, p. 172] or [7, p.875-877] for details.
In the case which interests us here, namely R is not of type Aay, this
also follows, as we show presently, from (4.2), when 62 = 1, and by
explicit computations asin (4.1) wheno®=1. Leto?=1(c % 1)

andlet o~ denote the reflection in the hyplane orthogonal to a. In
a
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view of (4.2), to see that o~ (R). = R, we have only to verify this
a

when R is of type A or A; X A, with o interchanging the two compo-
nents in the latter case : this verification is easy, using (4.2) (ii) and

~ o~ ~

(iii), and will also show that < @, b >Z. Therefore R is a root

system in the sense of [4, p. V—3] and every element of R is an integ-

ral linear combination of elements of S. Defining height with respect
to S and using the integrality condition < a , b > € Z we see that if »

~ o~

is a positive root and 2reR then 2a (aeS) is also in

~ ~

~ +
R,say2a=s(scR ). Sosmust be a linear combination of the

transforms of @ under 6. The condition2 a = s implies that Ry, is
of type Agand s = a + a’. Asa, a’ are both simple, this is only
possible when R is of type Agp.

-1
Now ow~6 = w~ (@eR) so (2, p. 19, Lemma 1] or [5, p. 234,
a a

~ ~

11.1.4] implies that if @ and & are linearly independent roots such

~

that a is orthogonal to all transforms of b under o then R the
a, b

~ o~ o

integral closure of a, bin R, is of type A1 X A;.

+ +
Let U and U~ be the subalgebras of L generated by X, (reR )

and X; (s e R ), respectively. Let H be the subalgebra generated by

+ — ~y
Hy(@aeS). ClearlyL~ = U ~@H~ @ U ~ For each root« ¢ R

(o) o) o o)

choose a root r such that « = r and define X and Ha to be the sums
o
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of the distinct transforms of X, and H, , respectively, under . Now
using (4.2), and (4.1) in case g is of order 3, the reader can check that
[X > X_ ] =H s

o 24 &

. Oifw +B¢R
]Ha,X&] = <B,oc>X@and[Xm,Xg]=
o
Na,@Xoc.l.Bl «-+BeR,
NoC 8 being some constants.

In particular, taking A = C and using the fact thatthe Cartan

~ o~

" matrix (< r,s >) is non-singufar, where r, stun through a set of
representatives of the orbits of S under o, we see that LR (C) , is a
c

~

semi-simple algebra whose root system is R. This proves (1.2).

Finally, consider the group Ga iR (A) of § 3. The automor-

~

phism ¢ of R extends to an automorphism ¢ of Ga IR (A). Foreach

~ ~

root o € R, choose a root « € R such that « = r. Define x (a) tobe
product of the distinct transforms of x, (a) under & and let Um be the
group generated by X (@) (7cAy. Using (4.2) and, in case ¢ is of
order 3, the normalization of the structure constants of Dy as given in
(4,1), the reader cah chéck that the group generated by x (a) (m € E,
a « € A) satisfies the relations (R 1), (R 2) and (R4yof § 3. As the

+
group generated by U, (xz € R*) is a subgroup of the group U ~, the
c
commutator formula and the lemma in § 3 imply that the generators

x (a) satisfy the relations (R 3) also : see [6, § 11, p. 180, Lemma 62}
[+ 4 .

for details.
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Abstract
In this paper the irreducible representations of the finite sets of

satisfying the

n

* *® %

operators Aj, Ag, ...... ,Apand A, A2 y eeeens A
commutation relations

AI’ As - A; Ar = 0

* T * *
A, A;— As A, =0
E3 £
ArAs "'As Ar-'—"—SrsI

(r,s=1,23, ...... , 1)
in a Krein space have been found. The sets of operators satisfy the
following conditions :
(1) Az, As,...n.. » Ap are closed, linear operators with a common
domain of definition, dense in the Krein space.
n

* .
@) N= [ A, A, is self-adjoint
r=1

and so is each A: Ay(r=12, ... , 1),
(iii) N has a spectrum lying on the non-positive part of the real

axis and so does each of A: Ay

(iv) N has a spectral decomposition.

31
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It has been shown that the Krein space can be written as the
direct sum of finite number of subspaces, and each of these subspaces

*
is an irreducible reducing subspace of A;, Ag,...... » Ag and A,
*
A L. , A, and has a complete orthonormal system.

Introduction.
Rellich [4] and Tillmann [5] have found the irreducible represen-
tation of finite degrees of freedom in a Hilbert space. If A is any

closed operator with a dense domain in a Hilbert space, then A* Ais
a self-adjoint operator and has a spectral decomposition and its
spectrum is positive. Further the sum of a finite number of self-adjoint
operators having a common dense domain is also a self-adjoint
operator. In the case of a Krein space A¥A may not be self-adjoint
and further, every self-adjoint operator does not have a spectral
decomposition. Furthermore, the spectrum of a self-adjoint operator
lies symmetrically about the real axis. When the spectrum, however,
does not lie on the real axis, there are additional difficuldes, for in
that case the orthonormal system is not complete and adding of some
vectors in the basis becomes necessary.

Now we consider the problem of representation in a Krein space
) ' * * *
IT1 of finite sets of operators A, Ag, ...... s Ap,and A, LA, ... s A,

under the following assumptions :

(i) Let A;, Ag,...... A,, be closed, linear operators, with a
common domain of definition, dense in the Krein space []

satisfying the relations

ATAS_ASAT':O 1
* * * *
A, A, A A, =0
>
* *
ArA, — A A= 5,1 R)
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n
(11) N Z A A, is self-ad_]omt and so is each A A,
r=1 (r=1,2,..... , 1)
(m) N has a spectrum lylng on the non-posmve part of the real

~ axis and'so does each A A,

(iv) N has a spectral decomposition.
Let the spectral decomposition of N be glven by

N= sz. S . )

Since N has a spectrum lying on the non-positive ' part of the real
axis, by (iii) and by (R), N cannot be the zero operator, there exists
some p € sp (N) with u < 6. We choose elements f, = E (Am) fm
where C S

Am=(¥,’-__“.’_¥",+7)

such that t fm | ;= 1 m=1,2, 32....;..._.
so that " (N- p.I) fm'= 8m ——> 0 asm —-> oo .
Now Af(N — pI) fm=Argm with l <k <n :_
n
or (L Accar Ay~ P-Ak)fm—Ak o
r=1

n
% *
(D ARA At AA Av- AL ) fu = Argm
=1
r#k
n . -
(Z Ar AA/:+(A Ak—I)Ak—(’-Ak)fm: Ak gm

r=1
r#k

. |
t (L Ar A= G+ DT ) Acfa = Acga

r=1\ : ‘
or N=(u+1 1) At fo = Ak g - o )
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Since | < fu,fu>] < I f» ni = 1, for each n, we may assume

that < fu, fu >—=> 3, (extracting a subsequence of fi,'s if necessary).
Now
1Ak fm 17> | <Akfn, Afw> | =] <fu, A*Afa>|
—=>|u| [r]asm—> .

We have the following possibilities
@ 2#0
() a == 0. then cither

, ie. Apfm#AO0form=1,273, ...... ; or
(52) I At fa I j—>0,

ie. Apfm——>0 asm—>o0.
First we consider the case (a) in detail.

2
Since | Axfm Iy =|ul la] asm— > oo,
k*x
and § Argm 1] = <Ak gm, JAL gn> =<gm, A JApgn >

b
<hgml WA JAtgun b ——>0 as m ——— > 0 ;

Here we assume that D is invariant under J.
Hence from (2), we have

(N— 2+ I)) Arfm = Ak gm —> 0 as m—-> o0,

therefore p 4 1 also belong to the spectrum of N. Thus whenever
p esp (N) and p <0, then p + 1 € sp (N). Since the spectrum of N
is lying on the non-positive part of the real axis; p must be @ negative
integer. The same argument also shows that 0 belongs to the point
spectrum of N. Therefore there exists some @ €D (N)and & =£ 0
such that N & = 0
n
*
i.e. ZA, A, 2 =0

r=1




* : % %
or AJ A1 g + A, Ao+ ... +A A2 = 3

which is an equation in 2nd operators and for the solution of which
we require other 2n—1 conditions. We consider the case when those

conditions are as follows :

*
ALA, o =0 andA, g =0 r=1,2, ... ,n )
We define

. - \ S1 * Sa * Sn
§1 5 seveee . Sp - (Al ) (AZ ) """ (An ) ﬁ
where s ..., s = 0, 1,..., m, ... a system of elements in D. Then
* * 51 * \S,—1 * \g +i
A,- QSl, ...... ,Sng(Al) """ (Ar_l)r (Af)’
E 3
( A, )S’+1 ...... ( A, ) o
=®S1’ """ ,Sr—l,Sr—l-I, Sypl sececes s Sp
and
* 5 * Sy *
Ar Py =) e A, " A@)T
%k * s
(Ary )S’+1 ...... (A,) T
* S Sy
= (A ) . (A,_, )yt

*  Srel * Sn
(A )" e (A,)" o
= — S B gogeenenny Sp=1, Sr—1, Sp+1 , ceie s Sp
Let L=(g i
( S1, 82 5 ceeees ,s,,’gul,ug, ...... ,u,,)
We further assume that s, > 0, s, > 4,
al’ld Sr+]_ = S'T+2 = vveere = 8§ = 0,
Upil = Upyg == .oouee = Up = 0-
Then
*
L=(A o
( * 81y secere s Sr—1, S,-—l, 0, ...... B 0, ULy vooees s Uy, 0, ...... N 0
= (g Ay o
( §1 4 veeens , Spe1, Sp—=1, 0 4eennee L0, Ty e, y, 0,..., 0)
=(—Du(z o}
(=Dur( 815 eevnee s Sp=1 5 §r—1, 0, oo , 0, Ty, e e ,

..............................
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= , u,
. (gsl s s Sy, 0, .l 0 2 us, s 1,0 “.Q)(—l) "(uy M.
If 8¢ — uy > 0, in the next step we have L = 0. X

If s, — u, = 0, we have

. & L
L =( Q 3'1 gresene "'S_r_l N 0 5 semuse 0 ’ ul 9 eevese » u,;_]_ ,0 ------ 0)

i (-1" @ Y
Similarly we have '

[( 1)S1+Sz "‘;."+"’(s1 D (s2 L);.._(:s,_ D ifus=s;,i=1,..,r

0.  otherwise

Thus
VS1, ------ Sn"'( 1/\/ (Sl D(szh . (Sn r)) ...... s Sp
ST yeeeese , Sp == 0 1, 2, ceenenne
is an orthonormal system for which we have
* : ; o
A, LS , Sx = \/S"H Vo s 51, Spb 1, Sppa 5e--Sk)
- - ' (
and A""sl s e , Sn Vs Vst ooes Sr—t, Se—=1, 8+ 1,00, 8 ]
fy=g @ = & is not the only eigenvector of N corresponding
to eigenvalue 0, then, we assume that
2@ _ g, o (]) ,_;5(2)., ......

is an orthonormal system which satisfies the condition (4) and genera-
tes the eigenspace of N corresponding to the eigenvalue 0. '
Then

*SI

51,8, iei, 8 =0,1,2,3, ...... e

1s an orthonormal system of elements in Dr.
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Let us denote the closed subspace generated by
)]
{WSI, ...... ,Sn}s1, ------ s Sn
b .
Y My
Then H(i) is orthogonal to H(j) y I # .

For, if u, < s, for some r such that 1 < r < n, then

Ui YD i

ULy cevnnn g Upy 0, Urgl y eveeee » Up

= 0 if s, > u, for at least one r for A, z(") = 0 by our assump-
tion and when u,=s r=12, ... , n then (6) =0 because

< @ z(f)> —~0.

