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ON ISOMORPHISM OF SOLUTIONS FOR CERTAIN
SEMIBIPLANES USING HUSSAIN’S TECHNIQUE
By
SHOAIB UDDIN

~ Mathematics Department
Punjab University, Lahore—20, Pakistan

1. Introduction.

A design = is a pair (P, B), where, P is a finite set of v objects,
called points, and B is a collection of subsets of P, called blocks,
each consisting of k points, where k is a constant, (0 < k < v).
-Normally, the total number of blocks is denoted by 5. A design is
said to be symmetric if v = b.

Two designs with the same parameters are isomorphic if there is a
bijection between their points under which blocks correspond to blocks.

Order the points and also the blocks of a design . The b x v
incidence matrix of = has (i, j) th entry 0 or 1 according as the i th
block is not or is on the jth point. Zeros are often ignored when
writing an incidence matrix. :

A design = is said to be resolvable if its set of blocks can be
partitioned into subsets, called parallel classes, such that each parallel
class partitions the set of points of =. In this case, two blocks are
said to be parallel if they are in the same parallel class and nonparallel
otherwise. If = is resolvable so that any two nonparallel blocks meet
in a constant number, say p, of points, = is said to be affine
resolvable.

The dual =* of = is obtained by interchanging the roles of points
and blocks and reversing the incidence refation. = is'said to be self-
dual if =* and = are isomorphic. Two points of & are called parallel
if = * is resolvable and these points are parallel as blocks of = * .
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Definition. A design = is an Hp (p) if = is a,symmetric' aﬂine
resolvable design with g m2 points and g m points on each bl"o‘Ck‘_sucAh'
that its dual design is also affine rvsolable An H, (2) is referred to as
a semzbzplane : IR

Biplanes are deSIgns in Wthh
(a) two distinct points are in exactly 2 distinct blocks ;
(b) two distinct blocks contain exactly 2 common points.

Semibiplanes have the [ollowmg properties Wthh can be compared
with those of biplanes :

(@) two nonparallel points are in exactly 2 distinct’ blotks ;

(b ) two nonpara]lel blocks contain exactly 2 common pomts
Hussam 51 uses a method of building up a design step by step to
ehumerate thc nonlsomorp‘uc solutions of biplanes with smaller values
of v and k. In this paper we modify the method of [5] ; using this
modification it is possible to verify whether or not two' given solutions
of a semibiplane are isomorphic. The uniquenes of an Hg(2) is proved

as an ‘application of the method.’

2 The Chains
- Take any block of a semibiplane Hs (2); this will be referred to as

the initial block (or i- block). Label the points on the block 1,2,:..;2m
these will be referred to as the initial points or (i-points). Blocks: not
parilel to the initial block will be rcferred to as the j-blocks. points
which are not on the initial block and are not parallel to.the point 1
will be referred to as j-points. Points parzllel to 1 and blocks parallel
to the initial block will be referred to as z-points and z-blocks, respece
tlvely
- Note that any Hy, (2) will have 2m2 —3m-1 j-points.

Auny j-block has 2 points in common with the initial block and
given 2 distinct i-points there is exactly one j-block contamlng both of
them. Thus the j-block containing the i-points p and g ‘may be
represented by the unordered pair { p, g}. A standéred order for the
J-blocks is = {1, 2} {1, 3} ... {1, 2m} {2, 3} {2,4} ... {2, Im} (3,4} ...
{3,2m} ... 2m—1, 2m}.
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Observe that there is a placing for all the i-points. Thus the
i-point 1 is on the inijtial block and the j-blocks {1, 2}, {1, 3}, ...,
{1, 2m}, i-point 2 is on the initial block and the j-clocks {1, 2}, {2, 3},.-.»
{2, 2m}, and so on.

Given any j-point it occurs in 2m—1 j-blocks, which are represented
by 2m—1 unordered pairs {r1, 51}, --- , {Fam-1, S2m-1}, say. Now any
given j-point and each of the I-peints not parrllel to it must lie togather
on exaetly two j-blooks. Hence 2m—1 of the 2m i:points must occur
exactly twice in these pairs. The 2m—1 pairs can be formed into a chain
of 2m —1 elements consisting of one or more cycles in the following‘
way. .
Arrange the pairs such that the last element of a pair is the same as
the first element of the next pair. As soon as the 'ast element of a pair
is the same as the first element of the starting pair a cycle is closed. If .
all the pairs have not already been used in the cycle, start again with a
pair not included in the first cycle, and complete a new cycle-

Note that these cycles must contain three or more elements, since
in the process of formation of cycles out of a given number of pairs as
outlined above, oniy one element cannot be left out ; nor can one pair
be left out, for this would mean that the points of this pair have not
occured more than once, which cannot be true.

Notation

‘The chain ossociated with the j-points common to j-blocks {1, p},
and {1, 4}, 1 <p,q < 2m, is denoted by ¢(p,q). Thus ¢ (p,q)
must have p, 1 and g as consecutive elements.

~ Example. Consider an Hy (2). Take one of ijts blocks as the
initial block and lable the points and blocks according to the above
procedure. Suppose that one of the j-points occur in the following
Jj-blocks : '
C{L 2 {1,324 G5 4 5).
Then the chain assomated to this j-point is (12453), and is denoted by
¢ (2, 3).

Similar to the placing for all i-points, there is also a placing for

the 2m -~ 1 j-blocks {1, 2}, {1, 3}, ..., {I, 2m}. According to this
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placing the block {1, 2} contains the ponts 1, 2, c(2 3),e(2,4),...,
¢ (2, 2m), the block {1 3} conta1ns the points 1, 3 c (2, 3), c(3 4y, ..
¢ (3, 2m); and so on.

Remark If the 1nc1dence matrices of different solutrons of an

Hm (2) are written so that the first 2m2 m+ 1 rows correspond to
blocks in the fo]lowmg order :

Initial block, (1,2}, .. » {1, 2}y 2 3+ (2 2}y oo, 21, oy,

and.\the. first 2m2 — m < 1 columps correspond to, po1nts in the follow-
ing order : e .. o |

1,2, ...,2m, ¢(2,3), ..., c(2,2m), ¢c(3,4), ..., c(3,2m), ...,
c(2m = 1, 2m), then the first 2m rows and the first 2 columns wiil be
the same for ‘every solution. See, for example, the incidence. matrix
of'an Hy (2) (Figure l) R v

' The above order for po1nts and blocks shall be called the standard
order, and the Correspondmg matrlx the ordered mczdence matrzx of
the Hnm (2). -

Lemma Any set of 2m2-;— 3m-|—1 chams assoc1ated w1th the

)

Jj-points of a, semrbrplane Hj (2) satisfies the followrng properties. ., . -

(a) Three consecutive numbers of any.chain do not coincide-with

three consecutive numbers of any other chain in the set:: ;...

(b) The set can be partitioned into. m—1. subsets, : called families,

such that two chains belong to the same: -family if and only:if .
exactly one pair of consective’ numbers af one.chain coincides .

. with a pair of consecutive numbers of the other chain.
(© The set. can also be partitioned into 2m—l subsets, called
parallel classes, of /m—1 chains each, taking exactly one cham

from each family such that
(i) no two consecutive, numbers of any chain corn01de w1th

two consectrve numbers of any other cham in the same

~ ‘parallel class.
(ii) exactly two pairs of consecutive numbers of any “chain
" coincide with twopairs of consecutive numbers of a

- E

- chain from a different family and a different parallel class.”

R



Proof. , :
(a) The vioiation of (a) impiies existance of two j-points, say, ji
and j, which have three , consecutive numbers abc in
common. Then the blocks {a, b} and {b, ¢} have the points
Jis 2 b in ‘common. This is not possible, since any two
nonparallel blocks of a’ s"mlblp}ane meet in exactly 2 points. -

(b 'Each of the m—l z- -blocks is on exactly 2m——1 ] pomts The‘

, o Pomts on the same z- block form a famrly

: ;(é)' The m—1 cnams Wthh correspond to m—l ] pomts parallelﬁk
to each of tne 2m—-1 nutral pomts, excludmg the pomtl

yrform a pa1a11e1 cIass

Deﬁmtmn A, set; of, 2mZ —-3m +1 chains. is consrstent 1f 1t«
satisfies the propertles (a), (b) and (©. Chams in a consistant set are
sa1d to be mutually cons1stant : EER

3. Appllcatlons; -

Notice that a consistant set of chains remains ¢onsistent after any
permutatlon of the points of the initial block and no new solution is
obtained by any such permutation. Also two semibiplanes are isomor-
phic if the set of chains associated with the - one can be obigined from
the set of chains : associated with the other by a bijection between the
points of the 1n1t1a1 block. k‘

(a) Umque 17ess of the semzbtplane H3 (2)

The ex1stence of an H3 (2) was establlshed by Bose et al [11.
Other examples haveé been given since by different authors (see, for
example, [2],.[3] or [4] ; the semibiplane with 6. points on a line of [6]
is.also am Hg (2) ), . We verify here that these are .the same ; that is,
upto isomorphism there is only one Hs (2). ‘ k h

Since we are only interested in non- lSOIIlOI‘phIC solutions, therefore
1t 1s p0851ble to choose one of the chains’ arbltrarlly and then ﬁnd a
consistent set of chains contammg this chain. Take ¢ @, 5 = (12345)'
as the arbitrary selected chain. Then ¢ (2, 5) is parallel to the i-point
6 and the third point in the parallel class must be ¢ (3, 4) = (13524).
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Now the j-point represented by the chain ¢ (2, 3) cannot be parallel
to the point 6. Hence there are the following four choices for ¢ (2, 3) :

1 ~ (12653), 2 — (12643), 3- (12463),  4—(12563).

The chain (12653) is not consistent with ¢ (3, 4), since the two
chains have three consecutive elements 135 in common. If ¢(2, 3) is
taken to be (12643) then c¢ (2, 3) is parallel to the point 5 and the
third point in the parallel class must be ¢ (4, 6) = (14236). Now,
since the j-point ¢ (2, 4) can be parallel to neither the initial point 5
nor 6, therefore, there is only one choice (12564) for ¢(2, 4), which is
consistent with ¢ (2, 5), ¢ (3, 4), ¢(2, 3) and ¢ (4, 6). However, there
is no possible choice left for j-point ¢ (2, 6). Hence ¢ (2, 3)=(12643)
is not possible. The coice ¢ (2, 3) can be eliminated similarlv,

Finally, ¢ (2, 3) = (12563) was taken and all possible choices
were examined for the remaining j-points and it was found that the
following is the unique set of 10 consistent chains for an Hs (2).

¢ 2, 3) = (12563) ¢ (3, 5) = (14365)
c(2, 4) = (12634) ¢ (3, 6) = (13246)
¢ (2, 5) = (12345) ¢ (4, 5) = (14625)
c(2, 6) = (12456) ¢ (4, 6) = (14536)
¢ (3, 4) = (13524) ¢ (5, 6) = (15326)

The set can be partitioned into the following two families :
Fi={c@4,6), c45), c2,3), ¢c3,6), c2, 9},
F2={c@3,5) ¢(2,6), c(56), c(2,4), ¢c(3,9};

where the nth element of Fy and the nth element of Fy, n=1, 2, ..., §,
are in the same parallel class.

The possible choice for the two z-points in the semibiplane which

would be consistent with the above set of chains is (23645) and
(24356).
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Figure 1. The ordered incidence matrix of the unique Hj 2).- "

1
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1
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e

(b)
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chains associated with this design is :

1111

1

Self-dual solutions of Hj; (2) and H; (2) designs.
Rajkundlia has given an Hy (2) design in [7]. The set of

(1368754)
(1652478)
(1536728)
(1382647)
(1248375)
(1485326)
(1234567)

(1583476)
(1548627)
(1265873)
(1423768)
(1435287)
(1254638)
(1357246)

(1735648)
(1285764)
(1683257)
(1278436)
(1327458)
(1342865)
(1473625)

The chains are arranged so that rows correspond to parallel classes

and columns correspond to the families of chains.
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(ii). The semibsplane with 10 points on a line of [6] is in -fact an
Hs (2) design. The set of chains associated with the design is:

(153709846) (130687594) (193856740)  (179634508)
(127496085) (176842509) (162954078)  {146579820)
(128305976) (185732690) (152063987)  (135680729)

(170) (268) (349)  (129804) (367)  (138)(246097) (169) (230) (478)
(189) (257) (340)  (120793) (458)  (147)235908) (150) (249) (378)
(148) (239) (560)  (159) (264380)  (124530) (689) (136) (258) (499)
(137) (240) (569)  (160) (253479) (123649) (570)  (145) (267) (390)
(132546780) (156307428) (143720586) (126048357)
(142635879) (165498327) (134829675) (1259374¢8)
Again rows correspond to parallel classes and columns correépond to
families of chains.

The set of chains corresponding to the duals of the designs (i) and
(ii) were also obtained and it was found that in both cases the set of
chains corresponding to the dual designs were obtainable from the
set of chains associated with the original designs by sultable permuta-
tions. Hence the two designs are self-dual. ‘

These results are contained in the author’s doctoral thesis sub-

mitted to University College of Wales, Aberystwyth. The author
wishes to express his gratitude to Dr. V.C. Mavron for all his assist-

ance and encouragement in carrying out this research.
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ON GROUP - YALUED SUBMEASURES,
By
ABDUL RAHIM KHAN
‘Pepartment of Mathematics
Bahauddin Zakariya University, Multan
feo : Pakistan,
1. Introduction.

The notion of [Q, ¢ ]~ valued submeasure [1] is of interest, since
submeasures can be used to generate a ring topology, thereby creating
a natural setting for the consideration of continuity in relation to
topological group-valued set functions. In recent yearé developments
have also taken place in certain areas of group-valued measures.
These facts motivate us to look into g_rou_p-valﬁed submeasures. In
this paper we introduce such submeasures and in particular we have
proved an exhaustion principle which is turn enables us to establish a
Lebesgue decomposition theorem for these submezasures. Our methods.
are those wsed by, Drewnowski [2] and main theorems, of this note
generalize theorems 4.7 and 6.7 of [2]

2. Notation and Termmology
Let (G, 7) be a commutative Hausdorff topological group (written
additively) and B a ring of subsets of a set X. Letyu be a G-valued
fynction on R. - We say that p is
(). Einitely -additive if p. (EUF), = pn (B) + p (F) forall E, F in
R with E n F = ¢ and if, in addmon, p.({:) = 0, we say
wis. & measuse.
ﬁu), ;- ada}mve J,f for any, sequence E,,"} “of disjoint sets in R,

0
) su,chthat U Eq & R, then p( u E)= 2 p(En),
n=I n=1 n=1

where the corivergence is relative to the group topology on G.
w11 : 3
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(iiiy Order continnous if for each decreasing sequence { E,} in R

such that lim E, = ¢, then: lim p(Es) =0.

n-> o0 n - ©
(iv) exhaustive if for each dls_]Olnt sequence {E,,} of sets in R
lim w (B, ) =0 ' '

n - o©
Let A be the c—algebra of subsets ‘of R. Then the Lebesgue
measure p. : A - |0, o}, is neither order cont—inuou‘s nor exhaustive.
It is straight forward to show that a G-valued measure is o -additive
if and only if it is order continuous-and if p is o-additive on R, then
it is exhaustive. S i ;
A real-valued functlon q on G is sald to be a quasz-norm on
(i) q(x) >0, _.(xe G)Q,_,
@) g(0) = 0 -
(i) (%) —q(—- A) o
@) q(x+y)<q(x)+q(y) (x ysG) ;
. If,.in addition, g: ()) = 0: implies x =-0, then q-is. sald to. be a
norm on G T i

If (G, q) is a quasi-normed group and p. is a G-valued functlon
then semi-Variation, p (F) of p on Fc X 1s deﬁned by _
: u(F) = Sup{qou(E) ESRE F}
Let G be a commutative lattice  group [5], abbreviated to l-group.
A quasi norm (norm) on G is said to be an l-quasz‘-norm (l-normy if
g(x) £ q() forall x, y i Gwith | x| < |¥]. AG-valued func-
tion p on R is said to be a submeasure if (¢) =0, n(E U F) < w(E)
+ ¢ (F) forall E, F in R with E n F = ¢ and ‘g is mohotone i.e.
w(E) < u(F) for E,F'in R with E@ F.: Note that if y is a
G-valued submeasure on R, then #(E) = 0 for-all E in R. Further
if (G, q) is an l-quas1-normed group, then g o P is an Ry -valued
- submeasure i _1n t:h_e sense of [1] and if p is exhaustive. then we can

show by an indirect argument that i is also exhaustive.




13

A subset Vof G is said tobe solid if agV and | x| < ||
implies that xe V. In particular, a solid set V is.symmetric
(i.e. V=—YV). A group topology t is said to be locally solid if it
has a base of 1-neighbourhoods of 0 consisting of solid sets. A
family of l-quasi-norms determlnes a locally solid group topology on
G; on the other hand; if v isa locally solid group topology on G,
then v may be determined by the family of all t-continuous /-quasi-

norms on G (see [4], 22C),
3. Preparatory Lemmas

Lemma 1.

Let « be a G- valued o- add1t1ve measure on R Then g is *an

order continuous submeasure.

Proof :

The only non trivial part is to show that p is order continuous.

Let {E;} be a decreasing sequence in R such that lim E, = ¢.
B = 60 ‘

Suppose the resu]t is not true Then there ex1st a pos1t1ve number 3 and

a subsequence {np} such that " (E )> 8 for p-—l 2,3,. Slnce wis

monotone-it follows that (._1. (E;) > & for all n. In particular w(Ep) > 8
(ny = 1) and so there exists a set A; ¢ R such that A; ¢ E;, and
qg(» (A1) ) > 3. Since p is o-additive it is easy to show that yu is
continuous from above and so there exists a positive integer #z such
that g (u (Al_ n En2 )) < 8/2, .

LetF; = (En1 AN En.z) N Ai. Thea .

g Fr)= | g@EanA))y—q@E nA)) | >3/2
As 1 (E )> 3 we can use a similar argument to show that there ex1st
sets Az, _ in R-with A, *‘En such that if Fz.= (E \ E ) NAs,

* s
then "¢ (& (F2)) > '§/2." So a sequence { F, } of dlSjOlnt sets in R
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can be found such that ¢ (p. (Fn)) >8/2(n=1,2,3,...). Now
since p is c-additive so
o] 0
(U Fp)= 2 pFn)."
n=1 n=1

Since the right hand side converges, lim ¢ (e (Fp)) =0. This
' n—> o -

contradiction proves the result.

A G-valued measure p is said to be bounded if {«(E): Ee R}
is a bounded subset of G. The semi-variation of group-valued meas-
ures in general may be unbounded [6] but for exhaustive measures Wwe

have the following.

Lemma 2. : . S
Let (G, 9) be a quasi-normed group and p be an exhaustiyg

G-valued measure on R. Then yu (E) is finite for all subsets E of X.
Proof :

Since y is exhaustive of u is exhaustive. Now if {E,} is disjoint
sequence of subsets of X, then the increasing sequence {E, A Ep } of

X is f;.-cauchy (i.e. lim gI (Eqs A Em) = 0). Otherwise for some
: : n—> ' o

¢ > 0, there exists an increasing sequence {n;} of integers such that

il (E,,k . A E,,Ic ) >e(k=1,2,3,...). Thiscontradicts the exhaus-
+

tive property of w . Now suppose that p (E)=+ oo forsome E ¢ X.
Then there exists an increasing sequence { G, } such that ¢ (G, ) > n
for n=1,2,3,4,...... By the above fact the sequence { G,} is
u-cauchy and so ;—bounded. This yields a contradiction and so
g (B) < -+ oo for all subsets E of X.

Lemma 3. :

" Let (G, ) be an I-quasi-normed group and let {wit(iel) bea
family of G-valued uniformly order continuous sub-measure s on a
¢ -ring R. Then the family { g;} is uniformly exhaustive.
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Proof : =
Let {E,} be a sequence of disjoint sets in R. Define F, = U E;
k=n

Then {F,} is a decreasing sequence in R and lim F, = ¢. Clearly

n-> 0
g(i(En)) < q(ui(Fp)) forall igel and n=1, 2, 3, ...... , and so
by the order continuity of the family {u;} it follows that the family
{ui} is uniformly exhaustive.

4. The Exhaustion Principle and Some Applications.

We start this section with an ‘exhaustion principle’ in the follow-
ing.
Theorem 1.

