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' DR. MUMTAZ HOSAIN KAZI
o AN OBITUARY

Dr. Mumtaz Hosain Kazi was born on First December, 1938.
He came from a family with a long tradition of academic excellence.
He received his M.A. from the University of the Punjab in 1958.
M.S. from Harvard in 1964 and Ph.D. from Cambridge in 1974. He

‘started teaching at the University of the Punjab in 1958 and served

as Chairman, Department of Mathematics for brief period from
1977 to 1978.. . He was the Editor of the Punjab University Journal
of Mathematics from 1976 till his death. -

In the late sixties -he took active part in the .movement to
modernize the syllabi and courses of mathematics in the Pakistan
Universities. -He was highly, proficient in various branches of the
subject and' gave courses on topics which spanned pure as well as
applied mathematics. He was a brilliant teacher and even the most
indolent student in his class could not fail to feel interested in the

_subject. He inspired many of his students to become research

mathematicians, some of them are now well-known at the inter-
national level. As a man, Dr. Kazi was an extremely nice person.
He left alasting impression on anybody who ever happened to meet
him. He was humane, kind and considerate. He would go- to any
length to help his students.

In 1978, Dr. Kazi joined the Faculty of Science of the Uni-
versity of Petroleum and Minerals at Dahran (Saudi Arabia). Soon
after he became ill. His disease was diagnosed as Multiple Mycloma
(a form of blood cancer) at Ash-Sharq Hospital at Al-Khobar,
Saudia Arabia. The diagnoses was confirmed by Prof, Bridges of
Royal Victoria Hospital, Belfast, UK. In 1980, eversince he re-
mained under regular treatment at King Faisal Specialist Hospital
and Research Centre at Riyadh, Saudi Arabia. Despite the treat-
ment the disease continued. Although it was clear that he would.
never be well again, the awareness of his impending end did not, in.

@)



(@)

any way, dull his spirits. Rather he became more active as if to
make the best use of every minute he was left with, Inspite of his
bad health and other persuits, he continued to edit the Punjab
University Journal of Mathematics with dedication and selflessness.
Towards the end of his life, he published profusely. He and his
collaborators applied the Wiener-Hopf technique to the problem of
Love Waves in the Earth’s crust and were able to solve some out-
standing problems. His name is still considered to be an authonty
in the field. He published in international journals of high standard
on topics which include selsmology, functlonal analys1s and mathe-
matical statistics. ’

Dr. Kazi was recommended on 12th July, 1979 for appointment
as Professor of Applied Mathematics by the Punjab University
Selection Board. However anticipating better medical care at
Riyadh, Saudi Arabia, he could not join the Mathematics Depart-
ment of Punjab University. The Punjab University granted his
request for retirement from service on medical grounds w1th effect
from September 1, 1983.

Dr. Kazi died at Riyadh on 19th June, 1987. He was burried at
Janat-ul-Baqii, Madina Munawwarah. He left behind a widow, a
son, two daughters and countless colleagues and pupils who will
always cherish his memory for his forbearaunce, gracefulness cheerful-
ness, pursuit of excellence and most of all, for his fortitude in the
face of awful suffering and inevitable death.

FAIZ AHMAD
Govornment College Asghar Mall
Rawalpindi—Pakistan.
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CONCERNING THE CONVERGENCE OF
NEWTON’S METHOD
By.
IOANNIS K. ARGYROS
Department of Mathematics,
New Mexico State University
Las Cruces, NM 88001

Abstract
We assume the existence of a simple zero of a nonlinear operator

equation in a Banach space. Under the assumption that the Frechet-
derivative of the nonlinear operator involved is only Holder conti-
nuous, we answer to the following question : given that the equation
has a simple zero, when is it true that the Newton iterates converge
to that solution. An example is also provided.

Key words and phrases :

Banach space, Newton-Kantorovich method, Holder continuity.
(1980) A.M.S. classification codes : 65J15, 65H10.

Introduction
Consider the equation

F(x)=0, 0
where F is a nonlinear operator from a Banach space E into itself.
The most popular iteration for solving (1) is given by the Newton-
Kantorovich iteration, namely :

xﬂ+1=xﬂ_(F, (Xn) )_1 F(x")’ ﬂ=0, ln 2: """ (2)
for some initial guess x5 € E.

The main theorem proved here answers to the following
question : given that F has a simple zero x* € E, when is it true that
the interates given by (2) of nearby points converge to x*? Such a
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question is clearly of interest in numerical analysis s:i‘,nbce' many
numerical problems can be reduced to the problem of locating
solutions of (1. -

Sufficient conditions for the convergence of (2) to a simple zero
x* of F are given by the famous theorem of L. V. Kantorovich [ 1],
[2L, 7] ‘

‘ An extensive literature on the Newton-Kantorovich method can
be found in[ 6].

One of the basic assumptions for the convergence of (2) is that
the Frechet-derivative F’ of F is Lipschitz continuous. The guestion
raised hére has beeh answered in{4]. :

‘ Here we on1y assume that F' is Holder (c, p) contmuous (to be
precmed later). Our results can be reduced to the ones in [ 4] for
r=1. ' '

Finally wo provide an example where the Lipschitz continuity of
F’ is not satisfied whereas the Holder continuity is. -

We will need the following :

I. Preliminaries

We assume that Fis once Frechet-differentiable [ 2 ] and F* (%)
is the first Frechet-derivative at a point x € E. It is well kitown that
F’ (x) € L(E), the space of bounded linear opetators from E to E.
We say that the Frechet-derivative F’ (x) is Holder continuous over a
domain Ej:¢ E if for some ¢>0,p €] 0,1 |, and.all x, yp 6 EI,

IF'()~F W I<elx~pl#. - -~ o (3
In this case, we say that F’ () & Hy '(c\,p).» o

We will need the followmg result whose proof can be found
in [ 21. e
Lemma 1,

LetF: E—> Eand E; c E. Assume E; is open and that F ()
exists at each point of E;. If for some convex set E; < E;, we have
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F'i()e HE (c, p), then for all x, y € E,
2

c
1+p

[F(x)—F(»—~F’ (x) (x—lI < {ixfylil-??. )]

II. Main Results -
Theorem 1. LetE;cEand F:E, — E. As_snme.rF'(',) ¢ HE2 (c, )
on a convex set E; < E;.  Let xo be such that :
IF" (x)—F’ (xo)ll Sellx—xoli? - 5
for all x ¢ E, and some ¢; >0. , )
Assume that F’ (x;) has a bounded inverse F/ (x¢)™1& L(E) with

I(F" (x0) )M <d, : S 6y
(P4 (x0) )™ F(xo)l| < 7o : . )]
and that the function g defined by :
derg?
g(r)= dclr1+7’+[ 14p —1 ]r—dclrorp—i-ro (8

has a minimum positive zero r*>rq.
Moreover, assume that ;
dey(r*p<t ' = &)
then '

der P
= +p U=des (7))
If [_f(xo, r*) c E, then the iteration (2) is well defined, remains in
U(xg, r *) and converges to a solution x* of (1).
Proof
By the Banach lemma F’(x) has a bounded inverse, since

<l (10)

/() —F (xo) | S ealle—xoll <exlr ) <,

and

IEWYHS g —w S m

The operator p given by
Px)y=x—(F" (x) )™ F(x)
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is well defined on U(xo, r*). Assume now that x, P(x) € U(x,, r *) and
using (4), we obtain
([P2(x)—P(x)|l==[|—(F" (P(x) ) TIF@(x) )l
d

= 1—de;[P(x)—x, 7 [IIF(P(x))-F(x)—F(x) (P(x)—(x)]
, d . ¢
= 1—de||P(x)—xo7  14p IPGe)— |+
= g(IP (x)—x1, IP(¥)—xol),
where
- . 1 chHp
g0 W)= s 14
Define the real sequence { sz }, k=0, 1, 2, ...... by so=0, s,=rp and
1 dc

s —5 = ~ s —s§ 1+?’.
kBy1 k I—dclsk” I+p ( k k-1) ,
We now have
Sr—S1Eqro<lro,

§2551Hgro=ry(l +4)<Tr~L .

—q

Using (10) and g(r*)=0, we get ro=(1—q¢)r*. That is

s2<r*.
By induction we can easily get

—_— < —
Seer Ok ,q(sk Sk-l)’
s —s <rp

B+l k
and

s <r¥*

k+1
That is,

lim — % ro "

ks ¥ TT—g T

By the basic majorant theorem 2.3 of Rheinboldt [7], there exists an

x*¢ ﬁ(xo, r*) such that

m

P(x*)=x* and kioo Xp=x*,



Finally,
IF ()l < IF (x£) —F '(x0) ) (%% 11— x| +{IF (x0) (xk+1—xE) ||

<[ellxe—xoll+F'(xo) ll Wlx  —x |
k+1 k
<(err* +{IF (xo)l|lxk+1— xklls
since xkE U(xo, r*). Lettingk - o0, we easily obtain from the above
inequality that
F(x*)=0 ‘
since { xk} is a Cauchy sequence and (c;r*+-|[F’ (x9)ll ) is a constant.
The proof of the theorem is now complete.
Theorem 2 Let E;CE and F: E, » E. Assume F'(*)¢ HE (&p)
~ 2
on a convex sct E; CE;. Let x* be a simple zero of F such that :
[F* (x)=F" (x¥) || < callx—x*[I? (12)
for all x € E; and some ¢;>0.
Assume ;
(a) there exists d;>0 such that
i(F* (x*) )71l <di, (13)
(b) let xo € U(x*, ), where e=(2cod;)"1/? and assume that the
function defined by

deyry?
ql(r)z-'dczr”"—l-[: ﬁ—l ] r—decyror?-4-rg (14)
has a minimum positive zero r* >r,, where, ' v
1—cyd —Xx*|p
— _ Pr1—cydiplixe—x*| (15)

0= U —cadilwo—x*7) (pi1) Wo—*"l

and

_ dy
A P e e (16)

If U{x*,r*)C E,, then the hypotheses of theorem 1 are satisfied
for each xo € U(x*, r*). ‘

Therefore the Newton sequence { xa }, n=0, 1,2, ... exists and
remains in U(x*, r*) and converges to x* such that F(x*)==0.
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By the Banach lemma, F’ (x,) has a bounded inverse, since

- . 1
[IF/(x*)—F'(x0) || € callx®—xoli? <ea(r ¥y < a4

for xy € U(x*, r*) and

’ - dl ‘ —
”F (xO) ) 1“ < 1—d1C2[|xo—X*”p d
We have
‘ 1
F(x¥)—F(x0)=F (o) (#*—x0) + { ("ot t(x*—x0) )
~ 0
—F'(x9) ] (x*—xo)dt.
So,
‘ 1
—(F'(x0) )™ F(xp)=x*—x9+(F'(xo) )'IS[F "(xot+1(x*—x0) )
0
‘ —F'(xq) 1 (x*—x,)dt,
axd thus
‘ .
(' (x0) ) IR (xo)l €[ 1+dchIx*—quipS 12dt Jlx* — x|
. 0
g ptl=cdplxo—xp _

T 1-odilixe— x4y (p+1)
It follows that for xo € U{x*, r¥)
dey(reyp<l,
hence (9) holds. _
The hypotheses of Theorem 1 are mow satisfed for each
Xo € U(x*, r*) and the result follows. '
Proposition
Under the hypoetheses of Theorem 2, the order of conve;gem:ﬁ of
(2) to a solution x* of (1) is.1 + p. : .



That is
1xn+1—x*|| < c3llorn —x*||1+2
where,
dCZ
3= e
(p+1)

Proof
We have

Xni1—X*¥=x3—x*—F'(xz) 1 F(xs)
1 .

=F(x,,)-1{ (LR o) —F (¥ tra—9) ) Vi }(xn-x*).
0

Hence,
1

Nxn41—x* <d { S IE “(xn)—F'(x*+t{(x0—x*) )ldt }i'lxn—x*”
o -

1
dCz ( . Y } 3
< | — y¥a_ — y¥\|2 — ik
S igl.xn x* i t(ta—x*)Pdt  § [[xn—x*]
0
1 )
d(,'g .
< ¥+ — 1\
S Ien— ¥ P‘(g)(l tyeds
ch _l_  y¥|[1+p
% p+1 . P+1 “x” X “

s =3l — X1,
III. Applications

To illustrate Theorems 1 and 2, consider the differenrial equation
x" 4+x1*2=0,p€[0,1]
x(0)=x(1)==0, ‘ 7
We divide the interval [0, 1] into subintervals and we set
h=711 Let { vz }. be the points of subdivision with

0=r0< 1 <,., <y,=1,
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A standard approximation for the second derivative is given by

ve_, x‘-l—'zxi'*'xi{-l

Xi = i ,X{=X(V{), i=l9 29 ey n—1,

Take xy=*x,=0 and define the operator F ; R" 1»{R"»"1 by
F(x)=H(x)+h2 ¢ (x)

f ]
[ -1 l
—1 2 0 |
H= . . . I ’
| |
| 0 . =1 ]
L -1 2
[ x!? 7
; x21+P
I
Px)= } ,
| 149
L % )
and
(=
| x2 I
x= I| . {
[ . |
L oxe  J
Then
" x;? 0 b
xzf’ ;
F'(x)=H+h(p+1) ! :
| o o
L n~1
Newton’s method cannot be applied to the equation
F(x)=0.

We may not be able to evaluate the second Frechet-derivative
since it would involve the evaluation of quantities of the form x;™?
and they may not exist.
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Let x ¢ R?1, H¢ R*1x[R"™! and define the norms of x and H
by

Iell= ) T, 1%,
J<na 7

n—1

HI= ) o 12"’1’!'
=1

For all x, z¢ R"*! for which [ x; [ >0, |z | >0,i=1,2, ...,
n—1 we obtain, for p=1} say,

IF’(x)—F’(2)|=l|ldiag { (1+%)h2(x52‘)—z?)} |
=%hz 1<_;n<a}:1_1 | x j% I <“§‘h2 [ max | x;—2z | ]%
=3 Rzt

Given z; € {R?™1 Nowton’s method consists of solving
F'(zn) (Zn—2Zas) =F(zs), n=0, 1,2, ...
as a system of linear equations,

We choose n=10 which gives 9 equations. Since a solution
would vanish at the end points and be positive in the interior a

reasonable choice of initial approximation seems to be 130 sin wx.
This gives us the following vector :

[ .40172211E4-02 )
.76412079E4-02
.10517221E4-03
.12363734E4-03
zp= .12999998E+-03
.12363734E+4-03
.10517220E 403
.76412071E+02
[ -40172215E4-02 -
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The itetdtes z;, z; will then be given by
[ .33957119E +02 )

.65958946E 4-02
92615190 E+02
11048508E +03
zi= | .11676437E +03
.11048503E -+03
\9265187E 403
.65958832E +02
L .33957062E 402 J

and
{ .33577446E4-02 )

.65209305E+ 02
.91575623E 402
.10917905E+03
Zy==2 11537511E4-03
.10917908E 403
.91575668E 402
.65209358E+02
L .33577473E+02

We now use Theorem 2 for p=}, ¢;=.015, x*=2z, and x,=2z;. The
choice x*=z, is considered reasonable since [|F(z,)||=.005941582.
Then we easily obtain
llx*—x,ll=1.389269338,
e=1.627003894,
d;=.26132710E+02,
ro=2.184683800,




it
and
d =48.576244354.
Using Newtan’s method in (14) by choosing the first iterate to be

ro==9.1E—05 we obtain

r*=2.360669374 >r.
Then the hypotheses of Theorem 2 are satisfied for xo € U(x*, r*).
Therefore the Newton sequence { xn }, n=0, 1, 2, . . . exists, remains

in U(x*, r*) and converges to x* with order of convergence% accord-
ing to the proposition.
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Abstract

In this paper we mtroduce a new 1terat1ve procedure for ﬁndmg
“Lagre” solutions of the quadratic equation in Banach space, based
on the same assumption used to prove existeuce for the *‘small”

solution.

Introduction

In this papetr we introduce the iteration v
x =B(x ) (xn—y),n=0, 1, 2, ...... , [OF
fn

n+]
for some x, in a Banach space X to find solution of the quadratic

equation
—y+B(x, x) ¥))

in X, where y € X is fixed and Bis a bounded symmetrlc bilinear

operator on X x X. Equation (2) has been studied in [ 1], [2], [ 6],
[71, (91 [10]. Itis known that if 1—4[B . [lyl[>o then equation.