Next we show that the system

@) i=012,... ' }
(B) {‘l’sl,sz, ...... . Sn S1 5 ceeres WS =0,1,2,3, ...
is complete in [T, i.e. [T; #=0,1,2, ... together generate the
space [] .

Since our topology is derived from the Hilbert space metric and
it is separable majorant (as we always consider a separable Hilbert
space) there must be an orthonormal system complete with respect to
this topology.

We can assume, without loss of gencrality, that our orthonormal
system (B) is the system which can be extended to make it a complete

system,
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Let us assume that the system (B)is not complete. Then there

exists some X such that NX = — kX for some positive integer k
(because we have assumed that N is decomposable and its entire
spectrum consists of 0 — 1, — 2, ...... ) and is such that
<q;(') X Y= P=0,1,2,3 ......
St 5 52 5 ceneen , Sy
<X, X>#0 St, 82, coeens ,8n=0,1,2,3 ...

Here we assume that & is the smallest of all such k’s.

Now
n
\—, *®
A,NX=A,/_' Ai‘ A; X
i=l1
= — kA, X forsomer, 1 <r<n.
n
_ *
ie. (L ArATA+AA A)X=-kAX
i=1 '
i#r
n
X ® *
ie. (L AAA+®A A-DA ) X=-kax
i=1
i#r

ie. NA,X=-(k-01 A X

Therefore A, X is also an eigenvector of N. - Also

< Ar X, \l!() > < X, A, W.E'll), '.,s,_l,s,, s,+1,.>...,4s,, >

g srenee

=VEFL

<X"V ) +1 >
S1, eeeeee s Sy=1 5 8¢ 5 Spil5ee0 Sp
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and the corresponding eigenvalue is — (k—l.), where k-1 < k con-
tradicting our assumption

Hence [T = = (£) 1
1

Thus [] can be written as the direct sum [] = = () H(l) of spaces
i

H(I) such that for each i, ]'I(l) is an irreducible reducing subspace of

% % E
A, Ap, ...... , Ay, and A1 , A2 JN , An and having a complete

orthonormal system

{ @ Pi=0,1,2 .. }
1
Y 0,1,2,3

81 5 52y cevens s Sn 81y eeenes S = U, 1, 4, J,.00aun

* *
with the property that Ay, Ay, ...... ,Apand A A, ... , An

satisfy (5).
Little can, however, be said about the cases (b1) and (bg).
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Abstract

In this paper, we discuss the irreducible representations of the commu-
tation relation
AA* — A*A=—1]
in a Krein space uuder the following assumptions :
(i) A isaclosed, linear and densely defined operator
(i) T = A*A is self-adjoint
(iii) T = A*A is decomposable
(iv) The space is irreducible for A and A*,

It is proved that the spectrum of A*A is discrete and there are two irreducible
representations of the above commutation relation.

Introduction

In a Krein space, if A isa closed and densely defined operator
then A*A may not be self-adjoint. Unlike a Hilbert space, where
every self-adjoint operator has a spectral decomgosition, a self-adjoint

41
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operator in a Krein space has a spectral decomposition under very
restrictive conditions. Further, the spectrum of a self-adjoint operator

in a Krein space is symmetrical with respect to the real axis {3]. There-

fore if 3 is in the spectrum of a self-adjoint operator, then % is also in
the spectrum. There are complex eigenvalues which belong to the
point spectrum and the eigenvectors corresponding to such eigenvalues
do not form a part of the orthonormal system of the Krein space.

Under the assumptions we have made, it has turned out that the
point spectrum consists of real eigenvalues and the corresponding
eigenvectors form a complete orthonormal system. The condition
that the space is irreducible for the pair of operators A and A* ensures
that the operator A*A does not have a continuous spectrum.

We discuss the problém of the irreducible representation of
AA¥* - A*A = — | (9}
under the following conditions :
(i) Ais a closed, linear, densely defined operator in a Krein
Space [] and A satisfies (C), i.e.
AA* — A%A = — | on a dense sét D,
i.e. D =D (A*A) = D (AA¥*).
(ii) T = A*A is self-adjoint
(iiiy T = A*A is decomposable,
i.e. has a spectral decomposable,
(iv) The space is irreducible for A and A*.
Let the spectral decomposition of T be given by

T=\ .
5 AdE,
Now by (C), T cannot be the zero operator, there exists some
g € sp (T), such that p % 0.
We choose eIementsf;’ =E (An) fn of unit kength i.e.
1 1
] fn Il y =1, n=1, 2,...... where An = ( = o + 7) , Sothat

(T—gl) f, = g, —>0 asn—> o $))
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ie. I (T-ph f 1 ;=18 by—>0asn—>o.
Now E(An) g, = E(An) (T—uD fn
=(T-uDE (A,
=(T - D) f, =g
so that gneD(T) .

From (1) we obtain

A(A*A —uDf, = Ag,

ic. {(A*A—I)—;LI}Afn=Agn

fara—@+DI}AS = ag, @
Also
| AS, 13 = [ <AL AS, > |=| <[  A*Af > |
—> el I </, f,>] A3)

Since | <fn ’fn> < fn I ZJ = 1, for every n, we may assume

that < fn s fn> ——> (extracting a subsequence of{ fn} , if necessary)

where

@@ r»#0, or (i) » =0.
From (3) we have the following possibilities
@ Ifr#0, then | Af %2 |u| [C]

i.e. Afn;éOforn= 1,2,3, cceeenens

(b) If C = 0. then either
G):1AS hy>0
i.e. Afn;éOforn=1,2, ------ > or
(Ga):l AS, Iy =0 _
i.e. Afn=0forn=1,2, ...... N
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We consider the case (a) first.

2
Since || Afn IIJ —> || |C}

2
— — *
I Ag, Iy <Agn, JAgn> <g,> A JAgn>
* ——
<leg,l lIAJAgnlIJ—-—>Oasn > .

Here we assume that D = D (A*A) = D (AA¥) isinvariant under J.

Hence from (2) we have

{A*A —(p+DI } Afn—-n Qasn——>o00;
therefore p - 1 also belongs to the spectrum of T.

By assumption (iv), the space is irreducible for A and A*, there-
fore we have the following two possibilities :

(1) u is an eigenvalue of A* A,

(2)  belongs to the continuous spectrum of A* A.

(1) Let p be an eigenvalue of A* A.
Let us denote the corresponding eigenvector by @ ; we have
A*A g =) @, then A*A Ag = (AA*+ DA g
=AA*A + D o
=A@+ o=@+ DAg,

A*AA* g =A*A*A-Dag=(p-1)A*Q.

Therefore g 4- n are also the eigenvalues of A* A, unless there
is an n such that either A* AA*m g = 0 or A* A"l g = 0. In
this case, w must be an integer and because of the irreducibility of the
space, the set

o0

{A*”Z}oo ({A"z} )mustspanﬂ.
n=0

n=0
Let us write
A*A@Gp=0O+n Ga.
Then <A*¥A @y, Om > = <Du, A*A By > .
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Therefore (A +8) < G Bm>=Q+m < T, B> ;
here % is real, as a consequence of the irreducibility of the space.
lWehaye" (n—- m) < Pu, Pm > =0,
'tl'iefefl"'ore: ‘ < Bm, Bu> = 01fm;én

Here < Zms Im > # 0 for any m, because then we hould have a
degenerate space

Let (zm,zm)—&n=:]:1

AGm=om Bmn, A*Fp= ﬁm_zm;l
m=0,+1,4+2 ..

.then o _
<Azm,z,.>=0 unlessn m+1
<A*zm,z,,>—0 unlessn—m—l

Now < AZp, Buisi > = < Dms A* By > gives us

i

o Omal = Em+1 Om «
If we put Sp+e1/ 8m = W = -1, we have e 1‘
Em+1 = Om Tlm .

If we replace @m by A &, where |4 | =1, we do not alter §,, , ay, ,
and B,, are multiplied by an arbitrary constant of modulés 1. There-
fore we can suppose without loss of generality that 8, > 0 for all m.
~ Then ay, is also real.

Also A*A @, = ap Bmel Bm»

" therefore oy Bm+i = p-'—}- m . .

.
., Le. o Nm gm ;:—-u—}-m

We have the following p0551b111t1es e :

(a) There is a smallest p 4 m, where m is a negative integer. In
this case @, 5= 0.but A* @, = 0, therefore - -
O0=AA*g, = A*A =D gp=(p+tm-1) @,
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or w=-—m- 1=k 4 1, where k =—m is a positive integer.
In this case all the eigenvalues of A* A are positive. We have n, = 1
for all m, so that all §,, are + lor—1. The smallest eigenvalue of
A* A is 1. Let us denote the corresponding eigenvector by &, .
Therefore A* A @, = &, < Gg, Tp>=L1,
then AA* g, = (A*A -1 o,=0.

Thus 0 is the smallest eigenvalue of A* A and the corresponding

eigenvector is @, . By repeated application of A to @,, we see that
Ag,,A2g,,.., A" g,, ..., are the eigenvectors of AA* corres-

ponding to the eigenvalues' ,2,...,n,..., respectively.
If we normalize these eigenvectors, and denote by v, the norm-
alized eigenvector corresponding to the eigenvalue #, where
‘l’ﬂ=A” go/'\/;r,
then '

Ay, =Asl g, [ A/ 0l =44/ n4+1 VY1,

Aty,= A*Ar g, [/ nl =(ARA* + nA* Y g,/ n!.
=AmLAA* g, [V nT+ n A g, [V (=D T
VA 5 V@D T A

_ (b) There is the lgrgest p + m, -

where m is a positive integer or zero.

In this case @, 5% 0 but @, = 0.

Then 0= A* g ,.1 =A¥A 3, =04+ m) o, le. A= — m.

Therefore ) is a negative integer,

Taking » = 0, we see that the vectors @3, &2,..., do not exist
and the cigenvalues of A¥Aare ..., -2, — 1, 0.
Let us denote the normalized eigenvector of A* A corresponding
to the eigenvalue 0 by @, .
- We have A*A g, =0,
then A* AA* g, = A*(A*A-1) g,=~A*3,,
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a * %2 L .
We see that A g‘-o , A go y enens , A¥n zo , --. have the eigen-

values —1, =2, ..., —n ... respectively.

If we normalize these eigenvectors, and denote by v, the nor-

malized eigenvector of A*A corresponding to the eigenvalue — n,

where
= A*
v, =AMg [ A/ nl
then
A*\lln=A*n+1 ‘zo/ z/ n! ='\/(n—§—l)!‘l’”_’_l
—_ * /
Ay, =AA™ g [ 4/ ]
= (A*A — ) A*-l g [ o/ 7T
— 1 *A -
= —(A*A-Dy, |
=—F—{-@m-p-1}v
AR n—1
= —\/ n ‘l’n_l .
We must now take Ny = — 1, 8m alternate in sign.

(¢) p is not an integer.
We can choose p, so that 0 < p < 1.
Let us denote the corresponding eigenvector of A*A by z, i.e.
A¥A g =p o
7 0
Then Ag ,A%2g , ... JAR o
7 7

are the eigenvectors of A*A corresponding to the eigenvalues p + 1,
B2, L, ... - respectively, and A* @ 0’ A¥2 o 0 ?

A*n go Y eenens , are the eigenvectors of A*A corresponding to the

eigenvalues p—1, p—=2, ...... , B — A, ... respectively.




