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SOLUTION OF THE nxn MATRIX
SPECTRAL PROBLEM

Myuhammad Kalim

Department of Mathematics
College of Science, King Saud University
Riyadh 11451, Saudi Arabia.

ABSTRACT

The inverse spectral transform introduced by Gardner ef al. [ 1 | and used”
by Ablowitz et al. [ 2] and others has proved to be a useful method for solving non-
linear evolution equations. This paper is an attempt to solve the spectral problem
which is the generalization of the spectral problem solved by Kalim [3]. The methad
which is given in this paper helps in solving the spectral problem when the
potentials are n x n matrices.

INTRODUCTION
In this paper the spectral problem
d

—u = {A(O +B&x,D}u, (1)
Ox :

where u is an n-element column vector and A({) and B(x, {) are n xn
matrices. The problem is solved by using the inverse spectral
transform and with the help of Fredholm theory. A set of spectral
data which is sufficient for the reconstruction of Bix, {) is found, and
then the algorithm (the inverse spectra transform) for the
reconstruction of B(x, {) is described. '

THE DIRECT SPECTRAL PROBLEM

Eigenvalues and left and right eigenvectors of A({) in (1) are
N, T (D and v, i = 1,2,..., n respectively and are written by

AD v (D = MO vi(hH. _ (2)

(1)




We take up the simplest case by assuming that, apart from
the isolated points, the N;({) are distinct and that they and 7 ,({) and
v;({) are regular throughout the complex {-plane. This assumption is
sufficient but not necessary. It appears, though it is not shown here
that the more general condition that, apart from isolated points,
there are no eigenvectors which are distinct and regular with respect
to { on some Riemann surface is also sufficient.

We define the function ®.(x, O,i =12, ... nthroughout
the complex {-plane such that

O u = dx, MOz gatisfies (1)

i) P;x, ) 2 v() as x » — >

(iii)  For any given {, ®(x, {) is bounded for — ® < x < oo,
Obviously these condltlons require that B(x, §') should tend to zero in
some sense asx —> + o0 .

We divide the complex {-plane into regions each of which is
labelled by the permutation (iy , iy, ..., i) of (1,2,..., n) where

Re (A} > Re Ay} ... > Re (N }.
On a boundary between two regions

Re {A;} = Re (N}
foratleastonepair i # j ,i,j = 1,2,...,n.

We define a projection operator P;({) which will project out
the v;({) component of an arbitrary vector: :

1
P() = ————— u.(O ¥
(O 7DD vi($) T; (. (3)
Au) = E .
Also PO = & (g6 = N} > 0 P, (4a)
and P/ = ) P (4b)

Re {A,(5) — \; m} <0
These projection matrices are analytic in the interior of any
region and

PL(O + Pi(u)(o + Pi(l)(b =1, (5)

(2)



We define
K,y = exp {&x—=y) (AD - ANOD}.
{0(x —y» I — PO }.BY, D.6)

where 8 (x — y) is the step function
0 if x < y
f(x—y = (7)
1if x < y
Now we consider the Fredholm equation

B, ) = v + T K (5, O . 8,0, D dy. 8

-

The Fredholm determinant f;({) and minor F;(x, y, {) are given by

o}

f = LR, @

m=0
where

(—1)m n ®  »® @

- ofelm)

JiJg - Im=l g U -

( xpjp x2’j2’ s xm’jm

K(m) T am

L xl’jl’ x2’j2’ tee xm’jm J

. [ xl,dl,x2, d2,...§xm,d1n I
where K¢®

. ylyk1’y2’k2"--yym’km J

( Kitky (x, 1) Kijkg (x1,¥9) ...

= det (11)
L I{jZkl (12,)’1) I{ijQ (x2,y2)... mXm
Fi(x) Y, O = Z Fl(m) (x) .}’) g"n (12)
m=0

where the jk the element of F;' (x, y) is

(3)



n
(m) (=™ ® % <

F yy) = — v [ (...
jk(xy m L ff [
Jide  im=l —x —o - o
xvj’ xl).jly xz,jz, CERNEY ] xm,.jm
Kim+1) .
Yy ky xl’jly x2y.j2y foe ey xmy.jm
dxq,dxg, e, dx,, (13)

Standard Fredholm-thecry requires that region of integration
in the Fredholm equation should. be finite but in our case it is
infinite as can be seen from (8). To overcome this difficulty we now
impose conditions on B(y, {). It must be such that there exists a real-

function K(y , {) satisfying

| (K, 01, | < ko, 0 (14
for L,k =1,2,...,n, —00 <x < % and

@

[ Ko, O dy = M, - (15)

e .

where M({) =0 as {— oo and is bounded throughout the complex
{-plane. Under these circumstances the series for the Fredholm
determinant and minor converge and it follows that fi({) and
F;tx, y, {) are analytic with respect to { in the interior of any of these
regions and that their limits as { approaches a boundary exist and
are finite. Thus provided f;({) # 0 the resolvent is

1
Ri(xyyy g’) = W Fi(xyyy o (16)

and the solution of (8) is

‘I’i(x,f) = Ui(() + '[ Ri(x,y,()v,-(() dy 17

This solution is bounded for — o < x < < and since it is
easily shown that if (14) is satisfied then

ol kar 03| < Ko, e e - as)

(4)



for y > x where P is the smaliest non-negative number in the set
{Re N;(D) — N(D, J # 1}, it follows from (8) that in the interior
of any of the regions in the {-plane,

Q,x, H = vi(D) as x > —®
Thus we have that

®,(x,H = exp {N(Dx} 0x, D,
where <I>i(x, O,i=1,2,...,n form aet of Jost functions.

®,(x, O ¢ M= ®,(x, O (19)

satisfy conditions (ii) and (iii) at any point in the interior of any
region of the complex {-plane where f;({) # 0 it is easy to check that
condition (i) is also satisfied. We take (8) and (19) as the definitions
of the Jost function ®;(x, {). It is regular throughout the complex {-
plane apart from poles where f;({) = 0 and finite singularities on the
boundaries between the regions. Conditions (14) and (15) ensure
that

Lim {exp (=N (Dx) ¢;(x, O — v,(D }

_(-’Cb
= Lim {¢,(x, ) —v(D} = 0 (20)
s-ﬁm .

THE SPECTRAL DATA

The spectral data consists of information about the
singularities to the Jost functions ¢;(x, {). First we consider the
poles. These occur where the Fredholm determinant f;({) vanishes.
We consider only the simplest case by assuming that the zeros {;*),
k=1,2 ..., m;of f({) are simple, do not coincide with a zero of
fi(),Jj # ianddo not lie on a boundary between two regions. In this
case, the pole in ¢,(x, {) is simple and the residue is:

Res ¢,(x, (‘k)) = Lim @) { (¢ - ®) ¢, O}
=i

= (I:ir;li(m {ﬁ{—%(—mfm ¢ix, O},

where fi(&G%) = 0

(5)




- Lim LD o 21)
L i(k) {f,-'(i') bix, O},

where f;'(D = &d—f f(O (22)
Ifu,te, O,i=1,2,..., nare solutions of (1) then the wronskian is
given by
Wluy, ug, ... uy) = det[upuy, .., u, ] (23)
and -;—W =T, {AO+Bx,H}W 24)
x .

By choosing u;(x, ) = ¢, H (i =1,2,...,n)(24) becomés
w (¢1(xa Oy ¢2(x) Dy “ e vy ¢n(xy o )

x
=aexp { T, (AD) x + [ T (B, O)dy} (25)
n
and  Res ¢,(x, {;¥) = j;l 'yij(k’ d>j(x, [P (26)
J#L

The quantities {;'*' and ‘yij("” constitute the discrete part of the
spectral data.

Next we consider the finite singularities on the boundaries
between regions. If on a given boundary there is only one pair i, j
such that Re (\;, = \) = 0 we shall say the boundary is simple.
The two sides of a simple boundary can be labelled +ve according to
the sign of Re (\; — A;) and we shall use the superfix + to denote the
limit of a quantity as the boundary is approached on the +ve side.

From the definition of K;(n, y, {) it is clear that since
P — P = PO 27

S Kreyn D Ky, D=exp{x — ) AD - NOD )

= exp {(x =y A\ — N — MO} Pi(H By, O (28)
and Ki(x,y, O =exp {(x — y) ()\j(§') - NO} Kj+ x,y, 2N

(6)




The resolvent equation

Ri (x,.)', D - Kl (x)ya g')

0
J‘ R;(x,2, ) . Ki(z,y, D dz

— oo

J’ Ki(x,z, ) —R;(z,y. O dz (30)

gives R;(x,y, ) =exp {(x —y ()\j (O — MDY R;* (x,y. D B

And finally we know

dix, Qe N =y + J‘ R;(x,y, O .v; (D dy

— o

Gt x, D e NOT = pud) + [ Rt y, O v dy

¢, ", e N = p(D f Rix,y - v({) dy

d 0, O — ;7 (x, H = exp {\;(Dx}
T {R 5,0 — R,y 0 ). v(DHdy

= exp {N\;(\x} T ]3 T[B(x—w)I+Ri+(x,w,§')]

— 00 —0® — X

- [K* w20 -Kw,zHI
—[dz—nNI+ R,y OH]v()dwdzdy

exp {A(Ox} ]‘a ]3 [{&x—wI+R*(xw ]

— o —

exp { ()\l(p - )\J(D z}. P’(D . B(z, D . qLi(z, D dw dz
qu(x, [g) jS(o , (32)

(7)



5.y §')
Be,D.¢_z.0dz (33

Now we will discuss the case for the compound boundaries.
On the compound boundary"

Re \;? < Re A/ < Re A\,

is on the +ve side and Re \;¥) > Re ;¥ > Re N,!9 on the —ve
side. Thus

where Q;;({) = -1 -~ T exp { \(D — )\j(i’)) z}

P — P (D) = PUD + Py(d) (34)
Kty —Kixy O =exp{x—y Q- NOI}

and Kty O = exp { &~ y) OO — N K (5,3, O

(36)

Arguing in the same way as for the simple boundary we get
Gt x, ) — 67, O =, O Qi+ DT (x, O Qe (3D
where Q;;({) is give by (32) and Q;({) is given by

1 ~
Wil = U0 . v (D Uk

Texp {0 —ND2YBE, D . ¢z, Ddz (38)

The quantities Q;;( {) along all the boundaries constitute the
continuum part of the Spectral data. The spectral data is

S = { g‘i(k),-')’ij(k)’ QU(D)I ’j = 1’ 2’ .. ',n!i = J

K = 1,2,.,m; and { runs over all the boundaries between
the regions. 39)

- THE INVERSE SPECTRAL PROBLEM

The inverse spectral problem that of the reconstruction of the
matrix B(x, {) from the spectral data S. We notice that the quantities

$;06, ) = exp{ —N(Dx Y (x, O (40)

(8)



(from (19)) have the following properties:
() bix, O —v;(H >0 as > o0 from (20) 4D
(ii)  ¢;(x, D has simple poles at { = {;* |
k=1,2,..., m; with residues

n

Res ®; (x,{;*) =j§1 5% exp {OV(GH =\ (6 %0x) @0, 65
j#i
from (26)
(iii)  On a boundary
Pt (6, - P, (6,0 = L; Q) exp (D — N(D)x} §;*(x, 1) (43)

These properties are sufficient to define $;(x, {)

m;
gi(X, §‘) = l)i(g') — Z Res (pi(x’ g-i(k)) :

k=1
..+. ; ! — @—( , ! . . )
+LI{¢‘(I’“ ‘x“d;’ : (44)
2mi ¢ =<
@l(x,g’) = l)i(o -
m;
m {9 = NG x )
R = Ty jtx, £
k=1 j;i & ¢

1 QD exp (M) — N(ENx Y o,
TR v —¢ &t ) df

(45)
where the integral is along‘ all the boundaries the direction of
integration being so that the +ve side is on the left. By choosing
appropriate values for {, the left hand side of the equation (45) can
be written-as

Qix, R, 67 =12, .00 #j k= 1,2..,m, ie,

mj mj
‘I)j(x, g-i(k)) = Ui(o - Z
pk=1 gi=1

9)



) -
7,»J_q(p exp { A ({P) — N(EP) x B (5, £7)

g(p) — g-i(k)
. __1_ f nzl:i E': Q.L‘L(g-') exp { ()\q(g") - )\J(gﬂl))x }
2w VD) g1 &%
$,t(x, {yd{ - (46)

or when { approaches the boundary from the appropriate sides we
have the left hand side of equation (45) ®*(x, {'). There is
singularity in the integrand. To overcome this difficulty we draw a
semi-circle around the singularity, keeping the singularity on the left
side of ‘the contour. Thus we have a set of linear matrix/Fredholm
equations in the unknowns ®;(x, §;*) and @;%(x, {"). The question
of the existence and uniqueness of the solution to these equations
has yet to be investigated, but in many cases of practical interest
there appears to be no difficulty. Equations (40) and (45) give
$.(x, H,i=1,2, ..., n throughout the complex {-plane and hence
B(x, {) can be found from (1).
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4 CYCLIC 4-STEP A-STABLE METHOD
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and '
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Zakariya University, Multan, PAKISTAN.

ABSTRACT

The solution of stiff system of differential equations contains slowly as
well as fast decaying component. The numerical method with finite stability regions
are therefore not suitable for solving such systems. One is therefore interested in
methods which are absolute stable in the left-half complex plane or in at least an
infinite portion of it.

In this work { cvclic {-step A-stable methods of order two are constructed.
It seems that the methods of order higher than two may not be possible. The
methods are applied to stiff and non-stiff problems. The numerical results are then
compared with some published results.

1. INTRODUCTION

Let us consider the initial value problem
y = f@,y (1.1)
0 = y,,0 <t < T ‘

For the numerical approximate solution to the initial value
problem (1.1) m cyclic k-step method, namely

Zpns1 = AZy, + mhByf(Z,, .. 1) + mhBf(Z,,,)
(n =0,1,...) (1.2)

(P. Albrecht [6]) are to be considered, where A, B, , B, are the £ Xk
matrices, '

(11)



r + )
f(tmn+k—l s Ymn k-1’ ‘
f(tmn+k~2 !ymn+lz—-2)

[Zy,) =
. f(tmn ’ ymn) y
¥e 3
Ymn+k-1
Ymn+k-2
Zpn =

\ ymn, y
The linear k-step method of the type

k k

Z ai’yn*"g +h Z blj‘(tn+v'.Yr),-pp:E =
y=0 r=0

is special case of (1.2) when m = 1 (Urabe [7]).
DEFINITION 1.1
Puttingy’ = Ayin (1..2), we get a polynomial
det [(I—HBgy ¢ — (A+HB)] = Qu, H) (1.3)
where H = AA |
We call it a stability polynomial.
THEOREM 1.1 (MIR [4])

Let there exist a unique solution of the initial value problem
(1.1) and y(¢) the exact solution to (1.1). Let (¢t , y (¢} be sufficiently
smooth. Then m cyclic k-step method (1.2) is consistent with the
initial value problem (1.1) if the following conditions hold:

Ae = ¢

and A-DC =mU—¢)e,

(12)



where ¢ =

= By + By,
(& —1)
E—2
C = ' ,1is B X  identity matrix
1
. 0 U

The method (1.2} is of order g, when simuitaneously the
following conditions hold:

p—2

(A=D) Cp =pmdA—=¢)CP~1 + ¥ (O)y mP="(1—(p—»)By)C*
r=0

P =0,1,2, . , q) (1.4)

where the sum on the right-hand side for p < 1 is considered to be
empty and

~

[k — 1)P
(h — 2)P

1
. 0
DEFINITION 1.2 ([2D

Let w;(H), i = 1 (1)k be the eigenvalues of the stability
polynomial Q(u , H) (1.3). The method (1.2) is said to be absolute
stable if |u;(H)| < 1, i = 1(1)k,where H={HeC: |p;.(H)|<1,
i=1(1)k} is called its regions of absolute stability.

(13)



DEFINITION 1.3 ([5])

A method which is absolute stable in the left-half complex .
plane C is called A-stable, that is, a method is A-stable if

1IH D {H:Re(H) < 0}

THEOREM (1.2) (Dahlquist (1])
An explicit linear multistep method cannot be A-stable. It
follows that explicit m cyclic k-step method cannot be A-stable.
2. CONSTRUCTION OF 4 CYCLIC 4 STEP A-STABLE
METHODS

To construct 4 cyclic 4-step A-stable method of order two we
determine the 4 X 4 matrices A, B, By so that they satisfy the first
three linear equations in (1.4).

Each of these equations represents 4 single eciuations.
Therefore, we have to solve 12 equations for 48 unknowns, i.e., 4-
systems having each three equations with 12 unknowns and 9 free
parameters.

In order to make the method A-stable, we shall choose the 9
_ surplus unknowns in such a way that

[, ()| < 1 G = 1,234 ,Re(H < 0

Adopting the above mentioned procedure, we have, therefore
the following equations.

Ae = ¢
(A—DC?=80—-B;—B)C+16d—~2Bpe (2.1

where

a) a9 a3 apy
Q) Qg9 Qg3 Ay,
a3, agzg 4agz asy

Qg Qg ay3 ayy

(14)




[ by byp by by
B, - byr byy bag by,
b3y b3y bz by,
L by by b3 by
[ ¢y Cl2 €13 €14
B, = Cg1 €22 Cg3 Cgy
€31 C32 C33 C34
L C41 Cy2 Cy3 Cyy
[ 3
2
and C = 1
0
L

The four systems from (2.1) are given by

First System

a; +agt+taztayy =1

3a;,+2a9+a 3 = T—4b, —4b5—4b3—4b, —4c | —4c 9 —4c 3—4Cq

9a,,+4a,9+a,3=42—56b; —48b 5, —40b,3—-32b,,—24c,, —16¢15— 8¢ 3
2.2

Second System

ag) + agg.t agg + agy = 1

3a51+ 2099+ 093 = 6—4by; —dbgg —4bgy —4by  —4cy; gy —deg3 —4cyy

9a9,+4a59+a93=36—56bg, ~48byy —40b93—32b4 ~24cy —16c99 —8Co3
(2.3)

Third System

a3 +agy +agy +tag =1

3ag)+2agy+agy = 5—4by; —4bgy—4b3z—4bgy—4cy) — 439 —4cz3—4cy,y

9ay, +4a39+a33=25—56b3; —48bg9—40b33—32b3, —24c3; —16c39 —8cg3
(2.4)

(15)




Fourth System |
ayy= —22b,;—18byy —14b,3—10b, —6cy; —2c4p+2c 3+ 60, —ay,
ayg=—3+40b ;+32b,, +32b,9+24b3+16b+8c  +0c 9 —8c,3
—16cy,+3a,y
a43=1—18b41—14b42—i0b43—6b44—2c41+2c42+6c43+ 10c,,—3a,,
(2.9)

METHOD 2.1

We shall now choose the free parameters for the four systems
(2.6) — (2.9) in such a way that the conditions of A-stability, namely

| (H) | < 1, (=1,234),Re(H) < 0,

are satisfied. The characteristic equatibn (1.3) gives

[ 1-Hb,, —Hb,, ~Hb, —Hb,

—Hby, 1—Hby, —Hby; —Hb,, )
| ~Hby, —Hb,, 1—Hby, —Hby,
f [ —Hby, - —Hb, —Hby 1-Hby,

ay +Hey; ajp+Heys ag3+Heys agy+Hey

ag +Hegy age+Hegy ag3+Hegy  ag +Hey,y

v
031+H031 a32+h032 a33+HC33 034+H634

ay +Heyy ayp+Heyy ayg+Hey ayy+Hey,

This gives

| p1=Hb) 1 =a) ~He, THHb ;e —Heyy ~HHb g —a 3~ Heyy ~pHb  —a) —Hey,
~WHby —ay ~Hey  —WI1=Héy)=ajy~Heyy  —pHbyg—any—Heyy = Wby, Ty ~Hey,
~WHby ~ag) ~Hey) THHbgpmagy~Hegy WU —Hbggimagy—Heyy  —pHbg mag = Hey
THHb, —ay THey, THHbgy—ag~He,  uHbgTagTHey  pil—Hbima wHey
=0
(2.10)

Let us choose,

big=big=by=cpy=cg=cyy=ap=a3=0a;,,=0

(17)




This reduces equations (2.6) to

26 10

7 = 11by, + 3¢; 2.12)
—3 = —bb —cyp

Solving equations (2.12) simultaneously. we get

1
by, =t T3

from (2.11), we therefore have a;; = 1.
0(2.10) gives

Using these values of free parameters alongwith a

W l=Woyy —agy~Hbyy  —pHb,y—ayy=Heyy —pHb, | —a,, ~Hey,
(wl-H/2)=1-H/2)  —pHbyy agy—Heyy i —Hbgmagg—llegy  —pHby —ay, ~Hey,
—“}{b42—042_HC42 —‘,u.Hb',:}--am—Hc43 /‘J"Z_Hbul—a-l-l_ﬂc-u
=0
L 1+ H/2
This implies p; = ———— (2.13)
. 1—H/2
Ml =Hbgyr —aga =Hbyn = pHbog —asq—Heyy ~pHb,  may —He,
—pHbo ~a, ~Heyy  wi—Hbgy—a,,—He,, —pthy, —ay ~Hey [=0
by —a o~ Hey, “HHb s —ags—Heyy w1 Hb may —He,

(2.14)

Choosing
byg = agg =Cgy = 1,93 =cy3=by, =¢y; =ay3=ay,; =0
reduces equations (2.7) to

14 26 10 (2.15)

91 = T3~ ?bzl T3
—5 = 11bg; + 3cg;
= 10b21 - 2(:21 ) (2.16)
Solving .juations (2.16) simultaneously, we get
1 3
by = T3 1T Ty




1
(=]

From (2.15), we therefore have a,; =
Let us now choose

byy =b33 =byy=cyg=cy3=c3=ag =ay =a3;,=0
This reduces equations (2.11) to '

40 16

(13] = 5 — '—3— b32 - 'g' 031 (217)

5 = 18b32 + 6031

Solving equations (2.18) simultaneously, we have

Takingbyy =bjg=cp=cg=ag=ayp=0by=a,=cy=1

reduces equations (2.9) to '
a; = —2 —22b,, ~ 6c,, (2.19)
1= 9b,, +c,, (2.20)
0 = 8by, +cy

Solving equations (2.20) simultaneously, we get

=5

From equations (2.19) , we therefore have
ay =0

Using these values of free parameters alongwith A99 = a33 = a4y = 0,
equation (2.14) reduces to

p(i—-H)—1—H 0 0
—uH/6 n 0 = 0(2.21

0 0 wl—-H)—1—H

Solving (2.21), we get
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py = 1+H/1—H
py = 1+H/1-H,p, = 0 (2.22)

Obviously the eigenvalues in (2.13) and (2.22) satisfy the
condition of A-stability and thus makes the method (1.2) A-stable.
The elements of A, By and B are compiled in the following table.

(1 0 0 0
01 0 0
A =
1 0 0 O
. 0 0 0 1
[ 1/2 0 0 0
—1/4 1 0 0
By =
0 1/6 0 1
| 1/4 0 0 1
[ 172 0 0 O
-3/4 1 0 0
B, = (2.23)
173 0 0 O
| —5/4 0 0 1
METHOD 2.2

Adopting the same procedure and choosing again the same
free parameters as discussed previously for the method (2.1) we have
with aj) =1,a)3=ay=ajp=byy=bj3="by =cyy=cp3=c;=0,

1+ H/2

kr = T 5

1—H/2

and With byy = agy = €99 = bz = €93 = byy = €9y = 0, a9y = ay3 =
agy = 0,bg; =9/32,¢9) =15/32,0a9; =1, a39 = a33 = ag, = 0,
by = 1/6,03; =1/3,0a3;, = 1,ay =ay=a,=0,>b,; =1/32,
e =17/32,¢c4,=7/32,a,; =1

(2.24)

Bo=pg=py=0 . (2.25)
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The eigenvalues in (2.24) and (2.25) satisfy the concitisns of
A-stability and thus makes the method (1.2) A-stable.

