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THE LOVE WAVE SCATTERING MATRIX FOR THREE-LAYERED
STRUCTURES CONSISTING OF WELDED LAYERED
QUARTER-SPACES WITH A PLANE SURFACE

- By :
M.H. KAZI AND A. NIAZY
ABSTRACT

In this paper we use spectral representation of the Love wave
operator for a three-layer model comprising two ‘homogeneous, in- ’
finite strips over-lying a uniform haif-space, along with a method
based on an integral equation formulation and Schwinger-Levine
variational principle to describe, by means of a scattering matrix,
the diffraction of plane, harmonic, 1wncciiromatic Love waves, inci-
dent normally (from either side) upcn ihe vertical plane of discon-
tinuity in the three-layered struciure consisting of welded layered
quarter-spaces with a plane surface. Approximate expressions for
the elements of the scattering matrix are obtained through the piane-
wave approximation and their variational improvement is sought
through the Schwinger-Levine variational pr’incip‘le in such a way as

“to incorporate the contributions caused by body-wave conversion.
Complex reflection and transmission coefficierits can be obtaitied
through a transmission matrix related to the scattering matrix. We
obtain the Form of the transmission matrix (under both approxima-
tions) in some simple cases. '

1. Introduction

In our previous work [Kazi (1978a,b), Niazy and Kazi (1980,
1982)] we used a method based on an integral equation formulation
‘ahd Schwinger-Levine variational principlé to describe, by means of
a scattering matrix, the diffraction of plane, harmonic, monochroma-
tic Love waves, incident normally upon the vertical planes of discon-
tinuity in laterally discontinuous structures such as a half-space with
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a surface step and welded layered quarter-spaces (involving sing}e
top layers) with 2 ptane surface. The method presupposes the exis-
tence of a complete set of proper and improper eigenfunctions, in
terms of which the displacement fields on either side of the vertical
plane of discontinuity may be expressed. Such a set of functions for
the two-dimensional Love wave operator, associated with the pro-
pagation of monochromatic SH waves in a half-space overlain by a
single layer, has been given in Kazi (1976). In order to be able to
extend the method to laterally varying structures involving two
layers over a half space, we need explicit spectral representation of
the Love wave operator associated with monochromatic SH waves
for a three-layer model comprising two homogeneous, infinite strips
overlying a uniform half-space. Such a representation -has been
found in Kazi and Abu-Safiya (1982). In this paper we use this spec-
tral representation tc extend the method of integral representation
and Schwinger-Levine variational principle to investigate the two-
dimensional diffraction: problem of plane harmonic Love waves,
incident normally (from either side) upon the plane of discontinuity
in the three-layered structure consisting of welded layered quarter
spaces with a plane surface. The wave field is described by means
of a scattering matrix, and approximate expressions for its elements
are obtained through the plane-wave approximation and their varia-
tional improvement is sought through the variational principle of
Schwinger and Levine. Complex reflection and transmission coeffi-
cients are obtainable through a transmission matrix related to the
scattering matrix. The form of the transmission matrix in some
simple special cases under the variational approximation indicates
that the variational procoedure incorporates the effects of propagated
and non-propagated modes arising out of the continuous spectrum,
which corresponds to body waves, and is, therefore, of considerable
importance. Numerical computation of the reflection and transmission
coefficients for backward as well as forward transmission in the
welded quarter-spaces problem and other related problems will be
given in another paper. '

Equations of Motion
Let us suppose that a quarter-space consisting of a material of
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rigidity p3, shear velocity B3, and density p;, overlain by a layer of
uniform depth H,, density p,, rigidity p, (<#s) and shear velocity
B2(<PBs) and another layer of uniform deptk H,;(<H,), density gy,
rigidity p;(<p,) and shear velocity Bj(<B;), is in welded contact
with a similar quarter-space of material of rigidity u’;,shear velo-
cityB’; and depsity p';, overlain by a layer of uniform depth H,,
density p’,, rigidity w'2(<w’s) and shear velocity B’a(<p’s) and
another layer of uniform depth Hj, density p’y, rigidity p'y(<p’s)
and shear velocity B’y (<B';) (see Figure 1). We take the vertical
plane of welded contact betweean the two structures to be x=0, the
plane of welded contact between the upper two layers to be the
xy-plane in the co-ordinate system shown in the figure and regard
the top plane surface z=--Hj to be stress free. All materials are
considered te be isotropic and homogeneous. :

We consider two dimensional problems of the diffraction of
time-harmonic Love waves normally incident upon the vertical plane
of contact (from either side). Again, the wave motion is entirely

SH in character. The y-components of the seismic displacemenf
fields in the regions I(x <0) and II(x>0) (see Figure 1) are denoted

by e—-imtv (x, z) and e—i"”v'(x, z), respectively, where
e_imtv(x, z)=e—iwtv1(x, z), —H;<2<0, x<0,
—e 9%, (x, 2), 0<z < Hy, x<0,
=e_imtv3(x, z), Hy<z, x<0,
and e_iwtv'(x; Z)=e”'i°’tv'1(x, z), —H;<z<0, x>0
=e_iwtv'2(x, z), 0<z<H,, x>0
=e_imtv'3(x, z), H <z, x>0,

(o being the angular frequency) are the solutions of the Love wave
differential equation

p(2) Z—j:-=~;;-[ ©(2) % } +—aaz— [_F(Z) g; :‘

in the two regions on either side of the vertical plane x=0.



.
The conditions at the free surface z=—-H, and the plane of
welded contact x=0 imply '

2% _0and a"‘ L _0atz=~H;, ~ (@)
22 T
y=2y’ at x=0, kzz —H;, ~(9)
P-(z)—g—v; =u(2) % af x=0, 2= —Hy, (1¢)
where
p(z)=-p,,'-H,§z<0 x<07 o
=p,, 0<2<Hy, 20, - 2
=y, H2<3, ' .
and

p(2)=p'1, —H; €2<0, x>0, | \

=p'y, 0<<z<H, x>0, , o 3)
“‘[.L 3, H2<Z x>0.

The complete solution for the dlsplacement W(x, z) in domam
I ésee Figure 1) can be expressed in terms . of proper and unproper
eigentunctions of the Love wave operator for a homogeneous half-
space of rigidity u; and shear velocity 8,, overlaid by two infinite
strips consisting of a layer of depth H,, rigidity #,(<us), and
shear velocity B, (<8;), and another layer of depth Hj, rigidity
p1 (<pp) and shear velocity B,(<B;). Kazi and Abu-Safiya (1982)
" have found explicit formulas for these proper and improper eigen
function and have shown that the spectrum of the correspounding
two-dimensional Love wave operator is the disjoint union of the
discrete spectrum, which corresponds to the ordinary Love modes, and
a continuous spectrum {corresponding to body waves) which is the
~ interval (— o0, w?[3%3) on the real axis of the complex A-plane, where
A=k?, k being the wave nuniber and « the angular frequency. Like-
wise, we can write the complete solution for the dlsplacemeut ¥ (x, z)
in domain II in terms of proper and improper eigenfunctions of the
Love wave operator for a homogenous half-space of rigidity u’s and
shear velocity i's, overlaid by two infinite strips consisting of a layer
of depth H,, rigidity w’, (<w's), and shear velocity B’; (<B'3) and
another layer of depth H,, rigidity #’/;(<r’;) and shear velocity
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B'1(<B’2). Using the formulas derived in Kazi and Abu-Safiya (1982) .

S _ e 7:-H,
HY\

N,

NN

Figure 1 : The Geometry of the Problgm

" we have in Domain I(x<£0, z=—H,)

r ‘ ’ -
B S e )
Com=r

+S {C(k)_e_lk | x} +D(k)elk =]
0 .

,}. (3 k)dk

0 | o o

4§ B E T e, ) @

and in Domain If (x>0, z>—H;)
s

| v'(x, zi; (Z( A’me—-ik, mx-l;B’;,. ejik";'x)x'.(z)

m==1



wiB’s , .
+§{ e >4 * | o%a, Kk

0

©
PR L e T )
0
where _
xm(2)= @& y™(z), —H1 €2<0
=g M5, 0<z<H;
= o m(z), Hy<z ©)
o m(a)y=F, S0 lonCtH)} gy < ¢, (Ta)

cos (o;"H;)
mcos {o2™(z —Hz)}—ﬂsﬁa'"ﬂn{ﬂz"(z— Hz)}
cos (e2™Hy)
0<zg Hg, (7b)

@ y™(2) =Gy E2°2

uzoyMe —63"‘(2-—1'12)
2 3™(2)=G, c0s (5,°Hy) , 2=Hj ' (7¢)
M

F"=[{ N } ]* ' ®

o (=4), . o _ :
Gr=3 | | ®)
M=,6,+4- 303 tan (c;H,), o (10)
A\=p.10114962 tan (01 Hy)+-p 01363 tan (o:Hy) tan (o,Hy)

— 130312024-(#202)? tan (oH)) (11)
0= o )b ei={ 2 )l asn=(3-52)* €2
0ilw)=0", i=1,2, 3 (13)

and An=2kn2, ks >0 are the roots of A=0, o (14)

which is the dispersion equation for Love wave propagation in two
layers over a half-space (see Ewing et al., 1957, p. 229), and where
- r cos {‘a,l‘(z+H1)}
¥(z, N=14(z, )‘)=G' 9L 7 cos (s1*H,) cos (a.FHy)’

~H;<z<0 (154)




G*
=42z, M= Tos (o5 Hy) {1202F cos (az*2)—-p101¥sin (02*2) %
tan (leHl)}, 0<2<H2, (l Sb)
in {0k L o k(7 — S
=alz, )= — SO L) ( 5c) c
A/ mugssk
where '
\/ Fk3sa* cos 6
16
el (16)
w? 3 ves
S¥= (Ti—f —A ) (real and positive) an
3
—tan=1 | 9 _
o —tant (L), (18)
p= (J.lclkpzd'zktan (ClkHl)-l‘[lzz (dzk)z tan (UzkHz), (1 9)
g=p,6,%p,55%tan (62FHy) tan (o;*H;)—p 05k psss¥ (20)
Y LU PAY JNPRRY BT
oit=(gr —#)" o= 574 @n

. —k . .
Owing to the factor e in the integral containing ¢, these
represent nonpropagated modes.

2(z, k), the improper eigenfunctions belonging to the improper
elgenvalues y==k?, 0<k < «@/Bs;, have expressions similar to thosz for
¥ (2, k). Owing to the form of x—dependence in the integral con-
taining @, these represent waves travelling in the x direction.

The orthonormality relations amongst various propér and
improper eigenfunctions are given by (cf. Kazi and Abu-Safiya

(1982) ).
w0

S w(2)Xm(2)Xn(2)dz=8n, 1 <m, n<r, (22a)
~H,

(s 6]

S p(2)xa(2) 2(z, k) dz=0, 1 <m<r, 0<k<a[Bs (225)
~H, '

[ o]

§ wapal)tz, b dz=0, 1 <m<r, 0<k<o (22¢)

—H,



Su(z)d»u,k)@(z, 1) dz=3 (k—1), 0<k I1<w  (22d)

.—_ Hl
©

B LTI AT L )
~H, |
w tT N .
§ K25 93 (s, 1) d:-B(k 1), osk ISafls  (221)
—-H, :
~The corresponding expressions for x'm(z), $'(z, k') and 2’ (2, k')
éhd the ofthonormality relations amongst these are the same as for
:x,,.'t) §'z, k) and &(2, k) given above but in pnmed notatxon ’

7 Integral Equatmn Formulatmn
Let -c(z) denote the component of stress at any point of the
vemcal plane x=20 : , ‘
mres =ty By
. X0 éx ¢ x=0 “ox T x=0%
I ‘ S z>-Hl 2
we dave both

2)=i2) ;-/x 0.___.9(2, [2 zkchm-B.,,)xm(z) |

ko m=l
w/ﬂs ©
+ § ke~ D(k)}z(z, k)dk-f—s KB b 2, k)dk] 4
0
and ‘
S
=l D= @] Y A B ()
m-—‘l
o[’ 0

+§ wcw)-pw }e e KK +Sk’E’(k W' (z,k)dk’] @5

0
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On multiplying equation (23) separately By xnl2) (m=1, 2...r),

2(z, k) (0<k<—;’;) and {(z, kAX0<k < ), and integrating with

respect to z from —H, to o, we obtain [using orthonormality rela-
tions (22a) to (22f)]

» |
—ikn(An—Bm)= § *(n)xn(n) dn, m=1,2,..r, (260)
....I-I1
-
~ik{C(k)-D(}= § Wmyom, Ky dn, (26)
. —H;
and
—kE(k)= S w{n) ¢ (n, k) dn (26¢)
- ~H
Prdc'eeding similarly, equation (25) leads to the following
w ,
— ik’ (A y— B )= S wm)x o(n)dn, m=1, 2,...s,  (27a)
""Hl '
. ® -
-Ik'{C'(k')—D'(k'}=S A(n) @ "(n, K')dn, . @m)
—H;
e 8]
—KE®)= ) ¢’ (n, &) . (27¢)
_:H1

. Eliminating D(k), D'(k"), E(k ),E’(k’) [assuming C(k)=C ’(k’)=-0
and applymg the matchmg condmon (i)}, we obtam

r o
Z (Am-+B,, )xm(Z)—l- Z (A’ + B’ m)x’ n(2)= Sr(n)G*\z n)dn (28)

where . .
G*(z, n)=G(z, n)+ig(z, n), 29)



10

G(Z, n)= Sww dk+s 'JI'(Z, k I)c’q’ ("’ k ) dk’ (30)
. ) 0

and
!

L offs off’s P '
g(z, n)= S 2(z, k),cg(”f,k) dk+ S s k) ® (. k) gk
@31)

It may be noted that G*(z n) is a Green s function type symmet-
ric kernel, whose real and imaginary parts correspond to non-
propagated and propagated modes (respectively) arising out of the
continuous part of the spectrum.

The integral equation formulation of the problem is given by
equations (26a), (274) and (28). If the amplitudes (Am, m=I, 2,...,
ry Almym=1,2,......, 5) of incident Love waves are specified, we
have to find the amplitudes of the transmitted and reflected waves
from the above mentioned (r+s+1) integral equations. Using
‘matrix formallsm;we recast the problem in terms of a scatterlng,
matrix’ in the next section.

The Scatte,ring“Matl;ix Formulation
Introducing nx 1 vectors .

[ A ) L (B ). _ [ x1(z) ]
A, |- B ' : x:(2)
N
A=| A |, B= B | X@= | x@ | (2
TR B O N e
A's B's x'4(2)
L J L J L J




L3

and the nx n diagonal matrix »

[k ]
ky (8]
K= ke , n==r4s, (33)
K’y
0 .
. k's |
equations (264), (274) can be rewritte n
' @
~ik.(A=B)= | X ()s(n)dn (34)
, he™
and equation (28) as
B o]
AT +8Tx()={ Gz, nysiman, 2> —H, - (35)
~H, : .

where the superscript T denotes the transpose.

