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ON THE SCATTERING DATA FOR A BOUNDARY
VALUE PROBLEM ON THE HALF LINE

A.A. DARWISH

Mathematics Department, Faculty of Science,
Tanta Univer sity, Tanta, Egypt

Abstract

In this paper we are concerned with a boundary value problem
generatéd on the half line by a generalized Stiirm Liouville differential
equation and the condition at zero. This problem is studied for the
important special case when the potential is real function. The
solutions of the differential equation of the conmsidered boundary
value problem are given. The scattering function for the considered
equation is obtained and their properties are studied. The spectrum
of the boundary value problem is investigated and its resolvent is
constructed. The spectral expansion of a certain function in
L2 (0, o0) is obtained and whence Parseval’s equality is formulated.

Furthermore, the scattering data for the boundary value problem is

induced.

Introduction

In classical quantum mechanics, the stationary state of a system
consisting of two particles of masses m and m, and energy E is

described by the ¢-function, which satisfies the Schrodinger equation

_;,2
—iM—AqJ‘i‘V(X)‘P:E‘P

m m,

. . _ 172 . . )
where % is Planch’s constant, M = m, ¥ m, » V (X)is the interac



—>
tion potential, and x = | x | is distance between the two particles.
—_—
Since the potential V(x) dspends only on the distance|x |, the

variables in the previous equation seprate upon setting

- -1 m
) =x"" u BV (0.9)

where v;n (9, ¢) are spherical harmonics. The function Y (E, x)
satisfies the equation

2

2
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and the boundary condition v, (E, X) = o. Introducing the notations

2ME
h2 - .ul (A,X)=ul (E,X)

q(x) = f;‘ V(0,0 =

for the sake of brevity, we are led to the boundary value problem

2

—uy @y + 1A+ )R T w =2y ), 0<x<w), (O0.1)

u (x,0)=o. 0.2)

The sclutions of this boundary value problem which are bounded at
infinity will be referred to as radial wave functions,

It is well known that the problem of recovering the potential
from the experimental data is known as the inverse problem of
guantum scattering theory [5]. Therefore, it is interest to define the
collection of quantities {S (k) ; kn ;m (o = f/)} by the so called
the scattering data of the problem, where S (k) is the scattering

function,kﬂ are the eigenvalues and w, ~ are tie norm of the

eigenfunctions of the considered piobiem. This data specify the
behaviour of the radial wave functions at infinity.
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Throughout this paper, we will consider a particular form of the
boundary value problem (0.1)—(0.2). Let us consider the boundary
value problem generated on the half lineo <x<Cco by the generalized
Sturm-Liouville differential equation

-y +qE)y=20(Xy ~ )]
and the boundary condition

y(0) =o, (2
where the function g (x) is real and satisfies the condition

[°°x|q<x>|dx<oo. 3)

o

which is assumed to hold threughout the paper. In addition the
function p (x)is a discontinuous function at x = 1 :

2

a“, og<x<g1
p(X)={
1, l1<3x < ,a % 1,

It should be mentioned that the inverse problem of scattering theory
for the boundary value problem (1)—(2) was completely investigated
in many works when p (x) = 1 (see [1, 2, 5)).

Tn§ 1, we obtain certain solutions of the equation (1) and
investigate the scaitering function for that equation. We study the
spactrum of the boundary value problem (1)-(2) in § 2 and we
cernstruet the resolvent. In § 3 we obtain the spectral expansion for a
certain function in L2 (0, o) by eigenfunctions of the boundary value

problem (1)~(2) and whince we formulate Parseval’s equaslities.
Finally, we define the scattering data of the problem (1)—(2).

§ 1. Certain solutions of the equation (1) and its scattering fanction

Now, we deal with solations of the equation (1) which satisfy
specific initial conditions at x = o or which have a specific asymp-
totic behaviour at x — o0. It is convenient to use the same sclutions
of the equatien (1) on the interval (1, eo) as [6].
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From condition (3) it is clear that (1) reduces to the simpler
equation ~y” = Jpy as X —» oo (see [5. p. 295]). This permits us a
complete investigation of the properties of the solution to equation
(1). We shall use the following notation :

[e o] Q
s={ la®ld, o= tiawlda, @
X X

S .
A ==k = « 4 itsuch that o € argk < T.

Let ¢ (x, k) and 6 (x, k) denote the solutions to the equation (1)
on the interval [o, 1] which satisfy the initial conditions

¢ (o, k)= 0, ¢’ (0,k) =1
)
6(0,1{)-'—‘1, gl(olk)::o"l
We note that, in the case when g (x) = o, ¢ (%, k) = s‘i:ai and

o (X, k) = cos kax. Since the initial conditions (5) do not depend
on k, it follows that, for every x ¢ [o, 1}, ¢ (X, k) and 6 (x, k) are
entire functions,

Lemma 1. 'The solution ¢ (x, k) of the equation (1) on the interval
[0, 1] may be expressed on the form

. X .
b0 = SRR 0T K G ociaxgl (6)

[o]

where the kernel A (%, t) has summable dervatives Alx , A't and

satisfies the conditions

dA (x, x) 1 .
ax = 5= g (x), A, 0)=o.

For the proof of this Jemma see [4,p. 18].

Lemma 2, The solution 0 (x, k) can be written on the form

b ¢
9(x,k)=coskax+j B(x,t)coskatdt,o <t <x <1 (7)

o
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where the kernel B (x, t) has summable dervatives B;{ s B; and satis-

fies the conditions

dB(x,x) 1 [ A (x,t) } .
dx = 71 x), {'——5 Jt =0

See [6.p. 261 —263].
The following lemma can be proved by making use of [6, p, 295].

Lemma 3. 1f the condition (3) is satisfied, then as x > 1 and
© > o the equation (1) has the solution F (x, k) which may be

expressed in the form

0
F (x, k) = exp (ixk) + g K (x, t) exp (itk) dt, (8)
X

where the kernel K (x, t) has continuous dervaties with respect to x
and t and satisfies the inequalities

[K&x, )] < ; exp {al x)}. o ( xert ) .

’ ’ N 1 X+t
le (x,t)l.th(x,t)ls—z—[q(_z_)l

+ 5o o o (E ),

where ¢ (x) and ] (%) are defined by (4). The solution F (x, k) is an

analytic function of k in the upper half plare © > o and is continuous
on the real line, This solution has the following asymptotic
behaviour

F (x, k)=exp (ikx) (140 (1)), F’ (x, k),=exp (ikx) (ik+o0 (1))  (9)

as x—oo forallt > o,k # o and
F(x, K)=exp (ikx) (140 (1)), F (x, k) =ik exp (ikx) (1+0 (1)) (10)

as | k| —» oo forall xand = > o.



Further, for real k # o, the functions (F (x, k) and F (x,~k)
form a fundamental system of solutions of equation (1) on the interval
(1, co) and their Wronskian equal to —2ik :

W {F (x, k), F (x,—k)}=F (%, k) F' (x,—k)—F’ (%, k) F (x—k)=-2ik

an
Theorem 1. The identity
—2ik k
Z2AE) gy, —k)-§ (k) F (%, k) (12)

F (o, k)
holds for all k # o, where (S (k) is called the scattering function for
equation (1) such that

F (0,—k)

i
F (o, k) .

S (k)= =S(-k) =[S(=k]"

Prcof. Since the two functions, F (x, k) (from (I1)), forma
fundamental system of solutions to equation (1) for all k>0, we can

write
¢ (x, k) = at (k) F (x, k) + a~ (k) F (x,~k),

where a+(k) and a~(k) are determined by the comdition (5). Thus
letting x approach o to get

a*{(k) F (o, k) + a~(k) F (0,~-k) = o,
at(k) F’ (o, k) + a~(k) F' (0,—k) = 1.
Then, we find

at(k) = 55(— F (0,—k) and a-(k) = - %k‘ F (o, k),

whence
é (x, k) = (2ik)~1 [F (%, k) F (0,—k) — F (x,~k) (F (o, k)].

Since (q (x) is real, it follows that F (o,—k) = F (o, k) and
hence that F (o, k) 5 o for all real k # o, Therefore

—2ik ¢ (x, k)
F (o, k)

= F (x,—k)—8 (k) F (x, k)



with

s = So=h) - F (o, k) )~ [[Eom -

F(o,k) =~ | F(o,—k) 'F (0,—k)
az claimed.

Next let us examine the scattering function S (k) of the equation (1).

Theorem 7. For larges real k # o the following asymptotic holds

i1 %
S ()-8, () =0 (],
where
S, (k) = {cos ka + —;— sin ka} {cos ka— ~;— sin ka} -1 exp (- 2ikj.
(13)

Proof. Since the functions ¢ (x, k) and 0 (x, k) are construct a
fundamental system of solutions of equation (1) on the interval o, 1],
thus we have

F(x,k) = ¢ (k)¢ (x, k) + d| (k) 0 (x, k). (14)

where
c (x) = F' (o, k) and d; (¥) = F (o, k).
Now, we find an expzession for the function (F (o, k).
From (14) we have

F(l,k)y = F (o, k)¢ (1, k) + F (o, k) 6 (1, k)
and
F' (1, k) = F' (0, k) ¢’ (1, k) + F (o, k) & (1, k).

Thus, we find
F (0’ k) =F (19 k) ¢' (l’ k)_F‘ (]’ k) ¢ (ll k)
Taking into account (6) and (8) to obtain

©
F (0, k) = {exp (ik) + I K (1, t) exp (ikt) dt} {cos ka

1 sin ka
+ A (l¢ l) "“ka




i )
1 sin kat . . \ .
+ S A (1,1 SR d-fikexp (i)~ K (1, 1) exp (ik)

o

o0 . 1
o+ S K. (1, t) exp (ikt) dt}{ S";aka +§ Al t)
1

sin ka
2t }

= {coska — %« sin ka} exp (ik) + 0 (ll{—) .
Therefore

S (k) == F (0,—K) [F (o, k)] !

= {cos ka 4 —;— sin ka} {cos ka = -:1- sin ka}w1

exp (~2ik) + 0 (—:;)

=S, +0 (]

where S_ (k) is the required results (13). Hence the theorem is

proved.
§ 2. The spectrum of the boundary value problem (1)—(2)

In this section we investigate the spectrum and obtain the resolvent
of the boundary value problem (1) —(2).

Theorem 3. The boundary value problem (1)—(2) does not have
eigenvalues on the pogsitive semi axis.

The proof of this theorem follows immediately from the work of
Naimark {5. p. 301].

Theorem 4. The necessary and sufficient conditions that A # o

be an eigenvalue of the boundary value problem (1)—(2) are A=k? s
T > o, F (o0, k} = 0. They are countable in number and its limit
points can lie only on the real axis.

Proof. Leth = k2 be an eigenvalue of the boundary value



§
problem (1)--(2). Thus there is a non trivial solution y (x. k) ¢ L2

(0, o0) of the equation (1). Consequently y (x, k) must be satisfies
(1)—(2). Since the general solution of (1) can be written on the form

y(x,k)=c F(x k) +¢c, F| (x k),
where Fl (%, k) is the solution of the integral equation

X

F) (x, k) = exp (~ikx) + T:E g exp {ik (x—1)} {q (t)
b
2 1 ®© .
+ K (A-p O} Fy (410 dt + 5§ exp fik (t—x)} {a ()
X

+ k2 (1—p () Fy (4, K) dt

and ¢, , c, are constants, Sivce F (x, k) ¢ L, {0, 00) and F (x, k)
;LZ (o, o) as v > o, then it is necessary to satisfy the condition
¢y = O. Thusy (x, k) = ¢, Fx, k). Meanwhile sinee y (x, k)

must be satisfies the boundary value problem (1)~ (2) thus it satisfies
the condition (2) and whence F (e, k) = o.

We now prove the sufficient conditicn of the theorem. For this
purpose let F(o,k) = o0 and r > o. Accordingly the function
F (x, k) satisfies the boundary value problem (1)-(2). Sinee
F(x,k)eLl, (0, ) ast > o then it appears an eigenfunction of

()= (2) and » = K2 being an eigenvalue of one.

Now, since F {0, k) = o for all real k 3% o, then the point k=0
is the only possible real zero of the function F (o, k). Formula (10)
implies that F (o, k) — 1 as | k | — o, which shows that the Zeros
of F (0, k) form an at most countable set having o as the only
possible limit point and this completes the proof of the theorem.

Theorem 5. The eigenvalues of the boundary value problem
(1)~—(2) are lie on the imaginary axis. They are all simple.
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Proof. Letk =k, (r, > o ork, = 0) be one of the zeros of
F {0, k). Then by virtue of (5) and (10),

W {s (x, k), F(x, k,)} = F (0. k,} = o, {15)
whence
F (z, k,) = ¢ ¢ (x, k,).

Therefore, the limit lim F' (x, k,) = {0, k,) = ¢, and

X—>0
F(x. k) ==F (o0, k)¢ (x, k) - (16)

This formula yields -
lim W {Fx,k, ), F—(—i;—k—é )}=o0 (17)

X—30
for two arbitrary zeros k, and k, of the function F (o, k). Simce
g (x) is real, the function F(x—',—fz”) satisfies the same differ-
ential equation as F (x, kl ) if we replace kl2 by Eg . Therefore

e (P _ a2 2y ¢
WAF (k) FOOKG Y| = —kK) § Fak e

x —
F(x k, ) dx

which upon using (17) and taking into aceount that the functions
F (x, k) and F’ (x, k) are approach o as x — o, implies that

2 2% =
(kl —k2 ) F(x,k; )e(®)F(xk, ) dx=o0
o
whenever kl and k2 are zeros of the function F (o, k). In particular,
the choice k = k2 implies that k% - E% = Ooof kl = it where

© > 0. Therefore the zeros of the function F (o, k) can lie only on
the imaginary axis, Now differentiating the equation

—F* (x, k) + q(®) F (5, k) = k* ¢ (%) F (x, k)
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with respect to k, one obtains the following equation for F (o, k) :
—F* (x, K)+q (x) F (x, K)=k? o (%) F (x, k) +2kp (%) F (x, k)

Therefore,

o0 o 2
W{F’(x,k),F(x,k)}‘ =2kg |F(x, k)| e (x)dx.
X
X

Letk =k, =irt,, T, > 0 be a zero of the fuaction F (o, k). Then
the function F (x, ik ) is realvalued)., On the other hand, by virtae
of the formulae (16) and (9) and (10), we get

lim W{F(x,i7). F(x,i%)} = F(o,it)F (o0,ix,)

X—>0

and
lim WF({x i), Fxir)}=o.
X—>0o0
Consequently,
o0 2
F(o,it) F (0,ir,) = 2ifoj |F(xit) 12 p(x)dx  (18)
[\

(e o]
Since I | F(x,i7,) I 2 e (x) dx > o, wesee that F (o, i7,) # o, i.e.,

(]

the zeros of the function F (o, k) are all simple. Hence the theorem
is proved.

Theorem 6. If Lis mot an eigenvalue of the boundary value

problem (1)- (2), and F (o, 7\% ) # o, then the Green’s function
(G (x, t,2) for—y' 4 q (X) y—hp (X) y=p f on the interval o <x<0 is

R (xr tl k2 ), where
1 (Fx k)¢(t, k), t<x

— (19)
F.k |Ft,K)é(xk) t>x

R (% t, k2 )=



i2
that is, if ¢ L2 (o, o), then
@© 2
y = S R (x, t, k° ) o (t) £ (1) dt
(o]
Proof. By variaticn of parameters we can find Green’s function

and thus the resolvent of the boundary value problem (1)—(2) on the

form
1 FEx kY é(t, k) t<z

k)= o
R(x,t, k") F (o, k) <LF (t.k)o(x, k), t2>x

and whence (19) is proved.

Theorem 7. Every point of the positive semi axis A > o is in the
continuous spectrum of the boundary valve problm (1) —(2).

Taking into account the formula (19) and by virtue of the work
[3. p. 355] we can prove this theorem.,

§ 3. The spectral expansion by eigenfunctions, Parseval’s eqnality
and the scattering data of (1)—(2)

The section is devoted to obtain the spectral expansion of a
certain function in terms of eigenfunctions and whence Parseval’s
equality for the boundary value problem (1)—(2). In addition, the
scattering data of the problem is induced.

Here, we find the expansion by eigenfunctions of the problem
(1)~ (2) by Titchmarsh’s method.

Theorem 8, If the function f (x) € L2 (o, ), f (x) is finite ijn a

neighbourhood of the points x=0¢, x=00, and has a continuous
second derivative in L2 (o, ), then

[o o]
] R (x, t,k) p {t) f (t) dt =— o 1
J K* K2
o0
| rRxtvob@a, 20

o
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h(t)y=—f () +a()f.

where

Furthermore, if T > 0, | k| —> oo, then

»® f(x) 2
" RE& t ke (D) f()ydt=— k2 4+ 0 (———kz ) 2n
0o

Proof- By virtue of the formula (19), we have

o
I R (x, t, k) o (t)  (t) dt

= «F‘(E:?)“l é (t, k) (t) f(t)dt

b (x, k)
F (o, k)

[0 0]
g E(t, k)p(t)f (1)dt

X

_ F(x,k) ¢F 1, . {
_T:(T,E)_S {“k-z‘¢’(t,k)+k2 q(t)¢(t,k)}
o f (t) dt
$(x,k) ¢® 1, y
* Fewn) (T DY T a0FEh)
X f (t) dt

By integrating this equality by parts twice we can get the equality
(20). From formula (19) it is easily seen that

e 0]
S R (x, t, k) h (1) dt = o (1)

o

and wheace (21), is follows atonce.

The following lemma is well known.

Lemma 4. - R, = Ry .

With the help of Theorem 8 and Lemma 4 we prove the following
theorem,
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Theorem 9. If the function f(x) satisfies the conditions of
Theorem 8, then the expansion in eigenfunctions of (1)—(2) can be

written on the form

o0

1 e8] -
f@=—- | [ vmbuEBe® o o
o o

2 o0
mns F(x,it) )F(tit, )p () f () dt.  (22)

o

I
4+ X

n=1

Proof. Suppose that f (x) satisfies the conditions of Theorem 8.
Then (21) holds. We integrate both sides of (21) with respect to
A over the circle I‘r of radius r and center at zero. As a result we

have

1

g0 () a= g (o oTRE LY 0 10 d
r

' ' (3)

Itis evident that the function R (x, t, ) is analytic fudction in the
supper half plare © > o. Therefore

1 @ 1, 2, (3
T B { Retnemfma=1+12+ 1,00
r

From (19) and by virtue of the formula (13) we get

where
r—is ©
1 1
e S i j R (%, t,0) p () £ () dt (25)
—r—i3 o
) —r+i8 .
1
1=l S de R (x,t, ) p (1) f (1) dt (26)
r+id o
r+id .
3 1 \
L=551 § & Rauunewfoa

r—id o
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~r—i8 ©
+§ @ | Reutvem o dt} 27)
—r}18 o

where 3 is any positive number, From Lemma 4 and formula (21)

it follows that Ii — o agr — oo, Therefore, by going over in (23)

to the limit as r — oo and using (25) and (25) we find f(x) = ——

P
<MY

[e:0] [o0]
{ d§ R 62408 ~R(x, 6, 2-i8) ) o (0 £ (9 dt (28)

— o0 [

From (19} it follows that the limit

[0 0]

lim S R(x,t,» 418} pit) f(t) dt
d—>o0
o
(e 0]
- ] R (%, 4, A == 0} p (1) £ (1) dt
o

exists for values of A in (—o0, b)and (b, o0) and for A ¢ (=b, b)

e 8]
the integral S R(x, t, ) p (t) f (t) dt is an analytic function except
) 5 L
at the zefos » = — T, o B = 1.7 of the functios F (e, 2). Hence

from (28) we have

1 0 ® .
FO) = 5 j‘ dxj’ (R (%, t, A-+i0) = R(x, t, A~i0)} o(t) f(t) dt
= 00 [e)
i [oe}
2 2
+ Res<§ R@mtne@fOdl, 2 )

Here, let us compute the first quantity in the right hard side of
equation (29),
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1 . |
o I (R ttio~R(x, t, n—io) o (0 £ (0 dt
(o] o]
1 (e 6] X —
= TiI k dk g {F(x,k)F1 (0, k)~F(x k) F1(o, K}
o (6] D (t, k) p (t) f(t) dt
1 e o] oo
e S {F(t,k) F1(o, k)= F (1, k) Fi(o K}
0 X ¢ (%, k) o (t) F (t) dt

1 ¢ —_—
= —f k dk | {¢ (x, k) [F (t, k) F1 (o, k) — E(t, k) FI(o, k)J}
o]

i
o p () f () dt
It follows from the identity (12) that
~2ik ¢ (x, k) = F (x,- k) F (0, k)~ F (x, k) F (0,— k).

