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MORSE COVERS AND TIGHT IMMERSIONS
by
B.A, SALEEMI
Associate Professor

Mathematics Department P.O, Box-9208 i
King Abdul Aziz University Jeddah, Saudi Arabia . - -’

Abstract :

If M is a compact, connected, smooth manifold of demension n,
then it is shown that a Morse function . on M defines a Morsé
Cover of M. Using the notion of Morse Cover it is establishéd that
the order of the Morse Cover given by a tight Morse functlon equals
the minimal total absolute curvature of M. :

1." Introduction :

a Let M be a closed, connected, &o, n-manifold.

Let @ be the class of all € real-valued Morse functions o M.
Let Ck (M, @) be the number of critical points_of index &k of $€®,

¥

We write. R L CL o hewlng
coM 9 = Zc, L MLe
k=0 - SR
and N e
 CmsminCM ). ;'-‘,-. ':(2.).%
o TBEd T '

Ifx : M—»E’H'N » N21, be a smooth Immersmn of M mto
Euclidean space En+N and T (M x, N) be 1ts total absolute curva-

e
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ture [ 1, 2], then we write
& (M==inf © (M, x, Ny, 3
(x, N)
where the infimum is taken over ,all,‘ sthooth immersoins x with
variable N. Kuiper has proved [ 4 ] that.
T (M) = C(M).

An immersion » :'M‘—xEn"lr_N is catled tight if = (M, x, N)=1 (M).

2. Morse Covers :

Lot g€® and let p bs a critical point of ¢ of index % Then
Mor$e lemma [5] guarantees the éxistence of aco-ordinate neighbous-
heod U of p with ¢o-ordindtes x! ; X2 ;.- ..iiennisas., X Such that the
following conditions hold

@ x*(p=0, 1<i<n,

(@) 2=0(p)—(x)P—e = (P ()2 )2 0 UL
We call U a Morse co-ordinate neighbourhood of p and x! , x2 ,...... ,Xxn
are called Morse co-ordinatés. '

+* Let Ny be the famiily ol all Morse neighbourhoods of pEML
By ‘Morse lemnia, Ny is nor-¢cmpty. Furthermore if the pastial
order on Np is defined by the set-theoretic inclusion < then every
linearly ordered subset of Ny, has an upper bound. Therefore, by
Zorn’s lemma, Np has a maximal element Wy, say.

Definition 1. The neighbourhood W, is called a Maximal Morse
neighbourhood of p relative to .

Let Wp1 , Wp2 5eeeienieenns Wpm, m=C (M, @), be the maximal]
Murse neighbourhoods of the critical points D1 s P2 «ireeneeery Pm. Then
we hédve the following.

Yedinat W, , W, .. is an open cove

minal. W P W 22’ . me 15 an open cover of M. |

. "

Proof. Let W_-—:Ulij. Let g6M —W. If every neighbourhood
J:.‘

of ¢ contains a critical point of ¢ , then necessarily ¢ belongs to
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some Wp and there is nothing to prove. If¢ has a meighbourhood
i ,

which does not contain a critical peint of ¢, then we J;énay choose g

coordinate neighbourhood V4 with co-ordinates z!, z2........., 2"

such that z!=¢. Let WnVq be non-empty. Then for some critical

point p;, WpiiVq is non-empty. Let p!, ......;.y"- be the Morse

co-ordinates in Wpq. Then, by definition of Wp;,

B=0 (p)—(¥'V— e = (PRRA RN (2
on Wp;, where k& the index of @ at p;. By a cominon abuse, we
may regard WpsnVq as an open subset of R* with yi,........ , Y as

epordinates, Sinee p; €Wp1Vg, at least one of the y"” is different
from zero, By using flip map, if necessary, we may take thas nons
2ero co-ordinate as y!. If we define the map.

F:W .,ﬂV.q‘»‘)IR
Db’

by
R IE ) ¢ TR 1) L (R N ¢ S T S
(){")2 2 PRy I,
then F is invertible. Therefore we may regard
U= (p)— (1P —eenee —(F2+...... +(",
al=37 ,2 < j <A (H

as some new co-ordinates inW 3 nv a
To extend y%,? to Vq —wp¢ nv _we define the transfor-
mation. :
y=v'¢ (Pj)-*zl—(zz)z—-u—(Zh)z+(2"“)2‘5f=w-:s;l’-f(é")2 ’
T: . '
Y=g | ge)
The .Tacébian matrix ( ot ) of T has rank eq.ual. to thevrqﬂg of.

oz
the matrix.



S R P 0
22 1. 0
2 0. 1
'Y=V. < d }
’

The rank of v is clearly n and consequently the transformation T
is admissible. Combining (1) and (2), we conclude that the trans-
formation T is well defined on the whole of Vg. Noting that
z'=¢ on Vq, we have ’

Z=0 (p)—(P—.co. —(GFPH G + o ()2
on the whole of W 7 uv g .Thus !, ..... » y" are Morse co-ordinates

in Vq u Wp{';' Since sz {y%} is a maximal Morse neighbourhood

of pi , it follows that
V cW:
q9 th o _
.+ Therefore, under the assumption that for all géEM—W, the
neighbourhood Vq of g meets W, we have

- M-W=[]
or o
.M = U W
. e z——l Pr
Now assume that there exist points g¢M—W which have neighbour-

hoods disjoint from W. Let V be the. union of all such neighbour-
hoods whxch have no pomt in common with W. Then V is an open_

set and’
M=WUV, WaV=[]
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This contradicts our hypothesis that M is connected. Hence .

Wm R y me i§ an openr cover of M.

Definition 2. »
‘The cover Wp ’...’Wp of M is called Morse cover of M relative

(] m
to ¢. .

Let O (M, @) be the order of Morse cover of M relative to .
Then 0 (M, )=C (M, Z).

Definition 3. 7

The integer 0 (M)=min O"(M, @) is called the minimal order

_ . Pz s . )

of M.
Note that thare exists @ €D such that

0 (M, 2)=0 (M)=C (M).
Such & Morse function is called a tight functz‘bn and the correspond-
ing Morse cover is called a tight Morse cover of M. Tt seems that
a tight function generates a Morse cover of M by < <<maximal .
neighbourhoods>> in the sense that if there is any other Morse
function whose set of critical points includes the critical points of
the tight function, then the Morse neighbourhoods of the common
critical points determined by the latter function are subsets of the
neighbourhoods given by the tight function. '

We may now restate (4) in the following form :

Theorem 2 :
Let M be a conneccted, closed smooth #-manifold,

Then
% (m)=Inf © (M, x, N)=0 (M)
(», N)
Note. Let P2 be obtained after identifying the diametrically
opposite points on the 2-sphere S2 : xy2+x,2+x,2=1,



é

Define f: p> >R by f(xp, x1, ¥3)==hox02+2 %12 4 doxs?, where AgAsks

are distinct real numbers. Then one immediately verifies that f

has precisely the points (1, 0, 0), (0, I, 0) and (0,0, 1) as its non-

degenerate critical points. By Theorem 2 the maximal Morse

neighbourhoods Wy , W; , W, of these points cover P2, Since

any manifold admitting a real-valued functien with two non-degne-

rate critical points is homeomorphic to a sphere, it follows that

7(P?) =0 (P?) = 3.
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MACKEY SPACE PROBLEM FOR DQUBLE
CENTRALIZER ALGEBRAS
, by ,
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Facuity of Science, University of Garyounis,
P.0. Box 9480, Benghazi, Libya

Abstract,

We define semiwell-béhaved appfoximate identity for 4
B*:algebra A and show that the deublé centralizer algebra M(A)
endowed with thé strict topology is a stéong Maekey space if A ha$
such an approximate identity. This gives us an improvément of a
result of D.C. Taylor ([6], [7]). :

1. Introduetion.

In 1], Buck intitoduced the notion of strict topology § on
Ch(X), the space of all boutidéd continuouws sealarsvalued f'I.IDCtlbﬁS
on a locally cempact space X, and raise@ thé question as to
whether or not (C, (X), B) is a Mackey space. This guestion
was answered by Conway [ 4] in affirmative in the case when X is
locally compact and paracompact. Taylor ([ 6 },[ 71) generalized
Cofiway’s result to a non-commutative setting. In particalar, he
considered the strict topolegy £ on the double centralizer algebra
M(A) of a B*-algebra A and proved that (M(A), 8) is a strong
Mackey space if A hds a Gountable of, miore gemeraily, a well-
behaved appreximate identity. In [3], Collins and Fostenot
studied several types of approximate identities and comjectured
that Taylor’s result holds if A has a canonical chain 8 totally
bounded approvimate identity. In view of this we define a semiwell-
behaved approximate identity and show that (M{(A}, B) is a strong

#0n t6ave from : Deépartrent of Mathematics, Fedéral Government College,
H-8, Islamabad, Pakistan.
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Mackey space if A has such an approximate identity. This gives us
a partial answer to the above conJecture as well as an lmprovement
of Taylor’s result,
2. Preliminaries.

Throughout this paper A denctes a B*-algbra, and let M (A)
denote the double centralizer algebra of A as introduced by Busby|[2].
Then A may be viewed as a closed two-sided ideal in (M(A), IL.!).
The strict topology B. on M(A) is the locally convex topolgy
generated by the seminorms x-smax {{lax], [xal} for xM(A) and
atA. Some basic propertirs of B are : (1)B<|.||;(2Rand]. |
have the same bounded sets;(3) A is dense in (M(A), B); (4) (M(A), B)
is complete ; (5) A has an identity if A=M(A) and = . [.

-The following: two theorems, due to Taylor [ 6 ] are stated for
reference purpose. : e -

Theorem 2.1. Let A* denote the norm dual of A. Then. . .

(1) A*={F.a : atA,; FEA*}={a.F : aZA, FEA#},
where F.a (b)=F (ab) and a.F (b)=F (ba) for all b % A.

(2) (M(A4), BY*, with the strong to_polovy, isa Banach space and
is isomatrically zsomorphzc to A*. "

Theorem 2.2. Let {*A : A€ I} be an approximate identity for A.
Then a subset H of(M(A), B)y* is eguzcontmuou) iff thefollowmg con-
ditions hold : .

(@) His umformly bounded ; '

(i) (A F+F.A—\F. N =>F uniformly on H

Deﬁmtlon 23.. (cf*[31,p.76) An approx1mate identity
{”)\ 1A € 2 I} for A is said to be semiwell-behaved if. ‘ ;
) {“7\} is canomcal ie., e)\ >0 for all Ao I and A2 Ag lmphes;

that e)\ X

(i) fora strictly mcreasmg sequence , {7\ }CI a sequence

{ cn } of posmve real numbers such that E c “is 'conVer'gent and"
n=1"
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A € I, there exists an mteger N such that m>=n>N implies that
lle (e 7\ JRIIES ‘ P

m
If, in (it), we take each ¢, =0, {e/\} is called wcll-behaved: [ 7] At is E

shown in ([ 7], Prop. 3.1) that, if A has a countable approximate
identity. Then it has also a well behaved approximate: Identity.
Clearly, a well-behaved approximate identity is semiwell-behaved.
In view of ([3], prop. 7.5), a semiwell-behazed 'approxi‘mate
identity is slightly restrictive than a canonical chain P totally
bounded approximate identity. ({°A} is chain B totally bounded
[ 3] if, for any increasing sequence { An} < I, { %, } is B totally
bounded in A.)