Equations (34) and (35) imply that both A—B and the unkaown
stress «(z) on the vertical plane x=0 must be linearly related to
A+B. Consequently there exists an nxn matrix S= || siy | and an
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nx!l vector
[ %) W
2= | (2 (36)
v1(2)
. ©'s(2) »
such that
K.(A—B)=iS.(A+B), : (37
and .
#z)=(AT +B1).5(2). (38)

The matrix S= lis;sll is the SCATTERING MATRIX.
Equation (37) can be rewrittep

B=T.A (39)
where
T=(K+iS)"1.(K—iS) (40)
provided K+ /S is non-singular. Substituting (38) into (35), we get
o0
T, ,T .
AT +B)(X(2) =) GG nydy=0, ~H,<z, (D)
-H, _
whetice
o
X()=§ 6, nyxn)dn, —H, <, 42)
—H,

on account of the arbitrary choice and linear independence of the
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components of A+B. From (42), we obtain the following n un-
coupled integral equations for the determination of +(n) :

w .

xn(2)= § Gz, myraladn, m=1, 2,y v, 2>—H,,  (43)
0
€0

*'n(z)=§ G*, mynddn, m=1,2,..., 5, 2>—Hy.  (44)
0

Substituting (38) into (34), we get

w B
K.(A-B)=i § XoX(AT +B7). (),
o

whence from (37)
[¢ o}
s.(A+B)= | x((aT+87). stjan,

0

and so
)
s = Sx;(n)f;(n)dn, ( J=1, 2,0, 1, 1, n=r+s), (45)
¢

where:
Xret=x"1 and Te=1'1, 1S2<s.

The problem has thus been reduced to the solution of the
integral equations (43) and (44) and the subsequent determination
of the scattering matrix S8 from (45) and the related transmission
matrix T in (40) which yields the required complex reflection and
transmission coefficients (after appropriate normalization) through
equation (39). The formulation of the problem is exact at this
stage. Unfortunately, it i3 not possible to solve the problem
exactly and we must resort te construct approximate solutions., In
the next section we shall proceed to the plane wave approximation
neglecting the propagated and non-propagated modes arising out of
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the continuous spectrum. In the subsequent section, we shall
- construct expressions for the elements sys (of the scattering matrix)
to which variational principle of Schwinger and Levine applies and
then improve the earlier approximation ih such a way as to incorpo-
rate the effects of propagated modes (which correspond to body
waves) and non-propagated modes indirectly.

Plane Wave Approximation

If we neglect the propagated modes &(z, k), 3'(z, k') and the
non-propagated modes (z, k), {’(z, k') corresponding to the con-
tinuous part of the spectrum, then we can set G*(z, n)=0 [see
equations (29) to (31)] in the preceding formulation and assume " the -
following expansion for ©(z) in terms of the whole set of , propagated
discrete modes in the left-hand domain :

, |
{)=p@) { § Dasn(s) | )
mel

Substituting this into equation (34) we obtain
r 3

x1(n)

x2(n)
[« o] r

~iK.(AB)= § un) { 3 Dnantr) Jan (47

—H, m==]

xr(n)

x'y(n)

L xs(n)
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or
r ki(Ai—B;) 1 [ D, }
k(A2—T2) D,
—i | kdAr—By) D, (48)
k'y(A;j—B'y) r
EZDmPim Aim
m==]
k' (A’s—B's) . (
J
r .
=D, Pym Asm
[ m=1 J

because of the orthonormality relation (22a), where

Aim= (—:i)%, i=1,2,.s ;m=1,2,..., r, . (49)
m
- -]
and \j, P,'m=S u(n) x'«n) xm(n) dn, i=1,2,..5s;m=1,2,..,t. (50)
—H;

Substituting G*=0 in (35), we get

AT+BY).x@=0,z>—H, | (51)
Eliminating Dy, Dy,..., D, from (48) and simplifying, we obtain :
R.(A—-B)=0, ' (52)

where the s xn matrix R is given by :
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[ Pu P Py . -~ O
A1l 7\12 Ayr .
Pyy P Por
A A2 Ay 7
) —1
R= . . ) (53)
Psi Ps; Py
Ast As2 T Asr . —1
L J
—— v J — v —
SXr SXS

Calcullating the first moments of (51) with respect to p(z) xi(2),
=1, 2,..., r, we obtain a set of r simultaneous, linear, algebraic
equatons equlvalent to the matrix equation :

Q.(A+B)=0, (54) -
where the r x n matrix Q is given by
[ . M1 Py 2 Pagedsi Py )
1 . M2 Pz 221 Pig.o A2 Psa

Q= : . . (53)

Atr Pir Azr Parc.dsr Por

L\ v — [ ‘ ~- —

rxr rxs
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Co;nbining (52) and (54) into a single matrix equation, we get

(-g).u(‘f).n 66
n-r.Awhere'r-('.'g)" (g) 7 (515

The metrix gives the reflection and trensmission coefficients,
We now proceed to compute the integral ‘equation (50) to find

Mm Pym

Rewtlte equation (50) as
]
TmtAm P § 0(2) #'4(5) %a(2) d,
-H,
0 Hy
[y, s <8"14z) 2™(2) dz+u~zs 2'24(s) 25" (2) dz
—H, (3
-]
+#3 S 2'34(2)2 ™(2) dz=ly+1,+1s,  (5B)
H;
with '
0 .
L=y S &' 1) 2."(s) ds
—H, :
Fif, »
= o8 (91 ',;isﬁms co0s {oy'¥(2-+Hy)}cos {a(z+H,)dz
—H [using (7a))

o 1“‘!-?—'5’?"') ’ [o',¢ tan (o’;*H;)—0,™ tan (o;"Hy)), (59)

: H,
Lew § €2 02 @) dz
]
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H,

K UZGi'Gm ' _
= cos (0,”H}) cos ('2'H2) } _[Fﬂfms ﬁ'z’f(l Hy)}

: S : -—p,o;"snh {o2™ (z—H))
#,'ay'%cos {c’,"(z-—Hz)}-p ;c';‘ sin {c ' (z~H)Ndz
X - : [using (70)]
' whnch ynclds after somewhat lengtby but stralghtforward calculation:

L= -a—.,%zzG—‘ (f':':)z[ 2i{peon’ z(ﬂz"')"l' By ‘a3%ay'") tan (o;"Hy)

'-Gz"'{ilzl&z '(a) )’+Pslla a3™s3'i} tan (o,''Hy)
+{" 213’03 ‘(Gz")z—lls"z °3"(°z )2} tan (5,"Ha):

tan(a;"H;,)
ﬂz a; ‘(ﬂs 2o —pay’ 3'%)
cos (Gznﬂz) COS (Cz H.) . . ]
+ 0370, (— ' 305™ a3 03 ‘}]n - - (60)
Leps | 290 "0dr
H, _ '
B3 Smlg;' g,; @ ‘Hz) Balts 03"02 e (03'+°3')
H; 1 . (z=H).de
L S . fusing (7¢)]
GmGt'llzl"z'l‘:icZ-Gz"(“l“"°'3'i) ’ (61)

| = "cos (5."Hy) cos (o2 Hy){os™P—(03")}
. ‘whence from equatxons (58) to (61) we obtain

» ACQPIM . “IF ‘F” _ 14 1‘ tan (ﬂllﬂﬂ .
o )
' "'cl-t“ (ﬂ"‘Hl)] _
+ o (.l»zG ‘GM T {m 2( z,"z

(k2K 2)+03(-—-,——~... BT

+papy’c a3’} tan (o;"*Hy)—0'a{ass’ ("z")z
+ua '383%0" 3¢} taR (Gz"Hz)+{P~3P- '285™d’ 2P
ot 30"3%(02™)?} tan (6,7Hy) tan (a'2'Hy)
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+ . azmo 2‘ . “ . (y,syzo,si—{‘s“,zc‘m) : : .
cos (o;"Hy) ¢ cos (a'z‘H ) ' Halt 2037
—o™308 z‘(#zt* 3073 —p zp.go"'g)] L e

+ i}zt’- 2&'-3626 '$CmG’ '(¢'3$—0™3)
cos o HZ) cos (o' Ho) | K=kt 02 (asz B?)]m)

A check on the valldlty of these formulae is provrded by the
fact that in the limit as H,50, py>pu, u ‘3>, 62 203,.6'3->03, the'~ i
expression for MmPim in (62) reduces- to.- correspondmg expresslon T
. found in Niazi and Kazi {(1980)[¢q. (41)]} for. the! welded quarter- :
. spaces problem 1nvolvmg single upper layers : : L
The form of the transmission matrrx T in (57). in the follomng_
special cases can be shown to be : S :

@) r=1, s=1:

—14P2y, -eripu. ¥

r B
S S S (63)
- 1+P 11 —2 11 . 1 P2, . '
L v o 1=P2yy
apr=ts=2: A
‘ [‘ 1+P211+P221 ‘-2>\11P11 S "‘27‘*211’21 _
e L[ 2P e 2PudPa [
| T‘:—_1+P2u+P2u l R .P u+1+P u SRR
L:.&u . :Mlu Py I4Py |
Az Ay PR

Varlatronal Formulatlon and Dlrect : Approximﬁrion

Returning to the scattermg matrrx formulatlon of the’ problem '
we shall construct expressions .for the clements of the matrix in such
a way that the variational principle of Schwmger and- Levine

becomes applicable. . :

Multiplying the equations

oxi(2)= S G*(z, n)rg(ri)dn, i=1,2,.., i=r+s

T —H, '

[(43, @4)]



20

by 7(2), J==1,2,..., n and integrating with respect to z over the
(nterval (~Hj, ), we obtain
0 w

B B . w v .
Sy= § siyin) dam §§ m)Ge ) dzan (69
~H, ~H; ~H, |

~ By equation (45). Since the kernel G*(z n) is symmetric ([sce

sguations (29).(31)] it follows from (65) that sij=sy and so the
teattering matrix 8= || sy | is symmetric. Thus we may write
o a0 y :

-

$4x,(z:) (2) ds. S x;(n) 1;(n)dn
Begm ;le — _—Hl ' ‘ | (66)
S S 1i(2). G*(2, n) 4(n) dé dn
'—Hj '—Hl ' o
If we intrcduce the notations - .
0 o : ,
< fu>=\ fuds, Gru= { c*Gmue
‘ ’—Hl ' —Hl ‘

then : .
<G*%, v>=<u,G*%> V¥ u,v
and we may rewrite (66) as _
' sig =(<xs, 71> <x7,7>) (<GP r4,75>) ’ (67)
A in Kazi (1978), we have the following ;

- Theorem ; Let F(u, v)=<xj, v>+<xy, 4>—<G%, v>.
Then F is statipnary for variations of u, v about w=tj, v=1; where
7, 7j are the solutions of the integral equations

QQ .
()=Gra= § G m v () dn
—H, _
and
© |
x(2)=G*ry= § G*(e, m) 5(n) dm,
—H, .

respectively. Moreover, the stationar)" value of F is s¢s(vy, 1)
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Corollary (Schwinger-Levine Variational Pringiple) : Let R(u, ¥)==
(<x4y 4> <xi, v>)/(<G'%, v>). Then R is stationary about ymawty,
ve Bty where &, f are arbxtrary non-zero constants.  Moreover,
Roareiy, @r7) = sis(7e, T1) '

By invoking the above theorem we obtain vanatxonal lmprove-
ment of the plane wave approxxmanon used in the previous section
by assumirng the expansions for #(2) :

r o .
n(e)m Y Dole) 1y(s), 11,21, (68)
p=1
and considering

o ’ .
F(w.fg)- <xy, 2 Digi(2) xp(5)> +<xi, Z Djgu(2)xq¢(2)>
p= l qml

. _<G‘ﬂ,1';> :z D,,,<x;. (z)xp(3)> + 2 D;q(la,

p=l ) : qax1
P(Z)Xq(z)>—2 X'DipDJquq; ' (69
o ‘g=1 p=al
where
_ o0
Ipq= { S G*(z, n)x,(n)y.(n)dn}p(z)xq(z) dz, (70)
“H, -H, |

The requirement that the co-éfficients D;p and Dyq in (69) make
F(r, 14) stationary implies

oF .

m"o! P—ls 2.,
and

oF

= —'19,29' s Ty

3D 0, ¢

which lead- to a set of _r') linear algebraic équations for Dip, =1,
'2,..., r and another. set of r linear algebraic equations for Dsq, ¢=1,
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2,50, Solvmg for Dip’s and qu s and substltutmg in (69) we get
the entry sis of the scattering matrix. Suitgble expressions for the
integrals Ip, are constructed in the appendix.
In the specaal cases
(i) whe_n ._r__-,J, :s_a--‘l,

'r 1. AuPry ']
Iy - L

I e | . -
: lL APy - AP ' L

Ii o
~and e '
T=(K+lS)“'l (K—-I.S)

R Py ?=1—ilyy =2Ppag )
. l.. : —2Pu (72)

=0 +.P1_12,'_.j.lf“) . L o 1=P2=il'yy J

where I’ u=k11u and Iu is gwen by (A10) when m n=l
(i) when r=1, s= 2

The scattermg matnx S and the tra.nsmnss:on matnx T are
given by '

f ...!_ S ~511&1 7‘111’21

._ 7
: : ‘Iu e g 1115:. l
. MlPu R 7'.?\1121’.1‘12 )‘HPJIMIPH 1
s=_ _ Iu 7 N T DTS -
- L --M:Pn. : J&n_PnAzl:Pz; e :5-’211?2_21_ |
C T ‘I“ : Ill o Ill » J
and ‘ | . .
—1+P2,1+P221-—11u —‘ZAuPu —~221Py )
__ S
R —-2P AziP
TFP P =Ty | M l+ i S l!
R e _21,“ "—2P P N J

(73)
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On comparing the forms of the transmission matrix T for the
. special cases discussed abave [see equations (72) and (73)] with
- those under the plane wave approximation [see equations (63) and
(64)], we find that the latter can be recovered from the former on
substltuting I'11==0 and so it follows that the parameter I';; incorpo-
" rates the effects of propagated and non-propagated modes which
arise out of the continuous part of the spectrum. _ ,
Numerlcal computation of our results undor both approxi-
~ mations, and for several special - laterally dlscontmuous structures
mvolvmg double surface layers wrll be presented in another paper

- Appendix
Substituting e AR e
G*(z, )=G(z n)+ig(z, ,,) - '_ a9

G(z, )= S t¥s, £ e, Dkle+ S ”’ (e, "" 4 (3 ""“"" o

l.'(l "= S z [2(z k 5("- k)ldk "'S z'(z, k’)z'(n, k’) dk ( 31)

..in (70) and usmg the orthononnahty rolatrons [see (224)-(22{)] we
obtaln

@ B |
I § 4 Su(n) vor k')xm(n)dnS W ¥ B) s

o "'Hl ' Z—H1 PR
. “/ps | o '
+§ & Su(n) (0, K el Su(z)z % x.(z) d: (A1)
0. _H!_ S "Hl : -
Next, we evaluate integrals of the form

I, = § w(eden(a)2 (s, k) do

~H, / .
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and

{0 m)=$ b ¥ 5 ) iy =t 2
~H;
whi¢h occur in (Al)
c0

Let I(k', my= § w()xn()2 (o, k') ds
H;
=m§ 2" \(a K )z'",(z)dzm S @'s(a, k)8 "(a)dz
"Hl
[0 0]
s S @'y(z, k)2 ™5(s) db

=l+hHl,  (Ve=k3, 0<b<offs) (A2
where . :

o . B B
L=w § 040 &) ama) dz
—H, _
wFn d*'pici’ N
coszc:, W 1) ¢08 (a'1F'Hy) cos (Gi"'Hz)SI:“ {o™i(z+H))} x