Therefore, the first quantity in (29) as © = o equals to

[ee) a0
—§ e [ 00 F10 0 FIE 1 G D0 d.

(o] o

Let’s take u (x, k) == —2ik ¢ (%, k) F~1 (o, k)
= F (x, k)—F (x, k) S (k)

Thus we kave

[so] 0

o o
1 ¢, o® -
= 5] ol venIEvemrma o
Y [o]

Now, by using the formula of estimating residues in the case of
simple zeros (see Theorem 5) the second quantity in the right hand

side of (29) can be determined as follows :
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l ©

Res ( I R0 OF®A) ]|y 2 =
n=1 5 n

I} 0
= % Res(k\ R(x,t,k)p(t)f()dt] _.
I Re S (x HORNG) 'k_‘”n

o

! X

-z Rcs{ZkI R (x, t, k) +I

S
R(x,t Kle®

o 0 POy o g
_ 3 Res [2k { - K) Sx é(t, k) o () f () dt
—D=1 F(O'k) o ’ ¢

¢ (x, k) {7
o) FOReOfON], .
[+]

+

Now, let m; 1 be the norm of the function F (x, it ) in L, (o, ®).

According to formula (18), we have

2 ir

_ 0 F' (o,ir_ ) F (o, it_)
m?=( Femig)l2emdxa T
[}

therefore by virtue of the formula (16), we obtain

S Res(k|
= es(2k£ R(5 6K e(F @A) _
-3 mﬁng(x,if YE(t i ) e (@ dt (31

Hence, from (30) and (31) we obtain the following expansion by
eigenfunctions of the boundary value problem (1) —(2)

[s o]

S u (x, k) u (t, k) dk dt

o0}
f@ = o[ ef®
Q 0
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l 9 ¢® ] )

+nil m* J' F(x, iy ) F(t,ic, ) o (t) £ (1) dt.
o

This is the required result (22) and hence the theorem is completely

proved.

Theorem 10. The following Parseval’s equality holds

l o)
- —— ( ] -
‘i[u(x, ir Ui, ) + TS u (%, k)u(t,k)dkﬂl
o =3 (x~t} " p(X)
where

B u(x, k) = F (x,-k)—F (x, k) S(k)
and

u(x,irn)=F(x,i7 ym

We claim that the collection of quantities {S (k), i, o omg

(n=1, 2, ..., 1)} is the scattering data of the boundary value problem
(1)—(2) with a real-valued poteuntial g (x) which subject to the
constraint (3) and with a real discontinuous function p (x}. The
inverse scattering problem for this problem is to recover q (%) and
p (X) given by the scattering data and we shall study this problem in

a forthcoming paper.
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Abstract

Variational inequality theory has proved to be immensely useful
in the study of many branches of mathematical and engineering
sciences. In this paper, we develop pade appreximant methods of
order 6 and 8 to solve the variational inequalities associated with
unilateral problems. In the case of a known obstacle, these problems
can be alternately formulatad as nonlinear boundary value problems
without constraints for which the technique of pade approximants
can be successfully employed.

AMS (MOS). Subject classification i 65 N 30, 49 D 20, 73 C 35.

Keywords : Variational inequality, pade approximants, Unilateral
problems, penalty function.

1. Introdaction and Formulation

Variational inequality theory provides a rich spectrum of new
ideas in mathematical and engineering sciences with interesting results
in elasticity, operations research, general equilibrium theory, etc.
This theory was developed simultaneously not only to study the
fundamental facts on the qualitative behaviour of solutions to a
wide class of linear and nonlinear problems, but also to solve them
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numerically more efficiently. In this paper. we use the penalty
function technique of Lewy and Stampacchia [1] to characterize the
variational inequalities by a sequence of equalities. This system of
equations is then solved by using the pade approximant method,
Our results indicate that our methods of order 6 and 8 are much
better than the previous methods of Jain [2] and Usmani [3].

For the purpose of aome numerical experience, we consider the
simple example of an elastic string lying over an elastic obstacle. The
formulation and the approximation of the elastic string is very
simple, however, it should be emphasized that the kind of numerical
problems which occur for more complicaied system will be the
same. Our approach to these problems is to considerin a general
manner seemingly independent of the nonlinear problems in terms
of variational inequalities and are later specialized.

We are concerned with the numerical solution of the unilateral
problem of the type :

Lu(x)] = f (x), xe & )
u(x) > U(x), Xe §, ¢ a.n
[
u(x) =0, Xed ) J

where ), is a polygonal domain with boundary 3 § and closure

Q=8 uas, Lis a linear, self-adjoint coercive diffcrential operator,
fis a given function and ¢ is a given obstacle function. A large
number of problems arising in elasticity, fluid flow through porous
media and general equilibrium theory of economics and transportation
can be written in the form (1.1).

The problem (1.1) is studied via the variational inequality
formulation in the Sobolev space W; (L) = H, which is a Hilbert

space, see Oden and Kikuchi (4], for notations and definition. To
do this, we define

M={v:iveH, v>{¢ on3q},

which is a closed convex set in H. The problem (1.1) is thus
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equivalent to finding ueM such that

a(n, v-u) ><f, v-u> for all veM, (1.2)

where the bilinear form a (u, v) is associated with the operator L and
is, in fact <Lu, v > after the integration by parts has been performed.
Also the bilinear form a (u, v) associated with L is coercive con-
tinuous, so there exists a uwnique solution ueM satisfying (1.2), see
Noor [5] and Oden and Kikuchi [4].

In order to apply the pade approximants, we must bave equations
instead of inequalities. Thus using the idea of Lewy and Stampacchia
{1], the inaquality (1.2) can be characterized by a sequence of
equations as follows :

a(u,v) 4+ (v(u-9¢) (u=¢), v) = <f,v>, (1.3)
for all veH, where v (1) is a discontinuous function defined by

[ 1, fort > 0

Lo, for t< 0,
which is known as the penalty function and ¢ < 0 om 3§ isan
elastic obstacle.

2. Numerical Methods

In order to solve system (1.3) by the methods based on pade
approximants, we first consider the linear two-point boundary value
problem

y’ (X)=%2Y(X)+g;y(a)=A.y(b)=B. (2.1)

where 12 > 0 and g are constants. This equation will be the basis
for obtaining the numerical solution of (1,3). The system (2.1)
belongs to a general class of boundary value problems of the type

Y@ =fxyx)+g(x), y@=Ay(b)=B (2.2)

where f(x) and g (x) are continuous functions with f(x) > 0 on
[a, bland a, b, A, B are arbitrary real finite constants. Since the
analytical solution of (2.2) cannot be obtained in general for arbitrary
choices of  (x) and g (x), hence the numerical techniques are always
used to solve such systems, Various authors including Fox {6], Aziz
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and Hubbard [7], Usmani [3], Jain [2], and Varga [8] have used finite
differsnce methods to solve this system. Recently Tirmizi [9] and
Tirmizi and Twizell [10] used multiderivative methods based on pade
approximants. Noor and Tirmizi [i]1] developed two methods of
order 2 and 4 for unilateral problems. In this paper we report two
higher order methods of order six and eight.

For our purpose, it is enough to consider the system (2.1). It is
known that the analytical solution of (2.1) can be written as :

y(x) = A, X 4 A, e M 4 p (2.3)

where p = —-g,/A2 is a particular integral, A, and A2 are constants

to be determined by the given boundary conditions in (2.1).

Suppose x is incremented using a constant stepsize h=(b—a)/(N+1),
where N is a positive integer, The solution of (2.1) will be
computed at the N points x; = ih,i =21 (1) N. We also define X

such that x ) = a + nb, n =I(1) N + 1. Itiseasy to show, (sce

Tirmizi [9]), that the solution of y (x) of (2.1) satisfies the following
recurrence relation :

yE-h)-RyX -+ y(x+h)=38 (2.4)
where

= exp (2h) + exp (-2h) and S=p (2—h). Using this relation,
the methods based on Pade approximant will determine the solution
y=u (x, }, n==1 (1) N, the accuracy depending on the approximation

to exp (4-»h) used in (2.4). We apply (m, k} Pade approximants to
exp (0) of the form

exp () = Ry, 1 O = P (0 (@ )7 +0a™TEFHY (5
where

k : :
. (m+k-Htk! j
P ®= j—_z—o @ iie—pT 2.6
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and

T (mik=j)!m!

3. —Plml ;
Qu®= 5 (ayiyytmopi O @7

see Varga [8].

Using (2.5), (2.6} and (2.7}, we develope two highly accurate
algorithms based on the (1, ¢) and the (1, 8) Pade approximants from
the novel relation (2.4). We obtain the local truncation error of these
methods by using #e Taylor series expansion to Ya +1 about y

Method 1 : (1, 6) Pade épproximant

\J , 6 5 2 2 3 1 4 1 5
€ -—-(1 i Te + —14 6 + -Z-T 6" + 5_“6 6 + ‘_420‘ 6
1 6

=Q+ T (2.8)

whero

1 2 iy 41,242 37 44
C“‘“EXh 2"49Xh 533 * B

19 6.6
* et B

37 2 2 19 4 .4
Q=gb? (L + o’ b+ et 8% ) and
o 1.8 @) 10
T = Local error = &1, 130 B v (x) + 0(h™)

Method 2 : (1, 8) Pade Approximant

6 _ . .8 7 2,13 5 4, 1 5
¢ =+ 50+ 0+ 56 + g0 + 5l

16 1 7 1 8 1
* 5766 % t 73680 ¢ T Femso © V/U—5 O

~Cypp + Dy, —Cy 1 =Q+T (2.9)
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g 1 2.2
where C=1 8T 2 he,
79 2 4.4 17 6.6
240 _ 17
D +8|Ah'"3z4xh 5730 » B
5 8.8
+ 3759z * B

2 2 2 17 4 .4 5 6.6
Q=2gh" (14 324 h + g5~} b +3s5 » B )

1

1 10 (10 12
16,326,600 B ¥ ~ (®+0(R'

== Local error =

Examination of their local error expressions shows that Methods
1 and 2 are of order Six and Eight respectively which will be confirmed
in the next section, and that these are consistent in the sense of
Henrici [12]. In the following section, we consider the convergence

criteria of our methods.

3. Cenvergence

We now consider the convergence of Method 1 based on (1, 6)
Pade approximant. To do so, we define the discretization error
=¥y = Z,» where z, is the numerical approximation to Yn and

is obtained by neglecting the truncation error in (2.8). Let Y=(yn )

Z = (zn ), C = (cn ), T = (tn ). E=(°n ), be n dimensional vectors.

We also define [|E|| = max | e |, where | .| represents the
n

o —norm of a matrix vector. Using these notations, we can rewrite
equation (2.8) in matrix form as follows :

() MY =C+T
(i) MZ = C (2.10)
(iii) ME = T

where M is a tridiagonal matrix and

M<=A+b°BD, +h*D, + 16D, ;
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. _ _ - -1 .
A=(aij)’ Wlthaii—2, aij ==1]li=j]=1A =(a‘.".‘i),

: 41 Lo
B = (bj;) with by = —5- by = —5— 5 [i—jl =1}

. 2 . 37 .4 .

D1 = Diag (A" ), D2 = Diag (§8~ A ) and D3 = diag
19 6

(7620~ * )-

1t is well known that A is monotone and || A'"1 lls(b—a)/Sh2 .
Our main purpose here is to derive a bound on E.

For this, we need the following :

From (2.10) (iii), we obtain

E<sM~! T=(a4+Q) ! 1=+ )~ T=g+A~ 1 @A™l T

where
Q=h’BD, + W* D, + 1 D, .
1 2 3
Taking norm of both sides we can have,

JEN=1A"" 1. 0TI/ (=1 A7V .0 QI ) provided:

1a~l Qi<

It is clear for | Q| that B} =1, | D, || <1and| Dy |l <L
Now from (10) it seen that [ T || = 0 (h8 ). Also as given above
1A~ =0 %), therefore, | E | = 0 (b 3.

So it follows that our method 1 based on the (1,6) pade
approximant is a sixth order convergent method. On the similar
lines it is not difficult to prove that the method 2 based on the (1, 8)
pade approximant is an eighth order convergent method. The
numerical experiment in the next section will confirm their order of

convergence.
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4. An Example

As an example, we consider the boundary value problem
describing the equilibrium configuration of an elastic string pulled
" at the ends and lying over an elastic step of constant height | and

unit rigidity of the type :

-u" >0 on&=(0,ﬂ)]|
uway¢ on §} = (0, ®) I}. “.1n
u (0)=0=u (x) J
where ¢ is the given obstacle function defined by
r —1, for0 €< x < =f4
|
| k2 3x
q‘(x) = <| 1 for 3 <X g—r (4‘2)
| _ 3z
L 1 for v £xX<w

It can be shown easily [4] that the solution of (4,1) can be
characterized by the variational inequality

a(u,v-u) > 0, forall v e M, 4.3)
where Me={v:veH, v > ¢onf}

and
. T
a(u.v)= I :—: . %da , forallu, ve H,
0
In this case, a (v, v) = || v ”2 anda (u,v) < ujjv]|, that is

a (u,v) is a coercive continuous bilinear form and f = 0, so that
there does exist a unique solution of (4.3).

Now using the penalty function technique of Lewy and
Stampacchia [1], the problem (4.3) can be written as

vV-v@u-f)(u—¢) =0, O0<x<~x 1
- u(0)=0=u (z). J

(4.4)
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where ¢ and v are as defined by (4.2) and (1.4) respectively. Since

‘the obstacle function ¢ is known, so it is possible to find the exact
solution of the problem (4.1) coinciding with the interval

—:,E— €£x< 3: . Consequently from (1.4), (4.2) and (4.4), we obtain
the following equations
(i)u,so f0r0<]x<%,_'.;7f_<x<n']'
e 4.5)
os M 3 3n |
(ii) 9"—u=-1 forT<x<~4—, J

with the boundary conditions at x=0, x== and the conditions of

continuity of u and v’ atx = % s X = % with analytical solution
4
. . —, forng<~::~
| 71:+4 Coth ;4-
|
ll 4 Cosh {—; - x) 3
u(x) =<1 ‘n:\ T~ for-%st;:
| n Sinh vy -+ 4 Cosh e
|
IL4 (z-x)/[x + 4 Coth 7}—]. for%<x'< .

The numerical solution between the intervals 0 < x < } n and

2 x < X < m are obtained by taking 7\2 . 2 s 20 and g zero in

methods 1 and 2 which are then reducsd to a standard central finite
difference scheme. The numerical calculations are exact, for example

—15

IEjat mid points takes volues 0.11x 101> and 0.23x 10~ 15 for

T w
15 andh = —o-

in stepsize does not alter the exactness, These value are not jncor-
porated in the table,

the stepsize h = respectively. Further reduction

In table 1, we give the numerical results for problem (4.5 (ii) and

the error J| E || is calculated at x= % . The computed values of

the Sixth order method 1 are compared with the Sixth order Lobatto
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method (with approximation I) of Jain [2]. Our Method 1 performs
well and gives better results than those of Jain. The results of eighth
order metheod 2 are compared to the eighth order method of Usmani
[3]. The supezriority of the method is obvious. It is also confirmed
that if the stepsize is halved, then || E || is approximately reduced by

a factor 2~ P where p is the order of the method. The numerical
calculations are done on IBM 3083 computer at King Saud University,

Riyadh.
TABLE 1
Observed | E || .

.

] Methods of order 6 Methods of order 8

1

‘ Method 1 Jain Method 2 Usmani

i
/12 0.291-09 0.394—08 0.173—12 0.218—11
/24 0.457—11 0.619—10 0.470—14 0.686—14
/48 0.902—13 0.964—12 0.134—13 0.105—13

'—— denotes round off regain.

5. Conclusion

In this paper, we have shown that if the abstacle function is
known, then variational inequalities can be characterized by a
sequence of equations, which are then solved by using the higher order
numerical methods based on the pade approximant. The results
obtained in the paper are much better than the previous methods.
A detailed analysis of such methods both analytically and numerically
will constitate an immediate and interesting subject of future study.
Pade approximants are relatively new methods and an alternate ways
of tackling the unilateral problems coupled with the theory of
variational inequalities.
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ON CERTAIN FORMULAS FOR THE STIRLING
NUMBERS OF THE FIRST AND
THE SECOND KIND

PAVEL G. TODOROV

Abstract

The aim of this paper is to derive certain formulas for the
stirling numbers of the first and the second kind from corresponding
modifications of our formula for the generalised Bernoulli numbers.

The Stirling numbers of the first kind s(n, k) and the second
kind S (n, k) are generated by the Taylor expansions

o k
(x), = X S(n,k)x ,n=0,1,2, .., (B
o k=0 .
and the Newton expansions
n
"= 3 S(n,k)(x) .0=0,1,2 .., (2)
k=o

respectively, where (x)v for an arbitrary x denotes the product

(x)v =x(x—=1) ... (x—v+1), v=1, 2, ... ; (x)o =], (3)

The Schlémilch formula

n

S (m, m—n) = vfo(—n" (if:’)(m;’lf}‘smw, V) ()

for integerso <n <m - 1 (m > 1) gives the Stirling numbers of

the first kind in terms of those of the second kind. (For n > 1 the

3l
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summation in (4) is taken over 1 < v < n). The formula

=

S(n, k) = % 5 (—nkv (f ) vt : (5
* v=o0

for integers o <k>n(n > 0) gives the Stirling numbers of the
second kind. See, for example, the formulas (1)—(5) in [1], pp.
204, 207, 213 and 216 or in [2], pp. 22, 168—169 and 219 or in [3], pp.
310 and 319,

Remark 1. We can write the Schlémilch formula (4) in the form

n
T (-’22
V=0( ) m+v

m+n)

.+ () s@rvw ©

S (m,‘m—n) = (

for integers o <n<m-—I(m > ). For n > 1 the summation in
(6) is taken over 1 <v<n)
The aim of this paper is to derive three formulas for the Stirling

numbers of the first and the second kind from our formula (sce [4],
p. 665, Formula (3))

T 4 4+ v—1
-1nY ( n—v1)+(i vv ) S{(n+v,v), n=o, I, ...
° (*3) ™

(for n > 1 the summation in (7) is taken over 1 <v< n) for the

B(c)-—
o=

I Me

v

gneeralized Bernoulli numbers Bgr) , generated by the Taylor
expansion
T s 0} n
(__‘ )—_—' s Bl jti<2w, 1t =, (®8)
et — 1 n=o0 %
for every complex number = (see {1], p. 227, section (18).
Remark 2. We can write our formula (7) in the form
-1l n _
p(® - (1—1) 5 (_l)v (‘r + n)(r+v 1) S@+v,v)  (9)
n \ n y=0 n+v 4 :

n-—yv
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for n=20,1,2, .. if the complex number t=+=1, 2, ..., and for
n=o0,1,2..,v—1iftr=1,2, ... (Forn>1 the summation

in (9) is taken over 1 < v < n).