We denote by qr; the normalized eigenvector of A®A corresponding

to the eigenvalue A + #, where

v, =AM [ @ FreD
and by l]l; the normalized‘ cigenvector of A*A corresponding to the

eigenvalue u—n, where
»

w— . 1 A¥ o
n A (TN YN I N
We have defined here y, = @o-=-Y, .
Now A .
o Antl g
Ayt = ] 4
Y Voe@+1 . (w+n-1)
_ A pfn A 7, ‘
v LL(_!-F,"l' .o (& +:.n)
o
= w4n Vel
= = 0, 1, 2, ......
A® An o, T AsA AT o

+ =
AV, = Ve @+De (w+n-1) \/ e ) (ptn—1)
vV g +n—1LArl g,
A o@D Fr=2)

N

= AVt =¥, n=1,23...

i} AAx A g, |
A\i! == P, — = 3 —— .

n "N AT-w@—w - E-p -

- ° . . -1 ER -

e L (A*A = 13 A*" " g5 . o
oL, =T @ ) e (=)

{ (u— ”———1)—1} A*”—l' 5
- \/ Q- Q—p.. (g—gy
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B A\/T_' n A‘ﬂ—l Qg
=1 ——
TV -w@-w -1 -

_'\/P-“n\l’;__l-

n+l
. A g,

RV AV Y ¢ R B ()

L/ nd1—p A*™ g,
A A Y T S (n+1-w
LR T

= Ve-0+D vy

In this case all the \y;’l have the same signs and \y’; have the alternate

signs. Therefore

( 1 ifn>0
N = 4 .
L -1 otherwise.

(2) Next we consider the case when p belongs to the continuous
spectrum. Here we show that (C) has no irreducible representation in
[1. To prove this we make the following agsumption,

For any bounded intervel A , E (A) I is inthe domains of A
and A¥.
Then it follows that for any bounded interval A there exists K A

3

such that
W Af “J<KA hf IlJ

I ASS <K, 1S

if feE(A)I.

Now if feE (A) ] ,forany & > O, there exist fi, ...... SaeBE(A) T
and g, UmE A such that
1

"A*Afr"'lrfr ”J <‘8||fr "J
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and }:uf,anzufuJ.

Now A*AAf, = (AA*+ DAJ;
so that
HA*AASfr = (r+ DAL Iy =1AA*Afr — ALl y

= IAQA*AS - u £:D1y

<3IIAHJIIfrllJ
<3KA I fe Iy

Soif Af=g,8=2¢g=XAf
then
* —_
| A*Ag —Zprgr Hy <K ST 0 frlly

<KA8HfuJ.

Letting § — 0, we have g €E (A) []

ie. AfeE(A+DII.

Hence under these hypotheses
A:E(Q)NT—EQ+DHII.

Similarly, A* : E(A) [ —EQA -1 I .

It follows that U:°= o E(A +n) I] is an invariant sub-

space for A and A* .

Therefore the spectrum of A* A is discrete and consists of points
{ wtn }:ozo ; for, if not we could find A; and As contained in
some interval of length L, Ay n As = & ,E(A1) 5% 0, E(A2) # 0
and U;°=_°°E(A1+n)ﬂ, u? E(A2 -+ n) would be

n=-—oo
disjoint invariant subspaces for A and A* . This fact contradicts our
assumption that the space is irreducible for the pair of operators A
and A* .

Thus we have shown that the spectrum of A* A is discrete under
the assumptions (i) — (iv), we have made. -




2,

3.

4.
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NEW EXPLICIT FORMULAS FOR THE GRUNSKY
COEFFICIENTS OF UNIVALENT FUNCTIONS
By
PAVEL G. TODOROV

20 Lenin Aveﬁue, 4002 Ploni_V, Bulgaria .
- According to Grunsky’s [1] and Schiffer’s [2] well-known results‘
a necessary and sufficient condition that the function
les] _ |
f@ =) apan, (=1 e ()

n=1
analytic in the dise A, = { z:|lz| <1 } should be univalent in A,

is that

[0 0] [0 0] 2
X |
| Z Enm Xn Xm | < Z "I‘—;:l—' .. (2

n, m=1 n=1
for every sequence {x,} for which the right-hand side converges, Where
gaum are the Grunsky coefficients of the function (1) determined by

. e 0] .
z_g _ ¥ nEm ’ ' eee (3)
ln(f(z)—f@) )_;Z §um 20 &7 5
| 2

Let us note that in (3) and further in our paper, where many-valued
functions are observed, we consider their principal values.

From (1), (2) and (3) we obtain, respectively, that the function

Fiz) = 7‘(11/7 1z] >1, e (4

53
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is meromorphic in the disc Aoo = {z:]|z| > l}and isunivalent in
A © if and only if (2) is fulfiled, where

[ea}

z-& Vo : Enm -.(§
w(roore =L )

n,m=1

L&eAw

i.e. the Grunsky coefficients gy, forz, m = 1 of the two functions
(1) and (4) are the same.

We can consider, more generally, the p =symmeltric functions

®
@ =PV @Er)=: +Z al(l}?—l- e

n=1
p=12 ccoeee. sZE AN, --(6)
and
o (D
A A7) z7p-1 (7

n=

p=112 .52

for which the Grunaky coefficients g,,m are determined by the expansion

ey =) - W) 4 2

Fp (z7%) — Fp €70) fo (&) 2
© (p) m
=~ Z Zam 2" & --.(8)
n,m=1
z, Ee A,

Explicit formulas for the coefficients gf’fg are found by Schur [3] and

Hummel [4} . But their methods and results are much more

complicated. In this paper we use an alternate method by which we
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obtain new explicit formulas for the Grunsky coefficients gflp ,21 . Our

method and results are simpler and more convenient in comparison

with those of Schur [ 3 ] and Hummel [ 4 ] and they afford the

possibility of making some new investigations on the expansion (8)
and its coefficients. In particular, we give a new recursion formula

(p)

nm 1S consi-

by which the computation of the Grunsky coefficients g

derably easier in comparison with the Schur [ 3 ] and Hummel[ 4]
formulas. Our method is based on the Faa di Bruno precise formula
for the # th derivative of composite functions, which is given in our

paper[ 5 ] , pp. 82-83, Theorem 1. By this formula the following

result is obtained (see[ 5 ] , p. 84, formulas (25-26) ) : If g (2)/z#0

in A, , where f (2) is the regular function (1), and m is an arbitrary
complex number, then in A, we have the expansion

o0 o0
a (——ff) )m = Z g, (m) zn = Z czn(l—gi, .z, - (9)
n=0 =

n=

in which the coefficients

8,m =Co (T2 V=L o0 Cp (an 0,y 1)

I =

k=0
... (10)
where (m)k denotes the factorial polynomial
\m)k =mm=-1) ... m=k+1), (k=1;@m,=1), (1D

and an ( a, . an—k+2) denotes the polynomial
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Vi Vv
S RS O o8
Ce (@, @mign )= 20 Cnmted2
vl Vn-tr1) !

no* 2 ,.., n+2) =0,

nz=1; Coo (az) = l) ...{12)

where the sum is taken over all non-negative integers e k1
satisfying

vt + Vaki1 =k,

" + 2V2 + ...... + (n—k-l—l) Vpkyl = 4 .(13)

Applications of this result are given in our papers [5 ]and [ 6] .
Now we shall give here another application of this resuit‘ﬁnding the
Grunsky coefficients in (8) :
Theorem If the function (1) is regutar and univalent in A, then
at the points z, § € A, the expansion (8) has the form P=12,.)
In 2 g" _ 1 { f (Z) '/..P (‘g)
F(zl)—F@l) 7 (Z)f(?:) z | E

P
oo oC
=) Z Enp, mp P) 0 gmp

-1
+ Z Z Z Enptg, mp—q P PTG (1)
n=0 m=1 g=1
where the prime of the sum denotes that for p = 1 it is replaced for 0,
and the Grunsky coefficients are equal to (m, m, p > 1)
1 1 (
= — —l _on—gs\S -
4 » Z 3 gn—s(8) gm—l—s( 5)

np, mp p
s=1 o _._(15)
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respectivelyto(n >0, m2 1, p 22,1 £ g 2 p-1)

n

1 v
b0, =i = L (o1 1)
§=0

where (0 £ ¢ = p-1)

g, ( st %) Czn's( /¢) )S +-7-
L

- .
E ( L)k C"—s, k ( ) gris an_s_k+2 )

(1)

; g’;i_'_s(_; s -%)5 sz+s (_Jiz(z_)_ )—-s-—_g)_
m--§

g
e (_S_T)k Cm+s,k( a2,...“m+s—k+2)

.(18)
/ :
where ( + 5 3 (9/p) )k denotes the products (11) after substituting m

b - 1
v -+ s 4 (¢/p) and the polynomials Cn—s, k ( va2,..., a s=k+2 )
andC

s, k( a2,..., am-;-s —,k+2—) are given by (12 —-13) after sub-
stituting n by n—s and m+s , respectively.

Preof. Let the function (1) be regular and unijvelent 1n N, .
Then for [z ]| < | E ], we have

In 72— £ f p ©
5, @-7® &

o _§+(T)' n

N
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From (6), (9) and (10) we obtain
f @ P\ T g \ P
p fFE)\— _ { r\z
( z =( zl")p =L &\ )
n=0 ...(20}
where
r N\ (@ Vo
g"(p )_ (’z"( z )P
n
r
= Z (_)k an ( azr“, an—k+2) "‘(21)
k=0
From (20—21) it follow tha'y-(belc’)w weput r = ps+q ,5 20,129 p)
fp (2) 1 o0 .
- —_— = M r
! f-p@) Z (% L G (L)
n=o

=f é 1 Eg )np+q

o (ps—l-q)(f (é))PHq n=s

g=1
i° IZ’: oy P
= gnp+q(P)\§)
n=o0 g=1 ...(22)
wheren =0, g =1

n gn—s..’l s-}—i'
® © =L ‘ \)‘psﬂ

Enp+a

5=0 (pS+q)(f @®; ...(23)

and gn—s ((s+q/p) ) are given by (17) for 1£ ¢ £ p.

Thus by‘(22—2;3) and.(19) we obtain the expansion
f (&)
= G
o { 7, (z)—f ® $=1 IOma

n—:o g=1

@ (¢ )znp+q

24y
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where

@ P -1
an+q @) = Enptq ® pta) £ .(25)

If one of the two variables z or & is fixed in the disc A,, then
the left-hand side of (24) is analytic in A Wwith respect to the other
variable (in particular for z = 4, the left-hand side of (24) is equal to

ln( fp &) € CD' (3] ) . Hence, at every fixed £ € A, the expansion

(24) remains valid for all z € A,, where the coefficients Gn;p j_q (&) are

analytic function of £ everywhere in A, and, in particular, at £ =0,
Hence, the principal part of the Laurent expansion of the function (23)
in the neighbourhood of the point & = 0 must contain the term

1f(np + q) &np T4 only. On this basis now, we shall obtain the

Taylor expansion of the function (25) in the neighbourhood of the
point & = 0. From (6), (9) and (10) again we obtain

' q
Ashe =(%ﬁ)““7
o0
=L, (_S_TZ') g ..t (26)
where m=0
(=0 F)= el /2)
m
- Z (_S—%)k ka (a2’ * k2 )
o 27)
A
( " (5))—” q =m£ogs_’”(—s z) z;mP1+q
s o}
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where g.r:Fm ( —s— (q/p) ) are obtained by (27) after substituting nz

by s F m. By (28) and (23) we obtain the Laurent expansion

- n
) 5 - ot oy 1
Sptg &) = L gmote oL, Pt
m=e
' 9. -4
Agn—s(s-,_P)gs—m( p)
e} n
. mp—=q Y . g
+Loe & st gn—S(S+ P ) :
m=1 S=0

gm+s(—s— Z) e Q9

In the principal part of (29) the term for m = n is equal to

1/(np+9q) gnp-{-q and all terms for m < n must be equal to zero.
Thus we obiain the identities

(o<m<n-1l;n=1) -..(30y

and the Laurent expansion (29) of the function ¢23) takes the form

o0
(r) I €2} mp —
g, © = +) & _ gwa
.np-i-q (ap+q) gnp-i-q M1 "P+q,MP—1
| (o< |E] <1 -.(31)
where
n
ry _ 1 Y
Enp -+ g, mp—q L pst+q gn—s(s+7)
§S=0

Srts (— s __;L) (32
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Hence, by (31) and (25) we obtain the Taylor expansions

o0
» 2] mp—gq
G,, ) @ = Zl Eor . mp—g & (&e Ad)
m=

of the coefficients of the expansion (24). Thus by (33) and (24) we
finally obtain the Taylor expansion (p = 1, 2, ...... )

;g £, ®
f @ -1, &) g
2 P+q gmp—q
= ), Z, Z, np+q mp—gq c
n=0 m= 1 q-l
(z,&Ee As) ...(34)
with coefficients (32). From (34), in particular, for £ = 0 we obtain
(p) P
S -L4
(ze Aoy P=1,2,...) ...(35)
where )
n+1 .
@®»_,®» _ -
8p =gnp o = Z s 8, s (s) g ( 5)
s=1

and 8, _ (s) and 8 (—s) are obtained from (10) after corresponding

substitution of the letters. Now, if we subtract (35) from (34), we
shall obtain the expansion (14) with coefficients (15—18). This
completes the proof of our Theorem.