3. The main result,

Recall that a locally convex space E is a Mackey space’
({51, P. 173) if every weak*-compact convex balanced subset .
of E* is equicontinuous ; E is said to be a strong Mackey space"i
if - every weak*-countably compact subset of E* ‘is cqulcon-"“‘
tinuous [ 4 ].

‘We now state our main reseult. ThlS was proved by Taylor.,f
in [ 6] (resp. [ 71) in the case when A has a countable (resp. well-
behaved) approximate identity. We prove it under the weaker *
assumption that A has a semiwell-behaved approximate identity»

Theorem 3.1. Suppose A has a samiwell- beheved approximate
identity. Then (M(A), B) is a strong Mackey space. . . ;

Proof. Let H be weak*.countably compact subset of (M(A),B)*
and let {®A:2 €1} be a semiwell-behaved approximate 1dent1ty
for A. Since H is pointwise bounded, it follows from the principle
of uniform boundedness that H is uniformly bounded.” Witﬁout loss
of generality, we may assume that || F || < 1 for all F € H

Suppose H is not B-equicontinudus. Then, by Theorem 22,
there exists an € > 0 such that, for each A¢¢ L.
| F—A. F—F.A+%.F.% || =24 ¢
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for some F € Hamd X > X5 Using the fact ehat (M(A), BYF, strong,
top.) S (A*,[.[) (Theorem 2.1), there exists by induction a

sequence {(Fﬂ . an , xﬂ,)‘z,z_l . M)} with the followmg propertles

(s€e [:6 ,p: G2 Tor {7 ;p. 482 ).
éa) Fu € B, du ts:a Hermition e]emeﬂt i A with
“Haslt € 10009 < Xt :
Cﬁ)‘ th(ékf-;’e;:' Yaike, l"—‘;ei ' )wuh []F (*a) |]
e o LAt . 2d 2021
. Srnée { o } is canen‘;caf it-i is easy to see that xnxm~0 for nEm.
i D

The:tt 33 fez'tlows by mdhcm@n. thiat 1Et = {t,.,} (l AE e % H* <
n=1 y

Il t]l for any m > 1.

We now shew that the sequence {Z ta Xny of partlal sums is ﬁ-Cauchy

=]
in' R/ CA) §

Leﬁaﬁ A.Land r>& Choosc a A€ I such that i a=ae, H<r/4ﬂt|l P
o .

Since {Aa} is a stricly increasing sequence in I, there ex1sts by:
hﬁ)’éﬁesxs‘ an "nteger N’, such thaf lle (e e, K I/ fof all )

2'"" 2% l

n=p+i

N;wéhatz f{2"§r1211 i xm,1 a |1 Fhen, for q>p >Ny,
I a( z tnxn-—'z fnxﬂ ) ” F a— de;\ ” I Z tnXn ” +‘

A=ppl -

TR el the E e eA e b
- Zn 2”-:]_

—p+1 ‘




i

11
<rl24fallitle 120 <r, L.

whi};ﬁ impiies that { g ;x,, } is B-Cauchy in M (A). Since :M(A) is

n= ST A
Eoomplete, . . SERUETUNRIIE
B-l:nm (nzzflﬁxn) &M (A'); The mépping's (oo » B) ‘?(M(A)aﬁ),
given by,
S(t)=°§ ti,xn , is then well—defin,ed and c‘ont_ip}jo,ﬁs. 'It‘v,hus.\‘, the
adjoint 'mapping's* : (M(A)‘,'ﬁ)*—(lg'o L P)* is continuous-ﬁffen ’Poth
spages are given their respective weak*-=topolegies. €onsequently,
S* (H) is a week*-countably compact  subset of ({5 ,8)* and

hence equicontinnous in it [ 4 ]. Since /(o , P)*¥ =2 I, (see[1]1,[4])
[oe]

and S*F (t)=F (8(#))= thn F(x:) (t€1), S* (H) may be identi-
n=

fied with the sequence { F (x5) } in /;.Hence there exists an integer N
such that Z || F (x4) || < € for all F e H. In particular, |[Fa(x,)] < €
n=N

for all n = N which contradicts (). Thus H is equicontinuous in
(M(A), B)*. This completes the proof.
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" ON ASYMPTOTIC PROPERTIES OF AN ESTIMATE OF
A FUNCTIONAL OF A PROBABILITY DENSITY

by
KHALED I. ABDUL-AL .

" Department of Mathematical Sciences
University of Petroleum & Minerals
Dhahran, Saudi Arabia

Abstract.
Bhattacharyya & Roussas (1969) proposed an estunate of the

functlonal A=ff*(x) dxby A—f f 2 (x)dx where f (x) is a kernel

estimatc of the probability densnyf(x). Schuster (1974) proposed
. . A -

an alternative estimate A=J_fn (x)an (x) of A\, where F, (x)is the

sample distribution function, and showed that the two estimates
attain the same rate of strong convergence te /. Ahmad (1976)

presented two large sample properties of A ; st being the
. ; : 4 _
strong convergence of A to A, and second is the asymptotic

normality of A. In this note, it is propoéed to estimate §=E[y(x)]=
J1(x) f(x) dx by Gn =z {'y(x) [y (x)-dx, and show the weak and strong

convergence of en to 6 and establish the asymptotic normality

of Gn

AMS Sub;ect Classu’ictlon 62G03 .
Keywords : Density Estlmatlon Characterlstlc Funetlon Den31ty

Functional.
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1. Introduction.

Let X be a random -variable with distribution * function

(d. f. ) F (x) and probability density function ( p.d.f.)f(x), and
let the functional be defined as

0= fvy(x)f(x)dx 1.1
where v (X) is real saeasurable fusaction of random variable X.
The functional 0 is important in many estimation problems as the
estimate of the characteristic function @ (¢), momonts of any order
and any mathematical expectations of the form E[ g (X)] when

£ (x) is unkown.
Let >, ST , X be identically independent 'd*istriblited (iid)

random variables with d. f. (F (X) and p. d. f. f{x). Let k{(u) be a
known symmetric p. d. f. satisfying the following condition :

Sup k() < oo and lim ]u]k(u)_-o R ¢ )
— 0 <U<O Jul = IR

Also let { g5 } be a sequence of real positive numbers such that.
an—>0 as n->00 (1.3).

The kernel estimate of f (x) using k(u) is given by

s =g fE (25 a0
~ belam) 0 ae

where F, (x) is the sample distribution function.
In this paper, we examine the conditions under which
On=f1(x) fu(x) dx (1.5)
is consistent (weak as well as strong) aad asymptotlcaﬂy normal
CAll 1ntegrals in this paper will be understood to be Lebcsgpe:_

integrals. ‘Where the limits of integrations over the entire line
is considered, they will be omitted,
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2. Consnstency
© We first examine the conditions under which Gn 1s asymptotically
unbiased in the sense if 4,0 as n—>c0, then
Lim E (6,) == 9 (2.1
2 e) :
Now

E (8,)=E ~1—ffy )k x{;" )\ d Fn () dx

(2.2)

—-——mr( Xk ( )dF W) ds

In order for (2. 1) to hold the last expression for (2.2} must fend to
S7(x) f(x) dx. Conditions under which this happens are givén by
the following theorem.

Theorem 1. Suppose k& (u) is a Borel function satisfying the
condition (1. 2) and

@) § &) | dy<oo and i), § k(y) dy=1

Let Y (y) and f(p) satisfy ‘

, Sy @) fO)dy <o (2.20)

Let { an } be a sequence of positive constants satisfying (1. 3).
~ Define
) £ e dy

gn (x) = 71’”_ SSv(x)k ( ay

Then, at every point x of continuity of (.),

i gq (x)= f Y(x)-f (x)-dxy . S (2.3)
B>

Proof. In view of Theotém 1A; Pursen (1962) and (2.24)
lim g (x)=F Y (x) £ (x) dx- -
n—
The equation (2.3) impligs that ~
lim E (8,) = 0
n-»o00 . - v
i.e. B is asymptotically unbiased,
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Theorem 2. Assume that a, satisfy (1.3), and Var [y (x) 1<to0,

E|6,—0]>0 as n>o S X))
Proof. ' -
E|6,—0| <E|[6,—E0, | + | E0.—0 ]
= Ini + Inz ‘
By Theorem 1.
In,»0 as n>o0, (2.5)

and
(2.6)
Iny= —E l e,.—Eenl <[E | 6,—E8, ]2]2 —[Var ep]z —0
by Theorem 4 (proved later). '
From (2.5) and (2.6) we hdve that
‘E]on—0] =0 as n-oow
ie., v
“p
fn——=>0 das n->w0
Theorem 3. Assume that an.satisfies (1.3) and suppose that
Y (x) is absolutely continuous, and Var [y (x)] <00, then

W.P.1 ,
bn———=>8 as n—oow ' @

~ Proof. | 0n—0] < | 6—E0 | + | E0,—0]
By Theorem 1

| EOn—6] -0 as n-o - o (2.8)
Now L

0n—Ep = (%) ((" u). )dF,.(u) dx

— 1) k ( X a—: \, dF () dx]

=S S¥anz+u) k (2) dFy (W)dz—§ §1 (anz+u)k (2) £ (u) du dz

1 S n
= 7 I v@rnk@d
i=

- S f y(a.zt+u) k (z)f(u) du dz
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/ 1 n
= E [ ¥y {anZAX)—FsEzy (anZ x X)]

. i n L . ) . .
7 i=1
Let
gn (X)=E; ¥ (a2 + %)
So

o .
en=Bon = % [g1 (x)—~Ega(K0)
. 1=

1 n
= ——— X Vyy, say.
=1
Note Vs, """V”” are iid random variables and that EVm:O.

Since Y (x) is absolutely continuous and Var [y (x)]<co,

l6a—Enm] <] - Lo Ezy(a,,Z—l-Xi)
noi=1

—ExE, (anZ+X) | >0 (2.9)

From (2.8} and (2.9}, we have that
W.Pil

0je———-36 as n-—>o0.
Next, we discuss the asymptotic behavior of the variance of

the estimate 9n. It is given by
Var (9,)=E42,—E?0,

1 f ( x—=Xq )df}
Bo%n = 7o B[ izl (§ree (5= o

XYoo KGR &)

Now,

1
nzanz

«

= [s o (25
i#j
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= Ani+Anz
1 —-X 2
Anm = naZy E[Sy(x)k ( xan ‘)dx]

1 E[SSY(xl)k (_xla—“;"—}i)y(xz)k ( "ZX )dxldxz] '

i

naz,
= § 08 v oy Gk (F ) R (227 ft)dydad
= ’11 S S S ¥ (anzi+4) Y (anzatu) £ (4) k (21) k (2p) dz; dz,

and
e D[yt (58 ) ]

n2q2, J

n=1) [S S Y (anz+u) k (2) f (u) dz du;j2

n
which imply that
, 1
Var 6= | § 0§ v @zt v @zt k@) k @) f @) dzy dz du

| S x (@nztu) k (2) f (v) dz du]? '

then ‘
nVar @,—f ¥ (u) f () du—[Jy () f (u) du?
=Ef X-[By ()P
In view of the above we have proved the following theorem.
Theorem 4. The estimates 0, have variance satisfying
lim 7 Var 8,=E [y? (X)]—[EY(X)]2==Var [y (X)]

: n-o0
and if Var [y (X)]< o, then
lim Var §,=0
n->o

at all points x of continuity of f(.) if ap—>0.
From Theorem 4 one can state conditions under which the estimates
0, are consistent in quadratic mean in the sens¢ that E | 0,—§2—0

as n—» o0,
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The mean Squé.fe error may be written as
E | 0,—6 | 2=Var 8,+ | Eg,—62