Now the elements of A, B, and B, are compiled in the
following table.

(1 0 0 o
1 0 0 O
A =
1 0 0 O
1 0 0 0
(172 0 0 0
9/32 0 0 0
B, =
0 1/6 0 0
 1/32 0 0 0
[ 172 0 0 0
15/32 0 0 0
B, = (2.26)
13 0 0 0
| 7/32 0 0 0

3. APPLICATIONS TO NON-STIFF PROBLEM

In this section, the method 2.2 is applied to a non-stiff initial
value problem

y = x+y,y0) =1 (3.1)
having the exact solution
yx) = 2* —x — 1

The initial value problem (3.1) is computed on a VAX—
11/730 with step sizes h = 0.01 and h = 0.001. The explicit Runge-
Kutta method of order 3 and three stages ([3]) is

yn+1 = yn + h/4 (Kl + 3K3),

[ @550
f, +h/3,y, + h/3K)) (3.2)

where K,
K2

(21)



2
3

.We use the method (3.2) as a predictor and the method (2.2)
as a corrector. The numerical results are given in the tables (3.1} —

2
K3 = f(xn+§h,yn+ th)

13.2).

Table 3.1
stabie Mothod (22 Exact Relaive
of order two
X, Y, Y, R,
0.4 |0.1583781242D+01 | 0.158364937D+01 8.32D—~05
0.5 |0.1797626853D+01 | 0.1797442436D+01 | 1.02D—04
0.6 |0.2153223515D+01 | 0.2152961731D+01 | 1.21D—04
0.7 |0.2452204227D+01 | 0.2451871157D+01 | 1.35D—04
0:8 |0.2793139458D+01 | 0.2792733908D+01 | 1.45D—04
0.9 |0.3180459976D+01 | 0.3179962635D+01 | 1.56D —04
1.0 |0.3619023800D+01 | 0.3618433952D+01 | 1.63D—04
1.1 | 0.4114243507D+01 - | 0.4113536835D+01 | 1.71D—04
Table 3.2
stabte Mothod (5.2 Fixact Crtor.
of order two

X; Y, Y, R,
0.4 |0.1583651066D+01 | 0.1583649397D+01 | 1.05D—06
0.5 |0.1797444582D+01 | 0.1797442436D+01 | 1.19D—06
0.6 | 0.2044240236D+01 | 0.2044237852D+01 | 1.16D—06
0.7 |0.2327508926D+01 | 0.2327505350D+01 | 1.53D—06
0.8 |0.2651085854D+01 | 0.2651081800D+01 | 1.52D—06
0.9 |0.3019210815D+01 | 0.3019206047D+01 | 1.57D—06
1.0 | 0.3436569214D+01 | 0.3436563492D+01 | 1.66D—06
1.1 | 0.3908338308D+01 | 0.3908332348D+01 | 1.52D—06
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The R,, column shows | O — y&)/yix,) | at eight valies
of x, 0.4 to 1.1. Comparing the results of 4 cyclic 4-step A-stable
method (2.1) with exact results for step-lengths 0.01 and 0.001, we
note that the results are quite accurate although the method is of
consistent order two only. The method is also very fast. since the
accuracy is reached at the maximum at second iteration. The method
(2.1) gives similar results.

4. APPLICATIONS TO STIFF PROBLEM

" In this section, the methods (2.1) and (2.2) are applied to the
stiff initial value problem ([3])

y' = —200( —F@)+ F'o,

y(0) = 10, '
where F(x) = 10 — (10 + x)e™*
Exact solution of (4.1) is

Y(X) = F(X) + 10e200X

The stiff problem (4.1) is computed nurperically on a VAX —
11/730 with step sizes 0.01, 0.005 and compared with the numerical

results of fourth-order Runge-Kutta Method, Adman Fourth-order
predictor corrector method and Calahan’s Method ([3]).

We used the method (3.1) as a predictor and the 4 cyclic 4-
step A-stable methods (2.1) and (2.2) as correctors. The numerical
results are presented in table 4.1. The R, column shows
| &, = y(x,)/y(x,) | at two values of x; 0.4 and 1.0. The point
x = 0.4and x = 1.0 are chosen as representation of error.

(4.1)

Table 4.1
R
Method h x =04 - x =1.0
*  RK; 0.01 1.0D—05 2.0D—09
**  DEQ 0.005 3.0D—09 2.0D—-09
*** CAL 0.01 1.7D—02 4.0D—08
Method 2.1 | 0.01 1.07D—05 1.56D~06
oo 0.005 1.76D—07 2.9D—07
Method 2.2 0.01 1.7D—05 4.4D—06
oo 0.005 1.6D—07 0.0
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The R, column shows I o, — yx,)/yix,) l at eight values
of x, 0.4 to 1.1. Comparing the results of 4 cyclic 4-step A-stahle
method (2.1) with exact results for step-lengths 0.01 and 0.001, we
note that the results are quite accurate although the method is of
consistent order two only. The method is also very fast. since the
accuracy is reached at the maximum at second iteration. The method
(2.1) gives similar results.

4. APPLICATIONS TO STIFF PROBLEM

" In this section, the methods (2.1) and (2.2) are applied to the
stiff initial value problem ([3])

y = —200(y — F)) + F'(0),

y(0) = 10, ‘ (4.1)
where F(x) = 10 — (10 + x)e™*
Exact solution of (4.1) is

Y(X) = F(X) + 10e~ 200X

The stiff problem (4.1) is computed nurperica]ly on a VAX —
11/730 with step sizes 0.01, 0.005 and compared with the numerical

results of fourth-order Runge-Kutta Method, Adman Fourth-order
predictor corrector method and Calahan’s Method ([3]).

We used the method (3.1) as a predictor and the 4 cyclic 4-
step A-stable methods (2.1) and (2.2) as correctors. The numerical
results are presented in table 4.1. The R, column shows
| &0, — ¥x,))/y(x,) | at two values of x; 0.4 and 1.0. The point
x = 0.4and x = 1.0 are chosen as representation of error.

Table 4.1
R
Method h x =04 * x =10
" RK; 0.01 1.0D—05 2.0D—09
**  DEQ 0.005 3.0D—09 2.0D—09
*** CAL 0.01 1.7D—02 4.0D—08
Method 2.1 | 0.01 . 1.07D—05 1.56D — 06
oo 0.005 1.76D —07 2.9D—07
Method 2.2 | 0.01 1.7D—05 4.4D—06
oo 0.005 1.6D —07 0.0
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The above results show that the method CAL has less
accuracy. The 4 cyclic 4-step A-stable methods (2.1) and (2.2) of
order two give the same accuracy as the methods RK, and DEQ.
However, the method (2.2) gives higher accuracy at the point x = 1.0
as compared to the method DEQ.

*  Fourth-order Runge-Kutta Method
**  Adams Fourth-order predictor-corrector Method

***  (Calahan’s Method
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ABSTRACT

This paper is an attempt to convert the spectral problem

d

-— = {A +Bx,01}. (1

Py u {A) x,}).u )
where u is an n-element column vector and A({) and B(x , {" are n xn matrices into

non-linear evolution equations. The spectral problem (1) is already solved by [1].

INTRODUCTION

Linear scattering problem
dv = Qv (2)

in which Q is an N XN matrix consisting of a one-parameter ({", the
spectral parameter) is family of one-forms. For appropriate
parameterization of {) the integrability condition of equation (2), i.e.,

6=0,0=d0—-QAQ (3
gives integrable evolution equations.

The above expression (3) of a non-linear evolution equation
is sometimes called a Lax pair representation. The simplest structure

of Qis
Q= ((Ro+Pldx+Q(Hdt, TrQ=0 (4)

in which Ry and P are NXN matrices independent of the spectral
parameter {. The equation (1) is equivalent to (4) and

-@-u=Qu

at

(25)



where A({) = {RyandBx, ) = P (3)

we construct non-liner evolutes by determining Q in equation (4)
from the zero-curvature equation (3). We follow the original idea due
to Kotera and Swada [2]. and Newell [3] and then developed by
Alberty et al. [4].

R, is a diagonal N XN matrix of constant entries.

Ry = diag. By, By, o By (6) ;,
in which 3, are in general complex and distinct !
B, # B it i # (N

The "potential® matrix P is independent of { and is- off
diagonal,

P, =0,i=12...,N &
and its entries are dependent variables (fields) assumed to obey the
boundary conditions.

d d )m

Pyix, ) ’5;1)4; ..... _ <5; Pj....0as [x| > (9 \

The linear problem (2) is explicitly

V, = {Rg+P)Vand V, = QV (10)
where V., = éa—V and V = (V{, ...VvpT - (11)

x
d
and V, = —V
Lot
Then the zero-curvature equation (3) expressed explicitly as
P,—Q +[{Ry+P,Q] =0 (12)

guarantees the integrability (compatibility) of equations (10). Now
we find the general expression for Q in terms of P and x-derivatives
so that it gives a {-independent non-linear evolution equation for P
through equation (12). A

Let us start by assuming that Q is a polynomial in {,

(26)



n
Q=Y {'Q,-,, T,Q =0 (13)

r=0
by substituting this into equation (12) and equating power of { we
get the following recursion formula for Q,,r = 0,1, ....... n.
P, = (Qy, + (Q,, Pl (14a)
Ry Q1 = Q. +[Q,_;,P]1, 1S r < n (14b)
[Rp, Qpl = O ~ (14¢)

. Since R, is a diagonal matrix with distinct entries, equation
~ (14c) requires that Q, be diagnonal matrix either

Qy = C = diag. (c|, ¢y ..., CN) Z c; =0 (15)

i=t
We also require that c¢; is x-independent but can' possibly
depend on ¢. From the diagonal part of the equations (14a) and (14b)
we obtain

Qp = ~1QpPh,1 S r < n (16)

where I is an integral operator
X
If(x) = J’ flv) dy _ (an
and the suffices D and F denote the diagonal and off diagonal part of
a matrix, respectively. The off-diagonal part of equation (14b) gives
the relation between Q,r and Q, _,

Ry Qpl = (Q,_, P+ [Q,_,Plp,1 < r < n (18)

Thus Q,p is determined from Q, _; whilst Q,p, is expressed in
terms of Q,p. In this way every Q, is expressed in terms of P, its x
derivatives and its x-integrals. By substituting these results into
equation (14a) we obtain-a non-linear evolution equation

P, = Dg" [C.P) a9

An integro-differential operator D operating on an off-
diagonal matrix H = (H,,,,) is defined as

(27)



DH - aiH+ [H.Ply - 1", P), PI, (20)
X

and the operator Dg in equation (19) means
DgH = DHg
in which Hy is an off-diagonal matrix
Hy,
B — Bm

(21)

(HR)lm =

s L % m

Example

=
=)
=)
=)

© o o
o
S
=)

0 (Cl - C2)P12 (CI - C3)P13 (cl —C4)Pl4

(cg — ¢ )P 0 (5 — co)P (cg —c,)P
[C,P]= 2 17421 2 3’423 3 47+ 24
(C3 - CI)P31 (C3 - C2)P32 0 (C3 - C4)P34

(04 - cl)P41 (C4 - C2)P42 (C4 - C3)P43 O

(28)




0 (C] - C2)P]2 (CJ - CS)P]R g(’_‘l_— CJ)PLI
61—32 .81—63 61_)34
(cg — c1)Pyy 0 (cg — c3)Poa (cg — )Py,
62_31 62_53 32-64
[C.Plg=
(c3 — c)Pay (€3 = €9)Pas 0 (cg — ¢ )Pqy
33—31 63_32 33—34
(cy —cIPyy (ey —c9)Pyy (cy —c3)Pyq 0
L 64—61 64—62 64"33
First term in (20) is
€] C;m
— (P},,)
Bl 3m Im’x

Second term in (20) is

[ [C’. P]R ’ P]lm

= [C, P]R }lk Pkm - Plk { [C, P] }km

C; — Cp Cm — Ch
=P,P, { - I #m}
lk * km ,81 _ Bk 'Bm _ 'Bk
Third term is (20) is
Butin this! = m we get
Cl - Ck Ck e Cl -
Py Py { - — l=0
Lk * kl ,81 _ Bk Bk _ Bl
So substituting these values in (19) we get
6 ¢~ Cp
—P, = —-[P +
dx lm Bl _ Bm lm]x
N Cp — Cp Cp — €
Y PpPul - ]
k=1 l‘ g Bi—=Br Br—8

N

(29)
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ABSTRACT

In this paper, the isometric and the infinitesimal isometric deformation of
Cartesian product of Riemannian manifolds are defined and studied. Some geometric
properties of such deformations are established throughout giving some theorems.
Also, the Cartesian product of the normal infinitesimal isometric deformations is
studied.

1. INTRODUCTION
In this paper, all manifolds and maps are assumed

sufficiently differentiable for all computations to make sense. All
manifolds are assumed connected. A submanifold S of a Riemannian

manifold —I\r—f[— consists of a manifold M and an immersion r of M into

M

Let S=(M, r) be a submanifold of a Riemannian manifold M

.LetI = [—4, 6] for some § > 0. A map
Yy:IXM-—> M

is said to be a deformation of S if 7y, = r and *y; is an immersion for

each ¢t € I. We have written y,(x) for y(t, x). Each immersion ¥,
induces a Riemannian metric g; on M. Each closed curve on M has a
Iength L(¢) measured by the metric g,[1].

Let 7y be a deformation of S. We say that vy is an isometric
deformation (ID) of S if g, = g, for each ¢ € I. We say that v is an
infinitesimal isometric deformation (IID) of S if g’(0) = 0. When we

(31)



write g’ (0, we regard g, = g(t) as a curve in the finite dimensional
vector space of tensors of type (0, 2) at a point of M. It is easy to
check that 'y is an (ID) if and only if L(z) is indepen&gnt of ¢ for each
closed curve on M. Furthermore, v is an IID if and only if L'(0) = 0
for each curve.

For each point x in M, let Z, be the tangent vector to the
curve t > y(t, x) at t = 0. Thus Z is a section of E, where E is the
restriction of the tangent bundle T(M) to M, whose value at x is the
initial velocity of the motion of x under the deformation. We call Z
the deformation field of vy. Actually, the vector field Z determines the
infinitesimal properties of 4. In particular, we have the following
characterization of infinitesimal isometric deformations {1].
THEOREM 1-1

A deformation y : I X M = M is IID if and only if for X,
Y ¢ X(M), we have

g(DxZ,Y) + gX, DyZ) = 0 (1.1)

where X(M) is the set of all vector fields on M and D is the

covarient differentiation operator of the Riemannian manifold (T'I_,gl‘

DEFINITION 1-1

A deformation Z of S is normal if the tangential component of
Z is everywhere zero.
THEOREM 1-2

If S is a hypersurface, and Z is a normal IID of S, then S is
totally geodesic whenever Z is nonzero.

For the main aim of this paper, we shall need the following
section.

2. PRELIMINARIES
Let M; and M, be two C* complete Riemannian manifolds

with Riemannian connexions D'’ and D?’ and Riemannian metrices
g1 and g2, respectively.
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A Riemannian metric E on M; X M, which we shall

consider throughout this paper can be defined as follows [2]:
2X Y = g(X,Xy, (Y}, Yy))
= X, Y + g2Xy, V) 2.1)

where X;, Y; € X(M;), X(M,) is the set of all vector fields on M;, i=1,2.
Similarly, a connexion D on M; X M, can be given as

. (U« (h - o
DxY = D(X] 'XZ) (Yl N Y2) = (DX] &l . ng YQ) (22)
It is clear that D is an infinitesimal connexion [2]. Moreover,
D is a metric and Riemannian connexion [3].

In (1981), H.B. Pandey [2] studied some geometric properties
of the Cartesian product of two C* manifolds M; and M, and
established that if both M; and MQI have the property under
consideration (such as almost complex, Kaheleritan, almost

Tachibana), then M, X M, has the same property and vice versa.

In (1988), A. E. Rakia [3] established more interesting results
concerning the geometry of manifolds product. For example, the
manifold M, X M, is free from conjugate (resp. focal) points if and
only if both M; and M, are free from conjugate (resp. focal) points.
Also, the Cartesian product of Jacobi vector fields as well as
asymptotic geodesics in M; X M, have been studied. In addition to
these results, we have the following [3].

Proposition 2-1
Let M and N be hypersurfaces of the Riemannian manifolds

‘M and N such that u and v are normal vectors to M and N atp g
M. g € N, respectively. Then, (v ,v) & T(p.q, (M X N)isa normal’
vectortoM X N at (p, g) € M X N under the metric E defined by
equation (2.1), where T<p.,q> (M X N)isa tangent space to M X

N at (p,q).
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Proposition 2.2
M XN C M X N is totally geodesic if and only if borh
MC M andN C N are totally geodesics. '

3. MAIN RESULTS
Let S; = (N, r) be a Riemannian submanifold of a
Riemannian manifold Fi such that r; is an immersion of N; into _.\—

oi=12LetS" =8, XS, =(N; X Ny, r; Xry be a submanifold

of N | X ?.2 due to the Cartesian product of S, and S,, where ry X
r, is also an immersion (3] of N; X N, into Fl X Fz. Consider
I = [—&. 6] for some 6 > 0. A map

¥ IX (N, XNy » N, X N,
is said to be a deformation of S™ if v," = (r; X r,) and v, is an
immersion for each t & I. We write y, (x)=v* (¢, x) where x=(x},x,)€
N, X N,. Each immersion 'yt* induces a Riemannian metric E,O on
N, X N,. Each closed curve on N; X N, has a length L(z) measured
by the metric Et- If a(t) = (a (), ayt)) .t € la,blisacurve in
N, XN, such that ¢; is a regular curve in N; , i = 1, 2 then,

L2ty < Ll(ay + L0ay),
where Lab(a) denotes the length of « from # = a to ¢t = b. In general,
we have

L2y < Lay) + L(asy)
DEFINITION 3-1

Let 7" be a deformation of S*. We say that " is an ID of 8™ if
E, = _g_o for each t £ I. We say that ™ is an IID of S™ if —g—'(O') = 0.

As a direct result from thenrem (1-1), we obtain
THEOREM 3-1

A deformation " is an IID if and only if
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g (DxZ,Y) + g (X, DyZ) = 0
where X = (X}, X9), Y = (Y}, Yy) € X(N} X Ny)and Z = (Z), Z,) is
the deformation field of y".
Corollary 3-1

A deformation " is an IID if and only if for X, Y & X(N; XN,)

2
v { g(i) (Dxi(i) Z;,Y;) + g (X;, DY,'(” Z; V=0
1

Now, if each induced deformation is IID, then the whole
deformation of the product is I[ID as the following theorem says.

THEOREM 3-2

If 7, is IID of N;; i = 1, 2. Then. the deformation vector field
ZonN; X NyisanIID.

Proof
To prove this theorem, it suffices to show that

2 (DyZ,Y) + g (X, DyZ) = 0 (3.1)
where X = (X, Xp), Y = (Y, Y9 e X(N| X Nppand Z = (Z}, Zy) is
the deformation field of ™.

By using equations (2.1) and (2.2), equation (3.1) becomes

2 ((Dx; Y Z,, Dxo® 2,), (Y, Yo) + g (X, X,

(Dy,'V Z,, Dy, Z,))

= gV (Dx, V' Z,, Y)) + g2 (Dxy? Zy, Yy

+ gV (X, Dy, V' Z)) + g? (Xy, Dy,'? Z,) (3.2)
Since v;,1 = 1, 2,isIID, then equation (3.2) reduce to

2 -
v {g® (Dxi“" Z,Y,) + g (X, DYi(i) Z)}r =0
1

which complete the proof of the theorem.

In general cases, this theorem is valid as follows:
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CIfy,.i=1,2,...,nisIID, then the deformation vector field
ZonN; X Ny X ... XN, isalsoIID.
Corollary 3-2

If each induced deformation is IID, then the whole
deformation of the product is IID. But if the deformation of the
Riemannian product is IID, then not necessarily each induced
deformation is IID. The reason could be given as follows:

For X, Y e X(N; X N,), we have

2K = g VX, Y) + 82Xy Yy
or, simply

Et = gt(l, + gtm
Consequently,

20 = gl (0) + g2 (0)

which means that, if E' (0) = 0, this would not mean necessarily
that g’ (0) = 0and g (0) = 0.
THEOREM 3-3

If Z; is a normal deformation of a hypersurface S, C FI-L-,
i = 1. 2, then the Cartesian product Z; X Z, is also a normal

deformation of the submanifold S; X S, C _I\TI X FI_Z

Proof:

Since Z; is normal deformation of S; , i = 1, 2, then the
rangential component of Z; is everywhere zero. By proposition (2-1), -
we see that the Cartesian product of the normal components of Z; is
also a normal component to Z; X Z,, Le., the tangential component
of Z, X Z, is everywhere zero. This means that Z, X Z, is normal |
deformation of the submanifold S, X S,.

Finally, under the above mentioned theorems (3-2), (3-3) and |
proposition (2-2), we obtain the following theorem:
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THEOREM (3-4)

)

If Z; is a normal IID of the hypersurface S; C —I\_ f=1,02
Then, the Cartesian product Z;, X Z, is normal IID of the
submanifold 8; X Sy C —1\71 X Fz and S; X S, is totally geodesic

submanifold.
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ABSTRACT

The intrinsic self adjointness of the Schredinger kinetic energy operator of
a system of N different particles is restored.

1. INTRODUCTION

The kinetic energy differential operator which belongs to
Schrodinger wave equation is not intrinsically self adjoint [2, 3]. This
happens upon extracting the adjoint of the operator due to the
presence of non vanishing boundary terms except under some
appropriate boundary conditions. Hermitization methods have been
introduced and employed for restoring the intrinsic self adjointness
[1, 2, 3, 5]. In this paper we use these methods to extract all possible
hermitized versions which correspond to arbitrary linear differential
operator, this was shown in sec. 2. In sec. 3, the Schrodinger kinetic
energy operator of a system of n different particles is demonstrated
not to be intrinsically self adjoint. In sec. 4, we discuss the effect of
non-self adjointness of the Schrodinger operator on the completeness
of its representation. In sec. 5, we establish the hermitization
procedure and generate an infinite set of hermitized versions of any
arbitrary linear differential operator. Sec. 6, is devoted to the
applications of the procedure for hermitizing the momentum and
kinetic energy differential operators of a system of n particles.