Now we shall establish some typical characteristics of the expan-
sion (14) and the coefficients (15— 16). If we replace in (14) in the
double sum # for m and m for #, and in the triple sum n for m—1.
m for n+1 and g for p—g, we shall obtain the expansion (14) in the
form

o " f,e 1, (a)}
F G- F & 7o f ® = &

In
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(p) mp . up
Emp, np S

—
p—

|
~1 8
ﬁ[\ﬂs

s
|
—

(») mp~q .npt+q
Z
Emp—q, np+q "

+ |

j 038

.37

If now in (14) we change the places of zand § and we compare the
expansion obtained with (37), we obtain the equations

3
I
=
<
I

» _,® D onm >
Enp. mp = Smp, np (p,n,m = 1)
2 (») .
“npt-q, mp—q  “mp—q,npq,np + q (39

n=z0mz=1,p=21<g<p-1)

which in this form express the well-know symmctry of the Grunsky
coefficients. With the rcplacement of n, m and g from (15) and (16)
used above, we obtain the following explicit formulas for the sy nmetric

coefficients

m
1
gmp, np = 72 S5 ) Eprs(~5) ... (40)
m

¢ Z !
g =L q q
mp—q, np+q ps—q °m -2 g —st A

? (0= 7 Jona (=4 5)

...(41)
with (17— 18) after changing the places of » and m.

Further: if in (36) and (15) we replacc p for Np and in (16) we
replace p for Np and ¢ for Ng¢ (N=1, 2,...), immedlately. we obtain
the formulas

(N )
)4 I
ENnp = N Enp (,p,N=1) .. (42)
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(Np) _ 1 _(p) ‘
gan, Nmp - N gnp, mp 4 (na m,p, N > 1) (43)
(Np) (»)

gN(np+q) N (mp —q) = &up + 4, mp — g [N

n>0,m N>1,p=>21<g<p-1) - (44)

which in other notations are obtained by Aummel [4], pp, 147-148,
Theorem 5 in a complicated way.

Now we shall show that the formulas (15) and (36) can be
written in -a simpler form. -In fact, if we use the Faa di Bruno
precise formula frecm our paper [5], pp. 82-83, Theorem 1 to the
composite function (f(z) ) =0 f(z),s=1.... ,n, then we shall
immediétely conclude that the formula (17) for g = 0 can be replaced
by the following simpler formula

&5 ) =Cpn (f(z) )S= s Gy (a1 aa, oennes O _s+1)

(ai1=1,1<s<n ... (45)
where Cns (ars -, a, L ) denotes the polynomial
141 n—s+1
(a;) ...... (an_y.;.]_)
Cns (@1, oo ’ s+1 ) L il s Vpsil |
. (46)
and the sum is taken over all non-negativc integers vy , ...... s Vpesii

gatisfying (13) after substituting £ with s. Hence, the formulas (15)
and (36) can also be written in the following way (z,m,p =2 1, a1 =1)

gnp(f’)rnp B flf L 6-n! Cog (@15 oo P Oysy1) 8, 59
s=1 . (47)
n+1
gfg’) — 7} s-1! Cns'(al g srenes , an_s+1)gs( 5)
s=1
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Similarly, the formuia (40) is written (w2, p 2 1, a1 = 1}

0]

o
g = Z (S-—l)[Cms (CIITe » @ _l__l)gnﬂv(-s)

1
mp, np ~  p . m—s
S=

. (49)
with (46) after substituting 7 by mr.
Now we shall consider some special cases of the Theorem proved.

For p =1 from (14), (18) and (47) we obtain ( (6], Theorem 6) the
expansion for the Grunsky coefficients of the functions (1) and (4)

ﬁmsfmmunswn=Ufm4gﬁsgmmzem)

z-1 — g-1 _I{ iz f®)
YF@E FE) f@) f © =
0 oo
- Z Z: gnm zn Em ...(50)
n=1m=1
where (a; = I)
n mts
Law =L L (“DEGHE=DIC, (ar, ..o i1
s=1 k=1

Cm+s (02 g sreres R am+s_k+2) (51)
with (46) and (12-13) after substituting # by m-+s (the expansion for
In (z [ f(2) ) is given from (35) with (48) for p=1). For p=2 from
(14), (16), (47) and (51) we obtain the expansion for the Grunsky
coeflicients of the odd functions (6-7) (z Ee Ao )-

e T @ £
Fp (z71)—F3 (&) fe (Z) fz(é) z £
00 o0
— (2 n 2m
- Z Z Eom, %m 28 &
n=1 m=
o0 o0
i 2
+ Z_‘ Z g2n—§,)2m_1 z2n-1 gam-l - (52)
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where
@ 1
2n om = 2 Eum -+ (53)
n-1 ;
()
Son—1, 2m-1" L 2s—]—l &y 1—s\ T 7"
s=0
( s— L) '54)
Emys \ 7 2 - (

with (17) after replacing n by n—1 and (18) (the expansion for
In (z / fa (2)) is given from (35) with (48) for p = 2).

Now we shall explain the meaning of the double and the triple
sums in (14). By comparing (47) with (51) we get the following
general formula

(p)

1
gnp’ mp = p 8m (n,m, p=1) <. (55

from which and from (50) if followsthat (p > 1, z, £ € As)

wf =8 )y s )
Vry-rfy e?
71 m,
:pnél mZI np,Pmp P g"P .. (56)
Ffom (56) and (14) we obtain (p = 2, z, £ € A,)

- p-1
i { 7;6%@))
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[v ) [0 0] '— +
P mp —
Z Z Z np+q, mp q P L om

=0 m=1 gq=I1

In particular for p=2, we have

[ z—§ Sa (2) /2 (B ]
fe (@) —f2(O) z+8§

0

. 2) -1 ,.2m—1

=2 Z Z g2n-l,2m—l z & ... (58)
n=1 m=1

Now we shall examine some consequences which are obtained for
E=2. Fort=z from (50) we obtain

n—1

[0 0]
o{y (2O} L 2Lty o

=2 m=1

On the other hand, the Faadi Bruno precise formula from our
paper [5], pp. 82-83, Theorem 1, applied to the composite functions.
In (f(2)/z) = Into (f(2)/z)and f’(z) = Into f* (2), respectively,
immediately gives

In fgz) = Z by z* .. (60)

where

k=T
=T (-0 T E=D1C,, (@ s,y ) A61)

and
. ;
Inf' (2 = Z C, z* . (62

n=1
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where

- Z (-1)’“1 (k-D!C (a2, oo, (1=k+2) a

n~k+?
.. (63)
and keeping in mind (12-13). Hence, we have
o0
1 F@\\ _ _
‘n{( 7@ ( z ) )}_ L @ba—GCp) 2 - 164)
n=2
whence and from (59) we obtain the relation
n—1
26, — Cp = Z %y, m n=2,3, ... ) ws (65)
m=1
From (65) and (55) it follows, more generally, that
n—1
_ (») . '
2y ~Cn=p) Sy pomp @252 D (60)
m=1
For £ = z from (57) we obtain (p = 2)
1, @ © n p-1
In = 2P (»
Zf (2 —1 Z Z Z Bn—m)p+q, mp—q
n=1 m=1 g=1
.. (67)
On the other hand, from (6), (60) and (62) we have
z .
@ W £(P)
z f (Z) Zp fl (ZP)
o0
=) (ba-Ca)Z? ()

n=1
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Thus from (67-68) the relation follows :

n

p—1

_ P

by - Cp = *E:_T Z g(n
m=1 g=1

(»)
—m) p+q, mp—gq

(n=1;p=2 ... (69)

Let us note that the expansion (35) aecording to (6) and (60-61)
can also be written in the form

[s 8]
z . 1 np ,
lnj}(z) _—P—Zb,,z =1,z As) ...(70)
=1
whence and (35) it follows fhat
»__ 1 _ |
&p =" p b, (np=1,2,.... ) ... (71)

In comparison with (36) and (48) the formula (71) gives the
simplest possiblc expression of the coefficients in (35).

Finally, we shall note that the polynomials (12) are computed
easily by the following recursion formula from our paper [5], p. 85,
Formula (27) : '

n—k+1
1
an= & Z ap.—l—l Cn—y.,k—l
EL:
I<k<n;n=21;C =0;C =1
no 00
an _an (az , ..-... ’an—k—[—Z) e (72)
1 n

C = “ny1” Con= 7T % =1 = (73)
In the same way the polynomials (46) are also computed, if in

(72-73) we replace ap' 11 for ap‘ .

Thus by (72) and (51) we obtain the Grunsky coefficients ggm in
the expansion (50) for 1 S m <4 (1 2 n s m:
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M -z, a, —a ;
~8y =4, — 2a,a; + dy, — 8y =45 — 2834, —; a
+ dazay — 2 ;
—g, = a5 —2a,a, — a + 3d2a, — aj,
~ 8y = dg — 2a,a; ~ 3a, ai + 5a2a§ + 4af a, - 7a:;a3
+ 24 ,
=8y =a, — 2a, ag — 3a3a5 - 2ai + 12a, aa, -+ IOai a,
+_37— @l — 154} al — 8aja, + l4a%a, - i;’—ag,

. 2 2 .3 5
—8yy =4y — 2a,a; — 2aga, -+ 3aja, + 3d'ya, — daya -+ gy,

: ) 3. 2 - 2
— = f— —_ —_ 4
8, =a, — 2a,a, — 3a,a, 3 @, + 10a,a.a, + 4d,a;

. 3 2 2 3 4 5 6
+ 24, — 12a,a; —7a, a, + llaa,— 34, .
- 2
—84 =g — 2a2a7 — 3a3a6 —4aa, -+ 7a2a4 -+ 1‘2a2a3a5
a2 2 3 2 3
-+ 4112(16 -+ 8(1304 - 13¢12a3 — 33:12a3a4 — 8aq, ag

-+ 36a2a§ - 15cz;la4 - 25ag a; + Sa',: ,

5 2
—8,, = @y —2a,a, — 3a,a, — 4a,a; — 5 a -+ 12a,0,q,

2 2 2 , 2
Tl— 16a, a a, + 4aya, + 10a;a, + 9a; a;, — 48aya;0a,

19
- 36(12203a5 - 21a220i - Sagasr—- 710: + 52ai ag
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+ 88a2a304 -+ 16(1 a, — 904q% a 300?04

6 35 g
+ 50a,a, — 2 % -

By the formula (55) from Table (I) we also obtain the Grunsky

coefficients g (p)m in the expansion (14)forl s m 4 (1= n <m

and p > 2.
- By the formula (54) we obtain the Grunsky coefficients
gg‘z{-l om—1 in the expansion (52) for l S m = 4(l S n = m):
@ - 262 —a,; ~282 = ay — $a}, 262 ~a, 20,0,
+ %ag H
- 2g(2) a, — z:ia2¢13 + gag s
_2g()-—a——2cza ~a +2923 g—iaf,
— 2g( ) = ag — 2a,a, — 4 T 4 a, 3-1- 4a2 .= %gagaa
- 2g(2) a, — 2a,a, — %0304 + 4a,a + 28(1 a, — %Sagas
s %ag ,
- 2g( ) = a, — 2a2a6 ~ 3aga; — z 2—!— TS 2’ 3a4x
-{‘—4aa + 4 g— rzlzTSafag'— —126 ";

8394 791 &
T gq %% T g%
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2 29
— 2g~77) = ag — 2aza7 — 3‘73"6 - 4a4a5 +~4—aza: —(—-1203 as as
33 27 27
+ daday +3aka, - 2L a,d ~ 2ok aim 8ala,
603 3 2 989 4 _ 421 5 9517 7
To6%% T %% T T6%% T Tt

Thus the Tables (I) and (II) contain the coefficients a, , a; and

8
a, for which the Bieberbach conjecture | a £ 8 and

=7, |a

5 |

| a5 | < 9 is currently open.
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Introduction.