Let (G, g) be an [-quasi-normed group and p an exhaustive
G-valued submeasure on R. If M < R, then there exists a sequence

n .
{M,} of setsin Msuch lim g@M\. U M;)) =0 uniformly
n-> o k=1

with respect to M ¢ M.

Proof. :
Let My={Ec¢R: E ¢ M forsomeMe¢M}. Clearly M < M;.

Let €1 be a positive number such that g1 < sup g (n (E)), and let
. . E¢g M:

E11 be a set in Mj such that ¢ (u (Ei)) > g1. We now choose
successive disjoint sets E} (k= 1,2, ...) in M1 such that g (u (B} ) )
> g3 ; since u is exhaustive we can extract a finite disjoint sequence

Ei s seeves . Erlzl in M; such that ¢ (n(E)) < &1 for all EeM,,

where me ={EeMi: ENE =¢ k=1, ...... ,#) ). Letg, be

a positive number such that g3 < min (E1 /2, sup (g (E))).
Ee Mz

We similarly find a finite sequence of disjoint sets Ef s veeees , B in

M: suchthatq(y.(Ez Y) > & (k=1, ...... ynz)and g (n (E)) < ¢
2 2
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for au E £ M3, Where M3 = {E £ M2 K E nEz —— ¢, (kzl’ ...... "n‘z) ,}.
Continuing with this process we obtain a disjointl sequence
El ... LB EY L ,EB ,in My and a sequence {&z}

of positive numbers such that gz ->0, as k> oo . To obtain the

sequence {M,} we choose setsin m which contain in turn the sets

Ei s e s E! Ei g eee s EZZ , ... . The seqience {Mp} has the
required properties, as follows ;
Let M be any element in M. Then, for any integer p,

P4
X ng
k=1 P n k '
M\ U M,c M\ U u E, , and so, since p is asub-
n=1 k=1 i=1 : ;

measure and ¢ is an J-quasi-norm, it follows that
2
X m
k=1 P ng ok
goup (M\ y Mn) < qou(M\ u U By )
n=1 ‘_‘1 I——-I :
< gp>0,a5p > 0.
This proves the theorem. C A

Corollary 1. . S
With ¢, p and R asin Theorem 1 there exists a sequence { E, }

in R such that hm g (1 (BN U Ei)) = 0 uniformly with r espect
n->w k=1
to E ¢ R.

Corollary 2.
With g and u as above and R a o-ring, there exists a set E, in R

such that ¢ (u (E\_E,)) = 0 for all E ¢ R.
Corollary 3

Let (G, g) bs an [-normed group and. an order continuous
G-valued submeasure on a o-ring R. Then there exists a set E, e R
sush that ¢ (E \\ E;) = O for E ¢ R.

Proof :

By Lemma 3, y is exhaustive and so by Carollary 2, tlure exists a
set E, in R such that ¢ (n (E\\ E,) ) = O for all Ee¢R. Now (G, g} is
a normed group and so p (E > E,) = 0 for each E ¢ R, as required.
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Corollary 4.

“'Lét (G, ¢q) be a' normed group and u be a’ G-valued B-ddditive
measure on a g-ring R. Then there exlsts aset E ¢ R such that
p(EN\E)=0 foreachs R.

Proof

Since p is ¢-additive, it is exhaustxve and so by Lernmas 1 and 2
& is an order conitinuous R, -valied submeasure on R. "By t:io“rdlla'ry‘?‘

there exists a set E, & R such that y. (E\ E,) = 0 for all E.¢ R.
Tt follows that g (ENEBE,)) =0 forall Ee¢ R and so, smc= qis a
normon G, u (E\\ E;)) = Oforall Ec¢ R, as ruqulred o
Definition 1. , ‘ ' o

Let (G, ¢) be an [-quasi-normed group' and p a G-valued sub-
measure on R. A set E g R is p-null if and only if g (E) = 0.

We note that for G-valued sudmeasures the above notion of a
p.-null set agrees with that defined by Traynor ( [7], p. 136) for group—
valued measures. - . C Ve A

Definition 2.
With G and y as in definition 1, i is said to be c-subadditive if
and only if, for each sequence {E, } of disjoint sets. in R such.that.

o0
uIE,,sR g ( U Ea)) < Zlq(u(En))-

n= n=] n=

Clearly for G-valued submeasure p. H ={EeR: p(E)=0}
is an ideal in R and that HP- is a o-ideal if y is o-sub-additive.
Theorem 2.

Let (G, ¢) and (Z, p) be l-quasi-nérmed groups and y be an

exhaustive G-valued submeasure on a o-ring R. Then, for any
Z-valued submeasure v on R, there is a sequence { E,, }: of v-null ' sets.

such that ¢ (E)) = 0 for all E in R such that E n. U E= b,
n=1
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Proof :
Let Hy={EcR : v(E) = 0}. By Theorem 1 there exists a

sequence {Ep} in Hy such that Ilim g (u (E\ U Ey)) -—0
n- o k=1

U1 E; , we have

uniformly with respect to E in R. Thus, if Ey =

that ¢ (4 (E\\Ep)) = O for all E¢ R, and so g (u (E) ) = 0 for all
EinRwith E 0 Ey, = ¢. ‘
The following proves that exhaustive submeasures are bounded.

Theorem 3 ’
Let (G, g) be an /-quasi-normed group and y an. exhaustive
G-valued submeasure on R. Then sup g (E)) < + .
Ec¢R o

Proof :
By Theorem 1 there exists a sequence {E } in R such that

lim ¢ (g (E\ U Et)) = O uniformly for E & R." Thus there
n-> o0 k=1 o

n s
exists a positive integer N such that ¢ (W (EN\, U . Ex)) < 1 for all
“ k=1 .

EcR and n = N. Now, for'any E ¢R,

’ N N -
E=EN\ v E)u u Eg,
k=1 k=1

and so
N N
g (E)) < q(u (E\ku1 Ek))+k21q(y-(Ek))

N .
Zoqw®))

It follows that ¢ o u is bounded on R as required.
As a consequence of Theorem 3 we have the followmg result due

to Drewnowski ([21, Cor. 4.11).
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Corol,lary 5.

Let (G, q) be a quasn-normed group and p an exhaustive G-valued
measure on R. Then sup ¢ (u (E)) < . ‘
. EseR |

Preof s

By lemma 2, p is a finite-valued function and so p is an exhaus-
tive R, -valued submeasure on R. Thus by Theorem 3

sup q(u(E))< +°°-
E:e R

Definition 3 : o e

Let H be an ideal in R. A submeasure g on R is said to bc -
nearly supported on H if and only if, for every ¢ > O there exists a
set E.in H such g (1 (A)) < g Whenever X \ E2 AgR.

Definition 4 L ' o SRR

Let H and p be as above We say that .y vanishes on H, if and. -
only;fp(E) —0 forall Ec H. .

We now use theorem 1 to derive a Lebesgue type: decomposntlon
theorem for. /-group-valued' submeasures ; our results generalize a
theorem of Drewnowski ([2], Theorem 6.7) and Trayner ([7],
Theorem 2.2).,

Theorem 4 :

Let G be an /-quasi-normed group and p be an exhaustive
G-valued ‘submeasure on R. 1f H is a o-subring of R, then there
exists a set ' Hin H such that : o e J

' (1) the submeasure pa defined by (B = p (EnH)is nearly'\
. suppoxted onH, _ ' B

(i) the submeasure po deﬁned by w2 (B) = pw (EN\H), (Be R)

vanlshes on H
Proof : V '
By Theorem 1 there exists a sequence {(Hy:n=1,2,3,... } in

H such that tim q(u (A\ U Hk)) =0 umformly for A in H.
n—>om =]




20

SlnceHlsao-ldealmR H = u Hie Sandso q(y.(A\H) =0
k=1

for all A in H. It is easy to see that the submeasure yz is exhaustive

and for any Ain S, g (pa (A)) = q @ (A \ H) ) = 0, which implies
that po vanisheson S. If Ee R and En H=¢, thenp(En H)=0

and S0 the submeasure wp is nearly supported on H.
Followmg [7], we shall say that y is v-continuous if and only if
vanishes on v-null sets and p is v-singular if and only if there ex1stsl a

y-null set E such that p (AN E) =0 for all AgR. We say @ is'
equivalent to v, written as p ~ v if and only if y. is v-continuous and- v

is p-continuous,
Theorem 5. :

Let G and H be /-quasi-normed groups. Suppose that g is an
exhaustive G-valued submeasure on R and v is a o-subadditive H-valued:
sibmeasure on R.. Then there exists a v-null ’set Ey such that

(i) the submeasure y; deﬁned by Hl (E) = y. (E n By, (Ee R) is

i+ -y-singular-; and

.. (ii) the submeasure pg defined by ps (E) = (E\Eo) (Ee R) ‘is
© y-continuous. i

Moreover the submeasure py 4- g is equivalent to p.’
Proof

. Let H be the collectlon of all v-null sets in R. Since v is
c-subaddmve, H is a g-ideal in R. By Theorem 4 there exists a set Eg
in H such that g3 : E — p (E n Ep) is nearly supported on H which
implies that u; is v-singular and ug : E - u (E \| Eo) (E £ R) vanishes
on H whlch glves that w2 is V- contmuous Suppose that E is in R..

Then (y.l + y.z) (E) = y. (E n Eo) —|— w(E \\ Eo) and so, since y is
monotone and ¢ is an /-quasi-norm, we have (g (p1 + p2) (E))
< 2 g (¢ (B) ), which 1mp11es that gy 4 pa is p-contmuous Conversely
we have

4@ ®) < qg®ENE)+p(ENE)) £q9((m+p)®E)
and so pis (u1 + p2) -continuous. Thus pi + p2 ~ p.
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Remarks :

(i) The proof of theorem 1 indicates that the theorem is valid for
submeasures with values in any locally solid /-group (G, 1).

(ii) The decomposition of submeasure p in theorem 5 is unique up
to equivalent submeasures (see [6], p. 97).

Finally for group-valued submeasures we have following “uniform
boundedness theorem’ which generalizes a result due to Drewnowski
(13], Theorem 1).

Theorem 6

Let (G, g) be an /-quasi-normed group and let M be a family of
G-valued submeasures on a o-ring R such that
sup g(p(B)) < + o
neM

forecach Ein R. Then sup g (E)) < 4+ o

neM
EgR

Proof :
Let H be the group of all G-valued mappings on M. Clearly H is
a. commutative partially ordered group, the ordering being f < g if
and only if f(u) < g(u) forall w e M. We define the functional ¢
on H by ;
R ¢ (f)= sup q(f(w))
neM
and note that ¢ is an R: —valued quasi-norm on H such that
$(f)<¢(g9if 0 < f<g. Wedefinea mappingv: R - H by

- V(B) () = u(BE).
Clearly v is an H-valued submeasure on R.

Suppose that the theorem is not true. Then with the above no-
tation, EsupR ¢ ( (E)) =+ oo . Thus for each positive integer #,
- £ ¢ R . .

there exists a set E, in R such that ¢ (v (Ez)) >#n. LetE= y E;.
n=1
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Since R is a o-ring, E€ R and ¢ (v (E) ) = 4 o0 ; this implies that
sup g (E)) = 4 oo, which contradicts the hypothesis. Thus
[ T

sup ¢ (u (E)) is finite, as required.
ueM
EeR
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1. Summary and Introduction.

Partially balanced incomplete block designs with two associate
classes and having the latin square type of association scheme are
presented, The general treatment brings out relations between the
class studied and certain other closely related designs. Including bala-
nced incomplete block designs, regular and semiregular group divisible
designs, and various square lattice designs.

We shall use s to reprsent the size of the square array of v = s2
treatments in the association scheme. The association scheme is specifi-
ed by this square array and i—2 mutually orthogonal latin squares
(i = 2) which are superposed on to the square array to identify first
and second associates of any treatment. Treatment pairs which appear
in the same row or column of the square array or which correspond to
the same letter of a superposed latin square are first associates, other-
wise a treatment pair is related as second associates.

For latin square type de:igns

ye=8, m=i(s~1),na=(—1)(s—i+1), (1.1)
and the parameters of the second kind are given by
[ 2~3i4s C-D@Es—-i4+ D)

P1=‘(p§,-)=L ,
G-1)(s—itl) (—i)(s—~i+1) J
s [iG-1) P(s = i) 1
Py = (pif) = | ' I a2
T LiGs—) C—D24i-2 )

and are determined by the association scheme.
23
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The symbol L; (s) is used to designate a latin square type design
of v = 52 treatments and utilizing { — 2 mutually dpthogonal_ atin
squares in the specification of its association scheme. Thus a latin
square type Lg (s) dasign requires no latin squares in the definition of
the association scheme but defines . first and second associates of all
treatments by use of the square array of s2 treatment numbers. A
latin square typs Lg (5) design is always possible for any finite integral
value of s > 2 because it is always possible to construct a latin
square of side (or order) s. However, for i > 4 the availability of
mutually orthogonal latin squares depends upon the parameter s. The
L, (5) designs have definable assocjation schemes for all s excvpt s5=2
and 6 [4]. It is well known that s = p», p a prime and n a positive
integer, a foll set of s—1 mutunally orthogonal latin squares of side s
exist. Hence when s = p" we can always define the association scheme

for an L;(s) type design for 2 < i < s + 1. Howevér, when s isa
composite member, the number of available mutually orthogonal latin:
squares varies with the value of s, presently being 2 for s = 10 and 5.

for s = 12, for exdmple,

2. Latin Sq_uare Type Designs with k< s.

‘Consider a latin square type association scheme defined by a '

square array of size s containing v = s2 treatments and i constraints
i.e. utilizing i — 2 mutually orthogonal latin squares, 2 <izsrl.
Treatment pairs which are second associates will never appzar together
in any block, so that blocks will be formed only from treatments
which are first associates. Fix attention on any row {(column) of s

treatments in the association schems and‘,form the C; distinc’; blecks
that are possible by taking all combinations of s tréatments k at a
time (k < 5). This provides 2s Ci blocks, each of size k, when we
use the above procedure for every>row and every column of the

association Scheme. Now superpose one of the i — 2 mutually

orthogonal latin squares 6n to the association scheme and fix attent-
ion on the s treatments corresponding to a latin letter. As before,

SR
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.aise this set. of - s treatments:to construct all the C';; distinct - blocks of

« Ys:ize k, ;10 this. for every lafin let'ter' of the square, and then repeat the
procedure for each of the remammg latin sqaares thus obtalnmg
(i—-2)s .Ck additional blocks. Clearly, we will have b =1ig, Ck
blocks of size k involving v = s? treatments, In eaeh .subset of
blocks, a treatment will occur c’ o II times if it appears at all, and it
occurs in subséts correspondmg to a row, a column, and to one of the

'lettere of'eaéhkdfk the i —2 lafin‘ Squares $0 that F=i C,k ?11 A

treatment-pair related as first '1ss001ate appears in blocks corre-
sponding to either a row or a column or to a letter of one of the i — 2

-latin squares and in this subset of blocks occurs: k 22 times, ~hence

A= z 22 Thus we have constructed a latin square type .design
specxﬁed by the following set of integral parameters
‘ , s . s—2,
v =52 ,,b=zka,n1=z(s—I) sm=Cp_o
| W
r—zCk 11, k=k ng = (s—1)(s—i+1),22=10 s

‘where2 < i < s + 1 and 2 < k <'s. One may check that this
three parameter family of designs satisfied the necessary conditions
vr = bk s N1 M +n29\2=r(k—1) : 2.0
which apply to any partially balanced incomplete block design with
4wo associate classes. The other arithmetic COIldlthl’lS are automati-
cally satisfied due to the fact thatthe design was constructed with all
requirements of the  L; (s) a55001at10n scheme satisfied special case
i=s4+1and k =35 Whensisa prime or prime power i can attain
the ‘maximum value and the latin square type Lsy1 (s) design may be
constructed as described. When k = s also, the parameter values of
{A) reduce to ‘ , . L
V=2, b=s@E+),r=s+1, k=s,2=1 . (2.2
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which is the well known family of balanced square lattice designs.
This is so because ny = 0 and then there is only one kind of associa-
tion between treatments, namely that in which every pair of treatments
occurs together in exactly one block. Special case i = § —[— 1, k < s.
When k& < s and { = s | 1 the parameters of (A) reduce to .

yv=s2,b=s(s+1)Ci,r=(s+1)Cz:11,kk<s,
r=n=C o, @3

a family of balanced incomplete block designs, because #z = 0 and
we have only one kind of association relation between treatments.

Special case { = 5. When i = s, pl2 = 0 which identifies the
2

designs as group divisible. Construct the design as described bat
afterwards rename the associate classes. This leads to the parameter

values.
v=12s2 |, b=gs? C;;, n=ng-{—'1=‘s"1, )\1¥§0, 
(2.4)
Sl k=x M= =2
r=s k—120" %> m=n+ "'S’ e = k—2 ?
[s=2 0 “ 0 s—1 |
Pl:“[ 0 s@-1) ] Pe=| s-1 5¢-2) ] - @)
s5—2 [ |

Now rk—vas =s(s—k)[(k—1) Ck——2 >

When s =k, rk =v 22 =0 and r — 3 >0, so that, .byl ‘de‘ﬁ.nitié_n,
the designs are a family of semi-regular group divisible designs. The
cases s = 6 and 10 are not constructable (by this method at least) but
thecases s = 2,3,4,5,7, 8, and 9, having r < 10 are known [2].
Many designs of this subfamily having r > 10 may be constructed, by
‘the method of this section. : o

Again we note that for i = s it is necessary to have z—s =S —2
mutually orthogonal latin squares available in order to define the

R .
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associition scheme and construct the design. This requirement is
surely met when s = p» , a prime or prime power.

Special case k = s, when k = s, the maximum possible value,.
we obtain from the family of designs (A) the subfamily with para-
meters, '

ve=s2, b=is, np=1i@E—-1) ’ A=1 >

_ , - (2.6)

r=i, k=5 , n=@E-1D)@E-i+l), ra=0 _,
where 2 < i < 5§ + 1. This is recognized as the well-known family
of square lattice designs with i replications.

Special case i = 2. When i'=2 the family of designs (A)
simplifies to those specified by ’ ‘

' s §=2

v=s27 s b=2ka,, n=2{-1), )\1=Ck_2 s
| 2.7
r=2C L k=k ,  m=(-1?, n=0,kss,

When k = s we have from the preceding paragraph, the sub-
family of simple square lattice designs with r = 2.

Speciat case i’ = 3. The designs of the subfamily of (A)-with:i =3,

are,krgiyen by

I _ ~F _ay _ =2

’v’—sz , b=3 ka, n=3E-1 ,xn= k2
| 2.8)

r=3C‘;c:ll,k=k , np=(5—1)(5=2), X2 =0

where 2 < k' < s and we place the restriction s = 4 in order to
avoid group divisible designs. Again the designs having k = s are
recogaized to be the square lattices in r = 3 replication cases 7 > 4.
Designs of family (A) having 7 > 4 are generally large (r > 10) and
except for thecases k = s, i = s and i = s 4 1 are thought to be

new.
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3. Latin Square Type Desizns with -k =

Consider the gencral association scheme of a latin square typef ‘

deSlgn with v = 5 trcatm nts and 1nvolv1ng i ~ 2 multually ortho.

gonal latin squares, 2 <§ < s'471, in the  definition “of first-and -
second associates. We desire to construct blocks of slze k = 2s-and =

do this.in two stagss. First, we form blocks by combining all possible
pairs of rows (columns) of treatments in the square array of the

assomatron scheme This yrelds 2 C blocks each of size k = 2s.

hext superpose one of the mutually orthogonal latm squares arc:"
square array and form blocks from the treatments correspondmg to

pairs of latin letters, obtaining C; bIoCk‘ each of S1ze bk —::_4
Repeat thrs procedure of block formatlon for each of the i-2
s
mutual]y-‘orthogonal latin squarcs. This yields a total of b = i C2
i :
blocks, each of size k = 25, from the v = s2 treatments. An
arbitrarily chosen treatiment is seen to occurs/in-s — 1 blocks of each
of the i subroutines of block formation, so that r = i (s — . A
pair of first “associates appears together in' s — 1 blocks in the
subroutine of block formation it Which the treatmert pair' occurs’in
the same:row .or column of the association scheme or c,orre_spon.d. to

the same letter of a latin square, further, each pair of first associates
occurs in one block in each of the other i — 1 subroutines of block ™

formation. Thus a1 = s + i — 2. A treatment pair related as second
associates occurs in exact’y one block in each of the i subroutines of
block formation, so that ag = i, We have thus constructed a latin
square type design with parameters. '

[

V= S2 ) b ==l C2 , Hp = l (s — ]) , s )\1=,S+i-72
r=1i(—1) , k=25 O na=(s=1) (s=i+1) , de=1"

where 2 < i <'s 4+ L. Clearly, the necessary conditions specified by

@.1) are satisfied.
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- :Special case i = s 4 1. Again the designs may be constractad
when i attains the maximum value, s + 1, provided s = p=, a prifn;-:;
or prime power. The subfamily with i = s + 1 has parameters

, b=(s +I) (s) (s— 1)/2 r= s~—1 k=-2s A=n=2s—-1 (3.1)
because ny = 0 so that there is only one kind of association relation
among treatments. For these designs to be balanced incomplete
block designs it is necessary that r > k, which in this instance
requlres that s > 3. However, the cass s = 2 is clearly constructible
and is in fact the randomized complete block design with v = k = 4
and b= r =~ ) = 3. The balanced incomplete block designs corres-
ponding to s=3 and 4 are known and those with § > § have r > 24,
Special case i =s. When i =5 the designs L (s) are surely construc-
tible if s = pn; a prime or prime power. ‘Setting i = s we see from

(1.2) that pfz = 0 which, upon rénaming associate classes, leads to

y = 52 y =52 (s - 1)/2, n=nal=5, \ =s,
s | | | . (3.2)
r=s(s-1), k=2¢ , m==njnt+1=s, 7\2=2(sf I

and the parameters of the second kind are automatically determined
by setting i = s in (1.2). The quantity rk — v a3 = 0 implies that
if the designs have two associate classes, they are of the semi-regular
type of group divisible designs, this requires & > 3. The case s = 3
is known [2] but those arising from s = 4 have r > 12 and may be
new, In thecase s =2, % =2, np=1and a1 =22 =2 so that
the two associate classes collapse to one and the design exists as the
randomized complete blocks design.