2. THE ADJOINT OF A LINEAR OPERATOR

m n :
Let A= v Y P (xpD¥ (2.1)
Zog T
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be a linear differential operator in which P_.(x;) are continuous and

al =)
have continuous derivatives up to the m'" order for all x; & [aj. bl
Ja
=1.2,...,n,and D:. denote the ordinary differential operator -
] dx.
J

We will evaluate first the adjoint of the operator D': Consider the
)

matrix element
Du « bj . )‘( ”ll( 2 2
<fil xj‘ g > = (=1 J' dlf}. x) g = (x), 2.2

a.
J

where f; , g; are arbitrary functions which possess continuous
derivatives up to the n'" order for all x € [a; , bj]. On integrating
rating the right hand side of (2.2) by parts a-times. we end up with

b
X P M *{(1]
<flexj|gj> = (—D J'dxfj (x gjlx)
g
. o h; .
1 k=1 lu—kl 7
+ ¥ (—DED iy gi(x) | (2.3) |

k=1 q-
4

By using the extended Dirac delta function [2] which is
O(x.aj,bl.) = 5(x—'bj)_5(x_aj)
The second term on the right hand side of equation (2.3) can
be written in the form of an integral as

« oy S0l k) b
LD e g |
k=1 : a
e - b “le—1) _ Ja—k]
= }E (—1) [ dx fx) 6 (x,a; b)) g,x) (2.4)
=1 hy
( o b;
‘ (k=1 [(a—k] %
Hence Y (—1)%-1 f/.(x) g;ix) |

k=1
a;
J
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[s 4

~ k-1 k-1 T ax—k o -
= < f] | 'El ( 1) DI; 51] ij ’ g,/ >, (2-.0)
b y
where ﬁx,» is the left handed differential operator. Therefore equation
{2.3) can be put in the form
« ) o3 o - -x—k ¥ k-1

<f; |D; | g >=<g; [(—1" ij+ y (—Dk IDI/ dx; D_\_j |

' k=1 ' ’
(2.6)

fj>

This equation gives us the adjoint of the differential operator D:‘.
7/
Explicitly, it is

R X .
! 7 / J

D “=(-=1*D + § (—=DF- 1D TF DI 2
s |
k=1

3. THE ADJOINT OF N PARTICLES SCHRODINGER
DIFFERENTIAL OPERATOR

The Schrodinger differential operator of a system of n
different particles is

n fl'z 2 . b
H=-7% 3 ij + 0 (x;) (3.1)
J=1
where m; is the mass of the particles j and v (x;;) is a function only of
the distances x; = | x; — x; | between the particles.

Putting o = 2 in equation (2.7), we obtain the adjoint of the

Hamiltonian operator
B2 v % 3z :
H*=H-y ;—[p, 8, ~4,D,] (3.2)
Jj=1

which shows that the Hamiltonian operator is not intrinsically self
adjoint even if we restricted the potential V to be self-adjoint
operator. However, self adjointness can be restored if the boundary
terms are forced to vanish upon imposing appropriate boundary
conditions.

Using the same process we can express-the adjoint of the
monentum operator and the kinetic energy operator respectively.

(41)



Pt = P+ih ¥ &y (3.3)
i=1
n h2 - ~ s
and T+ = T — Y Y [ij 5;:1 + 5xj Dxl] (3.4)
=17

We can express equation (3.2) in the following matrix
representation

<3 ¢ Hl Y
J=1 J=1
b;
n § n }7-,2 J
Y H ¥ o>+ v 5—Wle, . 41| 35
1 j=1 j=1 a

= <

INSet

J
where W{ ¢, ‘I’j ] denote the Wronskian determinant
\N[(ﬁj‘\yj]:(ﬁj\yj_qu‘yj’ (3.61
and d>j . ‘I’j )= 12 , n are state functions that possess

continuous derivatives up to the second order for all x;.€ [a; . b;].

In the following section we will study the effect of the non
hermiticity of the Hamiltonian operator on the completeness of its
representation.

4. COMPLETENESS

Consider an orthonormal set of discrete functions { u; (x) }.
We expand an arbitrary function v; as a uniformally convergent

J
series in the region x;. € [aj , bj] ,J=1,2, ... , n
[+ -]
v = Y ay.ux), (4.1
i=0
where oy = < (xp) | y; > (4.2)

In Substituting for the functions ‘I’j in equation (3.5) the

difference v — f a); u; (x;) which is zero by hypothesis, we get
=0

(42)




< E ¢; |H| E w; — E ay; ulx;) >

j=1 j=1 =0
= < ¥ @~ ¥ ayu &) H E¢>
j=1 1=0 J=1
A2 K
+ Zg—w[qs,(u Yooy u )] (4.3)
Jj=1 [=0 4

Now, the first term of the right-hand side vanishes by
hypothesis, thus we can express equation (4.3) as

<P ol fuys-<folHE §ooyuns

j=1 j=1 j=1 j=1 1=0
h.
n Hh?
* Eé?njw[‘b"(v vy uz(x))]l (4.4)
Jj=1 1=0 aj

Recalling equations (3.2), (3.5) & (4.2), equation (4.4) can be
written in the form

n
¢; |H| yooyugix) >
1 j=1

ll‘ M;

<i‘q§j]H[ 'Zlvj>= f <
= - J

n N2 b ) '

+ ¥ -2——< é; I D,, ij - ijij | v T Y o ulx) > (4.6)
j=1 =0

This shows that the operator H commutes with the
summation E everywhere for x; € {a; , b;] except at the boundary
=0
points a;, b; b,j=1,2,...,n because of the existence of the boundary
terms of the right hand side of equation (4.6). These boundary terms
vanish if the functions v; obey the same boundary conditions as the

discrete sets { u; (x)) } at the boundary pointsa; , b;, i.e.

DA B ) L j=12, ., na

J = - .= - .
xj—aj.b [=0 aj.bj

Such boundary conditions requirements can only be satisfied
for bound state problems. However, in scattering problems the -
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derivative of the basis { u; (x;)) } and the expanded functions v; dn
not match. On the other hand, if the kinetic energy differentia;
operator is to be replaced by any of its hermitized versions, the
boundary conditions (4.7) can be avoided. This can be done by using
the hermitization technique [3].

5. HERMITIZATION

In this section we present a formal procedure for extracting
all possible hermitized versions that correspond to any arbitrary
differential operator. It can be done by introducing an associate .
operator which is simply a linear combination of all the individual
ordinary differential operators that belong to the adjoint of the
composite linear differential operator under consideration. We now

hermitize the ordinary differential operator Df in which o 1s
J
arbitrary and we denote by D;a the corresponding associate
J

differential operator. We expand D:“ in terms of all individual

. . J
differential operators.
—a I3 (73 —x—py ¥ pu—1 =
D',r< - Cj.u Dx t E Dx~ 6-‘Cj Cj,u—l D X 5.1}
J '] J J
u=1
where {C.} ; r = 1,2, ... , n are complex expansion coefficients.

The adjoint of the expression (5.1) is

S

—a+ a+ . a -—u-l a—p
D" = cj D"+ Zl D" C 185, D L5
w=

This can be written, by using (2.7), in the form

D_a+=ci‘ [("l)aD + Z(—l)k—LD —a—k ¥ —1]
xj _]
k=1
21 -1 * S a—pu )
+ E ij Cj,u—l 6ij x t5.3)

u=1
The above expression can be simplified by performing the
sum of the two series on the right hand side backwardly, this gives
DT‘“=(—1>ac LDi+ D, [(—nk—lc +c _,(]D !
Y %) %j “
k=1
t5.4)
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Now, the operator D;a could be rendered to be intrinisically

J
self adjoint by equating the relevant coefficients on the right hand
sides of equations (5.1} and (5.4), doing that we get

Cia = (=D C,, (5.5)

and Cjp =(=DF7LC]  + C/ k=12, &, j=1,2,., n(56)

in addition to the restriction
l Cj,rx | =1 (5.7

The set of algebraic equations (5.5 — 3.7) gives the necessary
relationships between the expansion coefficients { C, } which upon
substituting in equation (5.1) gives infinite set of hermitized versions

for the differential operators D;a . Hence the associate differential

J
operator for any composite linear differential operator as ¢2.1) can be
constructed.

6. APPLICATIONS

For the case o = 1, the corresponding associate differential
operator reads

D, = CuD +8,Coj=L2 i n (6.1)
where le = —'le N , Cj,l l =1
and Cio = Cj_'1 + CJ-,o (6.2)
These give
| Cip =1
and Cj’o = aj - l/2 - (_6.3)
where o; ,j = 1,2, ... , n are free real parameters. Therefore

(6.1) becomes

D, =D, +(a—i/2)5,

]
Hence the associate differential momentum operator can be
expressed in the form
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— n .
P =P— y h (o —i/2) 5xj (6.5)
j=1

which represents an infinite set of hermitized versions of the
momentum operator regarding the arbitrariness of the parameters
.

For the case =2, the corresponding associate differential
operator is

D’ +D C,yd 3
D J-:]‘ = CJ;Q DJ-J + DIJ CJ,O xj + C_],l Ij ij (66)
\Vhel‘e CJ,2 = CJZ M ! CJ,Z ‘ = 1,
£ £
and G, = ij2 + CJ,‘I
Choosing Cj,b = 0; Wwhere 0; ,j = 1,2, ... , n are free
complex parameters. Then we get
Y
Cj, = GJ. — 1forall j=1,2 ... , N (6.7)
Hence equation (6.6) could be rewritten as
2 2 = * X
D, =D, +D,g b, + (0, =1 3,.D, (6.8)
This enables us to express the associate differential operator
. n H% 9
of the kinetic energy T = — y 5,-7;]- D"i as
Jj=1 '
— 2
T=-§ o—D_"
. m;
J=1 -
n = Hh? n h2 *
=T ij—zzaj ) 5;(01. 1) 3_1.!,. D,
j=1 / j=1

(6.9)
If we put n = 1 in equations (6.5) and 6.9 we get the results
of Morsy [5).
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ABSTRACT

We approximate Newton-like iterations in a Banach space setting by
solving a linear algebraic system of finite order. The approximate inverses of the
Frechet-derivatives involved are obtained recursively. Some special cases are studied

in detail.
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1. INTRODUCTION

Consider the nonlinear operator -equation

Fix) = 0 (1)
where F is a nonlinear operator mapping a subset E; of a Banach
space E, into another Banach space E;. Newton-like methods of the
form

Yne1 = Yo ~ AU TIF@), n 20 (2)
have been used extensively to approximate a solution x* of equation
(1) in E5. (see e.g. [1] — [4], [7] — [14]). Here the linear operator
A(y,) is a consistent approXimation to the Frechet-derivative F'(y,)
of Fy,). For A(y,) = F'(y,) one obtains the famous Newton-

Kantorovich method, whereas for A(y,) = 0F(y,, y,.;). n = 0
(secant mappings) the secant method is obtained. Several authors
have provided sufficient conditions for the convergence of iteration
(2) to a locally unique solution x* of equation (1) under various
assumptions (see, e.g. [1], [3], [4], [7] — [14] and the references
there). The iterates x, in (2) can only be computed if the inverses

(49)




A(y,)~ ! exist for all n = 0. However, there are many problems of
interest where for various reasons this cannot happen. The linear
operator A(y,) may not be continuously invertible, as for instance
when dealing with small divisors (see, e.g. [8] and the references
there). Moreover the iterates given by (2) cannot be easily computed
in infinite dimensional spaces since the inverses of the linear
operators A(y,), n = 0 may be too difficult or impossible to compute
That is why we consider instead the iterates

— (PA(x,)) " Ux,), n =0 EY

for approximating a locally unique solution x™ of equation (1). Here,
P is a projection operator (P2 = P) mapping E, into a space Eyp of
finite dimension N. It is easy to see that the solution of (3) reduces to
solving a system of linear algebraic equations of, at most order N. °
Note that it can easily be shown by induction on n that F(x,) belongs
to the domain of (PA(xn))‘l for all n = 0. Therefore, if the inverses
exist (as it will be shown later in Theorem 1), then the iterates x,

can he computed foralln = 0.

Lpel1 = X

In this paper we provide sufficient conditions for the
convergence of iteration (3) to a solution x™ of equation (1), where at
each step the inverse of the derivative, is replaced by a linear
operator, which is obtained recursively from the previous one. Some
special cases are examined in detail.

Finally at the end of this paper we show that our results
contain previous one’s as special cases.

2. CONVERGENCE RESULTS

Denote by U(xy, R) a closed ball centered at x, € Eg and of
radius R > 0 such that U(x, , R) D Ej;. Let us also denote by
L(E, , Ey) the space of all bounded linear operators from E; into E,.
Let E; be a Banach space, A: E5 = L(E, , E;) , P: E; = Eyp ,
M_, € L(E,,Eyp),L_; € L(E;, E). Forn = 0, choose N, €
L(E;, E). and as in [8, p. 117] define ,

M, = M,_; N, +PAkx,)L,_, (4)
Ln = Ln—l + In—l Nn (5)
T + Ln»yn (6)

¥, being a solution of

(50)




e

My, = — (Fix,) +Z,) (7

~ for a suitable Z, € E;. MoreoversetQ =1 — P

We will provide sufficient conditions on the operator PA, the
starting guesses xg, N_;, L_, the operators N,,'s and on the Z,’s to

guarantee the convergence of iteration {x,}, n = 0 given by (6) to a
solution x* of equation (1). Moreover we will provide upper bounds

on the distances ||x,,; — x,|| and |{x, — x"{| foralln = 0.

By definition the operators M, depend on x, € E,. That is
M, = M(x,). We will assume that the linear operator M(x,) satisfy
the estimates

MG = MG || < v (|x = x| (8)
for all x e Ulxy , R), where v is a non-decreasing non-negative
function with v(0) = 0.

Moreover we assume that the following estimates are true

|[PAG) — PAg) || < wg (fIx = x4l (9)
[QFx) — QFW|[| < wy(|x — y[D (10)
and  ||PF (x+t(y—=x)—PAM || < w(}|x—x,l} + t]ly—x|]) A1)

forallt € [0,1]andallx,y € U(x,,r) C Ulx, R), where wy, w;
and w are non-decreasing non-negative functions with wy(0) = w,(0)
= w(0) = 0.

Let us assume that there exist numbers o, «, 8, v, 6 such that

[IPFao || < ag, |ILgyoll < (12)
-1 -1,, -

M Y1, M) < B (13)

HL_4ll = v ‘ ; (14)
and [IM_; —PAGxp)L_;||] < 6 _ (15)
Moreover define the function d(r) by

1
dirn = ——— (16)
1 = vl

and assume that

vR) < 1 a7
(51)




We can now state and prove the main result.
THEOREM
Let F: E5 C E; = E,. Assume
(i)  Fis Frechet-differentiable on Eg;

(i) The hypotheses (8)-(17) are true for all x , y € U(xo , R,
t € [0, 1] forsome R > 0, with U(x,, R) C E,.

(ii1)  There exist non-negaﬁve sequences {a,} , {a,} . {b,} and ;

tc,} such thatforalln = 0.
NI = @, [[L+N,]] < a (18)

and  [[Z,]] = ¢, ||PF(x,)]] (19)

tiv)  The scalar sequence {t,,} ,n = 0 given by

) n
thsn= n+1+en+1dn+1‘1+cn+ 1) [In + E hiw(tz_')
i=1
(ti - ti—l'+w(tn+.1)(tn+l_t11)+w1(tll+l_‘t:1)] yn =0 (20)
{0 = O,tl =

is bounded above by at,” with 0 < t,° < R, where

eg="7. Fo,e,, =I,_,.a,n=1d,=dt,= B ,n =0
1-0b,
I, =€, 1. Egg,n = 0,&, =p,d,(1+c,) + c,

)  The following estimate is true §,, < &€ < 1 forallm = 0.
Then

(a) the scalar sequence {¢,} is non-decreasing and converges
tcat"with0 < t* < t;"asn - oo,

(b) the sequence (6) is well defined, remains in Utx,, t") and
converges to a solution x* of equation (1) with

(52)




“xn+1 —an = tn+1 _tn (21)
and ||x, —x"|] < t"—1t, foralln =0 (22)

Proof

ta) By definition ¢, = t;and ¢ty = t,. Assumet, ., = t,
form=20,1,2, ... ,n,thenby (2)t , o, = t,,, Thatis we showed
by induction that the scalar sequence {#,,} , n = 0 is increasing. By
hypothesis {¢,} is bounded above by a t," with 0 < ¢, < R. Hence it
converges to some t” with 0 < t* < ¢,".

tb) We use induction to show that for all m = 0 the
following estimates are true respectively

HLp Il < ey, (23)
Hxme1 — X!l < oy — Mty (24)
x, € Ulxy, ) (25)
M < 4, (26)
HM,, — A, . DLyl < gy (27)
[IM,, — Ax,) L, || <p,, ' (28)

HFGe,,, DI < & [IFG )] + wty,, ) ey — 1) (29)

We use (5) for n = 0 to obtain Ly = L_,(1 + Ny). By taking
norms and using (14) and (18) we get

HLoll < [IL_l1 111+ Noll £ v ag=¢eq

That is (23) is true for n = 0. Let us assume that (23) is true

forn=0,1,2,...,m — 1, then by (5)
HLm”S HLm—1””1+Nm” = em——l' am=em
? which completes the induction for (23)
By (6) and (12)
Hxl —x0|| = ”Ro}’oll S tl - tO = _<_ t*

0. Assume

which implies x; € Utx,, ¢) and that (24) is true for m
(24) and (25) aretruefork =0,1,2, ..., m, then

(53)




ko ,
Hxpser =%l S F Moy =0l St — oS8
i=0

that is x,,,; € Ulxq , t) also. By (17) and the Banach Lemma on
invertible operators it can easily be seen that (26) is true for all
m < 0. We will complete the induction for (24) later. First we need
to show (27), (28) and (29). By (4) observe that

[IMg — PA (xg) Lo|| = {[(M_; — PAGxq) L_ Ny}
< IM_; = PAGL_ ] . |INgll < 8 ag = pg
1My — PA(x)Ly|] = |](My —PA(xq)Lg) + (PA(xg) — PA(x)Lg]||

< po+wolllx —xplD)eg = po+ wot)ey=4qq

That is (27) and (28) are true for m = 0. The rest of the
induction for (27) and (28) can follow using the same approach as the -
one in the above two inequalities.

Using the identity

Fix,, ) = P[Flxp, ) — Fxp) — Alxy) (xp,; — x)] + P[Fix,)
+ Alxy) (xp,, —x)] + Q(Fix,, ) — F(xp)  (30)

(7Y, (19), (26) and (28) we obtain
[ [(P(F(xy) + Alep)xp, 1 — 200 ||

1

|| (M, ~ PAGyLy) M7 (Fixy) + Z,) — Z, ||
<oy (| [PFGp] | + ¢ [|PFxp ) + ¢ | [PFxp] |
pdi(1 + ¢) + ¢) [IPF(xp)]| = &, | |[PF(xp) ]| (31)
Also, by (11) and (21)
[(P(F(x,, ) — Flxp) ~— Alxy) (x,,, — x,00)]]

1
= | I f P[F(xk + t(xk - xo)) - A(xk)] (xk+1 - xk) dt. | I
0 .

1
< IW(ka = xgll +t ) xp = x5 11D Hxpy 1 — il at
0

< w(t,Hl) (tk+l —tk) i (32)




It now follows from (30), (31) and (32) that (29) is true or all
m = 0. Moreover by (10) and (21)
HQF(ka) - F(xk))ll < wl(tk” —tk) 33)

We must now complete the induction for (21}. Indeed from
(6), (26), (23) and (29)

Hxkeo —%petll = g wrs 1= 1L M, | (PFGx,, D + Z,, DI
-1
< ”Lk+1||'HMk+] |(1+ck+1”PF(-xk+1)||

k .y ‘
S epidpy(lcgyy) {Ik+ Y o Rw()t,—t_ ) + wlty, Pty —t)

i=1
+wl(tk+1—tk)'}
= lfpeo T Ly bY (20),

The estimates {23) — (29) have now been verified for all
m = 0. It now follows from (a) and (21) that x,,}, n = 0is a Cauchy
sequence in a Banach space and as such it converges to some
€ Uix,, t*). Letting m — oo in (29) and using the continuity of F
and (v) we obtain F(x") = 0. Finally (22) follows easily from (21).
That completes the proof of the theorem.

The conditions of the above theorem are made as general as
possible. However some special cases must be examined now.

Remark 1: Several sufficient conditions can be given that will
guarantee ¢, < t," for alln = 0. Let us examine a very natural one.

Assume that there exist numbers ¢, d, a, ‘a such that

a=apc 20da, a >0,a <a<l,e, <cd, <da, £a, a, <
a foralln = 0.

Then foralln = 1

Pp=q,_a,=p, _1+Wy(ty)e,) a,=ap,_18,(p,,_5 + Wolty_;) e, 1) +
Wy (tn) € Qy
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k=i

= 6 SO + nilwo (tl) €i+w0 (tn) enan (Si= H ak)

i=1

QjQl
N’

dar+l + 'yciwo(t*) a” nil ail + a‘ywo(t ) @+t (
i=1

< Pn» ‘
. aw,y(t")a” . ,
where p(t7)=p,=0a"*1+ ZT—Q——— +aywy (tHa**Ln =21 ]
- a,
Note that p, < p; L (&)
Moreover we have
€hil dn+1 1 t ey 1) =

1, < f(t") o, provided that /(") <
Further more we have

va2d (1 + ¢) foralln = 0,

dl+ep;(r)+c.
< fwh ¥ b <

i=1

< FwE) e § A

i=1

where f(r) =
rw@®) § el
i=1

T haw(t) (¢, ~t;_p)

i=1

< Luwa Z
- @)
Finally define the function T on (0, R) by
T(r) = a+vyd (1+c)a~?2 [rim g+ -1-5-—-%(% + rw(r)+w1(r)].

Assume that there exists a minimum posmve number r* €

(0, R] such that

fr'Y<1land TGH <r
* * < g < 1forall

Then it can easily beseent, < r" =t ,¢, <
n = 0 and that the sequence {x,}, n = 0 converges to a unique
*

solution x* of equation (1) in U(x, , r*).
Remarks 2: Condition (17) can be replaced by
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UM (11 IM,_, = M,|| < B, <1 foralln =0

n

Then a theorem similar to the one above can easily be
proved. Just replace {d,}, by the sequence {d,} defined by
d
dy=B,d, =2, n>=1.
0 B n 1~ bn
Remark 3: Hypothesis (v) above is used to show that F(x™) = 0. It
can be replaced by the conditions Kern(L,) = 0 for all n = 0 and

lim Zn = 0, since by (6) and (7) we can then show F(x*) = 0 also.

n->o0

Remarks 4: We can extend the above results further to cover the
case when F is not Frechet differentiable. Consider the equation

Fix)=0 . . (34)
with  F(x) = F(x) + S(x)
where F is as before and S is a non-linear operator defined on E,
with values on E, such that

[{Sx) — S| < wy (J|x —y|]) forall x,y € Eg4

for some nondecreasing function w, defined on |R+ with wy(0) = 0.
Note that the differentiability of S (i.e. of F) is not assumed here.
Then a theorem similar to the main theorem can be proved
immediately for equation (34) if we just replace F by F; in (7), (12}
and (19). The scalar sequence {TH}, n = 0 corresponding to {t,}
will be defined the same way, but inside the bracket in (20) there will

be an extra term of the form w, (7“1), n =0

Remark 5: Special cases of the main theorem compare favorably
with
(a) The results obtained in [8]. Chooset = 1in(9), P = 1 and the
functions wy and w to be defined by the right hand sides of
the inequalities (36) and (37) respectively [8, p. 1126 —1125].
Even then our comditions are more general.
(b)  The results obtained in [3]. Just choose P =1, N, = 0, Z, = 0,
L, =1foralln 2 0.

{¢) The results in [8]. Take P =], A(x)v = F'(x) in [[7], p. 251].
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(d)

-

10.

The results in [1], (2], {4] — [14] by choosing the operators
accordingly as in (a) — (¢).

The verification of (a), (b), (¢) and (d) above as almost
immediate is left to the motivated reader.
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ABSTRACT

If the mathematics of rational cubic curves is visualized via its
homogeneous counterpart, it is required to establish same equivalent constraints on
the homogeneous curve regarding continuity of the kind which is desired for the
rational curve. The constraints on the homogenous curves are derived that are
exactly equivalent to the parametric and g-continuity of the rational cubic curves.
For every degree of continuity, the rational continuity constraints contain a degree
of freedom not present in the corresponding continuity constraints for projected

curves.
Keywords: Spline, B-spline, rational spline, NURBS, interpolation,
Bézier curve.
1. INTRODUCTION
DEFINITION 1

We will call a function P(f) o-continuous at ¢ = ¢ if it
satisfies the following constraints

P(t; ) 1 P(t; )
PO Y =1 0 oy; PO ) |, (0
P2y, ) 0 0y; 0g; P2, )

where the connection matrix will be denoted by S;.
DEFINITION 2

P € Ckut,t,] will mean that each component function of
P:ftyt,]—= RN is k-times continuously differentiable (this continuity
is known as parametric continuity for parametric curves) on (¢4, t,1.
Similarly the notations G* and F* will be fixed for geometric
(reparametrization) and Frenet frame continuity.