With the help of our formula (9) we can immedijately obtain the
Schlomilch (4) as follows : For all pairs of integers (n, m) such that
o < n < m—1 we have the formula

S (m, m—n)

~F11— - U0
2 )

(see in [1], p. 228 or in [2], p. 218, Formula (10)). From (10) and

(9) (for » = m) we immediately obtain the Schlomilch formula (4).

™ —

Remark 3. We can write our formula (7) in the form

(v) (" :l- n) = vV_°T 2n
B0 =W(—£T (- T+T(n-v) S(+v,v) (1)
n

for n = o, 1, 2, ... if the complex number t=~=o0, — I, — 2, ... and
for n =0,1,2, ...,|7} -1if v =-1, =2, ... (For n > 1 the

summation in (11) is taken over 1 < v < n).

In particular, for a positive integer t=m =1, 2, ..., our
formula (11) for n=o0,1,2,.. can be found in [2]), p. 217,
Formula (7).

Now, with the help of (I11) for t =m =1, 2, ... and (10), we
directly obtain our version (6) of the Schlomilch formula (4) for

the Stiring numbers of the first kind.

Further, we shall derive a formula for the Stirling numbers of
the second kind which is analogous to the formula (6).

Theorem. Letm (m > 1) and n (0 <in < m-—1) be integers.
Then

n
_[fm+n n—-v m—n 2n .
S (men, m) = (T )vio(—l) mt (o)) s@rww,
(12)
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(Forn >t ! the summation in (12) is taken over 1 < ‘< n)

Remark 4. The formula {12) can be found in [5], pp. IV—V and

P. 3, Formula (1.17), without any proof, with other notations and

in an implicit form.

Proof. We have the expansions

o0 n
, t
(et-1)m=m! 2 Sgn,m)—-n——'—,mxl,Z,..(, (1)
n=nm :

(see, for ezample, in [1], p.2058 orin [2], p. 202 or in [3], p. 313).

From (13) wa obtain the expansions

- =m! X S{o+m m) —————— m=1,2 ..., 14
( el ) h=o0 t ? (n+m) ! (14)
in the finite t-plane. From the comparison of (14) with (8) and (11)
for 1 =—m we obtain the identities (12) for 0 <n<m—1(for

sur formula (7) is reduced to

v =—mandn >m,o
b(—— m S (n+4m, m)
n <n+m‘z >
m

i.e, to the corresponding coefficients in (14)).
This complztes the proof of the Theorem,

The formulas (6) and (12) are very convenient for calculating

S (ma m)y s (m: m'"l)- S ({D’ m - 2)s see and S (ml m), S (m+l’ m),

S (m+2, m), ..., respectively.
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ON ISOMORPHISM THEOREMS IN BCI - ALGEBRAS
AKHLAQ A. SIDDIQUI*
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Mathematics Bahauddin Zakariya University. Multan

Abstract

In this paper, we state and prove four isomorphism theorems for
BCl-algebras.

1. Introduction

Isomorphism theorems are found in the literature for various
algebraic structures, Bat for BCl-algebras such theorems have not
been investigated yet, except for the first isomorphism theorem
about BCK-algebras, proved by K. Iseki ([81]). The purpose of this
paper is to develop isomorphism theorems for BCl-algebras, naturally
applicable to BCK-algebras which is a subclass of BCl-algebras.

2. Preliminaries

A BCl-algebra is an algebra (X, ., 0) of type (2, 0) satisfying
the following conditions :

1) (Xay) « (x42) < 2.,

(2) % (x4Y) < Y,

3) x<x

(9 x<vy,y<ximplyx=y,

(5) x < o, imples x =0,
where x < y is defined by x,y = 0.

37
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if (5) is replaced by o < x, then the algebra is called a BCK-
algebra.
In any BCl-aigebra X, the following hold :
(6) (%Y} x 2 = (342) 4 ¥,
(Ty x:0 =x, for x,y, 2, in X (see Iseki [6]).

A non-empty subset A of a BCI-algebra X is called a sub-aigebra
if the binary operation * is closed in A, Further a non-empty subset
A of a BCl-algebra X is called an ideal if (i) ocA (ii) y,x<c A, xeA
imply yeA., An ideal in a BCI-algebra is mot necessarily closed.
To avoid this difficulty the concept of a closed ideal is defined as
vnder :

Deflnition 1 [5]. A non-empty subset A of a BCI-algebra X is
called a closed ideal in X if '

(i) o, xc A, forall xe A,
(ii)y.xc A, xcA imply yc A.

In the sequel we shall simply call a closed ideal as ideal.

Remark 1. It is easy to verify that ocA. Further, if xcA and
y< X, then y.x = ocA gives that yeA. Moreover, we note that every
ideal is a sub-algebra, the converse is not always true ([2]).

K. Iseki and S. Tanaka ([7], [1]), defined quotient algebras and
proved first isomorphism theorem for BCK-algebra. Ia the sequel,
we define BCI-quoticat algebras and prove four isomorphism
theorems in the setting of BCI-algebras.

Let A be an ideal in a BCl-algebra X. Following K. Iseki and

8. Tanoka [7], we define ~ in X as: x ~ y if and only if x*yeA,
ysXxeA. Then it is easily verified that ~ is an equivaience relation

and satisfies X ~ yl . XZ ~ ¥ imply xl * Xy ~ y‘ *y2 . Let
. , A . A A A

X/A ={C,:xeX} We define,in X/A as C, *Cy =Cx*y .
where CQ = {yeX:x~y} Obviously C::‘ = A. Routine calcula-

tions give that , is well-defined in X/A. Next, we define CQ % C‘;
= C:‘ if and only if Cf‘ < C;‘ . Then X/A becomesa BCl-algebra.
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A mapping ¢ : X — Y is called homomorphism 8D if ¢ (x,y)
= ¢ (x) x ¢ (y), forall x, y e X, If, in addition, ¢ is ome-one and
onto, then ¢ is called an isomorphism. Obviously ¢ (0) = 0. Then

Kernelof ¢ isgiven by Ker ¢ = XeX: ¢ (x) = o }.

3. Three Isomorphism Theorems

We now state and prove the ficst isomorphism theorem. The
proof of this theorem can be given with minor modifications on the
lines of the proof of first isomorphism theorem for BCK-algebras
given by K. Iseki and S. Tanaka ([7], [8];. However for completion

we give the proof,

Theorem 1. (First Isomorphism Theorem) Let ¢ : X — Y be an
onto homomorphism. Then Ker ¢ is an ideal in X and X/Ker ¢ is
isomorphic to Y,

Proof. First, we show that Ker ¢ = K is an ideal in X. For
all xeK,0,x¢cK, because ¢ (0*x) = ¢ (0) « ¢ (X) = 0 4 0 = 0.

Now, let x,yeK, yeK. Then ¢ (X) = ¢ (X) s 0 = $(X) y ¢ (¥) =
¢ (X,¥)=o0 gives xeK. This proves that Ker ¢ is an ideal in X.

Next, we define a mapping ¢ : X/K —> Y by § ( Cf) = ¢ (X).
It is easy to see thar ¢ is well-defined and onto. To show that ¢ is
one-one, let ¢ (x) = ¢(y). Then 0 =¢ (X) 4 ¢ (¥y) = ¢ (x4 )
= ¢ (y,X) implies x , ¥, y ,x¢ K and thus x .~ y. Consequently

K K . . K K, _ K |
C, = Cy . Finally, consider ¢ ( Cy x Cy )=1{ (Cx,y ) = ¢ (X,Y)

=4 44 () =4 (Cr)4(CF), which shows that ¢ is a
homorphism. This completes the proof,

Before proceeding further we give two examples which provide
us the background for our second and third isomorphism theorems

and facilitate their understanding,
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Example 1. Consider the BCI-algebra x={o, a,b, ¢, d, ¢, f, g, b}
in which , is defined as

o ia ib d le Lf g |F
o lo lo to lo jd (d |f |f |h
a fa |0 ta |o 1d jd |g 't |h
b bhk Ab~ _r\ o ie {d (f If |h
c*‘ c (b ja jo je |d gr f ih
d |d |d |[d |d |o |o (h |h |f
e |e e jd |{d |(b o {h |h |f
f |f(f |f (£ lh |h |oO d
g g |f |lg|f lh|h|a o |d
hilhlh |h |k {f £ |cdldio

We take B = {0, a, d} an ideal inX and K = {0, d, f, h} a
sub-algebra of X, We note that H N K = {0, d} is an ideal in K.
Thus K/H 1K is well defined. Earsy calculations give that K/Hn K

HNK _, {0,d}, C%—Iﬂ K _ {f, b} } is a two element BCl-algebra

={Co
. HnK HNnK _HNK
under the operation Cx * Cy ch*y .
H H H H H_-~H H
Let Y= U Ck=Co UCd ucf Uch"co UCf

kekK
= {0, a,d} U {f, g, b} = {o, a, d, f, g, b}, which is a sub-algebra of

X containing H and K. We further note that Y is not an ideal in
X. The mapping ¢ : Y - K/y ¢ defined by ¢ (5) = cEﬂ K
yeCH for some ke K, that is, ¢ (o) = CHNK ¢ (a) = cHNK
@=ciNK ¢ =cf®, 4(g)=cfn® 4m=cfn¥

if an onto homomorphism with kernel H = {0, a,d}. Thus
YH~ K/HnK .

e e

R
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- Example 2. We consider the same BCl-algebra X as in example 1
and take the ideals H = {0, a} and K = {0, a,b,c,f, g}in X, We
pote that H = K and is also an ideal in K. Easy calculations give
that
XH=(CH = H,Cfl = {b, o), Cf = {d}, ¢l ={g}, Cl = (a1},
c— ) XK = cK =k, c¥ =1{d,e,b}} are BClalgebras
under the operation C, , C_ = C . Further the mapping f:

X y XeY K
X/H —> X/K defined by f(CL) = C, that is,

K

H K K __ H, ,K

r(ch=c
H, . ~K K : ~H _ K_ ~K_, cH, _ ~K

f(Ce)_ACe =Cd,t(cg)—Cg—CO~K,f(Ch)_ch

= C(Ii(, is an onto homomorphism with kernel { Cg = H, cIt;I ={b,c};

H H

Cg = {g,f}}, We also note that K/H ={[-],Cb = b, ¢}

C;I ={g f}}isanideal in X/H. This can be verified directly as
well as from the observation Ker (f) = K/H. Thus X/H/K/H ~X/K.

We now state and prove second and third isomorphism
theorems in BCI-algebras,

Theorem 2. (Second Isomorphism Theorem)

Let H be an ideal and K a sub-algebra of a BC[-algebra X. Let
Y= U CE . Then Y is a sub-algebra of X containing H and
keK

K,HnK is anidealin K and Y/H = K/Hn K.

Proof. First, we show that Y is a sub-algebra of X. Clearly
oecY. Let Y|+ ¥y ¢Y, Then there exist kl s kz ¢ K such that

H H . .
2 ka1 and v, e Ckz , which gives vy < kl and y, ~ k, and

therefore Yy s ¥y < k1 *kz . Thus Vi s Y scg * k2 c Y.
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This proves that Y is sub-algebra of X. Further if ke K, then
k sCEg Y. ThusK o Y. Also o0eK implies H = CI: cY,
Since H and K are sub-algebras, we have o,xc HNK, for all
zeHNKE. Letye¥, y.xeHNK, xe¥NK. Hisideal in X gives yeH
and hence yeHNK. This gives that HNK isideal in K. Now we
e ) . HnkK . .. __H
define ¢ : Y — K/HNK by ¢ (y) = Ck if and emly if yka ,

for some kek, It is easy to see that ¢ is wel-defined. Let ¢ { ¥y )

HNK HNK H H -
:—.Ckn and ¢(y2)==Ckn . Thenylack andyzack .
1 2 1 2
Thus ¥, *Y,y ¢ CII;II " k2 which implies that p(y *¥,)
HnNnK
= C .
k; "k

This gives ¢ Yy % ¥y ) = C?ln“Kkzz C?nh % CEnK
% ! 2

FA

=8 (¥ )ud(y;).

Hence ¢ is a BCl-homomorphism. For each CE”K e K/H U K,
there exists k e CE <Y such thai ¢ (k) = CEnK . Hence ¢ is onto,

By first isomorphism theorem, we have Y/Ker ¢ =~ K/HNK.

Finally, we show that Ker ¢ = H. Let he H, Then heH = Cg
implies ¢ (h) = CIc;InK . Hence heKer ¢ and HgKer (¢). Con-
versely let heKer (4). Then ¢ () = CEE 0% implies heCll = H .
Therefore Ker ¢ € H. Hence Ker (¢) = H, which gives

Y/H= K/H n K.
This completes the proof.

Definition 2 i[4]). A BCi-algebra X is called medial if it satisfies
the following :

() (xeY) & (Z40) = (X42) % (YeW).
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fn ([5]) Dudek proved that medial BCl-algebras satisfy
(8) X, (Xey) =1y.

M. Anwar Chaudhry and B, Ahmad ([2]), proved several results
about BCi-algebras satisfying (7) and (8}, C.S. Hoo eventually
established in ([5]) that they are same in BCl-algcbras. It is also
shown in ([1]) that (7} is equivalent to

(9) X,y = 04 (¥4X).

Further it is interesting to note that the medial BCl-algebras
have the property: x,y, xcA imply y e A, The proof of which is
directly ebtained from (8). In view of the remark i, and following
lemma, it follows that ideals and sub-algebras coincide in medial

sub-algebras.

Lemma. Let A be a sub-algebra of a medial BCl-algebra X.
Then A is an ideal in X,

Prcof. Obviously o*icA, for ali xeA, Next, Let x,y, yeA,
Then (9) gives y4X = 0 *(x,¥)e A. Now y . X, yeA timply xeA.
This proves that A is ideal in X,

Remark 2. 1f A and B are sub-algebras in a medial BCI-algebra

X, then it is easy to see that AB={a,b= ac A, beB} is also a sub-
algebra of X. Clearly, it is not true for BCI-algebras. Moreover,

we have the following :

Theorem 3. Let A and B be sub.algebras of a medial BCI-
algebra X,
Then

(i) AB = BA,

(i) AB = U Cp.
beB

Proof. (i) Let a,be AB. Consider
azb=0%(b,a) = (040) &« (bs3d) = (O*b)*(o*a)‘—'bl * a e BA

and conversely. This proves (i).
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(ii) It is obvious that A, B € U C{. Since U CP is sub.
beB beB

algebra, we have AB S U C?. Conversely, Let ye U Cﬁ‘.
beB beB

Then there exists beB such that ye CbA . This implies y.b, b,y=A.

Further y=o0 * (04y). Bnt o0,y = (b,b) , v = (b,y) ., bcAB. Thus
J peA, qeB such that o,y = psq, Now ¥ = 0%*(0,y) = 0. (p.q)
= q,pcsBA = AB. Hence the converse. This completes the proof

of (ii).

The following is the analog of the well-known second isomor-
phism theorem of group theory.

Corollary. Let H and K be sub-algebras of medial BCl-algebra

X.
HK/H = K/HNK.

In the proof of third isomorphism theorem we shall use the
following resut.

Theorem 4. Let A and A1 be ideals in 2 BCl-algebra X such
that Ao A, € X. ThenacA , CheX/a implies CAc A and
A /A 2 XA (f1on.

We now prove third isomorphism theorem for BCI-algebra.

Theorem 5. (Third isomorphism theorem)

Let H and K be ideals in a BCl-algebra X and Hc K. Then

X/H/ K/H = X/K

Proof. Clearly H is ideal in K and X/H, X/K and K/H are

well-defined. We define ¢=X/H — X/Y by
pcly = .

Basy calculations give that ¢ is well-defined and onto. Further

scc ey =gl =l -t cf=e st
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gives that ¢ is a homomorphism. By the first isomorphism theorem,
we have

X/H/Ker ¢ =~ X/K

Next, we show that Ker ¢ = K/H.

Let Clgs K/H. Since K and H are ideals in X such that Hc K.

H., ~K K
Therefore by theorem 4, CE ¢ X/H. Further ¢ (Cy )=C,  =K=C

implies CE e Ker ¢. Thus K/HE Ker ¢. Conversely, Let CE e Ker ¢,
K .5 K
then ¢, (€)= CN =K. But ¢ () =¥ implies CF =K.

Thus x¢K and hence CE ¢ K/H Consequently,
Ker ¢ = K/H. This completes the proof.

4. Fourth Isomorphism Theorem

Before proving the theorem we give the necessary back-ground
material and an example which provides the motivation and facilita-
tes the understanding of the theorem. The concepts of congreuences
and regular congruences have been defined for BCK-algebras in ([9]).
We adopt the same definition for BCl-algebras.

Deflnition 2. ([9]). Anequivaleace relation q on a BCI—algebra X
is said to be a congruence if (xl 7 ), (x2 ' Yy Yy gq imply

(xl *x2 » yl *Yz ) £q.

We note that if q is a congruence on X, then it 'partitions X into
disjoint classes {Cg : xeX }, where Cg = {yeX:{y,x)eq}. TItis
easy to verify that Cg is an ideal in X; Define 5 in X/q, the set
of disjoint class, by: C3 ,cd = c% _. K. Iseki([9]) and

X y XYy
Andrzej wronski [11] have shown that in case of BCK-algebras the
operation , is well-defined and X/q satisfies all the axioms of a
BCK-algebra except (4). The same is truz for BCl-algebras, Such

congruences have been called non-regular congruences and in ({11])
it has been shown that there exists BCK-algebras having regular as
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well as non-regular conmgruences. Im order to make X/q, a BCi-
algebra, we dclize the concept of a regular congruence for BCI-
algebras.
Deflnition 3. A congruence q on X is said to be a regular
congruence if X/q, as defined above, is a BCl-algebra.

We note that every congruence generatel by an ideal A in X is

regular. In the sequel we shall denote it by qu = {(Z ¥): x, v A
¥y« X cA}. Further every congruence on a medijal BCl-algebra is
reqular,

Definition 4. Let q; aund q, be two congruences on a BCI-
algebra X. The composition or product of q, 2nd q, denoted by

ql°q2 is defined as :

9

0q, = {(x, ) : (x,2) ¢ q; and (z, y)e 9, for somezeX}.
The congrueuces q, and q, are said to be commutative if and
onlyif q 10q2 = q, °q o It is interesting to note that composition

of two regular congruence is not necessarily commutative.

In the proof of the fourth isomorphism theorem, we shall be

needing following results, which have been proved in ([10]).
Theorem 6. ([10]). Let q; and q, be two congruences on a

BCl-algebra X, Then q; 0o q, is a congruence on X if and only if

and onlyifq1 0¢y, =q, 0q, .