(2) has a “small” solution x € X such that l[xll< 2“B” . In the scalar

case though we know that the ab’ove condition implies that (2) has

13
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two solutions the *“large’ one being such that x| = ﬁ‘ The above

observatipn raises the natural question. - Is it true under the same
assumption that (2) has a “large” solution ?
The answer is positive under certain assumptions. The basic

idea is to introduce a convergent iteration such that if Jlxgll > SIBl

then [|x,)| = 5w 2[|BH yn=0,1,2,......

It is shown that (1) satisfies the above property. We also study

the modified version of (1).
.Xn,.*.]_'_-—-".x'n,—'B‘(Zx'();)‘-'1 (B (Xn, xn)—xn"'y), n=9, 1’, 2, ...... (3)

* Finally we provide two simple applications of (1) and (3).
Remark 1
The operator B in (2) is assumed to be symmetrxc without loss of
generality since B rcan always be replaqed by the mean B of B
defined -by
| Bx, 9)=4(B (5, ) +B(, ), % ¥ € X.
Note that —B(x, x)=B(x, x) for all x £ X,
~ From now on we assume that B is a bounded bilinear operator
‘on X xX.
We gre now going to introduce an itpration that will guarantee
in case of convergence that the solution x is such that [|x [|= “2*1||_l'3ﬂlr‘
k Proposition 1. Assume :
(") The iteration ‘ _
Xni1= B(xn) (xn_J’) @
is well defined for all n=0, 1, 2. ...... for some x € X.
(1) 1—4B|l-17=0 and
Aiid) let p €{ Py, P2 ], wherepy, p; are the solutions of the equa
tion
1Bl p?=p+Ilyll=0,
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If Ixoll> p then [[xa4{l> p forallip=0, I, 2, ......
Proof
We have
B(xn, xn+1)=x,.—y
50
llxa—Yll={IB(xns Xn+i)ll
SIBJ Xl - X541
<IBIl- 1%l - lenall -

(lxa—ll
Pemiall > g -

Assume that [x;]|=p for all k=0, 1, 2, .....,n Since
lxnll2 p=1 y|, it is enough to show

)=l 2l
Bl xal =7
or
iixl
Ixall > T—pB] *
Finally it suffices to show ‘
B2
P2 T piBT
or ;
Bl p2—p--1 ¥l <O but this.is: true for p:& [ p1s 22 ).
Note that .

— 1 B "
p= B €[ p, Pzl

We now state the following lemma. The proof can be found
in[10].

Lemm I. Let L, and L, be bounded linear operitors in a
Banach space X, whereiL, is invertible, and |L;™1|.|L,|<F. Then
(L;+Ly)™! exists, and =
Ly~

(L;+Ly) ) < T= L

<L

Lemma 2. Let z#0 be fixed in X. Assume that the linedy
operator B(z) is invertible then B(x) is also invertible for all
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x€U(z, r)={x€X||lx—2|l < r}, wherer € (0, ro) and :
ro=[ Bl [B(zy~} 7.
Proof
We have
IB(x—2)*1B(z)" 1| <IBI}* [Ix— 2 | B(2) ™1
<IIBi* B2 r<1
for r € (0, rg). The result now follows from Lemma 1 for L;=B(2),
L,=B(x—2z)and x ¢ U(z, r).
Definition 1
Let z#0 be fixed in X. Assume that the linear operator B(2) is
invertible.
Define the operators P, T on U(z, r) by
P(x)=B(x, x)+y—x, T(x)=(B (x) )"! (x—y)
and the real polynomials f(r), g(r) on R by
f(n=a" r2+b' r+c', g(ry=ar*+-br+c
a’ =(IBlI"IB(z)"{)*
b'=—2|B||*IB(z)~ll
¢'=1—|B(2)"Y[—(Bll* B(2)"II2 - [|z—p||
a'—:ro_l
b=[B(z)"1(I-B(2)) |1
c=(B(2)"! P(z)|.
From now on we assume that B is a bounded symmetric bilinear
operator on X x X,

Theorem 1

Let z ¢ X be such that B(z) is invertible and that the followi‘ng
are true : \ ,
(a) >0
(b) b>0, b2—4ac >0, and
{¢) there exists r>0 such that f£(r) >0 and g(r) <0.

Then the iteration
xn+l‘_‘B(xn) l(xn_,v), ”—-0 ' 2 .....
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[is well defined and it converges to a unique solution x of (2) for any
Xp € ﬁ(z, r). Moreover, if 1—4[B[j*{¥|>0 and[x,] > E%B—lr then

1
lx]] > —zﬂw .

Proof
T is well defined by Lemma 2.

Claim 1.

T maps U(z, r) into U(z, r).

If x € U(z, r) then
T(x)—z=B(x)"1(x—y)—:z
=B(x)™ [ (I-B(2) ) (x—2)—P(2) ]
s0
IT()—zl|<r if

TG L B@™ U—B@)Ir-+IB@ P I <r

(using Lemma 1 for Ly=B(z) and L,=B(x—2z) ) or g(r)<0 which is
true by hypothesis. '
Claim 2

T is a contraction operator on U(z, r).
If w, v € U(z, r) then
ITW)—TON
=[[Bw)™! (w—y)—B(»)™* (v—y)

=[B(w)™* [ I-B(B()™! (v—y)) ] (w—)|
=|B(w)"! [ I—B(B(»)™! (v—2z) )+B(B(») 1 (z—y) ) ] (w—v)i|

1 -
N e O o
IBJ [BG)1Pr + Bl (B Plz=sll 1,
+ T—[BI[B(z) 7 Y=

=2 [w—vl
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So T is a contraction on U{z, r) if 0<<g<l, where

. 1 T
7= T BRI [P
B BGY B BEz—yl)
T—[BJF [B() /7

-

which is true since f(r)>0.

Example 1 ‘
Consider the equation x=.2x2—1 in [R. @
Here B(x, x)=.2x%, y=—1and 1—4 | b| ' | ¥y | >0. Then accor-

ding to definition 1 for z=35
F(N=(.09)r2—(.4r+49.6, g(r)=.2r2—r+1.

Theorem 1 can be applied provided that
1.38196601 < r<C1.8377225

and the iteration becomes

x"+1=5(1+ ; )With x0=Z=5, n=01 1, .21'7"“
‘ %
Note that x=x;2=5.854101966 is the ‘““large” solution of (4). This

is true since [[xall > 5 and|ixa] > ﬁ:—__;__

Remark 2
The iteration (1) can be written as
Xn+1=Xn—B(x2) 1P(x),), n=0, 1, 2,...... (5)
The corresponding Newton-Kantorovich method can be written

as
Zp41= Za—(2B(2,) —1)"1P(z4), =20, 1, 2, ...... ©)
or
Zn+1=(2B(Zn)—I)_1(B(Zn, Z‘n)’y)-
The latter iterative procedure is faster and easier to use most of
the time (e. g. we need 6 iterations to find the solution in example
1 using iteration (6) with the same z), but if we choose an x, such

that ilxo[]Zﬁ , then (6) does not guarantee that the limit
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w= I is such that [l <l or IwllZ . This is exac-

tly the advantage of iteratior (5) when compared with (6). The

basic defect of (5) is that each step involves the solution of an

equation with a different invertible operator B(x,). For this reason
we edil study thé following modified method

Xpr1=xn—B(2)"1 P(xs), n=0, 1, 2, ...... 03

The proof of the following theerem is omitted which is similar to

that of theorem (1).

Theorem 2

Let z ¢ X, assume that the operator B(z) is invertible and that
the following are true :

(@) IB(2"1(I-B(2))l <1

() D=(IB(2)™ (I—B(2)||— 1)2—4i[B(2)"1}{"|| B

IB(2)™! Péz)i>0..

Then the iteration (7) i§ well defined and it converges to a unique
solution x of (I) for any x4 € U(z, r), where 7 is such that

ar<e,
with
- I—(B() L I~-B(z) )|l—v D
! 2||By* IB(z)7Y
)= 1—|IB(2)"! I=B2))l_
2 2|Bll* IB(z)71]

We.now give an example for Theorem 2.
Exampleé 2

Let X=[R x (R with max-norm and consider the equatibn in X

- Sy
a=y+2 M 3 wherey= [. 7 T’Yiﬁl-‘55,‘<~z=—.«8~5:1\:/l_=‘ {' 1 1[ with
o [ —45 .01 1) B .
Ml’—a[ 9 .02 ]{ ’ M’z—[ 02 5 j. the notation
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[ x|
T == l and
T I_’ST Mzx ll
L J
x=[ ;:1 ] is the unknown vector. Equation (8) can be writ- -
- 2
ten also as

x1=—.45x,2+.91x1x,+.02x,2-}-1.55
x2=.01x12— .68x1x2+.5x22—. 85

Here [B[=1.38. Let z=[ _"12 ] then [|B(z)—I||=.9, [B(z)"|=.55555,

[P(z)||==.05. The requirements of Theorem 2 are satisfied for the
above z in the ball U(z, r) for some r such that

.061321367< r<<.326086056 .

We now use iteration (8) with x®=z, If we allow an error
€ < 5.1073 then we need 5 iterations, More precisely _
xm_[ —1.97222223 m—[ —1.996301957
DL 97368421 =L 976283584

xm—[ —1.99715663 ]
=L 96si6s64

and x( 5)=[

x(4\=[ —2.003524174]
=TTL 9654191
—2.00338145
96224933
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Abstract :

The paper deals with the problem of inclusion and equivalence
of two absolute weighted mean summability mothods. Necessary
and sufficient conditions coacerning (inclusion and equivalence)
of these two methods have been established. Examples to show
that each of these inolusions may hold in oaly one way without the
other have been given, and an example to show that the equivalence
may hold in some non trivial case have been ¢onstructed ,

1. Let X an be an infinite series with the sequence {Ss} of its
partial sums, BEach sequence {ga} for which Qa=go+q;+ -.+92 #0,

or eagh x defines the weighted mean method M, of the sequence
{ Sy }, where

Ip == ! E qr Sk, n=0,1, 2...... )

If ta—>s as n-»o0, {8, )} is said to be summable Mg to sum 5,
and if in addition, { #, } is of bounded variation, then { S» } is said
to be absolutely summable Mg or summable |Mg}. We make
similar definition with regard to other letters in plage of ¢.

A method of summability is called regular, if i sums every con-
vergent series to its ordimary sum It follows from Toeplitz’s

23
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Theorem (see Hardy [ 6 ]. Theorem 2) that Mg is regular if, and
only if.

0
| Qu | —>0, as n—co, andz, le =(1Qul)
k=0
Let A=(A,, £) be a sequence-to-sequence transformation given by
e}
ta= Y AnsSe 10,1, .. )
k=0

If whenever { S, } has a bounded variation it follows that {t,} has
a bounded variation, and if the limits are preserved, we shall say
that A is absolutely regular.

We shall write throughout (A) < (B) to mean that any series
summable by the method (A) to sum s is necessarily snmmable (B)
to the same sum. (A) and (B) are equivalent if, (A) 2 (B) and
(B) = (A). In this case we write A~B. We shall also write for any

sequence, AU,=Up—Uaxy;

2. On inclusion relations of different summability methods
much work has been done already e.g. (see [11, [2], [3], [4], [5], [6] and
[7]). Dikshit ([4] and [S]) obtained many significant results on
inculsion relation concerning absolute (and non-absolute) summabi-
lity of both Riesz and Norlund means.

3. The object of this paper is to obtain rerults involving an
inclusion relation of two absolute weighted mean methods, analogous
to those by Dikshit ([4] ; Theorem (3.1) and [S] ; Theorem (2.2) ), and
to show that even if both My and M, are regular, the inclusion
need not hold.  These results will be concluded in sections (5) and
(6). The last section contains an example to show that the equiva-
lence may holds in some non trivial case.

4, This section is devoted to result that is necessary for -our

purposes.
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Theorem (4.1) (Mears [8]). The sequence-to-sequence transforma-
tion given by (2) is absolutely regular if, and only if, the following
conditions are satisfied :

A,, >0 as n—>oo for each k 3)
0
% Ag, 21 and a—>co. ,C)
k=0
and
0 00
Zz Agy v— z Aniis v [=0(Q), (b—>0). - (5)
n=0v=k v=k

3. In this section we prove cur main result :

Theorem (5.1). Suppose that M, and M, are regular. g¢,%#0

(all n2>0), then | My | < | M, | if, and only if,
o0 .
1
Rk_l__HQk;;’k ZJ A ¢ ]=o (1), for all k>0, (6)
n=k
Further, if r,<<0 (all # > 0), then | My | < | M, | if, and only if,
e _ o). M

qrRy
We remark that a sufficient condition for (7) to be satisfied is that
Qn=0 (g,), where r,>Q. But this condition is not necessary. For
this let { g» } and { r» } be any positive constants sequence, then (7)
is clearly holds but Q,#0 (g,).
Proof of Theorem (5.1). Let {15}, { t»*} be respectively the
(Mg) and (M) transform of { S, }. Using this to obtain ¢,* interms

_of t,, we have
n

t”* = X En,'v ty ‘ (8)
v=0
where
Ta Qﬂ R ) (9)

Eﬂ’ n = R’n qn
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¢y

: — ‘Q‘U Iy C N Cp e
«Emv b Rn A qv ,(0 = \/ &sh 1)

and
E,, v = 0 othetwise (11)
To prove the result, it is enough to show that the conditsons of
‘Theorem (4.1) are all satisfied. Condition (3) follows from (10).
and the special case in which Sp=1 (all #=0) gives tn=tf.*=1
(all n=0), which by (8) implies (4). Put E,, , given in (8) instead of
A, given in (2), we have that the left hand side of (5) is equivalent
to:
© oo k—1 0 k—1
z I z Em v—2 EBay v— % E’IIJ-IS v+ X E‘"H: v l (12)
n=0 y=0 y=0 y=0 v==,0
Since t;=t;*=1. it follows from (8) and (11) that each of the first
and third sum inside the absolute of (12) is equal to 1. Hence (12)
will reduees to :

= l zm v Zn+1, v l ’ (13)
n=k—1 v=0 y=0

Using (9) a’nd (10) and observe that

~1—Qx_y

E o a

we see that _(;137);wi»11 be reduces to :

14
2 l ARy ’ @
~ n-k—1 :
Using (14), we see that (5) is satisfied if, and only if, (6) is valid.
This completes the proof of the first part.

Next, if r,<0, then A (R,)710, so that the-sum on the left hand
side of (6) reduces to (Rz)™, and thus (6) is equivalent to :

R Qearrs , (15)
ks T TN

) Rk_ Qk—l Ty




27
so'that By regularity of My and M, (15) is e.qui'vale‘nti to' (7). This
completes the proof.:

As a corollary to Theorem (5.1) is the following :

Corollary (5.1). Suppose that M, and Mg, are regular, and
let { g } and { r,} be non-zero sequences. Then | Mg | ~ | My | if
and:only if (6) and’ its- equivalent (obtdiried by interchanging R(;)
and Q(q) are satisfied. Further, if {g,} and {r,} are positive,
then | My | ~ | M#| if and- only if Qrrs Zqr Ry (k~>0).

6. In this’ section’ we: will' give an examplé to show that the
inclusion may hold in-only one way not the other.

Example (6:1) Let ry = 7_%1’ » (n=0), g9 =1, and gx=¢?,
(n 2 1), (thus My and M, are both regular). Then | Mg | < |M;]|,
but the converse is not true. :
- Proof. Since {g,} and {r, } are both positive, the result
follows if we show that (7) is satisfied but 7,Q;# O (Rygk).

Observe that Q. < e¢" and R, < logn (n—>00). This implies
that the left hand side of (7) tends to zero, and that

e Qe

R; g —>00 as k—>c0

This completes the proof.

Example (7.1). Let Q, = (n+1)!, and ra=4d" (n20), (d>1).
Then [Mg| ~ [ M;].
The proof is similar as before.