(61)



The rational curve has manifested itself in various forms
including NURBS (Non-uniform rational B-splines) [Farin ’88] the
rational Bézier curve [Farin’83, ’88], rational Beta-spline [Boehm’87]
and rational o-splines [Sarfraz’90]. As a single rational function
usually does not have enough freedom to represent a given curve,
several rational segments are used instead. To generate a curve of
satisfactory smoothness, the segments must connect with some
amount of continuity. Thus, the use of rational curves, independent
of the particular variety, creates a common problem, that of %
connecting rational segments to form piecewise rational curves that
are smooth. "

Let P(¢) be a parametric rational curve. There are at least
two ways to visualize the mathematics of a rational curve.

1. The curve P can be thought of as a vector-valued function,
each component of which is a rational function i.e.

Pt) = (Py(8), Pyt), ..., PN(D)) (1)
where each component function P;, is the rational function k‘
P = il @) {
b FN+ l(t)

and F;(t) are all polynomial functions.

2. P can be thought of as the composition of a vector valued
polynomial function F with a projection function that takes

. X1 N Y.
(X1, ...,XN, Xpyiy) tO ey - l.e.
! NN (xN+1 xN+1)
Fty = (F &), ..., Fp(t), Fy, () (3)

F is refered to as the homogenous curve associated with P and P as
the projection of F.

To illustrate more concretely, consider a curve formation
such as the rational Bézier curve, the rational B-spline curve or the
rational Beta-spline curve. Each is a function P : R = R¥ that can be
expressed as
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T w;V By(t)

Pty = =2 4)
¥ w; B;(t)
i=0
where V; are the control vertices, B;(t) are the basis functions and w;
are the weights. Such curves have been considered in this form in
[Sarfraz’90] but one can also consider such a curve as polynomial
Bézier curve, B-spline or Beta-spline curve in higher dimensional
space as

Fi = 3 W, B (5a)
i=0

where W, are control vertices in RN*! whose coordinates are
W, = w; V;,w) fori = 0, ..., m Of course, when the RV
coordinates of P are required, the division must be performed. In
Figure 1 it is shown how one might view an R? rational curve as an
R3 polynomial curve. Each component of the R? curve is strictly
polynomial and the points on the R? curve are obtained by projecting

the R3 curve onto the w = 1 plane.

This strategy of manipulating rational curves has the
advantage that algorithms like ‘evaluation, subdivision, degree
elevation, etc; to manipulate rational curves, can often be obtained
by using the corresponding algorithm for polynomial curves. i.e. in
this way one has a large body of information on polynomial curves
which is almost always applicable to rational curves. For example, to
increase the degree of a rational curve P, one can increase the degree
of the polynomial curve F via a well-known algorithm for a
polynomial curve: to subdivide P, one can subdivide F, and so on. If
we project F to obtain P it will be as if the manipulation has been
performed on P.

Barsky, Goldman and Micchelli [Goldman and Micchelli’89
Goldman and Barsky’89] used this method of reducing a problem
associated with a rational curve to the analogous problem for its
homogenous counterpart for the problem of continuity between
rational segements. Specifically, -they proved that parametric,
geometric or Frenet frame continuity for a rational curve can be
obtained by requiring the associated homogeneous curve to be
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parametrically, geometrically or Frenet frame continuous: methods
developed by these authors are more general. In this paper we will
concentrate, using elementary techmques, on two kinds of
continuities for parametric curves:

(a) parametric continuity, for rational curves of arbitrary degree,
in Section 2 and

(b)  o-continunity (more general form of geometric continuity. It
should also be noted that G% = F? ie. the geometric
continuity of order 2 coincides with Frenet frame continuity
of order 2) for rational cubics, in Section 3.

2. PARAMETRIC CONTINUITY

If we have a homogenous curve F that is C* for an arbitrary
positive integer & (with Fyy, ;(t) # 0, V), then the projection P of F
will also be C%. The converse is not true: there are homogeneous
curves F that are not C* even though their projections P are C* : e.g.
- consider the rational cubic:

P@t) = P; (t;v,w) = (5b)

(1-03X; +0(1-02(V;X; + h;D;) +62(1-0)w;X; , ; —h;D; . ) +63X;,

1=03%+ v,00—02 + w21 — 6) + 63
where the notations X; and D; € R¥ are, respectively, the data
values and the first derivative values at the knots ¢, , 1 = 0, ... , n
with ¢y < t] <, e , Jhy =t —t;,0=0—t)/h;and v;,
w; = 0. This is C! wheleas the numerator and denominator are only
CO. Thus, in general, it is not necessary for each of two scalar

be C*.

functions F; nor Fy, ; to be C in order that
’ N+1

What constraints must we impose on two scalar functions F;

is C* ? For this, consider

F
and Fy, ,, in order that, the quotient ——
FN+ 1

a scalar function f(¢) that is composed of two C* functions, P(t) for
() Q;(®)
< t. . = R -
t < tjand QW) fort >t whele P() FN+1(t) and @(1) K

as in the case with piecewise rational functions. Clearly F(t) will be
C* if and only if
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( F;(t) M| _( Q;®) o]

, I=0,...,k(6)

which is equivalent to

o Fy (0@,
[Fi(t)](l) I = (..M*_L_QL_)U)I L l=0,..,k (D

= QN+1(t) =
t—tj t-tj

Conditions (6) and (7) are equivalent since if we assume (6)
holds, then ’

QW Yo 1 I _d-m Q) \m
(Fvi0 g - Ll et © (G
(by Leibnitz theorem)
o1 (I-m) ] Fit) \om) -
- Z (m) FN+1 ()(FN+1(t))
m=0
(by substitution of (6))
4 - F) \a
/ S - (Fyy0 5o )

(by Leibnitz theorem) ‘
‘ ) o = [Fyt) 1 ,_
A Using similar arguments, (6) follows with the assumption of (7).

Conversely, let

o = (FN,, 1) )(l—m)
| I-mj QN 1(tj)
‘ then using Leibnitz theorem, (7) can be rewritten as

¥ Fby = 2’; (’i} 0 Q@) L=0,...,k (8)

m=0
Thus we have proved the following:
Theorem 3: The projection of F() will be C* at t = ¢; if and only if
there exist a’s so that |
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11
FOg,) = v () emi FE), 1=0,...,k (9)
m=0
Example 4: Let us consider the rational cubic in (5b) with v; = w; =-
r;, we will be interested in continuity of order two which, in matrix
notation, can be expressed as
(F;,]=A;[F;_] (10)
where .
[ Fa;,) “F@t;) )
(F,, =) FY¢ ) | ,F1= | FO¢0) | an
| FO,;,) ' F2q;_)
.
Qg ;
and A; = 0y; O,
U Qg 20y; Qg
Now we determine the parameters « for the rational spline curve so Ea
obtained. Let F(¢) and F,(t) denote the numerator and denominator,
then the homogeneous counterpart of P(t) is
B F) = (Fy(0, Fy(0) '
The parameters ¢;; , i = 1, ...... ,n —1,j =20 1, 2 can be
determined in terms of tension parameters r;’s from the constraints
(10). :
The first constraint .
Fyt;,) = atg; Fot; )
- gives : E
ap;=1 - 12) s
The second constraint
(1) (1) p
-F2 (ti+) = ao’in (ti—) + allin(ti_)
gives
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Substituting (12) and then rearranging yields
+
h; hi_y
The third constraint- . . _

(13)

;=

FO,) = ag; ) + 20:1, FPw ) + g ;)
gives o , _
’ —=2(r; — 3) _ 2a1_i(3 - ri_l) + 2001(3 - rl‘_l)
' 2

Substituting (12), (13) and then rearranging yields
. I'-__l'_‘3 ri-l_'a_' r,--3 ri—3 ri'—3
Olg; = 2 : +\ T - + A\ (14)
TR { hioy ( hioy oy ) h; h;: }
3. 0-CONTINUITY ;
Using the same notations as in Section 2, we derive in this
section the constraints which are nécessary and sufficient for the

projection P(t) of the homogeneous curves to be o-continuous of
_order 2 as defined in Section 1.

‘ (Positional Contmulty) This follaws stralghtaway from (8) forl = Q;
ie.

F(t)=-a0l,Q(t) i= N+1 (15)
(0-Continuity of order one): In addxtlon to equations (15), we have ;
( Fﬂ% )(n[ y ( Q; @ )a)l
M Fya@® Q.1 tat,
Differentiation gives

(1) ) (D
FU@)Fy 1) = Fit)Fy

Fy o ®

R
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@)@y, 1) — Qt)Qy @)
Y ' QI2V + 1-(tj)
Substitution of (15) yields:

1 (1)
F, (tj)aonN+ l(tj) - aO-jQi(tj) Fy, l(tj)

) 2
a OJQN+ l(tj)

Q") Ay. 1) — Qt)@y, 1) )

1j -
’ QI2V+ l(tj)

Cross multiplying and reorganizing terms yields

1 (1
( o 01 Quyy @) — Fyyy @) ) Q; )

= (e 01,00 ) = FV 1) ) @y @)

i

o

If we divide and introduce a parameter o ; , then

W _ ()
FN+ 1 (tf) Qo alJQN+ 1 (tf)

QN+ l(tj)
(1) (1)
B @) T 015Q &)
Q1)

= al,i

We can separate the constraints as _
(D W ; .
Fi (tj)=a0J01jQi (t_,-)+a1JQ',-(tj),l=1,...,Nand

(1)
FN+.1

m
(6) = O!OJGIJ QN+1(tJ) + al,i QN+ l(t:]) ‘ (16)
which is equivalent to
FO () = agjoy; @V &) + a1;QE), QD
where F = (F,..,Fy,FN,1),Q@=(Q1,..,QNn,QN.:1

(o-continunity of order two): In addition to equations (16) and (17),
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Ft) @] " Qi )(2)
BRI

Fy o0 t=t;
Differentiation gives

(R0, @) - Ry B2, @ By @ — 25 ) D,

Foo @) + 2F8) B @) @} [ Fo, s @)

= 0y {Q§2)(5‘) Qi” 1) — Q) Ql(gll(tj) Qih @) — 2Q;1)(tj) Q;}il

2 : (1) 1
) Qs @) + 2@t (Qy, @)’ QN+1(tj)} [ Qo @ + o
{Qil)(fj_) Qv @)~ e @Y, &) | [ @Gy @)
Substitution of (15) and (186) yields

(2) 2

@ 3 .3 2 .2 _ 9
‘{Fi Qo Qne1 ~ %0,Qi% Q.1 Fyi1 — 200,41

o o)
(aOJGIJQi +0,Q; ) ( Q01 @y + @iy QN+1) + 200 Q; g

S(1) 2 4 4
QN+1(a0,j 01 QN1 T ¥y QN+1') }/a0j Q1
_ D3 _na® A2 ol oD 2
- oy, {07 €}, - e, @h, — 200 6, @y ¢
W ‘ 3 2 @ 4
2Q; (@Y, )% Quaat + 02, (€%,,0" - @5,,000 )/ @b @)
Cross multiplying and reorganizing terms yields

. Q(l)
@ _ @ _ ( . 2 N+1)
{Fi aoj 03,f Qi (aoJ 0'2J' + 2(01J- Uaj) QN“+'1

o 20‘1,}‘71; ) Q;fl) } ANt

(¢}
N+1)

QN+1

D _ @ _( ( i -
{FN+1 0, 03 @y, 1 — \ @\ 0 + 2(07; — 03))

+ 20,0, ) Qi } Q;
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If we divide and introduce a parameter o, J then

@) @ ) o
{F' 0, 03 @ ~ (0’0,; Tg + 2015 01,) Q; }/Q,« (18) .

1

@ @ ( ) 1 }/
= {FN_+1 o 03 Q41 ~ \oj Ta; + 201 01;) Qo 11/ QN1

(1)
QN+1 » (19)

QN+1

~ 2
Equivalently, separation in (18) can be done as:

2
FO @) = g 03, Q% @t + oy 0 + 201;01;,1Q7 @) + ey
Q) .i=01,..,N, and ‘

@ (2) M
Fy, 1@ =g 05;@p,, @) + [ao‘] Oy + 20y "1,;] Qu. @) g

which is equivalent to 7
F(2)(t)—010 03 Q()(t)+[010‘)02‘)+20:1‘,61‘)]Q )+a2 Q(t)
21

The constraints (15), (17) and (21) can be written m matrix
notation as

e

[F1= [Q],
where
o o 1
A= |y o §= | 0 oy (22)
oy 200 Qg 0 0y, 03

Thus we have the following:

Proposition 5: The projection P(¢) of the homogenous curve F(?)
will he o-continuous if and only if there exist connection matrices A;
. and §; as in (22) such that :

F,)=ASIF, 1, i=1,...,n—1 (23
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Remark 6: For the particular case of o-continuity when oréyi = O'ii,

it follows from (19) that 0,; = 0y; and thus S; = S;. In this case the
g-continuity constraints coincide with Beta constraints [Barsky’81].

Example 7: Let F(t) and Fy(t) denote numerator and denominator
of the rational cubic in (5b), then the homogeneous counterpart is

) F(t) = (Fl(t) 3 Fg(t))
As can be easily evaluated, at ¢ = t; ,
F2(ti+) =1= F2(ti_) ’

(1) (1) — Wi :
F’ ;)= F . ) =—— 24)
i+ hi hi-l
6 — 4; 6 — 4w,
2 (1) i—1
Fot;,) = F ¢, )=—5—
oW+ 2 i 2
h; hi—l

Now consider the o-continuity constraints (23) one by one.
The first contraint simply gives

0y = 1 (25
The second constraint, after substitution of (24) and (25),-

gives
v, — 3 w,_,—3 26)
OIIJ-- hl- + Ul,i hi_l

The third constraint, after substitution of (24) and (25), gives

6 — 4U i_xl - 3 4wi__1 -
i —————2 + (2011,01, + 02 ) . + 0g; 3 2D
k; i1 i-1

4. SOME SPECIAL CASES

(@ Ifop; =1and o; = 0fori > 1, the rational parametric
continuity (9) reduces to simple parametric continuity.

() Ifo,; =03; =1andoy; =0, the rational o-continuity (24)
reduces to rational parametric continuity.

(¢) For-the choice of &’s as in case A, the rational o-continuity
reduces to simple o-continuity. '
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(d)

(e)

If the a’s are as in case A and 03 ; = Uf‘i , then the rational o-
continuity reduces to simple $-continuity.
If the a’s are as in case A and the o’s are as in case B, the

rational o-continuity reduces to simple parametric
continuity.
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ABSTRACT

In this paper we introduce a straight forward algebraic generalization of 2-
. semi-inner product spaces and 2-semi-inner product spaces of tvpe (p). We
introduce and study strong topology on such spaces.

1. INTRODUCTION

Prugovecki [5] introduced a straight forward algebraic
generalization of inner product spaces, which he called generalized
inner product spaces, and then he enumerated and derived some

? fundamental properties of different topologies in these spaces. In a

| different direction, Lumer [3] introduced the concept of semi-inner
product space as a generalization of inner product space. Using the
concept of Prugovecki [5] and Lumer [3], Nath [4] introduced what
he called generalized semi-inner product spaces, and then he studied
strong topologies on these spaces.

Later, Siddiqui and Rizvi [6] defined the concept of 2-semi-
inner product space and obtained certain results. This concept led
Abo-Hadi [1] to define the concept of 2-semi-inner product space of
type (p) and he obtained certain results on such spaces. In the
present paper we introduce the concept of generalized 2-semi-inner

product space and that of generalized 2-semi-inner product space of
;. type (p) and study the strong topology in such spaces.
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2. PRELIMINARIES
2.1 Definition [2]

Let E be a vector space with dim (E) > 1 and {|.,. || non-

negative real function on E X E which satisfies the following axioms: -

(N ||x,y]] = 0ifx and y are linearly dependent.

Ny [lx, 1l = [ly, x|

Ny [N, 311 = IN] [l 311, where Ne R

N llx+y.,2zll < |lx,y]]+ Hy,zl[,v{herex,y,zelﬁ

Then we say that || ., . || is a 2-norm on E. E, equipped with
a 2-norm, is called a 2- normed space

2.2 Defimtlon [1]

Let E be a vector space with dim (E) > 1and [.,./.]areal
function on E X E X E which satisfies the following axioms:

(SPlxy +x9,¥/2) = [x1,y/2) + [x9,/2)

(Sg) [Nz, y/2] = N [x, y/2]

foreveryx; ,xy,x,y,z € E and for every A € R

(83) [x,x/y] > 0ifx and y are lineel'ly independent
(89 |tx, y/21| < e, x/z1VP [y, y/2P~YP, 1 < p < e

Then we say that{., . /.]is a 2-semi-inner product of type
(p) onkE.

E, equipped with a 2-semi-inner product of type(p), is called a
2-semi-inner product space of type().

2.3 Remark

If p = 2, this concept is called a 2-semi-inner product space
which is due to Siddiqui and Rizvi [6].

2.4 Theorem|[1]

Every 2-normed space can be made into a 2 semi-innmer

product space o type(@).
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2.5 Theorem [1]

A 2-semi-inner product space of type(p) is 2-normed space
with the 2-norm |}x, y|| = [x, x/y]¥/P provided [x , x/y] = [y, y/x].

2.6 Remark

In particular, for p = 2, these results hold good for 2-semi-
inner product spaces introduced in [6].
3. GENERALIZED ‘2-SEMI-INNER PRODUCT SPACES
OF TYPE(p)

3.1 Definition

A vector space E is called a generahzed 2-sem1 -inner product
space of type(p) if
(G)) there is a subset M o E which is a 2-semi-inner product
space of type ().
(Gg) there is a non-empty set L of linear operators on E
which has the following properties:
(i) each element of L maps E into M.
(i) if Tx=0forall T € L, then x = 0. We denote a generalized 2-
semi-inner product space of type (p) by the triple (E,L,M).
3.2 Remark
If p = 2, we call this concept a generalized 2-semi-inner
product space.’
3.3 Remark 4
Every 2-semi-inner product space of type (») [in particular, 2-
semi-inner produce space] is a generalized 2-semi-inner produce
space of type (p) [a generalized 2-semi-inner product space], with
M=E and L={1], I the indentity operator on E.
3.4 Remark B

It would be interesting to find a non-trivial example of a
generalized 2-semi-inner product space of type(p) whlch is not a 2-
semi-inner product space of type (p).
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4. STRONG TOPOLOGY
4.1 ‘Definition
Let (E, L, M) be a generalized 2-semi-inner product space of
type (p).
‘To each x & E, the family of sets defined by V(x;T, , .... , T,;6)
=[yeE: [Ty —0), Ty —0) /2P <&,k =1,2, ..., n}, g’
€>0,2eM, T,,..,T eL and n=1,2, ..., forms a neigh'bourhood ¢
basis at x for a topology on E which we call the strong topology.
4.2 Remark

In particular, for p = 2, we have the strong topology for
generalized 2-semi-inner product spaces.

4.3 Lemma

Each V(0; T, ..., T, ; &) is circled and convex.

Proof ,
LetV =V(©0;T,,...,T,; 8 -
To show V is circled: ,
Lét AeRwith [N < 1andx V.
[Ty W), Ty A)/21Y2 = | [Ty , 21| = (N [Ty @) , 21
= HT,Ax), 2]l <&,k=1,2, ..,n |
= Axe V.
Thus V is circled. To show V is convex:
Let A\eR,0 <A< landx,y&eV.
[T + A=hpl, 2]] = [T O+ TRl ~Ny], 2]
' = |IAT,@) + (1 = N Ty 00, 2} |
< AT @zl {+ Q=N }T):z| |
<A+ —-Ne=¢
= HT, DA+ (1 =Ny, zil <€, k=1,2..,n
= Ax + (1 = N v & V. Thkus V 'z convex.
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44 Remark
In particular, this result holds for geﬁeralized 2-semi-inner
product spaces. - ’

4.5 Lemma

Let (E, L, M) be a generalized 2-semi-inner product space of
type (p). If a topology on it is introduced in which the sets V(x ; T ; €)
are neighbourhoods of x V& > 0, T & L, then the resulting topological
space is Hausdorff. - ‘

Proof

Here [Tx, Tx/z] = ||Tx, 2] [P

Suppose E is not a Hausdorff space.

Then, there exist at least two points x; , x, € E and x; # x4
for which any two neighbourhoods have common points.

1
Thus for any two neighbourhoods V(x; ; T ; %) and V(xz;T;;)
there exists at least one ¥, € E such that yn&‘V(xl;T%) N V(x2;T%)

So V z € E we have
.1 - : 1
T, —x9),2]] < '—l-and TG, — x5, 2]| <z

Now [|T(x; —x5),2|| = ||[TGx; =y, + ¥, — x9), 2|
= TGy — ) + T4, —x9), 2} -
TGy = 3,) + TG, —x9), 2] < 1ITGy ~y,), 2] +

IIT(yn—x2),z/|| <%—+%=%Vn>Q,Vz£E» N
So T(x; —x) =N TeEL,z¢E

In particular, forz = 0,T(x; —x9)=0,VTEL -

Hence x; — x, = 0. Thus x; = x, which is a contradiction

4.6 Remark

In particular, this result holds for generalized 2-semi-inner
product spaces.
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4.7 Theorem

Let (E, L, M) be a generalized 2-semi-inner product space of
type (p). Then E, equipped with the strong topology, is aHausdorff
locally convex space. .

Proof:

First we show that the strong topology- is compatible with the
vector space operations.

(i) To prove the addition is continuos:
Forany V(O;T,, ..., T, ;& =V, we show that
VO Ty, s T3 6/2) + VO3 Ty, ..., T, 5 £/2)
CVvVo;T,,..,T,; 8
Let x,yeV(O;T,,..,T,;&/2)
Then ||T,(x),z2]|| < &/2 and ||’i‘k(y) ,2|| < &/2

Now [|Tp(x +y),2]| = ||Tp(x) + T, 2| < ||Tp (0, 2{| +
HT ) ,zl] <€/2+¢€/2=¢

Thus ||Tp(x +y),2|| <& So x+yéeV.
(ii) To prove the scalar multiplicatio'\n is continuous:
Forany V(O;T,;,...,T,;&) =V )
we have AV(O; T, , ..., Tp s €/N) C V(O3 Ty, .o, Ty 5 €/N)
because if x € AV(O; Ty, ..., T, ; &/N)-
Then |[|T, (), z|] < &/N |
So I, O\, 2]l <&

- Thus MeV(O;Ty,..,T,; &

It follows from lemma (4.3) that E is a locally convex space
and from lemma (4.5) that E is a Hausdorff space.

4.8 Remark

In particular, this result holds for generalized 2-semi-inner
product spaces. '
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4.9 Theorem

Let (E, L, M) be a generalized 2-semi-inner product space of
type(p) with the strong topology. E is metrizable if there exists a
countable subset 3 of L with the following property;

For any T € L, there exists an S & « such that [Tx , Tx/z]1/P
< [Sx,Sx/z11/P , x € E, where « is the linear manifold generated by (3.