' cos {0y (4 Hi))dz

| [using expressions for om (z) from equation (7a) and for o' (z, k')
similar to ¢(z, A) in equation (lSa) b 1 ’

u F dkl ! 13! ,
- LR T 0 e @)
- H —a™tan (™ H))],  (A3)
L=p, § 2'xz kyo"(s) dz
0
G'*G iy
,G'¥ _ "
=cos (aﬂzlziz) cos”Zc"VH )S [“20 2 608 {0 2(Z—H2)}J
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—30™;3 sin {o,"(z—H))}]-
[ o4'¥ ¢os (02'%'2)—p, e, ¥ sin (¢, ¥ z) tan (o, ¥ H;)}dz

(using expressions for @ ,”(z) from (74) and for @,(z, k') similar to
oz, A) in (15)]
— #2G*Gm 1
= cos (6,"H,) cos (627 Hy) * (6,7 —(a, ¥’
F @35m0, "% 0y "% tan (o)"F Hy) . sin (0,Hp)—{t o1y 0, (62 ')
430381 01 ¥'0,™ tan (0% Hy)} sin (oy"% Hp)+ {02302 03
—p1 126, 5162"%" tan (o1 H)}{ cos (o,"* Hy)—cos (o,"Hy)}]

) [{ow2(0,m) 20, "%’

(obtained after considerable simplification), (A4
o
Ii=p; S 23'(z, k') 23™(2)dz
H,
0 ) ) ,
Jsin 0" 455" ..y,
_ —3Gmpao,m  Ha
"~ cos (o,mHy) \/n“3s3,k'
[using expressions for @ 3™(z) from (7¢) and for @ *y(z, k") similar to
$3(z, ) in (15¢)).
—_p m K’
~cos 2?2::;;2) ) \/Tcyi's_a,’i’ | (0'3'")24}(s3’k’)2 [(cos 6%")s5’
i ; : +(sin 6'%)a3™},
i iSii ~ o" [s3'% -+(tan '8 )55,

T cos (o"Hy) T py'ss¥ '(;3;)2+(s3”°')2
(AS)
obtained on using the relation
‘ r_ 7 ’ ’ Ik, I Lt 1 s ¢
G’k P'luy'ss” ) cos ¥ = —= -,  [sec (16)]
VTtS3I #3

From (A2)—(AS) we get
o

Ik, m)= S w(2)xm(2) @'(z, k')dz

_._"H‘fl.
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2 FnG'¥ 1y 0y ¥ —

[O.I’k' tan (Gl'k'l-]l)_-;rl'”tan (O’lmHl)]

1 GYGm_
 Gos(o,"H,)c0s(o2 ¥ Hy) (k’2——km2)-+0>2(

1 _L)
B2 B2 )
({12 (™07 ¥ + 303"t 02’0y . tan (o,*'H))} sin (o2"Ho)
—{quzlczm(c'zlk')z—{'-51'30'3'”:“'1'Gllklo'zm tan (O'llk'Hl)} sin (Czlk'H2)

A {13050 63 65 — 1) a0 61"y 'k tam (o1 ' H)}

{cos (o2 Hz)—cos (s2"Hz ]

—:GnG'e P ay”

cos (o"Hy) =~ Ha's% e k') 02 (,__1_._ 1 )

( m )+(0 lez [332
[S3""+(tan e'k')0'3m] (A6)

[on using relations of the type given in equations (12), (13), (17)
and 21)I.

Thus
[s0] oo '
§ 1o, Kyrate) dn (10272, K salde=TG', m) 16K )
—H, —H, (A7)
Likewise
o0 o0
S w(n) 4" (n, k) xm(n)dn S #(2) V'(z, k'_)xn(Z) dz==1'(k',m) I'(K’ ,n)
—H; - ~H (A8)

where the expression for I’(k’, m) can be obtained from (A6) on
replacing k'2 by —k'? i.e.,

From (A1), (A7) and (A8), we finally obtain :
V(K ) Tk, 7 oS kT B
m , 1 ’ . 'a ,a
- osmk———- ak 41§ L ”I?, KL gk, (A10)
0 .

where I(k’, m) and I' (k', m) are given by (A6) and A(9) respectively.
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The real and imaginary parts of In. correspond to the non-
propagated and propagated modes arising from the continuous part
of the spectrum. The integrands in the integrals occuring in (A10)
are regular. These integrals are convergent. However, the

integrals will have to be evaluated numerically because of the
complicated forms of the integrands.
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ON A THEOREM FOR FINDING “LARGE” SOLUTIONS
OF MULTILINEAR EQUATIONS IN BANACH SPACE
‘ By
TOANNIS K. ARGYROS
Department of Mathematics
" The University bf Iowa
ITowa City, Iowa : 62242

Abstract. A new iteration for finding “large” solutions of the
multilinear equation in Banach space is introduced based on the
same assumption used to prove existence for the “small’’ solution.
Introduction. We introduce the literation.

I k—17 —1
Xy = Z‘LMk (xn ) J ;(xln —-y),n=0,1,2,...k22 (1)

for some Xy in a Banach space x to find solutions of the multilinear
equation,

x=y+M, (F, k=2 @)
in x, where y € x is fixed and M, is a bounded symmetric k-linear

operator on x [4]. Itis well known [3}, [4] that if

1yl <tp,
where
Myl
pe ket ) TV
v kk-1)
then equation (2) has a ““smail’”’ solution x € X such that
lxll <p

The above estimate raises the natural question. Is it true under

29
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the same assumption that equation (1) has a “large” solution x ¢ X
such that [ x| =p. ;
The answer is positive under certain assumptions. The basic
idea is to introduce a convergent literation such that_if
I Xy {| =p then || x, Il 2p,n=0,1,2,.........

It is shown that (1) satisfies the above property.
We now state a well-known lemma [4].
Lemmal. Let L; and L, be bounded linear operators in a Banach
space X, where L; is invertible, and | L;7! .1 Ly <. Then the

linear operator (L;--L,)™! exists, and 3)

- nL,~t ]
Rl s B ) Y R Py

Definition 1. Assume that the linear operator Mk (z)k"1 is in-

vertible for some z € x. Define the real poiynomials a(r), E(r) by
k—1
a (r)=ak_ 1 +ak_2r T a2 agrtag

and
E(r)=a (-1
= [ k=1 7}
where @, = M, 1 || (M, (z)(k—l) Hnzn™ " | |-
{ m—1
m=0,1,2 ... , k—1.
By Descartes rule of signs [2] , the equation
a(r)y=0 “)

has two positive solutions s; , 5, or none.
Lemma 2. Let z € x be such that :
(a) the linear operator M, (z)k =l invertible ;

(b) the eqﬁation (4) has two positive solutions s; , s,
with 5,<{s; If k>>2 (one positive solution s, if k=2).
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Then the linear operator Mk (x)k_1 is invertible for x € U (z, r)=

{x2x| llx—zll <r} and for some r € (s;, s2) Ifk>2(r€(0, s5)
if k=2) and
—1
k—1
T, ) |
k ©)

v, F < —

a(r)
Proof. We have

M, (T l=M, [(x—2)+2F ]

k—1 k—1
=Mk (x—-2) + [r ]|Mk (x—z)k—2 z4..
L1 J

[ k—1) k—2
—I—{ s Jle (x—2)z +M,, z

The hypotheses of Lemma 1 for

k—1

Ll =Mk (z)k_l.
k—1
L2=Mk (x——z)k+l+ [ | J Mk (x—z)zk—'2+ ......

k—11)
+ {- | M, (x—Z)zk —2 are satisfied if
L k=2 )

a (r) <1 and M, (2 Lis invertible.

which are true by (@) and (b).
Finally (5) follows from (3).

Definition 2. Let z € x be such that M, (¥ ! is invertible.

Define the real functions ¢ (r) , ¢ (r) , () and d (r) by

e(ry=—nl [ k—1,"l kg
7 () IL”(Mk ") (I—Mk (Z), ,)”H_
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( _ k=3
e, T M gz (el F 2+ 12l)
i )
ot rt L2 )k‘znzu] M, R 1P(z)nJl
wlhiere
P (=M, () +y-z,
c(r)=c(r)—rbr)=r+lz1,
and
1 (k=1 N A
A==, | = —(+lz=p ) ¢+ 1z 2 em, @FH !
a(r) | alr)
. , 11 ]
M | — o, @F Ty -
Finally , define the operator T on X by
T =M, @171 -
We now state the main result, |
Theorem 1. Assume that there exist x ¢ X and r >0 such

that :
() a(r)<0,c(r) <0,d(r)<1;

(ii) the linear operator M, (z)k"l is invertible on U (z, r).

Then the literation (1) converges to a unique solution x of 2
inU(z,r). v
" Proof. T is well defined on U (z, r).
Claim 1, T maps U (z,r1) into U (z,7)
If x €Uz, r) then
k—“l)—l

T (x)—z=(Mk x (x—y)—:z
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=(Mk (x)k’—l)'—1 fr—z—M, z(xk_l—-zk_vl)—P\z)

1

=M, FH7T -, F Y

-M; z (xk_2+xk_3z-|-...—|—z"—3)) (x—2)—P (2.

Now using (5) and the estimate.
Ixi=0(x—2)+zll < llx—zl+ 1zl <r+lzll=b()
it is enough to show that
IT(x)—zl <c(r)<rorc(r)<o,
which is true by (i).
Claim 2. T is a cantraction operator on U (z , r).

Ifw,UeU(z,r)then

T )—T W=M; W*~H~1 w—p)—, BF~H~1 5—p)

= W - wFH T o

M ‘(w)k_l)—1 (V,—Y)f.(Mk (")k_l)_l (r—»)

=, 71 (M, ) 2F 3

+F 7Y =y M, YT o2tz

As in claim 1,
| T(w)—TE)I < d(r) Tw—rl
So T is a contraction on U (z, r) if d (r) <1, which is true by
hypothesis (i), The result now follows from the contraction map-
ping principle,
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Therem 2. Assume :

() The hypotheses of Theorem 1 are satisfied for some
r>0;

(b)) The real equation j (+)=0 , where
f=p. ll‘Mk Il .t —t+ Lyl
has two positive solutions ¢, , t, with ¢ < txif:k > 2 (ome ;positive
solution if k=2) ;

@[p,b()]lcit,t:] ifk>2(p&[tr,2if k=2) wand

d llyn <p.
Thenifp <[ x, I < b (r),

(Myp< lix, | <b,0),n=0,1,2,.;

(i) the solution x of (1) is such that
p< lixl =b(@.

Proof. “We ‘have,
k—1

L, =y U=0M, e 0 =My s, 15 s,
or
Tex, =yl dalloe, W=1lyi |
lx,, 0l 2 RL
T T M s, 1971 g g g5l
Assume that p < -l x, A <. (r)-for all k;O »l 32y vennes , N

Since || x, Il = p = Iy, it is enough to show

i, 1=l

>.
k1?7

My L,




kY
or. fllx, ) = 0.which is true by (c), so

p< Hxn || foralln=0,1,2, ...

Now the x ‘s ¢ Uz,r)y, n=0,1,2, ..,s0
Il *n | < b(r).

which-compfetes the proof:ofi(i).
Finally (i) follows from (2) and (7).
Remark., The literation (1) can be written as-
—1

11
=

§ ]
1% — ILMk (x‘n) [Lle (&, )k— 1(xn )+y—x, JI >

n=1,2,..(6)

The Newton-Kantorovich method corresponding to.(2) can be
written as,

- —1 -1 o1 )
In+17%n ILkMk (zn ) —IJ IL-Mk (z,) (zn )ty—z, J ’
n=0:1.,24..... @)

The latter literation is faster and easir.to usz most of the time,.
but if we choose an x) such that ||x0 = p,then (7) does not

guarantee that the limit w= lim z,, is such that {wjj < por |wl < p.
n >0

This is exactly the advantage of iteration (6) when compared with
(7). The basic defect of (6) is that each step involves the solution

of an equation with a different invertible operator M, (x)k_l. For

this reason one can easily prove theorem for the modified method.
( k—1) -1 k—1
*n41™ % T ILMk (xp) JI ILMk () &, ty—x, )is

n=0,1,2,.. (8
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for some xg € x such that the linear opeartar Mk (x 0 )k—'1 is in-

vertible.

We now provide a simple example for Theorem 1.

Example. Consider the quadratic equation.
x=.2 x2—1 in X=R 1))
Here Myx2=2x2 , p=—1 and 1—4|M,l.llyll £0. -Then accord-
ing to Definitions 1 and 2 for z=35,
a(r)y=>5r—I
E_(r) =.2r2—r+41
and
d (r) = (.04) r2—(.4) r4+1.96
Theorem 1 can be applied provided that '
1.38196601 < r < 1.8377225

and (1) becomes

[ 1) ,
xn+1=5 [ 1+ ——| ,n=0,1,2, ..

X
n

Choose xy=z=>5.Then x=x;,=5.854101966 is the large solution
1 _5
of (9). This is true since lix,, | = 5and ]lxn Iz p=2M,| 2
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UNIQUENESS-EXISTENCE THEOREMS FOR THE
SOLUTIONS OF POLYNOMIAL EQUATIONS
IN'BANACH SPACE
By
IOANNIS'K. ARGYROS
Department of Mathematics
University of Towa, Towa City, FA 52242

Abstract. -In this paper we classify the polynmial equations in
Banach .space in:three distinct kinds by use:of the Frechet deriva-
tive. ‘For'the two more-general kinds, necessary .and sufficient con-
ditions ~will ‘be :given for their :solution -by .means of formulas
involving the nth root of linear .operators. *Some - uniqueness
.1esults.are also.obtained.

Tntrodaction.  Let X -and 'Y ‘be -real -or-complex linear:spaces
wover-the field F of real-or-complex “numbers - and consider -the -abs-
tract polynomial equation.of .degree n.on X.

B, (%) =.0 iy

where

P, (=M, " +M__ "1t MMM, @
or

P, (x)=1>n (xo )'+Pn ! (xo )(x——xo =)+—;—-Pn " (xo ) (x—x0 P

o +% P () (xy ) (n—x, )y 3)

for any X € x, where.the M k “s=are k-linear.operators.on X,

39
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k=1,2, ...,n, M0 is fixed in X and Pn () (xo ) denotes the nth
Frechet derivative of Pn at X0 € X.

Obviously (1) is a natural generalization of the scalar polyno-
mial equation to the more abstract setting of a linear space.
This class of abstract polynomial equations includes a number of
interesting differential and integral equations [1], [3], [4], [5], which
contain nonlinearities consisting of powers or products of the un-
known functions, mingled with linear or integral operators.

In this paper, we classify equation (3) by use of the Frechet
derivative, in three distinct kinds. For the two more general kinds,
necessary and sufficient conditions are given for their solution
by means of formulas involving the ath root of linear operators.
Some uniqueness results are also obtained.

Definition 1. Denote by L (X, Y) the linear space over the
field F of the linear operators from a linear space X into a linear
space Y. For k=2,3, ...a linear operator from X into the space

L (xk_l,y) of (k—1)—Ilinear operators from X into Y is ‘called
k-linear operator from X into Y. For example, if an k-linear operator
Mk from X into Y and k points x; , x5, ... , Xy € X are given, then

z==Mk Xy Xz X,

will be a point of Y the convention being that Mk operates on X,
the (k—1)-linear operator Mk x) operators on x, , and so on. The

order of operation is important. Finally denote L (X, Y) by L (X)
if X=Y. :
Notation 1. Given a k-linear operator M, from X into Y and

a permutation /=(iy , 7 .- . i; ) of the integers 1, 2,...k, the nota-

tion Mk () can be used for the k-linear operator from X into Y such
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that

M, (%) x1 X x), =M Xy Xp, e Xpy

for all x; , X2, vee Xy € X,
Thus, there are k! k-linear operators Mk (i) associated with a
given k-linear operator M, .