Latsly, the author would like to express his sincerest thanks to
the referee for his valuable suggestions which improved the paper.
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Abstract
In many branches of science, problems arise in which it is
desired to solve ill-posed problems in the form of Fredholm integral
equations of the first Kind,
b
§ KG9 £ 0) dy=g () c< x<d
a
In this paper we shall discusstwo different methods to solve
only severely ill-posed problems, available in the literature. The
methods are as follows :
(/) Generalized cross-validation regularization method without
using non-negativity constraints. )
(i) Generalized cross-validation regularization method using
non-negativity constraints. ‘
The two methods will be tested on integral equations of first
kind of convolution type and graphs have been drawn for comparison.
purposes.
Introduction
For years ill-posed problems have been considered as mere
mathematical anomalies. However, it appeared in the early sixties

29
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that this attitude was erroneous and that mary ili-pbsed: problems;-
generally inverse problems, arose from-practical situations: Now 4
days there is no doubt that a systematic study of these problems is
of great relevance in many fields of applied physics. For example,
problems of image reconstructron and enhancement, X-rays and
neutron scattering ; integral equations of the first kind in spectros-
copy, chemical analysis queuelng theory, astrophysics and photon-
correlation, optimal control, sersmographlc data analysis, calculation
of atmospheric temperature proﬁles numerical inversion of Laplace
transforms ; numerical inversion of radon transforms in compute-
rized tomography ; inverse source problems and inverse scattering
problems in optics, meteorology, stereology and other fields.

L. Mothodil Crossivaliddtion: without' non-negativity
Intrgdiiction’

The concept of a cross-validation criterion is an old one. Im its
most primitive but nevertheless useful form, it consistss of the
controlled and uncontrolled divisiod of the data sample into two
subsamples, the choice of a statistical predictor, including any
necessary estimation of one subsample and then the assessment
of its performance by measuring 1ts predretlons agamst the other
subsample. '

Many authors have refined this technrque but the refinement
described by Mosteller and Tukey [19], Wthh they term ““Simple
Cross-validation” is worth mentioning.

Stone [24] brought in the questlon of choice of predictor and
employed the lmplled cross-validation criterion in a way that mteg-
rates the procedures of chorce and assessment. Then the method was
refined’ by Wahba [ 291, Golub, Heath and Wahba [ 14 ], but
Wahbas’ analysis of fredholm integral equations of the first'kind
is restricted to L; (0, 1) or more generally, reproducing Kernel
Hilbert Spaces (RKHS) The RKHS theory is therefore not d1rectly
apphcable to convolution type equations on (—o0, w0), but is easily
modified for this case,
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2. Description of the methed : [ 4, 29 ]

We shall approximate
v 0]

§ K70 =g, —co<i<oo )
Q0

‘by replacing it by
1

(Ky ) 0= § KyG—9 1,0 =g @
0

where KN is periodically continued outside ©, 1). -

Consider the integral equation (1)

In tikhonov regularization, the approximate solutions f are
defined variationally as

C(f;2)=Min{||[Kf—g[P+2 & ()} (3)

few , ,
where w is some space.of smooth functions and A >0 is a regulariza-
tion parameter.

Here § is some non-pegative ‘‘stabilizing” functional which
controls the sensitivity of the regularized solutions f N to perturba-
tions in g. _ . ‘ ‘

We shall restrict our attention to pth order fegularization
of the form

c(fin)=| Kz @

2
e,
~which is minimized over the subspace H? C L,.

Both norms in (4) are L,, f(?) denotes the pth derivative of f
and A the regularization parameter. :
Pth order Regularization Filters for Convolution Equations.

Consider the smoothing functional C(f;%) of equation (4)

’ 2
,thh‘S,L (f) ,=j £® ”2 Working in L, (R) we have in the case of

2
teal
2
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the convolution equation (1).

(s x)—” kG (-2 () | +11f(")

[+

using plancherel’s identity, the convolution theorem for FTs and the

= “EE‘ { H K (W) f (W) —g W) G W) F (W) (5)

2

and propery ( f(p )) =G w’ }'

Thus
o0 T
crin 5 b F— )Gk g £ } dw
—o0
0 - -
1 A A AA A KA a2
=g S k { + A w?) ff] —(kfg)+kfg+‘g }dw
—c0
© y
=271 S(‘?c2+ )szf’)]ffA‘_ kg * dw
—0 | k[ 24-w??
o] A '
b glalt - ©)
AP IERSY |
clearly C ( f; 2) is minimized w.r.t.f. when
when f(w) = _____kgA =z(w; ) 2w @)
) k l2+lw21” k (w)
where z(w ;2 ) = [kl ‘(8)
| Lk P e '
z( W 7\ )} is called the pth order filter or stabilizer
0 A
{7) can be written asf)\ ) = —ZLS z(w; ) Ag(w) %
: | - k (w)

Exp (iwy) dw (9)
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We aSSUme throughout that the support of each function f, g and:
K is essentially finite and contained within the interval (0, 1)'
possibly by a change of variable, It is then convenient to adéept
the approximating function space TN——I of trigonometric polyno-

mials of degree at most N—1 and period 1, since the discretization
erior in the convoluion may be made exactly zero at the grid
points and FFTs (Fast Fourier Transforms) may be employed in the
solution procedure. Let g and K be given at N equally 'spaced

points x,=nh n=0,1, 2,....... N—1. With spacing h= _I\ll_ Then

g and K are interpolated by &N and KN & TN—I , where

N—1

1 9 e

gN (x) —N—Z &N, g P (i wqx) (10)
Q=0
_ 1
gN q_z gnexp( W xp) (11)
and ' o

g(x" )::gn = gN (xn )f, wq=21tq - (12)

with sinrilar expréssions for ky

In T _1+f, in(9) is approximated by

N
N—1 A
N = g i Wa 1
fN;)\(x)——z zq’,AAN,qﬁ exp (i wgx)  (13)
B
KNJ[,
q A= IA( ~

N41+Ww”
q

Where
~ fWip O<g< N

q LN_q, g < N-1
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The optimal A in (14) is still to be determined. From equation
(13) we know that the filtered solution f N )\(x)ETN—l which mini-

mizes
S | ,
5 [XnenGoman Jals o
n=
N—1

. 1 , ,
is fm (x)—~—N Z fN,x’q exp (2= 7 gx),
g=0 :

Where
A
P S\
N, A g q;h 5
N, g
’I& r
withZ = Al . T
b4 2 2!
{KN,q TNy

~ [ wg O<g< IN
Where wg=< w IN<g<N-1
( N7

The idea of generalized cross-validation (GceV) is quite simple
to understand. Suppose we ignore the jth data point g and define
7

the filtered solutionf(;z \ (x) ETN—-I as the minimizer of
N-—-1

2 (x> A)(5)-e T r Ol
n=0

§))
then we get a vector &N € RN defined by
G _ D | )
g =
N, 4 fN, A )
Clearly the jth element EN 2 jof equation (15) should “predict”
» Pyl -
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the missing value g;. We may thus. construct the weighted mean
square prediction error over all j.

Vo p=x 3 w0 (n i) o

The principle of GcV applied to the deconvolution problem then
says that the best filtered solution to the problem should minimize

the mean equare prediction error in (16). . Thus the optimal A
minimizes V(, p) for given p and does not require knowledge of o2,

To minimize V(}, p) in the form given by equation (16) is a time
consuming problem. Wahba [29] has suggested an alfernative
expression which depends on a particular choice of weights, resulting
in considerable simplification. Let

(s b))
N, _( N,x(x‘?)" N, PN
and define N )\=KIN, N o (18)
then there exists a matrix A(2), called an influence matrix such that
5N, )\=A(7\)g_N . (19)
- A A .
Let K=diag ( h KN, q) and Z=diag (Zq ; )‘)
then from (13) we see that
Lk 2 | (0)
A .
Whgre §N=, npi_g_N‘ ‘ n
and s0 AQ)= ¢ », B (22)
. Zy '

since K= ¢ 'II‘(q)H : (23)
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Wahba (29) has shown in a more general context, that the choice of

weights

1—a .. () 2
w (A= J] J=0,.....N—1  (24)

J —I%T/race(I—A(U 1»

where A (3) is the influence matrix in equation (19), enables the
expression (16) to be written in the simpler form

—;\I—“(I_A(x))gN ”j ) | @25)
L—%«Trace (1-A(N)) J2

From equation (22) it follows that
2

%\I—H(I —AZ) gAN }2_

[—lN—Trace (I—ﬁ) ]2

1.6, 1 N—l 2 2
N Z '('l_zqﬁx) ”gN,q“
VO P i , (26)
\2
{%qgo (I—Zq;l)."

Since the matrix A()) in (15) is circulant, the weights in (24) are
all unity. The expression in (26) is minimized using NAG Routine
EO4 ABA, which uses a quadratic interpolation technique to obtaln
a minimum.

3. [Cross Validation Regularization Method with Non-negathty
Constraints,

In this section we examine an extension of the CV method in

TN- (o the case where non-negativity constraints, f(x) >0 are also

imposed on the solution,
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The basic ideas we discuss were proposed by Wahba [30] but
the method of computation we adopt differs from hers and is less
expensive. 7

Description of the Method :
We estimate the solution of

0]
S k(x—p) f()dy=3g(x) —o0sXL® 27)
— o0

where we kpow in advance that fis non-negative and hence our
estimatefN is constrained to be non-negative. In contrast to the

successive broadness characteristic of unconstrained estimates of
narrow functions f (Dawson et all [ 91), the use of non-negativity
constraints greatly sharpens the estimates (Cooper [ 7).

Non-Negative functions are an important class for many physical
application e.g. Density functions. These constraints have been
applied to problems in phisiology by Wagner et all [ 28] and with
prior choice of smoothing by Evans and Wagner [ 11 1.

We first describe Wahba’s constrained algorithm [ 30 1.

T

Let fN = (f(xo), ......... ,f(xN__l))

and consider the pth order regularization functional in TN-—I
2 H A H
*H H
| Ky fn—i8 +Af I f
C(fN,' 7»)— J v N v N J2 =N -—N
where K =¢H Ky
© .
=({N and {rs=—-— ex ( = 1rs) r,5=0,1,2,...... N—~1]

~ 2,
and =diag( iwq) ? (29)

Leti;\ be the minimizer of (28) subject to f;N >0, with com-

PQnen;s,fA, o The indices B ssesaneeny By for whichfx " 20 are first
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determined.. Let E be the NxL indicator matrix of these indices.
That is E has a unit element in the mth row and nth column,
if m==nj, J=l, e , L and zeroes elsewhere.

In what follows we denote by I the set of indices (nl O L) of in~

active constraints.
The constrained minimizer of (28) may be written
A A I -1 A
_-f;\ —E {EH¢KHK¢HE+XE H¢J¢HE) B H ¢ KH <II;-I£N
Deﬁnmg ‘_gx:Kj_"_x
There exists an N x N influence matrix ALO‘) satisfying
| _{g}\:‘.AL (7\)§N.
It can be shown that , ‘
—okH g )" ey H ‘
AL(A)“¢K¢ E \ZK +7\ZJ E"¢K J \ 3D
where ;K-—:EHMA(H IA(szE
=g 45T
with the property that

Trace(I—A L(;.))=N—L+x Trace (B)

-1
where B=ZJ(ZK +2 EJ)

Wahba [30] argues that the optimal A in the constrained setting
may be found by minimizing

A H,. H 2
VC . Kyfy\— ¢5N” )
approx [—ll\f(N—L-}-,\ Trace (B) J

i

(32

clearly I)\ depends non-linearly on E as well as on A and so E must be

recomputed whenever f N is computed. These iterations can be ex-
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: C
ensive, oreever, V 0 i ion
P M » V approx (2) need not be a continuous function
of A.
For given A Wahba uses a quadratic programming algorithm to

minimize (28) subject to_]f'N 0. A unique minimnm always exists

(see e.g. Butler et al [6]).
Having found E and f7\ she then computes B by solving the L linear

system defined by

(ZK-H ZJ)B= z, (33)

using LINPACK (Dongerra et al [10]). She then exam’inesv the

C
valges Vapprox (), adjusts x accordingly if a minimum is not found

then repeats the process, This is an expensive procedure.

Our Methed :

~ Our method is simpler than hers.

’ . AH A a\H . . iy i
We observed that since ¢(K K42 I) ¢ 18 circulant matrix so is

z,. 2 . - -1 H, . o
g T* j and consequently so is E (i"}_)‘ %) EH in equatlpn @30).
Thus AL (A) in is clearly circulant. In principle we can use the

L-dimensional DFT (Discrete Fourier Transforms) to evaluate
AL (»), thus avoiding the necessity of soving the L-linear system in

(33) which is an expensive procedure on computer.

In practice, however, we have used the arproximation.
-~

Kf (zK +A>:J)-1EHMA<H =diag( Zq;k) o (34) |

where

z
0., g€l (339
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and

A 2

K

2 .2 ’27\,’_,2_’0
{KN; 4[ +N wa

From equation (34) it follows that

Ap (W= diag (;q; A )f

and so from equation (32) we have
oBr (2,2 [h oo )
C Nig€;l 1 Zq;l gq,+(1$k1gq'[ 3

prm(x)= 111 [N_H,(q ezl(l—z q;x) ),2];

prox in (36) by making a linear search in 2,

the function is not always continuous because the indéquhanges

(36)

We minimize V
ap

with A. At each step we minimize C(ng. 1) in (28) subject to

non-negativity constraints using the NAG: (U.K.) quadratic program.
ming subroitine EO4LBF, which yields the index sét I for any given
A.  All calculation are done using double precision becausé the
examples tested include the severely ill-posed problers, When a-
minimizing value of »-is: found the cOrre‘spo%ndi»ﬂgz_[;xis:‘givieﬁ;by NAG:-
subroutine EO4LBF.
Test Problenis :

Problem (1) : This-problem:is given: by Phillips- (21) and. has- a:
noisy data function g with a maximum abrolute error of about 0.7%.
The noise results purely from quadrature errors.
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TABLE (1)

Xn gn ka Ja
~30.0 0.0100 0.1184 0.0000
—28.0 . 0.0100 0.1311 0.0000
—26.0 0.0110 0.1464 0.0000
— 240! 0:0170 0.1651 0.0000
—332.0. 0:0305" 01883 0:0006
—20.0 0.0405 0.2179 0.0600
—18.0 0.0585 0.2563 00000
—16.0 0.0869 0.3077° 0.0000
—14.0 0.1309 0.3788 0.0000.
—12.0 0.2018 ‘ 0.4816 0.0000'
—10.0 0.3235 0.6380: 0:0000°
—8.0 0.5469° 0.8914 0.0000
—6.0 0.9621 1.3333 - 0i0019
=405 1.630% 21483 0:0345:
S8 o 204047 3:5103 0.0985

0.0 2.9104 4.3600 0.1321

2.0 2.8912 3.0628 0.1096

40 2.4586 1.6329- - 010584

6.0 1.9049- 0.8806 0.0349-

8.0 1.4144 0.5095 0.0173

10.0 1.0282 - 031 0.0107

120, - 0.7411 0.2021: 0.0028

140 0.5409 0.1341 0.0005

16.0 0.4083 0.0906 0.0000

18.0 0.3214 ' 0.0514 0.0000

20:0 02623 0/0413: -~ 0.0000°

22:0- 002204 00269 00000

240 0:1886: 0.0165: ‘ 0.0000

26.0 0.1580 0.0089. 0:9000-

%0 01270 0.0031. 0.0000

30,00 0.0780 0.0013. 0.0000°
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We have

30
39;) K(x~») f (0)dy=g(x) (37

where K(x), g(x) and f(x) are given in Table ! and computer dia-
grams (1) and (2). The number of grid points is 31.

Problem 2. This problem is given by Turchin [26] and is modi-
fied to take the wider Kernal to make the problem severely ill-

posed, we have

3.1
f ) K(x~y) f(»)dy = g(x)

where fis the sum of two Gaussian functions

£(x)=0.5 exp [ Ll 1%4)2 1+ exp! “‘;?86)2 | @)
with essential support —1.7<x <L.5
By the essential support of a function of f(x) we mean that part of
its domain for which [f(x){:>€ where €20 is small, e.g. E—I% of
max[ [ f (x) [ ]
The Kernal K(x) is given by

( 5/12)(—x+12) , 0gx<l2
K(x)=< (5/12)(x+1,2) v —12<x<0
L 0 ,  [x[]al2

The essential support of g(x) is —2.5< x <2.7

The functions are displayed in computer graph DIAG(3) with a
spacing 0.1.