Proof:
It is sufficient to show that the family of sets {V(O ; S, , ...,
S, ;%) Sy, .,S, &Rk, n =12 .. )isa neighbourhood basis at O
for the strong topology. For every T £ L, we can find an S € « for
which ; :
 V(0;S;8 CVO;T; 8 I Q)
because ||T(x), z|| < |[|S(x), z}]
Clearly we have S = NSy + ... + N,S,,
whereSl,...,SkSB
So Vx e E, (Sx), S(x)/2]V/P = ||S(x), z||

= [N Sy + oo+ NS, ), 2| < [N S ™, 2]
ot N 1IS® 21 e (2)

Thus, if we choose an integer n such that

1 & 1 &
T R , th EV(;S,; 1/n)
T W T Wk Skl

,r=1,2,...,k

implies ||S,(x) , z|] < ;11-< £

RN

So (2) becomes

=g

x|ty

S, 2] <&+ ... .+ £k times) = &
k k
ie. xEV(O; 5, ;%) N..NVaoO;s, ;;12-) impliesx € V(O ; S; &)

ie. xEV(0;8;,...,8;D) = xeV(0;S;8)
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So V(O;Sl,...,Sk,%)CV(O;S;s)

. - 1
Using (1), VIO ; T; € DO V(O;S; & DV(O;SI,;{) Nn..nN
V(0855 D V(0;S,,...8 ;D)
’ k’n y M1y e k’n
Thus the family of sets
{(V0;8y,..., 8081, ..., 888 kn=12. .}

is a neighbourhood basis at O which is countable, since 8 is
countable. Hence E is metrizable in the strong topology.
4,10 Remark

In particular, this result holds for generalized 2-semi-inner
product spaces.
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ABSTRACT

In this paper, new sufficient conditions for the convergence of a Stirling-
like method to a locally unique solution of a non-linear operator equation are given.
The Stirling-like method is also compared favorably to Newton’'s method under very

natural assumptions.
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1. INTRODUCTION

A fixed point x* of an operator F defined on a subset E; of a
-Banach space E; and taking values into itself satisfies the equation

x = F(x) (1

_ We want to construct a sequence {x,} n > 0 C E,
converging to x* for a suitable starting value xy. To achieve this
construction we attach to equation (1) the iteration

Xpo1 =%, — (PA = F'Fx,N)" 1, — Fx,)),n >0, 2
‘where P is a linear projection (P = P2) which projects E; on its
subspace Ep andsetQ = I — P.

The above method is called Stirling-like method. (Note that
for P = I the usual Stirling’s method is obtained {13], {14]). Stirling’s
method can be viewed as a combination of the method of successive
substitutions and Newton’s method. It is consequently reasonable to
exs 1ine the convergence of the method of successive substitutions.
In terms of computational effort, Stirling’s and Newton’s methods
require essentially the same labor per step, as each requires the
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evaluation of F, F' and thé solution of a linear equation, assuming

that F and its derivative are evaluated independently.

It can easily be shown by induction on n that under the
hypothesis of Theorem 1 that follows x,, — F(x,) belong to the
domain of (P — F'(F(x,))))~! for all n > 0. Therefore if the
inverses exist (as it will be shown later in Theorem 1), then the
iterates x,, can be computed for all n > 0. For P = I the iterates

generated by (2) cannot be easily computed in infinite dimensional.-

spaces since the inverses of the linear operators involved may be too
difficult or impossible to find. It is easy to see, however, that the
solution of equation (2) reduces to solving certain operator equations
in the space Ep. If, moreover, E, is a finite dimensional space of
dimension N, we obtain a system of linear algebraic equations of at
most order N (see, e.g.[6] and {11] also).

Sufficient conditions for the convergence of iteration (2) to a

fixed point x* of equation (1) have already been given in [13] and [14]

(for P. = D). In this paper we provide new more general sufficient

conditions which contain all previous ones as special cases (when P

= [ or not). Moreover under very natural conditions we show that

the Stirling-like method converges to x" faster than Newton’s
method.

2. CONVERGENCE RESULTS

Let xy € E, and denote by U(xy , R) the closed ball centered
at x; and of radius R > 0. We assume: -

(a) the operator F is Frechet-differentiable for all x € Ulx, ,' R);
(b) the inverse of the linear I — F'(F(x,)) exists;
(¢) theballU(xy,R) C Ey;

(d) the following estimates are true for allx ,y,z € U(xo , R)
andallt € [0, 1]

HPA=F'Fap))~! (PF' (x+t(x—y)) —PF' () || < v(]|x—z]|

+t||x—y|D, (3)
HHEPA=F'(Fxp)) "L QEF x+ty—x)—=D|| < vy (J|x—y|} )
and ||F&x) — FO) || <w(]lw — y|)), (5)
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where v, v, w are non-negative and non-decreasing functions with
v(0) =v,(0) =w(0) =0

(e) there exist numbers a and 3 such that
[H(PA — F'Fxp)~1(xg — Flxp) || < a (6)
and (I = F'Fa) | < B (D
.(f) define the function T on [0, R) by

TG) = a + v[(B(1 + vow(r)) + Vrlr + v,(n)r ©
o 1 — vow(r)

where vow denotes the usual composition of two real functions.
_Assume that there exists a minimum number r* € (0, R] such that

T(*) < r* and ||x, — Fxp)|| + we™) < r* 9)
(g) the following estimates are true
vow(r®) < 1, (10)
a+v[B+ Dala + vy (@a < r* (11)
and  w({|x —y|D < |[x —y||forallx,y € Ulxy, r") (12)

Finally, let us define the scalar sequence {¢,} ,n > 0 by

=0, =« _ (13)
and ' '
the2=lhay
+v[(3(1+vow(t,,))+1)(t,,+l—tn)](tml—tn)+v1(tn+1—tn)(tn+l—tn)
: 1—-vow(t,) ’
n > 0. (14)

We can now state and prove the main result.
Theorem 1 '

Let F : E; > E| be a nonlinear operator Assume hypotheses
(a) — (g) are true. Then

(i) the scalor sequence {t,} ,n > 0 deﬁned by (13) — (14) is
non-negative, nondecreasing and converges to some

t'E0,r'1;
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(ii)  the iteration {x,} , n > 0 generated by (2) is well defineqd,
remains in U(x, , r") and converges to a unique fixed point x*
of equation (1) in U(x,, 7).

Moreover the following estimates are true

”xn+1_xn“ = tn+1_tn ' (15)
and ||x, —x*|| < t* —t,foralln >0 (16)
Proof: '

(i) By (12)-(13) and the definition of v and w we get ¢, = ¢;. Let
us assume t,,, = t, fork = 0, 1, 2, ..., n. Then by (13) we

gett,,o = t,., which shows that the sequence {¢,},n = 0
is nondecreasing. We will show that it is also bounded above

by r*. By (13), (14) (for n = 0) and (11) we get ¢, < r’, k = 0,

1,2. Letus assumet,,; < r ,k=0,1,2, ... , n. Then
_ L‘[(ﬁ(l+v0w(tk_1))+1)(tk—tk_1)] (tk—tk_1)+U1(tk—tk_1)(tk—tk_1)

Tpea=tpt 1-vowty, _q)

U[(ﬁ(l"'vow(tk))"'1)(tk+1—tk)](tk+l_tk)+vl(tk+l_tk)(tk+1_tk)
+

1 — vow (t,)

' U[(B(l +U0w(t*))+1) "*](tk+1_tk—1)+U1("*)(tk+ 1 _tk—l)

>t + -

1 — vow (¥
< L STE) < r*(by(8)

We have now showed that the scalar sequencé {t,},n =2 0is
nondecreasing and bounded above by r* and as such it converges to

somet* € [0,r*]asn —> oo,

(i) We first show x,, € U(xy)r* and that (14) is true for all n = 0.
By (2), (6) and (11) x; € U(xy, r*) and (15) is true for n = 0.
Let us assume x, € Ulx,, r*) and that (15) is true for & = 0,

1,2, .. ,n+1, Then
| < ¢ < & < v
Hageg = 2oll = ¥ I o—x00l S F Gua—t,) St — 1
j=0 j=0

=th.9 < r' (by (i),

which shows x, € U(x,, r*) foralln = 0.
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. Using the identity

P(I = F/(F(x))) = P(I—F'(F(xy)))

(1 + (PA = F'(Fxp)))~1 (PF'(F(x, )], (3)

(fort = 0, 2 = x5, x = x3) , (6), (10) and the Banach lemma on
invertible operators we deduce that P(I — F'(F(xy))) is invertible
and
1
1—vow(| |xg—x|])
1

< — 17
1 —vow (r") an

[[(PA—F' (F(x))~ 1 PA—F' Fx))||

(since vow (| |xg — x| ) < vow (r*) < 1)
Note also that from (9) and the estimate

[xg—Fxp) || < fxg—Fxg ||+ {Fxg) —Flxp) || < [lxg—F&xg || +
w(|lxg — xx|D < [lxg — Faxg || + wty — ty) < x5 — Flxp)l|
-+ w@E) < 7

we obtain F(x,) € Ulx,,r")

_ Using (2) forn = k + 1, (15), (17) we get
Hageo = xpaall = [1(PA = F'l D)™ (xpyq — Flrp I
< || (PA = F'(F@xg, pN)~1PA — F' Fax )|

1
{I(PA~F'(Fxy)n) 1 | (PF'(x, +t(x),,, — %)) — PF'(F(x}))]
0

1
(xk "'Ik+1)| |+ “(P(I—F,(F(xo))))_l Q J‘ [(F'(xk+1+t(xk —xk+1))—_I]
0

1
l—Uow(l ka '—xol I)

1
(g4 —xp)dt||} < [J‘U(IIF(xk)—ka +t
° .

xrs 1 =%l D Nogyy =2l ldt + 01l xg g —xe ] |z sy =22l D]

< 1 .
1—vow (| |x—xp] ]

1
[ f vI([T=F'(Fx ||+
0
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[{F'(Fxg) —F'FxN 1)) |l(xk+1—_xk| F+tllxy,  —xp| 1] dt
+0 (0 %y 1 =X D1 xRy — 22 1]

1
T 1—vow (k,—kg)

1
[J’ v [(BA + vow(||xyg—x] 1) + D xp, 1 —x,11]
0

Hae w1 —=xeH dt+or(lxpy 1 =2 1D Hixg o g %l (18)
1

< v [(BQ1 + vow(t,—ty) + D, ; —1p)]

1—vow (t, —ty) L8 kOO kel Tk
(pr 1 Tt YU (e 1 8 Wy 1 1) = tpygtps
which completes the induction for (15). By (15) and (i) it now follows
that iteration (2) is a Cauchy sequence in a Banach space and as such
it converges to some x* € Ulxy , r*). Using the continuity of F and
letting n = o in (2) we deduce x* = F(x"). That is x" is a fixed point
of F.

Finally to show uniqueness, let us assume that y* = F(y")
with y* € U(xg, r*). Then by (12) and (1)

He' =y*1] = 1F&)—FOO|| < w(|x"=y"[D < []x"=y"||
which implies x* = y"*.
The proof of the theorem is now complete.

Sometimes it may be very difficult or almost impossible to

invert the linear operator P(I — F’(F(xn))) for all n = 0. We can
suggest the use of the modified Stirling’s method

Ins1=Yn~(PA=F F )1 ¢, —F@,Nyg=x0,n =0 (19)
Let us define the scalar sequence

Sna2=Sne 1 HUIWG )+ B+, 1 =815, —8,) + vy (5,,,—8,)

(3n+1_3n),-
s0=0,s;,=a,n 20 (20)
and the function T, on [0,R] by ’
Ti(") = o+ vwr) + (B + DOr + v, (Nr (21)

Then by replacing the role of the sequence {t,} , n = 0 by
{s,} , n = 0 and the function T by T, in the previous hypotheses
and following the proof of Theorem 1 we can show
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(heorem 2
Let F : E; > E; be a nonlinear operator. Assume hypotheses
(a) — (h) excluding (10) from hypothesis (g) are true. Then

(i) the scalar sequence {s,}, n = 0 defined by (20) is
nonnegative nondecreasing and converges to some t, € [0,r*].

(ii) the iteration {y,} n = 0 generated by (19) is well defined,
remains in U(x, , r*) and converges to a unique fixed point y*
of equation (1) in U(x,, r¥).

Moreover the following estimates are true

{: Hyn+1 _yn” < sn+1 - sn . (22)
g and ||y, —y'[| < t;—t, foral n =0 (23)
Remark 1 |

The error estimates (15) and (16) (similarly for estimates
(22) and (23)) can be improved if there exists a function u such that
u' = v Using (18) we can show that estimates (15) and (16) are still
valid if we replace the sequence {t,} n = 0 by the sequence {t1,}
n = 0given by '

1 1
t0=0,t1=a

1 1
and tn+2 = tn+1 +
[lBA+vow(t N+, , | ~t)]~ul(B(L+vow(t))
@~V ~1) (th,  —t)]/[1 - vow (t))]
foralln = 0. (24)

We will now introduce Newton’s method

Z1=2, — (PU=F',N)"1(z, — Fz,), 25 = x5, n = 0 (25)
Let us assume that the inverse of I — F'(z,) exists and

P — F'a))-1QEF® — FO)|| < vy (Jlx =y (26)

where v, is a nonnegative, nondecreasing function with v4(0) = 0.
Define the number & by
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[H(PA — F'Eg)) "1 (zy — Fiz)|| < & 27
the function P on [0, R) by '
vir)r + v, (r) .
P(r) = @ + ————2— (28)
1~ u@)
and the scalar iteration {g,} ,n = 0by

=0, ¢, =& , (29)

T Vo

U@pe1 — 900G 17 9040200, 1 —4,)

(30)
1 - v,

and 9n+2=9n+1%

Replace hypotheses (b), (f) and (g) by (b"), (f) and (g")
respectively as follows

(b’) the inverse of the linear operator I — F'(x,) exists;

(f') there exists a minimum number r € (0, R] such that

Tyr) < 7y (31)
(g') the following estimates are true

u(rI) <1, (82)

G+v@a+v, @ < r (33)

and  w(|x —y|]) < |jx —y|lforallx,y € U(xo,rI)

Finally, replace I — F'(F(xy) by I — F'(xy) in (3) and
assume (3) remains true then. Then exactly as in Theorem 1 we can
show:,

Theorem 3

Let F : E; = E; be a nonlinear operator. Assume hypotheses
(a), (b"), (¢), (d), (f') and (g’) are true. Then

(i) the scalar sequence {g,}, n = 0 defined by (30) is

*
nonnegative,nondecreasing and converges to some té € (o,r,1;
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(i)

the iteration {z,}, n = 0 generated by (25) is well defined,

remain in Ulx, r;) and converges to a uniqﬁe fixed point z*
*
of equation (1) in U(x,, rl).

Moreover the following estimates are true

||zn+1_zn|| = 9n+1 ~ 4Qn (34)
and ||z, —2"|| < t; —q, for alln 20 (35)
Remark 2
(a) A theorem similar to Theorem 2 can be immediately

produced for the modified Newton’s method

My o1 = my, — (PA = F(mg))~1 (m,, — F(m,)), my = x5, n = 0(36)

(b)

(c)

Estimates similar to the ones obtained in Remark 1 can also
follow immediately for Newton’s as well as the modified
Newton’s method.

Note that due to uniqueness of the solution in the
*

corresponding balls centered at x, =y'=z"
We can now compare estimates (15) - (16) with (34) - (35).

Theorem 4

(a)
b)

and

@

(i)

Let F : E; = E; be a nonlinear operator. Assume

hypotheses (a) - (g), (b"), (f') and (g') are true.

the following estimates are true

1
a < a, , 37
B+ vow ") +1
v < vy @) (38)
w() <t forall t € [0,R] 39)
1

the1 "ty S ( —q,)=< -
n+l n B (1 + vow (tn)) +1 dn+1~4qn qn+l} an
for allrp = 0; and (40)
-t < ! (ty—g,) foralln = 0 (41)

B (1 +vow (t,)) + 1
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Proof: )
We will only show (i), since (41) can follow easily from (40).
(i) Estimate (40) is true for n = 0, by (37) — (39) and the estimate g,

=ty = r*. Let us assume that (40) is truefor k = 0, 1, 2, ......... , N,
then by (13) using (38), (39) and (40) we get

Vs 1798 Grr1 IR V2GR0 1 98)
1-v(gg, ) B +vow(r)) + 1
< 1
B(1+vow(gy, ) + 1
The induction is now complete. That ends the proof of the
theorem. Moreover our results can be extended to include equations
of the form.

x = Fy(x) (42)
where Fy(x) = F(x) + F,(x)
with F as before and F, satisfying an estimate of the form (h)
HEPA-F" Fe N WF0)—F,0N|| <Svy(flx—y|]) for all x ,

y € Ulxy , r") (43), where vy is a nonnegative, nondecreasing
function with v5(0) = 0. ' )

tk+2—tk+1—

k4241

In particular, let us define the iteration {x,},n = 0 by

X1 =X%, — (P(i—F'(F(E,,))))'1(:?,,-(F(35,,)+F1(5c',,))), n =0 (44)
and the scalar iteration {c,}, n = 0by
2o = 0,¢c; = [[(PU=F'(Faxg)))~Uxg— (Fxp)+F (xp)) ||  (45)
d ¢y, 9=Cyy g +
[vl(BA + va)c,) + ay + vow (e))+1) (¢, ;=€) (Cpyy—Cp) + U
(Cpe1 — c)1/ 1 — vow) '

n =0, . (465
where «; = ||(Pd — F'(F(x))) 1 F(xg)||

Then exactly as in theorem 1 we can show
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Theorem 4

Let Fy : E; — E; be a nonlinear operator. Assume that

hypotheses (a)-(h) are true. Then

1

(ii)

and

The scalar sequence {c,}, » = 0 defined by (45)-(46) is
nonnegative, nondecreasing and converges to some t; € fo,
r'l ,

The iteration {X,}, n = 0, generated by (44) is well defined,

remains in U(x,, r*) and converges to a unique fixed point x*
of equation (42), in U(xy, r*).

Moreover the following estimates are true
X e1 = %40l < cpy1 — €y

*
[1%, —X°|| < t, —¢, foralln 20

Furthermore, we note that similar results can be obtained for

Modified Sterling’s, Newton’s, modified Newton’s method and
equation (42). (When P = I or not).

Remark 3

(a)

(b)

By setting w(t) = d;¢ and v(¢) = dyt for some d;, d; = 0 one
can easily obtain the results in {13] and [14] concerning
Stirling’s and the modified Stirling’s method. The results in
2] —[8] can also be obtained as special cases of theorems 3 or
4. Note also that with the above choices of the functions 2
and v the quadratic convergence can be established for
iterations (2) and (25).

Finally, by setting w(t) = e;(t)t and v(f) = e,(t)t where e,, e,
are nonnegative, nondecreasing functions with e;(0)=¢,(0)=0
the results in [6], {9]-[12] and [15] can be obtained as special
cases of theorems 3 and 4. -
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1. INTRODUCTION

Let E, A be Banach spaces and let F(x , A) be a nonlinear
operator with values in E defined for allx € E, A € A with

x € U (g, R) = {x€ E/||x—xo|] < R}and A € U (\,S)

Consider the equation
Fx,N=0 1)

We seek solutions x"(A\) of equation (1) which are close to x4 for
values of A close to A,. In order to solve approximately this problem
of constructing an implicit function the method of successive
approximations has been used, as well as the basic and modified
Newton-Kantorovich methods under various assumptions [1], [3],
[4], [6). We will use the same symbol for the norms in both spaces.’

We will define successive approximation x,,; (A) to x"(\)
from the equations
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51N =x, N = F x,, N) *F@x,N,n =0 (2)
We assume that F is Frechet differentiable for all x& _I.T(xo,R)

and N\ € U (Ao, S). Moreover we assume that the linear operator
F'(xp,Ap) is invertible and that the following Nguen-Zabrejko type
assumptions are satisfied: .
[|F Gy V"L EF c, ) — ', M) [ < Ky (ry8) [lx — 31 (3)
[F' (6, ML (@ (g N) — Flxg, Al < Ko(®) [IN ~ Noll @)
forallx,y € U (xpr) C UGpR)and A € U M\p,9) € U (A\y,9),

where K, and K, are non-decreasing functions on [0, R] X [0, S]
respectively. By x, we mean x4(\). That is x, depends on the A used
in (2). The above assumptions generalize the ones given by Potra-
Ptak [5], Nguen-Zabrejko [8] and Yamamoto [7] in this case (if G = 0
in [7], [8D).

We will provide sufficient conditions for the convergence of
(2) to a solution x*(A\) of equation (1) as well as various error
estimates on the distances ||x,, ;(N\) —x,(\) || and |[x,(N) —x"(N)]],
n =0 -

We need to define the functions

ag = K(s) ||F'(xg, Ng) "L F(x, N)||,(s = 0if N = Ay,

r s
w,) = [ Kytsdt, Ky(s) = [ Ky(®dt, KGs) = (1=Kgle)) !
0 0
provided that ) _
Ky(s) < 1 and ¢,(r) = a + KGs) [ w,@dt —r
-
2. CONVERGENCE RESULTS

The following theorem can now be proved as Theorem 1 in

(81

. Theorem 1

Suppose that the function ¢,(r) has a unique zero p* = p* in
the interval [0 , R} and ¢,(R) < 0. Then equation (1) admits a
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solution -x*(\) in U (x, , p*), this solution is unique in the ball
F(xo, R), and the approximations (2) defined for all n, belong to
U (xg, p*), and satisfy the estimates

Hxpe N =2, N || < AW (@) =p,,,~p,,n =0
and  |]x,(M) —x"N)|| < w(A™@)=p"—p,,n =0
4where A =ur+v),w@r)=u=() on [0,a], u(r)=—p(re¢’(r) "]
AO() = r, AP D)= AAM), 1 2 0,w(r) = § AM(),
n=0

and the sequence p, which is monotonically increasing and
converges to p”, is defined by

¢s(p,)

Pry1 =0 ___‘pls(n) yn20,p9=0

Similar results can be obtained for the modlﬁed Newton-
Kantorovich method

Yna 1) =y, = F'(xg, N"LF(@,, N, n =0,y = x4

‘(see e.g. [8, p. 674]). A

We will now obtain some a posteriori error bounds for
iteration (2). Let r, ;=a,=||x,, ;M) —x,N)[], k, () = h,(r) =
K (r,+rs) forr € [OR r,] and set a, ;=a,=|lx,, (M) —x,(M]],
bys = b, = Kis) (1 —K®)w,(r,) " L.

The notation r,, ; ='r,, mean that once A is fixed then we
take s = ||A—No|| and denote r, ; by r,,. Without loss of generality,
we may assume that a, > 0. Then as in [7, p. 989], we can show that
the equation

r=a, +b, f r—8h, ®dt

- £
‘has a unique positive zero p ns = P, in the interval [0, R—r,] and

[* ) — x, N < .p; ,n = 0 with p; =p*
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The proof of the following theorem now follows as the proof

of Theorem 2 in [7, p. 989].

‘Theorem 2

where

Under the assumptions of Theorem 1, we have
e, —2* N[ < p,,n 20

< (p"—pp) a,/App,n =0

<@ —ppa,_1/Ap,_,,n 21
<p"—p,,n=20

App = Ppsy ~ P 20
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ABSTRACT

In this paper we investigate proper BCI-algebras of order five and show
that there are only seventy such algebras. Their tables have also been constructed.

1. INTRODUCTION

K. Iseki [6] introduced the concept of BCl-algebras and
established certain properties. Unlike finite order groups, the-
problem of characterizating finite order BCl-algebras has not been
investigated so far. In [4], S.K. Goel, as a first step, characterized
completely BCl-algebras of order 3 and partially BCl-algebras of
order 4. In this paper we show, regarding isomorphic BCI-algebras as
equal that there are only 70 distinct proper BCl-algebras of order 5.
We also construct their tables.