Theorem 7, ([10]). Let A and B be ideals in a BCl-algebra
Xandqy,, Qg be congruences generated by the idsals A and B,
respectively. If q, OqB is 'a congruence on X i.e; if q, qu

o B A . . .
= q, d,.then Yy C°= Uy C;' and is an idealin X,
B "A aeA 2 ac B b
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Example 3. We censider the BCK-algebra X == {0, 2, b, ¢, d, e
f, g h,i,], k}, which is of course a BCl-alzebra. The binary

operation . in X is given by : ([9]),

* | O a7 blcjd]el f{glhj i} ]j ik
olojojo]ol oloj ofojol ojo0io0
alalojlolaja|ol olajal olo a
biblalo|b] bjal oj]bibjajoijb
clcijclclolc]ci clolejclel|o
d{d|d]jd|d| o}lol ol ojojoflo]o
eleld|alelalol ofa|al o|loja
fifle|d]|]f] bjal] ol b|bla|o]|b
giglclec|jdjcjcyp ciojefclojo
hlh |h| hlh] h{h| h h' ol ojo o
ili{(h{nh[i] 1 hiiljajo|loja
513 1ilh ]3] 313l n]ljlolalolb
kik jk{k kijkj ki hicjcjc |o

Take H = {o0,a,b,d,¢,f h} and K = {0,3,b,¢c,h,1,j k},
two sub-algebras of X. Further take H' = {0, d, h} and K’'= {0, c}
ideals in H and K, respectively. Let U=HNK. Then Hn K=
{0, a, b, b}. Further HN K’'={o} and H'n K={o, h}. Easy calcula-

tions give that :

U CE; = {o, a, b, d, e, f, b, i, j}, a sub-algebra of X
x¢Hn K

containing H and Hn K, U CI;(I' = {o, d, h,}, which is an
x<sHN K’
ideal in U CEI . Thus U C:I’ / U CHI is well-
eHpkK ° e NK xHyUK' *
defined and routine calculations give that it equals
H’ H’ H .
{CQ ’ Ca ’ (‘b } !j
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. R KI KI
Similarly y C U C == {0, U {a} U {b
xeHpK * xe{o,a,b,h} X e v i) v

u {h,k} = {o, a, b, c, h, k} is a sub-algebra of X containing HNK

and K’. Moreover K" = U C;(’ = {o, ¢, h, k} is an ideal in
xeH'nK
u X Ths Ut/ U cK’ s well defined
xeH nK xcHn K xHnK ¥

and routine caleulations give that it equals

” L2 .KII
K™ oK' ety @)

{Co 1 a ® b

Further we note that HhK' = {0} and H'nK = {o, h} are ideals in
HAK=:U and it can be easily checked that all regular congruences on

HOK commute.

Now
u cHnK -y el o, m,
xeHNK xe {0, h}
and
u ik _ oy o oo, m
xeHNK' xe {0}
Let
! 7
ve u cHK _ y R _ o,
xeH'nK xeHOK' ¥
Since

V is an ideal in U, thus U/V is well defined and easy calculations give

that it equals { CZ , C: , Cg} 3)
We define o : u C}{_I = U CH (00 a, b’ di C,f, h; I’J}
xeHNK usU

—> U/Vbyo(x) = CV if and only if x¢ c?' for ucU=HnK, that

is, s (0) = C, v (a) cY.om=c b,c(d)—C , o (e)=C,

s (f) = cVo(h) X‘c(x)_ _.a(J)=cb.
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Obviously o is onto and easy. calculations give that ¢ is a

homomorphism,

Further Kero = {a,d, b} = U ¢c& . mhus u 'y
xHnk' ¥ xcHUK

Kero= U c¥j u T~y similarly

xeHQK * xeHAK'

u cK  uc® Uy Hence the algebras (1), (2)
xcHNK xeH'nK

and (3) are isomorphic,
We now state and prove the fourth isomorphism theorem in

BCl-algebras.

Theorem 8. (Fourth isomorphism theorem)

Let H and K be subalgebras of a BCl-algbera H. Let H and K’
be ideals in H and K, respactively. Then
)

xeHnk ¢/ cl'' =~ v
xeHOK' xeHNK

K yu cX’
xH'nk %

provided any two regular congruences on HnK commute.

Proof. Let U = HNK. Then U is subalgebra of X. But
H>HNK<K. Therefore U is a subalgebra of H as well as K. Since
H'<H,K,<K and each of H, H, K. K’ is a subalgebra of X, so
HNK' and H'AK are subalgebras of HnK.

Now, we show that HNK' is an ideal in the BCI-algebra U. Since
HNOK' is a subalgebra of U, s0 0, 0 4 xeHNK'. yxeHNK'. Let u*x,
x:HNK’ with veU. Then ueU=HAK and u*x, xeK’. But K’ is an
ideal in K. Therefore, ueH and ueK’, so that ucHNK’. Hence it
follows that HN K’ is an ideal in U. Similarly H'NK is an ideal
in U.

Since any two congruences on HNK=U commute, therefore, by
theorem 7.

u CEInK = U C? nK _ V (say) (1)
xHNK reHNK
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Obviously ¢ is onto and casy calculations give that ¢ is a

homomorphism.
Further Kero = {a,d, b} = U CH . thus U cf¥
xeHOK' ¥ xsHUK
Kero = U CH’ /| U C,I;II = U/V. Similarly
xsHok * xeHOK’
KI

u ¢ u X zuv. Hence the algebras (1), @)
xsHQK xcsH'nK

and (3) are isomorphic,

We now state and prove the fourth isomorphism theorem in
BCl-algebras.

Theorem 8. (Fourth isomorphism theorem)

Let H and K be subalgebras of a BCI-algbera H. Let H' and R’
be ideals in H and K, respzctively. Then

U ’ 4 ’ ’ '
xipk ¢ ) v My oy Kypu K
xeHOK' xeHOK xeH'nk X

provided any two regular congruences on HNK commute.

Proof. Let U = HOK. Then U is subalgebra of X. But
H>HNK <K. Therefore U is a subalgebra of H as well as K. Since
H’<H,K,<K and each of H, H’, K. K’ is a subalgebra of X, so
HAOK’ and H'AK are subalgebras of HnK.

Now, we show that HAK’ is an ideal in the BCI-algebra U. Since
HNK' is a subalgebra of U,s00, 04 xeHNK'. vxeHOK’'. Let u*x,
xzHOK’ with usU. Then ueU=HNXK and u*x, xK’. But K’ is an
ideal in K. Therefore, ueH and usK’, so that uesHOK’. Hence it
follows that HN K’ is an ideal in U. Similarly H'NK is an ideal
in U.

Since any two congruences on H 1 K==U commute, therefore, by
theorem 7.

U C?nK = U CI; NK _ v (say) (1)
xeHNK xeHNK
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and Vis an ideal in U. Thus the quotient algebra U/V is well-
defined. We define

s: U Lsuy
usU
by
VvV . . H’ ) )
¢ (x) = Cu' if and only if xo Cu for some uelU; yxe uel
H’' '
C‘_1 . : (2)

Clearly o (x) eUJV, yxe U Cii . Let stf;I = CH with u, sy eU.
xeU

Then (u, u 3 aqH! . Thus u*e, . u, *ueH’. But u*u1 s Uy *ueU

i

because U==H N K is a subzlgebra of X such that u, U eU. Therefore,

u"‘uI > U *ueH' NK <V (Secend isomorphism theorem).
. . \Y \") .
Thus, (u, vy ) Gy, in U and hence Cu = C, . Henceo (x) defined

by (2) is unique for every xe U C§' . Thus o is well defined.

ueU

o is onto becausz if CIY eU/V, then ueU so usClI;I' < U C
uelU

and bence by (2) o {n} =CV. Further fet x, , Xy ¢ U C
u 172 wsU

Then there exist v, , v. ¢U such that x sCH and x eCH'
1 2 i u, 2 uy

Then (xl ' Uy ), (x2 U, )qu, . But ay i$ a comgruence on

H (generated by H'). Therefore, (X *x5 , uy * u, ) eqy . Thus

X * Xy € Cqu * n, Hence, in view of (2), we have a (x1 * Xy )
— * — * Y
Cj*uz C1 CZ—U(XI) 0(X2).

Hernce o as defined in (2) is an onto homorphism from U CII;I to
' uel
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U/V. Thus, by first isomorphism theorem, we get
HI

U Cu [ Kero =2 UjV 3)
ueU
Now we show that Ker ¢ = 0] CII;I' . Let weKer o,
ueHNK'

Then there exists ueU = HNK such that waCu and ueCZ =6 (W)

~c¥ =v= U cHUK (by(1)). Then (w, w cay in H
K NH’

and u“‘x=xl eHNK' (sayj, for some xeKNH'. Note that u*xl
=u*@u*x) € xHN'K imply u*x, eH'N R<H'. Also x| * u
= (u*x)*u=(u*u)*x=0*xcH'NK<H'.

Therefore u*xl ' X *ucH’ such that Xg s usU=HNK<H. But H’
it an ideal in H. Therefore (u, X} ) Q- in H, Hence (w, u),
(u, X, ) Qg in H. Which gives that (w, X, ) Qg - But x;

HI

sHNK’. Therefore, WGCE’ < U Cu Hence
i usHNK'’
Kero < U C‘I;l 4
uesHN K’
HI Hl
On the other hand let x ¢ U C u - Then xsC for
ueHNK’ uy

some u, eHNK'. But HNK'gsUand HNK' < U CH’nK
ueHN K’ u

= V. Therefore, u; U such that u eV and x ¢ CLI;I' . Hence o (x)
1

= CX =V = CZ. Therefore, xsKer o, so that
1

U C‘I;I' < Ker o (3}
ueHN K’
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Hl

Thus, by (4) and (5), weget Ker o = U C, - So(3)becomes
: ueHNK’
y oy el 2y (6)
ueHNK ueHN K’
Similarly, we get
y oy u Koy M
usHNK ueH'NK

But the relation ‘=2’ is an equivalence relation, Therefore (6) and
(7) give

H cH~ y X, u ¥

c u

u u U _, % = u
ueHNK rzHNK ueHNK veHNK
Remark 2. Let X be a medial BCl-algebra, i.e.,, a BCl-algebra
satisfying x* (x*y)=y. Then we have proved that in this case ideals
and sub-algebras coincide. Further we have shown thatif A and B
are sub-algebras of a medial BCIl-algebra then AB = BA and
u

AB = U CQ . Thus in this case U C, = H' (HNnK),
beB ueHNK
H’ ’ 12 H’ ?
U Cu = H' (HNX’). U Cu = K’ (HNK) and
ueHNK’ usHN K
u CIII(I = K' (H’'NnK). Further on every sub-algebra A of
ueH' NK

a medial BCl-algebra X all regular congruences commute. Thus we
have the following corollary :

Corollary. Let H, K be subalgerbras of a medial BCI-algebra X.
Let H' and K’ be ideals in H and K, respectively. Then

H' H0 Ky gk, 2 K EOKg gk
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TURCHIN-KLEIN REGULARIZATION METHOD USIN3
B-SPLINES FOR ILL-POSED PROBLEMS

M. IQBAL

Department of Mathematics, Purijab University, New Campus,
Lahore (Pakistan)

Abstract

A methed is presented in this paper for estimating solutions of
ill-posed problems in the form of integral equations of the first kind,
given noisy and clean data. Regularization is dene by Turchin
Klein method usisg B-splines.

We propose a technique by which an approximately optimal
amount of smoothing may be computed based only on the data and
the assumed known ncize Variance. Numerical examples are given
and we have comsidered mildly, moderately and highly ill-pesed

probiems,

1. Iatrodsmetion

The concept of ill-posedness was introduced by Hadamard in the
field of partial differential equations. For years ill-posed problems
have been considered a3 mere mathematical anomalies, however it
appeared in the early sixties that this attitude is erroneous and that
many ill-posed problems, gemerally inverse problems, arosc from
practical situations. Now-a-days there is no doubt that a systematic
study of these problems is of great relevance in many fields
of applied physics. For example problems of image reconstruction
and enhancement ; x-rays and neutron scattering ; integral equations
of the first kind in zpectroscopy, chemical analysis, queueing theory,

The research was supported by the Government of Pakistan when the author was
a Ph.D. student at the University College of wales, Aberystwyth, U.K.
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astrophysics and photon-correlation, optimal control, seismographic
data analysis, calculation of atmosperic temperature profiles ; numeri-
cal inversion of Laplace transforms ; numerical inversion of Radon
transforms in computerized tomography; inverse source problems
and inverse scattering problems in optics, meteorology, stereology
and other fields. For a general account of the theory of ill-posed
problems the reader is referred to Lavrentiev [14] Morozov [16].
Tikhonov and Arsenin {23] and Groetsch [12].

In this paper we shall use theory of cardinal B-splines for pth
order tikhonov regularization for convolution equations of the first
kind. Before we discuss the details of the theory, we give some
definitions and elementary properties.

(i) Cardinal B-splines

B-splines with equidistant knots are called cardinal B-splines
with knots on the first n natural number we have

p.(x;O,l,Z,...,n)=Qn(x) ()
called the ferward cardinal B-spline, and
w(x; —3%p, —%n+l, .., 4n)= M (x) called the central

cardinal B-spline, it is easily shown that

I j ~n—1
- — - - 2
Q, (x) (a—1)1 jzo (-1) (x-J) @

and My (x) = Q (x + # n).

(ii) Periodic cardinal B-splines

A cardinal B-spline may be periodically continued on any
interval, of length not less than its natural support. We call the
resulting function a periodic cardinal B-spline.

Consider an uniform knot-spacing H. Let Bj (H ; x) be the nth
order cardinal B-spline (n even) with knots
(j—4mH, .. ,(j+in)H,ie

X

Bj (H;x) EQn (—l_—l j+%n) where Qn(x) is given in
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cquation (2). In addition let MH = | where M <N is an integral
power of 2,

We define the approximating space BM (0, 1) to be the span of

[Bj (H: x) };\i;l

We can then approximate a function ¢ & L2 (0, 1) by ¢Me BM 0.1)

M-1
of the form ¢M (x) = = % Bj (H: x), 3)
J=o0

we shall assume that each basis function Bj (H; x) is periodically

continued outside the interval (0, 1), w ith period 1.

Then Bj (H; x) has a Fourier series

DA
Bj H;x) = q=-z-oo qu exp ( iwq x) (where L 27rq)

( A denotes Fourier Transform and V represents inverse Fourier
Transform).

A ¢l .
where qu = So Bj (H; x) exp (-—-qu x) dx.

since Bj (H ; x) is simply a translation of Bo (H; x) by an amount

jH, we have

N A
. = —i i 4
BJCI Bo, q exp ( iwg jH) Q)

w_H

A sin ——— a0 %
where BO,q=H[TI'T/§——:]

Clearly oM (x) in equation (3) will be periodic on (o, 1).

T
Let ¢M= [9S(xo ) 9S(xl )y eee s qb(xM_l )] , where xj =jH,
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_ M--1
i oM (x)e BM (0, 1) interpolates ¢ (x) at [ Xj ] , then the

j=o0

A
exact Fourjer coefficients ¢ M,q* defined by

A A A T A H
M = [¢M.0’ : ’¢'M.M—l] » where &g = dpg Fpp

by means of an attenuation factor ¢

2B A dM 1, 42
¢M'q = Tq ¢'M'q (mo )I q=o0, - 1, 4- 2, ...

For cubic cardinal splines (n = 4) it is shown by stoer [22}, Gautschi

[11] that

Tq

. - [i‘f_.M 1 [ 3 ]
q T oM 142 cos2 (__TI{'Iq )

2. Pth order Tikhonov Regularization using cardinal cubic B-splines.
We shall approximate the convolution equation '

aD
| xx-n tmdy =gm ~m<x<w
- Q0
by
1
[ xge-v o dy=g @
0

where we assume that f, g and k have essentially finite support in
{o, 1], fM is a cubic spline of the form

M-1

N
z

(8)

(6)

i

.
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hnd kN BN € TN are trigonometric interpolants given by equation
N—-1 A

1 .
EN() = W quo N, q exp(!wq X)

with similar expression for kN .
The real M dimensional vector
- T
f-"‘[“o v OMg ]

of unknown coefficients will be determined, in what follows, The
spline in equation (8) has the Fourier series

fy @)= 5 1B Gw_ %)
X) = exp (iw_ x
M —— M, q q &9
where
o _Mth
M’q - j=0 aj jq
A M-l oo
Lt (1 S
= Po,q 2, % exp (=31 Ja) (10)
- A ,
=4/ M Bo,qas,SEq(modM) (11)
. |
where &= 4y (12)

A .
In cur work we find it advantageous to determine « rather than « ,

because of the simple properties available in discrete Fourier space,
The vector « in equation (8) may then be determined from the

inverse M-dimensional FET

a13)

1 R>

x=tm
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Now following Klein [9] consider the smoothing functional for pth
order Tikhonov regularization in the form

i 2
D) = — L :
Clfyin =C@ N = | [y 4ty -8y 0]
! 2
(p) ;
+ ” W (14)
where 1 .]| denotes the inmer product norm on L2 (0.1). Equation

(14) demands an explicit knowiedge of the variance o2 of the noise
in the data. 1In this paper therefore, we assume that % is known

a priori. Turchin [24, 25] suggests that 2 may be estimated by

i N—(I+1)

2 _ S N
°TT N(N=2) 4

(13)

1I=

A2
gN',q)

and we sometimes use this approximation in our practical examples

later.
Since kN*fM € TN for any square integrable periodic

function f), of period unity, plancherel’s theorem gives

3N
1 ZII

L gty ) [P =

f —
“N,q 'M,q7 BN, q|

Hance using equation (11)
N/2

12
1 ‘ 1
“ o "N*MENTlh T N2,2 g=—Np2

_— A Al A A
[(‘/M Bo,qEN; q %S “gN.q) X

—_— A A A A 1
(‘/M Bo,qu.q“s_gN,q)J (16)
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where s=q (mod M)

Also, Plancherel’s theorem applied to the regularizing functional in
equatien (16) gives

2 [0 o] A 2
(B F_ 3 2| 1B
Ly gm0 "9 | M.a
= 2 OZO w2P ?'B I2
[+ 0} A 2
= 2M = w2p B 3 (17
q=1 0,q | s

where s=q (mod M)

We observe that the expressions (16) and (17) may be reduced to
simple expressions involving M terms only.