Definition 2. A k-linear operator Mk from XintoY is said
to be symmetric if,
M, =M, @)
for all i € R, , where Rk denotes the set of all permutations of the

integers 1,2, ... , k. The symmetric k-linear operator

Ly 1 .
M =—— 2 M, (@
k ki i€ Rk k

is called the mean of Mk .

Notation 2. The notation.

M xp'=:kax ...... x, . :(2)

p<k, Mk €L (Xk , Y), for the result of applying Mk to x£X p-times
will be used. If p < k, then (2) will represent a (k—p)-linear

operator from X into Y. For p=k, note that

- ok ’ )
M, * =M, F =M, ()« 3)

for all i¢ Rk , & X. It follows from (3) that the multilinear oper-

ators My, My, ..., Mk in (1) may be assumed to be symmietric with-
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out loss of generality, since each M; in (1) may be replaced by M;, =
2,3,..., k, without changing the value of P, (x). Unless the

contrary is explicity stated, the multilinear operators M;, i=2, 3,...,
k will be assumed to by symmetric. :
Assume from now on that x , y are normed spaces.

Definition 3. A linear operator L from X into Y is said to be

bounded if.
(Ll = sup |[IL xi| ,
x| =1 @
is finite. The quantity || L || is called the bound (or norm) of L.

Definition 4. For k = 2, a k-linear operator Mk from X into
Y is said to be bounded if it is a bounded linear operator from X into
L (Xk—l, Y), the Banach space of bounded (k—1)-linear operators
from X into Y, The bound (or Norm) |le I of Mk is defined by

(4) , with M, being considered to be an element of L(X,L(Xk—l,Y).)

Notation 3. The space of bounded k-linear operators from X
into Y will be denoted henceforth byL(Xk » Y). Note that by
Definitions (3) and (4) if M, €L (X* ¥,)andp < k then

M =P I < M L x 12
Definition 5. An abstract polynomial operator Pk from X into
Y of degree k defined by
P =M &* +M, KTl Mo MM

is said to be bounded if its co-efficients Mi ,i= 1,2, ...... , k are
bounded multilinear operators from X into Y. From now on we as-
sume p is bounded.
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Definition 6, If T is an operator from X to Y, and for some
Xy € X there exists a !inear operator L from X to Y such that

, IT (g +A%)—T (x )~L (A 2
lim =0,
A0 IA x|

L is called the Frechet derivative of T at x, , denoted by

T'(x0 ), and T is said to be differentiable once at Xy,

Definition 7. If for some 8 > 0, T is differentiable once at all
x for which || xX—Xq | < 8, and a bilinear operator B from X to Y
exists such that |
IT (xg +2%)—T" (x )=B ()]

lim =0,
IAxli—0 [l Xl

B is called the second Frechet derivative of T at x, , denoted by

T (x0 ), and T is said to be differentiable iwice at xq -

Definition 8. If for some 3 > 0, T is differentiable k—1 times
at all x for which [[x—xO Il < &,and a k- linear operator M from

X to Y exists such that
im T Ve +AX)—TH (%) —M(A )|
IAX||-0 A

M is called the Kth derivative of T at x,, , denoted by 1) (x0)
and T is said to be differentiable k times at xq -

Definition 9 The operator

k

P, ‘(k,) (W= (1= 1)l =DM, 5"+

(n—1) (1=2)..(n—k—2M, _ 5" k1M,
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is called the kthderivative of the abstract polynomial oﬁerator Pn .
k=1,2,...,n
(k) k. — :
Note that Pn (x)eL (X" ,Y)fork=1,2,..,n,and that

Vo, (X7, () P” (x) are symmetric
n

multilinear operators., The computation of P, (x) and its derivatives
at point X=X, may be accomplished by adapting Horner's algorithm

for scalar polynomials to this purpose. An algebraic formulation
of this algorithm may be obtained by setting.

M, (0) =M, , i=0,1,..,n,

. Mn (j)=Mn ’j = l , 2 s ses ,n+1’~

and calculating
MUHD 0D, D
n—k n—k+1 0 n—k
j=0,1,..,n—1;k=1,2,..,n—j

The results of this calculation are
. 1 .

M(.]—f-l) = p(l) (%o ),
j n

j==0,1, ... n,notation p(o) (xo ) being used for p (xo ).
n
Note that Taylor’s identity
' 1 ,
P, (0)=p, (xg )+0', (xg ) (x—xg )+—5—p, "(p Nx—%g  +
1 () n
+--.+7!—pn | (xg ) (x—xp )

holds at any X € X.
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From now on we assume that p n is differentiable n-times on X.

Preposition 1. If x* is a solution of the equation p_ (x)=0, then

the equation has a second solution x#x* if and only if the
equation.

! 1 ” 1
Py (Y ht——p, R+ —n—!—pi”) (x*) K" =0

has a nonzero solution A.

Proof. Let x==x*+h,h # 0 then x is a solution if and only if.
0=p, (x)=p, (x*+h)

1,
=, ()P, () bt~y (%) b pi”)(x*) K"

—p' L o ohy 2 1 (n) n

=p', (x*) h + 3 pn(x)h —|—...—|——Fpn (x*) h

since P, (x*)=0.

Preposition 2. Assume :

(a) There exists x* € X such that Py, (x*)==0 and p’n (x*) inver-

tible :
(b) There exists # # 0 such that p’n (x*4+-h) is not invertible

and

—1 .0 — —
1P, |2V .M, LA (e~ 2™ 2+

5 )
IR | 21
J
then x* is unique in the ball
U@)={xeX|llx*—~xll <r, r=[al}
Proof. We have by (a) and (b) 1
Ip,, C*+m)—p", Nz T Gl
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or

(M, (x*+h)—2Mpx* )M, R M Ly
SN S
2 7 G

or

r _ _
(el IL 2AM] [+ 4-nlM, LRI 2 e 34

)
V.. 2 5 >1.

Definition 10. The equation p n (x) = 0 is said to be of

(a) First kind, if there exists X € X such that

) (v y—o. ke _
Pn (xo )—Ok > k——l > 2 g wee 3 N 1
where Ok is the O k-linear operator on X,

(b) Second kind, if P’n (xo )# 0, for all X0 £X-and there exists
X such that P’n (xo ) is invertible. |
(¢) Third kind, if the equation is not of first or second kind.

Example 1.

(a) The polynomial equations of ordinary algebra are of first
; 1

kind, e.g. let X0 = 3 and

P (x)=16x%~16x346x2—x— 2?2 .

It is easy to verify that
P’ (xo )=p" (xo )"':P”(xo )=0.

(b) Second kind, Let n=2 for simplicity and consider the

quadratic equation.
P (x)=M2x2+M1x+M0 ,xEIR2
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where M, is defined by

1 1
Ir 7 G 0 // 7 0 11
I / |»C1C€IR
L o 0 0 0 J
and M, is defined by the matrix.
( S1 52
1 = with 51 54 # 52 53.
L S3 S4
Then P, is a second segree polynomial on IR2 and
{ x1 )
Pz' (x0)=2M2xo+M1 » X0= l l
L xJ
[- € X, 01I+lr ) )[ Ir €1x1 458, Sz}
L e2xt 0 U s3 s¢ J | cxitss s4)

is nonzero for any x¢4IR? and is invertible for some x, € IR?;

Xq = [ ? ], say.

(¢) Third kind. Again, let

c1==Cy # 0, s;=52=53=54=5 # 0

then Py’ (x,) # 0 for any x, € IR2, but Py’ (x,) is not invertible
for any x, € IR2.

Definition 11. If the equation P, (x)=0 is of first kind then

it obviously reduces to.
)
Mn B =z

or

1
n!

P(n) (xo) hn =z
n

where z=—P_ (x,) and P®) (x)=0, , k=1,2, ..., n—1. Equation
n n k

(7) is then called the normal form of (3).
If the equation P (x)==0 is of second kind, then by composing
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through both sides by p’, (x0)"t we obtain

)
Pn (x) =0

where
) = —, e n
P, ()= My +I1()+Mp+..+M x

—
_ with M0 = P’n (x0)? Pn (xy) and

Mk =p’k(x°)Mk , k=1,2,..,n
Finally denote by rad (M, ) the sets satisfying.

k

M, (x+h* =M, &

k ,forallhé X, x € rad (Mk Yk=1,2,...,n.

n . .
If k=1, rad (M;)=Ker (M;). Denote by R=n rad (Mk )
' k=1 ,
and note that R # & since 0 € R.

Theorem 1. If the equation P, (x)==0is of first kind and x=x*
is a solution , then x==x*-}w is also a solution for any w € R. ~

Proof. Let x;=x*—x;, then
0=P, (xo+x1)

=P, )+, (xo)x + .. + F,ITP,(zn) (x0) x1"

1 n n
=P, (xo) +— 7~ P; ) (o
and

Py Gotxtw)=P, (xo)+P7, (x0) rtw)t...t U
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L p® (5 (xy4w)
ni n

1 :
=P, (xo) + P’fn) (x0)x."
=0

Since w € R , so x* 4 w is a solution of Pn (x)=0.

Theorem 2. Assume (3) is of second kind for some x4 € X,
then

(a) If n is even, then x=x,--h is a solution of (3) if and only if
x=x9—h is solution, ‘

(b) If n is odd and Pn (x0)=0, then x==xo+h is a solution of
(3) if and only if x==x,—#h is solution.

Proof. As before if x=x,14 is a solution of (3), then

0="P, (x)
=P (xo+h)
1
=P, G+ P " NG
now,
B, (Yo—h)=P, (xo) +T‘,~P’(1”) Go) (=B - (10)

ifnis even then P() (x0) (—h)" —p(®) (%) K* and then by (9)
P n o
and (10), Pn (xo—h)=0, i.e. x=xp—h is a solution of Pn (x)=0.

If 7 is odd P (xg) (—h)" =—P™ (x) K" , using again (9),
n n
(10) and the fact that P, (x0)=0, we obtain P, (xo — k) =0, le.

x=x¢—h is a solution of Pn (x)y=0.
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Theorem 3. If P, (x)=0 is of second kind and for any u, v € X,

there exists x=x ( # , v) such that,
PP, 0)=P, (%) (11)

then
P'n @) + P’n (v) # 0, foranyu ,ve X

Proof. Since the equation P, (x)=0 is of sécogd kmd
P'n (x) # 0 for all x € X, therefore, ‘ R
P’n () + P’n (v) # Oforallu,veX.
Note that (11) is a strong hypothesis, however it is sometimes

true, for example take n=2 and x = u}—{2—v in (3). -

Theorem 4 . Let P, (x)=0 be of sccond kind and x=x*be a

solution. Then x=x*-+w cannot be a solution for any non zero

wé R.
Proof. Since P n (x)=0 is of second kind, there exists xp € X

such that P’ " (x0) is invertible, Set h;:x*-éxo ;:,.thén

P, (xo+h)=P_ (x%)=0, s0

P, (0 ', (eo)Hht—- B, Geot B, (o) B2

P o) P (xg) B =0,
n :

n!
Suppose x=x*-tw were a solution. Then
Pn (xo+h-+w)=0, ie., - '

, - 1 ., _ FUTNE
0=P’, (x0)1 P, (o)+htw+—s—P, (xo)1 P, Cxodh2+ o+

-;ll!—P'n (xo)"‘P’(l") (x0) &"
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‘S& w==0; contrary to hypothesis. The theorem now follows.

Definition 12. Let E, L be linear operators on X ; then E is
called ihe nih Foot of L if Brx=Lx for all x2X. W¢ also writé

fr=L or B=LW-
Deﬁmtlon 13. The set

F(Mn)—~{x—X | Mpxn t=[M(Mzx )*1] " n}is called the factor set
Of Mn
Example 2. Let X=IRZ?, then xZF(M,) if (Mx(x))2=M,(M.x2),

Xi .
X= Sk 1e.
Xy .

MyxMyxy=M,y(M,x?) y for all y= (;’1 ) £ iR2,
, ; D5

Therefore
Ma(x, Mpxp)=M,(M.x?, »). (12)

Let us choose the array
L0 00
( 0 0/ 0 I ), then
M . _fxX1hn Lo afinl N 3a T cge i
2xy=M,yx== ( X2 Vs ), therefore M, 18 4 symmiétric bilinear
operator on iR2. '
Now (12) becomes
« X R VN [ 2
M [( X1 ) (le’I =M£(x1 (J’l )]
\n b xzxy).! 2 xzz)’ 2
Le.; x2y1=x%p,
X22V2=X22y;.
~thereforé F(Mz)==R2.
Note that the equation M,x2=z, where x=( ;1 ), Zy, 2y G, IR+
2

has a solution u= (\\Zi) , since Mau2= (E\\; ?;j)
N »
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Theorem 5. Assume that the equation P4(x)=0is of first -kind

for some xy¢X, then x=u €F(My) is solution if and only if (Maz"™1) *

A 1
exists and satisfies (Mpz"™1) * =M,y ~1) and (Mnz" 1) * u=z, where

z==2—Pu(xy).
Proof. Let ucF(Mp) be a solution of Pn(x)=0. AccOrdiﬁg to

definition, 11 we have
Z=Mnuﬂ.

Now, Mnz" 1=Mp(Mnu")*"1

1. _
=(Mau""1)8, since usF(My) so (Maz"1)" exists,
1 1
Mpz" 1) » =M,u"™1 and (Mpz#™1) ® y=Mpuu" " lu=Mauut=12z.

L
Conversely, if (Mzz"71) ® exists, (Mpz*~1)

L
n

=M. u""1 and

]
z=(Mz" 1) u then

1
z=(Mnz"1) * y=Mpu" Tu=M,u"

so u is a solution. Finally, we have
L L
Muu" 1=(Mpzr 1) * =(Mp(Mau™)?"1) *,
therefore u¢F(M,) and the theorem is proved.
A similar theorem has been proved [9] for (8), when n=2.
Sy
Definition 14. Dofine the linear operators Ly, Ln, n=1, 2,......
on X by

Lo=Ln(x1, %2)=Mzx;" 1+Mnx;" 2 X2+ ... +Mnx2" ) +...+My,
for all n=1, 2,... and all x;, x,€X, (13)




[ —
P'l if n=1
— = e -
Ln='Ln (z, 21,-.-23_])= { P,’z (Z) if n=2 (14)
p(™) :
L Pa 'z 25,25 1My if n=3, 4...

for z, zy,..., za_€X.
Using (3) L, can also defined by
La=P"n(x0)+3{P* n(x0)(x1— x0)+ P"n(x0)(x2— x0)] + ... +
e P o)ty — )14 Bl )y — 022 x0)+
SRS AL N )
for xq, x(, x; €X, n=1, 2,...... (15)

Note that ‘

Pr(x1) —Pa(x2)=Ln(x1—%3), n=1, 2,...