Consequently, if a0 as n— oo, it then follows that 6, is a corsis-
tent estimate of 6.
3, Asyinptotic Norﬁl‘aliiy

Since the estimate 0,5 may be written as 6, = % 2 Vag,

J=1
4 Wheré V,.;: w1 S y (x) & (11&‘) dx and aré independent
Cn an
and identically distributed random variables for all j’ i.e
i 1 x—X

Va= = §roor(—2
under which sequence 6, is asymptotically normal, in the sense
that

)dx, it is easy lo state conditions

v 1 (83—06)—>N (0, ¢2) as n—>c0
where o2=Var [y (X) 1.
Theorem 5. Assume the following conditions :
(i) nax*=>0 asn—c0,
(i) S zk (2) dz=0 and [22 k (z)dz<c0
(iii) f(x) is twice differentiable
) S 7 () dx< o, fy(x) f"(x) dx<<co and E | y(x)f< ®,
thett v/ 'n (8, —8)—N (0, 6?)where o?=Var v (X).
Proof. To prove the theorem, we divide the argument into two
parts :
(1) V5 (0n—Edn)>N (0, 02) as >0
(2 v (E9—0)-0 as o0
To show (15; it is enough to show that

— 3 :
E|Va—EVa| —0 as #n-> 60

nt g3
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where
Vo m o §r @ (T Y

But
E|Vn—EVn |3<22 (B | Va | 34+E3 | Vs ])

Now
E| Vi | 3=F| fylanztuy k () do £y du
<SS S |y (@rzi4u) Y (anzy4-4) Y (anzs+u) |
Xk (z1) k (22) k (z:3) f@) dz;dzadzs—> | ¥3 (u) | du
=E | v(X)

So

B Va=EWq |3 < 2B | vX) | 4B | v0.| <o
becayse B [Vn]=>E [y (X),] ag; 500

and E|] vy(X) |3 <w

wh:ch shows that
E|Vn—EVn |3

1
n? o3

—>0 asn—->o

Then Laypanouff condition is satisfied for =1 and 4/ (8,—FEf)
—~>N (0, 62) as n—>00. Next, we show part (2)
— vV -
[ @) = V2 [§{ vk (2225) £,
—f A f @)
=0 fJ v (%) k (@).[ f(x—a.2)—f (x)dxdz],

Using Taylor’s expansion.

£ (x—an2)—f (x)=—=anzf." (¥)+(auz}? £."' (%) +0@n?):

then
V1 (BOn—0)= /"1 an? [22 k (2) dzLI§ v.(x) £ (x) dx}+
V0 0(a%)—>0 asn—>x,

by conditions (i) (iv).
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TWO FACTOR CENTRAL COMPOSITE DESIGN ROBUST TO
A SINGLE MISSING OBSERVATION
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- Summary

A two factor central composite design robust to a single
missing  observation is developed under minimaxloss criterion.
The losses due to a single missing observation and variances of
parameter estimates are studied for = different distances of axial
points from the centre of the design. The minimaxloss design is
then compared with other central composite designs of the

same size.
Key words and phrases : Central composite” design ; robust
design ; optimum design ; loss of deficiency,

1. Introduction.

Two factor central composite design consists of.

(@) four points of a 22 factorial design, i.e. (—1,—~1), (1,~1),
(=1, 1) and (1, V).

(b) four axial points two at each axis, a distance from the
centre of the design, i.e. (¢, 0) (==, 0) (0,2) and (0,—«)
and

(¢) one or more points at the centre of the design.

Points in part (@) and (b) may be replicated more than once.
Let nf , na and n; represent number of factorial, axial and centre
points in the design. The design points n=n;+ns-+n.

Missing obsérvations can occur even in well planned experiments.
Kiefer (1959) apd Kiefer and Wolfowitz (1959) introduced D~ and
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1. Introduction.

Two factor central composite design consists of .

(a) four points of a 22 factorial design, i.e. (—1,—1), (1,—1),
(—1, Dand (1, 1.

(b) four axial points two at each axis, a distance from the
centre of the design, i.e. (&, 0) (—=«, 0) (0,2) and (0,—a)
and

(¢) one or more points at the centre of the design.

Points in part (@) and (b) may be replicated more than once.
Let ny , na and n; represent number of factorial, axial and centre
points in the design. The design points n==n,+ns-+ng.

Missing obsérvations can occur even in well planned experiments.
Kiefer (1959) and Kiefer and Wolfowitz (1959) introduced D— and

23



24

G-optimalities and constructed designs which are optimum according
to some specific criterion. But even the optimum design may give
poor performance when any one or more observations happen to be
missing. ,

Herzberg and Andrews (1975, 1976, 1978) and Andrews and
Herzberg (1979) studied the effects of missing observations on D—
and G-optimality measures. Box and Draper (1975) introduced
a criterion which minimizes the effects of outlying observations

and constructed designs robust to outliers.

Mackee and Kshirsagar (1982) studied the effects of missing
observations on the parameter estimates and their variances for
central composite designs arranged in orthogonal blocks.

Here effect of a single missing observation on | X’X | for a twe
factor design with onme replication of parts:(g) and (b), is investigated.
A design for which the maximum loss in terms of | X'X |, due
to a missing observation is minimum, has been developed. The
variances of parameter estimates are investigated over a range
of «, for this complete and reduced central composite design. The
minimaxloss design is then compared with the exsisting two factor
designs of the same size but with different «.

The response surface modet used is & second order polynomial

Y1=B0+B1 X1+ B2 Xot 4+ 311X+ B X2 + B XXz 444
were y¢ is ith eobservation Xy and X,; are predictor variables,
Bo, B4, B2 Bur » B2z , and By, are coefficients and ¢; is the error
assumed to be uncorrelated with mean zero and constant variance.
The method of estimation used is least squares.
The above model may also be written as
y=XB+e

where y is an nx 1 vector of response at different points, 8 is a px|1
vector of coefficients, € is nx 1 vector of error and X is a matrix

of predictor variables. Some of the least square estimates are

A .
E=(X"X)"1X"y,
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A A - o
y=Xp=X (X'X) X'y=Ry
A -1 1
and Var B)=(X'X) o2
-1 ;
provided (X'X) ismnon-singular.
2. Losses due to a single missing observation. ‘ v
This two factor design consists of four factoridl, four axfal and
one or more centre points. The mininmaxloss design is one with «
and n; such that
Lf = Lu = Lc v
where Ly, Ly and L. are losses due to a missing factorial, axial or
centre point respectively. Loss of the ith point missing

-1
Li=xi' (X'X) x
where x;’ is the ith row of X. L;is also equal. to the ith- diagonal

element of R.
For two factor design with nr=n.=4 the explicit expression

for
L;={(8+n;)ab46n.04—8 (12—nc)a2-++32(4-+ne)} (B)~L,
La=4{(4-+nc)aS—(12—nc)at+3n,02+2 (8-+nc)} (B)1
and Le={n+4 (2—0%)?/(4-+24)}1
where B=4{4+4-n,)a61-2 (n.—4)x*—4 (4—n)x2-+8 (4+n.)}
The equation Lf=Lq after some algebra reduces to
(3nc+8) a6—2 (n,+24)x4—4(n.+-24)22— 8 (3n.+8) =0
This is a cubic in «3 and for n, 2 1 has positive discriminant which

implies that it has one real and:two complex conjugate roots.
For nc = 1 the real root for this equation is «2=2 0 which gives

«=1.4142 for which Lf=L,=0.625. = For this designwith a=+/7,

Le==1[nc. All designs with «a=1.4142 and n, > 2 satisfy Ly=LsS L,
and thus are minimaxloss designs.

The design matrix for 10 point design with ny=ng=4, n,=2 and
a=1.4142 is the following matrix D :



D=| 14142

. 0

The layout of this design is shown in Figure 1 below.

Figure 1. Central Composite Design with k=2, n/~=ng=4 and

ne=2 and a==1.4142.

-1, 1)

1, 1)

(-1.4142, 0)

(0,0)
(0,0)

- (=1, ~1)

(1' '1)

0, -1.4142)

(1.4142, 0)
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L,, Ls and L for two factor design with ny=ns=4 and n,=1
or 2 are plotted against « in figure 2 (a, b).
L, decreases and L, increases with the increase of «. L¢ has
its maximum at x=1.4142, The design with a=1.4142, n,=2 in figure
2 (b) is minimaxloss design.

The existing two factor central composite design with n/=ns=4
and né=2 are design with ““a=1.0 and orthogonal design with” a=
1.0781. The rotatable and outlier robust designs both has a==1.4142,

L, L:,Lc, maximum loss and variance of lasses for two
factor designs with «=1.0, 1.0781 and 1.4142 each with one or two

centre points are shown in Table 1.

1,80,

.48

LSS DUE 70 ONE MISSING VALUE

.20

20 T T T Y t
1.08 1.78 149 1.60 1.80 2.00
ALPHA -

Figure 2{a). Loss due to a single missing observatioh

for c,c.d. with k=2 and nc=l" plotted against a.
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1.40.
L e,
= : Lo
3 \ o
= Lt
Z ol <
= ] \—\ ' I
[u9) i D ;‘
3 ,""'--“\‘\
= .‘10_/ ' ‘\‘\~
(%] ~~
=1 ~1,
wn o
g
.20
'00 T T T T 3
188 128 L4 160 1.8 2.0
ALPHA

Figure ZI(Bi). Loss due to a single missing observation

for c.cud. with k=2 and n_=2, plotted against a.
3. Variances of parameter estimates
Variances of parmeter estimates for two factor design with
ny=na=4 may be expressed as

4 0—a2)? }—1

var o) = [ not 45

A A :
Var (B;)=Var (f;)=(4 x 22271

A A 1 ; 2041 8a2—~8—~2pn
Var (8 )=Var (B2,) =‘Q;4—[ 1+‘(4:|:nc)a4;16;2:l——16—{i4n¢ ]

4 iy
and Var'(B)=1/nr=1/4
These variances for design with one or two centre points are plotted

against « in figure 3 (@, b).

Variances of parameter estimates for design with «=21.0,1.0781
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and 1.4142 and for these design with a missing factorial, axial of

centre point are shown in Table 2.
1.00_

.
o
f==
i

~

~.
e
-

Y
=

VARIANCES OF PARMMETER ESTIMATES

.28
.Gﬂ 1 " == - ; = “]/: = ‘]
7 1.00 1.28 1.49 1,60 1.9 2.00
Pigure 3(a). Variances of parameter estimates for ALPHA
c.c.d. with k=2 and nc=1, plotted against a.

1.00_

£ 80
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@

&

= .00

=
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& P T

o BN ~~ |

g} LTS ver

= ¥

o

; .......................... e et Var (E, )
528 1
Y N vardh, )

108 18 198 160 .80 200
Figure 3(b). Variances of paratieter estimates for

c.c.d. with k=2 and d¢=2, plotted against a:
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4. -Discussion and conclusion. ‘

For two factor central composite design, the « values for
rotable; outlier robust and minimaxloss designs are same f.e.
a=4y/72 =1.4142. This ‘d'esign has smaller losses due to a single
missing observation. The variances of parameter estimates are also
comparatively smaller. As the loss due to a missing centre point is
maximum for a==4/"2 i.e. Lc=I/n,, it is advisable to add few more
points at the centre of the design.

It is not possible to have equiloss design, i.e. design with
Lf=La=Lc in central composiie designs with some centre points.