2.1 The smoothing fanction when M = { N

In expressions (16) and (17) we wish to arrange the summations

over q to summations over s, where s=q (mod M).

y !
. ‘—A A
1 diag (v M Bo,SKN,S)
w) = - order NxM  (19)

A
diag (v'M Bo, M-s KN, M—-S)

where S=o0,..., M =1

A

A
From the simple property KN, q= KN, N-q of discrete FTS it

then follows that expression (16) simplifies to

(w()a—g ) (20)

5 U *f—g)fl

The simplification of expression (17) requires the use of an attenuatiop
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factor. Since S=q (mod M) we may write

A
o

fP) HL Mg (I

S=1

o 0]
= 2r)?? T (Mn+5)?P g2 [

n=0

2P 8 A2 ©
=(2®)" S BO,S nz

A A

(Mn+5)
0

o0
2p
2w
]n=0 Mo +S

Sin

M
2p—8

AY)

Bo, Mn+S

T (Mn4-S)
—F arS )
T (MatS)

Since 0g = apf_ g Equation (21) further simplifies to

M

I 2
“ i “2=2M g2y ("8 F M-s)

A
*g

2

In particular when p =2, from (23) it follows that

_ 440 @ S ¢
s = @2®)" 8" By g nio[ Mn+S ]

A
. 2
while ty, o = (2m)* 8% B2

so that ©_ + = — @m)* s* B2 3
s M+S 0S __ o \ Mo+

(21|')4

n

@ S
,S il[ Mo-S

2
0,8 [14+2 cos (Trf

]4

TS

S

)

)

)4

A
s4 B2
. TS
s
TS

2n

(22)

(23)

(24)



63
( see pennisi [20] )

16 . S
Tg + ™M—S ¥ 3 M2 sm4 (W—M—)[ 1+2 cos2 (—?] (25)
Defining the M X M matrix

w(? = diag { [M (=g + 7y _g )17

(26)
it follows from (24) that
42 - [ 5
! i
Thus the smoothing functional mey be expressed as
C(a 1) = d(? w) :‘“ gN )E + x;/w(z) é\ /: (28)

where the first norm is the vector 2-norm in C

, and the second is in
CM . The minimizer of (28) is clearly

”

« =W+~ wOH(P) 5 29)
where
IDH 2 (1
W=w(> (g) w( .]|’ (30)
v= wOH )

J

It is not necessary to invert the Matrix W + 2 V directly since it is
diagonal. [t follows that

A
“S =
1 ¢ A A ' A A A
(/'Tq:[ BosNs 8ns T BomM-s ¥NM-s gN,M+S]
2 l/\ 24 7
A2 A Az ) )
[Bo,s kN,S! +Bo,M-s | FNM-s J+NT e A(’s trim-s

(31)
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4

1 r A —l; A S A A
\/H_[ BO.S[ kN Ens T (m“—“_s) kN,M-5 BN,M-S ]]

S LA 2iN2 o2
N,S (F—_s) N,M~-S§ ] TR e ["s ‘“M_s]
(32)

. A S \4A
Since BO,M—S = (ﬁ——S) BO,S

we can easily verify that

> 1

g =

A
o

K

M-S

A
we that the inverse FFT ¢« = UM is a real vector as required.

2.2 The Filter for Cardinal B-spline Regularization

In the trigonometric regularization the discrete Fourier eoefficionts

. A A A
of the filtered solution fN,q.l were related to EN,q and KN,q by

means of a simple filter Zq - given by

A
A gN
»q
fN.CI, A = Zq 4 A A »qd =0, .c. N-1 (SCC [7]).
Kn
sq

A similar filter can be derived for cardinal B-spline regularization.

The Fourier coefficients of the regularized (filtered) solution
fy ®) € Byt {0, 1) clearly depend on % through enquations (10),

(13) and (32). In equation (32) we denote the dependence of
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A A A
xg On X by writing «g = og (). Thus the Fourier coefficients of

the filtered solution are
B 5 o
rM’q A =M Bo_q ag (4), S = q(mod M).
whereas those of the unregularized (unfiltercd) solution are
AB — A A
fM’q(O) =1/M Bosq ag (0)

clearly the underlying filter Zq' 5 must satisfy

B B (©0)s0th ded
Mq()‘)=zq:>\ M’q(),sotatwecan cduce
xg ()
do (A
_ 'S
Zqirn = 7 ¢
“S )
Zg;n =
Ao A 2 S 8 A ,'2
[Bo,s kns| + ( M—S_) N, M5 | :H
| 12 8l A 2 *
Ay A S 2 2

(34)

The filter will of course apply to every Fourier coefficient, =0, 4- |,
4 2, ... but will have only M possible values depending on q
modulo M. ‘

3. Calculation of A by the TK method

Klein [9] has uased ntural splines to solve integral equations of
the first kind and it is possible to modify this theory for the approxi-

mating space Bm 0, 1.
Klein considers the a priori c.d.f,
Pem={ PElaP @da (35)
RN
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for the data vector g given 2. Baye’s theorem then gives a posreriori
c.d.f.
P (7\/5) = const, P (E/)\) P (2) (36)

ia terms of an unkaown a priori p.d.f. P (3) for A

Following Klein it can be shown that

A _
Pg/n—1 det — P% det {x W (W)~ ! }]x
- L

exp[ -3¢ @ ) a1)

where l/;? W agd V are defined by equations (18) and (30) respectively
IAY

and C (« : A) is given by equation (28). Substituting into equation (35),

we find that a condition for a stationary point of P (A / g) is

A
8 flog P (W] + Trace [W (W+ 2 )™ ] =2 atly a=0

(38)

A
where « is defined in equations (29) and (32). An optimal value of
» minimizes P (A / g) and is therefore a root of the non-livear equation
(38) in 2,

Klenin argues that if the unknown distribution P () is sufficiently
“parrow” thes the effect of the first term in equation (38) on the root
will be small. In practice, therefore, we must neglect the first term
and determine A by solving,

-1 Ao A
Trace [W(W +2v)7 ' ]=r ¢ va =0 (39)

From equations (29—32) and (34) we can rewrite equation (39) in the
from F () = SI ) -2 S, W) =0 (40)
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M-—1
where 5, = sio Zg ., and
M-1 )

SpW = E Cg+my_glZ§;,

- - 1

[ A A S 4 A A !

{ Kns e8NS +( M-s—) KN, M—5 EN,M-5 an

, A 2 s 8] A R R

!l. ,KN,S + (“"M_s ) KN, M =5 | Ji

where s + TM_g is given by equation (25).

In all our numberical experiments (next section) we have found that
the non-linear function F (1) has the form given in figure 1,

F(NT FI(AN) =1 ags A > ©

‘ A
0 i—— ! L A

Figure 1.
with the properties F(0) =M and F (3) — 1 as A — o0. since
s; W =>1 and 2 S2 (A) — 0 of the two roots A , A, We have found
empirically that the smallest root A is the most appropriate root to

use for the regularization, The roots were computed using the

successive approximation.

S ( )\(I))
LR ) I (42)

5, (0O)

with A(o) = 0 for the first root and )\(0) >> xl for the second

root.
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4. Some Test Problems
In thig section we introduce three test problems :
P(1A), P (1B) and P (1C).
Problem P (14): This example is given by Turchin [24, 25], i.e.

2
S k (x—-y) f(y) dy = g (x), where fis the sum of two Gaussian

-2

functions

) 2
f (x) = (0.5) exp [ - g%%_d’l ] + exP[ — ___‘_.(’(()ig‘ﬁ) ]

with essential support—1.3 < x < 1.5,

By the essential support of a function f (x) we mean that part of its
domain for which | f (x)| < € where 3 > 0 and small, e,g.=1%
of max { | f(x) | }. K (x)istriangular with eqnation

[—x + 0.5, 0 €£x<05
K(x)={' x+035 —05<x<0
IL 0 [x] > 0.5
We calculated the valués of g (x) by the NAG Algorithm DOIACA

with accuracy 10~ 7 using extended precision. The essential support
of g (x)is—1.8 < x < 2.0. In diag (1) thz functions f, g and K’ are
ploted with grid spacing 0.1.

Problem P (1B). This example is the same as P (1A) except the
Triangular Kernel is made wider.

[(5/8) (—x +0.8), 0 <x<08
|
K@) =<(58)( x+ 0.8), —08<sx<y
|
L 0 , |x|[>08

The wider Kernel makes the proeblem more ill-posed. The essential

support of g(x)is —2.1 < x < 2.3. The functions are displayed
in DIAG (2) with a spacing 0.1,
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Problem F (IC) : The problem is mwude highly ill-pesed by
choosing an even wider Kernel.
(512 (-x +12), 0 <x<1.2
K (x)= {l G x4+ 1.2), =12 £x<0
'L o, |x] > 1.2
The essential support of g (x) is =2.5 < x < 2.7.
The functions are displayed in DIAG (3) with a spacing 0.1,

4.1 Addition of Random Noise to the Data Functions

In solving the test problems we have considered the data functions
contaminated by varying amounts of random noise. To generate
sequences of random errors of the from {e n }, forn=0,1, .., N -],

We have used the NAG Algorithm G05DDA which returns pseudo-
random real numbers taken from a noermal distribution, of prescribed
mean A and standard deviation B. To mimic experimental errors
we have A =0

_ X mx i
B = o0 0<n<N—1|gnl : 3)

where x denotes a chosen percentage, €.g.
x =0,7,1.7,3.3 and 6.7

Thus the random error € added to gy does not exceed 3x%, of the
maximum value of g (x).

4.2 Numerical Results

In this section we describe the numerical results. We have
obtained for each of the above test problems using the cardinal
B—spline theory dcveloped in section 2. We calculate optimal &
in each case using the TK method of Section 3. For completeness
we consider the two cases M (number of splines)=N (Number of
data points), and M =} N, theory for M=} N is a trivial modification
of that given in section 2, Throughout we use second order regulariza-
tion exclusively, i.e. p=2, and we compared the numerical results in
both cases.
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For each problem the number of data points N is chosen to be
64 by introducing zero values of K and g if necessary, then supp (g)
is mapped onto (0, 1). In each case the values of ¢ is estimated by
o in equation (15). A summary of the results is given in Table 1.

In each case the parameter A c.:{. measures the strength of the

corresponding filter and the quality of the regularized solution may
be seen from the appropriate diagram.

The error norm || f- f M s estimated from

] N-1 24 1/2

i~ EA RS ]}
J_.

also serves as a measure of the quality of the regularized solution,

in P (1A) excellent solutions are obtained for noiseless data for
both TK (M=64) and TK (M=32), with similar results for noisy
data upto a level of 3.39 as shown in DIAGS (4 AND 5),

(In P (1B) and P (1C) good solutions are obtained for noiseless
data, In the highly ill-posed case P (1Cy, a slightly better solution
is obtained for M=32 rather than M =61 with noisy data, but large
osicillatory lobes are present in both cases, as shown in DIAGS (6—09).

Conclusion

The methods worked very well for Mildly, moderately and
severely ill-posed problems with and without random noise. The
results can be compared by looking at tha respcctive diagrams and
Table 1.
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DIAG (i) PROBLEM P (1A)
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1a28] DIAG (3) PROBLEM P (1C)
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r.2er DIAG (&) PROBLEM (1A)
SOL. BY KLEIN'S REGULAR. WHEN M=N )
vazl
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1281 DIAG. (5) PROBLEM (1A)
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1,280 DIAG (6) PROBLEM (1B)
SOL BY KLEIN'S REGULAR. WHEN M=z=N)
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DIAG (7) PROBLEM (1B)
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DIAG (8)
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t.er DIAG (3) PROBLEM (1€) ~
i SOL. BY KLEIN'S REGULAR. WHEN MaN/2 )

0.96
0,80 |

8,64

0.32 |
0.16 |-

0,00 |-

TRUE SoL,
NUM, SOL, s 6 a
SOL FOR 0 7°/, ERROR:= 4 o
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NUMERICAL COMPUTATION OF TWO-DIMENSIONAL
TIDAL FLOWS
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Riyadh, Saudi Arabia

Abstract

A two-dimensional explicit finite difference hydrodynamical
numerical model is developed to reproduce the tidal elevation, tidal
current and residual current in the Bay of Sonmiani and Indus Delta,
In this study, the tidal constituents on the open boundary are based
on the results of a coarser grid model. The model solves the pheno-
mena of M2, SZ’ Kl and Ol—tide separately. Combined effect

of tides in terms of tidal current is also studied. The results fill the
existing gap of observational measurement in the area and provide

the wave structure.

Introduction

Due to non-linearities in the hyperbolic partial differential equa-
tions describing the hydrodynamical processes, it is extremely difficult
to find their analytical solution. If, at all, a solution is obtained, it
requires a lot of simplification, However, with the development of
numerical techniques, it became possible to solve these processes in

complete form.

In modelling of free-surface flow, numerical models provide a
very successful alternative to expensive physical hydraulic models.
Numerical models are low cost, efficient and offer almost ualimited
flexibility in simulation of various alternatives. They are applied to
simulate transport phenomena of heat, waste, sediment, wind-driven
circulation, short waves and tidal flow processes.
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In the present study, tidal level and tidal currents will be repro-
duced because they are of the prime importance for problems of
coastal protection, navigation and dredging. Tidal current data is
used for the design of marine offshore structures, such as jetties,
breakwaters and offshore platforms. They also provide the essential
information for studies on pollutant movement.

For the offshere coastal areas of Third World countries very
poor observational data about tidal levels and tidal current is
available, because measurement of tidal levels and tidal current is
technically complicated, laborious and costly. The hydrodynamical-
numerical method is used to fill this gap by reproduction of the data.

The hydrodynamical-numerical method (Hansen, 1955) consists
of the Navier-Stokes equation and equation of continuity, These
equations are solved with the expiicit finite-difference technique.
These equations include the effscts of bottom friction, rotation of
earth and atmospheric pressure gradient. [n the present study, this
method is applied to the area with scarce observational data required
for runaing the model. Results of the hydrodynamiczl-aumerical
model of the Northern Arabian Sea (Elahi, 1977) are used as the
boundary values oa the open boundaries. They are used to gensrate
tide from the sea onte the model area, which contains the Sonmiani
Bay and the Indus Delta,

The model is a simulation medel. Its aim is to compute
physically realistic elevations and eurrents which can subsequently
be compared, when possible, with observations.

Discription of the Model

- The surface elevation together with the verticaliy-averaged
currents are computed from the Navyier-Stokes equaticn and equation
of continuity. The equations are vertically integrated over depth.

The volume transport vector is defined by

g g
I udz, V= I vdz. (1)
—-h -h

U

0
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Thke mean velocity is obtained by averaging the volume transport

over depth
v =S v < UV >
= < U,V >, = : . 2
v > RAC T ThAC @
The vertically-integrated equations are not completely indepen-
dent of the vertical structure of flow. since the Jatter enmters in the

bottom stress terms. The system of equations which has been

employed in the model is

% _ 1 9 (HU) a(HVcos¢)}
at  Rcos¢ [ oA + Y 3
A 2 2
2y o [ty 2 )
0 R cos" ¢ DA 09
g 9l A
T TRcoste ar b “)
A s 2 2
Zi: = fv 4 121[*2 0 Zv—tanr,b g: 4 62V l
o R cos“ ¢ o o9 -
g 2a¢ ¢

where A, ¢ are geographical iongitude and latitude, Z is depth below
the undisturbed surface, t is time, £ is elevation of the sea surface
above the undisturbed level, h is undisturbed depth of water, R is
the radius of the earth, f=2w sin ¢ is coriolis parameter, « is angular
speed of the earth’s rotation, g is the acceleration due to gravity,
U,V are eastward and northward vertically integrated components of
velocity at depth 2 and Ah is coefficient of horizostal eddy viscosity.

The stresses due to roughness of bottom Ty = [ -r:‘) , -ri ] are
parametrized empirically by using the Newton-Taylor formulation
(Q. I. Taylor, 1919), which is a quadratic law relating bottom stress
to the depth mean current.

= ucu? 4 v (6)

T

oS o>

= u(u? 4+ V2,

b

where r = .003 is the bottom friction coefficient.
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The coefficient of horizontal eddy viscosity is related to grid size

and time step of the numerical scheme by the relation

1—a Al
Ap=—F A @

« takes value between 0.9 and 1, depending upon the inmer
viscosity of the fluid (Siindermann, 1966). Through numerical experi-
mentation, its numerical value is estimated 0.99 in shallow water
areas and 0.9 in deep water area,

The tides in the Arabian Sea are supported predominently by
the semidiurnal constituents M2 and 82 with small contributions

from the diurnal constituents K ) and O | The tide in the model is

generated by prescribing amplitudes and phases of tidal constituents
at open boundaries, Water levels as functions of time for 4 main tidal
constituents, M2 . S2 . Kz and Ol are supposed to be known and

calculated by
4
()= X A; cos (o; t — & ),
i=1 1 1

where A is amplitude, K; is phase of incoming tide and o is

frequency.
Partial tide ¢ frequency, 1o~ /S
Semidiurnal
M, Principal lunar 1.40519
82 Principal solar 1.45444
Diurnal
Kl Declination lunar-solar 0.72921
0 1 Principal lunar 0.67598

Table 1 : Partial tides and their frequencies,
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Initial and Boundary Conditions

The system of equations (3-5) can be solved only when the
initial and boundary conditions are added to the system.

It is assumed that the ocean is initially at rest, so water levels and
water currents are assumed to be zero everywhere at time t=0,

f=U=N=0. (10)

Along the coastal boundaries no slip condition is applied. Thus
at coastal points, the normal and tangential components of velocity
( VIl , Vt )} are assumed to be zero

V. =V, =0. (11)

On the open boundaries, the tidal elevation must be given at
every time step by using equation (9). Moreover, the velocity gradients
in the normal direction are zero, i.e.,

% = 0. (12)

Namerical Model

An explicit finite difference scheme (Hansen, 1936) is used to solve
the equations numerically, In equations 3, 4 and 5, partial deriva-
tives with respect to time are replaced by forward difference and
partial derivatives with respect to space coordinates are replaced by
central difference. The method suffers from certain short comings due
to squarc grid. It requires rather fine mesh size in order to give a
satisfactory representation of complicated and distorted boundary
lines, this leads to high computational effort. Replacement of the
time derivative by forward finite difference imposes an additional
coadition, a fine mesh size requires small time step for stability of
numerical scheme. If the region under study is large, then the
method is not appropriate because it needs large computer time and
storage capacity. A variable finite diffzrcnce feature is imtroduced
to allow dectailed study of the tidal flows in certain confined sub-
regions. The variable mesh feature provides great flexibility in
analyzing the region, If a detailed analysis of the tidal flowsin a



90

¢certain sub-region is required, results can be obtained without signi-
ficant restrictions imposed by computer time or memory capacity
(Lsrdger, Belen and Celerge, 1982).

Tidal charts for the Arabian Sea were developed based upon
observational data. This information was used as the driving force
on the open bouadaries of the Northern Arabian Sea model with the
coarsest mesh size 54 km. The results are given in Figs. ! —4. An

cedimaaat

- DiuHeagd

[T S-S O S

Fig. 1. M, —tide in the Northern Arabian Sea. Co-tidal (———)
and co-range (...... ) lines. The boxes show the cbserved
values, amplitudes in cm {upper; and phases in degree

(lower},

INDlA

tesena

Div Heed

Fig. 2. 52 —tide in the Northern Arabian Sea.
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intermediate mesh size is used for the shallow water region of Pakistan
coastal water and the ﬁnest mesh zize 9 km is used for the Sonmiani

PAKISTAN

Fig. 4. Ol —tide in the Northern Arabian Sea.
Bay—Isdus Delta area. The driving force, in each confined sub-

region, is the previously computed elevation in & coarser model.

Finite Differences Formation

Equations (3—-5) are discretized in time and space into a set of
finite difference equations by using the method of forward time-central
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(FTCS) explicit differencing.