4. Addition of random noise to the data functions

In solving the problem 2 we have considered the data functions
contaminated by varying amounts of random noise. To generate
sequence of random errors of the form lén I, n=0, I..........N—1. We

have used the NAG. Algorithm GOSDDA which returns Pseudo-
random real numbers taken from a normal dlstnbutlon of prescribed
mean A and standard deviation B,
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To mimic experimental errors we have
A=0 .
max [ g ’ (39)
B= (X/IOO 0<ng<N-1 n

where X denotes a choosen percentage, e.g, X=0.7, 1.7, 3.3 and
6.7. Thus the random error En added to g, does not exceed 3x%

of the maximum value of g(x).

5. Numerical Results
In this section we describe the application ofthe two methods

namely GeV unconstrained and GeV constrained to the test problems 1
and 2. Results are shown in Tables 2 and Table 3.

GcV unconstrained Method

Problem 1. This problem is in fact only mildly ill-posed.
Therefore, only a very weak filter is needed to resolve this problem,
the filter provided by the method is too strong, the result obtained
is not very good as shown in diag (4).

GcV constrained Method

This method worked very well, here N==32, the algorithm was
tried and the solution obtained is perfect as shown in Diag (5).

GcV unconstrained Method

Problem 2. This is highly ill-posed problem. For accurate
data the method yielded perfect solution resolving the two peaks
very clearly, but for 0.7% noise, the method failed to resolve the
peaks clearly, however when we used p=6, the solution improved a
lIot and it resolved the two peaks clearly but possessed negative
lobes-at the end points of the solution as shown in diag (6). There-
fore, for such problems, extra information is needed such as non-
negativity.

GcV constrained Method

This severely ill-posed problem could not be satisfactorily
treated using unconstrained regularization, because large negative



lobes were always presesent :and ithe size.of-these lobes increased
with the increase in the noise level. For constrained regularizdation
theiresults are dramatically superior. :
(f) With 0.7% noise level, the GeV constrained method gave a
-very .goodiresult as shown in Diag (7) ,

(ii) With a 1.7% noise level again GcV constrained method
yieided a very good result as shown:in:Diag (8) ‘ _

(iit) With 3.3, noise GcV  constrained msthod -peefarmed
reasonably well and result is shown in Diqg .

(iv) With 6.7% noisc the GcV .constrained method succeeded
in resolving the two peaks and the solutionseems to-be
reasonable. The solution is shown in Diag (10).

Concluding Remarks

The:overall performance of the methods.is-quite .good.

&s dor s uaconstrained regularization ‘is concerned the ‘method‘is
quite good for low level noise and for mildly and moderated-ill-posed
problems.

.Eor -higher level of noise -and for se,verely ill:posed problems
negative lobes at the end points is :not .a commedable feature.
Therefore, for such problems, extra information is needed such .as
non-negativity. 7

“Constrained regularization method worked very well for severely
‘tH=posed problem (2)-even with higher levels of noise, In fact t/her
GeV constrained method can cope with noise level about =10%,
in severely ‘ill-posed :problems and yielded exceetingly - excellent
results,

Aknowledgement
‘The author is very much indebted to his superwsor Dr A.R

Davies for his valuable suggestions and guidance to develope the
theory of the algorithms,
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TABLE 2
G¢Y Method: funconstrained)
N | Noise level A [ f~fq ” | -PIAG
Problem J 2
J— —_—
P (1) 32 | 0.79 already | 4.892x10° | 8.91x 102 4
in the data .
P(2) 64 | 0.0% 430x10714 | 2.67x107
P=2 0.7% 1.631%x 1077 1.897x1071 ] -6
P=6 0.7% 1 3710x10714 | 1.272%1071
TABLE 3
GcV Method (constrained)
Problem | N | Noise Level A ” f- fN ” | ‘DIAG
. 2
P(1) 0.7% already | 1.00x10™% | 1.793x1072 | 5
32 | in the data
P(2) 64 | 0.0% 4 210%1075 | 6.81x1073 7
. . | 07% 1.614% 1079 | 4.79x 102 7
. . | 17% 7.402x 107 | 7.511x 1072 8
. . | 3.3% 1.296 x 1078 | 1.005x 1071 9
» . | 6.7% 3.478x 1078 | 1.415x 1071 10
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1580 DFAG (1) PROBLEM (PHILLIPS 1)
DATA GRAPH OF PROB (1)
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17 DIAG (2) _ PROBLEM (P 1)
DATA GRAPH FOR PROB. (1)
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vaep DIAG - (3) PROBLEM (P (:2)
DATA 'GRAPH OF PROBLEM P (2)
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DIAG (4) PROBLEM (1)
SOL BY GCV. TRIG. METHOD WHEN M=N

fo . .
5 c
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170 " DIAG (5) PROBLEM (1)
. SOL.BY GCV TRIG. APPROX. NON-NEGATIVITY
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-30-00 -22.00 -14-00 -6.00 200 10-00 18.00 2600 340
X

TRUE SOL. ————

NUM.SOL. CLEAN DATA = o o o




51

1.28 DIAG (6) ’PROBLEM (2) .
. s0L. BY GCV. TRIG. METHOD WHEN M =N
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z 4 A x X

SOL. FOR 0-7% NQISE P
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1 28 DIAG {7, PROBLEM (2)
SOL.BY GCV. TRIG. APPROX NON:NEGATIVITY
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8 DIAG (8) PROBLEM (2) )
SOL. BY GCV TRIG. APPROX. NON- NEGATIVITY
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1’28 - DIAG (9) PROBLEM (2)
SOL. BY GCV. TRIG. APPROX. NON- NEGATIVITY
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128 DIAG (10) PROBLEM (2) .
SOL BY GCV TRIG. APPROX. NON-NE GATIVITY
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UNIDRIMITIVE GROUPS OE DEGREE 120
. By
KHUDA DINO SOOMRO
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Abstract
Symmetric group S16 is a4 uniprimitive group of degree 120

acting on unordered sets. Its sub-degrees and sub-orbits are
studied. o ' S '
Introduction

It s adlﬂicult problem to discover uniprimitive permutation
grOups of given finite degree in the field of permutation groups (um-
primitive means primitive but not double transitive), The aim of
this ‘mote- is to' discover a uniprimitive group of degree 120 and its
structure ; sub-degrees and suborbits. We Vshall prove the follow-
ing : o

. Theorem :—S 16 is a uniprir_nitive group of degree 120 acting on

uoordered sets. Its sub-degrees are 1,15,104 and sub-orbits-lengths
are 1,28,91.

For basic definitions, notations and preliminary results in per-
mutation groups, we refer to H Wrelandt (3) and for rcpresentatlon

theory and group characters we refer to M. Burrow (l)

Proof of theorem

h Consider G=S 16, acting naturally on & ={I, 2,—-—, 16}, Then

G acts on &={A < ¢ ([A[=2]}, the set of( § )— 120 unordered sets

i.e..
61
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={1, 2}, {1, 3},——, {1, 16}, {2, 3}, {2, 4},——, {2, 16},——, {15, 16},
G is transitive but not doubly trabsitive on § because there is no
element in G which takes {1, 2} to {1, 2} and {1, 3,} to {4, 5}.)
We find orbits of G{l' 2 i.e. suborbits of G on 8. Let g5G.
Then g¢G 1,2 if an’d‘only‘ lf ,.{,1”:2}g ={l, 2} ; equivalently g either

fixes or transposes 1 and 2, and may induce any permutation on
{3, 4——, 16}.

Hence

{1,3 G{l, 2'}={ {1, 3} {1, 4y——— {1, 16}, {2, 3}, {2, 4——.

(2, 16) }

which is the set of all ynordered sets ponta,ihjg.g g3actly one of 1
and 2 '

B4 Gy ,2}__{ (5,41 (3, S r By 161 14, 51 (4, 6), —— 19
——(4, 16}, =, {15, 16} }

the set of unordered sets containing neither 1-nor 2. And third

arbit is a trivial orbit {{1,:2}}. Hence the orbits of G{1 2) or sub ‘

orbits of G have lengths 1,28,91
Now we prove that G is primmve.

It‘ G is 1mpr1m1t1v¢, then G has a blos;kof unpr;mmv;ty . The‘
length of ¢ divides the order (/=120 and is a union of some
orbits of G{1 2 But this is not possible because orbits of G{I 2

bave lengths 1,28,91.  Therefore G is primitive .and hence uniprimi-
tive. ,

Again we find the degree of irreducible characters of G i.e. sub-
degrees of G. For this, we go to Higman (2). Let {«}, A(2), I'(«)

be suborbits of G with lengths 1,28,91 respectively (2¢§). Then by

B

Tt

les

wl
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Fc
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lemma 2 of Higman (2
[ aforfe (v
etorsene

A nA (a)j

By lemma 5 of (;2),
pl=k(k—xr—1), where k=1A(«), I=l(x) N
We have ’ , ,
91u=28(28—r—1)
or 131 +40=108

The solutions are
p=4,2=14; p=8§, A=l.

Now | G [ is given because | § [=120 divides |G ). Hence by II
lemma 7 of (2),

d=(A—p)?+4 (k—p)
is a square. So if p=38, A=1, we have 7=129 which is not square.
Therefore the case p=38, A=1 is not poss'b’z, If p=4, A=14, then
d=196=142,
By (2, p. 150),
2k+(a—p) (k+D)Fo/ d (k+))

Fv d

where f, ,f, are the de i'ees of irreducible characters o i.e. sub.
h 2S5 g f irreducible ch f G b

f2 ;.f3==

degrees of G. And f1=1 is the degree of principal character of G.

For p=4, A=14, we have
f2=15, f3=104.

Hence we have completed the proof of the theorem.

Acknowledgement : I wish to thank Dr. Gareth. A Jones, my
supervisor in Ph.D thesis 1981 (Southampton University) for his

supervision.
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1. INTRODUCTION

Order vector spaces were first considered by F. Riesz, L.
Kantorovitch and H. Freudenthal in the middle ninteen thirties.
This theory was subsequently enriched by the results of H. Nakano,
B.Z. Vulikh. A.G. Pinsker, G, Birkoff. D. Wassilkeff and many
others. School of research on vector lattices were then founded in
Soviet Union, Japan and United States. Later on H. Freudenthal.
F. Riesz, H. Nakano, F. Maeda, S. Bochner, R.S. Phillips studied
the notion of normal shbspaces of vector lattices and their applica-
tions. For dntaiis see [1], [2] and ]3]. The aim of the present paper
is to study some properties of normal subspaces of directed vector
spaces.

2. DEFINITIONS AND PRELIMINARIES - °

Let X~ be adirected vector space and X the set of all positiye

clements of X. : R
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Definition 2.1 |
A subset E of X is said to be solid if it has the following pro-
perperties :
(v1) If 0 <x2E, then [—x, x]l=y € X: —x <y <x)<E.
(v2) If x € E, then there exists a y € E n X; suck that
x& [y 5]
If we denote Z (x)={y : x € [=3,»], JEEN X 3 then (), and (V)
are equivalent to the conditions.
(1) If x€E and ZE(x)S ZE,(,y) then y € E.

(Q Ifx€EthenEnZ (x) #2.
E

Lemma 2.2
If E is a solid subset of X then ’E-E-En‘X+ —E nX+.

Definition 2.3
One calls a normal subspace of X any _vector subspace XO which at
the same time is a solid subset of X.
, 3. BASIC RESULTS
Lemma 3.1

Any normal subspace of a directed vector space is 2 directed veetor
subspace. The proof is an immediate consequenee of jemma 2.2.

Theorem 3.2

A directed vector subspace G of X is a normal subspace if and only
if it satisfies the condition : x € G, y€¢ X and Z (x)<Z (¥) imply

: E E

y€G.

Proof

Let G be a normal subspace of X. For any x £ G, y € X with ZE(x)
SZg () there exist zEy G nX +(x) such that € ZE (x) .C_ZE o). | ;t

further implies that
—z<y <z Therefore y € G.
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Conversely, assume that G satisfies the given condition. Let
x¥€G X, and y€[—x, x]. Thusx€Z (x)<Z (y). By our hypo-
E E

thesis y € G. Hence (1) is satisfied. Since G is a directed vector
space, Z (x)#¢ in G and therefore for every x £ G there exists

yEGnX+ such that x € [—y, y]. Hence G is a normal subspace.

Remarks 3.3
Sufficient condition in above theorem 3.2 can be relaxed as: x & Gy
=GnX+, y£Xand ZE (x)SZE (») imply y € G. -

Definition 3:4

Two elements: xi1 5

Xy € X are said to be erthogonal if

C[Z [x \VUZ (x ]_ o

znf{ E( 1) E( 2) =(0. One then -writes x;lxy,
The above definition can be extended to the'subsets of X. Two
subsets AL’ A2 are said to be orthogonal if x | X, for every 2 € Al-:”
xZE Az: Orthogonal complement of A1 is the set A11J_={x; x 1 A}

Proposition 3.5
Let G,Gl, G2 be normal subspaces of X: Then the following:asser
tions are true.

(?) If for every Oaéxé X there exists y E G/{0} such that ZE(x)EZE(y)
then GF ={0}

() I Gl,‘ _|_G2 then- Glfns G2= {0}.

Proof

(£) Let Gl;é{o}, then is some none-zerox in G+. By hypothesis
there exists y € G/{0} such that ZE(x)QZE(y). Since x € Gt ang Y€
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G. Therefore x | y. Thus inf[ ZE(x) U ZE(y) ]=O. Therefore inf
L

Z (y)=0. It further implies that y=0. Hence a contradiction.
E ‘

(@) 1 G, 1G, and x¢€ G, N G, thenx L xand therefore inf Z(%)=0.

2 2

Hence x=0.

Country to vector lattices, the converse of poppulation 3.5 is
not true, in general, for directed vector spaces. We give the follow-

ing example to illustrate this.
Example 3.6

Let X be the vector space of all functions x:R+—>R with - usual

algebraic operation and natural ordering. Let F be the subspace of
X, whose elements are representable in the form

x{t) = Z Vc”rtn,

: n=p ,
wheré f€R + and ¢, are scalar. P is a directed vector space under

the order relation induced by X, clearly, Z (y)<Z (x) if and only if
E E

[x[ <ly|linX
Let G1=-{x X €F ; lim sup{x(¢)/ <0},
t—0
G2 ={x:x € F; lim sup | x{¢) [<o0},
’ t—>®
then G1 and G2 satisfy the condition of theorem 3.2. Therefore
G, and G2 are normal subspaces of F. Obviously G n G2'=-;{0}

and G1 _LG2 . Hence converse of proposition 3.5 (ii) does not hold. :

-l_ ; . .
Also G . ={0}. On the other hand, let x € F\ {0}, given by x(¢)=

1,/t. Now if there exists some y € ’Gl/{O} such that Z (x)SZ E(y).
E
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Then |y| < [x therefore y € G n G, Thus y=0. Hence contradic-
tion,
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Abstract :
Let P[A, B],—1<B<A<I, be 1he class of functions p such that

p(2) is subordinate to —11;_2%2% . Let fbe analytic in E and

(Z.; (é))? ( = +_,) P (2)— ( k1 )pg(z), kx2

and p;, p, € P[A, Bl. Then we say that f € Vi [A, B]. With A=1,
B=-—1, we obtain Vy, the class of funetions with bounded boundary
rotation. We also define the class Ry fA, Bl such that f €|V [A, B]
if and only if zf* € Ry [A, B]. A}sof € T:[A,B;C, D],—~<B<A<],

~1<D<C<1, if and only if f ; (z) € P[A,Bland g € V:[C, D].