The work on designs robust to one or two missing observations
and with different factors is in progress with prominent results.
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TABLE 1

Loss due to a single missing observation at factorial, axial or
centre point together with the maximum Jloss and variance of
losses, -

No. of variables k=2 Total design points n=10J

No. of parameters  p=6 No. of centre points=2

Alpha n Loss due to a single missing observation. Variance
. of
Factorial Axial Centre Maximum losses.
obs. obs. . obs. loss.

1.C000 10 0.7976 0.5238 0.3571 0.7976  0.3304E—01
9 0.8056 0.5556 0.5556 0.8056  0.1736E—01

1.0781 10 0.7662 0.5357 0.3951 0.7662  0.2335E—01
9 0.7748 0.5612 0.6559 0.7748  0.1143E—01

1.4142 10 0.6250 0.6250 0.5000 0.6250* 0.2778E—02
9 0.6250 0.6250 1.0000 1.0600  0.1563E—01
* Minimaxloss due to one missing observation.

TABLE 2

Variances of parameter estimates for complete design and for
designs with one observation missing,

No. of variables k=2 Total design points n=10

No. of parameters p=6 No. of centre points=2

Alpha n Variances of parameter estimates.
Inier- Linear Linear. Quad- Quadr- Inter-
cept. atic. atic. action

(min) (max) (min) (max)
1.0000 10 0.3571 0.1667 0.1667 0.4286 0.4286 0.2500
9f 0.3824 0.3039 0.3039 0.5294 0.5294 0.5588
92 0.4000 0.1667  0.2250  0.5250 0.6000 0.2500
9¢ 0,5556 01667 0.1657 0.5000 0.5000 0.2500



1.0781

1.4142

10

o
9a

9¢

10
Ff

9

9¢

f— A factorial observation missing.
a—An axial observation missing.

0.3961
0.4183
0.4292
0.6559
0.5000
0.5000
0.5000

1.00¢0

0.1581
0.2651
0.1581
0.1581
0.1250
0.1667
0.1250
0.1250
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0.1581
0.2651

0.2207
0.1581

0.1250
0.1667
0.2083
0.1250

0.3701
0.4493

0.4529
0.4609
0.2188
0.2292
0.2292
0.3438

c—An observation at centre missing.

0.3701
0.4493
0.4881
0.4609
0.2188
0.2292
0.3125
0.3438

0.2500
0.5173
0.2500
0.2500
0.2509
0.4167
0.2500
0.2500
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ON TRANSLATIVITY OF THE PRODUCT OF NORLUND-
WEIGHLED MEAN SUMMABILITY METHODS

by
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Abstract :

In the present paper, necesssary and sufficient conditions for
the product of Norlund-Weighted mean summability methods
(N,r) (Mg) to be translative have been established. The paper
contains two interesting examples to show that even if both (N, r)
and (Mg) are translative, the product (N, r) (Mg) need not be so.
Some special cases for which (N, r) (Mg) is translative have been

given.

1. Introduction,

Given a series
0
b an. (1)

n=0
We will write r, g to denote the sequences {rs}, {gn} ; we shall use
throughout for any sequence, Aup=un—un1. We define the sequence
{cn} formally by means of the identity
o0 o0
(B raz") " 1=X ¢pz" ; c_ua=0 (n>0)
n=0 n=0
o0
and will write C (z) for X cpz”.
n=0
Let (N, r) denote the Nérlund method in which the sequence
{S.} is transformed into the sequence {H,} where
L g Fn.kSk ; Re=ro+ri+.....+ra #0 (n=0),

Hn = R fe0

()

R_=r_;—0.

33
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Each sequence {g,} for which Qn=q¢;+¢;1+.....+¢n#0 for each n
defines the weighted mean method (Mg) of the sequence {Sn},

where

n
2 grSk , n==0, 1, 2,......, (3)

U, =
" Qr k=0

1t follows from Toeplitz’s Theorem (Hardy, 1949, Theorem 2) that
the necessary and. sufficienat conditions for. (N, r) to be regular

are that

rn —_ _ (4)
Ry —>0-as n—->w,
and
n
Z[re|=0(|Rn)) &)
k=0
For (Mg) to be regular are that
| Qni —c0 as n—>c0, ‘ ©)
and
n
S gl =0([Qnl) , )
k=0

The product of Norland-weighted mean methods (N, r) Mq)
may be expressed as the (N, r) transform of (M) transform of {Sn}
and is given by the sequence-to-sequence transformation

n

In = = Wn, 0S‘U ’ (8)
=0
where
n
ey v Tn.k
Wn,v—T ‘—"Q‘r OSVQH (9)
k=u
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A sequencé-to-sequence method A is called translative to the
left, if the limitabilify of Sq, Siyeeeeeree Snseeras implies the limitability
of 0, SO, Sy......,Sn_y, to the same limit. A’ is translative to the
right if the conversé holds, A is translative, if it is translative to
the left and right.

It is essy to show that every regular (N, r) meth\‘o‘d is tirané‘la;tivé
Garabedian and Randels [9; Theorem 4] obtained necessary and
sufficient conditions for (Mg) to be translative to the right. The
author [l ; Lemma (3.2) obtained necessary and sufficient conditions
for (Mg) to be translative to the left.

On translativity of summability methods much work has
been done already e.g, see [11, [2], [3], [4], {5], [6] and [9]. Further;
Das [7] has studied the product method for two Nérlund means and
obtained many significant results concerning the problem of inclu-
sion and equivalence of the method (N, r) (N, ¢) with that of
Norland method. Das’s results contain special cases of some of
the previous results obtained bo Silverman [10] and Silverman and
Sza’az [11|. The author [1] and [2] obtained the neeessary and
sufficient conditions for (N, r) (N, ¢) and (M;) (Mg) to be
translative.

2. Object of the paper.

The object of this paper is to obtain the necessary and sufficient
conditions for (N, r) (Mg) to be translative. and to show that
even if both (N, r) and (My) are translative, the product (N, r) (Mg)
néed not be so, some special non trival cases for (N, r) (Mg
being translative are given. These results will be concluded in
sections (4), (5) and (6).

3, Preliminary results :

This section is devoted to results that are necéssary for our
purposes. ,

Lemma (3.1) [1 ; Corrolary (2.1)] Suppose 'that a normal regular
summability method (C) is given by the sequence-to-sequence
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transformation :

/)
Us=Z¢cn, &Sk, (1
' k=0
such that
n
Z eny,k=1 (alln > 0). (12)
k=0

Let I—Jn denote the C-transform of {Sr_;}, and let Un , ﬁn be obtained
from (11) in terms of each other by

- n
Upst = 2 a@ngy, EUk, a, . =9 (k =z n41), (13)
k=0 -
and
n
Up = z'bn, kﬁk 5 by ar = ;;:jln "+1: 2 11
’ N4+l B
k=0
then (C) is translative to the left if and only if 14
n
¥ | @n+1s k | =0 (1), (15)
k=0
and for every fixed k,
ani1s k——0 as n——>o0 (16)
(c) is _translative to the right if and only if
’ n+-1 '
2 1bak =0 (1), an
k=0 '
and for every fixed k.
ba, b——0 as n——> 0 : (18)

Lemma (3.2) [1] ; Theorem (4.2) Let ¢,>0 (all n20), and Qp—>
as n—00. Then a sufficient condition for (Mg) to be translative

is that (ﬂ;'”»— ) be ultimately monotonic.
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4. Main results :
In this section we prove the following two results :

Theorem (4.1) Let (N, r) and (Mg) are both regular, then (N, r)
(My) is translative to the left if and only if

n
Y | An | =0(D, (19)
u=0
and _
An, »—>0 as n—o0 (20)
R (2n
where A e 9211QuRa
PP aQuiRant
n
Rax Z ( qu1 2 ra_k
A s U= - - "JC P
ny U Rn+1 Q v UAF Qk{-l )
y=uy k=vy
0<u<n-1 (22)

where {C} has to be defined interms of {r,} as in section (1).
and ’
An,u=0 u>n (23)
Theorem (4.2) Let (N, r) and (Mg) be both regular, then (N, r)
(My) is translative to right if and only if

n
% Ba,u=0(), @4
u==(
and
Bn u, —>0 as n— - o for every fixed u, (25)
where
. _ L . (26)
Bn s B An, ” ’ | |
n
R r
B;, 4 == u+1 2 Qs+1Co_uNv ( Zour —%— ) .
y=U k=:v

0<y=<n-1 @27
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ind
By,u=0 u>n (28)
Proof of Theorem (4.1) Let {U,}, {Uy} be respectively the (My)

transform of {S,}, {S._i1}. Let {t"}, {t"} be respectively the (N, r)
(Mg) transform of {S»} , {Sn_3}. Then

n
1 (29)
- Sk,
Un = . 2 qkSk
k=0
This gives
n
— 1 30
Unpy = Qnt1 g qhe1Sg. - (%0)
k=0
Also
n ,
In = Rln 2 rn_kUp, (31)
k=0
and so
n )
_ 1 I 1 — (32)
Tng1 = mz ’n_kUk+1<=>?” = "RTZ 714 Uk:

From (29) obtain S, in terms of U, and substituting this in (30) to

obtain U, in terms of Uy, the result is

n B
— 1 33
Tatr = gDt~ (UkOs—Uso1Qur) 33
k=0
The inversion formula of (31) gives
, n
Un = z t]cRIch_k, : (34)

where {Ca} is defined in section (1).
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Using (33) and (34) to obtain Uy, in terms of t, and substitute. this.

in (32) to obtain ;nH in terms of ¢, the result is
. ) ;
farn = X Ay, utag (35%)
u=0
where Ay, |, is given by (21), (22) and (23).
Using (35) together with Lemma (3.1), the result follows at once.
Proof of Theorem (4.2) Using (29) and (30) to obtain Uy in terms

of U,, 2ud from (32) obtain Uy in terms of fu. Substituting this

n (31) to get?n in terms of 5 the result is
- n -
tn= X B, vta (36)
u=0
where By, 4 is given by (26), (27) and (28).
Now the result follows on applying Lemma (3. 1) to the transforma-
tion given by (36).

5. Examples.
In this section we will give two examples to show that even if
(N, r) and (Mg) are both translative, the product need not be so.

Example (5.1) Define g, as follows :
1
ga=(k+1>"1, gopp =[ik+1) (k+2)] * , and gar4o=(k+2)71
Then {q—'”L} is ultimately monotonic, thus by Lemma (3.1).

dn
(My) is translative. In this case, the author [I ; section 6] have shown
that the method (C, 1) (Mg) is not translative neither to the left nor
to the right. As (C, 1) is an (N, r) transform with rp=1 (all #2 1),
this shows that (N, r) (Mgq) is not translative.

Example (5.2) Let ga=n! (all » > 0), and let ro==r;=1, ry==0
(n > 1). Then {—qlq——i—l—} is monotenic, and thus by Lemm (3.2)
n

(My) is translative. Also (N, r) is clearly translative. We will show -
that neither of the conditions (19), (20), (24) and (25) ars satisfied,
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Observe that [ r (2) ]71=C (2), we have

n
E ry_oCy_y=0 forn >u (37
v=U
=1 for n=u. (38)
This implies that
Cup = (—1)" n=0 (3%
Write An, 4 given in (22) in the form
n—2 n
. _Ry [z ( duvil Fa_k
An, L R)H-l QUC'U._u quv Qk+1
v=U =y
n
_ YGv+2 Yn_k \
Gory & Qi1 )
..—av_,_

o, r In+1 To
+Qn.1Crs- u[ Tnt ( Q, o T Qi1 ) 9n Qunt ]

Tn+1 (40)
A1 Q,C,. ] 0<u<nl
+ qn Q Y Qn+1 “s
Using the hypothesis and (39), it follows from (40) that

-0~ (gt )e
v=uy

N Ry n 1
e gt (g —q)
+ 5 ()T 0 < u < n)
Observe that Q, ~ n ! we have that the first term of the right hand
side of the latter equation is ~ Ry (2s2)71, and the third term is
R
2

An, y =

equivulent to ({n!)™1) —"— . This implies that

An s v Rn
(=1 T2

This shows that (19) and (20) are not satisfied. Similarly, (24) and
(25) are not satisfied. This completes the proof,
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6. Some special cases,

In this section we will give two special cases in which (N, r)
(M) is-translative.-

Theorem (6.1). r,=g¢,=1 (all # > 0). Then (N, r) (Mg) is
translative:

Proof. Using the assymption, it may be easily seen that (N, r)
(Mg) reduces to Holder method (H, 2); which is known to be
translative.