O 2 o 2
(t+Ab U(N,M)” + V7 (N,M)
U (N, M) = (l—rAt (t) )U (N,M)
HU (N,M)

+ 20t sin (¢ (N) VI (N, M)

PO -
) CNM) = g (MM D)
+ Ay AtV U N, M+g At R cos (¢ (N))

(13)

® 2 () 2
(t+ A0 v (M2 + Ul (M)
U (N, M) -_-—-(l—rAt o )V(N,Mj
HY (N, M)

—2w /At sin (¢ (N) 'Ug) (N, M)

©  GHO0D) A
+ Ay ATV (N, Mg 2 D SO AD

(14)

(t+A42) (¢ =AL2) At
C(N, M) = C(N’ M) + R cos (’fb (N))

(1) (t) (t) (v
(HU(N M) U (N, M) — HU (N, M—1) U (N, M—1)
A A

(t) (t)
HV (N,M) V (N, M) cos (3 (N) - 5

(1) (t)
— HV (N=1,M) V (N 1,M) cos (¢ (N=1))
FANK ) )'

(15)

where

(t) (t— At/2) (t—At/2)
HU (N, M) = hU (N, M) + } (£ (N, M) + £ (N, M+1)) (16)
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(t) (t-At2)  (t-At2)
HV (N, M) = bV (N, M) + } (C (N, M) + £ (N, M+1) (17)

(3) (t) (1)
H_ (N, M) = } (U(N, M~ + UN. M) + (U+1,M—1)

(t)
+ UN+1, M)  (18)

(t) (t) (t)
H, (N,M) =} (V(NM=D+V (NM+V (N=1, M+1)

(t)
+ VN1, M)) (19)

) PO ® (t)
Vo U= —A—lz— (U (N--1, M)+ U (N+1, M)+-U (N, M+1)

)
+ U (N, M—1)) (20)

2 1 ® (v (t)
V' Ve= 7 (V(N=1, M)+ V(N+1, M)+ V(N, M+1)
VAN

0]
+ V(N, M-1)), (@1
where
ANAl=RAGe

For this method, efficient time step is required for numerical
stability and is obtained by using the Courant-Friedrichs-Lewy stabi-
lity condition (Neumann and Richtmyer 1950). The maximum
time step be chosen so that any combination of signals can transverse

at most one zone per time step [At = 90 sec], mathematically, it is
interpreted as

t < _—:«%L__—— . (22)
v 28 max

where A\ [/ is the grid size and hmax is maximum water depth in the

area.

The model is covered by the computational grid of 26x 30

computational points (Fig. 5). The grid size is .083° = 106 cm.
Position of the water level and velocity and closed boundary are¢
explained in Fig. 6.
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Fig. 6. Hydrodynamical-numerical grid.




Results and Anzlysis
Tidal Charts

Co-tidal and co-range charts for the four major partial tides

M2 , 82 , KE and O, are shown in Figs. 7, 8,9 and 10 respectively,

The comparison is made with only tidal gauwge, Karachi. The
difference is about 1 cm in amplitude and 3° in phase of M2 —tide,

Jcm in amplitude and 1°in phase of 5, —tide, [ cm in amplitude
and 4° in phase of K, —tide and 0.2cm in amplitude and 1° in
phase Ol —~-tide, Thus, they have a good agresment as the computa-

tional error is negligibly small. In Fig. 7 the results of M'2 —tide

KEDIWART MOUTH

Fig. 7. M2 —tide in the Sonmiani Bay and Indus Delia, co-tidal

(——) and co-range (......) lines.
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/
{
/\
[P . V. N

Fig. 8. 52 — tide in the Sonmiani Bay and Indus-Delta.

e e o e b e e s

K, ~TIDE

|
|

S AU AUV R Y Y P

Fig. 9. K —tidein the Sonmiani Bay and Indus Delta,
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DELTA

] HEDNEAS MOUTH Y

Fig. 10. 0[ —tide in the Sonmiani Bay and Indus Delta.

shows that the greatest tidal amplitude appears near the Kori Creek,
whereas, the greatest tide amplitude of 82, Kl and Ol appears

near the Port Qasim. The values of amplitude and phases for 25
computational points along the coastal are shown in Table 2.

The tidal current, as the result of superposition of MZ’ S2 .
K, and 0, —tide, are reproduced is the area. These are plotted for

period of 24 hours on August 1, 1973 for the spring tide. The velocity
fields are plotted for every two hours, Inthe velocity field for the flood
(Fig. 11) and the ebb (Fig. 12), the flow is directed towards Sonwiani,
Port Qasim, Khuddi Creek, Dubbo Creek, Sir Mouth and Kori
Creek during the flood. The greatest magnitude of tidal currents
occurs around Sir Mouth. Its value during flood is 75 em/sec and
during ebb is 50 cm/sec.

From the tidal current and tidal elevation charts, onc knows
abouyt the movement of the tidal wave,
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" Position 203 S K o
Mo, PLACE

R E a8 k a8 k a k a '3

o ¢ o
1 Sonmiani w, 1 2533 66.33] 83.63 172.40] 32.32 19768 39.37 349.29{ 23.67 344.44
2{ Sonmiani w. 2 25.33 66.41] 84.89 172,83} 32,72 197.56] 39.52 349:24] 23.72 344.29
a Senmiant 25,25 66.50] 84,06 172.35{ 32.37 195.81| 39.:1 348,38| 23.63 343.55
4 Soredani East 1 25,25 €6,58] 85.13 172.84] 32,70 135.95] 39.53 348.47] 23.67 M3.54
S! Somieni Fast 2 25,17 66.66] 85.11 172.75] 32,69 195.62{ 39.52 348,311 23,68 343.45
6, Habb 2484 66.66] 80.20 169.41 3L.44 193.39] 39.12 347.06] 23.55 342.73
24,67 66,75] 78,61 167.65] 31.84 193.19] 38.97 347.04] 23.68 342,64
24,67 66423] 79.22 167,51 32,44 192.63) 39.94 346.86] 23.78 342,49
26,67 66,91] 80.00 167.47[ 33,17 192.14] 39.43 346.73] 23.92 342.37
24,67 66.99] 81.00 167.56] 34.10 i91.67] 39.73 346.65] 24.1] 342.25
24,67 67.08| 81.9% 167.84] 35,14 191.13] 40.04 346.55] 24.33 342,37
24,67 67.16) 82,73 168.28] 36.05 190,72} 40,30 346.57| 24.53 342.00
13 Qestm Port  © 26,59 67.25] 82.92 169.43] 36.75 191.72] 40.57 347.55] 24,76 342,30
14] Kuddi 1 ‘ 24,50 67.25] 82,11 167,94 36,34 191.05] 40.37 346,88} 24.60 342.10
150 ®nddi 2 . 24,42 67.25) 80:90 165.15] 35.51 150.08| 39.96 35.95| 24.24 341.65
16{ Paitieni 26,34 67.25] 80,07 164.42) 34,61 189.97! 39.71 345.74] 24.05 341.53
17} Dabbo 1 ) 24,26 67.33] 80.17 164.16] 34.61 151.23] 39.61 346.66] 24,01 342,15
i8§ Dabbo 2 © 26,17 67.33] 79,73 163.95] 34.26 191.23] 39.50 36.67] 23.91 342,13
19 tabbo 3 24,09 67.331 79,01 163.87] 33.54 191.29] 39.25 346.75| 23.71 342.14
204 Hajambro v 24,00 67.33] 78,03 163.97} 32.84 190.98] 39.23 346.52| 23.62 341,56
C 21 Vedwer! Mouth 1 23,76 67,50 77.51 166.80 30.93 194.01] 39.10 349,0%] 23.21 343.81
221 Fedme Mocth 2 2376 67.59] 77.97 166.52] 31.01 194.34] 39.27 349.33 23.26 344.02
23 Sir dputh 1 22,60 6216} 96,21 174,72 38.01 198.31{ 4L.66 350.92| 24.55 345.30
243 Sir Mouth 2 23.60 68.25] 99.07 177.08] 38.83 200,63} 42,80 351.92] 24.71 346.07
25§ Ford R 23,43 €3.41] 94.05 173338' 37,80 200,57 41,65 351,061 24,71 345,30

Tehle 2. Amplitude slcm), rphese k (deg) of the mjor tidel constituents
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Residual Currents

The residual currents in the absence of wind and denzity currents
are due to the weak non-linearities in the momentum equations.
These were computed by averaging the tidal currents for one period

of M2 — tide

T T
IT=—1~[UdtV=Sth (23)
T ' )

[o] o

where U and V are time averaged velocities and T is the period of the
M, —tide.

The velocity field due to the residnal current is shown in Fig, 13,
The residual currents flow eastwards along the Coast of Karachi and
flow towards Post Qasim and Khuddi Creek. This predicits the

=t cussec
G 3 6

Fig. 13. Residual currents.
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tendency of sedimentation of the approach channel of the port,
Along rest of the Indus D:lta, the flow is aleng or away from the
coast. In Sonmiani Bay, the residual currents flow anticlockwise,
with tendency to move inside the channel,

Conclusion

The tidal charts prepared with the help of the hydrodynamical-
numerical model had an excellent accuracy, They presented a
detailed picture of the equal amplitude, equal phase distribution,
tidal current and residual current in the area, Thus, they reproduce
the structure of the tidal wave. The tide table may be used to check
the accuracy of the results of short sets of cbservation at temporary
tidal gauges.
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Abstract

In this paper we give the notion of the centre of a BCl-algebra
and show that it is a p-semisimple sub-algebra. Further various
properties of BCl-ideals have been studjed and necessary and
sufficient comditions for certain ideals to be closed have been

investigated.

1. Preliminaries

A BClI-algebra is an algebra (X,*,0) of type (2,0) with the
following conditions :

(1) (x*y)*(x*z) < z*y,

(2) x*(x*y) <y,

(3) x

4 x

(5) x < oimplies x = o,

AN

X,

Y,y < ximplyx =y,

/N

where x € yif and only if x*y = o ([8]).

Let X be a BCl-algebra and M = [x€ X : 0<x! be its BCK-part.
Then, X is called proper BCl-algebra if X-M#¢. Note that a BCK-
algebra is a trivially BCl-algebra. K. Iseki [8] proved that M is an
ideal and a maximal BCK-algebra in X. It is established that xe M,
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y ¢ X-M imply x*y, y*x ¢ X— M. Thke following properties will be
useful in the sequel.

(6) (x*y)*z = (x*z)*y.

(7) x<yimplies x*z<y*z and z*y <z¥%x,

(8) x*o == x ([11]).

(9) (x*zj*(y*z)<x*y, for all x, y, z ¢ X ([8]).

We recall that a subset H of a BCl-algebra X is an ideal of X if

(i) oeH,

(ii) x*ycH,ycHimply x ¢ H.

It is easy to verify that for ye H, x<yimply x ¢ H and it is
not yet proved that every ideal is a sub-algebra. To remove this

difficulty C.S. Hoo [6] has givea the concept of a closzd ideal as
under,

A non-empty subset H of a BCl-algebra X is called closed
. ideal if

() o*x eH, xeH,

(ii) x*y H,y ¢ H imply x ¢ H.

Remark 1. Obviously o e H. Thus every closed ideal is an
ideal. It is interesting to know does there exist an ideal which is not

closed ?

Definition I. An ideal Hin a BCl-algebra X is said to be a
minimal ideal containing a subset B of X, if there does not exist any
ideal Hl c H, which also contains B.

Definition 2 (1. Let X be a BCl-algebra, Then x, y ¢ X are
called comparable iff x<y or y<x.

Defirition 3[1]. Let X be a BCl-algebra. Choose an element
X, ¢ X such that there does not exist y # X, with y“xo = 0. We

define
A(x, ) ={3eX:x <X}
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Clearly, X, s A(X)) and hence each A (x_ ) is non-empty. The
point %, € A( X, ) will be called ipitial element of A (x5 % that is
if for some y e X, y*xo = o0, theny = X, - Let [ denote the set of

all initial eleinents. We will call it the centre of X.
Note that M=A(0) and if O#X € I, then A ( X, ) ¢ X—M.

(10) In (1), we proved that in a BCl-algebra¢. U A ( X, ) =X
x el
o

and N A(x )=¢. Further, It is obvious that if

xOEI

x,v € X are comparable, then they both are contained ia
same A ( X ), for some X, € I.
(11) Let X be a BCl-algebra with M its BCK-part. If A ( X, ex,

then x, y € A X, ) imply x*y, y*x ¢ M. ([1]).

(12) Let X be a BCl-algebra with M its BCK-part and A ( X b
A(y,)c X for Xo Yy - lfxaA(xo ),yeA(yo ),
then x*y, y*x e X - M. ([1]).

(13) Let X be a p-semisimple algebra. Then every sub-algebra A
of X is an ideal in X ([12]).

(14) Let X be a BCl-algebra and A (x ), A( ¥, ) C X, If
o*xo =¥, then o¥y, = X, for X, Yo being the initial
clement of A ( X, )and A ( Yo ) respectively ({1]).

(13) Let X be a BCl-algebra, then following are equivalent :
(i) X is medial,
(ii) X is p-semisimple,
(ii) x*(x*y) =y (4], (6]. [12]).

Definition 4 [1]. Let X be a BCl-algebra with M as its Bck-Part.
An ideal A of X is called a proper BCI-Ideal in X if AN(X—M) = ¢.
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2. Ideal in BCI-Algebras
K. Iseki [8] proved that in a BCK-algebra X,x*y<x is satisfied

for all x, y € X, However, it is interesting to note that :

Lemma 1. Let X be a BCI-algebra with M as its BCK-part then
x*y € X holds forxe X, ye M.

Proof. Since ogy, therefore x*y<x*¥o = x or x*y<x. This

completes the proof.
Theorem 1. The centre I of a BClI-algebra X is p-Semisimple.
Proof. Obviously o=1 Let X, 1Yy el wherex ) # Y, . By
(12), X, * Yo e X -M. Let X, * Yo € A( z, ), for z, e I. By (11),

* * A . t H
yg) ZosPu. that is

z xo*yOsA(zO) imply ( x

o’ 0
0< (%, %y ) ¥z . By(Dx, *((x, "y, )*z,) <5, *0 Or
xo*((xo*f-,-‘o)*zo)s X5 which ireplies Xo*((xo*yo)*zo)
= X, because x, e L Now xozxo*((xo*yo)*zo)) gives
3o ¥ ¥y = (X, *((x, ¥y, )tz ¥y orx *y =(x *y )*

* < i ives *
o Vo S Z, which giv X, %Y,

w4

(x,*y,2%2,) €2z, . Or

=z - Hence [ is closed.

y 1, x

o’ Yo *(xo*yo)S.y0 implies

Further, For x o

X, *( X, ¥ ¥, )=y, - Hence by (15), I is p-semisimple. This
completes the preof.

Proposition 1. Let X be a BCl-algebra. Let x, ¢l and

A(xo)c_:X. If o*xoaA(x0 ) theno*xo = X -

Proof. Since X is the initial element of A (x, ) thercfore,

x, el Now o,x_ <1 imply o*x, ¢ T because I is closed. Thus

o*xo eI and o*xo rsA(x0 )} both imply o*x0 eln A(xo ) = {xo N

that is o*xo = X, . This completes the proof.
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Proposition 2. Let X be a BCl-algebra with M and I asits
BCK-part and centre respectively. Let Xo 1 ¥, € I where Xy 4 Y,
and A ( X, Y A( Yo } € X ~M such that o"‘x0 =X, and o*yo =Y, -

Then for xe A (X, hyeA(y )Xy gA (X, )UA((y, ).

Proof. Let X, * Yo ¢ A ( X, J. By definition of A ( X, )

< * .
o S %57 Yo

o<y, or y M, a contradiction. Hence X, ¥ Ve € A X0,

By (7) x5 * x<(x, *y, )*x or o<(x  * X)*y, or

Similarly, we can show that X, * Vo & A ( Yo ). Hence X, * Yo
€A ( X, YU A ( Yo ). Further Xy <X implies X, *Y<Xx*y. Also
Yo S yimpliesx, *y < x, *y,. Newby (10) x *y < x/ *Y,
aand X *y < 3*y bethimply x ) *y x, ¥y and x*y 2re contained
in the same Az, )< X for z, € I. Since X, 'Y, € A(xo)
UA ( Yo ), therefore x*y €A ( X, )y U A( Yo ). This compietes
the proof.

Proposition 3. Let I be the centre of X. Fer S I, if

o*yo=yo, thenxo*yo_—:yo*x .

* =
07X o

o Xo !
’ \ i * = % £ *
Proof. We consider x Yo = (0*2 ) *(o*y ) < Yo *Xq -
* J— * % * 3 %
Further Yo ¥ Xy = (o*y, )*(o X, ) S X %y, . Thus X, * Y

Sxo*yobothlmply xo*yo =¥, *X, .

< *x and * X
<Y, ° Yo o

o
This completes the proof.

Theorem 2, Let X be a BCl-algebra with M and I as its BCK-
part and centre respectively. Let o # X,» 0 # Y, € I. If, for

xs:A(x0 ),o*)!(z:A(y0 ),theno*x:-—yo EA(yo).

Proof. Let xsA(X ) then by definition of A ( X, ), we can

writc X, <X, which implies o*x < o*x0 . Since o, X, el and Iis
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closed, therefore o*x eI Simceo*xeA(y ), therefore, by (10),

o*x € o*x_  impli *% ¢ . ! *x eI and o*x
< o*x, mplies o*x A(yo) Now 0*x,, nd o¥x

sA(yo) both imply o*x, cA(y, ) NI = {¥, 15 that s

o*X =Yy, . Thus o*x < o*x =y implies o*X = Yo » because |

o
Yo ¢ I This completes the proof,

Theorem 3. Let X be a BCl-algebra and A ( ) X, x, ¢l

For x,ye A( x, ), 0*Xx = o*y,

Proof. Letx,ychA ( X, ). Then X, <% X, <Y and o"‘xgo"‘x0

and o*y < o*x0 . By (10, o*xo , 0*x are all contained in a unique
Az, ) c X for z, e L By Theorem 2, o*x = 5, = o*y, which
implies 0*x = o*y. This completes the proof,

Theorem 4. Let X be a BCl-algebra wi.h M and I as its BCK-

part and centre respectively. Let X5 1Y, € I be such that Xy # Yo
and A(xo ), A(y0 ) g X, If o*x0 =X then for yA(y0 ),

O*YEA (X, ).

Proof. Suppose o*ye A ( X, ). Since Vo <V therefore o*y

< o“‘y0 . By theorem 3, y, Yo © A ( Y, ) implies o*y = o*yo . By
¥ N _ o _

theorem 2, o*y e (A (X ) implies o*y = x . Now o*y = o*y = X,

implies o*y | = X, of (o*yo y¥x, = o or ( o*xo y*y, = o. Since I

is p~semisimple, therefore ( o*xo )*y0 = o imply o*x = ¥, - But

o*X_ =x_. Thusx0=o*x

o " =Y, implies Xy = Yy 2 contradie-

()
tion. This completes the proof.

Theorem 6. Let X be a BCl-alyebra with I as its centre. Let

Ngland H y A (x, ). His aclosed ideal in X if and only if
X, €N

N is a closed ideal in I.
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Proof. Suppose H is a closed ideal in X, We show that N is
a closed idealin I. Obviously INH=N. Let A ( X, ) A ¥, s H.
Then X, .Y, are initial elements of A (xo ) and A ( Yo ) respec-
tively ; and Xg1Y, ¢ N<lI. We prove that X * Yo © N. Since
X, € A ( X ) and Yo €A ( Yo ). Therefore X, 0 ¥, ¢ H. Further
H is clesed, therefore X, * Yo € H. Also Xo < ¥g € I and I is closed,
therefore X, ¥ Yo € I. Now X, * Yo © [ and X, * Yo € H imply
X, * Yy € HNI = N; that is Xy * Y, € N. Thus N is a sub-algebra
of I. By [12] Nis an ideal in I because [ is p-semisimple. Since N

is sub-algebra and ideal therefore N is a closed ideal in I,

Conversely, since N < I and N is a closed ideal in I, therefore
o £ N as well as it is a sub-algebra in T; that is Xy 1 Yq € N imply

X *y eN. Weshow that
o ‘o

H= U A( X, ) is a closed ideal in X simply proving :
€

%o

N
(i) His a sub-algebra,
(if) For ye X-H, xe H, y*x ¢ X—H.

(i) Case 1, Since oe N, therefore M = A (o) < H. Let
x eNandx,yeA(x )cCH By (11) x*v, y*x ¢ M c H. Thus

X*y, y¥x ¢ H.