We deal these classes ﬂndcr;some integral operators and some
radius of convexity problems are also considered. '

Key words and Phrases : Subordinate, bounded boundary rota-
tion, starlike, close-to-convex functions, convex domain. _

1980 Mathemmatics Subject Classification : Codes : 30 A 32,
30 A 34,
1. Introduction

Let f be analytic in E={ z :{ z{<1}, and be given by
n

(LD

©
f@=z+ ¥ a z
n=2 n

i
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A fuunction g, analytic in E, is called subordinate to a function G if
there: exists "a Schwarz function w(z), w(z) analytic iAn E with w(0)=0
and [ w(z) { <1 in E, such thatAg(z)zG(w(z) ). L

In [3], Janowski introduced the class P[A, Bl. For A and B,

—1<B<Ax, and function p, analytic in E with p(0)=1 belongs to
14+Az

the classIrP[A,vB] if p(z) is sgborflln‘?.te to T{-—B7
Also, given C and D,—1<D<C <1, C[C, D] and $* [C, D] denote
the classes of functions, analytic in E and given by (1.1), such that

. (Zf}(?)) ¢ PIC, D] and ij( )(Z) 3 P[C, D] respectively. For
C=1, and D=—1 we:notc that C[l, —1}=C and S*[l —I]ES* the

class of convex andistarllke functions in E.
A fuﬁctlo‘nf analytic in E and given by (1.1), is said to be in the
class Rk[C D], —1 <D<C<l if and only if
‘ _+ | e
(S1(Z)) (L)
S (@)= & ; :
: s
. ($:(2))
" where Sq, S2 € S*C, DI
Clearly k 2 2 and R; [C, D]=S*C, D]. Also Ryl, —1]=U,
the class of functions with bounded radius rotation discussed in
oK y , .
. Wecan also deﬁne the following :
fDeﬁmtlon 1.1. , .
Let f be analytic in E and be given by (1.1). Then f belongs to
the class Vk[C D], kx2, —1x< D<C SI if and only if -
/ P2 (1.3)
= l B .- “_
—2

L
2

K _
4
(52(2)/2) .
where S, S; € S*[C, D]. ‘
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From (1.2) and (1.3), it is clear that

f& V,C, D] if, and only if zf’ € R[C, D] (1.4)
It may be noted that V,[C, DI=C[C, D] and Vi1, —1]=V;, the
class of funetions of bounded boundary rotation discussed by
Paatero [8].

Definition 1.2,

Let f be anaiytic in E and be given by (1.1). Then f is said to
belong to the class Ti[A, B;C, D], k=2 ; —1<B<A<];
=< D<C«if and only if there exists a function g€ V;[C, D] such

4
that L2 ¢ pa, 8],
g (@ [4, Bl
We note that :
(1) T2 [1, —1;1,—11K, the class of close-to-convex functions
jntroduced and studied by Kaplan [4].

(i) Tw[1, —1 ; 1, —1]==T%, a class of analytic functions intro-
duced and studied in [7].

@iy T2 [A, B; C, DI=K [A, B ; C, D], and this case is discussed
by Silvia in [10].

2. Preliminary Results :

Lemma 2.1 [9].
Let p € P[A, B). - Then

1—Ar . f 14-Ar
1A <Rep)< P @ g
Lemma 2.2.

Let f € Vi[C, D]. Then fmaps|z/ < r; onto aconvex domain,

syphere
2

=k c_py— [ K P
Sc-p—, [Fp—cpracp

Ty

This result is sharp.
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Proof :
Since f € Vi[C, D], we have
k 1
4 T2
(5y) (2)/2) » S1, S; SPS¥[C, D).
N 'Y
S+ 2
or
(' D)) k1 k1
i E =5+ ) no- (-7 ). @2
D1 P2 > P[C, D]
$0

%""T) Re pi(2) — (—f——*é—) JPz (Z)Ig
k

;(— _I_)I—Cr (L 1_) 1+Cr

2103+ ) T—Dr 4~ 2) 1+Dr
1+ — k (D—C)r—DCr2

= 1—D2r2

Hence Reiz—;:—:%);- >0 for] z I<r1,

where ry is given by (2.1). Sharpness of the result follows if we

take p(z), and pg_(z) in 2.2) as

C 1+C
PA=1Ee s 2 (=5

From the relation (1.4) and lemma 2.2, we have :

Lemma 2.3.

Letf € R¢[C, D). Thenf is starlike for |z <r;, where ryis
given by (2.1). This resuit is sharp,

The following is the extension of Libera’s result [6].

Lemma 2.4 [9].
Let N and D be analytic in E, D maps onto a many-sheeted
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starlike region. N(0)=0=D(0) and

N 7
-ﬁg € P[A, B]
Then gg)) € P[A, B).

Lemma 2.5 [1].
Letp © P[A, Bl. Then, for z¢ E,
zp’ (z A—
Re {ZC) 1y iR <R,

2(2) = (1—Ar) (1—Br)
and
' (2) ) (A+B) 2
Re { P(z) }Z m+ (A=B) (1—r12) [(L, Kl)% —(1—ABr2)],
' if RZSRI,
where
[ Ly . _{ 1-Ar

RI_( < ) . Re=(=5— )

Li=(1-A) (14-Ar?),
and

K;=(1—B) (1+Br?).
This result is sharp.
- 3. Main Resuits.
Theerem 3.1

Let « and m be any positive integers and f € Ri[C, D].

the function F defined by
z

F@) =X (1)) a
0
is starlike for [ zi <r;, where ry is given by (2.1).

Proof :
z

| Let I@)= 1 () ar
0

Then

(3.1)



_or

§0
(@) =22 1)
and
zF' (2) 21" (2)
Fzy ~ 1z m
ZF'(z) 1§z (z)—ml(z) ‘
Fz) { GO } 32)

Let
NE) ——l—{zJ’ (2)—ml(2)}
D(z) Jz2)

Then N(0)=0=D(0)..

By a result due to Bernardi [2] and lemma 2.3, D(z) isa (m+oa—1)—.
valent starlike function for | z | <rj, and r; is given by (2.1).

Also '

D' (z) T (2)
zf (2)
)

Since, by lemma 23 f is starlike for[lzl <r;, where.r; ig.given-
by (2.1), so Re o

D' (2)
N(z) zF" (2)
o “RTFY

resuit.

>0 for | z | <r;. This implies- that.

Re >0 for [z | <ry, see [6], and this proves our.

Corollary 1.

If k=<2, thenf € $*]C, D] and F is in S* [C, D[ for z€ E.
Corollary 2. :

If C=1, D= -1, then f€Rr [I, —1;=U; and F maps
fz] <“__—k?|_’%/’;7:~'*; onto starshaped domgain, The result 1'1as been
proved in [5].
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Using (1.4), we can easﬂy have the following -
Theorem 3.2, ; ;
Let f€V,[C, D], and F be defined by (3.1). Then F maps
| z ]<ry onto a convex domain, and r, is given by @2.n.
Theorcm 3.3,
Let f € Tk [A, B ; C, D], and F be defined by
zZ
{1 r@ar.
0

m+1

F(z)=

Then F maps | z| <ry, r; given by (2.1), onto a close-to-convex
domain. ‘

Proof
Since f € Tk [A, B ; C, D), there exists a functlon g€Vk [C, D]
such that L2 ¢ pa, Bl.

g (2)
4
Let G(2)= m+l S t"™lg(¢)ds.. Then, by theorem 3.2
0
with a==1, G is convex for | z | <ry.
Now
py P@-m S;f(t) =1 dy
GO e {7 eigin
B S;z"‘f’(t‘)dt NG
B S(z)””g’ wda PO
Thus-

N'(@ @ .
D/ (Z) - gr (Z) P[A’ B]'
This implies that- —Ig—g)l« € P[A, B], for[ z,{ <ry, using lemma 2.4.
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Hence FET, [A, B, 1, —11CTy[l, —1:1, —1)=K for | z| <ry
and this proves our result.

We now prove the following :
Theorem 3.4.
Let f € Vi [C, D], and
7, (z)=:S: (f' @) %a, 0<as<l. (3.3)
Then f, maps I z [ <ry onto a convex domain, where ro is the least
positive root of
| («D?—aCD—D¥x2+ 2% (D —0) x+1=0 (3.4)
Proof :
We have
r @=('@"
so
@f, @) _ e @)
', f (2
Using (2.3), we obtain 7
[ &) l 5ol (E[NO—C)r=DCr3

+ (1-2)

Re <L e J 1-D2r2
14a(k/2) (D—C) r+{(2—1) D—aC) Dr2
1-D2r2
and this gives us the required result.
Theorem 3.5.

Letf3T. [A, B, ; C, D, and}f, be defined by (3.3). Then 1,

maps | z! <r, onto a close-to-convex domain, where ro is the least

positive root of (3.4).
Proof :

We know that f;’ Eg € P[A, B], where g€ V; [C,D].
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Let
z

g, =] (& ) ar
0
Then g, € V4C, D] forlz , <<ro, where ry is the least positive
)
root of (3.4),

Hence

fla(z) -( fl (Z\
&' T\ g

This meansfa e T.[A,B, 1, —1CT,[1, —1, 1, —=1] =K and we have

)=p" ()¢ PiABL

the required result.
Theorem 3.6.

Let f€ Tz [A,B ;C]. Then
Re izf' (Z)-) N .r Ml (l'), for Rl $R2

7@ " M, (r), forRy<R,,

where
M, () = 1+(%/2) (D—C) r—CDr2 (A—B)r
1y = 1—C2r2 ~({—Ar)(1=Br)
and
_ 1H(E/2)(D—CO) r—CDr2 =~ A+B 2
M (r) = 1—C2r2 +A—_B T @a=B) 1—-r)

x {(L;Ky) E—(1— ABr2)}
with Ry, R,, L; and K, as defined in lemma 2.5.

Proof ;
Since f € Tx [A, B ; C, D], then

@) 1+Aw(z)
g (22— 14Bw (2 =p(2), where g € Vi [C, D]
Differentiating logarithmically, we obtain
Grr@) _ ' @)Y | ()

o = g@ T
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Using (2.3) and lemma 2.5, we have, for R; <R,
Re (zf' (2)) 1+(k12) (D—C) r—CDr2

(A—B)r |

[ = 1-C2r2 (1—Ar)(1=Br) |
=Ml (r)s :
and, for R,<R;
Re 2 ()Y 14+(k/2) (D—C) r—CDr2 ~ A+B
@ = 1—C2 r2 A—B
) 5 1
+m)(1__r2) [(L; K;)*—(1—ABr?)]
=M; (r)
Sharpness of the bound when R; <R, follows if we take :
(@) 1+Az
PO(Z)—' f()‘(z) = .[+BZ H and
and at z=~r
&’o@)’_(_k_ L) 1-Cz (L 13y 14Cz
g0 \4 T2) 1Dz T\ 772 ) 1+Dz
We note that ; B
zp'y (2) - (A—B)z
po (2) (1+Bz)(1+Az) °

and at z=—r

zp'o (2) ~=(A—Byr
Re { P:(z) }—‘—‘ (1=Ar) (1-Br)
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1. Tntreddction : | B ' 'f"{;
In 1937 M.H. Stone introduced regular open sets. If (X,T)' is a
space and A C X, then A is regular open, denoted by A & ROX, T),

i f A=Int(A) [34] Inthe 1937 investigation, Stone showed that
for a space (X, T), RO(X, T)is a base for a topology TS on X coar-

ser than T and called !X, T ) the semire:gulari»z,atio-n of . (X, T)..

Since 1937 semiregularization spaces have been used to mvestlgatef
many properties of topologieal spaces. : :

In 1963 semi open sets were defined. If (X, T) isa space an\cl_
ACX, then A is semi open, denoted by A ¢ SO(X, T), iff there exists
0 €T such that 0 CA €0 [27]. In 1965 semi open sets were further
investigated as f—sets and x—sets were introduced.  Let (X, T) be
a space and let ACX. Then A is an a—set, denoted by A € «(X, T)
iff A CInt(Int(A)) [33]. In 1970 semi open sets were used to define and
investigate semi closed sets and the semi closure of a set. If (X, T)
is a space and A, BCX, then A is semi closed iff X—A is semi open
and the semi closure of B, denoted by scl B, is the intersection of
all semi closed sets containing B[l]. In 1971 the semi closure
operator was used to show that for a space (X, T) there exists a

- finest topology F(T) in the class of topologles having the same semi -
open set as (X, T) [3].

83
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In 1978 the semi closure of open sets was used to define feebly
open sets, which were used to define feebly closed sets and the
feebly closurse of a set. Let (X, T) be a space and a let A, B, CCX.
Then A is feebly open, denoted by A € FO(X. T), iff there exists 0 € T

such that 0 €A Cscl 0, B is feebly closed iff X—B is feebly open,
and the feebly closure of C is the intersection of all feebly closed
sets containing C [32]. Further investigation of feebly open sets
showed that for a space (X, T), FO(X, T) is a topology on X, called the
feebly induced topology on (X, T), TCF0(X, T))=F0(X, FO(X, T) (6],
S0(X, T)=SO(FO(X, T) [7], FO(X,T)=a(X, T)=F(T) [8], and for each
ACX and B € FO(X, T), Int(Int(A=scl (Int (A) and scl B=Int (Int (B))
19] .These results led to new characterizations of regular open sets. If
(X, T) is a space, then RO (X, T)={Int (Int (A)) JACX}=(scl A[ A€
FO(X, T)} [10] ={Int (0) | 0 € T} [11]={sc1 0 '0€ T} [12]. Many pro-
perties of topological spaces have been further investigated using
feeble open sets and regular open sets. In this paper additional
properties are further investigated using feeble open and regular
open sets, and semi-regularization spaces and feebly induced spaces
aae further examined.

2. Semi~—T0—Identiﬁcation Spaces, Semi-regularization Spaces, and

Feebly Induced Spaces.

In [12] it was shown that for a space X, T), scl U-scl U for
S

each U € T, which was used to show that for each space (X, T),
(X, T S) is semi—-RO. Below the above result is extended to in-.

clude feebly open sets.
Theorem 2.1. Let (X, T) be a space and let U ¢ FO(X, T). Then

cl FO(X, T)U==scl TSU=sclTU.

Proof. Since UCX, then sclTU=scl FO(X T)U [6]. Since
RO(X, T)=RO(X, FO(X, T)) [10], then TS=’F0(X, T)g and

cl FO(X, T)U=scl FO(X, T) sU=SCI,TsU'
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In [12] it was shown that for a R; space (X, T), the semi-regulari
zation space of the Ty—identification space of (X, T) equals the
Ty—identification space of the semi-regularization space of (X, T),
which used so show that the semi-regularization of a Ry space is
R;. Examples can be given to show that for a Ry space (X, T), the
feebly induced space of the Tp—identification space of (X, T) need
not be homeomorphic to the To—identification space of the feebly
induced space of (X, T). In [13] semi-To—identification spaces were
introduced. Let (X, T) be a space and let R be the equivalent re-
lation on X defined by xRy if scl{x}=scl{y}. Then the semi-Ty—

identification space of (X, T) is (XS’ QS(X, T)), where XS is the set
of equivalence classes of R and QS(X, T) is the decomposition topo-
logy on XS. The result above questions about what would happen

if To—identification space in the result above was replaced by semi-
To—identification space. The investigation of these questions led to
the following discoveries.

In [14] R, spaces were generalized to s-weakly Hausdorff spaces
by replacing convergence in the definition of R; by semi convergence.

Let (X, T) be a space, let { Xa } be a net in X, and let x € X,

a & A
Then {xa}mé A Semi converges to x iff {xa}a €A eventually in every
semi open set containing x {15]. A space (X, T) is s-weakly Hausdroff
iff {?c}:{}}, whenever there exists a net semi converging to both x and

y [14].

Theorem 2.2." Let (X, T) be a space and let P : (X, T)—>(XS,Q S

(X, T)) the natural map. Then for each ¢ € QS(X, T). P71 (scl #)=
scl (P71 (u) ).

- Proof : Let p € Qq(X, T). Since scl p=Int (u) and P is conti-

nuous and open [13], then P (scl p)=P7! (Int(p))) Int(P™! (u) Int
(P™1(1)=scl P*1 ().
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Theorem 2.3. Let (X, T) be a space. Then (X, T) is s-weakly
Hausdorf? iff (XS,Q S(X” T) is s—weakly Hausdorff.

~ Proof: For each z € X let CZ be the element of XS containing
z. Suppose (X; T) is s—~weakly Hausdorff. Let x, y £ X such that
{C,}# {C,}. Then {x}54{y}, for suppuse not. Since P is continuous
and closed [13], then {Cx}={P(x) }=P({x})=P{3}={P )} = (Cy}, which
is a contradiction. Thus {X}#(y) and there exist disjoint semi
open sets U and V such that x € U and y € V [14]. Since P is conti-
nuous and open then P(U) and P(V) are semi open sets [27] and
since P71 (P(W))=W for all W €S0(X, T T)[}31], then P(U) and P(V)
are disjoint semi open sets containing C; and C,, respectively.
Thus (XS, QS(X, T)) is s—weekly Hausdorff [14].