Theorem (6.2) Let ro=r;=1, r,=0 (all n 2 3), and g,=c"

(alln 2 0); (¢ > 1). Then (N, r) (My) is translative.
Proof.- The hypothesis shows that (39) is satisfied. Using this,

we have from (40) that for 0 < - n=1,
n=<2.
By u = ——[2 (= 1P~ (e =D)(e—1)""
=y

[c(@%w—i:r)—c(%ﬁ—oi?)]
o 5 (e ) e )]

H#(=1)"* (emtl=1) (c—=1)Le Q1 ]

nt+i
(—qyes ot (e—1)? Ry
=(—1) (™ 1=1)(c*2—1)

This- shows. that- both- (19) and (20) are satisfied, and similarly,
we can show that (24) and (25) are- satisfied. TFherefore (N, r) (My)
is translative.

Lastly, the author would like to express his sincerest thanks to
Professor B. Kuttner (Birmingham Universily, Birmingham, U.K.) for
his kind encouragement and- valuable suggestions which improved
the paper.
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AN IMPROVED CONDITION FOR SOLVING
MULTILINEAR EQUATIONS

by
IOANNIS K. ARGYROS
Department of Mathematics

The University of Iowa
lowa City, IA, 52242

Abstract. In this paper we improve exisfing conditions for
finding solutions of multilinear equations in Banach space using the
contraction mapping principle.

Introduction. We consider the multilinear equation
x=p+M (X, X, X yeeeeeenes 5 X) 4))

f order k, k=2, 3, ........In a Banach space X, where Mis a bounded
t-linear operator on X and y€ X is fixed, It is known [2], [4]
that if

k (e=1).25 L= Lmy < 1 @

then a solution x of equation (1) exists and is unique in a certain
ball centered at 0, and Newton’s literation (or others) converges to
such an x.

The purpose of this paper is to improve condition (2). In
fact, using the contraction mapping principle we prove existence
and uniqueness for a solution x of equation (1) provided that

ok k—1 k—1
Rl o< ®
which improves condition (2) when k£ = 3.

As in [3], there is no loss of gemerality to assume until the

43
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énd of this paper that M is a bounded symmetric k-linear operator
on X.

We now prove the theorem.

Theorem. Assume that condition (3) is satisfied and there
exists 7 > 0 such that

K|yl k=1 11 4
-1 STS -n/‘kumu k> 1. @

Then eqnation (1) has.a unique solution x in u )
={x € X[ |lxll < r}

Proof. Let r > O be such that (4) is satisfied, then

Claim 1. The operator T given by
T (2)=y+M (X, X,y.00e000s, X)

is a contraction on U (r).
Let z, o€ U (r.
IT(0)—T @I=IM (0. ©yee00eteens @)—M(2, Z,1000eeee , 2l

=M (0—2, ©, 0,..,0)+M (0—z, 2, ©, ©,..., ®)
+Mlo—2z, 2, 2, 2, ©, @,,..,0)+ ... +Mlo—2z, 2. z,..., 2)

< kMl T o),
Now T is a contraction on U (r) by condition (4)-and the claim
is proved.
Claim 2. T maps u (r) into U (7).

we have
IT GOll=lly—+M(x, Xy00s oo, )l
< l:lyH-l-HMll.rk.

It is enough to show
Vi-+Mlrt < r




4
or
Lxli+HIiMlLr an” ST

the last inequatily is true by condition (4) -and the claim ig

proved.

The result now foHows from ‘the contraction mapping
priaciple.

Note ! Fork =3
'k 1 _ k=1 - (5)
[ S <{k—1) 5
Proof. We have fork > 3

K (k—1) (k- ((k=2) 1 =(k—1) (2k—2)"
=(k—1) (k—1)k"12¢"1

Now divide by (k—1)#"1 the above inequality to obtain (5).
We now provide a simple example when X=R.

Example. Consider the real equation.
x=t4+2x°

Here |[y|l=.4 [M]|=2 and k=5. Now condition (2) becomes
5.4.24.(.4)4.2=16.384>1.

whereas condition (3) becomes
4
5 [_i ] 1 4.2=.625 < 1
Therefore the iteration schemes in [6] do not apply. whereas

Theorem 1 can be applied for r € (.5,.562341) and the solution
obtained is x=.429093.
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IN BANACH SPACE

by
TOANNIS K. ARGYROS

Department of Mathematics
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Abstract. We obtain new lower and upper bounds for the
solutions of the quadratic equation in Banach space. We then
combine the new results with the already existing to extend the
applicability of the existence results.

Introduction, Consider the quadratic equation
x=y+B (x, x) 1

in a Banach space X, where B is a bounded bilinear operator
on X and y€ X is fixed. In this paper we prove that if xisa
solution of (1) then,

fxll>p | )
where p = _H—‘/z [II;‘IT”B”'”y” , Moreover, if

1—4 |B|.]yll > 0 (3)

then
p<|x| <sorlx] = s )

where
5y = 1V I—4IBIL Iy~ 5, — 14/ 1—4[By]
2B 2B

Finally we discuss the effect of these results on known
results [1] , [3] for the existence and uniqueness of solution x
of (1),

47
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We now state two well known theorems

Theorem 1, If

I—4[Bll. Iyl >0 3
then (1) has a solution x given by
PO 0 VI B E R S
where
Xo=)y

x1=B (xq, Xo)
¥2=B (%o, x1)+B (x1, %)

n—1
x,=ZB (x! )
J=0
Moreover x is uriique in U (x, r)= {z € X| [lz—x]l< r) where

r= V 1=4B[yI
2 (B[

Theorem 2. If
I—4B}, Iyl >e (3)
then (1) has a solution x given by

x=lim (y+B (x, , x,))
H—> Q0

for any x4 € U (), where
10 < 591

Moreover x is unique in U (¢).
We now prove the theorem.

Theorem 3. Any solution x of (1) is such that
I x> p. 2
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Moreover, if - '
I—A[Bjl.Iy| >0 - : 3)

then
p < xll < spor x| > 52

Proof. If x is a solution of (1) then
y=B (x, x)—x=
IY=IB(x, x)—xll < [BIL.lix[2+[ix]l=
IB.IIxI+ x|l —lyil > 0={xll > p

Now
x—y=B (x, x)
=[B(x. x)ll=lx—y1 > [xll—Ilyll
=B} IIx]2—lxl+lyl > 0= (using (2))
2 < x| < sqor fixll = 5.

By comparing theorems 1 and 2 with theorem 3 we see on the
one hand that (2) is a new bound on the norm of the solution x,
on the other hand if (3) holds, theorem 3 extends tne uniqueness
of x in U (gq) where

Pp<q<8,

We obtain similar results if we compare the bounds given in
theorem 3 with the one’s given by Newton’s method [3], [4].

We now provide an example. Consider Chandrasekhar’s integral
equation [1], [3], [4].
1

x O)=14+2x0) § yiw () do, % > 0

)

in the space C [0, 1] of continuous functions on [0, 1]. Here [}y[=1

and

J —
7te ldw—)\an.

IB||=2 max g
o<sy<l 0
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Choose A=.25, then

p = .8691

51 == 1.2870
52 = 4.4837
r = 1.5983

Let X= U (s,), then theorem 3 guarantees uniqueness in
X whereas theorems, 1 and 2 guarantee uniqueness in the smaller

balls U (x, r), U (¢) CX respectively.

However. it can be proved [2] that (5) has a unique solution
in X for any A > 0. So our example serves only as a comparison
between theorem 1 and 2 with theorem 3 and not as a new uni-

queness result for (5).
The results obtained here can easily be extended to include
equations of the form.
x=y+L (x)+B (x, x)
where y, B are as before and L is a bounded linear operator
on X. ‘
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A NOTE ON MAXIMAL FUNCTION
by
G. M. HABIBULLAH

Department of Mathematics
Islamia University
Bahawalpur

The ‘maximal function’ M (f) associated with a measurable
fnnction f is defined by

n M f(x)=sup | (x-—t)‘lfxf(y) dy |, x>0.
0sr<x t

The well-known inequalitly of Hardy-Littlewood states

(2) IM (Nllp<p” I fllp , (1<p<c0) »
where 1/p+1/p'=1, and | f|lp is the usual norm on L .

In this note we consider an extension of the operator in (1) by
defining

X
@ ™ (f)(x)=((J)‘l(x—t)“"1 5o (@
M ( f) corresponds to Mi (f) with =0, 1/A=0. Sadosky (5) con-
sidered the case 1/A==0, «<0 and when a=0, M* (f) reduces
A

to an operator studied by okikiolu [3, pp. 264].

We also study #-diamensional form of (3) defined by

@ N () () = %0 [ fa=Drt =D/
A

) <d & af an'Nre e ).

1
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When «=0, 1/A=20, N* (f)reduces to the n-dimepsional maximaj
A

function considered by Calderon and Zygmund {2]. We use this
function to determine certain estimates for Poisson operator. As

in the case of M (f), the main results involving M* () and
A

N*( f) can be proved on more general measure spaces simply by

replacing Euclidean spheres by suitable spheres in the metric space
concerned,

We need the following result due to Okikiolu [4].

Lemma 1. Let f¢L? (0, ©0),p > 1,0 < B < 1/p, 1/g=(1/p)—B.
(5) Let A (f)(x)=x‘3_1(J)°xf(y) &.

Then there is a constant k (p, £) indepenent of f such that
(6) A Cf Mgkl f lip-

Throughout, k—k (x, B...... ) denotes positive constant depending
upon parameters involved, not necessarily the same at each

occurrence.

Lemma 2. For 0 <M £ Ay, We have

™ xTMME (f) (%) = XM () (%), x>0
A A

The result is easily verified by applying Holder’s inequality to the
expression,

ME £ = §F [ et ¥ £ () 201 g,
Al 0 _ t
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Lemma 3. Let0 < v < 1, 1/a=v/A;+(1—v)rz, 0<iy, A< 0.
Then

) ME () < MS(F) M, (0!

Proof. The result is obtained using Holder’s inequality on the
expression.

M (f) @ = s | —)* 1 5;‘ FOWPM |y 1%
A
i oy P ar,
t

where B=(v)/A;, (1—B)=(1—V)A/A2.
Theorem 1. Let f€L? (0, 0),0 < a < I/p < 1,2 >—1/(1—a),
1/r=1/p—«. Then

9 llx-lh‘ M: f®lg < kO, a,p) If llp.

Proof. Since, by definition.

M ()6 < (a—at "L oA 1ol a

the result is obtained by using Lemma 1 with

k={1—a)p’}l %

Theorem 2, Let f€ L? (0; ), p>1.0 < a+1/A < 1p < 1,
1/g=(1/p)~1/p—«. Then ‘

(10) ”Mi (Fllg < k@2, M) | flp.