Case 2. For Xys Yo € N, xo*yo, yo"‘x0 e N. Put
Xo*yo=ho(say)sN. Let xcA(x )< H, yeA(y,) s H

impli * * € x¥y  or x*
Thea x, < x implies x *y <x*  or h < x%y, Yo

eA(ho)g H Again,yo < y gives x*y sx*yosA(ho)E H.
Thus x*y ¢ H. Similarly, put Yo * X, = ko e N, then y*xeH. It

follows that H is a sub-algebra.
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(i) Suppose x e A ( Xy e H, yeA( Yo ) € X—H, we show
that y*x ¢ X—H. Now X e N, Yo el—~N. Since N is a closed
ideal, therefore R I-N. Put Yo * x, = ty where t)c I -N
andA(to ) € X—H. Nowxo < x implies Y, ¥x < Yo *x = t,

or yo*xgt or yo*x=t0.becausetosl. Thusy:}* X = t0

o
ceA(t)) s X—H. Again, Y, S gives Yo *X € y¥ or t, < yX

or y¥xe A ( t, ) < X—H or y*x ¢ X—~H. This completes the proof.

Lemma 2. Let X be a BCI-algebra and H &an ideal in X. Let
L < X—~H. If K= HUL is an ideal in X, then foreach x ¢ L,
X, ¢ K, where X, is the initial element of x, i,e, X € A ( LN 3.

Proof. LetxeL and X, be its iritial element, that is xcA ( X, )-
Then x ¢ K and X, * x = 0 ¢ K because K is an ideal, which implies

X, © K. This completes the proof,

Definition 4 [10). An ideal A of a BCl.algebra X is called a
maximal ideal in X if it is not prorerly eontained in any other proper
ideal of X.

Theorem 6, Let X be a BCl-algebra with I as its centre. Let
Ncl,then H = U A (x0 ) is a maximal closed ideal in X
X, €N

if 2and oply if N is a maximazl closed ideal in 1.

Proof. Necessity, we note that A (o) = M < H. Suppose
H - U A (XO ) is maximal closed ideal In X. Theorem 5
X EN

O
gives that N is a closed idealin I, We show that N is a maximal
closed idezl in I, Suppose T=NUP, where P is a non-empty subset

of I—-N, is a closed ideal in I. Then by Theorem 3§ K = U
YO eT

A ( Yo ) D His aclosed ideal in X, which contradicts that H is

maximal Thus N is 2 maximal closed ideal in I, which by Theorem §
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gives that H = U A (x,)isa closed ideal in X. Now we

erN

show that H §s a maximal ideal in X. Let K be a closed ideal of X
such that Hc K. Thus K—H # @. LetyecK—H, then by (10).
yeA( Yo ) for a unjque Yo e L Lemma 2 gives Yo © K and hence
Yo el N K. Further we note that Yo € N because otherwise Yo ®
N < Hand (1) y*yo € Mc H and H being an ideal will give
y€ H. Nowletz e A ( Yo ) then by (il), z*ye ¢ McH c K and
Yo ¢ K and K being a close ideal give that z¢ K. Thus A ( Yo)

c K, Let T=INK. Then K=y A z, ). Further we have
Z, € T

already shown that at least one Yo € T—N., Now Theorem 5 gives

T is a closed ideal of I, which contradicts that N is maximal. Thus

H is a maximal closed ideal in X. This completes the proof.

Theorem 7. Let X be a proper BCl-algebra, If H=MU A (x ),

X, € I, is an ideal, then H is a minimal idea! containing M.

Proof. Suppose K=MUL,Lc A( Xy ) be an other ideal
containing M. Let x € A ( o y~L and y ¢ L thea by (11} x*ye McK

implies x*yeK. Now x*y € K,y € K and K being an ideal
implies x € K, a contradiction. Hence K is not an ideal. Therefore
there does not exist any proper ideal of the form MUL. This proves
that H is a minimal ideal containing M.

Theorem 8. Let X be a BCl-algebra with M as its BCK-part and
order of X be n. Then, there does not exist a closed propsr BCI-ideal
of order n-1,

Proof. Case 1. Take M'=M —{m} and suppose H=M’y (X—M)
is a closed ideal of order n—1 in X. Since X is a BCl-algebra,
therefore for any x ¢ X—~M, me¢(M—M'). m*x e X. By K. Iseki
[6], m¥*xeX-M c H; and hence m*x e H. Nowm*xs H,xecH
and H being closed ideal implies me H ; a contradiction,
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Case 2 (1) Suppose H=X ~{y} is a closed ideal in X, for some
yeA(x,), where A ( Xo yc X—-M. Choose x& (A( X, )—{¥}
then by (11) y*x e MCH implies y*x ¢ H. Thus y*x ¢ H, x ¢ H being

a closed ideal implics y € H, a contradicton.

Case 2 (ii) Suppose H=X-{x | is closed ideal in X for x €
A(xo) being the initial clement of A(xo ). Choose X, #AXE
A(x, ). Then by (11) x,, *xsMcHorx, *x ¢ H, Now x *xe H,

x ¢ H and H being an ideal implies X, € H, contradiction.

Case 2 (iii) Suppose H=X—{y } is a closed ideal in X for
yozA(yo) where A (y,) = {v, 1. Choose 0#X, € HnI,
theny  *x  #y, because otherwise Yo X0 = Yo implies o = x_ ,
contradiction. But Xy Yy € I, T is closed, therefore Yo *xo el;
that is Yo *xo e H. Now Yo "xo ¢ H, X, € H and H being an ideal

impliesy ¢ H, a contradiction, This completes the proof.

Remark. A BCK-ideal of order (n-1) may exist is a BCI-
algebra of order n such that O (X—M)=1.

Definition 6 [3]. Let X be a BCl-algebra, G < X is defined as
G={x ¢ X : o*x=x} and is knowe as BC(-G part of X

Theorem 9. Let X be BCl-algebra withk G and 1 as its BCI-G

part and centre respectively, then G is a sub-aigebra of [.

Preof. Letx ¢ G. Then o*x=x. By (10) o*xis contained in a
unique A ( Yo ) € X for some v, € I. By Theosrem 2, 0*x = Yo ©
Torx=y ¢l which implies x e [ and G < I. Further by [11], G

is a sub-algebra. Hence G C [ and G bsing a sub-algebra implies

G is a sub-algebra in [. This completes the proof,
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Abstract

- In tl_nris paper we study some properties of monomorphisms and
epi-morphisms of BCI, the category of BCl-algebras and BCI-
homomorphisms.

1. vlntroam.:tion

In [4) we investigated some properties of BCI, the category
of BCl-aigebras and BC{-homomorphisms. It was not obvious
that monomorphisms are one-one or not ? Recently C.S.Hoo [8]
has answered this question and has proved that monomorphisms
are preciseely one-one homomorphisms. In this paper we use this
fact to prove thatif f € BCI (X, Y) is mono, Ix, GX denote the

centre and G. part of the BCI-algebra X, then

M f(X—Ig) 2 Y-Iy,

The second problem posed by us in {4] that epimorphisms in
BCI are onto homomorphisms or not is also partially solved in this
paper.
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2. Preliminaries

We shall follow standard definitions. Our categorical concepts
shall be those of the standard text [{2], to which we refer the reader
for definitions of standard categorical terms. Our notions of
BCl-algebras shall be as developed in [3], [10] and [11].

We denote by BCI, the category of BCIl-algebras and BCI-
homomorphisms, We recall that a homomorphism f: X—»>Y means
thatf(xi ¥y ) = (F(x) ) *(f( Xy ) and hence f (o) = o. This

also means thatif x < y, then f(x) < f(y). We shall denote a
general category by K, its objects by | K | and the set of morphisms
from an object X into an objact Y by K (X, Y).

We rzcail p € BC{ (X, Y) is a monorphism :f forall Z¢ | BC1 |,
f, g € BCI(Z, X) satisfying pof=pog, we have f==g. Further p¢
BCI (X, Y) is called epimorphism if wZ<¢ | BCi |, f, g € BCI(Y, Z)
satisfying fop=gop, we have f==g.

Definition 2.1, [1]. Let X be a BCl-algebra and x, y € X. Then
X, ¥ are called comparable iff x*y = o0 or y*x == 0. We choose an
element x, € X such that for all y € X satisiying y*X, = 0. we have

y = x_ . This is called an initial element of X. Let I denotes the

set of all initial elements of X, then I is called its centre. Further,

we define
A(x0)={xeX:'xo *x = o).

A( X, ) is said to be comparable if each pairx, Y€ A( Xy ) is
comparable, We call it 8 comparable branch. Clearly each A ( X, )
is non-empty, because Xy *xo = 0 implies L €A ( X, ). Obviously
A(x, ) == { X }. a singleton set is comparable, we will call it

uniary comparable,

Let M = {x € X :0*x = o}, denote the BCK-part of X Note
that M = A (0). If M = {0}, then the algebra X is called p-semi-
simple. A BCl-algebra X in which each A (xo) is uniary com-




17

parable is p-semi-simple. Moreover, in p-semisimple BCl-algebra

X, x*y = o impliss x = y forx,y € X.

{1) Let X be a BECl-algebra, !X as its centre, Then
U A(x,)=Xand n  A(x)=¢ (1]

%, € IX | iy € IX

(2) Let X be a BCl-algebra and A(fx0 ) €X. Thenx ye¢
A (x, ) imply x*%, y*x € M. ([1])

(3) Let X be a BCl-algebra with IX as its centre, then IX is
p-semi-simple. ([2]).

(4) Homomorphic image of a group is a group ([13]).

(5) Bvery sub-algebra of a p-semi-simple algebra X is an ideal
in X ([14].

(6) Let X be a BCi-algebra with I as its centre. Let A (x),
A(y,) S Xsuchthato#x ,y, € I. If for x€ A(x ),
o*x € A (y, ), then o*x=yo, y € A (yo).

(7) Let X be a BCi-algebra with Iy as its centre. Let N C IX

and H= U A(xo). H is a closed ideal in X iff N is a

%o

closed ideal in IX {25n.
(8) In a BCl-algebra X the following are equivalent ([1], [6], and
[14D).

(1) X is p-semi-simple,
(2) X is medial,
(3) x*y=o0 implies x=y,
(4) o* (o*x)=x,
(9) Let X be a BCl-algebra. A(Xx,), A(Yy,} € X, where
X, ¥, €lx- Then forall x€ A (x, ), if o*x € A{y, ),

then o*x=y . (2D.
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In [5], the BCI-G part of X is defined as
GX = {x:X€X and o*x=x7}.

Further it was shown that GX is a sub-algebra of X and infact a
commutative group. In [2] it is shown that GX is a sub-algebra of
IX' If f € BCI (X, Y), then in [4] it is shown that f ( GX) c GY ,
where Gy and Gy are BCI-G parts of X and Y, respectively. We

now generalize this result in the form of following theorem.

Theorem 1. Letf € BCI (X, Y), IX and [Y are centres of X

and Y, respectively, then f ( IX j € IY .

Proof. Letx € IX . Since (3) gives IX is p-semisimple therefore
(8) gives x=0%* (0*x). Thus

f (x)=F (o* (0*x))=f (0)* (f (0)* (f (x)) = o* (0*f (x)).
We show that f (x) € Iy . Letye Y besuchthaty < f(x). Thus

o*f (x) € o*y, wkich gives (o*f (x))* (o*y) =0 or ( o*f (x)*o*y))*
(0*f (x))=o*0*f (x)). Thus o* (o* (x))==((0*f (x);*(0*x)))*(0*y)=2
o* (o*y) < yorf(x) € y. Thusy=f(x). Heunce f(x) € Iy . This

con:pl:tes the proof.

Remark I. 1t 1s easy to verify that f (1, ) is a sub-algebra of
I, and hence is ideal in Iy .

Lemma 1. Let f € BCI (X, Y) such that f(m) = 0 for all all
me M=A 0;. Thenif x < yin X, we have f (x) == f (y).

Proof. Sircex <y, we havef (x) < f(y). Also since x*y=0,
ve have 0*(y'x) = (y*y)*(y*x) < x*y=90. Hence 0 < y*x, that is,
y xe M. Thus O=f (y*x) = f(y,* f(x), giving [ (¥) € f(x). Tais
proves that f (x)=f(y).

The following result characterizes Ix.
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Theorem 2. Iy = {xe X :0'(0*x) = x}.

Proof. 1f xe Ty, , then since 0* (0*x) < x, we have 0% 0*x)=x.

conversely, if 0% (0*x) = x and y < X, thea 0%x < 0%y, and hence
(0*x)*(0*y) = 0. This means that {(0*x)}* (0*y)}* (0*x) -0*(0*x)==x,
that is, x={(0*x)* 0 x)}*(0*y) = 0* (0*y) < y. Thus x=y and hence
XE Ix > This completes the proof

Lemma 2. LetX,Y € | BCI| and Ix . Iy be their centres. If
fe BCI (X, Y) is a monomorphism, then f ( X—Ix) S Y-Iy.

Proof. Suppose that x¢ X—IX and f(x) € IY . Then

f(x) = 0* {0* f (x)} = f {0%(0*x)}
Since f is a monomorphism, we have X = 0* (0*x) and hence xe Ix;
a contradiction.
Thus f(x) € IY which implies f (x) € Y—IY ; thatis f (x~ Ix) _
S Y—IY . This completes the proof,

Lemma 3. LetX,Y € | BCl | and ¥ » IY be their resp:ctive
centres. Let GX . GY be their BCI-G parts respectively, If f ¢ BCI
(X, Y) is 2 monomorphism, then (f ( IX - Gx) cly~- GY .

Proof. letx ¢ !X - GX and f(x) € GY' Let f (x)=z ¢ GY‘
then o*g==g implics o*f (x) = f (x)——(i) 7
Siacex € Iy — Gy therefore o*x =y € Iy — GX, . where x % vy,
Then f (0*x)=T (y). or 6*f (x) = f (y)——(ii)

F:om (i) and (ii) f (x) = f(y). Sincef is mcnomorphism, therefore
i=2y, a cortradiction. Hence f(x) & GY. But by theorem |,

f( Iy) € 1ly. Thus f(x) < Iy - Gy- This complees the proof.

Combining Lemma 2 and Lemma 3 we get the follows result
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Theorem 3. L2t X, Y € | BC{ | and Iy, Iy be their cefitres
respectively. Let GX’ Gy be the BCI-G parts respectively, If
fe BCI (X, Y), is a monomorphism, then
@) f(IX-GX)gIY—GY

() fX-Ix)e Y-Iy.

Remark. Let X, Y be BCI-algebras with IX s XY ;8 their centres

respectively. Let N < IX be a sub-algebraand H= U A (xo ).
X, €N

By (7). H is closed ideal in X if and only if N is closed ideal in IX .

Let f;: X-——Y be a homomorphism. We construct K = u
¥, €fN)
A(Y, )

then K is a ideal in Y because f (N} = Iy and f(N) being homomor-

phie image of a sub-algebra N is a sub-algebra of IY . Thus f (N)
is ideal in IY » which gives K ijs ideal in Y.

Theoremd4., Let X, Y € |BClland f € BCI (X,Y) is an

epimorphism. IfK = U A(Y, ). Then Y=K,
Yo €f(L )

Proof. We know that X = u A(xo) and X is an

xoe!x

S-ideal in X. Further Iy is a Sub-algebra in IX' Again f( ]’X)

cly. Thus {( IX) being sub-algebra of Iy is a ideal in Iy which
implies K == U A( Yo is a idealin Y. Let Y/K be the
Yo € f(L )
the corresponding quotient algebra.
f g
X.—> . Y——>5Y/K

_———

h
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We define g, h: Y~Y/K by
g(y) =yl
h (y) = [o] .

It can easily be verified that g, h € BCI (Y, Y/K). Further (gof)
x)=g (x):[f(x)]k and (hof) (x)=h (f (x)=[o] - We claim that
[O]k = [f (x)]k . To verify this we will show that f (x)* o=f (x) € K
and o*f(x) s Kyx € X. Let xe€ X, then 3 x, € IX such that
X, <X This gives f( X,) < f (x). But f(xo ) € f(IX ). Thus

fx)e A(f(x,)) < U A(y,) =K.
Yo € f(1,)

Hence f (X) S K. Since o*x € X : therefore, f(o*x) = f (0)*
f(x) =o0*(x) e f(X) ¢ K, Thus [ol, = (f (x)], » Which gtves

gof=hof, Since f is epimorphism, therefore g=h. Thus g (y)=h (y)
for ally € Y, which gives [yl = [0}, . Thus y*o = yek. Hence

YcKbutKcVY. ThusK=Y.
Theorem 8, Let X,Y € | BCI| and IX’ IY be their centres

respectively. Let f € BCI (X, Y) be an epimorphism such that f (X)
is an ideal in Y, then f is onto.

Proof. The quoticnt-algebra Y/f (X) is a BCl-algebra and we
define g, h: Y—-> Y/f(X)byg(y) = [y}f(X) and h (y)=[°]f(X) .

Further, (gof) (x)=g (f (x) =[f (X)]f(x, and
(hof) (x)=h (f (®)=[ol¢(x, -

Since f (X) is closed ideal in Y, therefore [O]f(X) = [f (x)]f(x) which

gives gof=hof. Since f is epimerphism. Therefore g=h and hence
g (y)=h (y) for all ye Y, which gives [o]f(X) = [y]f(X) or y*oc f(X)

for ye Y or y*o=ye¢ f (x) which implies Y € f (X). Butf(X) c Y.
Hence Y=f (X) which implies f is onto. This completes the proof.

The following problem gtill remains unsolved.



122

Problem, If £ < BCI (X,Y) is epi, then f(x)isidcalin¥

or not ?

10.

1.

12.

13.

14.
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Abstract
A sharp coeflicient estimates and distortion theorems are

determined for the class R)‘ («, B, A, B) of functions f (z) = z

® n
4+ = a z satisfying the condition
n=2

] f (z2)—1

, <
(B—A) B (' (2)~1+(1=—a) cos A e P )+A (1 @=1) |

for some &, 2(0<al1,0 <B<Dand—-1 <A<B<gl,0<Bg1andfor
allzin U ={z:]z | < 1}. A sufficient condition for a function to

belong to R} (2, 8, A, B) has also bzen determined. We chall also
prove that a subclass of analytic fuactions is closed under
convclution,

1. Introduction

Let N be tha ciass of functions

8

a_ z" a.n
3 n

f(z) =2z +
n

I v

that are analytic in the uait disc U ={z:|z| <1}. If a fuaction
f(z) € N satisiies th: condition Re (f' (z)) > o forallz € U, then

123
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it is well known that f (2) is univalent in U. We denote the class of
such functions by R. This class was introduced by MacGregor [6].
Let Rac denote the class of functions f(z) € N that satisfy the
condition Re (f'(z)) >« for o <a<1, z€ U. Clearly

R°=R.

In [!] Ahuja intreduced the class R>‘ (a, B) of functions f (z) € N,
defined as follows :

Definition 1. Let f(z) eN; and let o< a <1, o <B<g I,
and |2 | < —3- , Then f (2) is said to be in R" (s, B) if it satisfics

the condition

’ f’ (Z)—l ] : <1 “ 2)
[28(f (2)-1+(1-a) cosae~ 1A ) (f (z)—1) | ‘

for all zin U. We note that R® (o, 1)=R and R® (a, =R, .