Special case { = 2, When i =2 we obtain the subfamily of
(B) of type Ly (s5) with parameters.

V= §2 , b=s5s@E~1), m=2-1), m=s

P=2(@E-1, k=2 , He=(s =12 |, a=2,5=3

The design arising from s = 5 is given in [2], the cases s = 4
and 5 were constructed by [5], and those cases with s> 6
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(r = 10, k > 12) have not been previously reported in the literature.

Special case i = 3. When construction utilizes a simple latin square,

we have the subfamily of type L, (s) With parameters.

y =52 ,b=3s(s—1)/2,n1=3(s—1) s Ar==s-}-1,

(3.4

r=3@G-0); k=2s , ng = (=~1)(—-2), =13,

Where s > 4 and all designs are possible for finite s since it is
always possible to construct one latin square of side s.

Special case i = 4. The subfamily L, (s) of designs of (B) with -

i=4 and s = 5 utilize 2 mutually orthogonal latin squares. These:

designs are always constructible for s = 5 and s > 7 as [4] have

shown that it is always possible to constructa pair of mutually

orthogonal latin squates when s > 3 except for the special'case 5§ = 6
whens Euler’s conjecture holds true. The designs of the subfamily

L, (s) are large, the smallest having r = 16,

WO i 1
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ON THE ELLIPTIC DIFFERENTIAL EQUATION
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Abstract

The constant solutions of the elliptic dlfferentlal equanon 82 a= . 1—ge?* :

£=0, :[: 1 are vaeaulmes of different types. We are concerned in this article

with one of them, namely. the concentric circles’ ] 4 ] =r < 1
with ‘this type, the positive solutions; S (&), of the equation
~Sf" +f'2 =3LSf" - 2f + 3L f + 2% = 0, where

i~’—1—-t»:e2 5 8=0, +1

‘ whlch 1e&d to a farhily of convex funtions (z) are represented and those having

In associdtion

¢losed curves dre drawn.
1. Introduction
Consider the hyperbolic metric in the z-plane and the s-metric

l dw l * . RTINS Y A f o i g
————1 ;& =0, 4 I in the w-plane. Let us also Suppose that

1+ eww

w(2), with nonvanishing derivative, is regular. in zz < 1. Hence, we

have the differential invariant « = log AW d-zz) 45 a solution of

1+ &ww

a- z;)2 () _ isthe second Beltrami oper;for:

M) 32():=
(*) According to ¢ == 0, -+ 1, — 1, we have the Euclidean the elliptic and the

hyperbolic metric respectively.

33
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the elliptic partial differential equation §3 &« = L (‘ac), where 8z‘iis the
second Beltrami operator and L () = — 1 — ¢ ¢° ]_1] “The equatron

Sea =1L (a) isa nonhomogeneous potentral equatron and its constant
solutions represent different types of Niveaulines ( [7], p. 363 377).

We are concerned here with an important model of these Nive-
aulines, namely, the concentric circles .| z | = r < 1 with a charge at
centre. The lines of forces are the family of straight lines originat-
ing from the charge. This represents the field of a line charge situated
perpendicular to the plane of the page at the origin and surrounded
by an insulated co-axial cylinder with radius r = 1,

The nonlinear differential equation
—-ff”- frEo3Lf—2f 4 3L'f+ A2=0 ... )

plays a particular role in classifying three types of Niveaulines, as
shown in section I. - In accordance with each type we derive a class of

positive solutions of Eq. (1).

Our aim in this article is to represent those positive solutions, f (),
of Eq. (1) which are related to the considered type of Niveaulines, and
lead in the same time to a family of convex functions w«(z). - Further-
more, some of the obtained solutions, f (), having closed curyes, are
.depicted graphically. . — -

2. The main approach
Under the conditions [17 :
1. f(x) is a positive solution for Eq. (1).
N 2L’ 4+ 2 # 0.
3. f(«) > 8pa.in the, nerghbourhood of |z ]
it has been proved that f (@) = 81« is vahd in | z ] < 1. The solu-
tions of Eq. (1) are given in [6]. L e

‘Let us consider those positive solutions of Eq, (1) such ‘that the
inequality f («) 2 81 « reduces to an " equality i.¢. we consider the

"
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majorant functions of the inequality. For a = « (6), where 0 isa
parameter to be selected such that §; 0 = 1, the condition §:* « < f ()
implies

‘ . du
| = e e
where ¢ is an arbitrary constant. R
Hence, calculating 8,8 : = (1 — 2z)2 6 _
L 2z

. . i -
== band 2 T A — . -
(1 = 27) { v Ry St az}
_ L@ _ dvyf@
Vv f@ de ’
which can be formulated as a function of 8. Let us denote this func-
tion by y (6). Thus, differentiating w.r.t. 6 the expression

L («) dv/ f (=) G

YO =37m da
and noting that f («) satisfies Eq. (1), we obtain :

dy dy da
d0 ~ da ' dB

_ I dL L dyf o dy [
~‘/f{ VT de T F T de T de?
=1-y?2 R ()

From (4) it follows immediately that ¥ = - 1, tanh (0 4- ¢) and take
over (0 + ¢), 0 + ¢ # 0 accordingto |y | =1, |y | <land|y| >1,
which -can-be deduced by using Eq. (3). ,

. Thus, by makmg use of Eq. (3) all the positive solutions of Eq ‘
(1) are clésslﬁed 111 three classes. Each class yields consequently one

of the followmg types of vaeaulmes [5]

®&() ==z z)? () ()_'iS the first Beltrami operator:
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(i) Circular lunes lying in the unit disk of the z - plane with
vertices at z = 1.
(ii) Circles lying inside [ z | = 1 and touching it at z = 4 1.
© (iii) Concentric circles with centre atz = 0 and radius r < 1.

The first type has been studied in [2] and the second type is
considered only fore = Oin{3]. In this article we are concerned
with the third type considering € = 0, & 1.

To characterize this type note that w = log z maps the concentric
circles |z| =7 < 1 conformally onto the straight lines which are
parallel to the imaginary axis and lying in the left half-plane. Hence,
let &« =« (z, ;) = « (r2). For the majorant function 3 « £ f (),
we have

-2
Sa=(0-2z) aa_=r2(1—r?) o 2
z z

=f(®)
which implies '
de dr
Vi@ 1-r2"
From Eq. (2) we obtain
0+ ¢c = —2tanh-1lr

On CalCulating 82 e’ we have
2
%0 = -I—_ZI-;"— =coth(®+c), 0+ c# 0.

Thus, we conclude that the third type of Niveaulines is_char-
acterlzed by |v|> 1.
Upon usmg Eq (3), we determme v accordmg to each f (a)> 0.

Doing this we obtain the set of positive solutions of Eq. (1) related to

this type. Another set of f (x) is induced by selecting those leading to
a family of convex functions w(z). The intersection of these two sets is
then to be determined.

(e )
(==
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3. A family of convex functions

[w (- zz),

The definition of the differential invariant « is log
‘ 14+&ww

e=0, + 1, w(z)isregalar in | z| < | with nonvanishing derivative.
Corresponding fo eaeh positive solution of Eq. (1), the curvature
ke’: of the boundary of w (| z| < 1) is defined and bounded from

below as follows [1] :

_ 14 eww w' o ww'
k—_WRe{l+z(—w' —28————“)}

€ _
14 & ww
— lim 1 = d1a
[w ] (1 = z2)
.
z k,
where ,
k=1im1—#°i as a-> —00, forl
e
_ _,48
dx o -
x=0 with x =e g=++f
g=1

It is clear that all w (z) for which k* = O represent a family of convex
functions.

~ Furthermore, estimations of | w(2) | , for each f () >0, are useful
to obtain examples of convex functions w (z). Thus, note that the
inequality f(2) 2 91 « can be written in the form

o
1-r da 1+r
=" < A LN
e 157 2 ) Vrm =18 T-7
a B
and integrating we have an estimation for «, corresponding to each

positive solution f («) for Eq. (1).
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o , _ ‘ .
Substituting le = R from the definition of «, and integ-

ré _
14 ¢gww

w(z) — w(0)
1 +ew(z)w(0)

| , where

rating again to obtain an estimation for |

the integration is cartied out along the shortest distance between -
0, r = | z | and its image in the w-plane. Without loss of gznerality, :

let w(0) = 0 and then we get an estimation for | w (z) | , say _
Ri(D g [w@]| £ R (), e ©)

where R; (r) and Rg (r) depend on the selected f («).

4. Results ‘

For each positive solution f () of Eq. (1) [6], we calculate k* .
Then, we derive that class of f («) leading to positive k* (i.e. a family
of convex functions is induced). From this class, by using the approach
discussed in section 1 we determine all f (x) Which, nioreover, are in
corresponence with the third type of Nivzaulines. These calculations
yield the following solutions which are represented parametrically

x=¢",g=4+1):
I. €= 0

) x=a sinh (a(t4+b)). et, g=cosh (a(t+ b))
- x. e¢,a>0,£1;tbeR

QD g2=Cx 41
' CeR™

II. g= 41

| _sinh (@(t 4 b))
@ x = a cosh ¢ ’

-x. sin'h:t, a>0, # 1,be R, te R

4 g2t=14Cx — x2
CegR™
III. g==1

' _t4 b i -
(S)X—W, g—_l-fx.cosht
"beR, te Rt

g = cosh (a (t_+'b) ).
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- sint
(6)x—-T_'—_—B—, g=cosh{—x
beR, te Rt

7 g2=1+Cx + x2
CegR~

Now, we are in a position to formulate the following theorem
Theorem.
In co'rreSpoynvdence with each positive solution of the nonlinear
differential equation
= ff =30 =2f+ 3L f+ 22 =0,

2u

where L=—I—‘se ; €=0, 4 1, we have

i. A family of convex functions w(z), defined in |z | < 1, if
L AVI®
de*
ii. The Niveaulines « ==const., which are solutions of 8;a=L («)
with 81 « = f(«) are the concentric circles |z | =r < I if

| L@ _ dvf)
f (@ da
These conditions are satisfied, simultaneously, by the above seven
types of f (a).

Related to some f (&) of above types, e.g. (1) and (2), we obtain
examples of convex functions w (z) as follows :

By evaluating Ry (r) and Rz (r) in inequality (5), we obtain
interval estimations for | w (z) | . The majorant functions, where the
inequalities reduce to equalities, represent the desired functions w(z) ;
they are respectively :

w(z) = A1( L -I-) and w(z) = A {(%*—H_ nz )I/a— I}

I —mz ] I+ z/n ?
where Ay, Az, I, m and n are constants ; by the second function
Riemann surface is considered [1].

Lastly, the soluiions (3) U (4) and (3), (4) which are represented
by closed curves are depicted graphically. This is of particular interest
since Eq. 1 is nonlinear.

| > 1.
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(3)

(3) u{a)
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Abstract

Consxdermg hyperbolic metric, some famxlxes of analytic functlons are
defined and an interval for a differential invariant is estimated.* For one Tamily,
Bloch constant is evaluated and for another, Julia theorem together with an

obtained theorem are used t6 get a covering theorem.
Introduction

In the unit disk of the z-plane Dz ={zlzz< 1 }, suppose that
F denotes the family of all holomorphic functions w(z) which have
normalized power series development w (z) = z + zoo Cyzv. In the

z-and w- plane let us consider the hyperbohc metric Wthh is deﬁned
through : i

de,.Z.,,-—v-_———,‘—iz—(j-—z———,and dSZ-=M—- T
[ - w -
(1-1z2z)2 (1—- ww)d

Hence, we are concerned with hyperbolic geometry, where any point _is
represented by dual number [16]. The hyperbolic geometry is'char~
acterized by the fact that the sum of the angles in.a triangle is less than

= and is obtained from the euclidean geometry by replacing the fifth

— .
IR I TN BT T

a3
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Hilbert’s axiom by the statement “through any point notlying em a
line there are at least two parallel lines to it [9].  ¥he longth of an
arc of the curve z (#) in the considered geemetry is given by -

t ,
J EREAU I—dt.

bz z
For any unimodular bounded function w(z) € F one can show that
the following function, ¢ (§), belongs also to F [3] :

[ i0 )
W»<———————~—~—z‘+e" C )-—w(z)
(l—wi) —i8 1+z¢7 19
() = ———— ¢ - - 0
(l-zz)w' l—w(z) w (ii_e_i_)
L 1+ z'e.'}"eg )

_wherceaR andzCaD,g.l ,
Fhis follows by applying the hyperbohc monom,s, ,
Let us now consider the following differential invariangs : &

[w | (1-z2z)

Ba . -'—-_dSw/dSz:
1—ww
y 1= 8i1a=(1 —;E)Zae;a;
=pB (say),
T where B = (l—z;) oz -
For u = 8] o — f (o), where f(x)e Ce isto be obtained. Ca,lculatlon
of Sau: = (1~ zz)uzz yields :
S u = 117['8‘“ F S = ) 81 (o 1)+ 81 (3, @)} ]

*®
+ Dyu+Dy ,
where

Di= - /"4 4% - 2

(*) 81 (a, w) = 81 (u, @) = (1=2Z)? «_u is the mixed Beltrami

operator.
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and

Do=—ff"+(f"+ 1)(f +2)=3f’ & +4(f-1)e

—2f+2e4 .

We are now in a posmon to get an inequality, which" is obtamed
from Peschl’s principle [10]. It represents one of the fundamental
tools in this article. The next section is devoted to this aim.

1. Principle and inequality of Peschl.
U<1ng the prewous notations and deﬁnltlons suppose that :
I w(z) a F ‘ / ‘
2. f((l,)\)SC2 and f— > 0 for )\a[}.o,)q ] » & & (= 00, Sup «)
: D

Z";""

3. f(a, ) satisfics, simultaneously, Do = 0 aud D; # 0.
4. u(z,z;n) < OonzZ=1and u(z,z;n)<0inzz < 1.

Then one obtains in z z < ‘1 the i‘nequalify u(zz ,\Xo) § 0 which
leadsto 8y« £ f (a_g)“ and this implies ‘ o
18] =V /(@ , e ()
This result is known as Peschl’s principle. Its proof is given in
[2], [3], [10] by showingthat §; a > 0. leads to a contradietion. To
get the desired lnequahty recall the definition of [5 and note that
zo, = then one has :

z. log
) Bl= ‘Izﬁzfé-«@ ~zz)| = 5 .y ra, = 4, | (for Z—re )
Tﬁhe‘ ljast' équélify tdgethéf with‘ ihequality’(l) ShoWs that’ o
...... @

lﬂl |°‘r|

It foltows from (1) and (2) :
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[ar | £ [B| £ 4/ f(a) which impiies

~2dr L k2

= = x/f(a) D
Cuven a solution f(a) > O for the nonlinear differential equation
Dy = "0 in the parametrlc representatlon a = a(f)and f= f(¢) then
mtegratlon shows '

e . da() | 1ifr |
log T = -} VEH0) dt £ Iog‘fl—_—’7 I 3

which is the aimed mequahty

Corresponding to any pOSlthC solutlon of Dy=0 [12], and applying
inequality (3) one obtains estimations for the differential invariant «

and {w (2) | [(1—=ww): = ¢ [ (1—r?) to get, by integration, an
estimate interval for | w (z) | .

Using this approach number of works, w1th interesting results and'

families of functions have been developed [2], [3], [4], [5], [11], [14].

2. - The family F and Bloch Constant

Let F denote the subclass of the famlly F whose functlons are

charactenzed by : ‘
1. ' The hyperbolic curvature, Kj , of the boundary of the image
of D, ; under w(z) & F, is lower bounded.

2. |w'} (1-zz)/ (1-ww) is upper bounded.

Now, we select one of the positive solutions of Dy = 0 which yields

" an estimation for | w (2) |, w'(z) ¢ F, whéen applying the above

method. The selected solution is given in parametric form as follpws

[12]:
Ca sinh (2 (£ + b)) _ eab - a-1
e i=x(f)= a sinh (1) a2 ¢ {143

t>»0
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Vf:i=g({)=~cosh(a(t4d))+ xcosh(r), besR”

R N SN
=7 .e "(l—a) {14+...3..
ag(0,1) U (, o)
Since inequality (3) requires that x > 0, g = 0 [3], then ¢ must be on
[fy, co], Where d. tanh (fy) = tanh (a (#% + b) ). On the other hand by
app]ymg 1nequa11ty (3) one obtams the followmg interval to the same
parameer ¢ : [%_ . tanh-1 (AR) — b, =2 . tanh-1 (A/R) = b]
i_‘_r s A tanh (a (t1 + b) [2) and £, is deterrnlnedr

through the condition w’ (0)~1 namely a. sinh (11)>—smh {a. (tH—b)) f

To avoid any contradiction between the obtained intervals of ¢, we
should have ¢ '

wheré R =

% . t'aph-l (AR) — b Sors=pi=et(+ b)
. and

2 . tanh-1 (A/R) - b Zt>rspet

_sinh(a(n=%)13)
~ sinh(@a(t1 + 1o+ 2b)[2) °

Since —thx— < 0, cajculations show that

‘ sinh { 2 tanh-1 (A /R) }
a sinh {~tanh-1 (A/R)- b}

rsh o PSPz sinh{2tanh-1(AR) . '
= = . 2 )
sinh.{ —
a mh,{ g
. . | w | ea
Hence, an estimation of 121

=T follows immedi-
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ately and integration from 0 to r yields *) :

2 _
tanh % {T tan-Y (A/R) — b} r<p
fog 'J tanh (51 2) = 1v@

tanh (t1 [ 2)
log —
f\,tanh {__ tanh-1 (AR).- b}

P2

IAIA

To determine Bloch constant of all functlons satlsfym g formula (4)
recall the following deﬁnmon SIVEIERISEI I

_ If By is the radius of the -largest one-sheeted disk lymg .on- the
Riemann surface, onto which the functions w = f (z) map the disk D
bljecnvely, then Bloch constant B, for all f (z), is deﬁned by '

** )

inf Br

/@ |

Hence, Bloch constant of the functions satisfyiﬂg the inequality

(4) is obtained by taking the limit of the L.H.S. as r - p; ;,which
gives log 4/ coth (#1/ 2).

Moreover, the li'y‘:péi-bolic’ éurvéture K/; for the ‘bduﬁ'dary of the
image of D, under any estimated function, by (4), is given by [3] :

SRECTAW SN AN LA

1—ww

(*) Note that the shortest arc from 0 to any other point

zZ = rei ¢ , ¢ €R, is along a radius. Hence the geodesws are c1rc1es
orthogonal to the unit circle ; they can be considered straight lines in
the hyperbolic geometry of the disk.