If Ln is non-singular for all x;, x, € X with x;#x, and P.(x)=0
for some xzX then it is obvious by (15) that (1) has a unique solution
xin X, :

The condition Ly, being non-singular imposes severe restrictions
on X, but never the less it may sometimes be true. The following
theorem which is trivially true for n=1 is a positive result in

this direction.

Theorem 6. Assume :

l—’
(@) the linear operators L, n=2, 3, .. are non-singular for all
Z, 21,0+, Zn_1EX.
(b) there exist Clly Cl,z-’"" Cln—ls CZI, C22,"" CZn—IEF

such that
Ma(Cylx,+Colxo)(Ci2x1+Ca2x2) - (C* "Lx(+ Coh X, ) (X1 —x2)
=Ma(x,"—x5"), n=2, 3... (16)
for all x;, x:6X and

—
(c) there exists X such that Pp(x)==0 then
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- = —_
(A) Pa(x1)~Psi(x2)=Li(x; —x2), n=1, 2,... for

all xy, x,¢X (17
(B) the solution x of (1) is unique in X,

Proof. We have

Pa(x1)—Pr(x2)=Mnx,"+M;x; —(Mnx,"+Mpx,)
=Mn(x;" —x,")+M;(X; —x3)

=La(x;—x2) by (16)
with, zz=2Cikx, +Cskxy, k==1, 2,...; n—1 and z=z,
If x’ is another solution of (1) then by (16)

‘=
La(x—x")=0
and by (@) x—x'=0 or x=x'. _

Remark 1. Equation (16) 'constitutes a systemi of . 2(n—1)
unknows with n+1 equations with respect to Cy! , Ci3,e, Cf° s Cat,
Cyeey G L The number of unknowns U(n) is greater than the
number of equations E(n) if n>>3. This implies that (16) may not hold
for n>3.

However for n=2 or 51;3, (16) becomes respectively

2C;1—1=0 ] 7
2C1—1=0 l} (18)
C11=Czl J
Cllclz':‘ ]
0210222‘ .
(19)

[
|
Ci1C2+Co1C2—~Cy1C2=0 |
[
Cl1C2—C1C2—-C,IC2=0
System (18) has the solution v
C1=Cyl=} L (20)
and system (19) has an infinity of solutions given by the equatlons
(Ci12H(C31)?2="C41C,t :
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C17/0, G170
1 1 .
Clz:?li\ , C22=€2T in F==C.

The solution (20) suggests that (1) has a unique solution x in
star-shaped regions. To prove that we first need the following

definitions.
Defipiticn 15. Let w be fixedin X. A set Sy is said to be
star-shaped with respect to weX if ‘
{z:z=wt+H(y—2),0<1<1, yESu}< Sw
The set #S, defined by
nSw=“-{Z . Z""W‘l‘t(y""z), yESuh OStSn}, n:l’ 29
obviously contains S,, and is likewise star-shaped with respect to w.
Note that a special case of star-shaped regions are the convex

sets.

- ,
Theorem 7. If L, is non-singular for all z5Sy, then

— —
(A) Py(x1)#Py(x2)
for all x,€2Sy

(B) If Fz(z)=0, z€S,, then z is the unique solution of the
equation
—
P2(x)=0 iS Sw.
Proof. If x,62S,, then x==1(x;+x,)2S,, and (A), (B) now follow
from theorem 6.

Note that a similar theorem can be stated if Sy is replaced by a
eonvex set C X in theorem 7.

— — o e
Also note the fact that Px(x;)=Py(x,) implies that L, is singular
at x=4% (x;xx;) is analgous to Rolle’s theorem for real scalar

functions.

An illustration of this situation will be given.
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Example 3. Consider the differential equation

2
X 1 141=0, 1[0, ). D)

x(0)=0
x'(0)=0
As X take Cy” [0, ), the space of all continuously differentiable
(twice) real fnnctions x=x(t), 0<t<o0, such that x{(0)=0, x'(0)=0,
and as Y take the space C[0, ) of all continuous real functions
My=M(r) on 0<t<oo. Equation (21) is a quadratic equation of the
form (1) with n=2, with
42
MzXZF: _dg N M1x=t, M0=1.

The derivative

—
Po/(x)=2M,x+M;#0 for all x¢X.
It is easy to verify that

s=x()=—( 5-+1)

is the unique solution of (21) in X,
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Abstract

In many branches of science, problems arise in which it is
desired to solve ill-posed problems in the form of integral equations

of the first kind.
V kon) fOM—gn)  csx<a

In this paper we shall employ two different. metho‘ds to solve
mildy, moderately and severely ill-posed problems, available .in the
literature, the Methods are as follows : '

() Generalized cross-validation regularization method using
trigonometric polynomials. ~

(ii) Maximum Likelihood regularization method using trigono'- '

metric polynomials.

The two methods will be tested on integral equations of first
kind of convolution type and graphs will be drawn for comparison
purposes,

In this paper we discuss the use of Trigonometric polynomials
approximating spaces with the different values of p; which is the:
order pf _regularization.
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We shall approximate

o0
§ Ke-» 70) d=5t), —o0<x<o0 )
— 0
by replacing it by
1
Ky ho®= By G=) f0)dr=g, ) )
A _

where kN is periodically continued outside (0, 1), then it can be

proved that the discretization error in the convolution is precisely
zero at the grid points {x,}, [2].

1. Method 1, using Trigonometfic polynomials :
Consider the integral equation (1)
In tikhonov regularization, the approximate solutions f,\ are

defined variationally by [13].

€U N=Min { | |Kf—g[ ] e} @)

where w is some space of smooth functions and A>>0 is a regulariza-
tion parameter.

Here § is some non-negative “stabilizing” functional which
controls the sensitivity of the regularized solutions f/\ to perturba-

tions in g.
We shall restrict our attention to pth order regularization of the

form.

2 2 ’
ctrsn=| | kr=g| | +a[[sP]] @
which is minimized over the subspace H? cL,.

Both norms in (4) are L,. f (») denotes the pth derivative of f
and ) the regularization parameter.
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2. Pth order Regularization Filters for Convolution Equations.

Consider the smoothing functional C(f:2) of equation (4) with
()= } ‘f(p) | /z Working in L, ((R) we have in the case of the
convolution equation (1). '

C(f; M= [ \k(x)*f(x)—g(x)‘ ]i +ll' [f(p)i ﬁ
i {| [l o oo

2
2
using plancherel’s identity, the convolution theorem for FTs and the

propery (f( p)$=(iw)1’f

Thus
e} - =3 -
C (0= § { i - trwerff } aw
—

e.0) - -
—§ {1ke tan 7R —d i+ 122 Jaw
— 0 ’

foe) 2

=2—ig (]]Aclz - Aw2?) lf_ ,Aﬁkg__ daw
o | k| 24aw??
@ 2
2p
+ 2§ el g, ©)
T o Lkl
clearly C(f; ) is minimized w.r.t. f when
A A A
F o= s 2) B KO
[ k[ 2+2aw2? k(w)
A
2
where z(w ; \)= — Lkl ®
[k 2 +aw? ‘

z(w ; A) is called the pth order filter or stabilizer.
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(7) can be written as £, ()= ?1“5 2w 5 2) gA(L) Exp (iwy) dw  (9)
" k(w)

We assume throughoat that the support of each function f, g
and K is essentia!ly finite and contained within the interval [0, 1)
possibly by a change of variable. It is then convenient to adopt
the approximating function space TN—I of trigonometric poly-

nomials of degree at most N—1 and period 1, since the discretization
error in the convolution may be made exactly zero at the grid points
and FFTs (Fast Fourier Transforms) may be employed in the

solution procedure. Let g and K be given at N equally spaced
points xa=nh n=0, 1, 2,..., N—1. with spacing A= % Then g ard

K are interpolated by N and KNE TN—-—I’ where

N-—-1
1 A ,
gN= R 2 EN. g O%P (zwqx) (10)
q=0
N—1
A
gN, q=z g, €xp (—zwqxn ) (11)
n=0
and
g (xn)=gn=gp (¥a) , wg=2rq (12)
with similar expressions for kN'
In TN—I , f7\ in (9) is approximated by
A
N=1 &N q
N ;l(x)= qiozq;k —24 exp (zw—q x) (13):
k N, g
where Zq oy is the discrete pth order filter given by
Enog f
N s 4 )
s R ”

A 2+N27\w 2p
[KN » q J !
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where
w = {
q IL wN_q IN < g <N-1

The optimal ) in (14) is still to be determined.
Choice of Regularization parameter in Trigonometric Approximation,
We mention below two specific Methods of choosing A in the

context of trigonometric regularization. The choices are optimal
in various senses.

3. Wahba’s cross-validation Method (CV) [15]
From equation (13) we know that the filtered solution
N (x) €Tn_1 which minimizes

NZ—-1[(K * ) (xn)—gal2 Al £(®) ('x)ll2
n=0 N 2
N—1
Cisfy L= o ZIN L, qe P (2mign),
CINLAWIT Nog=0 0 M0 1

where

A
| EN,q
fN,x,q“Zq;M
N,q
A 2
with Z JKN’q" w0
wi L, = A 21 N2yw, 2P
q;2 1 [ 4
KN, q
([w ,0<g<iN
wherew = <{ 9
9 | wn_g »3N<g<N-1

L

The idea of generalized cross-validation (GcV) is quite simple to
understand. Suppose we ignore the jth date point g; and define the
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¢ -
filtered solution N /\(x) ¢ TN—I as the minimizer of

N-1
3 Ky * ) =gl G
n=

n#j
(J‘
then we get a vector gy ,€ Ry defined by
vl o
’EN,,\:KZN,)\ : (15)
!

Clearly the jth element ENLA, j of equation (15) should *pre-

dict” the missing value g We may thus construct the weighted

mean square prediction error over all j.
N—1 [“]

== 1 — .
V(Q,p) F]‘:—Z‘:O wj()\)(gN,K,j g])z ; (16)

The principle of GeV applied to the deconvolution problem
then says that the best filtered solution to the problem should
minimize the mean equare prediciion error in (16). Thus the opti-
mal A minimizes V (a, p) for given p and does not require a know-
ledge of &2,

To minimize V (A, p) in the form given by equation (16) is a
time consuming problem. Wahba [15] has suggested an alternative
expression which depends on a particular choice of weights, result-
ing in considerable simplification. Let

‘ZN,/\ = (fN’)\ (x0)9"'fN’;\(xN_1))T (17)
and define
EN, 2 = KN, (18)

then there exists a matrix A (3) , called an influence matrix such that
BN = A Mgy (19)

 LetK = disg (h Ky ) and Z = diag (Z, . ,)
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then from (25) we see that

N = gkt Z ZN | (20)
A H
where gy =Y gy (1))
AH (22)
andso A(Q)=¢Z¢
A H
since K = ¢ K ¢y (23)

Wahba [15] has shown in a more general contest, that the choice
of weights.

wy (A) =I

1—a;; (3) 2

_11? Trace (I—A (1) )

where A (3) is the influence matrix in equation (19), enables ‘the
expression (16) to be written in the simpler form

b “(I —A () gy q

[W Trace (I—-A (1)) ]

- 113 25)

From equation (22) it follows that
1 a—zy .. I
|- g,

VO, P =7 S
l'I\f Trace (I—Z)]
ie.,
1 N-1 A ]2
— 3 (1-Z ..)p
N ;20 (=243 8N, ¢
7 N—1 2

[~ Z a-z, )]

Since the matrix A (1) in (22) is c1rculant the we1ghts in (24)
~are -all unity. - The expression in (26) is minimized using NAG
-Routine E04 ABA, which uses a quadratic mterpolatxon techmque
to obtain a minimum. :
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3.1 Maximnm Liklihoed Method (ML) 7
For the details of the Method, the reader is refered to [ 1] and

[2,3]
We shall estimate the value of the regularization parameter by

minimizing the function,

—_ 2
Vmp ()= 3N log [jii! &N, q[ 1=z, 7\)}
N—1 '
—b B (-7, (28)
equation (27) yields the optimal value of the regularization para-

A
meter A , depending on the known Fourier coeflicients 8N, q and
) H]

A
Ky q No prior knowledge of 2 is assumed but an a posteriori

estimate is given by equation,
1 N—l A

2
° N 8N, g

2

(1-z,.) (28)

q:l i

4. Test problems.
Problem P (1) This problem has been taken from [ 51,
4.4 o
and is given by f4 12< (x=»)f(») dy=g (x)

where f (x) and K (x) are both Gaussian
, . 1 x2
ie. K(x)= Ve Py CXp (— ) )

1 2
nd f() = exp (5 0

then g (x) is also Gaussian with a standard deviation
=4/ “o2+or? » the data of Johnson [ 8, 9] listed in Table 1.

- were obtained for ok = 1,0, =0.7; g (x) was sampled - at the
, poin‘ts xg=0.2(9—22),9=1,2, ....... 44 , and normally distributed
noise With a standard deviation of 3.3%was added to £ (xg) walues,
The data graph showing the values of /', K and g in DIAG(1);
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Problem P (2) : This example has been taken from Turchin [ 14]

and is given by

3.1
{ K (x—y) f(») dy=g (x)

it is a moderately ill-posed problem. where fis the sum of two
Gaussian functions,

f(x)=0.5 exp [- gxﬁgﬂz] exp [ (x0 :)86)2 ]

the Kernel K (x) is Triangular and is given by,
[ (5/8 (—x+0.8) 0 < x<0.8

K(x) =< (5/8) (x+0.8 —0.8 < x<0
') o ,
L o [x/ = 0.8
the essential support of g (x) is —2.1 <x<<2.3
The fuuctions are displayed in DIAG (2) with a spacing 0.1.

Proplem P (3). This example has been taken from Medgyessy [10]
The solution function is the sum of six Gaussians aud the Kernel is
also Gaussian.

we have

(e o]
JS KE=»)f0)dy=g(x)
—o0

6 2 A
he =X A, e [ L) ]
where g (x) oy Xp o .

Ar=10 a; = 0.5 g1 = 0.04
A =10 « =07 B, = 0.02
As; =35 a3 = 0.875 B3 = 0.02
A,=10 wg = 1.125 B4 = 0.04
AS =35 oy = 1.325 Bs = 0,02
Ag=5 o= 1.525 B4 = 0.02
The essential support of g (x} is *<x<<2.
the Kernel is.
2 .

\/7':7.
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with essential support (—0.26, 0.26)

The solution is

= kg=1 { ( pkﬂ—kx )%A"e"p[__%i)}

with essential support (0.26, 1.74).
The functions are given in DIAD (3).

Addition of random noise to the data fuactions. : L
In solving the problems P (1) to P (3) we have considered the
data functious contaminated by varying amounts of random noise.

To generate sequences of random errors of the form €n=0, 1..N—1.
We have used the NAG Aigorithm GO5DDA which returns pseudo-

random real numbers taken from a normal distribution of prescribed :
mean A and standard deviation B.

To mimic experimental errors we have have :

A=0

_ X max l g
B= 100 o<n<N—1| "
where X denotes a chosen percentage, e.g. X=0.7, 3.3 and 6.7.
Thus the random error £, added to g, does not exceed 3x%, of the
maximum value of g (x).

- Q9)

4., Numerical Results :

In this section we describe the application of the two methods
to the test problems P (1)—P (3), Results are shown in Table 2.