The general linear equation may be written as
b

h(x) f(x) + f; kG f)dy=g(x) asx<b). ..(.1)
e
where the known functions % (x), K (x, ¥) and g (x) are assumzd to
be bounded and usually to be continuous. If #(x) = 0 the equa ion
is of first kind if # (x) # O for a < x < b, the equation is of second
kind if # (x) vanishes somewhere but not identically, the equation
is of third kind.

If the range of integration is infinite or if the kernel & (x, ») is
“not bounded, the equation is singular. Here we will consider omly
non-singular Ilnear integral equations of the first kind.

Consider the FREDHOLM integral equation of the first kind of
convolution type.

w .

K@= [ kG-NfOd=gx  -—0<y<ow

-
e (12)

73
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where k and g are known funcfions in Ls (R) and fe H?2 (R) is to be
found. There is extensive literature on equations of the second kind
but literature on linear equations of the first kind is sparse. How-
ever, several methods for solving equations of the first kind numeri-
cally have been proposed [5— 18]. No method has been very successful
for arbitrary kernels when the function g(x) is known with only
modest accuracy. Hence we conclude that the success in solving
equation (1.2) depends to a large extent on the accuracy of g (x) and
the shape of k (x — p).

2. Description of the Technique :

We now return to the convolution equation (1.2). Klein worked
in (real) x— spaée using natural splines. To simplify the computation
we have
(A) used cardinal B-splines and

(B) worked in Fourier space.

(A) Let f be approximated by
M-1 '
fM (x) = Ej=o aj Bi (H; x) .. 2.1}

where the B; (H ; x) are periodic cubic cardinal B-—splines with
period T = MH and knot spacing H. M is the number of B —splines.

T
The vector « == (a, 5 -.- » M- 1 }

Following Schoenberg [11], we have

Bj(H:x)=Q(%-j+2) . @22)
where Q (x) = % 2?(:0 (— I)K ( Ii) (x—K)i_ . (2.3)

where x = max (0, x).
Since B, (H ; x) is periodlc on (0, T), it has the Fouriers series

1 (v's)

A
B,(H; x) = T qu—oo Bag €xp (i @g X) - (2.49)

where wog=(x/T)gq
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and
T
Boq = fl Bo H:x exp(—imq X) dx.
0
( ~ 4
-1 } s1n(H coq/Z).}[ o (2.5)
LH o/ J
:)/q= (mq,osq<N/2

|
4 1 —_
LQN—q’ZquSN 1

( A denotes Fourier transformation, then from the convolution theorem

A A A
we have K (o) f(0) = g(0))
Furthermore, since B; (H ; x) is simply a translation of B, (H ; x)
by an amount jH , we have

A

qu = ﬁoq exp ( - z'coqu ) ... (2.6)
q=0,+1,+2, oo
J=0,1,2, ciiirrrerriinnnn. M-1
The spline in equation (2.1) has the Fourier series
fM(x)=-%— 59 fy, 30 Gag) . (27
g=— » g
with Fourier coefficients
fM q = %Vi—l % ﬁ
? j=0 Jaq o (2:8)

(B) We consider the transition to discrete Fourier space. We shall
assume (i) that the functions k and g are approximated on (o, T) by
the trigonometric polynomials kN and g€ T N—-1 defined by

equations
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1 N-1 3
ENW= 5 Zg =0 ENgexp (i g %) {
& 2.9)
ko= sN-L % |
N 2 “9=0 "N, gexp (i vz X) Jl
where
A N=I . 3
gN’ 7= 2n=0 g, exp ( —~ mq xn) !
A _ «N-1 . |
KN,q‘-zn':‘O kNexp(—zqun) Jl q=o0, °3N'—I

. 2z
withg (x) =g, =gy (x) and o = (G)
the order of regularization p = 2

The appropriate smoothing functional is then
. e _i_ 2 19 2
Clhy W= I 5 U@y @11 +2 1 /@1,

where Jj . || denotes the inner product norm on Ls (0, T), (2.11)

since KN * fM € TN—I for any square integrable periodic funtion

f M of period T, Plancherel’s theorem gives
Lk *f ]

T N—1 A ;
- > | k. fo. —g | 2
2 — M
N o2 q=0 N. ¢ 4 "N.gq

2.12)

Now . Plancherel’s theorm applied to the periodic splines fM gives

1 Lo ~ 4 A
| f e I2=—2Z 12
M T o, b

T o @.13)
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The infinite series clearly converges.

In practice, we truncate the series to the form

}® e (2.14)

where N<N; <

Now to express the functional (2.11) in matrix form we define the
matrices

A A - -
P M = V_T_
(Nx1) P‘Z" No 8qr
g, 7 =0, cceeeeeenn. N-1
KNxN): r =KN, g %r
q, ¥ = Uy...eee N N-1
ﬁ MxN) BAJ. as in equation (2.6)
j=0,... , M—1
A AT
w Doverp: W =K ®)
2 2 _ 1 ~2B
YU MNx M) s Vg - s Vs ]
from which we obtain
A A2 2 2
COvsp=cein =12 @D agr] +awPan,

... (2.16)

2 . N
where §j . | denotes the vector 2-norm in C  and
2



18
or
uw®HA2 )
W=W(1) 5o W(l) f e (21T
and V=w® Hw®

C (« ; ») has a unique minimum at
a=(W+aV)'U : e (2.18)

3. Special properties of W& V
It 1s easy to show that the r s th element of W is

__ T N-1

A
W= N T | Ky By, 12explio, (=9 H},

q:
Fos=0,1,2,. ... , M=1
N-1 .
= §=0 a, exp ( S (r=s) iq } e (3.1
T , & =
where aq = N2 gt i KN,q B og [2 - (3.2

It follows that W is a circulant matrix [12], since
wjk =Wrs ifj—k = (r — 5) (mod M)
W is also hermitian

Similarly N is also a circulant hermition matrix, with

N-1 2 .
V =3 b exp('l\'j;_ iq (r—s)) .. (3.3)
where
1 "2B |z
bq— R

It is well known that the Model matrix \y of any M x M circulant matrix

has elements
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S ex - 2m rs
Vis =N/ M p( ™ ) - 33)
Under this normalization v is unitary :

H
vy =gyl . (3.6)

Thus if W and V have real eigenvalues N and v respectively

where
§=0,..... > M—~1, we may write
H )
W =
¥ Dy, ¥ I
o l} . (3.7
V=vy DV 1 J
where DW = diag (y.s) s DV = diag (vs) . We then have
(W+2V)t = ypy'
. 1
h = —
where A = diag ( i +7~Vs) .. (3.8)

We now show that the eigenvalues By and v, are simply related to the
coefficients aq and bq defined in equations (3.2) and (3.4).

Consider the eigen value equation
M-1

§=0 Wmn wnS - y's wms (39)
From equations (3.1) the L. H. S is
M-1 NI [’ 2wi )
bX % e _
n=20 q:()aq P N4 (m—n) j ¥,
1 [ 2=i )
VM “n g a8, P | {g (m—n) + ns} J
1 2ni
=—— 3
VM Zq'% [eXP [ M ’"q]

2ri

5,00 [ % 0o |3




80

since
M-I . :
> exp [21tljn]=lrM,]EO(m0dM)
n=0 M L 0 , otherwise
the L. H S. of (3.9) is
N-1 N-1
M Z AQV¥pg =M Z g ) Yms
q= —}
q = s (mod M) g = s (mod M)
Hence
N-—-1
By = M X aq ... (3.10)
q=0
g=s (mod M).
N-1
y =MX b, ... (3.11)
S q=0
g=s (mod M).
4. Calculation of A and «
The rth element of the vector U is
N-1 ‘
U= T e exp[ 21\‘}’ gr] F=0,..,M=1 .. (4l
q=0
where
T 7\ A A
L'q =] —Nﬁi KN, q gN, q Boq oo (4.2)

where o2 is unknown , Turchin [14] suggests its estimation by the

formula
N— (M +1)
2 = _I___..___ .
=N EN-2M) L8N, 4
=M

|2 e (4.3)

where M=~ N /4
It is clear that premultiplication of a CM vector by \yH is equivalent
to an M~ dimensional DFT. We may thus write

A

o_c=\|!Ho_cand6=\VHU
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From equations (2.18) and (3.8), therefore, we have

£=Aﬁ e (4.4)
A N U 7»
Hence o5 = v 11:'14(;[;?—{— ) e (4.5)
N-1
whee U;=+4/M ). < e (4.6)
q=0
g= S (mod M)

A in (4.5) is unknown
In order to evaluate the optimal value of a in the case of frignometric
approximation we write

_1 /\H A .
T, ( W (W+2V) ) —xa" Va =0 e (47
which reduces to
N-1 N-1 A .
s _ I Us i 2 Vs _
), =y L oGy =0 .. (4.8)
S= S=

where the eigenvalues p; and z; , [AI, are calculated earlier.

(4.8) is a non-linear eq. in A and in some problems which we have
discussed it has more than one value i.c. the equation (4.8) has more
than one zera ; then we shall have to pick up the optimal valuz of A
i.e. the regularization parameter.

Knowing A, o may then be calculated from the inverse DFT of equa-

tion (4.5) as

1 R >

® =y
5. Calculation of Solution vector f

(I) when M=N

i.e. when number of cardinal cubic B-splines is equal to the
number of grid points.
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M-~-1
MO®=1 (;_p + 40+ 2, )] 60
J=0
where
17 *M-1
@, = an and o3 =mM+1 .
(I) when M=N/2
US=\/M (c,+cM+S)
pe=M(a +ay, o)
VS=M(bs+bM+S)
0<8s<M-1
s = g (mod M)
a—l = aM'—l 2 “O = dM and a = GM+1
M1 1
fog @) = Z (aj_l + 4ocj+ % 10160
Jj=0 '
A
S @i+D ='Zo (ocj_1 + 23 % + 23 %l +aj+2)/48,0
Jj= _

Prob'ems discossed.

P(1): This example is given in Phillips [13] and has a noisy
data function g with a meximum absolute error of about 0.02. We
have

30
[ ke=» f&) dr=g0)
—30
where k (x), g (x) and f(x} are given in Table ().
gird points is 31.