(**):Bloch constant is studied and estimated for some families of func-
tions in [6], [13], [15].
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T
="lm (1 L-‘y.);‘e:_, & srs b Py ant e i
o= = 0 [ T
zz->1 -
Since y =< f(w), it follows that Kh has, for the consxdered functlons, the
lcwer bound k, where k= 11m (l—fj e T de
x>0 S zd.e o
Sy o S TR
2z 1 r=1

) cosh(b) OE R by Glebe 0y

, _ - * RSEER T
Lastly, w10 -~ zz) D= e < ea L, o¥ =sup a. ,It,\“cgn be

1—ww , L
shown that o« * ¢ (log (sech —r) b), where T = tanh (—r) - b
We afé¢ now in a posmon to formulate the fol-lomng dlstortion

theorem to the famlly F correspondmg to the selected solutlon of
Dy=20: ’ ‘ EEEE ’
Theorem (1).

Each function w(z) e F , satlsﬁes the follqwmg
‘thinh'( {2 tanh-1 (A/R) fa 2 b 25 FEPL o TEP
(¢ (AR) [a~b)|D)’ ,w(z)l z

1' +log: S tanh(tl/2) . =
I 10 tanh({2tsanh—1x(AR)/a-—b}/2)
: 2tanh (4 / 2)
where b, A R p1 s P2 ; are deﬁned as above. . -

2. | wl(d=-zz)/( - ww) has an.upper.bound, lies.inthe intervyal
(sech 7 , eb), where © = tanh v — b.
3. The hyperbohc cirvature for theé b0un¥dary ‘of the mage of Dz ,
under w(z), z 2 cosh (b). ,
4. Bloch constant equals to log coth (£, / 2).

(f) Here, the second bran@h e, - -\/ f A where f -i-) 1 as e - 0,
is considered. e . ‘




Corollary.
It can be proved that the majorant function of the first condition
of theorem 1 ; i.e. for which the equality sign holds, does not belong

to the famlly T
3. Applying Julia Theorem to geta Covermg Theorem.

Let F c F be the family of functions, for which theorem (1)

holds in the whole unit disk D, ; this means that F is an extension of

Fon Dz

For any sequence Zy on the real axis such that w(zy) — 1, the
angular and boundary dérivatives are defined, respectlvely, as follows :

. R ; Y SRR SR
8§ =lim : | #y | and ) = lim —l—e——7~.
_V>® = lzv] v->czo<_,|2l
By applymg Julia theorem [7], [8] one obtains
3 [1-w]® 3 e gl
44/ 2 = 1_|wl2§ 24/ 20 =)

. For each w(z) ¢ F the above inequality means that the image of
1=z

the hyperbolic d;‘sk Z‘J 2;‘; , under w (2), lies in

(45285 ) : T2

* To make use of this result suppose that

: H; (r')u fw| = . Hp (r) and h1 (r) = e thA(r,)._

. 8 (1-|w]2) : : '
Since <= ™ —~——'f‘!~—)— R on_e obtains as r > 1 ;
l—e o '
2 e
(-Happ _ 8 _ (-H)r
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Using (5) this inequality reduces to
2 2
1-H, , 1-H;

Ll-wi?
Fv (=h) = I=Twt = Ty 20=h)

Following this approach together with theorem (1) one gets :
1 tanh (1=5/2) \2 | 1—w]|3
aval - fog N Tanh (n 5) 3512 Wl
. 5 gts { ( _ dtanﬁ(?;‘/’f’Z)")"i}.
\/ 2 tanh 2—ab

Hénce'thé foﬂowﬁrg covermg the&rem félans
Theorem (2)

Each Wiz e F ihaps, at’ ledst the hypetbolrc disk
1 1=z}t
I—1z]® =73 v G2\

a. domain such that . :
ayr - (e Ntmars ) 3

tan 32

for each.b ¢ R™, a € (0, 1) U [1, o] and ¢ is dbtlaii'ned from w' (0)=1.

in ] w| < 1, buectlvely’ and its image covers
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AUTOMORPHISM GROUPS OF CERTAIN

METABELIAN P-GROUPS OF MAXIMAL CLASS»
By
G. Q. ABBASI

Islamia University -
Bahawalpur

The order of the automorphism groups of metabelian of maxiﬁia_ i
class have been discussed by Miech [1970, 1978] and [1977]. However
'trhey are not too explicit. In this paper we introduce a simple method
to calculate the order of the automorphlsm groups for certain metabe-
lian p-groups of maximal class and order p*, n > 4 and prove that :

“for every divisor d of p—1 there exists ¢ metabelian p-group G

of maximal class and order p > 4 such that the order of its

automorphism group Aut (G) restrlcted on the centre Z (G) of G

is exactly 4.”’

Before any details are given background material is,

Let G be a group. The lower central series o
G21(G)=v2(G) = uveennnn. > y-1(G) 211 (G) = e
of G is defined inductively by y2(G) =[G, G] and y; (G)
= [yi-1 (G), 1i-1(G)] for ie{3, 4,..}. If v2(G):is abelian,
then G is said to be metabelian. If there exists an ‘nteger ¢
such that y; (G) = E, then G is said to be nilpotent and if ¢ is the
least posmve such integer then G is sald to have nzlpotency class
c—1. '

It is well known that a group G of order phon=4 have nllpotency
class no larger than n — 1. Groups of order p® having mlpotency c]ass
exactly n — 1 are called groups of maximal mlpotency From now
on groups of maximal nilpotency class will be called snnple groups
of maximal class.

1. References are given by the author and the date of bubiicatiéfl appears in
square brackets.
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If G is a group of maximal class having order p# , then thésu’i)-
group y1 (G) can be defined as the largest subgroup of G sucli that
[11(G), v2(G)] < va (G) ., and it exists if n > 4. The general
theory of these groupt can be fourd in Huppert [1967):
A metabelxan p-group G of mgx1mal class and ordér pi,.n>4
can be described in terms of a $&t of pardmeters
(e (@~2)a(p=1), . sa(l) By
(see for example Mxech 11978], theorem 1) with the followmg present-
' dtioh:

(1) G = < Ug, UL, e < Un-1 > wbere uo £ G but not in Y1 (G)f,
uLey1 (G) but IlOt in Y (G) and uj = [u‘ L, o] fOI‘
i = 2 3, ... ,n— 1. o
22 w (1), L
(¢4) '[111 > Ug ] u np2 unil} where 6 < oc(}t ~2),

...,a(l)Sp—lf

(3)“5;_"5—1 where 0 < B <p~-1.

@ @ow)'=ul | where 0<y<p- 1.

1 ) ( 2 ) ( P )
)y Uy g e Uj o
the that y; (G) is abelian if all «(p-2), a(p- S « (1)
are zero ; and y; (G) is non abelian if at least one of them is non zero
To achieve our result it suffices to consider a (p— 2)=a(p~-1)=
= az(2) = 0 o (l) = & either zero or 1, Thus, from now on a
metabehan p- group G of max1mal class and order p* where nx=4, 1s
rdescrlbed by the set of parameters (x, B, ) and the notatlon
G@,B, Y) is used ; that is ; ; :

G, B,y =<,u, . . Un1 > such'that

=¢ for i=2,3,......, n—1.

1)) [ Uy, Ua ] = u;_l Where « is either 0 or 1.

I ———————r— e



57

(2)u =-(3 1,(uo u1) u;{z—l where 0 < B, y<p—1.

(p) P) (P :
1 (2 \P) =efori=23, ..., n-1,

3) u, ui—l—li ui+p—1~

It is known that an isomorphism between two groups, say,

G(,B,y) and G (a,B,v) is of the form

a
ug > uh u n—l
0 o¥ 1
b
wm->ulu o e U n—1
1 2 " n-1
where 0 < », p <pand 0 < @;,b; < p-1forieg{l,....,n-1}
and je{2,3, ...c.. ,n—1}. o
Lemma 1. Every map 0 : G(a,B,y) > G («, ﬁ",‘y)/ defined
as o S
as ap—1
Uy 0 = Ug Uz «vnens ﬂn )
b, bn-1
u10 = UL Uz  eeeres Up—1

is an automorphism,

Proof. Let uy0 =v, and %0 =v; . Deﬁ‘ne, inductively,
v;= [Vii1,¥ ] for i=2,3, ...... ,n—1. It is:easy to check that
Vo 5 Vi s --eee's Vo1 satisfy all defining relations of G («, 8, v) ; and
Ker 0 == E. Hence 0 is an automorphism of G (&, B, v).

Thus for A= 1= p and a; = 0 p2"—4 autcmorphlsms are ﬁxed

for each G (a B, Y)
- To calculate more automorphlsms of these groups We con51der'

only the maps of the type :

U

A
uy—> U, u1 kand u1—>u1‘

where 0 <A, p<pand 0 < a; < p—-1.
It is easy to prove that :
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Lemma 2. Themap v : G («,B,7) > G (a,8,7) defined as
Uy = “o7k ™ wy =
is an isomorphism if and only if
(i) »m2up = E)\-l—al(-;—ﬁ)— 2af )\E for p=3
B + ai(y =) | otherwise |

() W2y = Bat @+ (7 - B -2 (at w?ra forp=3
Brat+(@+8) G- 8) ptherwise

L Gi) A2pa = Apla. e
; Case 1. a=0; thatisy; (G)is abelian.
In thls case total number of maps of the type yis(p— 1)2 p. FOI'P = 3
G(o, p s'Y) Y = G (0,)\"-3}"5 + al)\n-v;i (ﬁ - Y) H
X0 B w02 (B 5 1) + 902 (r — B)
Since0<a;<p-1, | , r
GO,B,7)=GC(0,x3pp,x3pup+ 2 -B))
| =GO, w3+ DB-yx3,
)‘”—5 (p, + 1) B~y an-3 4 "2 (y — B)) & e “eiebagueseninei o
GO, ™3 @—DB+yar3 A3 @=1)B+yan3+ An-2 (Y -8).
If=0=1y, then G(0,0,0)y= G (0,0, 0); thatis all (p-1)2p
1somorphisms are automorphisms for G (0,0, 0) and therefore the
order of automorphlsm group of this group is (p - I)2 p2"— .

If =y &B#0,then G (0,8,8) ¥ =G (0,3 yp, x"-wp), s0
G@©,1, l)gG(O 2, . 2GO,p-1, p—I)

that is p — 1 groups are isomorphic to each other ; and, therefore the
order of automorphism group of each of these group is (§ — 1) p2-3,
Lastly for B s ¢ there are p? = p groups déscribed by G (0, 8,.Y)
which splits up into (n — 2, p—~1) different up to isomorphism groups :
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under the action of y ; and therefore the order of automorphism
group of each of these groupis (n—2,p = 1)(p = 1) p2»~4 . Thys

Theorem 3. For p > 3, there are (n — 2, p — 1) 4 2 metabe-
lian p-groups of maximal class and order p*, # > 4 with y; (G)
abelian such that the order of automorphism group of each of
n-2,p-1)is (n—~2, p—~1) (p-1) p2»—4 and the order of automor-
phism group of the other two is (p—1)2 p?%-3 and (p—1) p2n-3
respectively. :

For p = 2, the total number of maps of the type y is2: and
A= 1=y and q; iseither zero or 1. Now

GO, L.Nv=GO,y.p.

IfB=0=y, then G(0,0,0)y =G (0,0,0) and therefore the
order of automorphism group of G(0,0,0) is 22m-3
If=1=+vy,then GO,1,1)y =G (0,1,1) and therefore the
order of automorphism group of G@O,1,1)is 22n-3,

If p=£y, then G(0,0,1) is isomorphic to G (0,1, 0) under y
and therefore the order of automorphism group of each of these group
is 22n-¢ . Thus

Thbqrefn 4. For p = 2 there are three different up to isomor-
phism metabelian 2-groups of maximal class and order 2% , n > 4

with y; (G) abelian such that the order of automorphism group of two
of them is 22%-3 ‘and the order of automorphism group of the other

one is 2274,
Case II. « = 1; that is y; (G) is non abelian. In this case

@ = -3 ; and therefore total number of maps of the type y reduces
to (p=1)p. For p > 3 and 0 < a1 < p—1 we have
GU,B, =G, 2 3up, 3uf+r20~5))
& G (1,3 (ut1) B —ya*3, %3 (u + 1) B— yA™3 4 A3 (y—P))
B veeennn verreenienines vererearen ~a
G (1,00 pB+3"3 (y = B) , An3 up 4 A%3 (y = B) + 32 (y=B)).

" For p=0=1y,G(1,0,0y=G(l,0,0), therefore, the
order of the automorphlsm group of this group is (p — 1) p3*-3 .
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ForB=vyand B#0, G{,B,B) v =G(l,Brns, B2-s),
Since 1 € B < p—1, these p ~ 1 groups split up into (2n— 6’,p -1
distinct yp to isomorphism groups and , therefore, order of the auto-
morphism group of each of these group is (2n — 6, p — 1) p¥n=3,

~ For B # y there are (p3 — p) groups described by G (1,8, )

which under the action of y split up into (n — 2, p — 1) different up
to isomorphism groups ; and, thercfore, the order of automorphism
group each of these groupis (n — 2 ,p — 1) p?»-4¢ ., Thus

" Theorem 5. For p > 3 there are 14 @n—6, p-1)
+ (n— 2, p — 1) metabelian p-groups of maximal class with v (G)
uon abelian such that the order of auromorphism group of each of the
@rn—6,p—1) group"is ‘(2n -6 ,p — 1) p28-3 | the order -of
automorphism group of each of (n—2, p— 1) group is (n—2, p— 1) ps-4;
and the vrder of automorphism- group of remaining ene is (p— 1) p2*3,

For p =3 the number of maps of the type w is 6; and
0=<a 52 implies :
G(,B, D=G(l,pn 28, w2+ rpG=B+2m+p?)=

G wWp+p@-MN+2+p,w28+u@-1
‘ +Ap - +2Q+ WA —-p) =

GLu+2p@-+2U+w,
WEHuB -+ -D+20+) A -w)

Now 0 < B, v < 2, we have

G(l OO),_G(I 0 I)EG(l 1,0;

that is the orer of the automorpht.sm group of each these grou.gs i
2.3-4 . Similarly G(1,1,1)=G1,2,)= G@,1,2) and
Gd,2,)xG(,0,2) Ci (1,2,0); and, therefore the order
of automorphism group of each of these group is 2,324 . Thus
-Thearem 6. For p.= 3 there are three different up to isomore
phism metabelian p-group of maximal class and order p’; ., n > 4 with
v1 (G) aom abelian such that the order of automorphism group of
each of these group is 2. -1,
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Now we prove our required result :

Theorem 7. For every divisord of p — 1, p > 3 there exists a
metabelian p-group G of maximal class and order p# , n = 4 with
v1 (G) non abelian and [y1(G), vz (G) ] < y4(G) such that the
order of automorphism group Aut (G) of restricted on centre Z (G)
of G is exactly d.

Proof. Take n=p + d 4 1. The group G(l,B,y) Where
B# vy, by theorem 5 has automorphism group of order
(p—-1+d,p—1)=dp»3, The automdrphism of order 4 in '
G(1,8, y) is defined as follows :

Ug ~>» ll(); l'llal L..V...'- ’ uff'fl’ o
ERETHEN u‘:uz ba ' ugfl'l-
where . Mz b mod €p), p=3"2 = 3! as d/n~-2 and
0 <a;,bj <p-1. The action of thls automorph;sm. on Z (G) is
: -1
o B 2 5 =t
u,,_l > u =, 3
n—1

which has order exactly d. Hence the order of Aut (G) restncted on:
Z (G) is exactly d.
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Abstract.
In this paper we prove that :
“‘an extra-spetial group of order p2r+l with + > [ has
r(r-1 2r-2 = o
1 O G )

(p F e By 1SR | IO PSRN (p2+ 1)
. central decompositions into non-abelian subgroups each of. order 3.

- The concept of *central decomposmons of groupsisa specxal
case of the notion of ‘‘generalized direct decompositions’ of groups
which was introduced by B.H. Neumann and H. Neumann [6].

" quick plance through literature shows that the structire theorems in-
volving the concept of central decompositions are about the groups of
prime po&er order ; of structure of extra-special p-groups and P, Hall
theorem [7] Hall-Senior-James theorem [3] & [5] ; structure of groups
of ptime power order with cyclic Frattini subgroups [1].

We start with the definition of a Central Decomposmon of a
finite: group G. :

A finite set {Hy, oot H, } of subgroups of a group G is saxd
to be a central decomposmon (c, d) of G if
Yy G=<« Hy, e ,H,,>,-
Q) [(Hi . Hil=Eforigtjin {1,2; ..cop n},
2 (3) Z(G) < H; forall § = 15 2, vy B3
, 63 :



and we write G =H; vy ......... v H, . Each H; iscalled a central

Sfactor of G. St
If such a set of subgroups of G ‘exists, then ‘G is said to be
centrally decomposable ; otherwise G is centrally indecomposable.

Note that if"‘G ‘ H1 Yo YH,, isa-<c.d. of 'G;then Z (G)=2Z(H,)

forall i=1,2,.....;, n; and it induces a’ “direct decomposition of
the factor group G/Z (G) ; thatjs,
G/Z (G) = HI/Z(HI)x..:..,‘xH,,/Z(H,,)

A cd. G=Hiy...... Y H,, of G is said to be an unrefinable c.d.
(which we write as u.c.d.) of G 1f each H is centrally indecompos-

able ; otherwise it is refinable.

A nonabelian p-group G is said to be extra-sp"e’cial’i";':

= Z(G) = ¢. (G) has order p; where. ¢ (G) is the Frattini subgroup
of G and G’ is the derived subgroup of G. g

Note that if G is extra-specral, then G / Z (G) is elementary
abelian.”

It is we]l known (see for example [21) that a non-abelian group
of order p3 is’ extra specral “and is 1somorphxc to one of the follmeg '

groups ’

M <xy,j;x1’=y” \21’~[xz] [y,ZJ—e,Z—[xy1>

e 2l i }podd

N <a,b apz/__bi’—e bt agb = qitp >

Dyg=<u,v; upz—e—-vp,v—luv~u—1>
, p_z

Q=<cd; cp’-—e c? =dr, d-lcd—,c-1> ]

Lemma 1. LetG be extra-special p-group. Then, exther G ‘has
order p3 ; or G = A y B where. A is non-abelian, subgroup of order
p?and B = G (A) is extra-special.

Proof. Let x& G\Z (G), Then there exists y e G such that
e#[x,y]l=12; and zeZ(G)." Since G'"i= Z(G) ='¢ (G) has

order p and G/Z (G) is elementary abelian, x# and y? lie in Z (G) ;
and we have a non-abelian group A = < x, y, 2> of order p3. To
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prove that G = Ay B, we only need to prove that G = AB Ciearly
AB’ < G. For the converse let [g, x] = zm & [g, y] =2z, where
0 <mn<p-l, for g G, consider

[gx—"ym x]= [2+] [.V”",x ] ‘=zm‘z"""‘v:=e,

oermor ] =[] [en] - mes

thatls c=gxnymngBand so g =c (x-"ym)-l =ca for acA.
Thus, each g ¢ G is of the form g = ca, so G < AB; and we have
G = AB.

If Bis abelian, then B = z (B) = z (G) ; and we have G = A is
a nonabelian subgroup of order p3. If B is non-abelian, then
G’ =B'=Z(B) = Z (G) has order p ; and B/Z (B) < G/Z (G) is
elementary abelian, therefore B is extra- spemal

Lemma 2. A nonabelian group of order p3 is centrally indecom-
posable 7 :
Proof Suppose contrary and let G = AyB Then one of A
and B has order p? and so Z (A) = Z (B) Z (G) has order p2
contradlctlon - A :

Theorem 3. An extra- special p-group G has a u.c.d. into non-
abelian subgroups each of order p3 ; and, therefore, has order p2r+1
with r = 1. ' T

Proof. Follows by induction on lemmal ; ; and by lemma 2.

Now we prove the following result which plays a significant role 1n
determining the total number of u.c.d.s of extra-special group of order
p2’+1 with r > 1, '

Lemma 4. Let G be an extra-special group of order p2'+1 with
r=1;andlet ge G\Z(G). Then H = G (g)-
Proof. Note that the total number of conjugates of g in G is

[G {H], because if gh = ghz for hy »he € G, then gh1 heot g

and, theréfore, hy hy~t ¢ H. This implies Hpy = Hhy . Further each
conjugate of g in G lies in gG’, because gh =glg,h] for heG;
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so g has.at most | G| con]ugate in G that is, we havel [G H]
< | G | =p. This implies [G: ' H] =p so H has order ¥ ,

Lemma 5. An extra-special group G of order p5 has exact]y

pz(p2+1)ucds . ‘

Proof. We note in the proof of lemma 1 that each non
commuting pair of elements in G generates a nonabelian subgroup of
order p8, Slnce Z(G) = G’ has order p, the number of elements in
G\Z(G)is p5 — p. M xis any such element, then the number of
elements which do not commute with x is ’ 3§

| G (x) | = p5 — p*, by previous lemma 4.