Example P (1),

() GCV Trig. worked very well in the case of clean data, in
the case of 3.3%, noise the solution is good as shown in
DIAG (4). ' _

(#)) ML Trig. did not yield a good result in case of clean data,
though it has resolved the peak quite clearly, but in the
case of 3.39, noise the solution is best as shown in
DIAG (5).
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Example P (2) :

(i) GCV Trig. For clean data the results are quite good re-
solving the two peaks very clearly. In the case of 1.79%
noise, when we increased the order of regularization from
P=2to P=3 the solution improved as shown in DIAD (6).

(it) ML Trig. For Accurate data the results are quite pood
resolving two peaks very clearly but for 1.7% noise it could
not resolve the peaks very clearly. When P=3 the solution
improved and resolved the two peaks as shown in
DIAG (7).

Problem P (3) :

(i) GCV Trig. For clean data the method resolved, all the six
peaks and the resolution in this case is better, but for
1.79% noise this method could resolve only four peaks
clearly as shown in DIAG (8).

(ii) ML Trig. For clean data the method succeeded in resol-
ving all the six peaks, butfor 1.7% noise it has resolved

* 5 peaks as shown in DIAG (9).

Concluding Remarks.

The overall performance of the methods applied to mildly,
moderately and severely ill-posed problems is quite good, both
trigonometric methods are equally good for low noise level and for
mildly. and moderately ill-posed problems. For higher levels of
noise and for severely ill-posed problems negative lobes at the end
points is not acommendable feature, therefore for such problems

extra information is needed such as non-negativity.
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TABLE 1

Johson’s Test Data

1 g %q 7 q %
1 —4.2 0.001 23 02 0328
2 —4.0 0.002 2 0.4 - 0305
3 —3.8 0.003 25 06 0.295
4 —3.6 0.004 26 08 0259
5 —34 0.007 27 10 0229
6 —3.2 0.010 28 12 0.19%
7 —30 0.016 29 14 0167
8 2.8 0.023 30 1.6 0.140
9 _26 0.034 31 L8 0.108
10 —24 0,046 32 20 0084
1 22 0.066 322 0065
12 —2.0 0.085 34 24 0.048
13 ~1.8 0.107 35 26 008
14 ~16 0.149 36 28 0024
15 —1.4 0.166 37 30 00l6,
16 —1.2 0.206 38 32 . GOtk
17 —-1.0 0.236 39 3.4 0.607
18 08 0269 40 36 0004
19 —0.6 0.293 41 38 0003
20 —0.4 0.303 42 40 0002
21 —0.2 0.226 43 42 0001
22 +0.0 0.321 4 44 0.000
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DIAG (1) PROBLEM (DIERCKX (1))
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DIAG (2) PROBLEM (P (21 )
DATA GRAPH OF PROBLEM (2!
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DIAG (3) PROBLEM (P (3) )
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1.00 - DIAG (&) PROBLEM (DIERCKX (1}
SOL. BY OCV. TRIG. METHOD WHEN MaN)
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100 DIAG (5) PROBLEM (DIERCKX (1)
SOL BY M L TRIG. METHOD WHEN M=N)
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128 DIAG (6] PROBLEM (2)
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DIAG(7) PROBLEM (2)
SOL BY M.L.TRIG. METHOD WHEN M=N)
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3z.oor DIAG (8) PROBLEM (3):
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DIAG,{3) PROBLEM (3)
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ABSTRACT

Coincidence theorems generalizing the coincidence theorems
of Goebel and Park are proved for a pair of maps on an arbitrary
set having values in a metric space. Apart from giving a few
applications on normed spaces, some known fixed point theorems
for a pair of commuting maps on a metric space are improved.
Finally, new kind of convergence theorems for a pair of séquences
of maps on an arbitrary set having values in a metric space are

proved.*

1. Introduction and Definitions.

Throughout this paper, let A be an arbitrary set, (X, d) a metric
space and S, T maps on A with values in X. A point Z in A is said
to be a coincidence point of S and T if Sz=Tz. Sz=Tz may be called
coincidence value of S and T at a coincidence point z.

‘Consides the following conditions :
(L1) S(A) €T(A);

(1 2) d(8x,Sy) € kd(Tx, Ty)
for every x , y in A and some k in(0, 1);

*AMS (MOS) Subject Classifications (1980) ; 54H25, 47H 10 Mallmg
addresses ; 90, Adwaitanand Road, Rishikesh 249201 India
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1.3) d(Sx,Sy) < k. max {d(Tx, Ty), d(Sx, Tx),
d(Sy, Ty),d(Sx,Ty),d(Sy, Tx)}
for every x , y in A and some k in (0, 1) ;
(1.4) for a given £> 0, there exists a 8§<C0 such that for
x,yin A, €<d(Tx, Ty) <£43 implies d (Sx, Sy) <&
and Tx=Ty implies Sx==Sy ;

(1.5) for a given €>>0, there exists a 3 >0 such that for
, yin A,
€ S max { d (Tx, Ty), [ d (Sx, Tx)+d (Sy, T»}/2,
[ d(Sx, Ty)+-d (Sy, Tx)]/2}
< €438 implies d (Sx, Sy) <&.
Note that (1.2)=(1.3) and (1.2)=(1.4)=(1.5).

The following coincidence theorem of K. Goebel, proved in 1963,
has recently drawn some attention (see, for instance,

(111, 131, [18D.

Theorem 1.1 ({6]). If T (A)is a complete subspace of X then §
and T satisfying (1.1) and (1.2) have a coincidence point in A.

The well-known Meir-Keeler [9] type contractive condition (I 4)
with A=X and T the identity map on X has been extensively
studied, among others, by Ciric [3], Maiti and Pal [8], Park [13],
Park and Bae [14] and Park and Rhoades [151. Using the fixed
point theorem of Meir and Keeler [9], Park has established the
following coincidence theorem.

Theorem 1.2 ([13]). If T (A) is a complete subspace of X then
S and T satisfying (1.1) and (1.4) have a coincidence point Z in A
and (ST™Y)"x, converges to Tz for all x, in T (A).

Theorems 1.1 and 1.2 were proved using known fixed point
theorems. In 2, without using any fixed point theorems, we prove
.coincidence theorems (Theorems 2.1 and 2.6 below) for maps S and
T satisfying (1.3) and (1.5), which generalize Theorem 1.1 and
1.2. These results, apart from yielding significant variants of
known fixed point theorems for a pair of commuting maps on a
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matric space, are applied to establish new fixed point theorems
in Banach spaces, which improve considerably the corresponding
results in [6] and [13].

Let P, be a sequence of maps on X with a fixed point z, and P
the limit (pointwise or uniform) map of P, with a fixed point z.
Several mathematicians have investigated the conditions under
which z, may tend to z (see, for instance, Bonsall [1], Nadler [10],
Singh [19], Rhoades [17] and Istratescu [7]). Let S, ,Ta be two
sequences of maps from A to X and S, T their limit (pointwise or
uniform) maps from A to X. Further, let z, be a coincidence
point of Sp and Tn for each n=1,2, ..... and z be a coincidence
point of S and T. Since S and T (or S, and T,) may have
more than one coincidence point, even under the condition (1.2),
it is not safe to talk of z, tending to z, when A is also a metric
space. So the question is whether Spz;=T,z,; will tend to Sz="Txz.
In §3, we investigate the conditions under which S,z, tends to Sz.
Such results (Cf. Theorems 3.1—3.3) may be called convergence
theorems for coincidence values. It may be mentioned that the
coincidence value of S and T satisfying (1.3) is always unique if
coincidence points exist.

I will denote the identity map on a space under consideration,
and, in § 3, k satisfying (1.2) or (l.3) or similar contractive
conditions will be called control constant. C (ST) will denote the
set of all coincidence points of S and T, ie. C (ST)={z¢ A ;
Sz=Tz}.

If for a point xp € A there exists a sequence {x,} of points of A
such that Txp,1=S8Sxn,n=0,1,2, ...... , then

0(S, xp, T)={Txn :n=1,2,..... }
will be called the orbit for (S, T) at xo. We shall use 0(S, x5, T)
as a set and as 4 sequence as the situation demands. Note that
(1.1) always guarantees the existence of an orbit 0(S, x,,T) for
every xp € A.

We shall call X to be (S, xq, T)-orbitally complete if 0 (S, xo, T),
the ciosure of 0 (S, x,, T), is complete. It is obvious that the com-
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pleteness of X implies the orbital completeness, and the space
may be (S, xy, T)—orbitally complete without being complete (see
Example 2.4 below).

2. Coincidence and fixed point theorems,

Theorem. 2.1. Let S and T satisfy (1.3). If there exists a point
xo in A such that T (A) is (8, x;, T)—orbitally complete then.

(/) S and T have a coincidence point z,

(i) 0 (S, xq, T) converges to Sz=Tz,

(iii) for z; € C (ST), i=1, 2,...... s

SZ‘=TZ¢=SZj=TZj, i, j=1, 2, ......

Proof. Following Ranganathan [16] (see also [5]), it can be
shown that {Tx,} is a Cauchy sequence. Then {Tx,} has a limit
in T (A). Call it p. So there exists a point z in A such that
2 € T7lp, that is Tz=p. Clearly Sxz—~p. Now replacing x by xa
and y by z in ([.3) yields, in the limit, Sz=Tz, This proves (i)
and (7). .

To establish (iii). let z; and z; (i #j) be coincidence points of S
and T. Then fori # j,

d (Sz;, Sz;) < kmax { d (Tz, Tz), d(Szi, Tz,), d Sz;, Tzy),

d (Sz:;, TZj), d (SZ]', TZ_,,) }
= k d (Szi, Szy),
yielding Sz;j=S8z;. This ends the proof.

Since S (A) © T (A) implies the existence of an orbit 0 (S, xo,T)

for every xg € A, we have :

Corrollary 2.2. If T (A) is a complete subspace of X then S
and T satisfying (1.1) and (1.3) have a coincidence. Furthermore,
the coincidence value is unique. '

Corollary 2.3. Let S and T be maps on a metric space. X and
satisfy (1.3) with A=X. If, for some x, € X, T (X) is (S. xo, T)—
orbitally complete and S, T commute on C (ST) then S, T have a
unique common fixed point and 0 (8, x,, T) converges to the fixed
point,
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Proof. In view of theorem 2.1 there exist points p in T (X)
and zin X such that O (S, xy, T) converges to p=Sz=Tz. Since
z € C(ST),

Sp=STz=TSz=Tp.
So
d(Txn41, Tp)=d (Sxn, Sp)
<€ k. max { d (Txn, Tp), d (Sxn, Txy),
d (Sp, Tp), d (Sxn, Tp), d (Sp, Txy)}

yields, in the limit, d (p, Tp) < k d (p, Tp), proving p=Tp=Sp.

The uniqueness of the common flxed point follows easily from
(1.3) or from the fact (Cf. Theorem 2 1 (iii) that the coincidence
value p=Sz is unique.

Ranganathan [16] and Das and Naik [5] have independently ob-
tamned the conclusion of Corollary 2.3 in a complete metric space X
with some additional conditions, namely, S (X) € T (X), T conti-
nuous and S, T commuting on X. Example 2.4 (below) shows that
Corollary 2.3 is indeed superior to their result. Ciric’s result
[4, Th. 1], one of the important generalizations of the Bancah con-
traction principle is exactly obtained from Corollary 2.3 by taking
T=1I which however cannot be obtained from [16] or [5] as the space
therein is complete.

Expmple 2.4. Let X be the set of nonnegative rationals and 4
the absolute value metric on X. Let S be the identity map on X
and T be defined over X by

. [ 5x, x < 1,

Tx = <
L 10x, x> 1.
Clearly for any x, y € X,

d(Sx, 8y) < (1/5) d (Tx, Ty),

and all other hypotheses of Corollary 2.3 are satisfied for xq=1/5.
Thus Corollary 2.3 guarantees the unique common fixed point,
namely 0. Note that X=S (X) ¢ T (X). T is not continuous and X
not complete.
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.+ The following example illustrates Theorem 2.1 and shows that
Theorem 2.1 is indeed a generalization of Theorem 1.1.

Example 2.5. Let A={q, b, ¢ }, X={1, 2, 3} and

d(l,1)=d(2,2)=d (3, 3)=0,

d(1,2)=d (2, 1)=d (1,3)=(3, N=3/2,

d (2, 3)=d (3, 2)=2.

Further, let S, T : A—»X be defined by
Sa=Sh=1, Sc=2

and Ta=1, Th=2, Tc=3,

Then (1.1) and (1.3) are satisfied for any k € [3/4, 1). So
Theorem 2.1 applies. However, theorem 1.1 is not applicable as S
and T do not satisfy (1.2), since

d(Sa, S¢)=d (Ta, Tc).

Now we present a generalization of Theorems 1.1 and 1.2.

Theorem 2.6. Let S and T satisfy (1.5). If there exists 4 point
xo in A such that T (A) is (S, xo, T)—orbitally complete then the
conclusions (i)—(iii) of Theorem 2.1 are true.

Proof. If for some n, Sxn=Txn4;=Txn, then we are done. So
assume that Txu4,#Tx, for each n. Now following the technique
used in the proof of Theorem 4 of Park and Rhoades [15] it can be
shown that {Txs} is a Cauchy sequence. So {Txp} converges to
some point p in T (A). and there exists a point z in A such that
Tz=p. Assume that Sz # Tz. Then

0 # max { d(Txn, Tz), [ d (Sxn, Txn)-+d (Sz, Tz) 1/2,
[ d (Sxn, Tz)+d (Sz, Txn)l/2 }=K(xn, z), say.
So from (1.5),
d (Sxn, Sz) < K (xa, 2),
and one of the following must hold :
d (Sxn, Sz) < d{Txn, Tz)
2 d (Sxn, S2) < d (Sxn, Txn)+d (Sz, Tz)
2 d (Sxn, Sz) < d (Sxn, Tz)+d (Sz, Txp).
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-Making n->co these relations yield

d (Sz, Tz)=0.
Consequently Sz=Tz. This ends the proof of (i) and (i7). The proof
of (iif) follows easily. '

Corollary 2.7. Let S and T be maps on a metric space X and
satisfy (1.5) with A=X. If, for some xo € X, T (X} is (S, X, T)—
orbitally complete and S, T commute on C<ST) then S, T have a
unique common fixed point and 0 (S, xy, T) converges to the fixed
point.

Proof. An appropriate blend of the proof of Corollary 2.3
yields the result. «

Corollary 2.7 includes several fixed point theorems from
12,8,9,14]. Indeed. as noted in [14], Boyd-Wong’s fixed point
theorem for nonlinear contractions [2] is included in Corollary 2.7.

Let Y be a Benach space and F an operator on Y. Further,
let «, B be numbers, | « | # | B | and FaB—cxI+BF wherein I is the

identity operator on Y. Note that if
F aﬁz=z=Fﬁ o2

then
~az-+PpFz=fz+aFz,

and z is a fixed point of F. Hence applying Theorems 2.1 and 2.6,
we have the following results.

Theorem 2.8, IfF p(Y) c F LLY) and F LY)isa closed sub-

set of Y and
|]Fan—-Faﬁy]| < k. max { IIFB“x—FB“yH,

”Focﬁx_Fﬂax”’ ”FOLBy—FBG.y”’ o
”Fapx—FpaJ’“» FHFapY’_FﬁaxU }

for all x, y in Y and for some k in (0, 1), then F has a umque ﬁxed
point.
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Theorem 2.9. Suppose that Fap(Y) C Fﬁa(Y)’ Fﬂz(Y) is a. closed

subset of Y, and that for a given € > 0, there exists a 3 > 0 such
that for x, yin Y,

6 S max { ”Fﬁax_Fﬂacy”’
[ IF yg—Fgo xl-+1F gy —Fg, 2l 1,
[ I g% —F g, |+IF gy —Fg, 1 112 }

< €+3 implies ”Faﬁx_FaBy“ > &

Then F has a unique fixed point.