2. PRELIMINARIES

A BCl-algebra is an algebra (x, *, 0) of type (2, 0) satisfying
the following axioms for all x, y, z ¢ X:

1) (x*y) * (x*2) < z%y,
2) x*(x*y) <y,

(3 x < x

4) x <Y,y < ximpliesx =y,
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(5)  x < Oimpliesx = 0,
(6) x <yiffx*y = Q. _

In a BCl-algebra X, the set M = {x € X : 0*x = 0} is a sy},
algebra and is called the BCK-part of X. A BCl-algebra X is callgy
proper if X—M # ¢. Moreover, in a BCI-algebra the following holg:
(7 x*y)*z = (x*2) "y
(8) x*0 =x
(9 x < yimplies x*z < y*z and z*y < z¥x [6]. _

Further we know that in a BCI-algebra X,if m € M, x € X—M
then x*m, m*x € X—M ([6]). f M = {0}, then X is called a p-semi.

simple BCl-algebra. Further every BCl-algebra X is a partially
ordered set with respect to the relation <. '

DEFINITION 1. [1]

Let X be BCl-algebra and x, y € X. Then x, y are said to be
comparable iff x*y = 0 or y*x = 0. Further, we shall say that

proceeds y or y succeeds x iff x*y = 0 and denote itbyx >y orx < y.
DEFINITION 2. [1]
Let X be a BCl-algebra. We choose an element x;, £ X such
that there does not exist any y # x,, satisfying y*x, = 0 and define
| Ax,) = {(x X :x,*x = 0}

We note that A(x,) consists of all those elements of X which
succeed x,. The element x is known as the initial element of A(x,) as
well as X. Let I denote the set of all initial elements of X. We call it
the centre of X. :

DEFINITION 3. [1]
Let X be a BCl-algebra. If 0*x # x for all x € X— {0}, then X

(1

(1

is called fully non-associative. If 0*x = x for all x £ X, then X is called
associative. If 0*x = x for some x € X, x # 0'and 0*y # y for some
y#0,y X, then X is called a neutral BCI-algebra.

In the sequel we shall need the following results:
(10) Let X be a BCl-algebra and A(x)) & X. Then x, y & A(x,)
imply x*y, y*x € M ([1]).
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(1)
(i)
(iii)

(iv)

Let X be a BCl-algebra and A2 A(y,) & X wherex, # y,.
Let x & Alx,), y € A(y,), then x*y, y*x € X—M ([1]).

Let X be a BCl-algebra with I as its centre. Then I is a p-
semi-simple sub-algebra of X ([2]. '

Let X be a' BCI-algebra, then following are equivalent:
X is p-semi-simple, ‘
x*y = 0impliesx = y,
x*(x*y) =y,

x*a = x*b implies a = b,

(v) a*x =b*ximpliesa = b,
(vi) O""(x*y) = y*x,
x*(0*y) = y*(0*x),

(16)

a7

(18)

(vii)

for all x, y, z € X ({5], (7]

Let X be a BCl-algebra with I as its centre. Then U A(x,) =

x,el

Xand N Ax,) = ¢. Further each x € X is contained in a
£ :

unique A(x,) € X for x, &I. Moreover, if forx,y € X, x < y,

then x, y are contained in the same A(z,) & X for some z; € ]

(.

If X is p-semi-simple then X.= [ and A(x) = {x} for all x € I
(2hn. '

LetX bea BCI-algebra with A(x,) & X. Then for all x,yA(x,),
0*x = 0*y = 0*x, ([2]).

Let X be a p-semi-simple algebra. Let A be a sub-algebra of
X. Then 0(A) divides 0X) ([7]). .

Let X = {0, x, y} be a p-semi-simple algébl'a, then 0*x = y,
0%y = x, x*y = y,y*x = x ([4]. :
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(19)  Let X be an associative p-semi-simple BCI-algebra then 0(X)
is even ([2)).

(20) Let X be a BCl-algebraand G = {x ¢ X:0*x = x}, then Gisa
'sub-algebra of I € X. G is called the BCI-G-part of X ( [3D).

1. BCI-ALGEBRAS OF ORDER FIVE WITH 0(M) =

In this section we prove that there is only one p-semi-simple
BCl-algebra of order five.

Theorem 1

Let X be a p-semi-simple algebra, such that 0(X) is odd, then
X is fully non-associative.

Proof:

Let X be not fully non-associative p-semi-simple BCI-algebra.
Thus there is an x € X such that x # 0 and 0*x = x. Further it is
known that X is abelian group under the operation x+y = x*(0%y)
and the inverse —x is 0*x (see [5] and [7]). Thus x is an element of
order 2 in the abelian group X. Hence 2 divides 0(X), a contradiction.
This completes the proof.

Remark:

In [2], we proved that if X is a fully non-associative p-semi-
simple BCl-algebra, then 0(X) is odd. We combine it with theorem 1,
and have the following result

Theorem 2

Let X be a p-semi-simple algebra. Then X is fully non-
associative iff 0(X) is odd.

Let X be BCl-algebra of order 5 with 0(M) = 1, thus M = {0}
and consequently X is p-semi-simple. Since p-semi-simple BCI-
algebras are precisely abelian groups (see [5] and [7]), therefore
isomorphism classes of p-semi-simple BCl-algebras are the
isomorphism classes of abelian groups. Since there is only one
abelian group of order 5 therefore there is only one p-semi- s1mple
BCl-algebra of order 5. Iis table is given below:
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* 0 a b c d
0 0 d c b a
a a 0 d c b
b b a 0 d ¢
c c b.| a 0 d
d d c b a

(Table 1)

Thus we must have the following result:

Theorem 3

Let X be a BCI-algebra with M as its BCK-part. Let 0(X) = §
and 0(M) = 1, then there is only one such BCl-algbera. A

2. BCI-ALGEBRAS OF ORDER FIVE WITH 0(M) = 2:

In this section we show that there are five distinct BCI-
algebras of order five with 0(M) = 2.

Lemma 1

Let X be a BCl-algebra with M as its BCK-part such that
0(X)=5 and 0(M) = 2. If each pair x, y € X—M is incomparable, then
number of such BCl-algebras is 2.

Proof:

Let X = {0, a, b, ¢, d}. Without any loss of generality, we
suppose that M = {0, a} and X—M = {b, ¢, d}. Since each pair of
X—M is incomparable, therefore A(b) = {b}, Alc) = {c}, Ad) = {d}
and I = {0, b, ¢, d}. Now corresponding to x € X—M =1 — {0}, we
have the following three possibilities for 0*x:

D 0*x =xforallx e X—M,

(I 0*x # x for some x £ X—M and 0*y = y forsomey € X—M
@) 0% # xforall x £ X—M ‘ | |
Case I:Let 0*x = x for allx € X—M. Then 0*b = b, 0*c = ¢, 0*d = d.
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By (12), I is a p-semi-simple algebra. Now we compute a*b,
a*c, a*d, b*a, b*c, b*d, c*a, c*b, c*d, d*a, d*b, d*c.
Computation of a*b: 0 <a = 0*b < a*b = b < a*b, which gives a*b
£ Ab) = {b}. Thusa™b = b.

Computation of a*c: 0 < a= 0% < a*c = ¢ < a*c, which gives a*c €
A(c) = {c}. Thusa*c = c.

Computation of a*d: 0 < a = 0*d < a*d = d < a*d, which a*d ¢
A(d) = {d}. Thus a*d = d.

Computation of b*a: 0 < a=b*a<b= b*a = b, because b € L.
Computation of c*a: 0 <a=c*a <c=c*a = ¢, becausec €1
Computation of d*a: 0 < a=d*a < d=d*a = d, becaused € L.

Computation of b*c: b, ¢ £ I and I is closed, therefore b*c £ L.

We claim that b*c = d, suppose b*c = 0, then by (13),b = ¢, a .

contradiction. Suppose b*c = b = b*0. By (13), ¢ = 0, a contradiction.
Suppose b*c = ¢ = 0%c. By (13), b = 0, a contradiction. Hence b*c =
d.

Computation of b*d: b*c = d = b*d = c.

Computation of ¢*b: ¢*b = 0*(b*c) = 0*d =d or ¢*b =d.
Computation of d*b: d*b = 0*(b*d) = 0*c = ¢ or d*b = c.
Computation of d*c: Since c*b = d, therefore c*d = b.
Computation of d*c: d*c = 0*(c*d) = 0*b =b or d*c = b.

Consequently, multiplication table for the BClI-algebra is
given in the following table:

. 0 a b lc d
0 0 0 b c d
a a 0 b c d
b b b 0 d c
c c c d 0 b
d d d |[.¢ b 0

(Table 2)
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‘§  (Case II: Suppose, 0*b = b, and 0*c # c¢. Then 0*¢c # b, because
otherwise 0*¢ = b = 0 = candc = 0*b = b =b = ¢, a
contradiction. But 0*c & I; hence 0*c = d. Using the similar argument
§ as used in Case I, we can easily compute the multiplication table for

this case which is given below:

0 a b c d

0 0 0 b d c

a a 0 b d c

b b b 0 d d

c c c d 0 b

d d d c b 0
(Table 3)

Similarly if 0*¢ = ¢, or 0*d = d, there will be two more such
BCl-algebras whose tables are given by:

* 0 a b c d
0 0 0 d c b
a a 01 d c b
b b b 0 d c
c c c b 0 d
d d d c b

(Table 4)
* 0 a b c d
0 0 0 c b d
a a 0 c b d
b b b 0 d c
c c c d | 0 b
d d d b c 0

(Table 5)

~ But algebras of tables 3, 4 and 4, 5 are isomorphic through
the isomorphisms defined by f(0) = 0, f(a) = a, f(b) = ¢, f(c) = d, f(d)
= b and g(0) = 0, gla) = a, g) = ¢, glc) = d and g(d) = b,
respectively. Consequently for Case II, there is only one BCI-algebra.
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Case III: We claim that case III is not possible, because if 0*x # x

for all x € X—M. Then {0, b, ¢, d} = I, is a fully non-associative p- -

semi-simple algebra of order 4, which is a contradiction of theorem 2.

Hence from case I, I and III, it follows that there exist two
such BClI-algebras. This completes the proof.

Corollary 1° ; _

Let X be a p-semi-simple algebra with 0(X) = 4, then number
of such BCl-algebras is 2.

Lemma 2:

Let X = {0, g, x, y, 2z} be a BCl-algebra with M = {0, a} and
forx,y, z&X— M, x < y and z is incomparable with x and y. Then X
is unique.

0—a; x>y .z
Proof: |
M,

It follows from the given hypothesis that A0) = {0, a}
A(x) = {x,y}, A@2) = {2z} and I = {0, x, z}.

- By(18),0%% = 2,0*z2 =x,x*2=2,2*x = X
Further 0%a = 0,a"0 = a,x*0 = x,y*0 = y,2*0 = 2
Computation of 0*y: x _<_ y=0" < 0*x=2z. Thus 0*y=z, because z&I

Computation of a*x: 0 < a = 0*x < a*x. But 0*x = z. Thus z < a”x
or z*(a*x) = 0 implies a*x € A(z) = {z}. Hence a*x = 2.

Computation of a*y: x <y =a"y < a*x=z. Thus a*y=z, because z&l.
Computation of x*y: x <y = x*y = 0.

Computation of y*x: y € A(x). By (10), y*x € M. Thus y*x = 0 or a.
We claim that y*x # 0, because otherwise y*x = 0 = x*y = x =y, a
contradiction, hence y*x = a.

Computation of x*a: 0 < a=x"a < x*0 = xorx*a < x or x*a = x,
because x ¢ I.

Computation of y*z: x < y =x*z<y"'z or z<y*z
Computation of a*z: a*y = (y*x)*z = (y*2)*x = z*x = x
Computation of y*a: y*a = y*(y*x) < x. Thus y*a = x, because x € |
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Computation of z*a: 0 < a = z*a < z*0 = z. Thus z*a = 2, because
zel

Computation of z*y: x < y = z*y < z*x = x. Thus z*y = x, because
- xel

' Hence the multiplication table of the BCI- algebra with
M={0,a}, x < y and 2 is incomparable with x and y is:

. 0 a x y 2
0 0 0 z 2z x
a a 0 z z x
x x x 0 0 z
y y x a 0
2z z z x x 0
(Table 6)
Lemma 3
Let X = {0, q, x, y, 2} be a BCl-algebra with M = {0,a} and
x <y < z. Then X is unique.
Proof:
It follows from the given hypothesis that A(0) = {0, a}, A(x)

= {x,y,2} and I = {0, x}. Since I is p-semi-simple therefore 0*x = x.
Further 0*a = 0,a*0 = a,x*0 = x,y*0 = y,2°0 = 2. ‘
Computation of 0*y and 0*z: 0 e M and y € X—M = A(x) give 0*y &
X —M; that is, 0%y € A(x). By (16), 0*y = 0*x = x. Similarly 0*z = x
Computation of x*a: 0 <a=x%a < x‘O = x, Thus x*a = x, because
x&L

Computation of x*y, x*z and y*z: x <y = x*y = 0, similarlyx < 2=
x*2=0. Also y*z = 0, because y <:z. :

Computation of y*x, z*y and z*x: By (10), y, x £ A(x) simply y*x € M.
We claim that y*x # 0, because otherwise y*x = 0 = x*y impliesx =
¥, a contradiction. Hence y*x = a. Similarly 2*y = z*x = a. Thus y*x
=2z =2'x=a. '

Computation of z*a: 2*a = z*(z*x) < x. implies z*a = x, because x&l.
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Computation of y*a: y“a = y*(y*x) < x. implies y*a = x, because x£l.
Computation of a*z, a*y, a*x: a*z = (z*x)*z = (*2)*x = 0*x = x.
Further a*y = (y*x)y*y = (*y)*x = 0*x = x. Also a*x = (z*y)*x =
(z*x)*y =a*y = x. Thus a*x = a*y = a*z = x.

Hence the multiplication table of the only possible BCI-
algebra with M = {0, a}, x < y < z, is given below:

* 0 a x y z

0 (-0 0 x x x

a a 0 x x x

x x x 0 0 0

y' y x a 0 0

z x a a 0
(Table 7)

Lemma 4 _
Let X = {0, a, x, y, 2} be a BCl-algebra with M = {0, a},
x <y,x <z,and y and z are incomparable. Then X is unique.

Proof:

It follows from the given hypothesis that A(0) = {0,a} = M,

Ax) = {x,y, 2z} = X—Mand I = {0, x}. Since I is p-semi-simple,
therefore 0*x = x. Further 0*a = 0, a*0 = @, x*0 = x, y*0 = y and
2*0=2.

Computation of 0*y, 0*z: x < z = 0*y < 0*x = x. Thus 0*y = x,
because x€l. Similarly 0*z = x.

Computation of x*a: 0 < a = x"a < x*0 = x. Thus x*a = x, because
x€l.

Computation of x*y, x*z: x <y=x*y =0andx <z=x*z= 0.

Computation of y*x, y*z, z*x, z*y: y, x € A(x). By (10) y*x € M, that
is, y*x = 0 or a. We claim that y*x # 0; because if y*x = 0, then x*y
= 0 = y*x =x = y, a contradiction. By (10) y, z € A(x) imply y*z ¢ M,
that is, y*z = 0 or a. If y*2 = 0, then y < z, buty < z, a
contradiction. Thus y*z = q. Similarly z*x = a and 2z*y = a. Thus y*x
=y*z2 =2% = 2% = a.
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Computation of y*a, z*a: y*a = y*(y*x) < x. Thus y*a = x, because
x&l. Now 2*a = z*(z*x) < x. Hence z*a = x, because x £ .

Computation of a*z, a*y, a*x: a*z = (2*x)*z = (z2*2)*x = 0"x = x, or
a*z = x. Further
a*y = (y*x)*y = (y*y)*x = 0*x = x and
‘ a*x = (2*y)*x = 2*x)*y = a*y = x.
Thus a’x = a"y = a*z = x.
Hence the multiplication table of the only possible BCI-

algebra with M = {0, a}, x < y,x < zandy, z are incomparable, is as
follows: '

* 0 | a x |y z

0 0 0 x x x

a a 0 x x X

x x x 0 0

y y x a 0 0

z z x a a 0
- (Table 8)

Theorem 4

Let X be a BCl-algebra with O(X)> = 5. Let M be the BCK-part
of X with 0(M) = 2. Then number of all such BCl-algebras is 5.

Proof:

LetX = {0,a,b, ¢, d} bea BCI-algebra. Without any loss of
generality, we can take M = {0, a} and X—M = {b, ¢, d}. Then there
are following possibilities for the elements of X —M:

(i) b, e, d are all incomparable with each other,
(ii) b<canddis incompara‘ble with b and ¢,
(iii) b <e, b <dandc,dareincomparable,
(iv b<e<d
By lemma 1, case (i) gives two BCl-algebra.

By lemma 2, case (ii) gives a unique BCl-algebra.
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By lemma 3, case (iii) gives a unique BCl-algebra.
By lemma 4, case (iv) gives a unique BCl-algebra.

Hence combining all of them together, we get 5 BCl-algebras
with O(X) = 5 and O(M) = 2. This completes the proof.

3. BCI-ALGEBRAS OF ORDER FIVE WITH oM =3
In this section we prove that there are 23 distinct BCI-
algebera of order five with O(M) = 3.
Lemma 5

Let X be a BCl-algebra with O(X) = 5. Let M be its BCK-part

such that O(M) = 3andfor0,x,y EM, 0 <x <y, and forc,deX— .
M, ¢, d are comparable, then there are 16 such BCl-algebras.

Proof:
Let X = {0, a, b, ¢, d} be a BCI-algebra. Without any loss of
generality, let M = {0,a,b} andc,d e X—M, thenwehave0 <a < b
"and ¢ < d. Thus A(0) = M {0, a, b}, A(c) = {c, d} and hence I={0,c}.
Thus 0*a = 0, 0*b = 0, 0% =¢, a*0 = a, b*0 = b, ¢*0 = ¢, d*0 = d,
a*b = 0,c*d = 0. _
Computation of b*a: Since b, a € M and M is closed, therefore,
‘b*a€M, that is, b*a = O ora or b. :
But b*a # 0, because otherwise
b*a =0 =a* = a=b, acontradiction.
Thus b*a=aorbd .

Further ¢, d € A(c). By (10), d*c € M. We claim that d*c # 0,
because otherwise ¢*d = 0 = d*¢c = ¢ = d, a contradiction. Thus
d*c=a or b. Thus combining b“a = g or b and d®c = a or b; we have
the following sub-cases:

Case(i): - b*a=a,d*c=a,

Case (ii): b*a =a,d*c = b,

Case (iii):  b*a = b,d*c = a,

Case (iv): b*a =b,d"c = b.

Case (i): Letb*a = a, d*c = a. We compute c*a, c*b, 0*d, d*a, a*d,
b*c, a*c, d*b, and b*d.
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Computation of c*a: 0 < a = c*a < ¢*0 = c. Thus c*a = c, because

cel.

Computation of c*b: 0 < b =c¢*b < ¢*0 ¢, because

cel,
Computation of 0*d: 0 < d = 0*d < 0%
cel

c. Thus c*b

¢. Thus 0*d = ¢, because

Computation of d*a: d*a = d*(d*c) < c. Thusd*a = ¢, because c £ 1.

Computation of a*d: a*d = (d*c)*d = (d*d)*c = 0*c = c.

Computation of b*c: Since b € M, ¢ € X—M, therefore, b*c € X—M,
which implies b*c = c or d. ’

Computation of a*c: a*c = (b*a)*c = (b*c)*a. When b*c = ¢, then
a*c = (b*c)*a, becomes a*c = d*a = ¢. When b*c = d, then a*c =
(b*c)*a, becomes a*c = d*a = c. Thus a*c = c.
Computation of d*b: a < b =d*b < d*a = ¢. Thus d*b = ¢, because
cel.
Computation of b*d: b € M, d ¢ X—M. Thus b*d X—M, that is, -
b*d=cord.

Since b*c = c or d and b*d = c or d, it follows that there exist
four distinct BCI-algebras whose multiplication tables are as follows:

r
v
4

* 0 a b c d

0 0 0 0 c c

a a 0 0 c c

b | b |al|O0]|°|®

c c c c 0 0

d d c c | a 0
(Table 9)

where ¢ =cord and ® =cord

Similarly in each of the case (ii), (iii) and (iv) we get four
distinct BClI-algebras whose multiplication tables are given by:
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. 0 a b c d
0 0 0 0 c c
a a 0 0 ¢ c
b |- b a 0 ® c
c c c c- | 0 0
d | d|ld|ec|b]o \
(Table 10) {
where ¢ =cord and ® =cord
» a a b c d
0 0 0 0 c c
a a 0 0 ® <
b b b 0 < -
c c c c 0 0
d d c c a 0 -
(Table 11)
where ® = cord and © =cord
- 0 a b c d
0 0 -0 0 c c
a a 0 0 ¢ c
b | b b ] 0] ®) ¢
c c c c 0 0
d d d | ¢ b | 0
T (able 1 , i
where © =cord and ® =cord :
From cases (i), (ii), (iii) and (iv), it follows that there exist 16
such BCl-algebras. This completes the proof.

Lemma 6
Let X be a BCl-algebra with 0(X) = 5 and M as its BCKTpa1~t.

If (M) = 3, and 0(X—M) = 2 such that x, y ¢ X—M are
incomparable. The number of such BCl-algebras is 3.
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Proof:

Since M contains three elements, without loss of generality,
let M = {0, a, b} and X—M = {x, y}. It can easily be seen that there
are total three distinct BCK-algebras of order 3. One of them
correspond to the case: a and b are incomparable. Two correspond to
the case: 0 < a < b. The BCK-algebras corresponding to the case: 0 <
b < a are isomorphic to the BCK-algebras corresponding to the case:
0 < a < b, because they involve only interchange of the symbols a
andb.

Since x, y € X—M are incomparable therefore I = {0, x, y},
A(x)={x} and A(y) = {y}. Further (18) gives that 0*x = y, 0*y = x,
x*y=y and y*x = x. We compute m*x, m*y, x*m, y*m for m € M.

Now 0 < m = 0"x < m*x, that is, y < m™*x.

Hence m*x € A(y) = {y} which gives m*x = y. Again 0 < m =
x*m < x. Thus x*m = x, because x € 1. Similarly m*y = x = y*m for
all meM. Hence there. are three such distinct BCI-algebras. This
completes the proof. ' -

Lemma 17

Let X be a BCI-algebra with 0(X) = 5. Let M be its BCK-part.
Let 0(M) =3and 0 # a,b € M are incovmparable andx,y € X—Mare
comparable, Then there exist 4 such BCl-algebras.

Proof:

LetX = {0, a, b, ¢, d} be a BCI-algebra. Without any loss of
generality we take M = {0, a, b} such that a and b are incomparable.
Then X—M = {c, d}. Since c and d are comparable, therefore, either

Me<d or A d<e

It is sufficient to discuss case (I) because (II) involves only
interchange of symbols ¢ and d.

Case I: Since ¢ < d, therefore ¢*d = 0. Obviously A(0) = {0, q, b},
A(c)={c,d},I = {0, c}. Thus 0*a = 0*b = 0 and 0*c = c.