In this paper, we introduce the class R} {«, B, A, B) of functions
f (z) € N, defined as follows :
Definition 2. Letf(z) € N; and let o < a <1, o< B <1,

2] <%and—1<A<le,o<B<1. Then f (z) is said to be in

R (. g, A, B) if it satisfies the condition
f (z)—1
(B—A)B (f (@)—1+(1—a)coshe '} )+ A (f (2)~1)

1.3)
forall zin U. We note that R* («, 6, ~1, 1) = R* (g, p).
By taking different values of the parameters «, £, 2, A, B

(0<a<l, 0<B<l, [A ] < l; , —1<A<BgI, o<Bgl), the class

R7‘ («, B, A, B) reduces to various well known subclasses of R ; for
example,
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A . ph [ 1-P+2ap 1+p
R ()

f (z)-1
f'(z)~1+2 (1—a)cosre

l)\,<B’ o<all

= ifE N:
} o<p<l, zeU}

¢

, 1-
R(y) = R°(——Y— Ity 1)

T4y ' 2
f'z)~-1!

T+ <yv,0<y <l zeU}

={fle

R* = R%(0,3,~1,1) = {feN:|f (2-1] <1, ze U}.

The above clasges have been introduced, respectively, by
Makéwka [7], Caplinger and Causey [2], Padmanabhan [9], and

MacGregor [5].
Also by taking different values of the parameters o, B, 3, A, B,

the class R (a, B, A, B) reduces to the following subclasses of R,

introduced by Ahuja (1] :

R:“ - R® (@, 1,—1,1) = {fe N: Re (e“‘ £ (z)) > @ cos A,

oga<], |2l < % »2€ U},

R+ = R (0, 27522 1,1

= {fe N: | e“f’(z)—(l+i sinA) | <L A< % ,ze U},

R = RY (0, 7, -1, D)

el)‘ f'(z) i sin &
{fEN { T cos A —§| <& t>h|rl< ,zsU}

* @ =R} (o, 1~a,=1, 1)
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i
f' (2)~isin 1] 1
= f‘ ‘ c — —— PR
{ N: cOos A ,.-ai< 2a »0<all,

We, further, observe that by spsacial chaicesof ¢, 8,2, Aand B

our ciass R (x, 8, A, B) give rise to the following new gubclasses
of R:

1. Rg’“ =R (e 25;1 ~1.1)

ihg o iy
_ e f(D—acosh—isinh |
- {fe N:| ey oo §| <6e> 4

oga<l,|r] < l;; ,zeu},

—A+Ay By—A
2 R, AB) = R® (20T, S8 An)

- L hd B '
= {fe N.[m! <Y, 0<Y<1,—1<A<BS1.

o<Bgl, 26U }

3, R: (A, B) = R (%, 1, A, B)

_ ‘ f' (21 -1
l Bf' (z)—[B+(A—B) (I1—a) cosre i | )
<l,zeU},
A A —A+AB-(A-B)ap  BE—A
4 R, (A B)=R’( i )

f'(z2)-1 ’

= ife N: ’ -
Bf’' (z)-[B4+(A-B) (1-a) cosre” 1] |

<B, oge<l, o<Bgl, zeU ; .

Since the class RY (2, B, A, B) includes various subclasses of R,
a study of its various properties will lead to a unified study of- these
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clasgses. In this paper, we determine a sufficient conditicn, coefficient

estimates and distortion theorems for R’ (2, 3, A, B). We shal

further prove that the subclass R’(:)‘a of R, 1is closed under
135 J

convolution.

2. Saufficient Condition

o0
Theorem 1. Letf(z) =z + Z a, 2" be analytic in U, Then
n=2

f(z)€R (4,8, A, B), if for some a,%, A and B (o0 < « < I,

[H<~g—,— 1< A<Bg 1,0 <B < i)the condition
[ o]
(B—A) B (1 —x) cos A
niznl a | < T=A—(B=A) B » whenever
—~A
o<pf < B=a)’ 2.1
and
o
(B—A)R(l—a)cos
nizn] a, | < [FAF(B=A) B , Whenever
—-A
o i € l: .
@Ay SP<L Q)
holds.
Proof. Let|z| =1 <1, and suppose o < B g_(_B:-_%)-' Then
| £(z)~1] = | (B=A) B (' (2)—14(1—a) cos r e~ )
+ A (' (z)~1) |
@ .
=| 2 na 2"l - | (B-A)s(1-a)cosne™
a=2
< 1
~ I (-A-(B-A)P)na_ ke
n=2 |

© 1
< X (14| —-A-(B-A)g|)nja_ |~
n=al a

~(B-A)B (1 —a)cos A
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0
< )32 (l—A—(B~A)B)n{an | =(B=A)B(1-za)cosh.
n—

The last quantity is nonpositive by (2.1), so that f (2) e R}‘ (=,8,A,B).
Next, we assume that (2.2) holds for _—A <pP<l. Then
(B-4A)
| £ @)=1] - | (B~A)B (f' (2)—=1+(1-a)cosre™ )
+ A @)-1|

o0
< T (1+A+(B-A)p)nla, | ~(B-A)p(I- @) coshrxgo.
n=2

This proves that f(z) € R* («, 8, A, B).

oe)
Corollary 1. letf(z)=2z 4+ Z a, z" be analyticin U. Then
a=2

f(z) € Rglaifforsomeo<a<l,lkl<—}.

| € (2§—1) (1—a) cos x, whenever } < § <1,

holds,

o)
Coroliary 2. letf(z) =2z 4+ Z ay z® be analytic in U. Then
n=2 '

f@)eR (Y, A, B)if forsomey, A,Blo<y<1,-1< A <B<I,
o< Bxgl,

v 0}

(B-A) vy
p R e
n=2n1an h< (1+By)

holds,
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by n
Corollary3. Letf(z) =z + 22 a; z= be analytic in U. Then
n=
f ()€ R (A, B) if for some «, ), Aand B(o < a < 1, [ | <.
~1<A<B<1l0<Bgl),

% (B—A)(1—a) cos A
Z ala, |< )tl'TB)‘

n=2

holds,

0
Corollary 4. Leif(z) =z 4 Z a, z8 be analytic in U. Then
n==2

f(z)eRZ B(A,B) if for some «,8,2, A and B (0 < « < 1,

o<B<L|rl< -J-, - 1SA<BSI, o<Bsl),
© (B-A)B(1-a)cosa
pX <
nZp % | e Y)

holds.

Remark. By choosing appropriate values of the parameters
«, B, A, A and B in Theorem 1, we obtain the results of Ahuja [1].

Motivated by Theorem 1, we introduce a class R (=, B, A, B) of

o0
the functions f(z) =z + Z 2an z" , analytic in U, which for some
D=

o Aand B (0gall, [A] < 12’— —~1<A<B<I, o<Bgl) satisfy

(21) and (2.2). Clearly, R* (¢, 8, A, B)C R* (2,8, A, B). Then
the following theorem is in order.

Thegrem 2 If

an

f(D)=2z 4+ 2 a z
@ p=2 0

n
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and

0 n
g(x)=z4+ X b_z,
n=2 ®

belong to R («, B, A,B), then so does F (z), where F (z) is defined by‘

n

©
F(zy=z+4 X anbnz
n=2

Proof. First suppose that f (z) and g (z) satisfy

{2.1). Then

0]
. (B—A‘;B(I—a)cosl( P —A )
nizn‘aﬂ I < I—A—(B—A)p °<Bs (B=a) )
(2.3)
[+ o]
{(B—A) B (1-a)cos —A
aiznlb“ < i—A*%B~£)ﬂ"(°<B<(u—A))'

(2.4)
(2.3) and (2.4) immediztely yield

l (B—A)ﬂ(l—a) cos A
n' " n(l-A—(B-A)B)

| a <l,(n>2,—1<A<B«]I,
o<BL1), {2.5)

(B—AYB (1 —~al cos A
n(l-A-(B—a)p)

b 1< <1, (n22,-1<A<Bg<I,
’ o<Bg1). (2.6)
Therefore, using (2.5) we obtzin

o0 o0 )
2 - . (B—A)B (1 -a) cos A

5 i ' . - ]

e LA L (e e R vy

n=2
(by (2.3). (2.7

Similarly, using (2.4) and (2.6) we get

0 AN _

2 (R—A)Bil—a)cosh -
Z nib < 2.3y
a2 00! ((—A=(B—A) B) :
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Now we have

oionpa ib q<( % nla |2)%(z nlb |2Y

n=12 2 n h=2 n=2
(B-A)B(l—-a)cosr ¢ —-A
S -A-(-ayp c\o<F< (B—'A"))

where we have applied Schwarz’s inequality [8] and relations (2.7)

and {2.8). The last inequality proves that F (z) € R (. B, A, B).
For the case when f, g satisfy (2.2), the proof is similar, and heace is
omitted,

3. Coefficient Estimsates

, —A
Theoress 3. Letf (z)€ R)\(ec, B, A, B), o<PB< ( ]13—A i , and

® m
f(z)==z+ X a z ,Z€U. Then
m=2

a1 < (B-A)B(I—a)cosr  , a.0)

n

The inequality is sharp for all admissible vaiues of «, 8, A, A, B and

for each n.

Proof. Since f{z) € R (2, B, A, B), it follows from Schwarz’s

Lemma [8]
£ = HIB-A)BEA]-(B-AW(I-a) cosr e 24 wiz)
Is[(B-A)P +A]lw(z) ’
(3.2)
v © o
where W (2; = % thz =2z¢ (z) is analyticin U and satisfies
m=1

the condition w (0) = o, l w2z} | <l forze U, Then (3.2) may be

written as
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{e-npa-acne s £ i@-mrpram, =t b
L m=2 J
f m © e
‘_miltm i miz Manz . (3.3)

Fquating corresponding coefficients on both sides of (3.3) we find that
the coefficient a on the right of (3.3) depends only on ay ,83 ...,

a,_;on the left of (3.3). Therefore, for n » 2, (3.3) yields

[ —ir , o1 m-1 |
{(B-A)p(1—a)jcosre + 2 [(B-A)f+Alma  z Lw(z)
L m=2 J
n o0
==~ I ma P z b 721 ,
m==2 m=n-+41
bt m--1 . .
where P b m 2 converges in U. Then since | w (2) | <1
m=n+1
we get
. n-—l ’
\ (B—A)B (1-a)cosr e~ + mEZ [(B~A) B+A]lm a., 781 l
n m—-1 ® m—1 |
> I me_ z + z b_ 2z . 3.9
m=2 m m=n+1 o |

Writing z = reie. r < 1, squaring both sides of (3.4), and then
integrating we obtain

n-1
B-a2 g (1-n?cos? ) + = [(B-A)B+AP m® |a_ | >
m=2 |
r2 (m~—1)
n e 0]

Mm=2 m==n+1
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Taking the limijt as r approaches 1 we have

2 (o 1% < @-A)2 B2 (1-0)? cos? a—(1—{(B~A)p+AT? }.

n—-1
2 12, (3.5)

|a
m=2 m

Since 0<B< ( %—:—i— ) » (3.5) yields

2

n” ja_ | 2 < (B—A)2 Bz (l-—-oz)2 cos? ) .

n
which implies

(B—A)YB (1—«a) cos A

n (n>2).

<
Iﬂnl\

The following example shows that the inequality (3.1) is sharp.
Bxample, Let

Z

f(z)=I

(o)

1= {[(B=A) B+A]—(B—A) B (1 —a) cosa e 1* 3 B~ 1 at
1-[(B—A) B+A] B! ’

where o<all, oB < (—:—3::%-), |7\|<;12r-,and—l<A<B<l,

o<p<1. Then it is easy to sce that
! f'(z) -1

_— <1, ze ),
| B—A)B (' @) —1+(1-xycoshe™ N+ A (' (z)-1)

which proves that f (z) € R* (a, B, A, B). The function f (z) has the
expansion

—iA
. (B_A)p(l-zodcme 2 +....,(z¢€ U,

f(z) =1z
which shows that the estimate (3.1) is sharp.

QO

Corollary 5. iff(z)=z + Z ay 2? is in R* , then
ne=2 Oy X



la | < {2§-1) {1 -a)cos A (532,
] § n .
0
Corollary 6. 1ff(z) =z 4+ X a z® isin R (y. A, B), then
n=2
(B-A) vy
< , (a2
| an[ a (n22)
o
Corollary 7. W f(2) =z + I _a_z"isin R} (A, B, then
n=2
| | < {B—A)(1—a)cas i s %),
n n
o0
Corollary 8. iff(z)=2z+4+ Z a 2 is in R (A, B), then
n:':?_ n “’ﬁ
la | < (B—A)pB(1l—x)cos (@2 2
n n

Remark, By taking appropriate values of the parameters

o B, », Aand B in Theorem 3 we cbtain the correspording results
estabiished by Makdwka [7], Caplineger and Causey [2], Padmanabhan
[9], Goel [4), MacGregor [5, 6] and Ahuja [1].

4. Distortion Theocrems

We now turn to an investigation of distortion properties of

Rx («, B, A, B).

' o0
Theorem 4. Let f(z) =z + 3 a_z" € R" (B, A, B).
n=2

Then for z€ U,

@] <
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LZ] {4 (B—A)B(1—a)cosn t+[(B-A)BLA {(B-A)
B{l-x¥ecos2h [R4 a2

I~ [B-Ajptafi dt,

(4.1)
and

2] | _(B~A)B(1-«)cosh.t+[(B—A)B~A]{(B=A)
B l-a)cos2h-[(B-A)R ~A]}t2 dt
I-[(B-a)p+Aj e '

(4.2)

For B = (_ﬁ’_i%_ ), the above estimates reduce to

A(l-a)cosr.r?
| -
[f@l<r 5 ,

A(l—a)cosr. 12
( “)2 (] z]=nm.

[f@]>1+
The bounds are sharp.

Proof. Sincef(z) € R (2, B, A, B), we observe that the condi-
tiem (1.3) coupled with an application of Schwarz’s Lemma [8],

implies
[ f (z) —&| <R, where

1—[(B-A)B+A] {(B—A) B+A] — (B—A) B (1 —«) cos? 2} r?

! 113( B;A ‘) [[B—A)B+A](l-—«)sin 22 r2
&= I—[(B—A) p+r AR I? '
(4.3)

(B-A) B =) COSD T ()] =) (4.4)

R= (BT A)p+ sl
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Hence we have
1-(B~A)B(1-a)cosA.r+[(B—A)B+A]{(B—-A) " (1-«)

cos2) — [{B—A)BJAl} 2
I1-[(B—A)B+AJ2 2

<Re (f'(z)) <

1+(B—-A)B(l-a)cosr.T+[(B—A)B+A]l{(B-A)B (1—a)
cos* A\-[(B=-A)B+Al} r?

I-[(B—A)B+A]Z 12 )]
If
14+(B—A) P (1—x) cos A . z+[(B—A) B+ A] {(B—-A)
— B(l—a)cos2 A\—[(B—A)B+ A]} 22
8= 1—[(B - A)B+A]? 22 '

then, since g (0) =1=f’ (o) and g is univalent in U, it follows that f’
is subordinate to g. Hence

[ @] <
14(B—A)B(l-a)cosr . r+[(B-A)B+A}{(B-A)B(I-a)
cos2 A—[(B—A)B+A]} 12

I—[(B—A) B+ A2 2 » (46)

In view of

z |z} )
tel= §roaw< { lf’(tcle)ldt,
(o] [+

and with the aid of (4.6) we may write

1 f@)] <

Pz} 14 (B—A)B(1—u) cosr.t+[(B—A)B+AK(B- A)
B(l-a)cos2A~[B—-A)p+A} 12

1-[(B—A) B+ A]2 12 dt.

o

Further, by using (4.5) we obtain
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1£@) | > Re (f’ (te)) dta

QO &em N

lZ1 1 _(B—A)B(1—a)cosh.t+[(B—A)p+A]{(B—A)
B(l—a)cosZ A—-[(B- A)B+A] 12

| —[B-A) P+ AP T a

2

o
The following example shows that the inequalities (4.1) and (4.2)

are sharp.

Example. Let

Z 1+(B-A)B(1-a)cosh.t+[(B—A)pB+A] {(B—A)
f(z) = S B(l—a)cos2rA—[(B—A) B+ A} ta
1-[B-A)B+A] ¢t

o
(4.7

where 0 <a<1, o<B<1 In] < % and -1<A<B<1, o<B<1. It

is easy to verify that f(z) e R} (=, B, A, B), and that the equalmes in
(4.1) and (4.2) are attained for z = + T,

Remark 1. Taking appropriate values of the parameters o, B, A,
A and B in Theorem 4 we get the distortion theorems for functions

in the classes R#* , R (v, A, B), R (A, B) and R}, , (A, B).

Remark 2. For suitable values of a, B, 2, A and B in Theorem
4, we obtain the results of Abuja [1], Makéwka [7], Padmanabhan 191,
Shaffer [10], and MacGregor [5, 6].

5. Convolation of Functions

In this section, we preve that the class Rg‘)‘a is closed under

convolution,
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o)
Theorem 5. Iff(z) =2z + X a Z% and g (z) =z
ne2

+ % b 2% belong to R** . th
n=2 n 5 b’a’ e

0
n
F(z)=l+§n12nanbnz

is also 2 member of Rg?‘a .

Proof. Since f and g belong to Rg‘)‘a , therefore

(1+1tan ) f' (2)—i tan A—«a
l—«

) J <6, (ze U),

and

(I+itann g (z) —itanir—a ' < ¢ (zeU).

l—a

Y
1t is well known [8] thatif h (z) = X <y z% is analytic in U and
n=o0

| h(z)| € D, then
)
£ Je, 1% <D%. .1
D=0
Using the estimate (to the function

(1+itan ) ' (z) —itan A—~«

1—x _8:
we get
1+i @ .
(l'-‘5)2 + ——ill_t_zn)“ 22n2 lag |2 < §2,
n==

which yields
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[o:8]
s 02 a2 <25-1) (1-a)° cos® &, (§ > )

n=2 n
Similarly, applying the estimate (5.1) to the function

(I+itan2) g’ (2) — itan -«

1—« ’“81
we obtain
'
z a2 b 12 < 25-1 (1-w? cos? 3, >
n==
We have :
{ (1+itan ) F' () ~itenr—a _ |2
I—a |
=|a-p+3 M) 2 a2a b 21
= | (1-§) ( —a n=2n obpZ
2 1-§ ® 2. |
< (-8 + (-l—:a—)sec)\ nizn a b Ir
2 o0 2:
s¢C 2)\ 5 n4 anl b l_2(11—1)
(1—0)®* n=2 bR
2 1—§ LR 1 f
< (I-§) +( l_u)secd nizn anéibﬂ'+
2 00 ! 4 2
ece A I
- 2 = n4lan bnl
(1—a)* n=2 { !
1-§ 26—11\2
< =07 +{ (455 ) seen+ (VY
o)
v 2

n=2

where we have used Corollary 5, that is, the estimates

(5.2)

.3

n? fa, b, |
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2§—1 \ {1l —a) cos A
la‘n"( § ) n

and

(25—1 ) (1—a) cos 2
: .

<
by | < 2

Applying Cauchy —Schwarz’s inequality [8] we get

(1+itan M F'(z)-itanA—a |2

’ l—a 6

ot + {45 ) (51}
(Y (2]

< - + (425 ) mer +(H1 )2

25 —1) (1—)? cos? »
<(1-6% + =D A -D(1-a) + ‘256 DA
by using (5.2) and (5.3). Therefore
‘ (14itan A) F’' (z)—itan r—a —5 ,|2 <62 '

1—a

2
if(1-6)% +(1-5 @5=1) (1-a) + EES—-—U ) < g2

ie. if (zg—l){ — 452 a-a53 (=) + 25 -1)° (l—a)z} < o, which

is strue for § > } and o<a<<1. Hence F (2) € Rg‘la
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