“Therem 2.8 and 2.9 generalize the corresponding results in [6]
and [13]. '
" The following result is evidently a special case of Theorem
2.8. o
Corollary 2.10, IfF(Y)=Y and
max { |x—yl, lx—Fxl, ly—Fyl,

Ix—Fyll, ly—Fx|}
= lx—Jylik

for all x, yin Y and some &k in (0, 1), then F has a unique fixed
point.

It is interesting to observe that Corollary 2.10 is the Banach
space version of Corollary 2.3 with S as the identiry map on the
space.

§ 3. In this section we consider theorems concerning uniform
and pointwise convergence of sequences of coincidence values.

Theorem 3.1. Let Sy and Tn be maps from A to X with zn as
their coincidence point for eachn=1,2, ........ Let S, T: A—>X with z
as their coincidennce point satisfy (1.3) for every x, y in A and some k
in(0,1).  If the sequences {Sn} and {Ts} converge uniformly to S and
* respectively on {Z} , then
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Srzn=Tnzp— >Sz="Tz.

Proof. We have for any =,
d (Snzn, S2) £ d(Suzn, Szn)+d (Szp, S2)
< d (Snzn, Szp)+k. max {d (Tza, T2),

d (Szn, Tzn), d (Sz, Tz), d (Sza, T2),

d (Sz, Tzn)}
= d (Sazn, Szu)+k. max {d (Tzn, Sz),

d (Szu, Tzy), d (Szq, Sz)}
So one of the following must hold :

d (Snzn, Sz) < d (Suzn, Szn)+k [ d(Tzn, Tnzp)+d (Snza, S2)]
ie. (1—k)d(Snzn, Sz) < d(Snzn, Szn)+k d (Tzn, Tnzs) ;
or (d (Snzu, S2) < d (Suzn, Sza)-+k [d (Szn, Snz.)+d (Tnza, Tza)]
=(14k) d (Suzn, Sza)+k (Tnzn, Tzs) ;

or  d (Suzn, S2) € d (Snzn, Sza)+k [d (Snzn, Szn)+d (Sazn, S2)]
i.e. (1—k)d(Snzn, Sz) < (14k)d (Saza, Szn).
These inequalities together imply
d (Sazn, Sz) < max {1/(1—k), 1+k, (1+k)/(1—k)} d (Sazs, Sz»)
+max {k/(1—k), k} d (Tazn, Tzn)
=(4+k)(1—k) d (Snzn, Szn)+k/(1—k) d (Tuza, Tza).

Since Sip-»S and T4—>T uniformly on {z}, for fixed Zi > 0, i=1, 2,
we can choose positive integers N; and N, such that
1—k
2(1+k)

d (Tazp, Tza) < lz_—kk &, for all n = N,.

d (Snza, Suz) < ¢, for all n>N, and

Choose N=max {N;, N} and £=max {<; , S}, Then forallz >3 N
we have
-d (Spzn, 82) < £[2-+2[2=C.

Hence Spzan—>Sz.

Theorem 3.2. Let S, and Ty be maps from A to X with Zn as their
coincidence point for each n=1,2, ........ Suppose that

(3-2) d (Snx, Sn}’) S k. may {d (Tﬂx’ Tﬂy)’ d(sﬂx’ Tnx), d(S”yT”y)

d (Spx, Tn}’), d (Sny, Tn’c)}
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for every x,y in A, for each n=1, 2,......... and for the same control
constant k. If S, T : A—=X are pointwise limits of {Sn} and {Tn}
respectively. then S and T satisfy (1.3) with k as control constant.
Further, if z is a coincidence point of S and T then Sp zg=Tnzn—>
Sz=Tz,

The restriction that the pair (S,, Tn) satisfying (3.2) has the
same control constant k seems to be a trifle severe. We relax this
restriction in the foljowing :

Theorem 33 Let Sy and Ty be maps from A to X with zn as their
coincidence point for each n=I, 2,...... Suppose that the pair (S;, Tn)
satisfies (3.2) with control constant ka for every x, y in A and for each
n=1,2,..... If S, T: =X are pointwise limits of {Sn} and {Ty} res-
pectively, and if kn—>k € (0, 1), then S and T satisfy (1.3) with k as
control constant. Further, if z is a coincidence point of S and T then
Sn Zp=Tnzn—=>Sz="T=.

In the absence of the condition “kz—>k € (0, 1)’, Theorem 3.3
breaks down in general (see Example 3.0 below). Incase A=X
and T=I, Theorem 3.3 without ““kq,—k £ (0, 1)’ becomes false, in
general, and Sp z:=2z, need not converge to Sz=z as can also be seen
using Example 1. of Nadler [10].

Proof of Theorem 3.3. For any x. y in A, we have
d (Sx, Sy) <d(Sx, Sux)-+d (Say, Sy)+d (S.x, Sny)
< d(Sp, Sux)+d (Sny, Sy)+kn. max { d (Tpx, Tny),
d (Sax, Tax), d (Suy, Tay), d (Sux, Tny), d (Sny, Tax)}.

This yields (1.3), since Spx >Sx, Tpx >Tx for every x in A and
kn—>k as n—o0.

We now show that S,z,—Sz. For eaché€, 0 < € 1—k, there
exists N > O such that for all # > N,
: 1—-k—€
2 (1+k+¢)
1—k—€
2 (1+k+¢€)

d (SnZ, SZ) < e ’

d(Tnz, TZ) < E ’

and kn < k+€
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soforns N
d (Snzn, Sz) < d(SnZa, Sa2)+d (Saz, S2)
kn.max { (d Tozn, Taz), d (Suza, Tnza),
d (Suz. Tnz), d(Suzn, Ta2),
d (Snz, Tnzn)}+d (Suz, S2),
£ (k4€). max { 4 (Suzn, Tu2), d (Snz, Tyz),
d (Snz, Snzp)}+4d (Suz, Sz2).
So one of the following relations must hold forall» > N :
d (Snzn, Sz) < (k+£) [ d (Saza, S2)-+d (Tz, Trz) ]
+d (Spz, S2)
i.e. d(Snzn, S2) < (1—k—£)71 [ d (Snz, S2)+(k+€) d (Tuz, T2) ],
or d(Snzn, S2) < (k+€) [ d (Snz, Sz)+d (Tz, Tyz) ]
+d (Snz, Sz)
= (1+k+€) d (Saz, S2)+(k+<) d (T2, Taz) ;
or d(Suzn, S2) < (k+8) [ d (Suz, S2)+d (Sz, Snzu) ]
+ d(Saz, Sz2)
i.e. d(Sazn, Sz) € (I14+k+25) (1—k—£)"! d(Saz, S2),

Hence for alln = N.
d (Sazn, Sz) < max { (1 —k—&)7L, (1+k+%), (1-+k+£)x
(1—k—€)71} d (Saz, S2)
+max { (k+€) (1—k—9)7, k+¢} d (Taz, T2)
}i]’:if [ dSaz, SO)+d(Taz, T)]
—k—¢ ,
<E&

n N

<

This.ends the proof.

Now we illustrate the results of § 3. In all that follows Q
denotes the set of rational numbers.

Example 3.4. Let A, X and S,, T» : A—X be such that
A={x€Q:x =1}, X={x€Q:x<0},

’ 2n-+5
Sur= 1= G
Teo Ll _ 6nil3

) 8nt16 ~°
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and d be the usual metric on X.

Then Sx==—(1+x)/2, Tx=(1—-3x)/4, z=3,
Suza=Tazp=—(4n+9)/(2n+3), za=(6n+12)/(2n+ 3).

Clearly,
d (Sx, Sy) < k d(Tx, Ty) for any k 6(_52_’ 1), and

Spzn—>—2=8z. This illustrates Theorem 3.1.

Moreover, since

d (S, Say) =d (Tux, Tay), kn = +10 2

6nr13 ~ "3

< 3 d(Tax, Twy),

this example illustrates Theorems 3.2 and 3.3,

The following example shows that Theorem 3.3 breaks down
in the absence of the hypothesis “k,—k € (0, 1)".

Example 3.5, Let A={x€Q:x>1},X={x:x<0},

and Spx= —3j— 2L oy (D Qetl)
4 2
x€ A. Then
d (Sux, Suy)=kn d (Tux, Tny), kn = 7%__>1,

and for z,=4n%/(2n4-1).

Sazn=Tazy= —%—n—» — 00,

Moreover, 8x=—(1+x)/2, Tx=(1—x)/2, d(Sx, Sy) < d(Tx, Ty)
and there exists no point z in A such that Sz=Tz.

If we take A=X, T=I in Theorems 3.1—3.3, then a multitude
of results regarding the convergence of sequences of maps and the
sequence of their fixed points are obtained. Theorems 25 & 23 of
Rhoades [17], for example, are obtained from Theorems 3,1 and
3.2.

Since Example 3.5 shows that S and T satisfying (1 1) and
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(1.3) with k=1 need not have a coincidence, we pose the following
problems.

Problem 1. Under what additional condition (s), S and T
satisfying (1.2) or (1.3) (with k=1) will have a coincidence ?

Problem 2, 1f S and T satisfying (1.2) or (1.3) [with k=1 and
A=X] have a coincidence, and if the maps are commuting on
C (ST) then under what additional condition (s) the maps will have
a common fixed point ?
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1. Introduction.

Balluce and Kirk [1] introduced the concept of diminishing or-
bital diameters (d.o.d) and established that a non-expansive self-
mapping on a metric space with d.o.d. has a fixed point. Subse-
quently a number of results related to such mappings have appeared
in the literature. The notions of non-expansive mappings and
mappings with diminishing probabilistic orbital diameters (d.p.o.d.)
on probabilistic metric spaces (PM- spaces) have been 1ntroduced by
‘Istratescu and sacuiu [5].

In this paper we show that a non-expansive mapping on PM-
space having d.p.o.d. has a fixed point. Next we investigate that
the condition of non-expensiveness on the mapping may be relaxed -
'to the condition” of the mapping being with rélatively compact
orbits. Finally, the notion of joint d.p.o.d. is introduced and a
- common fixed point theorem for a pair of mappings having joint

d.p.o.d. is included. Our results are indeed the extensions, to

PM-spaces, of some of the results of Belluce and Kirk [1, 2], Kannan

99
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[6], Kirk [7], Park [9] and Ranganathan, Srivastava and Gupta [10].

2. Preliminaries.
A Menger space is a triplet (X, 3, t) where (X, 3) is a PM-space
[11] and ¢-norm ¢ is such that the inequality.
Fy &t ze{F, ().F O}
holds for all u, v, w € X and for all x = 0, y=0, where Fu v denotes

the value of 7 at (4, v) € XxX. For detailed study of Menger space
and the topological preliminaries on it we refer to Schweizer and
Sklar [11].

A self-mapping T on a PM-space (X, ¥) is called non-expansive if
FTu, Tv(x) < Fu , V )

for all x = 0 and every u, v ¢ X.

Foreachu € X, let 0 (TZ ) denote the sequence of iterates of T,

that is,

n 0 i
0(T! )=U (T @)}
n

i:
0
where Tu = u. A
Let A be a nonempty subset of X. The function D A (.) defined
by

D, (x)=sup{inf - F_ ()}
A t<x u,vEA u, v

: is called the probabilistic diameter of A [4]. Since for every n we
~ have the inclusions

0(® 2..0(1")20(1" )2 _and, thus, for the probabilistic
diameters, we have ‘

Do (19) < Dy (1} )50y (T7) < ..
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We set
—1i n
3, (x)=lim {D (T, )}
and call the number 3y (x) the limiting probabilistic orbital diameter

of T at u.

Let T be a self-mapping on a PM-space X then T is said to have
d.p.o.d. at u if for 8, (T4) # H, where H is a distribution function
[L1, page 314],

8u (x) > % (Tw) (x).
3. Fixed point theorems.
First we establish the following result :

Lemma. Let (X, 3, 7) be a Menger space where ¢ is continuous
and satisfies ¢ (x, x) > x for every x€[0,1}. If T:X-»X be a
non-expensive mapping such that for a sequence {un (k)} of positive

integers, likan(k)(u)——-z then z generates an isometric sequence.
Proof. Let, for » > 0, ,
F T m(u)’T n(u)(x)—l?“T m+-k (u)’Tn+k(u)(x)= 1—x #0.
Then, as T is nonexpansive,
) FT )T n(u)(x)—FT m+1(u)’T n—l—l(u)(x) < 1-=3,
Co(l=k, k+-1,..0),
Also timy T (T! ())=1imy 7" () =T!(u).

Hence a positive integer i exists such that j > i implies
Fpmtn ()T ™) ( 1’;2" x ) >1—-2 and

FT n+m(j)(u)’Tn(u)(i__3g_}_‘lx ) > 1—=2A.

But
T 2 T M O (1 X)),

Fpmn (f’(u),T"+"(f)(u)(——‘ £ 5)
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Fr "+"(j)(,,),T n(u)( 1';2}1 x ) }

> of 1=, Fyman() Tn+n(j)(u)(b3:4£x )}

> t {1, Fpmtn (i) 1 ntnl) (%)}
which is a contradiction to (1) for n (j) > max (n (i), k). Hence the
result.
Theorem 1. Let (X, 7, t) be a Menger space where ¢ is conti-

nuous and satisfies # (x; x) > x forevery x € [0, IJand let T : X+ X
be a nonexpensive mapping having d.p.o.d. If for some u ¢ X,

®
limp T"( ) (#)=2z then lim,T*(#)=z and T(z)==.
Proof. In view of the lemma, z generates an isometric sequence

E
since limp T"( )(u)=z. Thus, for given positive integers m and n,
{ . o
FT m(z)’T n(z) \x) —FT m-l-k(z)’ Tn+k(z) (x), k—l, 2, eee
Therefore for a positive integer k.
D, (T (2)) (x)=sup inf Fr @,T n(z)(t)

== sup inf FT k(z) Tn-l—k—l(z)(t)

= Do (),
implying

As 53 (x)=8T(Z) (x) and T has d.p.o.d., we get D°(T(z)) (x)=H.

Thus Tz is a fixed point of T. The continuity of T implies

. (k)+1
limpT® (W)=T(z2).
Thus if € > 0, there is an integer k such that
FT n(k)—]— l(u), T (Z)(E) > 1—2 for A > 0.

Since T (z) is a fixed point of T and T is non-expensive, we have
FT "), T (2) € > 1l—rforn = n(k)+1.
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Thus m,T"(u)=T (z). But lim,T" (u)=z as well, Hence z is a
fixed point of T.

The condition of non-expensiveness on T in above theorem may
be relaxed to the condition of T being with relatively compact
orbits. Thus we have the following result.

Theorem 2. Let T be a self-mapping on a Menger space X. If
there exists a u € X such that 0 (u) is compact, T is continuous
and has d.p.o.d. on 0 (u) with 5, # H then O (4) has a cluster
point z'in 6_(;)_and z=T (2).