Proof. If f* is non-increasing rearrangement of —f [8],

| £llp=ll fHlps ¥ () < =1 5119 ds (G ke < *

(vg* (v2),
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so that
(MZo (£ < (32 MOFN*/2)

< k] g‘ (M £))* (s) ds.

| Hence by Lemma I we have, for 1/r=1/p—a > 0,
“M:c (f)1|r=u(M°;O (f NHlr < & (@ pIOMCS ) g

=k(a, P)IM(f)llp
< k@Sl

Also,

M () @=(f* l(x—t)“_ltfxf(y) " anllr
r

= (fF 1 @ g p e YT
0 0 .

Again, if 1/r=1/p—a, use of Lemma 1 yields.
IM, (g = k (a, p)I| f llp.

Now with 1/g=1/r—1/A, we use Lemma 3 to get

M () =M ) M (=T

Q

< kIM* ()1 v ()
r [o 0]
Hence
IM* (£ lle < EIF I IM* () 1719
A o0

<klfle

Theorem 3. Let f¢ L! (0, ©), 0 < p < 1 and let S be any
measurable set in (0, o), then A > —1/«, we have :
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ST TIPME () @ dr < kG p) (S)' P x
v A
U2 176 | dwp.

Proof. Since x—“_m‘ M= () X)) <M(f) (x), we get the result
A .

by using a similar known result on M (f).

Theorem 4. Let f€L? (—0,0)p > 1,0< a1,
1/q=1/p—1/a—ea > 0. Then there is a constant k=k (p, A, «)

subh that [Ty (£l < &1 fllp, where T *(f) is defined by
A

2 CLE@=F x—ny ,\ 1=
) T (f) @)= (JFEeEEeE=a)

— 00 t

and F (x) =ofx @) a.
Prbof. It is clearly sufficient to prove.
(¢ T () eyd)t? < & fllp

A similar result involving ( _]'0 (T* () (x))q(dx)ll 7 can be obtained
—a0 A

by changing variables and considering f (—¢) in place of f£(¢). Then

AZp 2 LT (£))P=fP ¥ o) dy) ae+
A 0 x—t

SR T gy ) ar
0 X

1 2

and using th¢ inequality (a+b)1/’\ < all)‘ +.!>”’t ,a>0,5>0,
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we have T* ( f) < I;+IL. Estimates for I; and I, can be obtained
A

as for N* ( f) given in the next theorem.
A

Tbeorem 5. Letfel?(E"),n=>1,p>1,0<a <1,
1/g=(1/p)—(1/A)—e« > 0. Then there is a constant k=k (n, p, %, a)

such that
(12) nN;c (ML KNSl
Proof. Since f fx—y)ydy=_ thon f* (s) ds where o,
[y <t 0

represents the voiume of the unit sphere in E,, f* is the non-increas-’

ing rearrangement of f, it follows that
N* (f) @<L (}:O (t(a—l)n+(n—1)/1 J(;t o, 7+ (s) ds)A dt)I/A
A

—ol M (B it § e at '
0

n

and if 1/r=1/p—«, Lemma 1 yields

IN* (), < @l ™27 ke, q) 1 ¥ 1
r

Lk(ep,n )| flp
Also, as in Theorem 2,

IN® (A, < k (22, )l flIp
o0

Now for r < A < o0, we have
N (N < e @™ § pa—pay*
A , [y] <t
, EO | t(“fl)n+(nf1)/rg - flx—Y) r dt)
0 lyi<e
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<Nr (f) (x)lr/q N)\ (f)(x)r .
Q0 r
and
nNi (g < k(D Ay &, 1)l f g

We now prove some results involving the extension of the
maximal function. These applications involving Poisson opetrator
are analogous to the estimates majorized by M (f). [Steia 5, pp.62].
Similar results involving the Weiersttass ¢an also be proved,
Theorem 6. Let the function @4 (2), a >0, + € (—00, ®©) be
measutable on {0, @) x{(—w00, @) and 'be absolutely continuous in 7.
Assume that for each fixed number g, we have

@0 o, €L”,
@) 1P 5 ()08 11| o,

o ‘ 7
i) 1% €N wherep > 1,4 > 1.

Let the eperator o a be defined by

, | -
13) ,(HX=§ & OfGx=1)dr.
. 00
and |
e Tt ’ ’
t(a)=(c§° 10w, @F et
; —0o0
Then
(14) spr@”! ) e, (H®ILKT () ).
a>0 A

F rmore, forp > 1,2 = p,1)g=1p—1/A—-s>0,0 S a < 1,
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there is a constant k=k (p, r, 2, A) such that
(15) lsup = @1 18, (f g < kI £y
a>0 7
Proof. Since z, € L? | it is clear that z, (f)is defined for

fEL? |in fact @ (f) is continuous on (—o0, o). Tbus integrating

by' p,arts we have
w B

: X
0, (f Y(x)=f @, (1) (d]dt)S S () dy)ar

— 0 x—t

=f cdldt (2, (t)J ft(y dy)—f ﬁ' 0

x
(f f(») dy) dt.
—0

Applying the Holder inequality, it follows
| 2, () f SO a1 < <t Lo, 01151, ~0as 1,
so that
' o ot .
2, (DI =1—S ¢, @) 5 fO)dy|
— 00 x—t

S o0 Lx L
vt -1 = 1/
<@ ST royat ant
—o0 x—t -

This clearly proves the first result of the theorem. The second part

follows from Theorem 4.
Corollary. If f € L? (—0,00), p>1, 2= p, 0 < a< 1,
1/g=1/p—1/A—a > 0, then there is a constant k=k (p, A, «) '

such that

16) s a ““ (f)H <KL,
ey a0 7
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where

(e o}
a

Pa () (x) =1z Smf(t) dt, a>0.
—w
It can easily be verified the kernel. of Pa ( satxﬁeS“ the
conditions of Theorem 6 and

N @® ’ ’
(5 1t
—a—1/A Ootz—“ A A
=2 (§] G )
—C0 ‘
___a—oc—l/lk( 2,

since the last integral is convergent.

We now prove the estimate involving thc n- dlmensmnal form
of the Po:sscn operator defined by

P (DW=l [ et lyJZ)“(”“)/Zf(x .
n ..
where - S IR
D)2
oy == " fmtnn

Lemmad. Let f¢LP (B )n=1n>1p>1,0 <a <1,

7t>p,then o : e L
(_J lamc+(n--1,7x (f)(x)n da)l/x

< k(n, ), a) N;‘ (f) (x),



é0
where
k (1, 2, @)=142"H gl Fnatnh _—1

- Proof. Using the argument as. given in [7], pp.44] {for f = O
which we may assume, we have

c? (f) (x) =a( S (71 2a+S R e
by | 2t D2
<a " S |¢] < SO dt+a S " >af(35;t)'t_”_1dt
and

af |11 5af =D 1Py

[0 2]
AV fe=n a1~ ey
mz;gl al [y} <P 4 | i
o) m—1 —n—1 f f(x—y) dy.

Hence forl <2 0,0 a <1

@ a+(n—1)/2 lx
cngflan (n )/p (f)()’ /

e8] .
« O (a— D=1
7’< c”(Jo E Iyl <a
(f (x—y) dyi* day' P

12h S glmm—nma—mn— l)/)‘{f | (2 (@ — Daat-(i—1)/A
m=1
I <2m £ (x—1) dif da)l?

< N (f)(x)+2”+lm : (tj2ym(L+natn/) N () )
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Theorem 7. Let f € LF (B, hn>tp>1,A>p0<a<],

I/g=1/p—1/r-—a > 0. Then there are constants k=%, (#, 2, «) and
ks=k, (n, A, «, p) such that

(17 sup " TP p (1)) | <laN, (£) (),
a>0 '
and
+ 1A '
as) Isup d" CHID by (1) @y < Kl 71 -

Proof. We can clearly assume f > 0. Since the function
@D ot (plapy=( DI2
is increasing in a, it follows that a" p, (x) is an increasing function
on (@, oo).r Thus for
-1 ntl— o
oD ST b (f)=dp, ) § ¥ dy
a
m«

<S5V, (N

a

and using the Holder’s inequality we have

v—1) "1 P, (f)s( O? yrmmr—n—lr=v) ¥ 'dJ;)
' 0

o0
Cr omH =y, iyt apllh

If we choose v such that n—n («+1/2)+1—v < 0, then an applica-
tion of Lemma 4 proves

(i) the second result Is an immediate consequence of
Theorem $.



(1)
@
3
©)

)

(6)

(7N

®)
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' POPULATION
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Abstract.

In this paper, we obtain the exact expressions for the higher
moments of the Srivastava and Bhatnagar (1981) estimator of the
inverse of mean of a normal population with mean g and variance o2
We also derive an asymptotic expression for the higher moments of
the maximum likelihood estimator of the inverse of mean of the
normal population using saddle point method and compare the
results with those of Srivastava and Bhatnagar estimator.

1. Introduction.

Recently Srivastava and Bhatnagar (1981) proposéd -a class of
estimators of the inverse of mean. Exact expressions for the first
two moments were derived in case of normal population and large
sample expressions for non-normal populations. In this note, we
obtain exact expressions for the higher moments of the Srivastava
and Bhatnagar (1981) estimator which will subsequently be called
the S-B estimator and compute its efficiency and relative bias for
some values of parameters. We also derive an asymptotic expression
for the higher moments of the maximum likelihood estimator of the

Keywords : Moments of inverse mean, efficiency, relative bias,
measures of skewness, normal population, saddle
point method. o

AMS Subject Classification ; 62E15, 62F12,
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inverse of mean using saddle point method for large #» -and compate
the results with those of the S-B -estimator.

2. Exact Expression for Higher Moments of S-B Estimator.
Srivastava and Bhatnagar (1981) proposed an estimator fz=
m_c/(n;cz—}-ksz) for £>0of inverse of mean pof a mormal population

with unknown variance o2, where x and 52 -are unbiased estimators

of # and o2 respectively, When o2is known, they considered fg=

nx|(nx2+ ga?) for g>>0 as an estimator of w”1. When o2 is unknown
Srivastava-and Bhatnagar {1981) take

=1 {_ " % z . k w e e IR
(2wt [ (-t )2 T o

where z=4/ 7 x5, 0==02{p? and w=(n—1) s?/c2. The random vari-
able Z follows a normal distribution with mean \/,,/e and variance 1
and the random variable W is a x2—distribution with (n—1) degrees
of freedom. Srivastava and Bhatnagar (1981) obtained the exact
expression for the mean and variance of their estimator. In this
section, we -obtain exact expression for higher moments of ‘their
estimator.
By definition, the rth moment about origin is
‘ ©o
R L 4 ¥
w=Be )= § | e wana @

—o00 0
where 1 is given {1) and
1o 2= [ 272 (5 WO exp (- s+
We mow write

tk1=f’-’(n/9)r/2( zz-z']-w )TZ( S ){ nfl)a:( 57:‘74’ )"‘

__,

al

cé

fo

al
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and

exp [—Hz— /A0 + wl=e ~ HZTW) 2 (\/n/e)

J=0
We substitute these values in (2) and obtain’
. o o . . o
pr' = Z Z K (\/n/B) S S P Wﬁ“—F%(””S";" |
=0 ] — 000 (22+w)’.+a X

W o o)

where

K ~ [2n/2\/?1.(ﬁ_—-i1“H—_le,“n/29 (n /e)'/z( f+;”—”l )