The number of
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TABLE 1

Xn &n kn Jn
—-30.0 0.0100 0.1184 0.0000
-28.0 0.0100 0.1311 0.0000
—-26.0 0.0110 0.1464 0.0000
—-24.0 0.0170 0.1651 0.0000
—22.0 0.0305 0.1883 0.0000
-20.0 0.0405 0.2179 0.0000
—-18.0 0.0585 0.2563 0.0000
—-16.0 0.0869 0.3077 0.0000
-14.0 0.1309 0.3788 0.0000
—12.0 0.2018 0.4816 0.0000
—10.0 0.3235 0.6380 0.0000
-8.0 0.5469 0.8914 0.0000
—-6.0 0.9621 1.3333 0.0019
—-4.2 1.6301 2.1483 0.0345
—-2.0 2.4047 3.5108 0.0965
0.0 2.9102 4.3600 0.1321
2.0 2.8912 3.0628 0.1096
4.0 2.4586 1.6329 0.0584
6.0 1.5049 0.8806 0.0349
8.0 1.4144 0.5095 0.0173
10.0 1.0282 0.3137 0.0107
12.0 0.7411 0.2021 0.0028
14.0 0.5409 0.1341 0.0005
16.0 0.4083 0.0906 0.0000
18.0 0.3214 0.0614 0.0000
20.0 0.2623 0.0413 0.0000
22.0 0.2201 0.0269 0.0000
24.0 0.1886 0.0165 0.0000
26.0 0.1580 0.0089 0.0C00
28.0 0.1270 0.0031 0.0000
30.0 0.0780 0.0013 0.0000
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P2 (A
This problem is given in Turchin [6]. We have
2
[ k- & =5@

where f is the function of two Gaussian functions.

f(x) =0.5¢exp [__—__(36()_4i§()ﬁ] + exp [”i%’gl)‘;}

with essential support —2 < x < 2

K (x) is triangular with equation

(—x+0.5 0< x < 0.5
l

K= ] x+05 ~-05<x<0
L 0 | x| = 0.5

we have calculated the values of g (x) by the NAG Algorithm
DOIABA using Romberg’s method with aecuracy 1077, 41 grid values
have been eonsidered.
P2(B)

This example is the same as P 2 (A) except that the triangular
kernel is made wider.

 (5/8) (=x+0.8), 0<x<0.38
K(x) = I: (5/8) (x + 0.8), -08<x<0
L 0 fx] = 0.8

The wider kernel makes the problem more ill-posed. 41 grid points
are again considered.
P2(C)

The problem is made highly ill-posed by choosing an even wider
kernel

lr(5/12) (—x+1.2), 0<x<12
K (x) = { (5/12) (x + 1.2), ~-12<x<0
L 0 lx} = 1.2

Again 41 grid points are considered.




P 2 (BE)
The problem is the same as P 2 (B) but we have extended the

support from (—2.0 to 2.0) to (—3.2 to 3.2), therefore, 64 grid pts.
have been considercd
P 2 (CE)

Again the problem is the same as P2 (C) but we have extended
the support as in P 2 (BE). 64 grid points are again consrdered.
P (3

This probiem has been taken from MEDGYESSY [12], with some
modification. The solution is the sum of six Gaussian, and the
kernel is also Gaussian,

w .
We have f k(x=y) f () dy = g (%)

—®©

§ T (x—op)?
g(x) =2 A exp l_ﬁ__k_]

k=1 Br
where

A; = 10.0 ay, = 0.5 B1 = 0.04
As = 10,0 az = 0.7 Bz = 0.02
As = 5.0 xg = 0.875 B3 = 0.02
Ay = 10.0 wg = 1.125 B4 = 0.04
As = 50 o5 = 1.325 B5 = 0.02
Ag = 5.0 w = 1.525 Pg = 0.02

The essential support of k (x) is0 < x < 2

k(x) = \/17:? exp (—x2 /), A= 0.015

The essential support of k (x) is (—0.26,0.26)

The solution is

/@) = -§=1 (-ﬁ‘iT)YzAk exp[—iz%]

The essential support of f (x) is (0.26, 1.74).
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6. Numerical Results for KLEIN’S Regularization using B-splines

In this section we describe the application of the method to
problems P 1 —P3 .

In solving che problems P 2 and P 3, we have considered the data
function g (x) as defined eariier and also the same data functions
contaminated by varying amounts of zandom noise.

To generate sequences of random errors of the form {g,} n=0, ...
N-—1, we have used the NAG algorithm G 05 DDA which returns
pseudo-random real numbers raken from a normal distribution of
prescribed mean A and standard deviation B.

To mimic experimental error we have taken
A =00

B = P%Oﬁ( guéxn Isgnl\}—l ) we 6ly
where x denotes a chosen percentage, e.g.

x = 0.3, 0.7, 1.7 or 3.3 etc.
Thus the standard deviation of the random error g, added to g, does
not exceed x 9, of the maximum value of g (x).

The actual error €, may be as high as 3B.
PQ@

The intcrval [—30, 30] is mapped onto {0, 60] which is extended
to [0, 64] by introducing zero values of k and g. The step length
h=21is given. Thus N =32. The data is noisy with a maximum
error 0.02 (< 0.7%,

The Algorithm was tried for the cases

M=32, M= l16and M = §
the case M = 32 is shown in diagram (1) and the ease M = 16 is
shown in diagram (8) end gives a better solution than the case M=32.

The case M = 8§ gave a poor solution which is not shown.
P2

Here, we have e¢hosen M=N=64 and M = 32, N=64. In
both cases solution resolves the two peaks.

The solution for M = N = 64 is shown indiagram (2) with 3.39,

nOlSC.
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The solution for N = 64, M = 32 with 3.332 error is shown in
diagram (9) which is slightly better than the solution for M = N= 64.
P2(B)

In the case of accurate data, a reasonable soltion with clearly
resolved peaks was obtained in both cases, but for the noisy case the
solution for M == 32 is slightly better than the case M = 64, as shown
in diagram (3) and diagram (10).

P2(C

Again in the case of clean data, solution is not very good in both
cases but resolve the two peaks. In case of noisy data it does not
resolve the two peaks as shown in diagrams (4) and (11)

P2 (BE)

Here, we have extendad the support. In the case of clean dafa,
solution is quite reasonable in both cases.

In the case of noisy data the solution for M=32 is better than
M = 64 as shown in diagrams (5) and (12)

P 2 (CE).

Here again in the case of accurate data the solution is quite
reasonable and resolves the two peaks clearly in both cases, but in
the case of noisy data the solution is poor, and is shown in diagrams
(6) and (13).

P3

The essential supports of f (x), g (x) and k (x) respectively are
(0.26, 1.74), (0, 2.0) and (—0.26, 0.26). First we can consider a common
interval (—-0.26, 2) for all these three functions which covers all of
their essential suppcrts. This interval was translated to (0,2.26) and
extended to (0, 3.2). Thus T = 3.2 and we took a step length 2=0.05
so that N = 64.

(i) In the case M == N for clean data the solution is very good;
all peaks are O.K. but for noisy da’a the solution becomes
unreasonable as shown in diagram (7)

(i) Inthe case M = N/2 for clean data the solution is reasonable
giving all the peaks. For noisy data the solution is reason-
able giving 5 peaks as shown in diagram (14).
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DIAG (3) PROBLEM (28)
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DtAG (5) PROBLEM (2BE)
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8. DIAG (7) PROBLEM (3)
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DIAG(S) PROBLEM (2A)
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DIAG (13) PROBLEM (2CE)
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ON THE GENERALIZED. CROSS-VALIDATION METHOD.
TO FIRST KIND FREDHOLM INTEGRAL EQUATIONS
OF CONVOLUTION TYPE

By
M. IQBAL

Deparment of Mathematics
New Campus, Lahore-20, Pakistan

Summary : A numerical study of generalized. cross validation technique
apphed to linear first kind Fredholm integral equations of convolution type :

[e0]
KNA@®=f kx-nNf@dr=g@x,— o <y<on (l.1)
-0

fs carried out. Interpolating B-splines are used for the algebrization and
smoothing regularization of linear Fredholm integral equatioas of the first kind.

Introduction .

The linear Fredholm integral equation of the first kind. (1.1)is an
example of a mathematically ill-posed problem, arising in connection
with physical measurements. Slight perturbation of G might corres
pond to arbitrarily large perturbations of the solution F. This is due
to the smoothing eharacter of the operator K.

WAHBA’s [1] gencralized cross validation can be used for spline

approximation.

Suppose that the approximate solution fn N is taken to be of the

*

form
M g
oy O=F G B, 0 (1.2)
k=1



100

where M = No of B-spline and  here is a regularization parameter
and

M
[ B k. (t)] req 2T the basis functions.

For a given set of basis functions the coefficients {ak} are determined

n
oy 2 (1.3)
to minimize j/_‘=1 [ Kfn, N (tj) y(l}-) ]
and
V) = -y T-AWNy [T A=A )]’ 14

which estimates the values of 3 i.e. regularization parameter, which
minimizes (1.3). Results related to the convergence of || f— fn A I
of certain ill poséd pfoblems are obtained [15].
2. Approximation and Solution Method wher M=N/2

From Igbal [6] we know

M-1
fM (€3) =Z 'ocj Bj (H; x) (2.1

j=0
whereB].(H > X} are periodic cubic cardinal B-splines with period

T = MH and knot spacing H, [7] and [8]; M is the number of
B-splines. The vector « of unknown coefficients is to be determined.

Since Bo (H ; x) is periodicon (0, T), it has the Fourier series

18

1

By (i) = =

L]
I
I

8

where
o = (27/T) q

and
A T )
Boq = f B o exp (— z(z)qx) dx
o

A .
Boq exp (z(oq x) 2.2)
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—H Sin (Hwg/2) 14
(Hog(2)
where /
Og = ON_g° %N<q< N- 1
Also
Bk (=i jHI (2.3)
., =B 'ex iw .
Jq oq P ]
(A denotes the Fouriér Transformation) o q=0,41,42,....
‘ ji=0,1,2,... M-—1
M-1
A
fM 7 —Z % Bjq 2.4
. Jj=0
conSIdermg c=1.0
TR, By |? ) be= L | Bl
aq =Nz e Bog' |2, b= T |
| Q@4
T |
Cq =~W(K quo,q) forSOquN—l J
s M (ps + avy) s = g (mod M) "
where
Ao
—'\/ M (es+ cM—l—s)
Be = M(as+aM—|—s)
(2.5) becomes
ANAAN A A A
A Ks &g B + KM —|— s M+s BoM—l—s
OC,— I& A 2 A A B 2
{[l s os 12+ IKM—I—sBoM—l—»sfl ]
~Z A 2 2 A " 2
+B27‘[ l oy Bog | 11 mM_+sBo, M5 l ]}

o (2.6)
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= N2/T2

OR

A A ; ‘ ‘A

a =AL OVE FA) ) gy k)

A A A s A .
As, s @) =K Bos /[ s Bos +1 KM+s Bo, Mg l ]
) ~2 A ) ~2 A ,
+B2 2 [I ms B sl +[mM+sBo,M+s]

—

A A A A A A
Az, s = KM-}—.s' Bo, M-}-s/[ I Ks Bos 12+ 1 KM-}-.s' Bo,M+s | z}
A2A ~2 A
+B27\[;{ o B 1] ey BO,M_HH]

Now consider

A
g =K fM 0 <g=<N-1i - (2.8)

M-1 A o~
=Z ocho,qexp!\—z quH) 0<g< N-1

(2.8) takes the form

[ M-1 7[ A A ’
K B v
LZ aexp (—zo) jH)J q oq 2.9)
j=0
£ 0 M
Let o <g=< M-l
Cq { q
| A M<g¢g< N-I
L™
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(2.9) can be written as