Proof. We take v ¢ X with 8, # H. Since T has d.p.o.d. at &,
we have for some m. :

Su (x) > 89 (T"(u) )(ec). Hence 0 (T™ (u)) # 0 (u).

It is clear that u € 0 (T™ () and « & T (u), otherwise we have
0 (T™(u))==0 (u). Thus we, as in [9], conclude that u ¢ 0 (T2(a)) in
any case and therefore T | 0 () is strongly non-periodic [3]. Now
the proof is completely by Theorem 1 of ‘Ciric’ [3].

Remark. The above result extends some of the results in [1, 2],

fé1,[7] to PM-space and is indeed an improved version (in PM-

space) of Theorem 3.3 of Belluce and Kirk [2].
As an immediate consequence of Theroem 2, we have the
following result : 7
Throrem 3. Let T : X->X be compact and for some k € N, T*
is orbitally continuous. If T and T* are mappings with d.p.o.d.
then for each u € X, { T¥ (w)} has a cluster point whxch is fixed

under T.
Let { Ty , T, } be a pair of mappings from a Menger space X
to itself. For ug € X, let un==Tiuy_, if n is odd and up=Toun_; if n

is even ; then the sequence
'JS (u40) = { tp , Ty up, ToTyug,...... }

is called the joint sequence of literates of S at uo, [8].
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We now introduce the notion of joint d.p.o.d. in a PM-space.

Let SS (i) (x)=1im { DJ }. We call the number

(un)
S (o) (x) the joint limiting p.o.d. of S atu,.  If for every ug € X,

Y (x) <@ (x) whenever § (x) # H,
T S (o) d S (uo) J S (uo)
then S will be called to have joint d.p.o.d. on X.

Our next result is an extension to PM-spaces of d result in [10]..
Its proof may be completed on the lines of [{0].

Theorem 4. Let X be a compact Menger space: and S={Ty, T,}
be a pair of continuous self-mappings on X such that S has joint
d.p.o.d. on X. Then for each u, £ X a subsequence of JS (5) con-

verges to a common fixed point of T; and T,.

Remark 2. In case T{=T,, the above theorem is an extenswn to
PM-spaces of a result of Kirk [7].

Remark 3. The superiority of the above result is clear from
the fact that this result is applicable even if a continuous self-
mapping T on a PM-space does not have d p.o.d., since in such a
case it might be possible to obtain a family S of continuous self-
mappings on X such that SU {T} has a joint d.p.o.d. (see, for an
1llustrat10n [100).
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There is considerable debate pertaining to whlch objectwes
learners are to attain. The mathematics curriculum is no exceptlon
Oné hears tuch about a return to the basis. THé basis geneérally
#fe pérceived as emphasizing the threé R's (feading, wfiting, ahd
dfithmiétic): Thus, the third R—arithmetic—has &dséniidl Eonféht
for all learners to master. Within the framework of essentilisf,
which objectives, methods of teaching, and appraisal procedures
need to be in evidence ?

INSTRUCTIONAL MANAGEMENT SYSTEMS

Instructional Management Systems (IMS) advocate the wutiliza-
tion of precise, measurable ends. Vagueness and amblgulty need
t6 be eliminated from goals of instruction accordmg to LMS tenants
With clarity of infenf in objectives, the teacher knows precxsely
which sequential ends students are to attain. Thus Iearmng
activities may be selected by the teacher to guide pupils to achieve
each objective on an individual basis. An objective needs to be
attained by the student before progressing to the next séquentidl
end. The teachér can then measure if a learmer hasfHa§ not
achieved a specific goal. Uncertainty on the teacher’s part is not in
evidence to deferinine if a student has mastered content necessary in
godl attainnrent.

The Missouri Department of Elementary and Secondary Educa-
{161 {11 fisted the following characteristics of IMS:

I. High expéttafions for leattitig. Tedechers and ddfifnistra-
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tors expect a high level of achievement by all students and com-
municate their expectations to students and parents. No students
are expected to fail, and the school assumes responsibility for seeing
that they don’t.

2. Strong leadership by building principals. The building
principal is an instructional leader who participates in all phases
of instruction. The principal is a visible leader of instruction, not

just an office-bound administrator.

3. Emphésis on instruction in the basic skills. Since mastery
of the basic skills is essential to learning in all other subjects,
the effective schools make sure students at least master the basic
skills.

4. Clear-cut instructional objectives. Each teacher has specific
instructional objectives within the overall curriculum which are
communicated to students, parents and the general public. In
effective Schools, teachers and administrators—not textbooks—are
clearly in charge of the curriculum and teaching activities. -

5. Mastery learning‘ and testing for mastery. Students are
taught, tested, retaught and retested to the extent necessary to as-
‘sure mastery of important objectives.

6. School Discipline and climate. The effective schools may
‘not be shiny and modern, but they are at least safe, orderly and
free of distractions. All teachers and students, as well as parents,
know the school’s expectations about behavior and discipline.

The following are definitely not emphasized by IMS ;
1. Open—ended general objectives in the mathematics curri-
culum.

2. Leaway in interpretation as to which subject matter should
be taught so that students may choose sequential goals to achieve
in a flexible mathematics curriculum.

3. Pupil-teacher planning in selecting objectives.
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4. learners in a classroom achieving at a similar/same level of
progress. Each student progresses as rapidly as possible in achieving
objectives.

LEARNING CENTERS AND MATHEMATICS

Educators, advocating humanism as a psychology of learning,
believe that students should be involved in decision-making. Thus,
the mathematics teacher, alone, does not select objectives, learning
activities, and evaluation procedures for students. Rather, within
a flexible framework developed by the teacher, the learner may
select from among alternatives which sequential activities to pursue.
A learning centers approach might then be in evidence. An adequate
number of centers and tasks needs to be available so that the in-
volved student may truly choose which activities to pursue and
which to omit. Continuous progress must be made by the learnmer
in completing personal suitable tasks. Each student may then
achieve at a unique optimal rate of progress. Diverse objectives
in mathematics may be achieved when comparing one student with

another.

Choices made by learners in tasks pursued depend upon per-
sonal interests, abilities, capacity, and motivation. The kinds of
tasks chosen may emphasize individual or committee endeavouré,
an activity centered or subject matter emphasis, inductive or de-
ductive methods, as well as concrete or abstract experiences.

Morris and Pai [2] wrote the following pertaining to the thinking
of Carl Rogers : '

But what are the conditions for such learning, and what must
‘the teacher do to facilitate them ? Like other humanistic educa-
tors, Rogers assumes that human beings have a natural potentiality
for learning and curiosity. John Holt argues that this potentiality
and desire for knowledge develops spontaneously unless smothered
by a repressive and punitive climate. Consequently, humanistic
educators seek to remove restrictions from our schools so that the
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child’s capacity for learning can be cultivated. They attempt to
provide the child with a more supportive, understanding, and
nonthreatening environment for self-discovered learning. For
example, if Jimmy is having serious difficulty in reading, he should
not be forced to recite or read aloud in front of his peers, whose

reactions may strengthen his own perception of himself as a failure.
Rogers believes that significant learning can be promoted by allowing
children to confront various problematic situations directly. If
students choose their own direction, discover their own resources,
formulate their own problems, decide their own course of action,
and accept the consequences of their choice, significant learning
ean be maximized. This suggests that significant learning is not
possible unless the learner’s feelings and the intellect are both in-

volved in the learning process.
Advocates of learning centers do not emphasize :

1. precise, measurable objectives for student attainment.
What is specific to measure in pupil progress may be rélevart,
Interests and purposes of learners are significant, but can not by
any means be precisely measured.

2. teachers selecting objectives, learning activities, and evalua-
tion technigques for students.

3. arigid, formal curriculum. Rather, input for students in
curriculum development is important,

4. each pupil being assigned the same/similar tasks as com-

pared to other learners in the classroom,
Structure of Knowledge and the Mathematics Curriculum.

Mathematics may be perceived as having considerable structure.
There are selected concepts and generalizations which hold true
consistently. Thus, concepts, such as the following may bé stressed
in teaching and learning :

1. The commutative property of addition and multiplication.

2. The associative property of addition and multiplication.
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3. The distributive property of multiplication over additjon.
4. The identity elements for addition and multiplication,
5. The property of closure for addition and multiplication,

Key concepts and generalizations, as advocated by mathemati-
cians on the higher education level, then become objectives for
students to attain on the elementary, junior high school or middle
school, and senior high school years.

To achieve these structural ideas, the teacher of mathematics
needs to have students utilize inductive methods of learning.
Lecture and heavy use of explanations is not recommended.
Rather, the teacher identifies problems and questions. To secure
content in answer to the questions and problems, a variety of refer-
ence sources need to be utilized. Answers to problematic situations
come from students. Methods of learning used by students should
be similar to those emphasized by professional mathematicians.

Woolfolk and Nicalich [3] wrote :

Jerome Burner is a well-known medern cognitive theorist.........
Burper has been especially interested in instruction based upon a
cognitive learning perspective. He believes that teachers should
provide problem situations that stimulate students to discover for
themselves the structure of the subject matter. Structure is made
up of the fundamental ideas, relationships, or patterns of the
subjcet matter, that is, the essential information. Specific facts
and details are not part of the basic structure. However, if students
really understand the basic structure they should be able tc figure
aut many of these details on their own Thus Burner believes that
classroom jearning should take place inductively, moving from speci-
fic examples presented by the teacher to generalizations, about the
structure of the subject, that are discovered by the students.

Structure of knowledge advocates in mathematics do not

believe in :
1. Student-teacher planning as to objective the former is to
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attain. Rather, structural ideas need to be achieved as identified
by subject matter specialists.

2. Teachers presenting subject matter deductively for ‘learners
to dcquire.

3. Content for student attainment being chosen by others than
professionals in the mathematics curriculum.

4. Emphasizing abstract experiences for students as compared
to the concrete and semi-concrete. Sequence in learning activities
must progress from manipulative (real objects and items), to the
iconic (pictures, films, film-strips, slides, and transparencies) to the
symbolic (abstract words, letters, and numerals).

THE MATHEMATICS LABORATORY

Mathematics laboratories philosophy in teaching and learning
believe that students are active, not passive beings. Learners need
to choose and select, rather than to listen to lectures and lengthy
explanations of subject matter. Concrete experiences need to be
at the heart of the mathematics curriculum. An adequate number
of real objects need to be in the offing to stimulate student achieve-
ment. Thus, for example, objects and materials need to be in
evidence from which learners may select to weigh, measure lengths
and widths, determine the volume, as well as find areas, perimeters,
and circumferences. ;

Within the framework of concrete experiences, students use
abstract learnings to record weights, measurements, areas, and
circumferences.

Involving the mathematics laboratory concepts, Ediger [4]
wrote :

Pupils should have ample opportunities to experience the
mathematics laboratory concept of working. The mathematics
laboratory emphasizes tenets of teaching and learning such as the

following :



113

(a) Pupils are actively involved in ongoing learning activities.
(b) A variety of experiences is in evidence so that pupils may
select materials and aids necessary for problem solving,

(¢) Practical experiences are emphasized for learners in that
they actually measure the length, and/or height of selected
people and things ; weigh real objects and record their
findings ; find the volume of important containers ; as
well as determine areas of selected geometric figures.

(d) Pupils become interested in mathematics due to reality
being involved in ongoing learning activities.

(e) Provision is made for individual differences since there is a
variety of learning opportunities for pupils from which to
select on an individual basis.

(f) Meaning is attached to what is being learned since pupils
_individually and in committees work on tasks adjusted to

their present achievement levels.
‘A mathematics laboratory philosophy does not advocate ;

1. A textbook methodology in teaching and learning situa-
tions. S

2. Studcents being recipients of facts, concepts, and generaliza-
tions from teachers. ’

3. Lecture and extensive explanation approaches in teaching
mathematics.

4. Abstract, symbolic Iearnings to the exclusion of using realia
in the mathematics curriculum.

A Miniature Seciety Concept in the Mathematics Curriculum.

There are selected mathematics educators who believe strongly

_ in guiding students to acquire and apply facts, concepts, and gene-

ralizations useful in society. The community becomes an ideal

‘plaée then in having learners attain understandings, skills, and
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attitudinal goals. Thus, for example, students with appropriate
readinqsé experi\ences‘and with teacher stimulation might engage in
éin;iing unit prices for soap. cereal, flour, and cake mixes. How
much then does each brand name and generic brand cost per ounce

or gram ? Other factors also need to be evaluated, in addition
to unlt pricing, and that is quality within each item.

Students in a miniature society context, might determine the
cost of :

1. A given number of items from a supermarket.

2. Selected items purchased from a hardware store.

3. Items of clothing from a clothing store.

4. Cost of gasoline, after buying a certain number of liters or
gallons.

A miniature supermarket may be developed in the classroom.
Empty cereal, fruit and vegetable, as well as other containers may be
plaéedv on shelves in the classroom setting. Appropridte clearly
labeled prices need to be attached to each food item. Play money
may be used by learners in shopping for needed items, Paper and
pcncﬂ as well as the hand held calculator may be used to determine
cost of a given set of items purchased, as well as change to be

received from money given in payment.
Yohn Dewey [5] wrote :

~ The development within the young of the attitudes and dis-
positions necesséry to the continuous and progressive life of a
society cannot take place by direct conveyance of beliefs, emotions,
and knowledge. It takes place through the intermediary of the en-
vironment. The environment consists of the sum total of conditions
which are concerned in the execution of the activity characteristic
of a living being, The social environment consists of all the
activities of fellow beings that are bound up in the catrying on
of the activities of any one of its members. It is truly educative
.in its, effect in the degree in which an individual shares or
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barticipates in some conjoint activity. By doing his sharein the
associoted activity, the individual appropriates the purpose which

actuates it, becomes familiar with its methods and subject mattérs,
acquires needed skill, and is saturated with its emotional spirit.

The deeper and more intimate educative formation of dis-
position ¢omes, without conscious intent, as the young gradually
partake of the activities of the various groups to which they belong.
As a sociéty becomes more complex, however, it is found necessary
to provide a special social environment which shall especially
look after nurturing the capacities of the immature. Three of the
more important functions of this special environment are ; simpli-
fying and ordering the factors of the disposition it is wished
to develop ; purifying and idealizing the existing social customs ;
creating a wider and better balanced environment than that by which
the young would be likely, if left to themselves, to be influénced.

A miniature society mathematics curriculum does not em-
- phasize :

1. A textbook centered method of teaching mathematics.

2. Ateacher initiated curriculum whereby the instructor selects
objectives, learning activities, and appraisal procedures for
pupils. ,

3. Minimizing concrete, life-like experiences for students.

4. Students being recipients of content in a highly structured
mathematics curriculum,.

IN CLOSING
Numerous philosophies are in evidence pertaining to goals in
mathematics for learners to attain., These include :

1. IMS with its emphasis upon precise, measurable ends for
learner attainment.

2. Learning centers with its stress placed up students becoming
quality decision makers in ongoing experiences,
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3. Structure of knowledge with its advocacy of students ac-
quiring major concepts and generalizations as identified by profes-
sional mathematicians.

4. A mathematics laboratory with emphasis placed up students
using concrete materials in mathematics achievement.

5. A miniature society philosophy in which learners use
mathematics in the functional real world.

Teachers and supervisors need to study and evoluate each
philosophy. Ultimately, those philosophies which guide each pupil
to achieve optimally should be emphasized in the mathematics

~ curriculum.
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