(1= )

The intégr4? in (3)will vanish-when r:j is-odd;c There are” two
cases namely (/) ris-odd and (i) ris-even;

Case (i) : risodd. Letr=s2m+1. The integral (3) will'védigh*
forevent intepeil: values: of j..- Thus the equation-(3) reduces: to-

w Lo g Pied -J-_.__, 1
2At1+2] ot 3(w—3) y

o
( 'n/9)2”+13 S

W o 1™ wf G 22 A I S T
e —%zz—*—w)dwdz '
Apylying the transformation | |
2=y, 0<yy<00
w=yi(1—-y,) 0=<y:<1, @
and simplifying, we have
0
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where T(a) and (b, ) are the gamma and beta functions respectively,
a]—_‘J —m+n{2, b —J—l—m+3/2 and ¢ —*x—l—n/Z 1. If m=0, we

obtain the S-B expression for E(tk).
Case (ii) - ris even. Letr=2m, The lintegral in (3) vanishes
for odd integral values of j we obtain

2j © oo (22)j+mwoc+%(n—3)

p’ K &/H/O) X
2”_1 “  (27)i E © SO (z2+w)2’" +a
_%(Zz—{_w)dwdz
Applying the transformation (4), we get
=3 0
boird GRULIAIETS (AT YOI IS (©)

by =g
2m~ %] Ta (21
. If m=1, we obtain the S-B expression for E(t 2).
- . &
Using these expressions, we can derive exact expressions for
relative bias, relative mean square error and measures of skewness
and kurtosis.-

2. Asymptotic Expressious for higher moments of Estimator of Inverse
of Mean by Sadddle-point Method,

We know that (X)™! is the maximum likelihood estimator of (p)™!

but ﬁmte moments of (X)! do not exist. However, we can find

asymptotlc expressmn for moments of (X)’1 for large values of n by
using saddle point method, (See Daniel (1958) and Copson (1976)
for the details of the saddle point method).

f

"By definition, the rth' moment of the reciprocal of mean is

1 VT = = . : ‘
Nars E(X) r=—K(x) dx | )

T CNE L oS v B
where K(x)=(4/27 6)"1(x)7" exp .[_—»27( o )] - K(x)' appears
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singularity at x=0. However, it is easy to-see that lim K(x)=0 and
o - x-0

if we assume that K(x)=0 at x=0 the function becomes constinuous

at x=0 and it is possible to evaluate the integral asymptotically,

using the saddle point method.

Consider the integral
1= § s@ ez iz ®

where ¢ is the path of integration in the z-plane along the real -axis
and the functions g(z) and h(z) are functions of the complex variable
z which in a special case may involve only real values of z.
In order to evaluate the integral asymptotically for large values
of p, the path of integration is deformed to satisfy the following
conditions :

-(7) the path passes through the root ‘zov (called saddle point) of
R(z)=0.

© (#7) the imaginary part of A(z) is constant on the path.

If we write h(z)=h,+ih, where hy and h, are real, h, is constant
on a path of steepest descent, then the dominant part of the asymp-
totic expansion arises from the part of the path near the highest
saddle point. If the path c is deformed to pass through the saddle
point, then the integral will be obtained in the neighbourhood of
the saddle point. The saddle point is obtained by solving A'(z)=0
and the path of integration (3) will be the locus of the points
determined by the equation

h{z)=h(z¢)— s2, —w0 < s <+w ®

The saddle point corresponds to the value s=0. The integral
(8) taken over ¢ is now replaced by the integral of the same integrand
over the new path of integration given by the equation (9) which
transforms z to s given by ¢(s)=g(z) (dz/ds) and the dominant '
contribution to the integral now stems froem the vicinity of saddle



&

point. The integral (8) is written as

Q0
I=S exp [p(#(zo) —52)] ¢(s)ds
— 0
@ 2
=exp [p )] § 7P 415) as (10)
—00

For large value of p, only small values of s will contribute
-signifieantly - to -the integral. ‘Expanding ¢(s) in -a -series of
powers -of .5, substituting in (10) -and : integrating -over -5, -and
. roe)
—_— 52
-asing the formulae iS‘sme “ps ds=0 -when -m ‘i5 -odd -amd
—0

. - ! ~-m=1

‘ S 7, =R g V25 ! (v/2p) ~when m is even, we obtain the
272 (m[2)

—00

following .asymptotic expansion of the integral for :large values

of p:

o0
1=cPH) 2 w0+ 34 R g (11
K=1

#here
X
{ d
0= BN K=0,1,2, e
ds

In case of the integral (7), we have g(z)= ézz) -
¥4

)= =

. ;The. transfermation is
z= w+4vV 2 &s)

2 2 (z =p)?and; p=n. The saddle point is zo—l“' -and also
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and
d(s)= —=(rt+4/ 2 as)"
\/ >
Substituting these values in (11) we obtain for large n

[eo}

where (a)K=a(oc+1) ............ (a+K-1).

Using the first two terms of the summation, we obtain

W,ﬁ-,[ r(r+1)( o Yot Hr+1)(r+2)(r+3) (u) ]

2n 8n2

and if r=1 and 2, we get

e [0 G
o {1 3 Y5

If v and o2 are unknown, these can be replaced by their unbiased

and

estimators or % is replaced by its consistant estimator z4/ x . It

may be noted that the asymptotic relative bias is identical to
that given by Srivastava and Bhatnagar (1981) -and the .asymptotic
relative mean square error is 0/n+-862/n2 where 6=(c/u)? whereas the
relative mean square given by Srivastava and Bhatnagar (1981)
reduces to §/n4-992/n2 when K=0. The discrepancy in the second
terms of the asymptotic formulae of relative mean squared error
of g for large n obtained by Srivastava and Bhatnagar (1981) and

us stems from the fact that ¢ and » in the formula from Copson
(1948, p. 265).

e}
—H208) [atj) (nf20) 4 20 )b-—-a‘l__ 2b—a)(a—1) 0
ST+ T (" | n

]=

4+ 2b=a)b—a+1)a~1)a-2) ¢’ _,,...(1)]

n2
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are independent of n, whereas in the case of Srivastava and Bhat-
nagar (1981) are dependent upon n.
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1. Introduction :

In the terminology of ill-posed problems the Laplace transform
inversion is a severely ill-posed problem. Unfortunately, many
problems of physical interest lead to Laplace transforms whose

inverses are not readlly expressed in terms of tabulated functions,
although there exist extensive tables of transforms and their
inverses. Itis highly desirable, therefore, to have methods for
approximate numerical inversion.

 Numerous methods have been described in the Lierature for
the numerical evaluation of the Laplace inversion integral. They
fall essentially into two main categories :

(i) Quadrature approximation of the complex integral.

(ii) Basis expansion methods. A third approach is to treat
the problem as an integral equation of the first kind.

(!) Quadrature Methods :

Schmittroth [14] has described a method in which the inverse
transform is obtained from the complex inversion integral by use of
numerical quadrature. This method gives good results but may
become time consuming if the inverse transform is required for a
large number of values of the independent variable ; the quadrature
procedure must be repeated for each value of the independent

variable.

71
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Norden [9] Salzer [13] and Sbritliffe and Stephenson [I5) attempt”

an approximate evaluation of the inversion integral using ‘orthogonal
polynomials: and: employing Gaussian: quadrature: in - the complex
plane. The main disadvantage of this method is the necessity of
finding all roots, real and complex of a polyhomial of high degree,

(ii) Basic Expansion Methods :

In case where the inverse is required for many values of the
independent variable, it is convenient to obtain the inverse as a
series expansion in terms of a set of linearly independent. functions.
The inversion procedure then consists of determining the expansion
co-efficients once and' for all from the given Laplace transform.

The-inverse then can be obtained at any value: of* the independent’

variable by means of a simple series summation,

Lanczos [6] and Papoulis [10] have described methods in which-
the inverse transform is obtained as series. expansians in. terms. of -

trigonometric functions, legendre polynomials: and . Lagurre poly-
nomials. For a detailed bibliography the reader is referred to
Piessen [11] and Piessen and Branders [12]; McWhirter and* Pike
[7; 8F used- Eigen- functions expansion for Laplace transform'

inversion. Recently, de Hoog: et al have: also discussed:two‘improved”

methods for numerical inversion of Laplace.transforms.-

. Finally:Davies and. Martin [5] have given a-fairly ‘compreheasive
survey of methods:of numerical: Laplace transfosm: inversion.:
(#ii) Laplace transform inversion as first kind Equation':

. Varah [17, 18] has discussed: four methods for dealing with linear

discrete i[l:posed: problems including” Laplace transform invérsion;.
In.some-of hismethods he has-converted the ill-posed problem: to:
well-posed: problem by means of regularization: We: shall: compure:
our-method-with McWhirter and Pike’s method and Varah’s Methods:-

onithe:same:test examples.

The following terminology will remain standard throughout the
paper. The Laplace transform under consideration is denoted by

(7 I N ]
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g(s) and is related to the (unknown) original function £(¢) by
o
{ et sty dr=4g(s) (1)
0 :
Given g(s), s=>0 we wish to find f(¢), £>0, so that (1) holds.
Frequently g(s) is only measured 4t certain points ; however, to test
our numerical method, we assume g(s) is given analytipally with
known j(t), so that we can measure the error in the numerical
solution. | | T
We shall employ Maximum Likelihood method to evaluate the
solution of (1) Through deconvolution technique and determine the
regularization parameter by means of this method [4].

2. Method :
‘We make the following substitutions in equation (1)
s=o? and t=o"¥, a>1 4 (2)
0
— Y
then g()= { logu e F(a=v) a0 dy 3)
_.CD N

multipiying both sides by «® we obtain the convolution equation
© :
{ K Fotdr)=6w) @
—0 o

where
G(x)=ovg(a*)=sg(s) 1|

— X
K(x)=_L_qg o ox € o =\log o se ® }
F)=f(«")=f(1) J
In order that we can apply our deconvolution method to
equation (1), it is necessary that G(x) has esseniiially compact

support, i.e. G(x)—>0 as x>+ oo.

This is clearly the cause if g(8)=0(5871) as S—>.c0.

(5)
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which is a property we shall demand of our data function.

We need to choose two numbersx . , X such that
min’ “max

| G(x) | <€ whenever x<x . and x>x
min max,

In what follows we choose £=10"4 max | G(x) | . We find Xmin

and Xmax as the smallest and largest solution of Non-Linear

Equation | G(x) | =& We then pose the deconvolution problem (4)

on the interval (O, T) where T=X —X . , with a further linear
max ~ min

substitution onto [0, 1].

We shall use Maximum Likelibood unconstrained Method of

2nd order regularization in TN—I to solve equation (4). The

fourier transforms of F(x), G(x) and K(x) in (5) clearly must depend
on the parameter « in (2). It turns out that a plays the role of
second smoothing parameter in the Numerical solution of (4), in
addition to the usual regularization parameter a.

Since the size of the essential support of G(x) depends upon «a,
we may write T=T“. For a fixed number N of equidistant data

points {X,}, we have spacing h=hu= '11: .