Computation on 0*d: ¢ < d = 0*d < 0*c = ¢ = 0*d = ¢, because cél
Computation of a*b, b*a: Since a*b < a, therefore a*d = a or 0. But
a*b # 0, because if a*b = 0, then a < b = a is comparable with b, a
contradiction. Thus a*b = a. Similarly b*a = b.
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Computation of ¢*a, ¢*b, ¢*d: 0 < a = ¢*a < ¢ = c¢*a = ¢, because
c€l. Similarly ¢*b = ¢, since ¢ < d, therefore ¢*d = 0.
Computation of d*c: d, c € A(c). By (10), d*ceM =d*c =aorbor,

But d*¢c # 0, because otherwise ¢*d = 0 = d*c = ¢ = d, a
contradiction. Thus d*c = a or b, that is,

(i) d*c=a,

(ii) d*c=0b.
Case I (i): Let d*c = a
Computation of d*a: Since d*c = a, therefore (d*c)*a = 0 = (d*a)*c
=0=d*a <c=>d*a =c,becausec&l. , _
Computation of d*b: 0 < b =d*b < d = d*b = c'or d. We claim that
d*b # c because if d*b = ¢, then (d*b)*c = 0 = (d*c)<b. But d*c=aq,
thus d*c < b = a < b, a contradiction. Thus d*b = d.
Computation of a*d: a*d = (d*c)*d = (d*d)*c = 0%c = c.
Computation of b*d: b*d € X—M = b*d = ¢ or d. But b*d # 4,
because if b*d = d, then b*d = d = (b*d)*a = d*a = ¢ = (b*a)*d = ¢, .
orb*d = ¢ = d = ¢, a contradiction. Thus b*d = c.

Computation of b*c: b*c € X—M = b*c = c or d. We claim that b*c
# d. Let b*c = d, then (b*c)*b = d*b = (b*b)*c = d*b, or 0*c = d*b
= ¢ = d, a contradiction. Thus b"_c = C.
Computation of a*c: c¢.< d = a*d < a*c, which gives ¢ < a*c =
a*c=cord.

Thus there exist two distinct BCI-algebras for case I(i), with
multiplication table as follows:

* 0 a b c d

0 0 0 0 c c

a a 0 a <o c

b | b (b lo]lc]e

c c c ¢ 0 0

d d c d | a 0
(Table 13)

where ¢ =c or d
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Similarly for case I(ii), there exist two distinct BCl-algebras
with multiplication table as follows:

* 0 a b ¢ d

0 0 0 0 c c

1 a a 0 a c c

b b b 0 < ¢

c c c c ) 0 0

d d ¢ c b 0
(Table 14

where ¢ =c or d

From cases I(i) and I(ii) it follows that there exist four
distinct BCl-algebras. This completes the proof.
Theorem 5

Let X be a BCI-algebra with O(X) = 5. Let M be its BCK-part
with 0(M) = 3. Then number of all such BCI-algebras is 23.
Proof: . _

It follows from lemmas 5, 6 and 7.

4. BCI-ALGEBRAS OF ORDER FIVE WITH 0(M) = 4:

In this section we show that there are 41 distinct BCI-
algebras with order five and O(M) = 4. :

Lemma 8

Let X be a BCK-algebra with O(X) = 4, and each pair a, b€ X
is incomparable, then X is unique.

Proof:

Let X = {0, x, y, 2} be a BCK-algebra. W constract the
multiplication table for X under the given hypothesis:
Computation of x*y, x*z, y*x, y*z, z*x, z*y: Since x*y < x, we claim
that x*y = x. Suppose x*y = 0, then x < y = x and y are comparable,
a contradiction. Similarly x*z = x, y*x = y,y*2 =y, z*x = 2, 2%y = 2
and multiplication table turns out to be as follows:
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* 0 x y z
0 0 0 0 0
x x 0 x x
y |y y 0 | v

z z 0

(Table 15)
Lemma 9
Let X be a BCK-algebra with O(X) = 4 and for 0 # a, b, c €

X, a < b and ¢ is not comparable with a and b, then number of such
BCK-algebras is 4.
Proof:

Let X = {0, a, b, ¢} be a BCK-algebra. Without any loss of
generality, let a < b and ¢ is incomparable with a and b. We compute,
a*c, b*e, c*a, c*b, b*a.

Nowa*c <a= a"‘_c = g or 0. We claim that a*c = a, because
ifa*c = 0, then a < c implies a is comparable with ¢, a contradiction.
Now b*c < b = b*c = Ooraorb. But b*c # 0. Thus b*c = a or b.
Also ¢*a<c = c*a = 0 or c. We claim that c*a = ¢, because otherwise
we get c<a, a contradiction. Also ¢*b < ¢ =¢*b = ¢, b*a < b = b*a
=aorb,. ’

Thus there exist 4 distinct BCK-algebras whose
multiplication table is shown as follows:

* 0 a b c

0 0 0 0 0

a 0 0 a

b < 0 1/

c c c c 0
(Table 16)

where O =aq or b
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Lemma 10

Let X be a BCK-algebra with O(X) = 4 and for 0 # x, y, z€X.
x<y, x < z, but y, z are incomparable. Then there are 16 such BCK-
algebras.

Proof:

Obviously 0*x = 0*y = 0*z = x*y = x*z = 0. We compute y*x,
y*z, z*x, z%y.

Y <y=y*x =0 or x or y Buty*x # 0, because
stherwise y*x = 0 = x*y = x = y, a contradiction. Thus y*x = x ory.

y*z < y=y*z = 0orxory. Buty*z # 0, because otherwise
y*z2 = 0=y < 2, a contradiction. Thus y*z = x or y.

z*x < z*x = 0, x or z. But z*x # 0, because otherwise z*x = 0
= x*z = x = z, a contradiction. Thus z*x = x or z.

Similarly z*y = x or z.

The multiplication table is shown as follows:

* 0 x y z

0 0 0 0

x x 0 0 0

y ly [ <o 10 ¢

z z ® ® 0
(Table 17)

where O =x or y and ® =xorz

Thus we see that there exist 16 such distinct BCK-algebras.
This completes the proof.

Lemma 11

Let X be a BCK-algebra with OX) = 4and 0 # x, y, 2,
0<x<z, 0 < y < z, where x and y are not comparable. Then there
exist two such BCK-algebras.

Proof:

We compute the multiplication table for. X under the given
hypothesis. Obviously 0*x = 0*y = 0*z = x*z = y*z = 0, x*0 = x,
y*0=y,z*0 = 2,x*x = 0, y*y = 0, z*z = 0.
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Computation of x*y, y*x: x*y < x implies x*y = 0 or x. But x*y # 0,
because otherwise x*y = 0 implies x < y which gives that x is
comparable with y, a contradiction. Thus x*y = x. Similarly y*x = y.

Computation of z*x: We know thaty < zand x < 2. Thusy < 2= y*x
< z*x. But y*x = y. Thus y*x < z*x implies y < z*x,"which gives (i)
z2*x = yor (ii) 2*x = 2. '
Computation of z*y: Case (i): Let z*x =y, then (z*x)*y = 0, (2*y)*x
= 0=2"y < x. Thus 2y < x = 2"y = 0 or x. But 2"y # 0. because
otherwise z*y = 0 = y*z implies z = y, a contradiction. Thus 2*y = x.
Case (ii): Let z*x = z. Then we claim that z*y # 0, x, y. Let 2%y = 0,
then 2*y = 0 = y*z = z = y, a contradiction. Let z*y = x. Then
(*y)*x = 0 or (z*x)*y = Qorz*x < y = z*x = y. But 2*x = 2. Thus
z=y, a contradiction. Let 2*y = y. Since x < z gives x*y < z*y and
x*y=x. Thus x*y < z*y becomes x < y, a contradiction. Thus z*y # 0,
x,y. Thus z*y € X implies z2*y = z.

Thus case (i) and (ii) give distinct BCK-algebras, respectively,
in each case. Their multiplication tables are given in the following:

* 0 x y F4
0 0 0 0 0
x x 0 x 0
y |y |y 0
b4 4 Yy x. | 0
(Table 18)
* 0 x y z
0 0 0 0 0
x x 0 x 0
y 1y 1Yy 0 /0
z z z z 0
(Table 19)

Lemma 12

Let X be a BCK-algebra with O(X) = 4 and for 0 # x,y,2z &
X, x < y < z, then there exist 18 such BCK-algebras.
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Proof:

Obviously 0*x = 0*y = 0%z = x*y = x*z = y*z = 0. We
compute y*x, z*y, 2*x. ‘

y*x <y =y*x = Oorx ory. But y*x # 0, because otherwise
y*x = 0 = x*y = x = y, a contradiction. Thus y*x = x ory.

Also z*x < z=>z*x = 0 or x or y or z. But z*x # 0, because
otherwise z*x = 0 = x*2 = x = 2, a contradiction. Thus 2*x = x or y
orz.

Now z*y < z=2*y = 0 or x or y or 2. But z*y # 0, because
otherwise y*z = 0 = z*y = y*z, a contradiction. Thus z*y = x ory or
z. The following table gives us the required result.

* 0 x y z
0 0 0 0 0
x .| x 0 0 0
y y> A 0 0
z ® < 0

(Tgble 20)

where A = xory, ® = xoryorz and O =xoryorz
Theorem 6
Let X be a BClI-algebra with O(X) = 5 and M be its BCK-part.
If O(M) = 4, then there exist 41 such distinct BCI-algebras.
Proof: '
LetX = {0, a, b, ¢, d}. Without any loss of generality, we take
M = {0, a, b, c} and X—M = {d}. The elements of M has the
following possibilities:
(1) - For each pair-0 # x, y € M, x, y are not comparable and
{d}=X—-M.
(i) Fora,b,c€&€M,a <band c is not comparable with a and b,
respectively, and {d} = X—M.

(iii) Fora,b,ceM,a <ec,a < b, b and c are not comparable and
X—M = {d}.
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(ivy 0<a<b<candX—M = {d}.
(v) 0<ax<b, 0<c<b, whereaandcare not comparable, and
= {d}.

Case (i): By lemma 8, there is unique BCK-algebra. Again for x € M,
d € X—M, x*d, d*x € X—M = {d} imply x*d = d*x = d, which
implies there exists a unique BCI-algebra.
Case (ii): By lemma 9, there exist 4 BCK-algebras. Since for x ¢ M, d
E X—M, x*d, d*x ¢ X—M = {d}, therefore x*d = d*x = d. Thus
there exist 4 such BCl-algebras.

Case (iii): By lemma 10, there exist 16 BCK-algebras. Thus there
exist 16 distinct BCI-algebras in this case.

Case (iv): By lemma 12, there exist 18 BCK-algebras, which implies
there exist 18 BCI-algebras in this case.

Case. (v): By lemma 11, there exist two BCK-algebras, which implies
there exist two BCl-algerbas in this case. '

Thus there exist 1+4+16+18+2 = 41 distinct BCl-algebras.
This completes the proof.

Let X be a proper BCl-algebra with O(X) = 5. Then there are
following possibilities for the BCK-part M: -

i oM =1 i) OM) =2
(i) OM) =3 (iv) OM) =4

We have seen in Theorem 3, 4, 5 and 6 that there exist 1, 5,
23 and 41 proper BCl-algebras in each case, respectively. Thus we
have the following theorem:

Theorem 7

There are 70 proper BCl-algebras of order five. We now state
the following open problem:

Problem:
How many proper BClI-algebras of order n exist ?
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1. INTRODUCTION

Several authors have applied fixed point theorems to obtain
interesting results in approximation theory in the setting of normed
linear spaces. (see for example [4], [8] and [9]). In this paper we use
the technigue of Dotson [2] to extend some recent results on best
approximation as a fixed point by Habiniak and Sahab to the case of
locally bounded topological vector spaces which are not necessarily
locally convex. '

2. DEFINITIONS AND PRE-REQUSITES

“Let (Y, d) be a metric space and M be a non empty subset of
Y. For a fixed x € Y we define the set of best approximations of x
from M by

Pyx) = {zeM:d (x,2) = d (x, M)}, where

dx, M = inf d(x,m)

- meM
A mapping T : Y = Y is said (i) non expansive if d (Tx, Ty)<
d (x,y),x,y € Y (ii) Compact if for any bounded subset B of Y, the set
T(B) is compact (iii) to leave the set M invarient provided T(M) & M
(iv) to have x £ Y, a fixed point if T(x) = x. The set of all fixed points
of T will be denoted by F(T). Let E be a vector space. A subset K of E
is said to be star-shaped with respect to (w.r.t.)p € Kifx € K and 0 <
t < 1,thentx + (1 — t) p &€ K. Clearly every convex set is star-shaped

w.r.t. each of its point.
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A mapping || . ||, : E = R is called a p-norm if it has the
following properties for 0 < p < 1.

(i) [xll, > 0and ||x||, = 0 ifand only if x = 0
(i) ||ax||p = {x|P ||x||p for all scalars o
Gi)  [|x +y[l, < lx]l, + 1lyll, forallx,y e E

A topological vector space E is called locally bounded if it has
a bounded  neighbourhood of the origin. The topology of every
Hausdorff locally bounded topological vector space is given by some 3
p-norm, 0 < p < 1. (see [7], p.161). 1

In the rest of this paper E denotes a locally bounded
topological vector space equipped with a p-norm || . ”p .

3. GENERALIZATION OF DOTSON’S THEOREMS

Theorem 3.1

Let C be a compact and star-shaped subset of E. If T is non
expansive self map on C, then T has a fixed point in C.

Proof: ' .

Obviously Cis a complete subset of E. Since C is a star-
shaped set so fora zin C,

tz+ (1 —t)xeCforallxinCand0 <t <1

Define T,x = Z + (1 - l) Tx for allxin C.
n n
1
1T = Tyl = 11 (1 = 3) exe = |,

(=Y e =1yl < e -yl
- n X y p.<_rn X y P

1\?
her =\1—= .
where 0 <r, (1 n) <1
It follows that each T, is a contraction on C. By the Banach
Contraction Principle each T, has a unique fixed point x,, & C. The
sequence {x,} has a subsequence {x,.} converging to x & C. It follows
by the continuity of T that Txnj -» Tx. Hence
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x, =Tx :7 (1——-)Tx —>Tx

By the uniqueness of limit of a sequence in C, we have Tx=x.

Let X be a metrizable topological vector space whose topology
is generated by an F-norm q. (Cf. [6]). Suppose that S is a subset of
X. Let P = {f,} .5 'be a family of functions from [0, 1] into S with the

property that for each o € S, we have f (1) = «

We shall require the following pair of definitions.

Definition 3.2 )

The family P is said to be contractive provided there exists a
function ¢ : (0, 1) = (0, 1) such that for all &, 8 in S and for all
t£(0,1), we have

gt oW g@—P e (D)
Definition 3.3

The family P is said to be jointly continuous if f t = f,, to in
S whenever t = t,in [0, 1] and & = o is S.

Theorem 3.4

Let S be a compact subset of (X, g). Suppose the family P of
functions associated with S as given above be contractive and jointly
continuous. Then any non expansive self mapping T of S has a fixad
point in S.
Pi‘oof:

Foreachn =1,2,3,...,letk, = ;—%—i—_) 1 for large n and let

T, :S — S be defined by T x = fr.k, for all x in S. Since T(S) € S
and 0 < &, < 1, we have each T,, is well defined and maps S into S.

Consider ¢ (T,x — T = q (rk, — Frky) <
b (k) q (TI—Ty) < ¢ (k,) g (x—y) for all x, y in S. The contractions
T, have a unique fixed point x, in S by the Banach Contraction
Principle. By reasoning as in the proof of theorem 3.1, we will have a
subsequence {x, } of {x,} convergingtox€ Sand Tx, - Tx. Since
B 7 xj ’-—'-'/itnj s<j) it follows that T, n; xnj - x. This glves by joint
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contmuxty of P, T, x, fon - frx = Tx. The uniqueness of the
limit of a sequence’ in ‘X gives {haf Tx = x,
"Remark 3.5

. (i) Theorem 3.1 does not hold in case of a metrizable topological
vector space because we are unable to convert T, into a
contraction by means of an F-norm.

(ii) Theorem 3.4 holds in a non convex setting in contrast to
theorem 3.1 which applies to star-shaped sets.

(ili) Theorems 3.1 and 3.4 give generalizations of ([2], theorem 1)
and ([3], theorem 1) respectively for p-normed spaces.
4. BEST APPROXIMATION AS A FIXED POINT

In this section we generalize Brosowaki type theorems due to
Smgh [9] and Sahab [8] to the case of locally bounded topological
vector spaces. .
Theorem 4.1

Let T be a non expansive operator on E. Let M be a T-

invarient subset of E and x & F(T). If the set Py(x) is non empty
compact and star-shaped, then the set Py (x) contains a fixed point of
T.

Proof:

If y & Pylx), theny € M and [[x = pr = inf [|x — mllp.

meM
By the T-invariance of M, Ty £ M.
Consider ||Ty=x||, = ||Ty—=Tx||, < |lx=yli, = inf |lx—m]l,
meM

‘we conclude from the definition of infimum that

HTy—x|l, = inf ||x—m}|, and hence Ty & Py(x).
meM

The star-shaped condition on Py (x) with respect to say, b in
it enables us to define;

T, : Pyg(x) > Py(x) by
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b 1
Tna=;l-+ (1 —.;)TaforallaaPM(x).

The rest of the proof of this theorem is same as that of
theorem 3.1 and is therefore omitted.
Definition 4.2

An operator T on E is said to be non expansive with respect
to another operator L if |{Tx—Ty||, < ||Ix—1Iy| | for all x, y in E.
Remark 4.3

If in definition 4.2, I is continuous, then T is also continudus.
Theorem 4.4

Let (Y, d) be a compact metric space and T, I.Y = Y be two
commuting mappings such that T(Y) € I(Y), I is continuous and
d (Tx, Ty) < d (Ix, Iy) whenever Ix # Iy. Then F(T) N F() is
singleton.

Proaof:

See Jungck [5].

Theorem 4.5

Let T, I : E - E be operators, C be a subset of E and dC
denote the boundary of C. Suppose that T is defined from dC into C
and x € F(T) N F(), T is non expansive with respect to Il on D =
Pyp(x) U {x} and I is linear and continuous on Pp(x). Further I and
T .commute on Py(x). If Py(x) is non empty, compact and star-

shaped with respect to a point g € F(I) and I(Py(x)) = Pp(x), then
Pyx) N F(T) N FD) # ¢.
Proof:

Let y &€ Pp(x). Since I (Pp(x)) = Pp(x) so 1y & Py (x). Further
ify € dC, then Ty € C by the definition of T.

Now |ITy=xll, = [1Ty=Txll, < |1y=Isll, = [1ly=xI1, = inf
me

[lx=m]],
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If follows as in the proof of theorem 4.1 that T is a self map
on Py(x). Since Pyp(x) is star-shaped with respect to q so each T,
given by T @ = k,Ta + (1 — k) q, where 0 < k, < 1 and converges
to 1, is a self map on Py(x). Since I is linear and commutes with T on
Ppy(x) so we have,

IT,a =1(k,Ta+ (1~ k,)g)
= k,ITa + (1 — k,)]Iq
=k ITa + (1 — k) lg=T,la foralla g Pylx) i
This implies that I commutes with T, on Pp(x) for each n.
We note that T,(Pp(x)) = I(Pp(x))
Now [[T,a—=Tybll, = (k)P |{Ta—Tbllp 0< (k)P <1
< k)P [|la—Ib|[,
< ||la=Ib}], provided Ia # Ib

It is given that Pp(x) is compact and I is continuous. It
follows from theorem 4.4 that F(T,) N F{d) = {x,}. By the
compactness of Py(x) we can find a subsequence {x, } converging to
z € Py(x). Therefore, we get

xnj = T,,j xnj = knj Tx,,j +(1 - knj)q
By the continuity of T and the argument used in the proof of
theorem 3.1, we obtain z = Tz.

Also —I(hmx )= llmbc =limx, =z
jroe jroe e J

Hence z & Py(x) N F(T) N F(I) as required.

We continue the theme of best approximation as a fixed point
and now present a generalization of a recent result of Habiniak ([4],
theorem 8).

Definition 4.6

A self map T on a metric space Y is called a Banach mappmg

if & (Tx, Tx2) <kd(x,Tx),x€Y,0< k<1
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Lemma 4.7

If S is a closed subset of a metric space Y and T is a
continuous Banach mapping on Y and T(S) is compact, then T has a
fixed point.
Proof:

For any x € S, it is easy to show {T"(x)} is a cauchy sequence

in S. Using compactness of T(S) the result follows immediately.

Theorem 4.8

Let T be a non expansive Banach operator on a metrizable
topological vector space X with fixed point a and M be a closed T-
invariant subset of X. If restriction of T to M is compact, then point
‘a’ has a best approximation b in M which is also a fixed point of T.

Proof:

It is easy to prove that Py(a) is non empty and closed subset
of X. By reasoning as in the proof of theorem 4.1, T is a self map on
Py(a). Clearly T is continuous on Py(a). Since T leaves M-invarient

and Py(a@) is a bounded subset of M so T(Py(a)) is compact. Thus
by lemma 4.7, T has a fixed point in Py,(a) as desired.
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1. INTRODUCTION

In the theories of radiative transfer (c.f: [4], [5]) and neutron
transport (c.f: [4], (8]) an important role is played by nonlinear
integral equations of the form

1
H(s) = 1+ H(s) J‘ s, 1) ¢ () H®) dt, (1)
0 - -

where ¢ (t) is a given function on [0, .1]. Multiplying this equation by
¢, one obtains the equation,

1
x(s) = (s) + x(s) J' f(s, t) x(¢) dt, : (2)
0

for the function x(s) = ¢(s) H(s). Equations similar to (2)- for
functions on the half-line [0, o0) arise in the kinetic theory of gases.

One of the questions considered here is the follbwing: when’
can x be found by solving (2) by iteration? :
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The question has been answered under certain positivity
assumptions on ¢ and f [3], [8]. It has also been answered for quite
more general ¢ than above [10], {11]. ‘

In many cases of physical importance, however, ¢ may
become negative. The methods of [1], [2], [4], [11] then provide the
best known results. _

In almost all the above cases_however the solution x obtail_led
is such that '

1—14/1 -4 F
el < LN = allell U7, @
2 [I7 1
1
where [|F || = sup |, 0] dt 4)
O<s<l1
provided that 4 ||o|| [|F1] < 1, . - (5)

with ||| = max |[¢(s)] .
_ O<s<l1
Under the above assumption however it is known that the
.corresponding real quadratic equation has two solutions. We wonder
if this can be true in a Banach space X. It turns out that this is true
under certain assumptions. What we really need to do (assuming
that (5) holds) is to introduce a convergent iteration {x,},n = 0, 1, 2,
..., Which guarantees that if ||xy|| > d then {|x,|] > d and therefore
the solution x is such that ||x]] > d. \

Equation (2) can be considered as a special case of the
equation;
x=y+xK@ (6)

where K is a linear operator on a Banach algebra XA and y € X, is
fixed. Here we suggest the iteration,

x5 = (Lxy) (Kix,)) 6))

for solving (2), where

il

Lix) =x —y and K(x) = L
‘ Rx)
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provided that K(x) is well defined and L(x) # 0on U (z, r) = {x€X,
| 1lx—2]|| < r} for somez &X, and r > 0. :

Using a theorem of Darbo [6], we provide conditions for the
convergence of (7) to a solution x of (6) such that ||x|| > d, if
[lxofl2d.

Finally we generalize our results to solve the abstract
quadratic equation '
x=y+ B(x,x) . (8)

where B is a bounded bilinear operator on a Banach space X and y €
X is fixed, using the iteration

X, =B@)" 1k, —y,n=012, .. )
for some x,, € U(z, r), where B(x;,) is a linear operator on X such that
B(x,) () = B (x,,y) forally £ X.
I.  Basic Results

We denote by C[0, 1] the Banach space of all real continuous
functions on [0, 1] with the maximum norm,

Hxllc = max |x ()| (10)
0<s<1
Welet CP[0, 1], 0 < p < 1, denote the Banach space of all real
continuous functions on [0, 1] such that

sup I_x_(t)___—_x_(_g_)_l_ < oo, with the norm

O<ts<]l lt—s|P
jx(@) — x(s)|

lt—5|P a1

llxl|cp = max |x(s)| + sup
O<s<1 O<tsx<l

We note that the spaces X, = C [0, 1] and &5 = C? [0, 1] with
norms given by (10) and (11) respectively are Banach algebras.