- To determine the total, number of u.c.dsin G, we «calcylate the
total nurnber of subgroups of order p3 in G. An arbitragy nonabelian
subgroup 43 has (p3 —p) (P® — p2) non commutmg pairs. of elements;
therefore, the number of nona_b_ehan subgroups of order p3 in G is

5 — 5 —

If G=UyVisa uc.d. of G, then each central factor of G isa
nonabelian subgroup of order p3. Moreover‘for each’ U in G'= 0 ¥V,
there is only one V¥ which is. equal to G (U). As we donot distin-
guesh between G = UyV and the G=Vy U, therefore, total

nuritber of such u.c.ds"in Gis $p2 ( p'z + 1)"—'_— ‘4—"1‘1 p2 (pZ—[-l)

Theorem 6. Let G be extra- specral group of order p2r+1 with
r = 1. Then G has exactly - -

—lf Pr( D (pore ... +.p2 + 1) (1)2'"4 + - PZ + 1)

...... ( p+1 u.c.ds.

Proof. For r = 2 the result follows from the above ‘emma For
r.= 3 we proceed as follows : : S

Call a c.d of type A if it is u.c.d ; (that is, it has three céntral
factors each of order p3) and a c.d of type B if G has two central
factors one of order p5. and the other. of order p?. Leta and b
be respectrvely, the numbers of such decomposrtrons of G I‘hen .

- 1’-,' whete - < oot Sl T sl
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¢; = number of refinements of a c.d. of type B (which is the
number of u.c.ds of G of order p5) ;
¢z = number of c.d of type B such that a given u.c.d of type A
is a refinement (which is equal to 3).
Now b is equal to the number of nonabelian subgroups of order p3
in G having order p7 ; that is,

— 7 — pé '
b= gz_gg; pz))=p4(p4+p2+ D).

Thus we have::

1
ST PP+ D2+

.+ Assume that the resultis true for r = n = 2 ; thatis, an extra-
special group of order p2n+! has exactly -

L a(m-—
nt?

q =

D) (p2*-4 4 —[- p2 + 1) ............ (P2 +1) uc.ds.

We prove that the result is true for r=n-1,

Consider an extra-special group G.of order p3 - Following the
same notation, we call a c.d of G of the type A if it is u.c.d (if it has
n 4 1 central factors each of order p3); and a c.d of the type B if it
has only two factors one of order p2n+l and the other of order p3.
Let ““a”” and “b” denote the ‘numbers of decomposrtrons of type A
and type B, respectrvely Then a = bcl /€2, where ‘

k c1 = number of. reﬁnements of a c.d. of type B (which is the
" number of u.c.ds of group of order pantl)y,
¢g = number of c.ds of type B such thata u.c.d of type A 1s a
' reﬁnement (Wthh is equal to n + 1).
Agam «p> s equal to the number of nonabehan subgroups of order
p? in G of order p2ntl ; that is,
(p¥l — p) (p2+l — p>) |

b= "= -5 ’
and we have
a1+t FD o gt ) (2 1)

This completes the proof.
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Abstract

. ‘ Parmeters mvolved ina hnear model are estnmated when both mdependent
and dependent variables in a replicatd case are subject to error. It it also assumed
that errors are normally distributed with mean zero and we discuss here two easesi
with common :a_nd dlffe_rept vai_r__lanoes_._; , .

1. Introduction.

'Variables in a regression model may‘bé' masked by Iﬁeéié‘drétirent
errors Wthh arrse from d1fferent factors or hldden sources, Nevertheless,ii
the regress1on of variables. This problem has been exammed extensrve-
ly by many authors, e. g., Kendall and Stuart (1979), Cochran (1968),
Mandansky (1959), Moran (1971), Sprent (1966) and Villegas (1961,
1964). These authors draw attention to the variety of ad hoe methods
of estimation available, including “groupmg methods and the use
of instrumental variables, cumulants, and components of variance.-

The first. detailed. apphcatlon of general methods of estimation in
the two variable linear errors-in- -variables problem is that of Lmdley :
(1947). He resolved many of the earlier uncertamtiéé and anomalies
in demonstrating the breakdown of the maximum likelihood method,
reflecting in the unidentifiability of the parameters and. the inconsis-

tency of the estimators for the linear structural, and. linear functional,
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models respectively. But this was specifically for ths unrephcated case.
Not much is written on the replicated case.

We develop the maximum llkehhood estimates for the repllcated
case. As Barnett (1970) points out, “In prmclpIe there is no reason
why the max1mum likelihood method should not be used in the reph-
cated case, apart from the’ computanonal problems of unravelhngihe
sometimes awakward ML equatlons, but the author is not aware of

any published results on this.’

2. Maximum Likelihood Estimators (Equal Vanances Case).
Consider the linéar case of two varlabIes

Xi=mi+8& . . (1)
Yg— & + €ij e (2)
& = Bo+ B (3)A

Yz bt B XA (e=f %) 121 2 kFJZ
T Gt e (4)_.
Where, . \ T
~~IN(00' ) 8,~IN(00' ) Cov(e.J,S)_O

BN )
X; and Y;; are observed values ; 1; and §; are true values and 8

and &ij are errors in observatlons Wthh are mutually mdependent
B The lxkehhood functlon for the sample observatrons is

L=11'CI T ‘”‘p[—-.z - (Yu ﬁo—élm)z] %
8\/21: N T >

i ‘— I‘ _1-* | e | E
1 1 i
M o s P [ ;K )2] = ©
J1 GV E T Laa
so the log likelihood is
) A 21 2 ) Yij - 56 - rng)?
I'= const. — § km jog _(ﬁo;)— g
b : e Mg . o
3 . b ; .
& Xi- "'lt)z I . : IRy :
p>
% =] 2 . : R (7)

s




n

© We take the derivatives of Eq. (7) w.r. to pﬁ ; (31 6; and c: and

equate to zero. These yielﬂ the following equations :

au Y éﬁ Y él’_c _ ' -~ (8)

s ZE(Yij:?)(m—ﬂ) LA TUER TR
Z ;-7 CEm -

oy = FEXKi- My = LG -R-@-DF .0

‘ (l 1)
[ 1 8 ) N B X, |
and " + Biz (ﬁ. - = Apl X; -9+ —(——-—&—
R e J € 8
) o . (12)
awmw@mmmmm@ :
. 32 Sl A B
(Y —ﬁo—-Blm)——-*;*(Xi—ﬂ'e)- e (1))
Substituting 1'q. .(13) in Eq. (11) and using ile ,
Ay 1 . - 4 - e l\ A A
e ZE (Y= Yi+Y; = fo — Brm;)2
, 2 - :
52 = L sn[(y; - Y 28X, ~ ) I
Ug—m [(Ye — )+ o X =) 1
0' Br
which yields
r Lo 1 ) e
A | = T yy/km ! 1 - - }2. J N ‘ - ) .ot (14)
: . (15)

where Tyy = ZZ (Y ~ Y‘ )2

i3
'&2 =k_1 ZZ(Y —ﬂo-—ﬁhm)’“*—*EE[Yu Y- pl("*'"”z

I e s
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and.  Aa=ofle, 09
From Eq. (12) substituting:the vaiue of: (ﬁi;—,_ ) in Eq. (10):
: 1 3 B
k:r; |Tr‘_+ﬂf\17} = ei [ BrSyy +Syy — 2615y |
L % % J O i foe %
kc o :
. -——(1+912)\)2—'512[5128 X+gYY ,261 XY] ‘ |
ST
or cz = L - [Bl XX + SYY 2@1 XY] (\17)
k1 -+";31 x), S
wherei Z (X, X)2 = SXX ; Z Y; - Y)2 = S— v :
and - Z(X p X) & - Y) = ?XS_(;' .. (18)

From Eq. (12) substltutlng the value of (11, 1) in Eq ).

10 A2
A I A R R +—1~1
L g, e
é\ _ LP g 3 JL'3 g J
& o |
ST L €, R ] J'
Substltutmg Eq (18) and Eq. (16) we obtain
A= A,X‘{ x| D)
P (B Sxg = S3¢)
Substltutmg Eq. (14) in Eq a 7)
(bt - I) (Bl + S ~ 26, Sy )
1 XY
m TYY . (29)

(1 + By N2
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Substituting Eq. (19) in Eq. (20) we get

1 (B3¢ — B1?Sx¢x) (1 Syy - S3¢)

m oYY

A 2 o A hd
Eq. (20) may be written as

A3 A2
(mSyrse Sxeg) B + (Syg Tyy —mSyy 8390 B

A 2
~ (Sgy Tyy + Mgy Syy) b+ S gy + Syy Tyy) =0
. 20)
Once the solution to (21) is obtained, we compute A from (19) and

A2 A
hence o, from (17) and cr; from (16)

3. Maximum Likelihood Estimators (Different Variances Case)

Equations (1 — 4) are the same, save that we now assume

2 2
g ~ N (0, o-si) ; 8 ~ N (0, N ); Cov (g;5,8)=0. ...(22)

Taking this log likelihood function
{ = const L 1 y 1 kl :
st — " mlog (o ) — 5klog(oy)

1 Z (Y —Bo—B1ni)? 1 v K- i)
gL [ § Rt - o p e
i i J i %

2
Take the derivative of Eq. (23) w.r.t. 8o, 81, MN; » Oy > and S ;

and equate to zero. This yields the following equations

Bo=V-fin=V-pX | . (24)
. EE - D@m=
fr=22(=-NM—-m _ ! o (25)

X (ﬁe -n2 pX (‘;\]i - )2

1
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Ao A 1 : “ S I\ A P friE
o = L s -mp= 1 EK-X) - @~ Q6
) k7 .k )
"2 1 E Y . 9
S.; 71( 7 — Bo— Bimy)
1 — — A A A
= ? (Yijv— Y + Y = o f@lﬂi)z @7
" e . ) : ,
1 2 S~ LT X - X
and { A2 +-~§}"2 Il (M —m) = _Elg' (Y = Y). + — & )
c G c 0'
L T8 el ] g 3
| ) v (28)
After substituting Eq. (24) into Eq. (28) we get
A2 . o
— A A A G;g i L I\ ’ ' ; o
Fi=Bo—f@m) = 57y Ki=m). . 9
. . Bl 08 M " A H . i s L

Substltutlng Eq. (28) into Eq (25) we get '
31

21}[.61 oy Vi = Y2+ S i X; — X) Y _:.Y)]‘[.“s ;T Brog)

Z [&120’48 Yi — Yy +G (X — X)2 + 2{310* c (Y Y)(X -X)]

i
o . (30)
Su_bstituting Eq. (28) into Eq. (26) we obtain
I\ 2 4
- A_z_ 1 03_, A, S
“~;£ (B K =X) = (¥ nw(m
z;-:w + Br 20' )2 S L _
Substituting Eqgs. (28) (29) and (24) into,Eq-. enH .
L it .
Ty K -X) - - D
%% i T Tm + r Azm'\—z;.—‘ e

. 8.1. 8 0_8
I+ —3
(8}

.'
L e

\___--.._
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where Ty; = Z (Y~ Y; )2
J

Further simplification of these results does not appear to be pos-
sible and we must find the ML estimators by iterative solution from
Eqs. (30-32) starting with the results for the equal variances case and
substituting into Eq. (32), then (30) and (31) in that order. The
interations continue until the solution converges.

4. Variance-Covariance Matrix of M.L. Estimates (Common Vari-
ance Case).

The variances-covariances of M.L.E. of B¢, Pz, oz and 0'3 can

be obtained as :

" Var (éo) = éi; | mk ]
Var (1) = 0% [ mk (6% ~ o )
) ) } : e (34)
Var (cz )= 2048 | mk
Var(cv;)=2é§/k E J

The estimates are consistent as k - o0 .

5. Variance-Covariance Matrix of M.L. Estimates (Unequal Var
ance Case).

The variances-covariances of the paramaters can easily be found as

-

Var (3 )= (D-B) | (AD—B?)
Var (&) = (A~B) / (AD-BY) | . (35)

"o 4
Var (cel.)——- Zcei/ m

A2 A2
Var (o5 )= 20'8 [k
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where A = Z(mlg“’.); B=m>:[(xc—‘>‘<)/3‘~".1
i €1 i ei
and D = m E.-[,(é ‘—G )/c
1

. A o e . A . . . .
Note : Gi, ; is consistent if m » oo and cg is consistent if k - oo.

6. Method of Least Squires.

We now consider how the approach from LS regression afalysis
breaks down when applied to the estimation of Lo and.p; in Eq. (4)
even if the errors 8; and g;; are assumed to be mutually independent
with constant variances, and also to be independent of the true vatues
n; and §;. The application of least squares to Eq. (4) to get estimates
of fg and B; is not valid, since the factor (g — P1 8;) in Eq. (4) is
not independent of X; .. The covariance of X; and (g;j — 81 8;) is

Cov [X;,{(&;j — B18;) 1 = — By Var (&) <. (36)

using Eq. (%) '

Since the covariance does not vanish, there is a dependence between
error term and explanatory variables in Eq. «(4).

Due to this dependence the application of LS to Eq. (4) would
yield biased estimates of the Bo and B: . Furthermore the bias will
not disappear as the sample size becomes mﬁmtely Iarge ;"so'tlie LS
estimates are inconsistent. The bias in the replicated case is the same
as in the unreplicated case, as we now show;

6.1. Inconsistency of L.S. Estimators.

The least square estlmatms of B1 on the basis of _] observatlons in

k samples is

EX-R V-1 mEX-XE - V)

B, == = e — .3
(X - X2 = X Xr
i
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Taking limits in probability as follows :

p lim
k_m[ 5 (X; - %) (¥, —Y)]
= plim — E(m M) @Bo+ Bimi+ & )
—plim [ 04 BTy — M+ X5 (=) |
—mlim(Em -k = el - (38)
lim 1
plim 1 5 (K- X)Z—p lim k FEm D+ 0 =D =] +<:i1
‘ @
S_?bstifutjng Eqs.: (38-39) i_hto,(37) we obtain
S A .
Do B = B10% @+ 03)
or
p lim pl 31(1—0 /0' Y . .. (40)
k>0
Thus p lim B1* % B

o> o0 ,“but is'in fact dn under estimate of By .

The asymptotic mean square errors for the ML and OLS esti-
mators are as follows

MSE (ML) = 0' /mk (o - og ) ... (41)
and

MSE (OLS)= (1 6% /% 3 + 6} [ mk &%, ... (42)
Approx1mately, MSE (MLE) may be greater than MSE (OLSE) if

°s | mk ‘(o‘x. —’63_ ) > @1.68 lcx,+ Gg | mk Ux‘
or

Ay ") Moy L Mg Ay "
o, | mk (Gx — Oy ) > (31 oy /cx o 43y
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) > 4

. A 3

1f|{51]<cr8/cr§(1———cyz )
x

i.e., errors-in-variables are relatively small or if mk is small.

We undertake an empirical sfudy to compare the performance of
the ML, OLS and WLS estimators for both common and different
varia o ces, ' ‘

7. Empirical Results and Conclusion.
For this empirical investigation, the model of Jacquez, et al. (1968)
is considered in which « and § are assumed to be equal to one. The

- values of K are chosen to be 4, and 10 and the corresponding chosen
values for X; are (I, 4,7, 10), and (1,2, 3,4, 5, 6, 7, 8,9, 10) respec-
tively. The values of m considered are 4 and 10. We generated 200
samples for each set of (m, k). For each (m, k) pair, three ¢ patterns
are chosen ;

m Gei =1; oy = 1, and N =2

2 cei=(%Xi-}-l)/3;08=land 08=2

A3 c£'=(Xi+8)/9;0'8=1and 0'8=2

1
Computations were carried out on the IBM 3033 at the Pennsyl-
vania State University, USA.
The study presented in Tables (1) and (2) shows that : (i) The ML

estimator of B has very little bias in comparison to WLS and OLS but
has high MSE becausc of high variability in the errors in the X variables

when small samples are used. (ii) When cg is small, then the OLS

estimates have a small bias as expected. However, when o,i\ is large,

the MSE for OLS is still smaller than that for ML uhless the number

of replications is increased. (iii)' When G; is large and large size

samples with a large number of replicates are used, ML gives better
estimates, :
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ESTIMATING THE PARAMETERS OF BURR
POPULATIONS FROM SOME ORDERED STATISTICS
\ By o
MUNIR AHMAD
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L -Abstract.
We consider the problem of estimating the parameters of the Burr distri-

bution using logarithms or some order statistics. We eliminate one of the para-

meters by finding the ratio of the logarithm of some ordéred statistics and

‘estimate the second parameter. ~Asymptotic variances and covariances of the
estnmators are obtained and an efficiency of the estimator of the parameter relative

»to ‘its maximum likelihood estimate when ‘one’ of the parameters is known, is
_obtained.- A table is constructed for computational purposes. An example is

gnven to 111ustrate the apphcatlon of the estimating equatlon

B Wy Introductlon ;

« In recent years considerable interest has been shown in the range,
median, and other order statistics for solution of various problems, e.g.
in flood and drought prediction, engineering (particularly electrical
engineering), etc. Although these statistics are inefficient, they are

. very'simple to use. In this paper a simple method of estimating Burr
parameters is given together with an example illustrating the results. -

2. Estimation of Parameters.
Burr (1942) introduced a family of dlstrlbutlons given by

F=1-04+2)"P 220 48>0 ' ..
1980 AMS Subject

Key Words : Burr distribution, order statistics, quantiles.

Classifications, Primary 62-F 10,
: 83
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Burr (1968), Burr and Cislak (1968), Hatke (1949), Khaliq (1993).and
Austin (1973) discuss (1). The probability function is unimedal if
« > 1 and L-shaped if « < 1. Since it is used in many fields, pro-
blems of estimations of the Burr parameters are invariably encountered,
and in particular quick and simple methods should -be gvailable for
enginggring problems. ,

Let X < X, . be the order statistics for a sample

m =% ==Xy

of size n of a random variable X having distribution function (1). The
g-quantile of X js defined by

F (xg, ) = ¢ S ‘ I 4]
where xq is the g-th quantile and the equation (2) implies that 100 g
percent of all possible values of the random variable X lie below. x4 dnd
- @:is a:set of unknown parameiers. -

‘ Estlmatjon basedv:nn two drdered ‘statistics ;
Supp@se Ahat the +- th observation from a sample of size # ia ahosen
SP that ltS Breportlon E IS equal to.or just greater than g, With X ")

replacmg xq, () may then serve as an estnmatmg equatlon for the
parameter 0, and ‘the order g may be chosen to minimize the variance
of the corresponding estimator. If 6 = (6, ,02, ... ,0¢), then k
-~yalues:of g and.the corresponding sample approximations.of xg give a
v set of. kslmultaneous equations of the form v

F 0) =
(x( "’ ) q |
for determining the k estimators of the parameter companents, §; ,
=12,k S :
Let
F (x!l; OL, ﬁ) =49

where FB (x ;. B)is glyen at (1)

Solving for x; , we have

xg=[(1 =g 1/B_yt/e
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Singe there are two parameters « and B, two estimating equations are
required in terms of sample order statistics

S 1B e
=L@ -ay™ HEogtle -

: ~1/B_ dja | :
Xy = L= ) LB _qylfe e (4

~ where %and %— are, r;espectiv-eiy equglto or just greater than ¢,

~and gz and r < 5. We eliminate '« to obtain an estimating equation
for B. & :

P Xe e q)”

In X(s) -

Ue_yy

_ e (5
| mpa-g P |

.. The ¢stimating Zequation‘for o can be either (3) or (4) or a com-
Abmatlon of (3) apd.(4). Note that X ) and X( %) are random vari-
» ables fora glven order g. Let Y, =In X( " Because In X( )

monotone function of X( ~ 'then In X( )'— (In X)( )= Y, holds.

2.2. Variance of éi‘n;m‘ two ordered statistics.
When X has a distribution function (1), the distribution function
on is gnfen by
U R =1-0+e)"F cwey<con. .. ()

In determination of var ( é‘ ), we will need the following asympto-
tic joint distribution of sample quantiles.