Conversely, suppose (XS,Q (X, T) is s—weekly Hausdorff. Let

x, y € X such that {x}#{y}. Then x €{y}or y& {x}, say x & (.
Then x €X—{y}, Cx ¢PX—0PEQX, T), and Cy EP(X—{},

which implies Cx & {Cy}. Thus {C;}#{Cy} and there exist disjoint
semi open sets ¢ and 4/ such that C, £y and Cy € +/. Since P is conti-
nuous-and open, then P! (1) and P™I(v/) are disjoint semi open sets
[4] containing x and p, respectively. Thus (X, T) is s—weekly Haus-
dorff.

Theorem 2.4, Let (X, T) be a s—weakly Hausdorff space. Then
(X, T‘S) is s—weakly Hausdroff.

Proof : Let x, y £ X such that {;}T #{);}T . Since{z} TC{;}T
.. S S S
for each z € X and {x}TS, 7% {y}TS, then {x}T #{y}T. Then there

éxist disjoint T open sets U and V such that {;}T CUT and {} CVT

{14]. Then SCITU and scl TV aré disjoint ‘I‘S open sets, x EUT=
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‘sc'lTTUT=sc1TUTq [2], and similarly, y€ s_cTT—V.}; * which implies

x U P Csel. . 1 is s—we .
{x}I CsclTUT and {y}T‘ sclT .~ Thus (X, Ts) is s—weakly Haus
S S S S
dorff [14].
Theorem 25, If (X, FOX, T)) is s-weakly Hausdorff, -then

(X, T) is s-weakly Hausdorff.
Proof : Let x, y € X such that {_x}T;é{y}_T. Since {Z}FC(X,T)-C

{E}T for each z £ X and {E}Taé {_y}T, then {;}-FO(X, o) #{;}FO(X’ T)

and there exist disjoint FO(X, T) semi.open sets U and V such that
x€éUand y£V. Then U and V are disjoint T semi open sets con-
taining x and y, respectively, and (X, T) is s—weakly Hausdroff.

In 1972 [4] semi homeomorphisms were defined by replacing
open in the definition of homeomorphisms by semi open and pro-
perties preserved by .semi homeomorphisms were called semi topo-
logical properties. In investigations of feeble open sets, it has been
shown that certain ‘properties are simultancously shared by both a-
space and its feebly induced space. In [8] a topological property
simultaneously shared by -both a.space-and the feebly induced tsp‘ac;:e
was called a feeble property and it was shown that a property is a
feeble property iff it is a semi topological property. In [10]
r-properties, topological properties simultaneously shared by
both a space and _its semiregularization space, were investigated
and it was shown that every r-topological property is a semi
topological property. Since s-weakly Hausdorff is not a semi
topological property [16], then the converse of Theorem 2.4 and
Theorem 2.5 is false.

. Theorem 2.6. Let (X, T) be a s-wecakly Hausdorff space, let
P2 (X, T>(Xg, Qq(X, T)) be the natural map, let (X*g, Q(X,T)g))

be:the semi—Ty—identification space of (X, TS), and let P XTI
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->(X*S, QS (X, TS)) be the natural map. Then (XS, QS(X,T)S)=

(X*s, QS(X, TS) ), which is s-weakly Hausdorff semi—T,.
Proof: Let x € X, Since (X, T) is s-weakly Hausdorfl, then
(X, T) is semi—R, [14] and XS={scl T{z} { z € X} [13], and since

(X, T) is semi—R,, then X*_ ={scl,,. {z} ] z€X}. Letx € X and
S S TS

let y € X—sclT{x}. Consider the case that sclT{x} € T. Then sclT{x}
==sc1T(scl T{x})zsclTS(sclT{x}) £ TS' Since y €& sclT{x}, then x ¢

sclT {y} and sclT {x} n sclT

{y}=@, which implies y & sclT {x}.
S S S .

S
Consider the case that sc]T{x} g T. Let z ¢ X—{x} T
Since (X, T) is s-weakly Hausderff and {_z_}T;é{;} T then there exist
disjoint T open sets U and V such that z ¢ UT and x € _\_’T . For

each z € X—{;}T lIet U, and V: be disjoint T open sets such fhat

z€ l_JzT and x € Ve T Then scl TUZ and scITVz are disjoint T S

open sets, z € L_JZT=sclT UzT =SCITUZT—' and similarly, x& SCITV:T——'
S S S

Thus W=U sc]TUz € T, x €W and X—{}E}TCWTS=WT. "Since

z2€ X—{x}y —
scl o{x} € T and (X, T) is semi—Ry, then x € X—{x}—T [17]. Thus
T

W =X, Y=WU {3} € S¢(X, Tg), and x ¢ Y, which implies y &

Ts
sclTS{x}. Hence scl TS{x} c sclT{x} and since SO(X, TS) CSo (X, T)
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[12], then sc‘T{x} C sclTS{x}, which implies sclT{x}=sc1TS{x} and

#
X §= X 3
A base for Qq(X, T) is f={scl u (1 € Qy(X, T)}. Since P, is
continuous, open, and onto ; and {scl U , U&T}is a base for TS’
then B,={P; (sc1 U) { U € T} is a base for QS(X’ TS). Ifupe 'QS(X,"r),

then P71 (u) € T, P71 (scl w)==scl P71 (#), and scl u=P(P71 (scl #))=
P; (sct P71 (u)) € By, which implies 8C3;,. If UET, then, since
P1(P(U))=U and P(U) € QS(X, T), Py (scl U)=P, (scl P71 P(U)))=

P(P1 (scl P(U) ))=scl P(U) € 3, which implies f, 8. Thus = and .
QS(X, TS)=QS(X’ T)S. Since (X, T) is s-weakly Hausdorff, then

(X, Tg) is s-weakly Hausdorff and (X*g, Qg (X, Tg)) is s-weakly
Hausdorff. Since (X, TS) is semi—Ry, then (X* ¢, Qg (X, Tg) is
semi—T1 [13].

Examples can be given to show that s-weakly Hausdorﬂ' in
Theorem 2.6 cannot be replaced by T,.

Theorem 2.7. Let (X, T) be a space. Then (X, T) is ‘R, iff
(XS, Qg (X, T)) is R;.

Proof : For each z € X let C; be the element of Xscontaining z.

Suppose (X, T) is Ry. Let x,y € X such that {CI}#{Cy} Then
{x};é{y} ‘and there exist d1s101nt open sets U and V such that {x} CU ‘
and {y} CV [5].. Then P(U) and P(V) are disjoint open sets suCh
that {Cx} €P(U) and {C,,} CP(V). Thus (XS, QS X, T)) is Ry [15].
Conversely, suppose (XS, Q, S(X T)) iIs Ry Letx,y 6 X such
that {x}#{y}. Since P({z})={Cz} and P! (P({z};) )={z} for}all zAEX_ .
and {x}#{y}, then (C3}(C5} and there exist disjoint open sets ¥ and -
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V¥isuch that {C;} €U and {C5} S V. Then P~1 (U) and:P™1 (V) are’
disjoint open sets such that {x} < P! (Ij) and {y} CP™! (V). _/Thu_s
X, T)isRy. L
.- Combining the results above give the following result.

A,‘vaollgry 21 Let (X, T) be Ry Then (xS QX D =,

(X QS(X T )) which is R, and semi —T;.

The result. above rarsed questions about- what would happen rf
the semi- regular:zatton Space in Theorem 2.6 or Coroliary 2.1 was’
replaced by the feebly induced space. Results in [18] show that for
ahy space (X, T) the feebly induced space of the seml——To—mdentrﬁ-
cation space of (X, T) eéquals the seml—To—xdentxﬁcahon ‘space “‘of
the feebly induced space of (X, T). Also, examples can bg: glven{
to show that the To—identification space of the semi- regularrzatron
of a seml—-TZ spacé, which is stronger than s—weakly Hausdorff,
need not be homeomorphic to the semiregularization of the T(,
—dentification space of tne space. :

3. Additional Properties and Sermregularizatibn an‘d Féebly Inducéd

Spaces:: : - s :
In 1975 [28] regular was generalized to s-regular in 1978 [29]
normal was generalxsed to s-pormal, and in 1981 [I5] compactness
was strengthened to semi compactness by replacmg the word open
in the deﬁmtron of regular, normal, and compact by semi open,
respectlvely In 1982 [19] s- -regular was strengthened to semi-regular
and in.{20] s-normal was strengthened to semi-normal By replacing
closed in the deﬁmtlon of s-regular and s-normal by:semi closed, -
respectrvely . : .
In s 1961 [5] AS ‘Dav1s was interested in obtarmng propertles
weaker than Ty, which:together with T;_ would be equrvalent to
Tq. i=1, 2. Davis’ 1961 1nvest1gatron led to the definition .ofRo and
Ry $paces. - In-1975. [30] T: was generalized to semi—T; by replacing v
th_ggf.\?}?o{d open.in the definition of Ty by semi open, i=0, 1, 2. These




o
niew  definitions . raised questions about properties weaker than
semii —Tj, which together with semi—T;_; would be equlvafant ‘to
semi—T;, i=1l, 2, whlch led to the-definition of semi—Ryq spaces in
1975 [31] and semi—R, spaces in 1978 [21]. Also; the  introduction
of semi—T; spaces raised questions about properties weaker-thaa T;,
which. together with semi—T; would be equivalent to Ty, i=0, .1, 2,
which led to the definition of s- essentlally Ty spaces, i=0 [22] i=1

[231, and i=2 [24]. A space (X, T) is s-essentially T; 1ﬂ'(XSQ,S(X T))

is Tp, i=0, 1, 2. In this section the properties given aboveﬂare

farther investigated using: semi-regularization and feebly induced

spaces. - 7 : ‘

. Theorem 3.1. Let (X, T) be s-regular. Then (X, T)S is s-regular,
“Proof : Let C be:TS closed and let x & C. ‘Then Cis T closed

and x & C and there exist disjoint T semi open sets U and V. such

that x € U and. CEV. Let A, B &€ T such that A CU CAT and

C C
BCV .BT‘ rTh'.en sclTA and sclTB are disjoint TS _op_gn sets Let

= v = - i . C ‘C— nd:
D={x} U SCITA and E=CU scl,l‘B. Since solTA D AT and:

[
—-sclTAT —fscITATS, then D ¢ SO(X, TS) Similarly, E& SO(X T S)

Theorem 32 Let(X,T) be s-normal. Then (X T )1ss-normal

The. pmﬁf is: slmllar to that for Theorem. 3.1 and is omitted

Theorem:3.3. Let (X, T): be a.spdce such:that (X, FOZX, T)) ist
srregula«t (s-nermal).  Then: (X, T) is: s-regular (ssnormal).

Proof : Consider the case thaf X, FO(X, T)) is s-reégular. - Eet C
be T closed-and lét x & C. Since T CFO(X; T) then' € isFO(X, “Thelos-
ed and there exist disjoint FO(X, T) semi open sets U and' V such‘tkat’
x € U.and CCV. Then U and V are: disjoint T semi’ opén sets: ‘such’
that x €U and: CEV, " The proof is similar for s-normal and is
omitted. ‘

fay
e
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Since s-regular and s-normal are not semj topological proper-
ties [25], then the converses of Theorems 3. 1, 3.2, and 3 3 are false.
Since semi-regular [19] and semi-normal [20] are semi topological
properties, then a space (X, T) is semi-regular (semi-normal) iff
(X, FO(X, T)) is semi-regular (semi-normal) :
Theorem 3.4. If (X, T) is semi-regular (semi-normal then), (X, Ts)

is semiegular (semi-normal).
Préof: Let C be TS semi closed and let x & C. Since

SO(X,TS) CS0(X, T), then C is T semi closed and there exist disjoint
T semi open sets U and V such that x¢Uand CCV. Let A,B€T
such that ACU CApand BEVCB. Then D={x} U scl A and E
=CU sc]TB are disjoint TS semi open sets such that x¢D and CCE.

The proof for semi-normal is similar and omitted.

Since semi compactness is a semi topological property [26], then
_aspace (X, T) is semi compact iff (X.FO(X, T) ) is semi compact.
Theorem 3.5, Let (X, T) be semi compact. Then (X, Ts) is

seml compact.

The straight forward proof is omitted.

Examples can be given showing that the converses of Theorem
3.4 and Theorem 3.5 are false. ‘

In [18] it was shown that for any space (X, T), (X, FO(X, T)) is

s-essentially Ty ; that for a Ry space (X, T), which is weaker than

s-essentially T, (X, FO(X, T)) is s-essentially T;, and that the
following statements are equivalent: (@) (X, T)is s-essentially Ta,
(®) (X, FO(X, T)) is Ry, and (¢) (X, FO(X, T)) is s-essentially Ta.
Examples can be given of T; spaces whose semiregularizations are.
not s-essentially T, and of non s-essentially Ty spaces whose semi-
regularizations are s-essentially T,. S 7

Theorem 3.6, Let (X, T) be s-essentially T,. Then (X, TS) is s-

essentially T,.
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Proof : Since (X, T) is s-essentially T,, then (X, T) is R, {24].

(X , Q (X, T))is T,, and (XS, QS(X T) S) is T, [2]. Since (X, T) is
Ry, then (X*S, QS(X TS)) (XS, QS(X T)S) is T, and (X, TS) is s-

essent1ally T2

1.

10.
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Abstract :

In this paper, we define a mapping f : X—1I, the centre of BCI-
algebra X, and show that this self-map is a homomorphism.
Further, using the concept of the centre, a homomorphism f : X—=Y
has been factorized into two factors such that one is an onto homo-
morphism and the other is one-one homomorphism. '

Preliminaries : This section includes background material that
is needed in the sequel.

Definition 1. [4]. A non-empty set X together with a binary
operation * and a special element 0 is said to be BCI-algebra pro-
vided the foilowing axioms are satisfied for all x y, z € X.

(1) (G*y)* (x*2)* (z*p)=0,

() (*(x*y) )y*y==0,

(3) x*x=0

(5) x*y=0=y*x implies x=y,

(5) x*0=0 implies x=0,

where x*y=0 if and only if x<y.

Definition 2 [1]. Let X be a BCl-algebra and x, y € X. Then
x,y are called comparable if and only if x*y=0 or y*x=0. We
choose an element x, © X such that there does exist anyy #xo
with y*x;==0 and define

Alxg)={x € X: x,* x=0)}.

A(xg) is said to comparable if each pairx, y € A(xo) is comparable,

97
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We call it a comparable branch. Clearly each A(Xo) is non-empty,
because xo* x,=0 implies xo € A(xo). It follows that A(xg)={xc},
a singleton set is comparable, we will call. it uniary comparable.
The point xo € Alx,) is called an initial element of A(xp). Let I
denote the set of all initial elements. We call it the centre of X,
A BCI-Algebra X in which each A{x) is uniary comparable is known
as S;-algebra. Note that A(0)={0}, a singleton set, that is. BCK-part
of X is {0}, hence it.is a p-semisimple BCI-algebra. Moreover, in
S4 algebra x*y=0 implies x=y for all x, y€X.

We will denote the BCI-part of X by M and it is given as

M={x € X: 0*x=0}

We refer to {5, [7], for relevant definitions and other informa-
tions about the homorphisms and quotient BCl-algebra X/A., where
A is an ideal in X. Ia a BCI-algebra X, the following held ([5]).

(6) (x*yyrz=(x*z)*y

(7) x*0=x

(8) x<y implies x*z<y*z and z*y<z*x forallx, y, z € X,

(9) Let-X be a BCl-algebra and M its BCK-part, then,M ‘is the
maximal BCK-algebra ([4]).

(10) Let X be a BCI-algebra with I as the centre. Then
U
c61 A=Xand QIArx)=z (1
(11Y Let X be a BCI-algebra with M as its BCK-part. Then for
m & M, x & X—M, x*m, m*x € X ([5]).

(12) Let X be a BCl-algebra with M as its BCK-part. Let
Alx)cX and A(y)sX. If 0*x € A(yg), then 0*x=y, for all
x € A(xo) ([2]).

(13) Let X be a BCl-algebra with M as its BCK-part: Let
A(xo)=X. Then x,py € A(x,) implies x*y; y*x € M. (I].