Let G = G(x )=G(nh ), n=0,..., N—1
o, B n 3
denote the data on (O, .Ta). Then we have the DFT

A N-—-1
Ga, g= Z Ga n exp (_\il\l{‘g_), q=0,..., N—1 (6)
n=0 ’
Similarly for the Kernel co-efficients.
N—-1
A 27ti
X,, =z K, , P (—N— ng ) g=0,..., N—1 0

n=0
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- _ o\ _“n.
where Ka’ n—log o exp ( o )a
Now consider the functional

s = || kg || _“[

2
2

f(2) [

®

which is minimized over the subspace H?CL,. Both norms in (8) are

Ly f ) denotes second derivative of fand A the regularization para-

meter. Ths minimizer of (8) in H? is given by

<0 A
f ;\(}’)= _2_17:_S Z(w ; k)gA—(ML exp (iwy) dw

—0 k (w)
f)‘ in (9) is approximated by
N—1
N l(x)=2 Z o exp (iwg)
’ =0 q, A K
7= N, g

( ’ Stands for Fourier Transforms)
where Z N is the discrete 2nd order filter given by

PERE
7z e | ™N,q |
q,;\— lIé 12+N2>\W4
| "N, q |
where
— Wq» 0<g<iN
Wg=
L wN-—q iN<g<WN-1

From equation (10) we know that the filtered solution

f N (x)e Ty_; Which minimizes
I'N, -

N-1
S [®yn =g ) +1]]r P |

=

2
2

)

(10)

(11)

(12)
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N—-1
. 1 A )
isfg 2@= N iz, g Crigx),
=0

&N
RN __Xli"q— (13)
;% £
, N, ¢
using (6) and (7) in (13) we get

wherefN N q=Z

: - _ %4
Foc, Ag _z“, Mgk (14)

where

gl . ’ (15y

T . .
where w, g T 1 (To=Xax ™ Xmiin)

The optimal A in (15) is still to be determined by maximum

Likelihood Method.

3. Determination of Optimal 2.
Maximum Likelihood Method (ML).

Here we relate the 2nd order corivolution ﬁl;er ’(11) :to ycgrtain‘
spectral densities which they play a role in the ML optinfization of
A Assume that the data g, are noisy, and that there is an under-

lying function U € Ty such that
8,= UN(xn)-l-En =U +€,.




77
We identlfy both {Up} and {€,} with independent stationary
stochastic processes., Since in general, the expectation E(Uy) is not
zero, it is suggested by Anderssen and Bloomfield [1, 2] that the
data {g,} be detrended so that U, becomes weakly stationary, this
would involve subtracting from data the values of a smooth function
of roughly the same shape as UN. Now consider fNG TN——I with f

=(fa)=(fy(xx)) defined by (Kf) n=Uy, n=0, 1,..., N~1.

where K={ diag (& ﬁN q) LIJH, where ¢ is the unitary matrix with

elements.
¢ rs= ;—IT: exp (ﬁr— irS) ry §==0,....0. y N—1
VN N
N—1 1
—1 . k
f,,:Z {(K )’"”S exp (27 imn) dsp (W) } [4]
m=0 0
1

= ( K(w) ]_1 exp (2ni wa) d S, ()

N~—-1
where IéN (w)=z K, exp (—2niwn) (16)
n=0
N-—1
Assume that f is estimated by 2 Im gn_m where {I,} is a
m==0

filter which we shall relate to Zq % and {gu} is periodically con-

tinued for n& [0, N]. Then the error.
N-1 :
fh—Z' lin gu-m an
=0



78

1 —1 1
S‘ exp (2ni wn) ([IA(N(W) ]-—— ;N(w)) d Su(w)— S exp (2% iwn) ;N

dsS e(w) (18)

where IN(w) is defined as in equation (16). The variance of this

error is clearly

1 -1 2 1
S f[ 1‘<N(w)]—f(w) Py(w) dw { S] ?N(w) [ PEWydw  (19)
0 0
which is minimized when
IR () =P PN +BWL. (20)

Since the discrete Faurier Co-efficients of the filtered solution
must satisfy

A A
=] =1
N, ¢°N, ¢~ 2q ;28N, ¢ KN,

A A
N, g2 =1

find Z
we find Z

’

A A
—h2 1
A—h IN, qKN, q Thus from the observation

A A A A
hl =] hK — ) .
N,¢ 'N, (gh),” "N, q K (gh), we have from (20) :

Théorem :
In the limit N—c0, 4= 0, the variance of the error fN(xn)—f N: A(xn)

is minimized at x, by the choice of filter

Pyy(gh)
IR W ¥ e @n

We now simply relate the filter (21) to the 2nd order filter (11).
Assuming that the erors are uncorrelated, PE(W) has the form

: Pe(w)=az=constant, where o2 is the unknown variance of the noise




79

in the data. Choosing

2
PU(w)== ° N [ 22)
A wh
where
- 2 Nw O<w<}
={ m N(l—w)  i<w<l,

where w= 2m
W= "Nn

then yields (11) from (21). Moreover the spectral density for {gn} is
then

A 2
[y o)
N
P (n)=P(n)+P (w) =" [ 1+T]
whence Pg(qh):cz(l—zq; A)-l , (23)

The statistical likelihood of any suggested values of 62 and may
now be estimated from the data. Following whittle [19] the loga-
rithm of the likelihood function of Pg is given approximately by

constant — P (gh)4-I(qh h ] 24
a g[ log P (gh)-+1(ah)[P (ah) (24)
N-—-1
2
where I(w)= ’ Z gnexp (—2ni wn)J is the periodogram of the
n=0

2
data with I{gh)= ‘ §N p [

We now maximize (24) with respect to o2 and A, The partial
maximum with respect to ¢2 may be found exactly (in terms of &)
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with the maximizing value of o2 given by

2 ' -
-z, ) (23)

N—1
czd_l_z ’A
=N N, ¢
g=1

The maximum with respect to 2 may then be found by
minimizing

N—1 , N-1
VML(A):'%N log [Zl [ éN, q‘ (1 -—Zq ; 3) ]“%qz 1103 (1—,Zq . 2)
s =

Looking in the perspective of equation (6) and (7). The likeli-
hood function can be rewritten as

N—1
R 2
Vyg 00 9=IN log{z 8, ql 1=z, q)]
q=1
N—1
-1 1 —
i) lg1-Z, | ) 26)
g=1 '

‘Thus the optimal regularization parameter is given by the
minimizer of a simple function of A and « depending on the known

Fourier Co-efficients (A}“ qiand IA(“ q No prior knowledge of .02 is
H

5

assumed but an a posteriori estimate is given by equation (25),

In the numerical examples we give in the next section, we have
minimijzed equation (26) with respect to A for a yra'ngg of values of

a>e¢ and compared the L-error of the resulting solution with the
0

values of V (3, ®) for optimal A, We find that the over all maximum
0f V (1, «) (over.both variables) gives the value of « for which the

L-error of the regularized solution is least.
0
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(4) Numerical Results :

In this section we tabulate the results of the above method
applied to four test examples. All data functions have the property
g(8)=0(871) and no noise is added apart from machine rounding
error. In all cases we have taken N=64 data points.

Example 1. (MeWhirter and Pike [7. 8])
SRS S P
2(S)= (ERD S f()=te
The optimal result compared with McWhirter’s solution are
shown in DIAGS (1, 2) and table 1.

Example 2. (Varah [17, 18])

8= 5y f(n=e 2

The optimal result compared witn Varah’s solution are shown in
DIAGS (3, 4) and Table 2.

Example 3. (Varah [17, 18])

1 —
g(8)= SE+D f)=l—e

The optimal solution compared with Varah’s solution are shown
in DIAGS (5, 6) Table 3. '

Example 4. (Varah [17, 18])

G (S)= (T—i?’fm:tz e

2

12

The optimal solution compared with Varah’s solution shown in
DIAGS (7, 8) and Table 4.
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Conclusion

Our method worked very well over all the four fest examples
and results obtained are perfect as shown in DIAGS (1-8). As
regards comparison with McWhirter’s solution, we have also
obtained a perfect result but over a wider ralige of the vglugs of .
As far as comparison with Varah’s solutions is concerned our
solutions are exceedingly better than his as shown in the respective

diagrams.




(1

) Ovid

€ Zz l 0
T T T ) T T 7 0

I
Al

Al
\ =20
B 0%=N 40} uoyfjos
"~ puUD UOI}NOS 3NJ) 1€0
W : (4)3
- 09=N i 170
0Z=N
1 | } 1 : 1 ! G0
"NOILAIOS S 3IMId ONV dILHTHMIW




053

047

Q41

0-35

029

0-23

047

oy

88
DIAG (2)  MCWHIRTERS' PROBLEM (1)
LAP, TRANSFORM SOL. BY M. L, METHOD ~

A A
i 5 L

1 e

4-00 8-00 12-00 16-00 20-00 2..00 28.00

X

TRUE SOL
SOL. FOR A = 10 e a a

32-00
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. DIAG ( 3) VARAHS EXAMPLE 1

1-3277

1-1251

0-9221
t)

07191

0-516 1

0-313+

0-1114

(A=01)

'N_:TO_

LS (A=-01)
-

SVD (M=3)
-

RN

i i

-0-092

1-3274
141251
0-922-
f(t)
0-719 1
0516
/’u
0313+

0-1117

2326 6977 1628 16279
SVD and LS solutions for Example 1.
: 4

MLS (A=-1)

MLS (A =-01)

f(t)

1 1 1

- 0-092

2326 6-977 4 11628 16 279

MLS solutions for Example 1,
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73 DIAG (4) VARAHS' PROBLEM (1)

. LAP. TRANSFORM SOL, BY M.L.METHOD
1.59

119
0.89-
079
0.59

0-39

0.19 .
a
A}
\\ 4 a
0.01 . o e

0-00 400 8-00 12-00  16-00 20-00  24.00 28-00 3200

Is

TRUE SOL _—
SOL.FOR A =20- a 4 a
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, DIAG (5 ) VARAHS EXAMPLE 2
14L&~ N:1O

LS (A=+01)

122
' £(t)

10
078
056
0341 /

' , SVD (M=4)
0121 \*

LS(A=-1)

-
(S

VTR a9 ¢ neze 16219

SVD and LS solutions for Example 2.

1444

1221 MLS TA=+001)
£t

1401
078 MLS (A =-01)
.MLS(A=1)

0-561

0341

0412+

i

2-326 6977 4 1628 16279
MLS solutions for Example 2

-0_1 .
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19 1 DIAG (6) VARAKHS' PROBLEM (2)
LAP, TRANSFCRM SOL, BY M. L.METHOD
.59 F {
1-39
119

0.99

[T
079
069 F -
0:39

1.19

i 1 4 A i

-0.01 i i ot i { : i
0.00 400 8.00 12,00 16.00 20,00 24,00

TRUE SOL. [OU—
SOL. FOR ‘A = 20. a o

28.00

32.00




31187
2:6417
2-1657

f(t)
" 1:689
1-212+

0736+

026 -

93’.
DIAG (1) VARAHS EXAMPLE 3
N =20

ft)

_SVD (M=7)
LS(A=10"5)

LS (n=1073)
/

1

=0-217
3-118 1
26411
2-165+
f(t)
1:689 1
1212
0-736

0-26 1

i 1 ]
2-564 7692 t+ 12821 17-949
SVD and LS solutions for Example 3

MLS (A=1073)
-

MLS (A=1073)
MLS (A=107%)

1

=0-217

7560 7692, 12821 17-949
MLS solutions for Example 3
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269 ¢ DIAG (8)  VARAHS’ PROBLEM (3)
LAP, TRANSFORM SOL, BY M. L. METHOD

2+03,

119

089

0:59

0-29

n A 1 H

1 L i

- 01 8 : i L N £
0.00 4.00 8 G0 12.C0 16.00 ~20.00 24.00 28 00 32,00

X
TRUE SOL

SCL, FOR A=20. a a4 a
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