If we consider y; (i = 1,2, ... , n) to be a random sample from
ghe continuous distribution with distribution-fungtion given in (6); she
asymptotic joint distribution of the .sample quantiles [see David
(1981) ]

[4 8, - By ) A B (Y5 = B )L, Yy gYs oo (D
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" {s bivariate normal with zero mean and variance-covariance matrix

gi (1 — gj) JSP R =12 ..@)

C..'= L]
4 p(qu ) P(qu)

where p (uq) is defined in David (1981).
Consider the estimating equation for B,

e Mmpa-g oy me 0
Js S . Ing
In[(-g)” 1P 1]
. .where ;= (1-4g:) —~l /B 1, i=1,2 L « (10)
Taking logarithmic differentiation of (9), we have ‘
1 - _l_~ — _ o
> Oyr —. e dys=209 (Inln t17 Inln#)= m
- , ‘ P .
. P ; . , T Inty (ll)
Taking differentiation of (10), we obtain
-1 , ~
a=0-4¢)""Pnq —,Qi)( : ) 9B,
o , . Bt _

=—-—(U-9g) I/Bln[(l—qi_) I/Blaﬁ 12)
6 ,
== T+ 1) In (4 + 1) a8.
- . B B 3 :
: Squarmg and taking expectatlon of both 51des of (12), we obtam the
variances and covariance of #; and 7 : o

L Gt rn s+ )2 Var )
A

Var (t") ;
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Cov (t;, 1) =B @1d1;)

- ;z (6 +1) @ +1) 10 1) In (5-+1) Var).
From equation (8), we havé
o ) & 0= ). s
PO =) @
q1
V'"l'; = 42 (r —42)
at (¥s) W (14)
L (T =g) ‘
Cov (3r, ¥s) = s e (15)
ARV
Squaring and taking éxpeetatfon of both sides of (11), we obtain
...... ;!.‘....fVar Or) + 21 Var (ys) — 7 : Cov (¥r s ¥5)
Yar yqt‘ g1 g2
_ Yar (1) + Yar (t2) - Cov(t1, t2)
- (tiIn £ )2 (2 In 1y )2 I 5 ts- (In tr),(ln tz).
... (16)
C A e T ‘
| = Ve @),
where ‘
A =1 el R DPE + [+l e
o () In 1,:)2 (i)

_ 20Dt HiiG £ D) e (r:a:»-+~i}*]‘;
ty iyl 10 by B

Also we know from (6) that

Yy = 2 lins . (7

-1
= 1 . ) o il R
}’q2 o n t ('189

Thus

f(iv’ )= exp(d*y;_. ’ — el txﬁ tu‘..; - = 1‘2” .
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Using the values at (13), (14), (15), (17) and (18) and subst:tutmg in
(16), we obtain, after simplifications,

g 2p+2
_ pz[ o2 ql(l—qul)
Var ((3) wA L e 1a2 BT 1%
4 a? g2 (1 — g2 )-(t2 + 1)2f5+2 ,;
(Int2)2 RSN LR - L :
o ad-—a e +1)B+1]
In¢ In te : a*ﬁz t by
12
_ ! (0Pt
= 9A {.QI ¢ —41)‘{‘W
o B+17¢2
(t+1)
+qz(1—q ) L WJ‘
oy gt 1 BTN
- qu (1 = g2) G+ (22 +1) ! o (19)

tite In t; In ¢ J
We assumed E (8) = ﬁ‘and other similar expé'ct'ﬁtibns:.:’

A numerical evaluation of Var (8) in (19) has been conducted on
IBM 370/- for various values of g;, g; and g and has shown that the

efficiency of the estimator given by. ﬁ [ n[Var ()] ,Whﬁg'eihp‘ ;s the
maximum likelihood estimator of B ranges between 50.49 and
111:88% and is 101.96% for g1 =:0.60, g2 = 0.95 when g = 2 and
varies between 62.169%, and 99.49, for 8 < 5.
The equation
In (t;)
In (tz )

is used. to estimate B.

fo =

3. Estimation based on three ordered statistics.

An_estimate based on' 3 suitably selected ordered statistics may
have small variance than an estimate based on two ordered statistics.
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On: may use ratio of sample median to a quasi-range, or ratio of some
ordered statistics to a quam-rangu,‘ These statistics are selected “so as
to minimize the variance of the estimators of the parameters. Let
Yp ., pr and y; be any three ordered statistics. Theratio y, [ (ys — ¥p)
where yp < yr < s eliminates « while estimating.8.
Suppose we have

. Yro In ¢, G B
T= yomyp ~ Tnh—Inn o N e (20)

where ¢ = (1 — qi)_llﬁ -1, i=1,23.

Some Special Cases.

2
is the quasi- range and 1s ‘an estlmator of the

Ifp=iand s=n-+1-1 ZSiS[Ln],thenWi)(

(" +1-n" Y@
standard deviation in normal samples and Cadwell (1953) has shown

that W(I) is more efficient than any quasi-range for-n > 17 but that
W _,. is more efficient for » > 32 and so on. Quasi-rangespare useful

(3) FREAT
in censored samples and have some robustness against outliers. In
complete sampres, their efficiency falls off but: has Computa@jbnal and
other simplicities. The ratio T in (20) is a statistic which leads fo the
elimination of the parameter « when estimating B. If r jschosen so
that y, becomes the median, then the numerator of (}0) is an estimate,
of the median and the’ denominator is an estimate of ‘standard ‘devia-
tion. The exact and limijting distribution of the ratio T has been
studied by Birnbaum and Vineze (1973) for some values’of | pr and s,
Since the exact distribution of T was quite involved, Monte Carlo,“
estimates of these probabilities are obtained by .Tague (1969); A,
general class of related statistics is considered by Slddlqlll (1960) and
Birnbaum (1970, 1972) for many non-normal popnlatlons. R

If we consider sample median as an estimate of meah and quasi- -
range as an estimate of standard deviation, we may use “

- T, = , 'Y(median) B " . (21)
m+1 —i)’-{--y(i) , -
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and choose ¢ such that Var (f) is minimum. Alternatively, one can

use

_  Yori-0tYel
T2 Y —'Y ".7.. (22)
m+i-17 @) ;

Oii¢ can choose some other combinét‘;ioﬁs-af available: samplé observa-
~

tions such that the variance of B is thinivturt. Equation (21)-beecomes

a special case of (20), when‘ q1 = TfTr_T , g2 = _;._ and gy =1 =g

We have
| By = &—"liln‘ ta- q,)”l’(ﬂ -1,
and |

. pqs_—-: = ' ;n-{!ql;_ Le =1

Virfatices and covarianee of & and B cothe from (8). ,

3.1. Variance of estimation of & based on three.ordered statistics.
» ijppose' By is the solution of the eqhaﬁéﬁ (20). We ‘ebta;iin ,vfariif

ances-as follows : : - :

The Wgafithuiie-differentiation-of the estimating equation

Ve, .. . Int
ys—yp Inaza-Inn
is ' ' |
(c?fa - atj)
1 - 9Vs —3¥p _ dty Lty )

—_— = — - -
Yr e Vs = Ip 12"1” fa “(lntz — In 1)
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where #; = (I - q{)—'1 I8 _ 1. Squaring both sides and taking the
expectations, we have

Var (¢ 1
e L (var Op) + var () —2cor O 34) }
¥ W y_ )
qz2 qs q1 '
1
-2 - [cov (Bp , pr) — cov (¥r, ¥s) ]
yqz (y113 ' 1 ) K
_ [ Var (¢2) ( 1 2[ var (f3) . var ()
- (tzl In ¢ )2 In t3 — In 147 t2 t2
' ' ' 8 1
cov(ty,t3) 1
) tits . ta In ¢ty (lntz—-Inpy )
[ cov (1, 2) _ cov (t2, 13) ]]
5 —

where
Var (6) = 5 (6 + 1 [In 5 + 1) I var (9

Cov(ti,tj) = é? G+ 1)@ 4+DIn @ +D In (4 + 1) var (6).

Thus

n Var (é) _ E r var (yr) + var (ys)+ var (}’p )—-2cov (yﬁ, )
=& | . .
S AR
— 5 SOV (p, ¥r) — €OV Oy, ¥s) ]
Yy (y =%, ) J

. where B =*[ (z2+ Do+ 1) ]z+( _I___)z

) hl ) In t3 ~ In 147

’[{”(ts + ln(ts + 1) }2 +'{ (it i@+

13 4H

-2 (+ D@3+ DIn(g 4 1) In (13 + 1) ]
1113
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2
R tg In ta[lntg —1In't; |
[ (t1 + 1) (ta + 1) In (11 + 1) In (tz + 1)
151

il

e+ DD+ ) In £ 1) ]
I3

A lable has been constructed to estimate 8 from the equation

Inz

o = ———
S ‘0 fl{l3t3,‘—. In: Iy;

when fo is given for various values of g;, g2 and gs. A numerical
~

evaluatlon of Var (B) has been made for various values-of g1, ¢2, g3
and § and have shown that the effic rency of the estimator given by

p [n [V?r‘: (B) ]'where p is the ma,ximum likelihood estimator 8, ranges
between 66.29, and 93.19, for § < 5.

In this section; we:specially-deal with T and use ¢1 =~711 -and
gz, = %fqr thc,gstimates_,qf@. An ue_xa_{tflp‘[é is.given toe illustrate
this procedure.

;. .- For solutign(éqf_ﬁ from (21), Table 1 has been constructed for
computation of 3 for various values of ¢; and 8. The values of Ty
are given for selected values gy and B . 't is-a-decreasing function and
a linear interpolation can give a geod approximation for any inter-

~

mediary vglues For p - 0, T1 - ln 2/In (ql -1 - 1").an,d B.r»i.00,
Tl.->— 0, ‘Ifﬁ ->l T1—>0 Assuchﬁ <1 for- Tl__Oand

p>lforT1<O
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TABLE 1. VALUES OF T, FUNCTION

e

!

g 00l 01 02 05 09 2 3 5 10

Y

.01 .1508 .1435 .’1321 .0838 .0155 — 1177 —~.1928 —.2878 —.4138
.05 2354 2283 .2119 .1337 .0242 —.1800.%~.2930 - .4354 —.6245
.10 3155 .3094 .2891 .1817 .0325 —.2390 —.3877 -—.5753 —.8241
25 .6309: .6275 .5959 .3712 0653 — 4723 —.7638 —1.1308 —1.6179

Table 1 can be usdd for ‘a;ny #<nld If n= 100 and r = 4, then
g1 =4/101 =0.04. Ifn = 70 and r = 12 then q=12]71 =0.17

for which a'double interpolation ‘gives a valie of @ .

For a given: value-of '3, « can best be estimated from the equa-
tion using the median function y (m),

Y 1B
o g = @A =By o oy .
¢ )1 iy
The asymptotic variances and covariance of g and « (writing

herejgfter », for y(r) and x, for x(r) ), up'to' order n—"I , have the

forms (see Kendall and Stuart [9, p. 253] )

_Va,r»gg) = afzyf(t)‘,
; .,yar (:)____ ‘0;2 _[b:f";\/:ar ('[;) + :(_;]’m xm)-2 var cxm) | ;
- 2bm Om #) €OV B, xw)]

Cov () B) = = albu var ®) + On xum) " coV (8, %) I
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where :
V(t) =y var Um) + s = yr )2 var (s - ye) = 070 (s~ o) 2

var (Vm » ¥s) + 2070 (Fs = e )™t cOV (Um Ir)

Cov (8, 3m) = Q0 X Y [V () = O = )2

var (s — ¥r) + y, var (ym) 1,

@a=by ~by—bn,s=n—r+1,a=R"P_1,a -

==

=a-r) By,

aw =2 _ 1, b = [Batn (@) ) 10 (@ + D 0@ + D),
bs =B asln (ar | as) 1 (as + 1): In (@ + I), and

bm= (B am In am )1 (am + 1) In (am + 1).
Var (x ) ) and cov (x(u) , x(v) ) may be approximated by the formulae

(
(Kendall and Stuart [9, p. 253]). The asymptotic variance of the

maximum likelihood estimate, é for a given value of « is §2/n. The
efficiency of g for a given value of '« compared to ,{\3 is@2/aVE. .

3. Example.

To illustrate the method, a random sample of size 100 is drawn
from the Burr distribution with =1 a=1 Using g=1/4 the
values of x(n/4) = X, x(m) and x (3n/44-1) = x5 are 0.186, 0.860

and 2.321 respectively. Then y, = — 1.68201, y(m) = — 0.14041,

ya = 0.84200. For g; = 0.25, ¢ = — 0,05563 and the value of B
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from table 1is g = 1.091, and from (5), « =0.884. For known o =1,

the maximum likelihood estimate of 8 = 1.1023.

Estimates of the asymptotic variahce and covariance, as given by
equations at (6), are obtained by replacing the parameters by its
corresponding samples values. In the example, we find a; = 2.56322,
a; = 0.30172,  am = 0.88765, b; = 0.15704, by = 0.48737,

by = — 10,3095, @ = 10.06062 var (x) = 0.477; cov (a, fs-)=—o 409

and n var (8) = 1.62263 for all values of «. The aSymptotlc vari-
ahce of the maxuﬂtﬁﬁ‘hkelxlrood estitiate of g is 0 201215 for' @ = 1.

The efficiency of ﬁ comes to about 74.86%;-.:
4. KAckrowlediement'
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tables for this paper. The author is indebted to U P.M. for providing

excellent facilities for research.




96:

REFERENCES

. Austin, J.A. Jr. (1973). Control chart constants for largeét and
* smallest in sampling from a normal distribution using the gener-
alized Burr dlStI'lbUth[l Technometrtcs 15, 931 933

G

. Blrnbaum,uZ W (1970) On astatlstlc 51m11ar to studentst

Non-parametric techniques in statistical znference pp 427 433,

Cambridge Univ. Press. N : B i
Birnbaum, Z.W. (1972). On severely censored samples, , Proc)
NATO Conference on Rclzabzlzty, Testmg and Relzabzlzty Evalua-
tion, ed. by Ernest M. ‘Schener, pp. VI B, I-11. Bure%iu of
Business Serwces & Research, Cahforma State Umvcrsxty, North-'
ridge CA 91324. o DR
Birnbaum, S.W. and Vincze, 1. (1973). Lim‘itingwcli‘fstril’)vl‘ltioris
of statistics similar to student’s t. Ann. Statist. 1, 958-963.

Burr, I.W. (1942). Cumulative frequency functions. Ann. Math.
Statist. 13, 215-232.

Burr, I.W. (1968). On a general system of distribution 11I. The
sample range. J. Amer. Statist. Assoc. 63, 636-643,

Burr, I.W. and Cislak, P.J. (1963). On a general system of
distributions. Its curve-shape characteristics-II. The sample
median. J. Amer. Statist. Assoc. 63, 627-635,

Cadweli, J.H. (1953). The distribution of quasi-ranges in
samples from a normal population. Arnals of Math. Statist,
Vol. 24, 603-613.

David, H.A. (1981). Order statistics. Second Edition. John
Wiley and Sons, N.Y., New York, U.S.A.




10.

11.

12.

13.

14.

97

Hatke, M.A. (1949). A certain cumulative probability function.
Ann. Math. Statist. 20, 461-463.

Kendall, M.G. and Stuart, A. (1977). The Advaucea Theory of
Statistics Vol. 1. Griffin, London.

Khaliq, A. (1973). Estimation of parameters in Burr distri-
bution. Unpublished M. Phil. thesis, University of Karachi,
Pakistan.

Siddiqui, M.M. (1960). Distribution of quantities in samples
from a bivariate population. J. Res. of the National Bureau of
Standards, V-64-B, 145-150.

Tague, J. (1969). Monte Carlo tables for the s-statistic.
Memorial University of New Foundland, Unpublished.



T



fhe Punjab University
Journal of Mathematics,
Vol, XVII—XVIII (1934-85) pp. 99-118.

Tlepilalts o1k

EXPLICIT 4 CYCLIC 4-STEP METHOD OF ORDER 5
TO SOLVE THE INITIAL VALUE PROBLEMS F OR N

' ORDINARY DIFFERENTIAL EQUATIONS A

By
R. ANsoRg}E“
Inst. F. Angew. Mathematik o
Co Der Universitat Hamburg,

Bundesstr, 55, 2000 ,Hamburg .13, West, Germany..

and
NAZIR A MIR

Department of. Mathematlcs
Bahauddm Zaka‘n_yalUm_ver:slty Loy
Multan (Pakistan), .

Apstract

In 1956 Dahlqmst [5] showed that stable linear k-step methods cannot
exceed a certain cons:stency order. In 1971 Donelson and Hansen, [6] introduced
;,cychc methods which violate this restriction. Ansorge and Taubert [1] showed

that strongly-stable cyclic methods can be applied to smooth as well as non-
¢ smooth problems, where the question of order is not 1mportant

In this paper, the question of higher order of the cyclic strongly‘"s:table
methods for smooth problems is studled First of all cons:stency conditions for
{ n cyclic k-step methods in general for arbltrary order q = 1 are algebraically
formulated and then 4 cyclic 4-step strongly stable methods of order 5 are con-
structed. Some numerical test cases are given. The results of these tests show
unfavourable rounds off-error propagation. This unfavourable behaviour is then
studied. As a result it seems that explicit 4 cyclic‘4 -step methods of order
5 inspite of strong stability are of no use for practical apphcatlons, even lf smooth
problems are under con51derat10n. E - : ;

99
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Introduction :
Let us consider the initial valué-problem
] =15 ' :
'_fi‘:"y(O)_.yo,O<t<T R CD)
For the‘nAumencal approx1mate solutlon to the 1n1t1al va]ue problem -

(1.1) m cyclic k-step methods are to be considered. These methods
are generalization of the 11near k -step methods of the type

= oay Yury, + h Zk bv f(tn+v » ey )=0 (1.2)
v=0 Coy=0 -
; s S (r=0,1,2,..)
ay, by e IR 4§ % 0°and }ag| + 8] > 0,
Dahlquist [5] has shown that a s;éible, explicit k-step method (bg = 0)
of the form (1.2) has thé maximal order g = k, a stable, implicit
k-step method (b +# '0)'has the maiumal ofder g = k + 2, when & is
odd and ¢ = k :'1;: when k is even. ,
To avoid this restriction of’ “maXimal order” m cyclic k-step
methods have been introduced (compare the example given by Donel-
son and Hansen [6] ).

m(n+1) +”””"(t ’ nr(n+1) n)
P . (13)
IR , : . (n__012 )

cwith - Ypeker ) ‘
: ‘ Co R O . '* ; . R S A I
Zp= : J’l’+k-2 ) [l E_R‘k;.” ) o (p = oa_ 1’ 2?:-"’)
ORI ' i
lyéi—“‘w‘"k(}rﬁn‘:’k”'w’. m(n+1) ‘ ) p"(t ‘ h)z (n+1)

+Bi(,, D Z,, .
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Where By, B; are formal matrices, the elements of which are for every
fixed ¢ and every fixed £ non-linear mappings from IR into IR. The
linear k-step method (1.2) is a special case of (1.3), namely for m =1,
when in addition to equation (1.2) also the k—1 trivial equations

_ Yntk-1 = Vn+k-1

Ynik-2 = Yn+k-2

Yo+l = Vaus1

are considered (Urabe [7] ). . We then obtain

[ 1 [ —a-1 =2
Ynik ar “ak .
Yn+k-1 1 0

C Vrv1  J . 0 0

—bg 0
ag
0 0
+ h
Lo 0
== —bt-z
ay. . ag
oo ‘.0‘ 50,
4 h
L 0 0 .

ak
0

0J

—by h
ak

0

o )

—dn -
ako ]r Yntk-1
0 Vntk-2

14
0 J L Vn J

[ S @ask s Yntk)

S (nik-15 Ynsk-1)

S (i1 Vas1)
[ S (tnk-1, Ynsk-1)

S (ntk—2s Vark~2)

LS (s on)

J

-

J
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ie.
Zpir = A Zy+h (Bo (tn, b)) Zny1 + B1 (ny B).Z2 )5
where , o
[ —:dk—l -.ak_z | -al —-——“—,aow L
ay ax ap a T
1 0 0 0
A= |

0 1 0 0
0 : 0 1 . .;10‘ 2

Bo (_fn ) Zuy1 = By

By (ts, k) zo = B1

r S (task=1 5 Ynsk-1) )

r f(tq+k‘: Yark) )

S (tark=1 5 Vnrk-1)

L f.(tn-i.-l s Yni1) J

f (tnik-2 s nek-2)

L f (t" E] yﬂ ) J
r_
with b o ]
; ak .
By = 0 0
| o -
L 0 0 .. 0 J (kX k matrices)
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{ —bg-1  —bg ~by )
]i ak ag * a
| 0 0 0
By = |
L o 0 ... 0
The generalization (1.3) can analogously be written as :
Zm 1= AZmn + mh B,
| [ syt k=1 Pm 1)+ k=17 )
S sy k=2 P m 1)+ k=2
L f(tm(n+1) ’ m(n+1))‘ J(1.4)
[ f (tmntk=1 , Ymnsk-1) )
S (tmnsk-2 s Ymn+h-2 )
- mh B,

L S Gtmn s Yn) Jo

where A, By, By are k X k matrices which are now fully occupied
(P. Albrecht {3]). The m cyclic k-step method can also be defined as

follows :

Definition 1.1.