(A A A
% Kq Bo 7’ OquM—l]
’ |

A l
g | A A AN M<g<N-1]|
using (2.7)
A A AN A
N [ A qu og Eg A M KB gy
gl’q—ll 0<g< M-1
| A A A A A
LAY N—g @ Kq BogN-g T A% N W Ky Bog8am g
M
| (A)
M<g<N-1
A A A :
.g.)\,q = A Q) g ..(2.11)
A H
AN=T(AM)T ..(2.12)
I' is unitary matrix i.e. I‘I‘H I‘HI‘ =1
Also Trace (A (3))= Trace (I‘ AMD
A
=Tr(AQ)) ..(2.13)
Tr(I-A Q) =Trd-A () [14], ..(2.14)
A 2
Also by Plancheral’s Theorem || f |l : = constt || fI ’
2 A A 2
had-a@eg 1, =1d-AMg I, (2.15)
since V () in KHM’s [12] is
1
N I d-AM)g 17 --(2.16)

v = [—;\I— Tr (I—A () ]2
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Using (2.14) & (2.15), (2.16) can be written as

:‘ 1 A "
e ae MI-A () g i
V= P e 17)
[ Lrq-4A (x))] o
\.
Using (A) and (2.11) ; (2.17) can be written as
A M=1 , .
1 Zl 1—a ;t_ a g S
. . _ N | 19) 84~ “2¢°M--q |
vy, =, =0
M-1 '/T N M~-1
¥y /(- & 1
x L | t-a) sy, -y, gql]/ 1= N L (g tay) |
' (2.18)
where -
A [ diag a; | diag a: ] ,
A= L diag ag | diag a4 (2.19)

M
al, 32, a3’a 4 21¢ four complex vectors e C .
Matrix A (») is circulant. [4]
Computationally this is a simple function to minimize w.r.t. . We
have used NAG algorithm Eo4ABA based on quardratic interpolation
to find the: optimal value of A.

Knowing a then

A
A v M U . ,
% = M((‘LS"' KVS) i1 PR

« may. than be calculated from:fhe inverse' DFT of equation (2.6) as

(2.20)

s >

a =V
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3. Calculation of Solution Vector _i:

we khow that

M-1
= . B.(H; x).
e _Z % B, (H ; x)
when M = N/2
L VO i Ve Bl VO
M-1 ] )
M@ = L Gyt et )60
M-1 E (3.1
S @+ =E (g +23 & +23 0, e, +2)/48.0J
=0
Example 1 :

This example is given in Phillips [9] and has noisy data function
g with a maximum absnlute error of about 0.02. we have

30

[ kx-nr ) dy=gw.
-30

where K, g and f are given in Table (1). The number of grid points
is 31.
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TABLE 1
xn gn kﬂ fn
 —30.0 0.0100 0.1184 0.0000
~28.0 0.0100 0.1311 0.0000
—~26.0 0.0110 0.1464 0.0000
—~24.0 0.0170 0.1651 0.0000
—22.0 0.0305 0.1883 0.0000
~20.0 0.0405 0.2179 0.0000
~18.0 0.0585 0.2563 0.0000
—~16.0 0.0869 0.3077 0.0000
—14.0 0.1309 0.3788 0.0000
—~12.0 0.2018 0.4816 0.0000
~10.0 0.3235 0.6380 0.0000
—-8.0 0.5469 0.8914 0.6000
—6.0 0.9621 1.3333 0.0019
—4.0 1.6301 2.1483 0.0345
-2.0 2.4047 3.5108 0.0965
0.0 2.9104 4.3600 0.1321
2.0 2.8912 3.0628 0.1096
4.0 2.4586 1.6329 0.0584
6.0 1.9049 0.8896 0.0349
8.0 1.4144 0.5095 0.0173
10.0: 1.0282 0.3137 0.0107
12.0 0.7411 0.2021 0.0028
14.0 0.5409 0.1341 0.0005
16.0 0.4083 0.0906 0.0000
18.0 0.3214 0.0614 0.0000
20.0 0.2623 0.0413 0.0000
22.0 0.2201 0.0269 0.0000
24.0 0.1886 0.0165 0.0000
26.0 0.1580 0.0089 0.0000
28.0. 0.1270 0.0031 0.0000
30.0 0.0780 0.0013 0.0000
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Exaniple 2. This example has been taken from MEDGYESSY [10]
with some modification. The solution function is the sum of six
Gaussians and the Kerriel is ‘also Gaussian :

We have

[ee)
_3’0 k(x=y) f(») dy =g (x)

6 [ (x—u, )2 .]
g = y AK exp ll - _—EK—
K=1 L K J
where
A; =10.0 oy = 0.5 g, = 0.04
R, = 10.0 ag = 0.7 Bs = 0.02
As = 5.0 g = 0.875 Bz = 0.02
Ag = 10.0 wg = 1.125 By — 0.04
As; = 5.0 as = 1.325 Bs = 0.02
Ag = 5.0 g = 1.525 Be = 0.02

The essential support of g(x) is 0 < x < 2

K (%) exp (—x2 /). » = 0.015

\/_
The essential support of K (x) is (—0.26, 0.26).
The solution is

6 2 —a
@ =) (g;f%) Ak ‘”‘P(‘%k—{‘—%)

The esséntial support of f (x) is (0.26, 1.74)

4. Numerical Results for GCV Method.
In this section we describe the application of the technique to
problems (1) and (2).
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In solving the problems 1 and 2 we have congidered the data
“function g (x) as defined earlier and also the same data functions
contaminated by varying amounts of random error. To generate
sequences of random errors of form {&} n=0,...... , N—1, we
have used the NAG algorithm G 05 DDA which returns poseudo-
random real numbers taken from a normal dlstnbutlon of prescrlbed
mean A and standard deviation B. '

To mimic experimental error we have taken

A=0
X
B— % ( Max l g | (b1
00 Yocnanag 7 ) )
where x denotes a chosen percentage, €.g.
x =0.3, 1.7 or 3.3 ete.

Thus the standard deviation of the random error &, added to g,
does not exceed x%, of the maximum value of g (x) .
The actual error &, may be as high as 3B.

EXP. (1)

The interval ( — 30, 30) is mapped onto (0, 60) which is extended
to (0, 64) by introducing zero values of k and g ; the step length
h = 2.0 is given. Thus N = 32. The data is noisy with a maximum
error 0.02 (0.7% ). The algorithm is tried for the case M=N/2 = 16
and is shown in DIAG (1), which depicts a good approximation.
EXP. (2)

The essential supports of f(x), g (x) and k(x) respectively are
(0.26, 1.74), (0, 2) and (- 0.26, 0.26).

First we consider a common interval (—0.26, 2,0) for all these
three functions which covers all of their essential supports, this
inferval we then translated to (0, 2.26) and extended to (0.0, 3.2).
Thus T = 3.2 and step length 2 = 0.05 so that N = 64.

The algoirthm is tried for M=N/2 = 32, for clean data it resolves
all the six peaks and results are quite resonable and for noisy data we
could resolve only 5 peaks and the results are resonable as shown in
DIAG .
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TABLE 2
M = N/2

Level of Noise
EXAMPLE N h x A DIAGRAMS

*P(1) 32 20 0.752 735347.81 DIAG (1)

0-032 0.0335980
P (2 64 005  ——— DIAG (2)

1.752 0.033372

* ForP (1) a»=0.0 gives the same solution i.e. the fliter is very
weak; regularized and unreguvlarized solutions are
the same.
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ANALYSIS OF THE 3x3 — MATRIX LINEAR SPECTRAL
PROBLEM
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§ 1. Introduction
In this paper a generalised case :

o =AQ+ B} u

, N ¢}
where A ({) and B (x, {) are 3x 3 matrices, and w a 3-element
column vector is considered. A set of spectral data which is sufficient
for the recoustruction of B (x, {) is found and then using the method
called the Inverse Spectral Transform introduced by Ablowitz et al.,
[1] the problem of reconstructing the B (x, {) from the spectral data
is solved.

§ 2. The Direct Spectral Problem

Eigenvalues and eigenvectors of A (§) in (1) are
AQv Q=% v © -(2)

where i = 1,2, 3. We assume that a; ({) and v;({) are analytic
throughout the complex {-plan (no branch points). We want to
define o; (x, §), i=1, 2, 3 throughout the complex {-plane such that

2 () x , .
U =g (x, ;) e ’ - ...(31)

satisfies (3).

113
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ZixD>viQas x> — © ...(3ii)
For any given {, @; (x, {) is bounded for -0 < x <

Using the conditions (3i) and (3ii) we get from (1)
an integral equation

[AGQ)-2@1 (x~»)
e B»0 2:0,0dy

e (4)

Expanding o; (x,{) as a Neumann series, we sce that the

2 w0=% O+
— o0

Neumann Series for & ; (x, {) converges absolutely and uniformly
and the conditions (3i), (3ii) and (3 iii) are satisfied provided

[« o4

J (1= 1Bl =K@ <o

—
Further if K ({) is bounded in a closed region D then &; (x, ()
is continuous in D and analytic in the interior of D.

We define another function

v; (x,0,i=1,2,3  throughout the complex {~—plane such that

u; =y (x,0) M@ (6 1)
¥, (50 > vi(Qasx > 4 (6 i)
For any given {, Vi (x, {) is bounded for — o0 < x < ..<(6 iii)

using conditions (6 i), (6 ii) we get another integral equation

(e 0}

X
vi (7, 0) dy
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Now consider equation (7) and similarly expand it as a Neumann
Series. We see that the Neumann series for y; (x, {) converges

absolutely and uniformly and the conditions (6i), (6ii) and (6iii) are
satisfied provided

Red; (§) < Redj ()

For any given value of { we need another function. This can be
' defined as follows. We define the functions F; (x, {) and wy; (x,¢)

of the conjugate scattering problem

4 = AQ+B®Y) (8
ox

~

Left-eigenvectors of A () are v; (§)

vV QOAQ=2©Q %@ i=123

We define a function @;(x,§), i =1,2,3 throughout

the complex {—plane such that

=i ge O ©0
satisfies (8)

Zi(x, 8 —=>v; (§)as X > — (9 ii)
For any given {, &; (x,{) is bounded for — o0 <« x < oo (9 iii)

Using conditions (9 i), and (9 ii) wWe get an integral equation

~ ~ X o~ . —
2i0=x @~ [ 5:0,080,0 HONO

— (10)
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Now consider (10)., We see that the Neumann Series for

~

Z; (x, ) converges for Re A (§) < Re (), j=1,2,3, j# i

and the conditions (91), (9 ii) and (9 iii) are satisfied. Similarly we

can write the integral equation involving ¥; (x, {) as

[s o}
V@O =% O+ [ v 0,080 AOTNEIE,,
x | an

~

The Neumann series for y; (x, {) converges and satisfies the

following conditions.

a; — lT_lf 0 e MO ' (12 i)

satisfies (8).

y@x)>v)asxs> o (12 ii)

~

For any given §, y; (x, {) is bounded for — a0 < x < o (12 iii)

If u; satisfies (1) and w; satisfies (8) then

g .~ )
*a—;( u; . ll,,‘) = 0. (13)
Definition 1.

%@ = Fi(50. ¥ (50 /% ©). % € provided

Rey; Q) < Reyj(f), i=j=1,23 j#i
Definition 2.

5@ = w50 F@ 0% ©. v; @ provided
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Reai (@ zRen (§), =123 J#
For

Red; () <Renj (§), Jj=123 j# i
1
F,,: x, = Qs I3 X
=g % &0
this has poles where «; (§) = 0
Now we use the theory of tensors to solve the 3 x 3 case.