(14) Let X be a BCI-algebra with M as its BCK-part, Let
A(x)sX and A(y))sX. Then x & A(xg) and y & A(yo) imply
x* vy & X—M ([1]).
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15) Let X be a BCl-algebra with I as its ¢entre. Then I is an
S,—algebra ([2}). : ,

(16) Let X be a BCI-algebra and H a strong ideal in X. Then
X/H is an S;—algebra ([3]). :

(17) Let X be an S;—algebra (p- semmmple), then X is an
abelian group ([7]).

Theorem 1. Let X be a BCI-algebra with I as its centre. De-

fine f: X>X by f(x)=x,€1, for x € A(xp). Then fis a *~homor-
phism.

Preof. Case (i). Letx,y € M, Then by(9) M belng a maxi-
mal BCK-algebra in X implies x*y € M, obviously A(O)—M implies

[ (x*3)=0=0"0=f (x)*f (»).
Case (i), Let x € M,y € X—M. By (10), U8 Al(xO)=X and
x

N A(xo)=¢ implies y is contained in a unique A(yo)=X—M. By

Xo E I ’
(11), x*y € X—M and by (10) x*y € A(z)cX=M for a unique
2z & In(X—=M). By (8), 0<x, gives 0*y<x*y. By (10) 0*y and
x*y are contained in the same A(z)). By (12), 0*y € A(z) implies
0*y=2z,=0%y,. It follows that f(x*y)==2p=0*ye=f(x)* f(»). ‘

Case (jiii) x € X—M, y € M. By (Il), x*y &€ X—M. By (10),
x*y is contained in a unique A(z) S X—M for z, € In(X—M). Now
0<y implies x*y<x. Again by (10), x € X—M implies x is contain-
ed in a unique A(xg)=X—M. Therefore, x*y < x implies x*y € A(xo)
and f (x*y)=xo=x0*0=f (x} ().

Case (iv) x, ¥ € X—M. There are two possibilities.

Case (iv) (@), x, y € A(xg)cX—M. Then by (13), x*y e M
implies f (x*y)=0=xo *xo=f.(X)*f ). ,

Case (iv) () x € A(xg)=X—M. y €A(y))cX—M. Then by
(14), x*y € X=~M. implies x*y € A(z))cX—M for some zz 2 1In
(X—M). Since xo<x, therefore, xo*yo<x*pq. (L. ‘

Again yo<y implies x*y<x*yy ‘ , (1.2)
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By (10), X0*YVos X*yo and x*y are contained in the same A(z,), be-
cause x*y € A(z). Since by (15), I is an S,—algebra therefore,
Xo*yo € Iand xo*yy & A(zo) both imply xo*yo=zo. Now by defini-
tion f(x*y)=zy=xg*yo==f(x) * f(»). This completes the proof.
Theorem 2. Let X be a BCI-algebra with I and M as its centre
and BCK-part respectively, If X/M is the quotient. BC[-algebra of
X by M. Then for x € A(x,), C —A(xo) C
*0
Proof. By (10), each x, € I gives an A(xo)< X, therefore it is
sufficient to show that Cx=A(x,). Let x € A(x,). By (13),
‘ 0

Xp*x, x*xo € M, that is x~x, and x € Cx which gives A(xp)<

0
C .
*o
Next we show that C_ < A(x,). Suppose C_ ¢ A(x.). It
X0 0 X0 0
means that there eaists an element y € Cx which is not contain-
0

ed in A(x,). In other words, there exists ay € A(yo)<SX—A(x)

such that xo*y, y*xo € M, a contradiction of (14). Thus Cx =

0

A(xo). (3.2)
From (3.1) and (3.2), C n P =A(x ) This completes rhe proof.
*0

Remark 1. We note that in X/M, Cx =Cx for x € A(xOQX,

0
that isC_ =C_, for x € X and we can write X M={C_:x & X}=
Xy X x
{Cx; x €1 } . It follows that O(X/M)==0(I).
0

Let X, Y be BCl-algebras with I, { being their centres, respec-
tively. We write I={x, : xo is initial element in X} and I—-{yo Yo
is initial element in Y}, A(xo)={x € X=xo*x=0} and A(y,)=
(€ Y:y*y=0}
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Theorem 3. Let X, Y be BCI-algebras with T and I as centtes
respectively. Let f:x—>y be a homomorphism. If x, € I and
f(x0) & A{yo)SY, then f[A(x0)]l < Ayo). ‘

Proof. Let x € A(xp)sX. Then x*x=0 or 0=x*x gives
that f(0)= f (xo*x)= f(x0) *f (x). O0=f (x0)*f(x) implies f(xo) <f(x).

Since f(xg) € A(yo)= Y. therefore yo<f(xo) implies yo< f(x) or
f(x) ¢ A(y). Hence f[A(xp)l<A(yp). This completes the proof.

We know that given a homomorphism f ; X—Y, there exist
onto and one-one komomorphisms f; : X->X/ker (f) and f,=X/Ker
(f)—Y, respectively such that f=f, 0f;. A question arises, does
there exist an ideal of X other than Ker (f) which gives similar
result. The following theorem gives a partial answer to this
problem. ' B
Theorem 4. Let X and Y be BCl-algebras with I and I’ as the
centres respectively. Let M be BCK-part of X. Letf:X—>Y be a
homomorphism such that f(x)=0, for x€ M. Then there exists two
homomorphism g : X~>X/M and 4 : X/M—Y such that f=hog,

Proof. By remarks 1 of theorem 2, X/M=:{Cx :x & X}=
: e - == = e .
{c %, R I} and ¢ cxO A(xo) for x A(xo) We  define
g: X->X/M by g(x)=Cx forx € X,
Obviously g is onto, By (10), n. A(x )=g, therefore x ©
er I 0 .

X is contained in a unique A(xo) X. By theorem 2, Cx=Cx for
0

x € A(x). Thus g(x)=C_ for x € A(x )=X.
0 xo 0

Case (i) Letx,y € M. By theorem 2, Cx=Cy=C0. Thus x*y
H H = : — =C *C =C *C = * ]
€ M implies g(x*y)—Cx*y =C, C*C, C, Cy g(x)*g(y)

Case (if) Let x € M, y € X—M, By theorem 2, Cx=C0 and by
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(0)yy ¢ A(’yO)EX—«M' for a unique y € I N (X—M), whaexseCy =
. 0

Cy. By (11), x*y € X—M and by (10), x*y is contained ina unique
A{ZO)'EX—-M. Since x &€ M, therefore 0.<x implies 0%y x*n. By
(1¢), 0*y and x*y are contained in A(zo). By (12), 0%y € A(ZO)
. 1 * — * — ’

implied 0%y=0 Yo =%y

2 C = = 17 e ¥ ) =C =
By theorem 2, CZ(} Co*yo Cx*y Thus g(x*y) Cx*y C

— =0 M =C M = olx)¥s
—Co*yo‘—— O*Cyof' ny g(x*g(y)

Case (iil) Let x € X—M, y ¢ M. By (10), x € X—M implies
x is contained in a uniqoe A(xo)gX—M and by theorem 2, Cx—_=

ZO'

C. . Simililarly C =C.. Now x*y &€ X—M imply x*y & A(z.),
Xy T 0 | 0"

for a unique Zo € In X—M. Since 0<y, therefore x*y<x which

i *py & =
lmpiy x*y A(xo) and Cx*y Cxo.
TR = ¢C =C *C = & ‘
Cx —Cx L0 Cx CO Cx Cy g(x) g(y).
0 0 0
Case (iv) (a) Let x, y A(xo)gX M. Then Cx Cy Cxo.

: ¥y € i i = . RVEL =0 =C *
By (13), x*y & M implies Cx*y CO and g(x*y) Cx*y C0 Cx

Thus g(*)=C .y, =

C . =C x"ﬂSy-“* g(x)*g(»).
Case (iv) (b), Let x © A(xo)c_:X—M, yE€ A(yO)QXﬂM. Then

= —1 — ik
C, Cxo. and cy cyo. By (14), x*y € X—M. By (10), x*y
X—~M implies that x*y € A(zo»)',cz X~—M for auhique 209 IinX-M.

Since xosx, therefore xo*y ng*yo... BNERY)

Since yy <y, thereforefore x*y < x*y, (5.2)
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From (5.1), 5.2) and (10), it follows that x,*yy, x*yy and x¥y are

. - » it == == =1
contained in A(zy) and we can write Cxo"‘y.o Clx*yo C’x*)’ -

Cz .
0
us g(x*)=C,,, =C ., =C, *C, =C*C = g(x)*g(y),
¢ 0 70
hence g is homomorphism.

Next we show that # ;: X/M-—»>Y defined by h“{Cx]-:f’(x»O) for all

x € A(xp) is a homomorphism, LetC_ ,C. €X/M. Then C_ *C =
x y X y
0 0 0 0
Cx*y & X/M. SincelT is a S;—algebra therefore xo*yy € 1. Let xg*y,=
00
Zp.thenC_, =C_¢€ XMh(C_*C y=mC_ , )=haC )=jf
ol % o Yo %o %0
(20)= f(xa*y0)=f (x0)* f(ro)=2(C )*g (Cy ). Further hog (x)=
0 0 :

h(Cx)=f (xO) for all x € X. This cempletes the proof.

Corollary 1. Let X and Y be BCl-algebra with T, I"as their
centres respectively. Let X/M' be the quotient BCI-algebra, where
M is the BCK-part of X. Let f: XY be ahoemomorphism such that
F(x)=0, for all x& M and f{I : I->1"is one-one, then h: X/M—>Y
defined by h(cx)r_'f(xo) for x € A(xo) is one-one homomorphism,

Proof. By above theorem we have h is a homomorphism.”

Let x € A(x. )= X, then by theorem 2C_=C_ =A(x,) and by remark
0 X Xy 0
1, X/M= :x € Xl= . . e
, X[M=(C_; x € X} {cxo t %y €1} Let cxo, cy0 X/M, then
h(C_)=h(C_)implies f(x )=f(y). Since f:I-—>I is one-one,
X0 Yo 0 0

therefore x =Y and Cx

0 =Cy which implies 4 is one-one. This

0 ‘o
complete the proof.
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Remarks 2. Since g : X—X/M defined by g(x)=Cx, forx & X
is onto and & : X—Y defined by & (C)=f (x) for x & Axgy s
one-one, therefore, f; X—Y given by f=h o g. Note that hog is an
empimono factorization of f.
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Abstract ;

We show that the category BCI of BCI—algebras and BCI—
homomorphisms is complete. Further we show that it has coequa-
lizers, kernel pairs and image factorization system. It is also proved
that onto homomophisms and co-equalizers coinside in BCI and
monomorphisms restricted to BCI—@G parts dre one one.. Two prob-
lems have been posed. It has been proved that MBCI is a reflexive
subcategory of BCI. Further the existence of a functor from MBCI
into BCI is also proved. '

1. Introduction : ‘ S

In[9] and [11], K. Iseki emphasized the importance of: the
category theoretic approach to BCK —algebras, which were intro-
duced by him. He further proved in [11] that the category :BCK of
BCK—algebras and BCK—homomorphisms has limits. Further
H. Yutani in his paper [18] proved that this category has co-limits.’
The existence . of co-equalizers, characterisation of onto-homomor-
phism and monomorphisms in this category has also been studied by
K. Iseki and H. Yutani in [11], [16], [17] aud [18].

BCI—algebras, which are generalization of BCK—algebras,

were introduced by K. Iseki -[8] and since then have been studied
extensively by various researchers. Recently- in [7]; C.S.Hoo in-

" This work was conducted under the Pakistan Science Founda-
tion grant P-BZU/MATH (15).
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vestigated injectives in the category BCI of BCI—algebras and BCI
—homomorphisms. But this category is still uninvestigated. The
purpose of this paper is to investigate certain categorical notions in
this category.

We shall follow standard definitions. Our categorical concepts
shall be those of standards text, like [1] and [14], to which we refer
the reader for definitions of standard categorical terms. Our notions
of BCK—algebras shail be as developed in [10] and [12] and those
of BCI—algebras shall be as in [4], [6], [13] and [15].

We denote by BCI the category of BCI—algebras and BCI—
homomorphisms. Recall that in both categories, a2 homomorphism
J:X—Y means that f(x; *x2)=f{x2)* f(x,), and hence f(0)=0. This
also means thatif x<y, then (x)< f{y). We shall denote a general
category by K. its objects by | K | and the set of morphisms from an
object A into object B by K(A, B).

2. Limits in BCI :

We now show that the category BCI has arbitrary products and
equalizers. '

Theorem 2.1. The category BCI has arbitrary products.

Proof. Let Xa ,% € J be a family of BCI objects. Let = P
a £

X, ={fifiJ——> U s Xayis o fumction and f@e X, for i
o £ :

« € I}

‘We define the binary operation*in = X, by:
o« € J
(f*g) (@) =f(2)*g(x) for all « € J. Then routine calculations give
that = X  isaBCI—algebra under this operation with zero as
x€]J

zero function given by 0(a)=0a, Oa being the zero of Xa.

Further the mapping pr @ = X - X, o€ J, defined by
a €]

o, (f)=f(a), for all « € J, is a BCI—homomorphism, Further for
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altX ¢ | BCH”fa ¢ BCI(X, Xa), « € J, the mapping ¢ : X

r ; X, defined by ({(x)) ()=f, (x) forall x € X, « € J, is the
a €] )
unique BCI=homomorphism making the diagram commutative,
Pra

X«

A

T X«

KET

-
—

2, Fig-I
-
X,

This completes the proof.

Theorem 2.2. The category BCI has equalizers.

Proof. Letf, g © BCI (X, ¥). Define Z={x: x ¢ X and fix)==
g(x)}. It is easy to verify that Z is a sub-algebra of X. Leti:Z—~»X
be imbedding of Z into X, given by, i(z)=z for all z € Z. Obviously
i € BCI(Z, X) and satisfies foi=goi. Furtherlet C € [BCI |, h €
BCI (C, X) be such that foh==goh. Then the function ¢ : C—Z
given by {(c)=h(c) is well-defined because f(h(c)=gfh(c) implies.
h(c), © Zforalle € C. Further ¢ € BCI (C, Z) and is the unique
such BCI—morphism making the diagram commutative. '

Thus i=eq (f, g). Hence the theorem.
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Since category K with arbitrary products and equalizers has’
arbltrary limits {14], therefore we have the following proposition.

Propasman 2.1, The category Ba,[ has arbitrary limits and thus
is complete. :
3. Monomorphisms, epimorphisms and co-equalizers in BCL

In this section we show that BCI has kernel pairs, co-equalizers
and onto homormorphism coincide in it. One-one homomorphisms
are monomorphisms, but, contrary to BCK [l1], it is not obvious
that monomorphisms are one-one homomorphisms. Further onto
homomorphisms are epimorphisms but converse is not obvious. How-
ever, in MBCI epimorphisms are onto homomorphisms and mono-
morphisms restricted to BCI—G parts are one-one homomorphisms
in BCI. We now state the following results proved by C.S.Hoo in
[71.

Proposition 3.1. In both BCK and BCI, onto homomorphism are
epimorphisms. ' .

Proposition 3.2, In BCI; one-one homomorphlsms are monomor-
phisms.. ‘We now prove the following : '

- Theorem3.1. Let € BCI (X, Y) be onto, then fis a co-equalizer.