Following Kuratowshi [9] we define the measure of
noncompactness My (D) of a bounded set D of a metric space M to be

My(D) = inf {¢ > 0|D can be covered by a finite number of
sets of diameter less than or equal to &}.
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Suppose g maps M continuously into a metric space N, and
suppose g takes bounded sets to bounded sets. If for some e & [0, %)
My, (g(D)) < eMy (D)

for every bounded subset D of M, we say that g is an e-set
contraction. Ife < 1, then g is a strict set contraction. .

We will use the foilowing theorem [6].
Theorem 1 7 ‘
Let D be a‘subsgt of a Banach algebra X, and suppose that 3
T :D - X, is of the form T(x) = x, + L(x) K(x), where
(1) xo & XA H
3] L: D — X, satisfies ||[L(x) — L|| < b ||x — y|| for some
b>0andallx,y g D;

3) K:D—»X, is compact;

4) a =sup ||[K@)|]| < oo,
xeD

If ab < 1, then T is a strict set contraction.

Moreover if T leaves a closed bounded convex subset D of a°
Banach algebra invariant, then T has a fixed point in D.

From now on except.for the norm of 7 and related operators,
{] . || will denote that norm,

We will need the following proposition:
Proposition 1

Let f(s,?) be a continuous function on [0,1] X [0,1] for which

1 1 .
sup j l(f(sl, D —fsut|dt<M (2 |

0<sy.s9<1 Isl = $olP

for some p,0<p<l, and some M < 0o, Deﬁne a linear operator f
onX by

1
(Fx) (8) =‘j' f(x, s) x(¢) dt,
0
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and assume there exists z & X}\ such that 7(z) never vanishes on
[0,1]. Let || 7 || be defined as in (4) and fix r; € (0, ry) where
_ ; ,
ro = 1 .
HF N NF@~ )
Then the operator K on U (z, r,) given by

K@) = —— | (13)
_ )
is well defined, satisfies o
-1
a= sup |[|K@|| < |7 @) ”1 ., (14)
xG(zl,rl) 1_ ”7” ”7(2)_ ”'rl
and is compact on U (z,_l_rl)
Proof:
(a) The result follows. immediately from the Banach lemma for

invertible operators [12] the choice of r, and the identity,

FO=F@N+ [ Y[ x=2)]
(b) We will use a result in [7], namely if, for every uniformly

bounded sequence {x,} in a subset of X1 thereisap, 0 <p
< 1, such that K(x,)) & Xp for every n and {K(x )} is bounded
in the norm of ). A A then K is a compact operator.

Now let x,, belong to U(z, rq) such that {lxp || < M, for some
M, > 0. Con31der

h,(s) = f (s, t) x,(t) dt

0
Then for p as in (12 |
sup |hy(s) — hp(sg) lT _
0<s,.s,<1 Isy = salP
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h,(s{)—h,(s5)| 1
ISl - s2lp 0 .

0<s,.5,<1

By (14), there exists g > 0 such that

| jl' (f(s, t) x,, (t) dtl >q (16)
(4 .

From (13), (15) and (16)

1K) Ix2 < 7+ =

From (17) we obtain that K is a compact operator on U(z,,r,).

a7

That completes the proof of the proposition.

Letz f, 7, Kand ry be as in Propbsition 1. Next, fixy # 2z
and denote by P (y, z) the constant y + 2f () — 2. Assume the
constants ¢, ¢, and A given by

o =1-||]F@ A =2

cg=1—[I7@], and

A=(||F@ Y d=zPH)|1=D2—4||F @ 1T T @ p@)|| are

positive. Define the constants ry — r5 by

o Lo UF@NL
HF I F@Y
- Femya-zhi -+A
’ 2(|71]. |IF@~1]| ’
1= lif@ a2l +A/a
! 2|| 711 1| F@~ 1] ’
and  rz=|lz —yl|

Theorem 2

Let z,f, 7, K,y and the constants c;, ¢y, 4, r and ry — rsbe
as above. Assume:

the following condition is satisfied:

| (136)
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Thezf, 7, K are as in Proposition 1 and y & X‘: is fixed; the

following are true:
€1 <0,¢3>0,A>0,r3 < min(ry, 7y, 15)

and choose rg € (rg, min (rg, g rs).

Define the operator T on U (z, rg) by T(x) = (L(x)) (Kkx))
where L, K ére operators given by L(x) =x — y
. N »
T(x)

» and K@) =

Then the operator T has fixed point in U (z, rg).

Proof:

One only needs to show that the hypotheses of theorem 1 are
satisfied. Note that the hypotheses (1), with b = 1, and (2) are
obvious and that (3) follows from proposition 1 since rg < rp < ry.
We now prove the claims:

Claim 1 _T is a strict set contraction on U (z, rg).

Since, b = 1it is enough to show that

a= sup ||K®}}<1
xGU(z,rG)

UF@-
1— 1T 1. 17@ .7

which is true by the choice of rg.

or by (15)

Claim 2 T maps Kij (z, rg) into T (z,rg)
Let xE U (2, re) then T(x) € ki} (z, rg) if

IT@=z|| = || @~ [A—2F) (x = 2) — P@)]]|
< HT@-d—zP)]].re + [T () ~1P@)|] <r
1= U@ Y. .re -

which is also true because rg < rg < r,.
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That completes the proof of the theorem.
Note that results similar to those in Proposition 1 and
theorem 2 can easily be proved if we work in the space Xi .
" We will now éxtgnd our results to include equation (8) and
iteration (9).
II. Extension - Remarks

From now on we assume that X is a banach space and that B !
in (8) is a nontrivial bounded symmetric bilinear operator (11], [12].
The operator B is assumed to be symmetric without loss of generality

since B can always be replaced by the mean —ﬁ of B defined by
B x,y) = %(B(x, y) + By, x)), x,yeX

We have B (x,x) = B(x,x) forall x ¢ X.

Denote by B(x), x € X, the linear operator on X defined by

Bx) (v) = B(x,y), x,y € X.

We are now going to show that iteration {x,} given by (9) (or
(6) in case of convergence to a solution x of (9) (or (5)) is such that

1
217N

1 . .
[xl] 3§—ﬂ—§l—l ( or ||x|| > ) under certain assumptions.

Proposition 2
1 the iteration - s
%y, =By 1, —

is well defined for glln =201, 2; ... for some x, & X and converges to
a solution x of (9), '

@  1-4|B|l.Iyll>0and (18)
3) p € [y, pol, where p,, py are the solutions of the equation
' IIBIIpsz=IMI=O. |

€ sl >p,

then |ix.l|>p,n=0,1,2, ..
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and  |ix]| >p
Proof:

We use induc¢tion on n. Since ||xg|| > p by assumption,
suppose ||x,}| > p fork =0, 1, ..., n. To show ||x, . ;]| > p, note that
from . :

Blp Xy ) =%, =y
or [lxn —¥11 = 1B CGp xp o DI < HIBIL Tlxnlls [xp gl

”n—y” " x, = Lyl
we have ”x""'IH—'IIBH [, 11 2 (Bl [lx, |1~

Since ||x,|| > p > |ly]|| to show ||x, ;|| > b, it is enough to

lx, — Iy}l iyl ‘
show ————————> p or ||x -———. Finally it suffices to
[IBIT- The, 1 =2 O [Pl 2 777 gy - Finally
11 , .
showp > ———or ||B|| p* — p + |lyl| < 0 which is true for
1—-p|IB{| ;
pa[PpPz]-

That completes the proof of the proposition. Not that

i

1
=T € Py pol

Using the Banach lemma for the invertibility of linear
operators [12] and working as in the proof of Proposntlon 1 (part (a))
we can easily show the following result. ;

Proposmon 3

. Let z &€ X be such that the linear operator B(z) is invertible.
Then B(x) is also invertible for all x & U(z, Ry), where

1
|IB]]. |[B@ 1|

We will need the defimtlon )

Let z & X be such that the hnear operator B(z) is invertible.
Let Ro > 0 be fixed and choose R with 0 < R < R,.

The operators P, T given by

R0=

Px)=B@x,x)+y~x
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and T = (Bx) 1ax—y

are then well-defined on U(z, R).
Define the real functions F,and F, on[R* by
’ F,(R) = e,R? + e,R + eg

and Fo(R) = ¢,R2 + R + g,
‘where e; = (1|B]| . ||B) 1|2
ep = —2 |[B]. [IB&)1{], )
e3=1—||B@~Y| — |[B]]. ||1B@ |2 ||z = yll,
eg=|B]]. |IB@7Y,
es = ||B@)"1d — B)|| —1
and eg = ||[B@ 1 P@)||.

Working as in theorem 2 and using Proposition 2, we can
easily show the following consequence of the contraction mapping
principle [12].

Theorem 3

Lety # 2z, P, T, B, r;—rg, Ry, F, and F, be as above.
Assume

Q) There exists z € X such that the linear operator B(z) is
‘invertible. ' :

" (2) The following are true:

e3> 0,e5<0,"

and 2—4e4eﬁ>0

€5

3 There exists R > 0 such that
F;(R) > 0,F,(R) < 0

and R < |lz =]l

' Then, |

(@) The operator T given by

T=Bx)lx-y
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is well-defined and it has a unique fixed point x & _U—(x, R).

(b) The iteration
Xnel = B(xn)'l &, —y,n=012,..

is well-defined and it converges to x for any x, € -17(2, r.

Moreover, if 1 — 4 ||B||. |ly]] > 0Oandforp = 3 [llBII say,

1
xgl| 2 ==, then by proposition 2

1
Hxll 23TB]
Remarks: ‘ .
(a) If the hypotheses of theorem 3 are true; then equation (8)
(or (5)) has two solutions x; and x, such that

. 1 1
x|l < == and ||x >
Iull < gqigyy 27 leall 2 3jgyy

(b) IfX'= X}‘ orX = Xi then the hypotheses of theorem 2 can

easily be verified. If X is a Banach space then the conditions
of theorem 3 may be difficult to verify since the invertibility
of ‘the linear operator B(z) may be almost impossible. to
ascertain. Moreover z has to be chosen close to the solution.

However the. other two popular methods for solving (8),
namely Newton’s method

*., =x, — @B@x,) — D" 1(P(x ),n=0,1,2,..(19)
and the method of successive substitutions

X1 =y +Bx,x),n=012,.. (20)
share similar dlfﬁcultles

In partlcular Newton 8 method also requires z to be "close” to
the solution and the invertibility of the operator I — 2B(x,,) at each
step (or the invertibility of (I. — 2B(x()) if we are referring to the
modified Newton’s method).
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Although the method of successive substitution makes on use’

of the invertibility of the linear operator B(z), z must still be close to
the solution and

1
21 <05

‘under hypothesis (18) [1], [2], [11]. Therefore it cannot be used to
find a solution x such that

1
> ’
=11 > 2181

since the solution obtained then satisfies

1
x|| <
11 < 37787y
Finally note that in a general Banach space X neither (19)
nor (20) has the property of keeping the iterates away from zero as

iteration (9) (or (6)) does. Therefore iteration (9) if applicable can be
used to find the "large” solutions of (8) (if they exist) under
hypothesis (18).
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ABSTRACT

In this paper we solve an open problem of [6] and show that epimorphisms
are precisely onto BCI-homomorphisms. Some properties of epimorphisms are
proved. : ’

INTRODUCTION

In [7] it is shown that onto BCIl-homomorphisms are
epimorphisms. In [5] some properties of category BCI, category with
BCl-algebras as its objects and BCI-homomorphisms as its
morphisms, have been investigated. The following problem regarding
epimorphisms was posed. Problem: Let X, Y be BCl-algebras and f :
X =Y an epimorphism. Is f: X = Y onto? In [3] and [4], the problem
has been solved under certain conditions. However, we show that
epimorphisms are precisely onto BCl-homomorphims and prove
some properties of epimorphisms.

" We shall follow standard definitions. Our categorical concepts
shall be those of standard text [9]. Our notions of BCI-algebras shall
be as developed in [1], [2], [6], [8] and [10]. '

We recall that a BCI-homomorphism f: X = Y means that
fx*y) = f(x) * f(y), for x, y € X. We note that f(0) = 0. Further, we
denote by BCI, the category of BCl-algebras as its objects and BCI-
homomorphisms as its morphisms. |BCI| denotes the objects class
and set of morphisms from an object X to an object Y is denoted by
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BCI (X, Y). An f £ BCI (X, Y) is an epimorphism if for all Z¢g|BCI{, g,
"h€BCI (Y, Z) and satisfying gof = hof implies g = h.
DEFINITION 1 [6]:
'An ideal which is also a sub-algebra is called a closed ideal. In
[4], it is called as a regular ideal. An ideal A in a BCl-algebra X is

closed ideal if and only if 0 * a € A, for a € A. It is interesting to note
that such ideals do exist which are not closed. Consider the following

example.
Example 1:

Let X be the set of all integers with (—) operation. Then
(X,—,0) is a p-semi-simple algebra. Define A = {x € X :x > 0} and B
= {x &€X:x < 0}. Note that A and B are ideals in X, but both are not
closed. Thus regular and non-regular ideals exist in BCl-algebras.
DEFINITION 2 [1]: ‘

Let X be a BCl-algebra. Let x, & X be such that for each
y€X and satisfying y * x5 = 0 implies y = x3. Then x; is called a
special element of X. Let I denote the set of all special elements, we
call it the centre of X. For some x, & I, we define

Alxp) = {x€X:xp*x = 0}

We call A(x;) a special section of X. The following are used in
the sequel.
1. Let X be a BCl-algebra with I as its centre. Then UxosI Alxg)
= Xand A(xg) N A(yg) = 0, for xy, yo € I ([1D).
2. The centre I of a BCI;algebra X is a p-semi-simple algebra

(2.

3. LetXbea BCl-algebra with I as ité:centre. Let0e¢N & Iand
H = I(L;I Alxp). H is a closed ideal in X if and only if N is a
closed ideal in I ([2]). ' '

4. Every sub-.algebra ina p-semiv-simple algebra is a closed ideal
([11]. :

(146)
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Let X, Y be BCl-algebras with Iy, Iy as their centres
respectively. f : X = Y be a BCl-homomorphism. Then

A E1y. (13D
6. Let X be a BCI-algebra and A, B are closed ideals in X. If A
anideal in B, then X/B = X/A / B/A ([19]).
In [4], Z Chen an H Wang proved the following result for
regular ideals.
Result:

Let X, Y be BCl-algebras and f: X = Y an epimorphism. If B
is a regular ideal in Y, then f~1(B) is a regular ideal in X. However,
we generalize it for ideals as well as homomorphisms in as follows.

Lemma 1

Let X, Y be BCl-algebra and f : X = Y a BCI-homomorphism.
Let B be an ideal in Y, then f~1(B) is an ideal in X.

Proof:

Let X, Y be BCl-algebras and f : X - Y a BCI-
homomorphism. Let B be an ideal in Y. Take A = f'l_(B)'; we show
that A is an ideal in X.

f(0) = 0 € Bimplies 0 € f~1(B) = A. Lety *x € Aandx
€ Aforx,y € X.y *x € f~1(B) implies f(y*x) € B.

fy*x) € B implies f(»)*f(x) € B. f(»)*f(x) € B, fix) € B
~ and B being an ideal implies f(y) € B. Thusy € f~!(B) = Aory €
A. Hence A is an ideal in X.

Lemma 2

Let X, Y be BCI algebras with Ix, Iy as their centres and
f:X—>Y a BCl-homorphism. Let N € Iy and H = U A(xg), then
f(H) < Uyo=f(10)éf(N) A(YO) =27 .

Proof: :

Letxy € Nand x € A(xy) S H. xgq < x implies f(xy) < f(x)

implies f(x) € A(f(xy). Or fTJA(xp)] S A(fixy). Or fIUIOe N Alxg)]
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S Ufeperm Alflxg) = = fupean = Z. or fIH] & Z. This
competes the proof.

We restate theorem 5 of [3] as result 1 and use it in what
follows.
Result 1:

- LetX, Y € |BCI], f € BCI (X, Y) be an epimorphism such
that f(X) is an ideal in Y, then f is onto ([3]).

" Theorem 1

LetX,Y € |BCI|, f € BCI (X, Y) be an epimorphism, then f
is onto., '
Proof:

Let X, Y be BCl-algebras with Iy, Iy as their centres
respectively. By (1), X = Uz, €I A(xp). By (5), flly) S Iy. Also, f(Ix)
is a sub-algebra. By (4), f(Ig) is a closed ideal in Iy. By (3),
Z= Uy Efly) A(y,) is a closed ideal in Y.

By lemma 2, f(X) € Z. By lemma 1, f~1Z) a closed ideal in’ {g

X, is contained in X. So Z £ f(X). But f(X) € Z. Hence Z = f(X) is
anidealinY. °

Further f: X —Y is an epimorphism. By result 1, / is onto.
This completes the proof.

NON-REGULAR IDEALS AND QUOTIENT ALGEBRAS

Quotient Algebra X/A of a BCl-algebra X by a closed ideal A
has been studied in [4], [10] and [11]. But quotient algebra of a BCI-
algebra X by a non-regular ideal still remains un-explored. We
undertake it and show that it is a proper BCI-algebra.

DEFINITION 3:
Let A be a non-regular ideal in a BCI-algebra X. We define
R(A) = {a € A:0%a € A} and NR(A) = {a € A:0*a € AC].

R(A) and NR(A) are called regular and non-regular parts of
A respectively. It follows from the definition that if A is a regular
ideal then R(A) = A and CO = {x€X: 0" X*0EA} = {xEA:0*xE A}
= R(A).
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Theorem 2

Let X be a BCl-algebra and A a non-regular ideal in X, then
{X/A, *, Cy} is a BCl-algebra.
Proof:
A Let X be a BCl-algebra and A an ideal in X. We define a
relation R on X by:

= {(x,y):x,y €EX and x*y, y*x € A},
Routine calculations show that R is an equivalence relation

on X and it partitions X into equivalence classes (CE cx € X), where
CE =@y € X:(x,y) € R} = ¢gEX:x*y, y*x € A} = C:‘ = C,.

We note that (r, y) € Rif and only if C, = C,.

Let us consider X/A = (C, : x€X). For C,.C, S X/A, define
27 Cy = Comy.

We show that * is well-defined in X/A. For C, = C,, and C, =
C,, we show that C,4, = Cpx,,.

C, = C, implies (x, u) € R and C, = C, implies (y, v) € R.
Thus (x, u), (y, v) € R imply x*u, u*x, y*v, vy € A, forx, y, u,v €
X. (x*y) * (x*v) < v*y implies (x*y) * (x*y) € A. Consequently,
(x*y,x*v) € R. (a)

Again, (x*v) * (u*v) < x*u implies (x*v) * (u*v) € A and
w*v) * (x*v) < u*x 1mp11es (u*v) * (x*v) € A which implies that
(x*v, u*v) € R. : (b)

From (a) and (b) (x*y, u*v) € R which implies that

Cxty = Cu*u

Routine calculations show that (X/A, * Cj) is a BCl-algebra.

This completes the proof. .

C

Lemma 3

Let X be a BCl-algebra and A non-regular ideal in X. Then
R(A) is a regular ideal in X.
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Proof:
Let X be a BCI-algebra and A a non-regular ideal in X. We
consider (X/A, *, Cy) and definef: X > X/A by f(x) = C
~ We note that f is onto. We show that ker (f) = R(A).
ker () = {x € X:f(x) = Cp}
={x EX:C, = Cy}
= {x € X:0%x,x*0 € A)
={x € A:0*x € A} = R(A)

By lemma 1, f~1(Cy) = {x € X : f(x) = Cy} = ker (f), is an
-ideal in X, because C, is an ideal in X/A. Hence R(A) is a 1egu1a1
ideal in X. This completes the proof.

Theorem 3

Let f:X —= Y be an epimorphism and A an ideal in X such
that ker (f) = {0}, then X/R(A) = Y.

Proof:

. By theorem 1, fis onto. By lemma 3, R(A) is a regular ideal
in X and X/R(A) is a quotient algebra. We define F : X/R(A) = Y by
F(C,) = f(x). F is onto, because f is onto. We show that F is one-one.

Suppose f(x) = f(y), for x,y € X. Then f(x) * f(y) = f(y) * f(x) = 0 or
fix*y) = fy*x) = 0 or x*y, y*x € ker (f) = {0}. Thus x = y which
implies C, = C,. '

Again, F(Cx"'Cy) = F(Cx*y) = fix*y) = f@)*fy) = C.*C,
which implies that F is a BCI-homomorphism. Hence X/R(A) = Y.
This completes the proof.
COROLLARY 1 [4]:

Let f: X =Y be an onto BCI-homomorphism such that ker [49]
= {0}.IfAisa regula1 ideal in X, then X/A Y
Theorem 4 i

Let X, Y € |BCI|, f€EBCI X, ). If f is an onto
homomorphism and B an ideal in Y, then X/f~1(B) = Y/B.
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Proof:

From lemma 1, if B is an ideal in Y, then f~1(B) is an ideal in
X. Take f~1(B) = A and consider X/A, Y/B as quotient algebras of X
and Y by A and B respectively. We define F : X/A - Y/B by

F(Cx) = Cf(x)

F is well-defined. Let C, = C,, forx, y € X. Then C,*C =Cy=C,*C,
Or Couy = Co = Cyu, implies F(C.s) = F(Cy) = F(C,s,) implies
Cf(x*y) = Cf(O) = Cf(y*x) Or f(x) * f(}') f(y)‘f(X) € CO C B=
fO*f), fy)*fx) € B. Or Crx) = Cf(y) =F(C,) = F(C)) ; thatif F is
well-defined.

F is a BCI-homomorphism. Let us consider;

F (CI‘Cy) = F(Cx*y) Cf(x y) = Cf(x) Cf(y) F(C ) * F(C ),
which gives that F is a BCI-homomorphism.

F is one-one. Suppose F(C,) = F(C)), for C,, C, € X/A, x,
yEX. We show that C, = C, . F(C,) = F(C)) = Cp, = Cg,. Or
Cf(x)*f(y) = CO = Cf(y)*f(x)' Or Cf(x*y) = CO = Cf(y‘x) lmplles f(x‘y),
fy*x) € Cy & B = f(x*y); f(y*x) € B and x*y, y*x € f~1(B) = A
= CI = C_)" N

F is onto. fis onto. Thus for each y € Y thereexistsax € X
such thaty = f(x). Hence each C, € Y/B implies C, = Cg,, = F(C,);
that C, = F(C,). Hence X/A = Y/B. This completes the proof.
COROLLARY 2 [4]:

Let f: X = Y be a epimorphism and B a regular ideal in Y,
then X/A = Y/B, where A = f~1(B).

o The third zsomorphlsm theorem of [10] does not hold for
non- regular ideals, because a non-regular ideal itself is not a BCI-

algebra and if A and B are. 1deals in X such that B € A, then A/B is
not defined. However, we give the next best thing in the sequel.

Lemnia 4

Let A, B bg ideals in a BCl-algebra X such that B & A, then
Bis an ideal in A.
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Proof:

Since B is an ideal in X, sox*0 € X—B, forx € X—B and
bEB. Note that A—B & X—B implies B is an ideal in A. This
completes the proof.

Theorem 5

Let K be an ideal in a BCl-algebra X and H an ideal in K,
then X/R(K) = X/R(H)/R(K)/R(H).
Proof:

Since H is an ideal in K, so 0 € H. Let y*x, x € H and

'yEX. Weshowthaty € H. Since H € K, so y*x, x € K, withyEX,

But Kisanidealin X, soy € K. Againy € H, because H is an ideal
in K. Thus H is an ideal in X. Further, H & K implies R(H) &

R(K). By lemma 3, R(H), R(K) are ideals in X. By lemma 4, R(H) is
an ideal in R(K). By (6), the result follows. This completes the proof.
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