§ 3. The Direct Spectral Problem for 3 x 3 Case.
Introduce (in tensor notation) Pij k satisfying

9 AR Il
“—Pz‘jk—(Ai +Bi)Pljk+(Ai +Bj)Piz-k

ox
) )
* (Ak+Bk) Liji (14)
In the case when # = 3 we cdn choose.
Pijk = *%ijk (13)
where
sij k= 1 if (ijk) isa + ve permuttation of (123)

= — 1if (ijk) is a — ve permutation of (123)

= 0 otherwise

and o satisfies
«, =Tt (AQ +B® 1)« (16)
The solution of this is
x
« = exp (Tr (A(Q) x + f B (7, {) dy))
—
We divide the whole of the comples { — plane into six types of
regions which are labelled by the permutation (i, j, k) of (1, 2, 3) where

Re 2; (§) = Re 4 (§) = Re x (§)
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Region (1, 2, 3).
We need the following definitions
Def : ¢1 (x’ C)
x
MO 4 =@+ { LA Q) —ME) x-) %
— 00

Br,oe MOV, 0,040 179

Def : vs (%, )

w -— ——
O g am- [T RO G

X

Br,ye 2Oy, 0a 176

Def : .;3 x,0)

~ ~ X - -
PO Gy an- [ CAOTNOI G

-- 0

B0 07 L pon w10
Def : :\I\f‘l (x1 C)

MOYY o=@ fme( “AQFRO)E-n
X

B, M@y g0 w19

We have already seen that Neumann series solution of these integral
equations converge in this region. We define some more functions.
~ ~ X ~ ~
Def : I'(u,v)=exp(Tr(A ) x + f B, O dy))uxv (17¢€)
- ®
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Def : ’I:“(u,v)=exp(—Tr(A(§)x—]—ﬁxB(y,C)dy))uxv

-

a7 )
Def : pur (5, 0) =T (o (5 0 ¥1 6 D) (17g)
Def : pia (5, 0) = T' ($1 (5 0, ¥s (%, 0)) (17 by
Def : ag @) = 5 (5 D) vs (5 0) 17k
Def: @ = y1 &0 . $1 (0 a7y
Def : Fi(x,=c¢ 1O %41 (%, 0 (17 m)

Def . F2 (x, C)’: (~Vl (C)L’VZ (C)’ V3 (C)) e")\Z (C) X 931 (x, C) (17 n)
a1 (@) vs () . v3 (O

Def : F3 (x, C) == .13_%2 (;7)3 (C) e- A3 (C) x ‘!{3 (x, C) (17 p)
We can deduce some results from the above definitions.

T (81650, pa (5 0) = a1 (0) o (5, O (18 a)
~ o~ ~ (18 b)
' (yz (%8, pa1 (5 0)) =~ a3 (O ¥1 (%, 8)

T (45 (50, pis (5 0) = s ©) é1 (5, D (18.0)
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and

D (05 0. prs (5 0) == a1 © ¥s (5 D (18 @y
the crucial functions in the region (1, 2, 3) are

Fiwg=e 1O % (x, a9
Fo(x, = (1@ 0 © 6@~ 2@ x, o 4 20)

1 (8) 3 (). vs (D)

F3(x, () = —:{33—&—;3 e N © vs (%, L) (21)

Residues in region (1, 2, 3)

(i) poles of Fi (x, £) do not exist.

(ii) poles of Fz (x, £) exist where a3 () =0

(we assume that the zero is simple)
Now since a1 (§) = 0 and T' (91 (%, §), p31 (%, 6)) = a1 (§) ¢3 (x, O
it follows that

931 (x’ C) =« b1 (.’C, C)

(M@QRO,BO) 2@
7 (2 ©) ¥ Q- % ©

Residue = pa1 €x, &)

_ (i (§), v2(5) vs ) e~ R @) x

d ~ ~ a?l(x,g)
E(GI(Q)V‘:& ©® . v @)
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e (1 ©, 2@V 0)) ~R@x m@)x

(10 B )

Fi1(x,0)

g MO =@y (22)

where

a(vl (C)’VZ (C),V3 (C))

ﬁ:
7 (0% % ®)

(iii) Poles of F3 (x, {) occur where a3 (§) = 0
(assume simple zero)

Now since a3 (§) = 0 and E (ya(x, §), ps1 (x,§)) = — a3 (£) HZl x, 0

it follows that ‘
pa1 (%, §) = a y3 (x, §)

If« 20

Residue = 8 220 -2@))x ¢2 (x, 0

where

YOO 1 T v ©
= O GO TR0 ©)

, d
{where (') denotes TC )

Ifa=0,_'_)31 x, =0

and
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o (50 =T (81 (10, ¥1 (5 0)
it follows

® :Vl 0 = ;3 (x, 6)

® T (1 0.0 6 0) =« @ 4 50
and
OT (¥ .0, 50 == & O W1 (5D
From (a), (b) and (c) we get
£ Qu b O+ OB EY=Copm®D

also

¢ (n0) = (1% () Vs (4))
-3 ~

~

%@ O Q)

g, 0

Residue = E—-(%'Tgic—) e (Q){x :’l— (Ce _I_J;l(X, 0-C a; (4)2
3 o &)

% @2 ¥ p, (5, 1) 47N OO g, (o 1)

Fl (xa C) =p'e
| 23)
where
(D w©r Cs

B « ©) O,z % )
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and
~ . C
y=—v(). V3(C)T(—cl)-“
S
The corresponding functions and residues m other regions can be
found by suitable permutations of the suffices.

On the boundary between regions where Re a1 (§) > Re 22 (§) = Re
23 (§) and Re a1 () = Re ag (§) = Re az (0)-

AF]_(X,C):-O

-2 @)x [ (1 (C), v2 (§), va (D)) ps1 (% §)
L a1 () "3 ©).vs (O

A Fo(x,Q=e

- v2 (O v2 (9] Y2 (x, 0

2

1
J

now

T (O 5 B 0 )=T {e“ ©X Ay (x, D,
~ o~ )
I (¢2(x,0,91 (%0) J
=0
AF(x)=P@®e A2 (%, 0) pa1 (%, §)

 Re (@ @) g7 g @4)

where F3(? is evaluated on the side of the border in the region where

Ren (§) = Rena(§) = Re2e (§)
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and

N SR IR )
Re O =-PO G @B @)

also

PRCRAS v (5,0

MO g, 0= -

™\

+ 0. 2®.%0) g0
a @) va (§)- v @

e

(’)
=R,© Q=2 @)x (P 25

on the boundary between regions where
Re s () = Reae (§) = Re g ({) and Rexz (§) = Reny () = Reas (§)

( 3
Agl (x’ §)=e—7‘1 (C‘ } o1 (x O + (Vl (C) Va (C)5 V3 (Cl)) p (x C) 1
IL a2 (C) vz (§) . vs () JI
, o
R RO MmO x gl o 26)
and
—2 r(v ( )
NP qCR FACRACRA I
[ 21 (0 % Q) - ¥ © J
1)
— R21 (C) eO\l (C) A2 (C) ) X ( (x Q (27)
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also
AFs(x,0)=0

on the boundary between regions where
Rea1 (§) > Re xz2 (§) > Reas () and Re () = Rern () > Rear ©)
[ _ ]

~ |
0 0- OGP J'

AFy(x.f) = 8_7\1 © x }
L

— Ry (@) 2@ N @) x gz’ (. LRy (¢) 28 @O =21 Q) x 2;‘;’ (%)

128)
AFo(rp = 2O { @, Q) (t;)}
|r~ ~1 P31 (x, )+ — ~1 p13 (¥, C)]
| 40%0. % ACAA GRS ]
—Ru M@ -2@)x V@0
(26 — 2@ x P
+ Raz (@) e F3 (x,0) (29)

and

—_

ARy = 0O 8O MOy (5 g |
L =@ - J

(1)
— R31 (c) e(7\1 (C) — 23 (C)) X Fl (x’ C)

(1)
+ Raz (©) 8(7\2 @ —-2@®)x Fy (x,0) (30)
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The quantities Rz‘j (¢) along all the boundaries constitute the continum
part of the spectral data. The spectral data is

s=[§§r),yg.r),Rij(t;)i,j=1,2,3,iaéj, T=1,2 e, m)
4. The Inverse Spectral Problem.

The inverse spectral problem is that of the reconstruction of the
matrix B (x, {) from the spectral data S. We notice that the quanti-
ties

F; x,) =exp{—-3 ) x} F (x § (32)
(from deﬁhition)

have the following properties

F;(x,)-v (=0 as > (33)

From (4) and (5)

F; (x, {) has simple pales at { = CET)

T=1,2,... . m; with residues
(Lo _3 of (T) M\ ]
ResF, | x, ¢ s D) - (D
es ILxClJ _IYJ [LCXP%(CI ) %,(Cl )JI
J#i
x F; (x, z;f.T)) (34)

on the boundary
AFEY)=ZR,Qep {( ©)-% 0) 5 K& 69

These properties are sufficient to define F; (x, {)

30 v ew (o O —n @)y
by X
£

my
F@)=v@- X

Z1j @

k=1/=1 6= ¢
D)

Fj (x,

: f Rij (6o) exp { (j (Go) — % (€o) ) x } B+ (v, 8 dt,

H j CD—C
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where the integral is along all the boundaries the direction of integr-
ation being so that the 4 ve side is on the left. By choosing appro-
priate values for { and replacing i by j the left hand side can be

¥ (x,ClgT)), Li=1,23  iskj T=12, ., m

or by allowing { to approach the boundaries from the appropriate

sides F + (x, & ). Thus we have a set of linear matrix Fredholm

equations in the unknowns Fj (x, I;(Z.T) ) and F]i (x, & ). The ques-

tion of the existence and uniqueness of the solution to these equations
has yet to be investigated but in many cases of practical interest there
appears to be no difficulty. Equations (32) and (36) give F; (x, §),
i =1, 2, 3 throughout the complex { — plane and hence B (x, {) can
be found from (1).
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ERRATUM
ON THE WARING FORMULA FOR THE POWER SUMJ,
PUJM, VOL. XIV-XV (1981-82), pp. 165-174,
By
P.G. TODOROV

(1) Page 166, line (4) from above :
The correct relation is

V1 4+ ... + Vn_, 1+ .o+ Vp-1) alyl ) Vn

Smmy=m (-1 TR .y

S
(2) Page 166, line 13 above :

The relation
k! = Vg
must be read as
k: =g
(3) Page 168, line 8 above :
71=m—2k+~{=0
must be read as
vi=m=2k + v = 0
(4) Page 169, line 5 above :
Corollary 2, x;,x2 - x3
must be read as
Corollary 2. If x;, x2, x3
(5) Page 169, line 14 below :
[2]
must be read as
2
(6) Page 170, line 3 above :

Vi Visl
a = ... kg kt

Vi !...Vk+1 {

Bm, m—k =
must be read as

14 Y,
Bm k= 2: al 1 sor QE41 k+1
y m—k =
v1 ! ces vk+1!

129
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Page 170, line 6 above :
e+ kF Dy =m

" must be read as

®)

L)

(10)

(1)

12)

13)

e G D g’ =m
Page 170, line 7 above :
Em=n

must be read as
Ifm>n

Page 170, line 13 above :
e+ VR o
must be read as

cee T+ VR

Page 170, line 4 below :
=m=%k

must be read as
=m-—kK

Page 171, line 3 above :
mz=n

must be read as

m>n

Page 172, line 1 above :
vae [0, k[2]

must be read as
v3€[0,k]2], vae[0, k],
Page 172, line 11 below :
Bui m-3

must be read as

Bm; m—3.
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