- Proof. Let f: X—Y be onto and let X x X be the product BCI
—algebra of X with itself. Let Z={(x, x;) : x1, X2 € X and f(x)=
fixz)}. Obviously Z is a sub-algebra of X x X and thus Z € | BCI |.
Let pis Pa : Z—X be defined by

D1 (x1, Xp)=x1, pa(x1 X2)==x; for all (x1, x2) € Z. It is easy to
verify that p; and p, are BC[—homomorphisms and satisfy fopl_-.

fOpz. o
Let g € BCI (X, C) be such that gopy=gop,. Since f: X—>Y is
onto, so far any y € Y, there exists an x € X such that f(x)=y.
We dcfine & : Y—C by h(»)=g(x). where f(x)=yp, for ally & Y. To
show that 4 is well-defined, we consider f(x;)=f(x2)=y (say) Th]S
implies (x1, x,) € Z and gopi=gop, gives g(x1)= g(x;). Thus h(y)=
g(x)=g(x;). Further let y;, y» & Y, then there exist x;, X2 e X
such that £(x1) =i, f (x2)=y, and hence g(x;)="h(y1) and g(x;)-s h(:VZ)',;»;‘
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Further yi*yy=f(x1)* f(x2) =71 (x1*x,). Hence h(p; * yr)=g(x; * x2)=
g(x1)* g(x2)=h(y1) * h(y,). Thus k € BCI (Y, C) and obviously
satisfies hof=g. The uniqueness of 4 follows from the fact that f is
onto homoemorphism and propostion 3.1. Thus f=Coeq (p1, p2).
" Theorem 3.2. The category BCI has kernel pairs. 4

Proof. Letf€ BCI(X,Y). Let Z={(x1. x;): x1, x; & X and
f(x)=f(x2)} be the sub-algebra of the product algebraX x X and
let py, p» : Z—>X be the same as in theorem 3.1." Then py, p, € BCI
(Z, X) and fopl—fopz We claim that the pair (py, p2) is a kernel
pair of f. ‘ C

Let g1, g2 € BCI (D, X) be such that fog;=fog,. We take
g:D>Zas b ’

gld)=(g1(d), g«(d) ) foralld ¢ D.

g is well-defined because fog,=fog, gives f(gi(d) )—-f(gz(d) D, which
gives (g,(d), g2(d) ) € Z. Further o

gldi*d2)=(gi(d*dy), gd*dy) )

=gi(d) * 81(412), g2(dy) * g2(d)))

=gi(d1), gald1); ) * (81(d2), 8x(d2) )

f—‘g(dl) * g(dh). N
Thus g € BCI (D, Z) and satisfies p; Og=g; and p, Og=g,. The
uniqueness of g is the consequeance of its definition. Hence the
theorem.

We now state the following theorem which will be used in the
sequel. The proof -of this theorem can be carried out on the lines
of the proof given by K. Iseki for the similar result for BCK—
algebras.

Theorem 3.3 [12]. Let X, Y. Z be BCI—algebras and let f: X
Y be onto homomorphism. Let g: X—Z be homomorphism such
that Ker f C Ker g. Then there exists unique homomorphism h
Y—>Z satisfying hof=g. S

. Theorem 3 4 - Every coaequallzer in BCI is an onto homomor-

phism.
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Proof. Ietf © BCI(X,Y) be a co-equalizer. Since every ca-

equalizer in a category K is a co-equalizer of its kernel pairs,
therefore the BCI—algebra Z together with the projections de-
fined in Theorem 3.1 is a kernel pair of f. Thus f=coeq (py, p2).
We further note that Z is the ideal congruence on X generated by
Ker f==K because

Z={(x1, x2) : X1, x2 € X and f(x)=f(x2)}

={(x1, %22 f(x1) * f(x2)=0=f(x2) * f (x1) }
={(x1y X¥2) 1 (%, * x)=0=f(x2* x1) }

={(x1, x2) : x; * x, € Kand x; * x; € K}

Let X/K be the corresponding quotiant BCI—algebra and nat : X—
X/K be defined by nat(x)=[x].K We consider nat (xI *x3)

=[x *x] =[x]* [x,] —nat (x,)* nat (x,), where[x],, de-
TEE R T Mol T 1 ¥y ’K ,
notes the class determined by x. Thus nat € BCI (X, X/K).

Further nat op, (xl, x2)=nat (x l)= [xl}K aEx21K=na_t (x2)=nat op,
(x1, x2) for all (x; x;) € Z. Thus nat op;=nat op,.

Since f=coeq (p;, p2), therefore there exists unique§ € BCI
(Y, X/K) such that ¢ of=nat, that is the following diagram com-
mutes,

i - f

2 Y
' T

: v
] Vs H
Fig-m
Let x€ Ker nat. Then nat (x)—-é[O]K, but nat (x)= [x].K.  Thus

(0, x)} € Z, which gives x*0=x& Kerf. .Thus nat < Ker £ Obvi-
ously nat is onto. Thus by Theorem 3.3 there exists unique g € BCI
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(X/X,Y) such that go nat=f, that is, the following diagram com-
mutes, .

X

oy 3 ,&
Now{ 0 g Onat=¢ 0 f=nat= ]X/KO 1T} AR  §
and g0¢0f=g0 nat:f:lY V15 SO SPRSPPE (/.

Since nat is onto and fis co-equalizer, therefore both are epimor-
phisms. Hence (1) and (2) give that '
30 g=1X/K and g 0 ¢=1Y

Thus ¢ € BCI(Y, X/K) is an isomorphism. Since nat is onto, there-
fore f is onto.

Remark 3,1. Combining Theorem 3.1 and 3.4 we conclude that
in the category BCI co-equalizers and onto homomorphisms coincide.
Proposition 3.1 tells us that in the category BCI one-one homomor-
phisms are monomorphisms. The converse of this is not yet obvious.
Thus we pose the following problem : -

Problem 1. Monomorphisms in BCI are one-one -homomorph’rsms
or not ?

The following two results about monomorphisms in BCI are
interesting. ' ‘

Proposition 3.3. [7]. Ifu:X—>Y is a monomorphisms in BCI,
then the restriction u#,:X4+—>Yy, X, and Y, are BCK parts of
X and Y, is a monomorphism and hence one-one homorphism in
BCK. :

In {2}, M.A. Chaudhry and B. Ahmad defined BCI—G part,
which we denote by XG’ of a BCI-algebra X by : X G={x 1x® X
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and O*x=x} and proved that it is a proper BCI-sub-algebra of X.
Let f: X—Y be a homomorphism in BCI and let x € XG‘, then
F(X)=f (0*x) =1 (0)*f (x)=0%f(x) gives f(x) € YG' Thus it is possible

to have the restriction fG : xG—>YG of f. This restriction has the

following interesting.
Theorem 3.5. Let f:X—>Y be monomorphism in BCI, then

fo! XG—> YG is a monomorphism as well as one-one in BCL

Proof. Leth, g € BCI(C, XG) be such that fGO h—f 0g. We
depote both the imbeddings of XG into X -and YG into Y by i
Thenf070h=i0 fG 0h=i0 fG g=f0i0g. Sincef is a mono-
morphism in BCI, we have ioh=iog and hence h=g. Thus f, g
BCI (XG, YG) is mono. To prove thgt is one-one, we suppose tha?

fé is not one-one. Then there are distinct elements X xz > XG

such that fG-(xl)=fG(x2)' We take Z={0, 1}, the two element

BCI—algebra defined by : 0*0=0=1%1, 0*1=1*0=1. We define ¢,
$:Z-—> XG by : ¢(0)=0, ¢(1)=x; and $(0)=0, ¢(1)=x,." Easy’

calcuiations give that ¢, ¢ € BCI (Z, X ) and fo 04=r50 ¢. Thus
{ =2 because fG is a monomorphism. Hence ¢ (1)=@(I). Thus
Xx1==x,, which Is false. Hence fG: XG is one-one.

Proposition 2.3 tells us that in BCI onto homomorphism are
emimorphisms but the converse is yet univestigated. Thus we pose
the following problem ) -

. Problem 2. Epimorphisms in BCI are onto or not?

We now give a partial solution of this problem.

A BCI—algebra X is called p semisimple if X;={0}. * It is called
medial if (x*y*(w*z)=(x*w)*(y*2). In [3], W.A. Dhdek studied
BCI—algebras satisfying x*(x*y)=y. C.S.Hoo proved in [5] that all
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the three algebras are equivalent. He also proved in [6] that every
sub-algebra of medial BCI—algebra is a closed ideal in it.

Let MBCI be the category of medial BCI—algebras and BCI—
homomorphism. Obviously MBCI is a full sub-category of BCL
We now prove the following result.

Theorem 3.6. Epimorphism is MBCI are onto homomorphisms.

Proof. Letf € MBCI (X, Y). Then f is a BCI—homomorphism.
Now let f(x1), f(x2) & f(X). Thus x5, x; € X and f(x)) ¥ (x2)=

F(x1*x3) € f(X). Thusf(X) is a sub algebra of Y. Since Y is
medial, therefore f(X) is closed ideal in Y. Let Y/f(X) be the

corresponding quotient algehra, which is also medial. We define
&h:Y/f(X) by g(»)=[y1 and h(y)=[0] Easy calculations
FX) fX)

give that g and & are'BCI—homomorphisms. Further go f(x)=
g(f(x))=[f(x)] and ho f{x)=h(f(x))=[0] . Since f(x)* 0=
X &

f(x) & £ (X) and 0*f(x)=f (0)* f(x)=f (0*x) € f (X). Thus
[f(x)] =[0] . Hencegof=ho f, which gives g=h be_cause f is-

X fX)

epimorphism. Hence g(y)=h(y) for all y € Y, which gives [y]=)
FX

[0] Thus y * 0=y € f(X). Hence Ycf(X), but f(X)=Y.
X
Thus f(X)=Y, which gives fis onto.

We now state and prove the foilowing theorem. The proof
may be carried out exactly on the similar lines as given by H. Yutani
[17] for the category BCK. However for completion we give a
simpler proof. ) ‘

Theorem 3.7. The category BCI has co-equalizers.

Proof. Let f, g € BCI (X, Y). Let R be the minimum ideal
congruence on containing R={(f(x), g(x)): x &€ X}. Such an ideal
conqruence exists and is the intersection of all ideal conqruences on Y,'
containing R. The quotient algebra Y/R is a BCI—algebra and the
canonical mapping nat: Y—>Y/R is an onto BCI—homomor-
phism, We show that nat==coeq ( f, g). ‘
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Obviously y nat 0 f (x)=nat (f(x) z{-:[ f (x)]=[g(x)];-nat 0
g(x) for all x € X, because RS R and (f(x), g(x) € R for all x€X.

Thus nat 0 f=nat 0 g. Let 2 € BCI(Y, Z) be such that hog=hof.
We now define ¢ : Y/R->Z by ¢ ([y])=hA(y). To show that ¢ is well-
: R

defined, we suppose that [yl ]:[y2 ], Thus (yl,yz) e R. Fur-
' R R

ther R1==(y, ¥)y,y € Y and h(y')} is the ideal conqruence on Y
generated by Ker h. We note that i( f(x)=h(g(x)) ; for all x € X,
Thus (f(x), glx) € R, and hence R<R. But R js the minimum
such congruence. Hence (yl’ y2) € R gives (yl, y2) g Rl“ Thus
h(y))=h(y;), which gives § is well-defined. Further ¢ ([yl]R *[yz]R)

= ¢y, *y, D=hy, * y)=h(y )* @)= (y,]1)* ¢ (ly,] ).
¢y yzR Y177 1 2 Ip 2'p

Ttus ¢ € BCI(Y/R, Z) and obviously it satisfies ¢ 0 nat="h, that is,
it makes the diagram commutative, The uniqueness of ¢ follows

X

F "a_‘;”’
from the fact that nat is onto and hence epimorphisms in BCIL.

4. Image Factorization System and Certain other Catego‘ricai Notions.

In this section we show that BCT has image factorization system
and MBCI is reflexive sub-category of BCI. Further we shall define
a functor from BCI into MBCI For the definition of image
fectorization system and a functor, we refer the reader to [1) and
[14].  Further we state the following result which will be used in the
séquel.,
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Proposition 4.1 [1, page 40]. Let K be a category in which every
morphism factors as a co-equaiizer followed by a monomorphism,
then (co-equalizers. monomorphisms) yields an image factorization
system in K, ‘

We now use this result to prove the following ;.

Theorem 4.1, (Co-equalizers, Monomorphisms) from an image
factorization system in BCI,

Proof. In view of proposition 4.1 we need to show that every
morphism in BCI factorsas a co-equalizer followed by monomorphism.

Letf € BCI(X,Y). Then K=Ker fis closed ideal in X and
the quotient algebra X/K is well-defined. Let nat : X—>X/K be the

canonical onto mapping defined by nat (x)=[X]. Then nat £ BCI
(X, X/K). Further we define m([xK])=f (x). First of all we show

that m is well-defined.

— * e

Let [x] ]—[x2 1. TJllusxl * Xy ¢ K and Xy * X K. Hence
K K :

f(x.1 * x2)=0- aad f(:e2 * x1)=0, which gives f(x1 * f(x2)=—:0 and

f(x,) *f(xl)=0' Thus f(x))=f (x,). Hence m (Ix ) g)=m ([xZK]).
Further m([xl]K* [leK)=m (E XZ]K)=f(x1 *x)=f(x)) *_f(xz)
=m([x, ) *m (Ix)lg)- Thusm & BCI (X/K, Y). Obviously f=
K K
mo nat. To show that m is.qne-one, we take m([x, ])=:m([.x2 D.
K K
Thus f(x1)=_f(x2) Whigh gives fx, * x2)=0—f(x2 * xl). Hence
K
BCIfhomomorphism, 80.it is ce-equalizer in BCI and m being-one-ong:

BCI—homomorphism is a monomorphism in BCI. Hence the theo-
rem, : L

X1 *x; €K and x; *x; & K. Thus [x, I=[x, I Sincenatisonto .
K

Let X be a BCI—Algebra and X, ={x:x&Xand 0 * x=0} ber
its BCK-part. Then it is well-known that X, is a closed ideal in X.
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Further L. Triande and X. Changzhang [I5] have proved the quotient

algebra X/X, is medial. Thus X/X, ¢ |MBCI | Now we prove
the following :

Theorem 4.2. The category MBCI is reflexive subcategory of BCL
Proof. Iet X € | BCI|, then X/X,. €] MBCI|. Wedefine nat:
X

X—>X/X+ by nat (x)=([x]. Obviously nat is a BCI—homomor-
X X, X

phism. Thus nat € BCI (X, X/X,). Further let Y € | MBCI|,
X

£€ BCI(X,Y). Letx € X,, then 0 * x=0 gives £ (0 * x)=f (0)=0.
Thus £(0) * £ (x)=0, which gives 0 * f(x)=0. Hence f(x) € Y; we
now define g: X/X*t—>Y by; g(x])=f(x). First of all we show

+
that g is well-defined. Let [x ] =[x ] . Thusx; *x, € X; and
i 2
X, X+
x2 * x1 € X4, which gives f(x; * x;) © Y, and f(x; * x1) € Y.

Since Y is medial so Y,={0}. Hence f(x;)=f(x,), which gives
g(Ix 1 )=g (x,] ). Obviously g is a BCI—homomorphism.
1 2
X, X,

Thus g € MBCI (X/X,, Y) and makes the diagram

X

- v
commutative. The uniqueness of g follows from the fact that nat
. - X
is onto homomorphism and hence an epimorphism. This completes
the proof.

We now investigate a functor M from the category BCI into
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MBCI, Let f BCI (X,Y), then we define f: X/X;=»Y/Y, by:
f([x]):[f(x)‘]{: Easy calculations give that fis well-defined and is
X+ +

a BCI—homomorphism. Thus f ¢ MBCI (X/X:, Y/Y:). We fur-
ther note that it makes the diagram

X il > Y

ot = neby

X €
o ;|
35 R

&

commutative. The uniqueness of 7 follows from the fact that nat is
X

onto and hence an epimorphism. In the sequel we shall denote f by
M (1) ;

We now define a function M which maps | BCI } - [ MBCI [;
X—->M(X)=X/X,, and for each pair of objects X and Y of
BCI maps BCI (X, Y)->MBCI (M(X)=X/X:, M()=Y/Y") : f—
M(f )=T, where M(f) is the unique BCI—homomorphism making the
diagram in Fig. VII commutative.

We note that M(idx) and idM(X) make the diagram
X P X X i Y — 4;
: e 4,
mal nat t
”‘tx "‘-‘Y Y * A ¢ Y 'V“‘ .
™M (el X) - M(f) M4.)
""" TRy MO F2
_ ¥ M) L2 .-
s M(*Lo #‘)
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(2) commntative. The uniqueness of M(m' )glves M (zd '_ﬁ(X) .
Further M( f5)0 M( f;) and M(f, 0 fl) make the outer part of diagram
(3) commutative. The uniquencss of M (f, 0 f,) gives M(f; O fi)=
M(f,)0 M(f;). Thus we have the following theorem :

Theorem: 4.3, The assignment M is a functor from BCI into
MBCI. '
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