If m linear k-step methods are applied cyclically in "a fixed order
to calculate” successively the approximate vectors Zin (=1)m)

where the initial

vector Zy is assumed to be already calculated by a

certain other method then the method is said to ba m cyclic k-step

method,
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Definition 1.2, ) ]

The method (1.4) is called explicit, when By = 0 (k x k, — zero
matrix), otherwise implicit. o
Dahlquist’s stability condition [5] for linear k-step methods (1.2),
namely that the roots of the polynomial :

p (= Ik ay v
v=0

must not lie outside the unit circle and that the roots on the unit circle
must be simpvle, is equivalent to the condition 4
‘ Jko < wyn € IN : | Ar | < kg (1.5)
(Ansorge [2] ) for any norm on IR¥., We also ﬁse (1.5) as definition
of stability in case m = 1.
Definition 1.3.
The linear m cyclic k-step m‘ethod is said to be convergent, if

LimZ, ' ( OB

n-> o y(@® L e .
n->0 A
nh->t
Ly J :
for permissible initial vector fields, where e = | - 1‘ ‘e IRk
(1)

Definition 1.4.

The method (1.4) is said to be strong- staple, when the matrix A in
addltlon to smlple eigenvalue p; = 1 possesses on]y elgenvalues Wthh
lie in the inside of the unit circle.

Convergence theorems for cyclic methods have been proved in the ‘

case of globally lipshitz- continuous rlght “hand - sides of equatlon
(1.1). Ansorge and Taubert [1] showed that in the case of non-smooth”
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problems cyclic methods can also be convergent, if they are stré_ngly
stable and the consistency conditions are weaker than the classical ones
in the case of real cyclic methods (m > 1). In this case the question
of high order is not importani (Taylor-Expansion is not possible).

In this paper, however, we shall construct explicit 4 cyclic 4-step
methods of order 5 (violating Dahlquist’s maximal order condition)
which are strongly stable (inordsr to ensure that non-smooth problems
can also be included). '

2. Algebraic consistency conditions for higher order of m cyclic

k-step methods. _ ,

Let there exist a unique solution of the initial value problerh (1.1)
and y (¢) the exact solution of (I.1). Let f tt, y) be".suﬂiciemly
smooth. We prove the following theorem.

Theorem 2.1.

The m cyclic linear k-step method (1.4), namely
Zm(n+1) = A Zp, + mh B,
r ; R
T w1y + k=1 Pm (g 1) + k=1

f(tm m4-1) + k=2 ’_ym n+1) + k—2 ).

L Tlwsy mw+n) - @D
[ f(tmn+k—l > ymn+k—1) w CoL P
f(tmn+k—2 > Vnik-2 )

-+ mh By

L S Cmn s Ymn ) J
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. With k x k matrices A, By, B, is consistent with the initial value
problem 1.1 if the tollowmg conditions hold

1) |
and (A-DNe=md-g)e,
wherer ) ‘P—Bo-'l-Bl, o
s . k_l \
k-2 R
¢ = , Iis k X k identity matrix.
.. 0

The method (\2'.'1) is of order ¢ if simultancously the following equa-
tions hold } -

(A1) c» = pm (1=@) e + zo(f)mz»—v (I (p—v) By) ¥
(p=0,1,2 .., (@23

where ﬁfe sum on the right-hand-side for p < 1 is considered to be 0
(empty sum). We define also
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[ (k=12 )
I
(k—-2)7
P = . with c0 = ¢ 2.4
17
‘ L 0
Proof :
The method (2.1) can be written as :
Zm (n+1)." Azmn — mh B, (f(tm-(n + ) +k-1"
T
J"m(n—;—I)—f—k--l)’ ""f(tm(n—f—l)’ m(n—f—I)))
T
—mh Bl (f(tmrH-k-l sSYmupk-1 ) s see s f(tmn » ymn) ) =0 (2-5)

The method (2.5) is said to be consistent with initial value pro-
blem (1.1), if for all ¢ + (m 4 k—1) h € [0, T] the inequality
Iz Ch, t 4 mh) — Az (h, £) — mh By (¥ (t + (m + k — 1) I),

y’(t+(m+k—2)ﬁ)_...,y'(t—}-mh))T—m/zBl(y’(t—f—’(k—l)h),

. ’ T
V@E+E=28), ...y ®) I <& ) (2.6)
.- hold, where ¢ is independent of all &[0, T] and € (h, yo) = 0 (h),

ie. ,
7 Lim &k yo) __ 0

h>0 h :
The method of order g if for (2.5) in particular holds L

g (h, o) = (constant) e+t ‘ 2.7

The vector z (h, t) originates from zp if the value of ¥; in the defini-
tion of zp are replaced by the unknown values of the solution y (¢) of

(2.0):
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[y @+ (k—-1)h )

t+((k-=-2h
z(h, t) = . )" 2.9)

[ y@
Applying Taylor’s expansion to z (h, t + mh) at the point (0, t) and
using (2.8), we obtain

z(h,t+mhy=y@) e+ h(c +:me) .

) ey

qfvw()mﬂ @mH—

Applylng Taylor's expansion also to the values.of y in (2.6) and then
Comparing the coeﬂiments of 1nd1v1dual powers of h on both sides,; we
get, first.of all for Ao : o ,. .
_ o Ae=e. . (210
A possesses therefore the elgenvalue p =1 w1th correspondmg eigen-
" vector e, compairing for_ L we get ‘

A-De=md-¢)e, Gy
Dahlquist’s consistency conditions for linear k-step methods are
p(l)=0 o (2.12)
and o)+ p (1)=0
with o ’ :
| pw= =t o, 0(= Xk by uy.
. p==0 v=p

'(2.10) Cottebponds to the first condition in- (2. 12) and (2. II) corres-
ponds to the 2nd, condition in (2.12). Equation (2. 10) and (2 II)
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quaranty the order one. Campa-ring the coefficients of 42 -and using
Binomial theorem, we have

(A=1) 0 = pm (I—$) o1 + pzj( 2 ) s i (o= Bo) o
V=
(2.13)
®»=0,12,..,9
3. Construction of strongly stable methods.
- In this section we shall construct explicit 4 cyclic 4- -step methods
of ordet'5. Therefore, we put By = 0 in equation (2. 14) and solve
the following problem :
We determine the 4 X 4 matrlces (1 em=k=4)A, ¢ (= By),
) that they satisfy the first 6 linear equations in (2.13) (namely for
p=0,1,..,5). Each of these equations represents 4 single equa-
tions. Therefore, we have to solve 24 equatiohs for 32 unknowns i.e.
4 systems having each 6 equations with 8 unknowns. At the same
time it is'also achiévéd that p; = 1 is an éigenvalue of A with the
corresponding eigenvérctor e. Besides that we are also at liberty to
choose the surplus unknowns in such a way that the absolute values of
the other three eigenvalues of A remain less than one (making the
method strongly stable). ; :
Adopting the above mentioned procedure, we have computed the
elements of A and o for two methods, where it was demanded that
except for u; = [ the other three elgenvalues of A are zero and are
compiled in the following tables :
Method 3.1 Table 3.1
[ aii a2 4z 4dig
az1 dsz A3 dzq

A=

asgy a3z dgs a3g

1
I
|
l
I
l

J

|

!

|

L ag1.diy a3 Qu S ,
— 795 36 —260 1020

S

“,J ~898.5057916 36  1149.8240196 —286.3182280
L—906.7070466 36 1261,5310662 —389.8240196

| —1010 36 954 21 ‘
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[ ¢11 d12 13 P1a 7’
]
| 21 Pa2 P2z d2a |
2= | l
Il $31 P32 P33 P3¢ |
U da1 Paz Pas dae
lr 90 180 285 90 ]
| 90.75 319.5 92.25 0 i
= { 74.6013344  306.60049 16 —27.1340005 |
L 72.5295037 317.3827665 -6 —=36.2647518 J

Just for control the eigenvalues of A (which must have the vaiues
1, 0, 0, 0) were computed again with a programme of computer centre
library of the university Hamburg. This yields the elgenvalues

Table 3.2
Real Part Imaginary Part -

p1 o 1.000000434 D + 00 0.0
pa : —6.9471401384 D — 03 0.0
ps : 3.4733526754 D — 03 6.3924651436 D — 03
TP 3.4733526754 D — 03 . 6.3924651436 D — 03
which inspite of round off error lie in the inside of the unit circle.

Table 3.3

Methed 3.2
[ au a2 a13 a1g )
ag1 Qg dz23 424

dasl dgz dgg dsa

—

[

[

|

L as1 042 a3 agu
( —435 360 -—908 : 984
{ —-194 360 —~342 177

|

|

L

1
i
—538.5057916 360 501.8240196  —322.3182280 |
— 546.7070466 360 613.5310662  —~425.8240196 J
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11 d12 d13 Py

o= ! P21 Po2 do3 Poy
{ $31 P32 P33 P3a
L

|

|

|
da das P43 bas J

18

f63 204

7 27.75 -4.5 11.25
= |

| 47.6013344 144.2060049 —65

l

L 45.5295057 155.3827665 —87

90 1
l
18 |
l
—27.1340005 |
|

~36.2647518 |

Again the eigenvalues of A (which must have the values 1, 0, 0, 0) were

calculated with a computer programme.

Table 3.4

Real Part
e 9.9999735527 D —01
b - 1.3647709203 D —02
ug —6.8225322390 D =03
et - 6.8225322390 D—03

Imaginary Part

0.0

0.0

1.1885533095 D=02.
1.1885533095 D~ 02

Here the eigenvalues lie again in the inside of a unit circle.

4. ‘Numerical example and ' reasoning for unfavourable round  off

error propagation.

The methods (3.1) and (3.2) were applied to the test-equatioh

’y’=qy:y0=l

qt e IR

with the solution y = ett,

A

The results show unfavourable round off error reproductiony." In-
order to give the reasoning for this unfavourable behaviour, consider a

4 cyclic, explicit, linear k-step method

24(’1_]_ ]) = Az4n -+ 4h ¢f(z4n')

4.2
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[ f (tnrk-1 > Yng-1) )
where f(zp) S (ust-2 > Yntk-2)

. ftn, Yn) J

Let z =A 24:; 445 ¢ f(;4nl) 4 é4n ‘ “4.3)

4(n+ 1)
where €4p 18 the local round of error by nth step for the method “.2),
and the symbol “a* over the vectors in (4.3) means that really
calculated vectors are considered.

Subtractlng equatlon “.2) from (4 3) we obtain :

A

e+ T
T ey

Aipply'ing't‘h(_aﬂ mean value theorem, and using the test-equation o
© we obtain with H = 4hg A @44
) 4
EICE YRS Vi
(4.5) gives recursively ;
A n A Co b -
z4n-z4n=(A+H Z) (Zo_zq)‘i‘(A—I-HQ)n 180
: -2
T A+HS)Y et (A+H
: AFHP) ey 12y T 4 o
: - (4.6)
Let = max &4 (n- 1-v) - - Equation (4.6) then reduces to
O<v<gan-1 .

A n A n
Wz, —z, I<I(A+Hg) | -z, +elA+H| -1
4n YUl zp—z I+ AT T

g = AC =% )T ()= 16))

=(A+Hg )(z —z,)te “5(4.5)"
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A
If there are no round off error at the statt i.e. z, = z, then it follows
that :

A T(A+H) | -1 -
W2y, — 2 V= e Ay 1 =1

It is now obvious that for the round off error reproduction in the
case of non-zero H not the eigenvalues of A are responsible but the
spectral radius of (A + H & ). We have considered a serjes of values
of H between-0.1 and 0.1, and the corrésponding_- spectral radii of
A 4+ H o for the methods (3.1) and (3.2) are calculated :

4.7)
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‘Method 3.1
H Spectral radius of A+ H @

—0.0 = — 100.10-3 | 167.435
—-90.108 | 157.42
— 80.10-3 146.99
—70.10-3 | 136.061
— 60108 | 124517
50108 | 112.191

- 40.10-8 98.825
— 30.10-8 83.983
— 20.10-8 66.81
- 10.10-3 48.325
0 1
10.10-3 47.576
20.10-3 56.867
30.10-3 81.655
40.10-3 94.09

50.10-3 105.014
60.10-8 114.857
70.10-3 123.877
80.10-3 132.244
90.10-3 140.831
0.1 = 100.10-3 147.453

(Compare with Fig. 4.1)
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Method 3.2
H Spectral radius of A+ H @

— 0.1 = — 100.10-3 | 189.379
~90.10-8 | 181.379
~80.10- | 172.883
— 70.10-8 163.785
—60.102 | 153.94
—50.10-3 | 143.139
_40.10-s | 131.048
~30.10-8 | 117.095
— 20.10-3 100.128

o — 10.10-3 77.016 -
1 1 1
10,108 | 72.84
2010 | 93.745
30.10-% | 108.939
40.10- | 121.351
50.10-3 132.054
60.10-8 141.577
70108 | 150.222
80.10-3 | 158.187
90.10-+ | 165.601
0.1 = 100.10-% | 172.562

(Compare with Fig. 4.2)
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From tables and the corresponding figures 4.1, 4.2 it is obvious
that except for A = 0 the spectral radii of A + H @ are extraordinary
large. That is why the round off error goes on increasing. As a result
it seems that explicit 4 cyclic 4-step method of order 5 inspite of strong
stability are of no use for practical applications, also if only smooth
problems are under consideration.
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1. Introduction.
Consider the Fredholm Integral equation of the firs¢ kind of con-

volution type :

KM= [ kGO d=g@ - <3< (L)
—©

where k and g are known functions in Lz (R), and f e H? (R) is to be
found.  If A denofes Fourisr Transformation, then from the con-
volution theorem we have

k@) f (@) =£ (o) . (12)
whence
0 v
o) =§17? i 2@ piayde o (1.3)
- k(0

The ill-posedness of (1.1) is reflected by the fact that any small per-
A
turbation ¢ in g, whose transform & (@) doss not decay faster than
A A
I: (w)as 0| » ® , will result in a perturbation In g () [k ()

119
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which will grow without bound. When g is inexact, therefore, we
may seek a stable or filtered approximation to f given by:

1 © . é\'(m) , k .
f)\ (J’)=? I Zw;» FT——=exp(onydo .. (1.4)
-® ; k (0)

where z (o, 3) is a filtered function dependent on a parameter A.
Filters may be constructed in several ways, either direétly for the
convolution Kernel {1], or as a special case of general Fredholm in-
tegral equations [2], provided in the latter case it is realized that in
(1.1) the operator K is not compact and the fourier transform (FT)
here plays the role of smgular function expansion in the context of

compact operators.
It this paper we construct a maximum  likelihood (ML) method

which determines the regularization parameter 2 optimally. Our
construction of the method is a simple extension of the 1deas of
Anderssen and Bloomfield [4, 5], who consider the problem of numen-
cally dlﬁ‘erentlatmg noisy data. ‘ ‘
2. Description of the Method.

'We assume that the support of :each function, f; g and k is
essentially finite and contained within the interval [0 T]. Let T -1

denote the space of trlgonometrlc polynomlals of degree at most N 1

and period T. We shall seek a filtered solution of a, 1) wlthm the'y
space Tyg |

Let gn=gN Xn) + &4

We assume that &N (x) and g, are stationary stochastic prdcessés

with zero mean, where

T ; .
. i1 A
= C d = —
W = e G0 iy @)= T ay e o).
‘ (2 2) ‘
and

=f exp(fwx) df_ (@) v (2.3)
0 .
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the relevant features of the functions cg and Cs is that-the variance
N

of an integral

T T o 2 } . S
| 0(w) dt (@is § |90(@ | P (o)do .. (2.3)
0 &N 0 u

Suppose now that we have a filter { L }

)
such that (the detrended) fN'(xk) is estimated by
i @)
2 —mEn -
o T - \ ,2,.4
Since fN (x) =oj' exp(io .?c) dcgN (@) / kN (co@)' ( 4)
where : _ ' ‘ '
A v e
kN(m)=Ek,, exp(—fwx,;) J

The error of estimate is
T
fN(xn)" 2! gun= 1§ expioxg)Xx
n—-m [4]

1 . 1
[ A
| N ey ()

T A . :
- oj exp (o x,) IN-,(Q). dcs (0) .'..(2.5)

where

l(co) Iy exp(=iox;) : ... (2.6)
: r——oo_ _ : T
then the variance of 2.5)is . A :
Pl !’ @ats | o] ro

. (27)



which is minimized when

PgN (@)
PgN( ©) T P_(0)

Iy @ fy @ = zﬁ(w)‘ . e (2.8)

We now find the relationship betweeu the ﬁlter l (w) given by
(2.6) and the ﬁlter z (o) [7]. ‘ -

We require that ﬁltered solution has Fourier. Traasform™ - -
-

A A A A A
IN, g = IN©@D) &y (00) =2, | g (@) [k (@)

where : ; A 2.9)
gN (0) = Z gn €Xp (= i ® Xn).
J
We can compare this with the F.T; of (A) tq obtain - o
Z(©) V(o) /K (@) =1(0) V(@
or »
Z(0) =1k ©) | | . (2.10)

Thus in opr method the ratio 8 (m) in (2 8) in A and B’s work [4, 5]
is equivalent to our filter Z (®).

3. Qptimization by Maximmm Likelihood,

To optimize the filter with respect to A, we now modify A and B’s
work accordingly [4, 5]. This involves choosing an error distribution”
of the form P_ (@) = b ¢ () Where b is an unknown  constang and

¢ (®) is a known function. Also, for second order ﬁlter (1 e. p = 2)
we choose as the dlstrlbutron for gN '

P (@) =220 K@ l 2 e @
RN ~
H )‘m4
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sothat z(0)= |K@[2/ (1K@ % +Bras)
=8 (o) . ()

Thus the distribution for g, is given by P = Pg + Ps .
o R C & N

én _ _ B)\co4

N A2 )

—b@ | 1+ 1K@L ( B—%)
B ot

S (33)

(Let ¢(®)=1),Pe=b¢(®)=b '

r A 2 - .
P (cn;b,k)=b,|1+—u<&)—l——1 {B:const}
gn_ o A L BR:O"‘ J
1
= z, < (3.9
A2
| K |
7, = —* — e (39)
IK, | +Bro
and
N-1, ,
oo . . A2
T@) =1 ) srexp(—iox)|2=|g| (6
k=0

Anderssen and Bloom-field show how to ehmmate the constant b
from the problem. :

First théy approximate the likelihood function of the parameters
» b by using a formula due to whittle [16]. This says that the

logarithm of the likelihood function of Pg is approximately.
n
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N-1
= Constt, — [ log P (o I P ]
$ ) gP, (@) +1@)[(P, @) |.
q=0 n n
. (39
(3.7) can be, maximized w.r.t. A which is equivalent to MINIMIZING
(For minimizing we have used NAG Routine EO 4 ABA based upon
quadratic interpolation technique.) .

N-1 N-1
Vo= (N/z)logf Z =2 | L toga-z)
' . (3.8)
Knowing x from (3.8) |
N- 1 [ v . SN
= Z g Ik, 1 , e (3.9)

then by inverse F.T. of (3.9) wecan ﬁnd the solution functlon S

‘Problems Discussed.

P (IA). This problem is given in [8] we have

2
[ keSO =g
-2 .
where f is the function of two gaussian functions

| ~ (x40, ~ (x— 0.4y
‘f(x): = 0.5 exp [ —(;":)—'%Oi—z—] + €Xp [ (fo.lgo ) ]

w1th essentlal support -13<x< 15

K (x) is trlangular with equatlon
-x-,—OS - 0<x<05

K»(x)—-} £F05 —05<x<0
L o ' |x] 2 0.5
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We have calculated the values of g(x) by the NAG Algorithm
DOIABA Using Rombergs’ Method with accuracy 10-7 ., 41 grid
valuess havs-been considered.

P (1 B).

This “example is the same as P (1 A) except that the triangular
Kernel is made wider

(((5/8) (-x+038), . 0<x<0.8
K@ = | (5/8) (x+08), —08<x<0
0 o [x] =08

The wider Kernel makes the problem more ill-posed,’64 grid
points are considered.

P (L C).

The problem is made highly ill-posed by choosing an even wider
Kernel 64 grid points are considered.

[ (5/12) (- x + 1.2), . 0=x<l2
K (x) = l' (5/12) (x + 1.2), -12<x<0
Lo : x| =12

P2). +This problem has been taken from [9]. The solution func-
tion is the sum of six Gaussians and the kernel is also Gaussian, We
have

C ® i S
_ﬁ' k(x=»)f()dy = gi(x)
6
_, - Y = (x—ag)? ]
e@= T acexp | ZUZmE
: k=1 .
where
A1 = 10.0 - o1 =05 ﬁl = 004
Az = 10,0 ag = 0,7 Bz.=0.02
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As = 5.0 as = 0.875 Bs = 0.02
Ai=100 a =1.125 81 = 0.04

As = 5.0 a5 = 1.325 Bs — 0.02
Ag =50 as = 1.525 =002

The essential support of g (x)is 0 < x < 2

1

k(= \/Tv? exp (— x2/2), A= 0.015

The essential support of k (x) is ( — 0.26.0.26)

The solution is

6 ( L
@=L (5%) aer e

The essential support of f (x) is (0.26, 1.74).
4. Numerical Results.
Ran_'dom noise in the Problems is used.
P (1 A). _
The interval [ —2, 2] which is the essential support of f(x) was trans-
lated to - [0, 4] and then extended to [0, 6.4] thus T = 6.4, A =-0.1
and N = 64. R : :’
The numerical solutions with clean data and noisy data have been
compared with the true solution in the essential support of f (x).

P (1 A) (i) with clean data the algorithm gave a value of regularization
parameter A = (5.8) 10-13. The solution shown in DIAG
(1) is very good.
(ii) Data with 3.3%, noise. Here A = (8.1) 10-7, ‘the solution
resolves two peaks, is good as shown in DIAG (1),
P (1 B). :
(i) The algorithm with clean data gave A = (2.8):10—127. The
solution, resolves two peaks and is quite good as shown in
DIAG (2). : ’ :
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(ii) Data with 1.79% error. Here A = (6.8 10-9; again the
solition resolves two peaks:and is reasonable and solution
improves when: we increose P = 2 to P = 3 as shown in’
DIAG (2).

{i) Algorithm with clean data gave A = (1.3) 10-10 ..

- The solution resolves two peaks but there are ‘wild oscillations
as shoewn 1n Diag (3).

(ii) Data wite 0.79% noise. Here A = (311) 10-9 ; again the
solution has oscillations and is not good but when P is in-
creased i.e. for P =4 the solution improved a lot as

_ shown in DIAG (3). ' ~

 P(2). (i) Algorithm with' clean data gave A = (2.1) 1014,  The! v

‘ solution is quite good resolving all the six peaks as sliown in
DIAG (4). ‘ :

(ii) Data with 1.7% noise gave A= (8.1) 10-1t. The solution

~ gives only 5 peaks as shown in DIAG (4).
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TABLE
PROBLEM| N h | LEVEL OF
NOISE— » | DIAGS
I |
P (1 A) 64 | o1 ggz;_é (5.8) 10-3 | DIAG (1)
T 8.1y 1077
P (1 B) 6 | o1 (1%0— @.8) 10 | DIAG @)
P=2 | @100 |.
P=3 | @70y 10-0|
0.0% o L oace e
P(1C) 64 | 0.1 o1z | aytew piac @)
P=2 * lantes |
P=4 3.70% 1010
; N o SRR S
P 64 | o005 (1"%’ (2.1 1034 | DIAG (4)
7%

(8.1) 1011
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;Abstract' »
A method is presented in this paper for estimating solutions of Fredholm
Integral Equation of the:first kind, given noisy data. - s
; ..~ -Regularization is- effected. by GCV technique using trigonometric poly-
nomial approximation.

We propose a technique by which an approximately optimal amount -of
smoothing may be computed, based only on the data and the assumed known
noise variances. Numencal examples are given. ;

1. Introductlon

In many branches of science, problems arise, in which it is desired
to solve. ILLPOSED problems in the form -of integral equations of the
first kind. Introducing the mathematical problem more specifically,
assume that we are given N discrete measurements g; taken ai warious
points x; . These are noisy versions of an integral of the product of a
known kernel k (x,y) and an unknown function S (y) ; that is, we

have

g () = Ty T )
i=0,2, e, N1
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where ¢; is the random noise associated with the ith_ measurement alad
D is the domain appropriate to the physical situgg}é}i ﬁ'];he p&pbjg%,lis
to estimate the unknown function 5¢.by; some, fanction fwhict depends
upon the observed data. This problem is known to bc ill-posed, since
radically different f s’ could have glven rise to _very s1mllar data,
theref‘igﬁlways th'* danger that small‘ randbm varlatfons ﬁr tHe F datd will

danger follows heurlstically from thé’ faet that high frequency
€omponetits- ihithe 1 rié- 86lutiont o< will be Iughfy attenttdtedt it their
contribution to the data g, dependifig on the smoothness of the kernels.

Subsequent to the theoretica 'work on the properties of ill-posed,
inverse problems byuTﬁkbonovJ{f] a' miethiéd Cof obtaining practical
solutions of such peoblems was presentetf By “FikHOnov [2] as well as
by Phillips [8] and Tworfleyifd]i 7, Ui—aruind

In place of a straight forward inversion of the noisy datavf§{]
PEAGuGng. 2 wildly oseiflatory. ;somtipn;.;;thqsm ;ambors,ir,prasemed a
method of smoothing or “Regulanizing?’ . the:selitionsy notivyd Inigoiak

sioq Tihesdevelopments of:.these and othér: methods arel révigwed in
several articles, Turchin [3], Morozov [5], Mlllerw] aﬁ&“others fYom'
PIAORB] i s iy e
2y “App‘rb':ilmatlon and Solation" Meﬂ: .

R e exﬁfx s les
Consider the Fredholm mtegral equation of the ﬁl‘Stﬂl}(lI{]d} qffr'! .cong
[ 32300 "
volutlon type

it iioome

syt suonnliev seion

r. o \',; PRI [ IR i3 [:.‘

i;‘) ite

sil) (kjon(x) 5] Ja Jﬁ (xl—‘y)ﬁ(y),dys.—_? gl(ac); (Loor.g' yA<¥ 003/*(2 0]

~—.00. Gl
S EEE I A TR i1 Siiinfia IR ISIFE aTY Cind el

wherek asnd ‘g iare, knowtr funetions m Lz (R)~and f 4 H (R) vﬂiich‘
is tobwidetermlned ‘ deion win wemd U n sHog

“We"idssubé that the support oft "Sadh fandtion f, g and k mte,
and contained within the intrival (0, T) Let TN denote the space

R R N

bf 'trigonometric polynomials of degree N—1 and perlod T
We shall find a filtered solution of* (2.1) within the space TN 1

for the following reasons : Lid
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(i) The discretization error in the convolution may be made pre-
cisely zero at the grid pts.

(iiy Fast Fourier Transform (FFT) routines are easily employed in
the solution procedure.

(iif) The choice of TN— 128 the approximating functfon space is

| itself a regularizing feature.
The ill-posedness of (2.1) is reflected by the fact that any small
perturbation ¢ in data function g, whose transform g (o) does not

A ) ) .
decay faster than k (w) as | @ | = oo will resultin a perturbation in
A
%@ which will grow without bound, when g is inexact. Usually -
k(o)

the ill-posedness of (2.1) is measured by the width of the instrument
(transform) function K. The more wider is function K, the more

ill-posed is the préblem,'therefor'e, we seek a filtered approximation to
J which is given by

o0
fx(y)==71n~ [ z@:) 29 epiondo .2

where z (o;2) is a filter function dependent on regularization para-
meter A, Now the filtered solution fN \ x) ¢ TN-I , wWhich minj-

mizes
N-1I ( 1 _ ;
P | ®e*Dem-g | +2115P @11
n=0 L J

where P the order of regularization, is given by
N-1

ha®=n L heseoe(Zle) ey
g=0
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~ _ Ny where (B2 N /TZ) o 24
A ~ zi

1"gN’ (gNo b, e gM: Ay N"‘l ) w]']erg seanhason HL ool

ng 1, T ("n)" (KN jN' A )(xn)‘-*v()gf:N 7\" )

ool dopde

or

o ¥ PR | A H : - N ”‘; . N e
: ; = Kif: 1 ==y K - Lot A £ oA i :;-( %
BN~ KA SR A SR g

’’’’ ' LA S i Bers il e et s
A(l) = \vz v,z = diag (zg) .. (2.6)

%N
where y is N x N criculant matrix with elements

Vs -?exp(—z‘*ﬁ*” ) ”f=f9t bdea s Nl o

.. H
y Is unitary yy = = w y = I
The idea of GCYV is very s1mple Suppose we 1gnore the ]th data pomt
g; and define the ﬁltered solutlon

e

f (D 5 e Ty ;I as'the mxm‘:vﬁiier‘zof{ '
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N-1

L[ exrnen —‘é;]g#xuf(”) @i, @)
n=0 o
we then obtain a vector gg\{] g RN deﬁinedvby .
gg)A _ I(J)

Ciearly t‘de’jth elemeﬁt [g}(IJ ))\ } , shoﬁld “Pfediet”‘ ..‘the Iﬁis.eing;
value g; . We may thus construct the welghted mean square predlctlon
error over all j; : , . .
] () 2
Voin = ) oi® [ (gN 2V J ; e (2.8)
j=0
Thus the optimum A minimizes V (i ; p) and does not - depend. in .,
any way on a knowledge of o2. ’ - ‘
WAHBA [10, 11] has shown in a more general context that the ch01ce
of weights ‘ , -
N ' g (0 2
@i () = ( 11 i (l) . ']

i=012,..,N=1

where the matrix A (3) given in equations (2.5) ‘and- (2476) “endblés the
expression in equatlon (2.8) to be writtén in the much 51mpler form ‘

N HI-A®gi?.
(wTra-am)

-" [(-2‘ '9) N

k fV(A.;j;_)

which under transformatxon to dlscrete Fourler space 1s

N - Z)g Il2

V@;p) = (—;TTF(I-Z))
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1 N-1 A
W LU ey g 1P
L - ...112,10)
( I- 3 z )
4q=0

Computationally this'is a very simplesfunction to minimize W.I. t A
(p is usually taken as 2) but as we vary p some problems_ .gave better
results with noise as is shown in section 3 ).

For minimization of (2.10) we have used NAG Routine E 04
ABA based-on quadratlc interpolation. technique. “For' completeness'
we :ohserve that since . the  matrix A (3) -is ;circulant, the, ,xwe;ghts cal-
culated from equation (A) are equal to unity. e

After finding optimum value of ) from (2 10) then the _pth order
fliter

%|'~k'q‘-l 2

2P
l.kq |2+ aB2og

Z(mq;x)=

can be*found, when

@,0<g=<3iN

£
Y
I

L ON- -4, 1N <g<N-I
(usuglly P = 2 but in some problems we ,_hMegmcteaséd - andithey
yielded better results). Ultimately the-filtered solution is given by

N-1 - .
_ ‘ N, g ,
S @ = Z e, exp. (i &g ¥)
q=0 . N,-q

Problems Discussed. 4 _,
P (1) This example is given in Phillips'f8]-ant has:an inheljent.‘noisy
data Tunction g with a maximum absolute error of about 002 (0.7%).

We have
30

I ka-»nro & = g(x)
-30
where k (x), g (x) and f(x) are given o table (I)
The number of grid points is 31.
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TABLE (1)

Xn 8n kn Jn
—30,0 0.0100 0.1184 0.0000
-28.0 0.0100 - 0.1311 0.0000
=260 0.0110 0.1464 0,0000
~24.0 0.0170 0.1651 0.0000
-22.0 0.0305 0.1883 0.0000
—~20.0 0.0405 0.2179 0.0000
~18.0 0.0585 .. 0.2563 0.0000
—16.0 0.0869 £ 0.3077 0.0000
-14.0 0.1309 0.3788 0.0000
—12.0 0.2018 10.4816 0.0000
—-100 0.3235 0.6380 0.0000
-8.0 7 0.5469 0.8914 0.0000
~6.0 0.9621 1.3333 0.0019
—4.0 1.6301 2.1483 0.0345
-2.0 2.4047 3.5108 0.0965

.0.0 2.9104 4.3600 0.1321 -

2.0 . 2.8912 3.0628 0.1096

4.0  2.4586 1.6329 0.0584

6.0 1.9049 0.8806 0.0349

8.0 1.4144 0.5095 0.0173
10.0 1.0282 0.3137 0.0107
12.0 0.7411 0.2021 0.0028
140 0.5409 0.1341 0.0005
16.0 0.4083 0.0906 0.0000
18.0 0.3214 0.0614 0.0000
-20.0 0.2623 0.0413 0.0000
22.0 0.2201 0.0269 0.0000
24.0 0.1886 0.0165 0.0000
26.0 0.1580 0.0089 0.0000
28.0 0.1270 0.0031 0.0000
30.0 0.0780 0i0013 - 0.0000
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P (2A) This problem is given in Truchin [13] we have
2
[ke-nrod=50
=2

where f is the function of two Gaussxan functions

4 —(x—0.6)2
f(x)—05 exp(~%_‘1——80l)+exp ('"-(J(;TQ")

with essential support — 1.3 < x < 1.5
k (x) is triangylar with equation

f —x+4+0.5, 0<x<0.5
k(x)= [ x+0.5 ; ~-05<x<0
L o s [x|=0.5

We have calculated the values of g (x) by the NAG Routine DOI AGA
using Clenshaw-curtis quadrature method with accuracy 10-7 .

41 grid points have been considered.
P (2 BE). -
This problem is the sameas P (2 A) except that the triangular
kernel is made wider which makes the problem more ill-posed.
[ (5/8) (—~ x+0.8), 0<x<038
k(xp= | (58 (x+08, —-08<x<0
0 , x| 2038
We have extended the support from (—2.0to 2.0), to (=3. 2,32,
therefore-64-grid points have been considered.,
PQCE)

The problem is made hlghly 11} -posed by cheosing an even wider
kernel ‘

G/ (= x+1.2), 0<x< 1.2

k() = | (5/12) (x + 1.2, ~12<x<0

¢
|
|
L [x] =12
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~.

again we have extended the support from (—2.0, 2.0) to ( = 3.2, 3.2),
therefore, 64 grid points are considered.

P (3).

This problem has been taken from Medgyessy [7] with some modi-
fication. ' The solution function is the sum of six Gaussians and the
kernel is also Gaussian. We have :

o0
[ ke-nroyar=gw
6 ( -
— 2
g =) Avexp L—(LQT“Q
k=1
where
AL =100 . a1 =05 Br = 0.04
Az = 10.0 ' as = 0.7 Bz = 0.02
Az = 50 © ag = 0.875 Bz = 0.02
Ag = 100 g = 1.125 Bs = 0.04
 As = 50 as, = 1.325 - Bs = 0.02
CAg = 50 g = 1525 Be = 0.02
The essential support of . g (x) is 0<cx<?2
1 , ' R
k(x)=——=exp( —x2/2), a = 0.015
) NET p &y
The essential support of k (x) is (-0.26, 0.26). The solution is

6_ .
o= T (s favo (- G22)

The essential support of fi(x) is (0.26, 1.74).
3. Numerical Results for GCV Regularization using Trigonometrié
Polynomial Approximation.
- In this section we describe the numerical results with the applica-
tion of generalized cross validation (GCV) method to problems P (1) to
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P (3).
In solving the problems P (2 A), P (2 BE), P (2 CE) and P (3), we

have considered the data function g (x) as defined earlier and also the
same data functions contaminated,by varying amounts of random.noise.

. To generate the sequence of random errors of the form {&,},
n=20,1,2,.., N—=1. We have used the NAG Algorithm G05 DDA
‘which returns pseudo random real numbers taken from a normal
distribution of prescribed mean A and standard deviation B.

To mimic experimental errors we have taken A = 0.0
B — ITO (maxl‘gnl), 0<n<N-1 ..Q@310

where x denotes a chosen pefcentage e.g.
x == 0,7, 1.7 or 3.3 etc.

Thus the standard deviation of the random error g, added to g,
does not exceed x9, of the maximum value of g (x).

The actual error g, may be as high as 3B.
P - :
The interval ( — 30, 30) is mapped onto (0, 60) which is extended
to (0.64) by introducing zero values of k and g. The step length 4=2.0
is given. Thus N = 32, = period = 64,

The algorithm is tried and is shown in Diag (1).
P2A)
(a) Here N =64, h:=0.1, T = period = 6.4

We tried the algorithm for p = 2 and it gives a good solution
as is shown in DIAG (2). 7 {
(b) The solution for N =64, h=0.1; T = 6.4
with 3.3%, noise is also good as shown in Diag, (2).
P (2 BE)

(a) Inthecase of accurate data (without adding any noise) a
~ reasonable solution with clearly resolved peaks was obtained
- as shown in DIAG (3).
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(b) In case of noisy data, swhen:p =2 it resolves two peaks
_clearly and solution is good as shown in DIAG (3).
(c) For p= 3 aslightly better solution was obtained .which .is
shown’in DIAG (3).
P.@ CE) ;
(a) Again in the case of clean data -a very good solution is
obtained resolving two peaks very clearty as shown in
-BIAG (4).

. (b) In case -of moisy data when p=72 it.doesnot yield a-good
solution, -hewever when p-= 6 ~a reasonable solution is
_obtained as shown in DIAG (4).

P (3)

The esseatial supports of if (x), g ) and k (x) are (0, 26, 1.74),
(0, 2) and (-—=0:26, 0.26) respectively. First we can consider a-common
-interval-(—0.26, -2.0) - for-all-these three- functions which ‘covers all of
their, essential sppports. This .interval was.translated.to (0,2.26) and
then extended to (0, 3’2) Thus T = penQd = 3.2 and we took a step
length A —005 sothat N =64,

{a) .For clean data the soluuon .is .very .good, giving -all peaks

O.K. as,shown.in DIAG, (5).

(b) Incase of 1.7% noise the. solut;on is not very good but

reasonable when  p = 2 as shown in DIAG (5). The increase
in p (the order of regularization) does not help in this case.
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TABLE (2) .
- ~ No.of
PROBLEM N h Lﬁg?;eof A V)  Minima DIAGS
P (1) 32 20 0.79%  4.8962 0.002461 one ‘ (1)°
: inherent . :
in data
P(2A) 64 0.1 0.0% (2.0)10-12 (1.0)10-® ‘one ' (2)
3.3% (8.4)10-8 0.00255 ‘one
P (2 BE) 64 0.1 0.0% (6.8)10-18 (1.6) 10-® one @3)
p=2 ; 0.7% (1.0)10-® (5.3)10-% .one- -
p=3 (8.0)10-10 4,082x10~%¢0ne . I .
PQCE) 64 0. 00% (43)10-4 (4.4)100 one (&)
p=2 0 07% (1.7)107 (448)104 one |
p==6 2.71x10-14 4.42x 10-4 one
P (3) 64 0.05 0.0% (6.0)10- (7.4)109" one’  (5)

1.79,

(1.0) 10-19 414044 one
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DIAG (1) PROBLEM (1) ?
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DIAG (3) PROBLEM
(2.BE)
50t BY GCV TRIG' METHOD WHEN Mz N

0."

0.90
2

-000

400 .300 .200 160 000 100 200

“TRUE 0L

NUM. SOL + + +
SOL.FOR LTRERAOR P2 o o o
SOL.FOR 17%ERROR Pud x x x

DIAG (4) PROBLEM
(2 CE)
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018

400 .300 .200 100 000 100 200

TRUE SOL
N HUM. SoL PR

SOL.FOROIWMERROR Pa2 o o o©.

SOL.FON 0.7% EAROR Pob  x
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8 OIAG (5 ) PROBLEM (3 } - ~

| SOL. BY GCV.TRIG. METHOD WHEN Ms8

2] -
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