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ABSTRACT

The purpose of this paper is to give, by the comparative method,
sufficient conditions for the existence, uniqueness and convergence of
successive  approximations for some functional equation with a parameter.
As a consequence corresponding conditions for differential equations with
deviated arguments are obtained from the general considerations.

1. Introduction
- We consider the equation with a parameter.

y@) =, y(), M), t € d = [a, b] Y
subject to the following condition
L), A) = O, ' (2)

where O is zero element in R 9. By Y we denote the space of bounded
functions y : J—>RP. The functions f : JXYxR?—>RP, L:YxRI—>R? are
given. By a solution of (1-2) we mean a function y€Y and a
_parameter keR‘i, which satisfy the equation (1) and the condition
(2). We say that the problem (1-2) is solved if such y and A are
found.

We can give some conditions which guarantee that there
exists a function A:Y—>RY such that A = A(y(*)) is a solution of (2).
For this case we have

¥y = fit, y(), Ay(), t e d _ 3)



Note that although the problem (1—-2) may be converted to (3), the
function A appearing in (3) is not known explicitly and therefore
(1-2) can not be solved numerically by soélving (3).

We are concerned with the question of the existence,
uniqueness and continuous dependence of solutions on the right-
hand side of (1). Existence theorems can be proved by using the
Banach or Schauder theorems on the fixed point and also by the
method of successive approximations. Unfortunately, the Banach
fixed point theorem yields some strong conditions imposed on the

right-hand side of (1-2). These conditions can be weakened if we use
the comparative method (for the abstract from of this method, see
[12]). The comparative method will be applied in this paper to obtain

results for existence and uniqueness of solutions of problem (1-2).
For this reason two sequences {y,}, {A,} are introduced in the
following way.

Y o :J —> RP is arbitrary, | } @
V1@ =, y,(*),A), ted,n=0,1, ...

and

Aps1=2A, - B Ly, (), A1), n=01, ...

where B is some nonsingular square matrix of order gq. For given y,
and Ay we determine y, from (4) and then A, from (5), and so on.
Sufficient conditions under which the sequences {y,}. {ln} converge
to the solution (7, A) of (1-2) are established. The estimates between
the approximate solution (y,, A,) and the exact solution (¥, A) are
given too.

Ag is arbitrary in RY, } 7 5)

The functional problem (3) is a special case of (1-2). Volterra
integral equations, Fredholm integral equations, integro-functional
equations are also special cases of (1). Some equations can be
reduced to (1): for example differential and functional-differential
equations, differential equations with deviated- arguments
(see section 6). The Niccoletti condition is a special case of (2).

The paper is organized as follows. In sections 2—4 we
investigate the general problem (1-2) giving sufficient conditions for
the existence and uniqueness of solutions of (1-2). The question of
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the continuous dependence of solutions on the right-hand side of (1)
with (2) is considered too. Existence and uniqueness theorems are

formulated by using the nonlinear comparison operators {2 and I
The considerations for the functional problem (section 5) and for the
differential equation with deviated . arguments (section 6) are
obtained, by applving the general results of sections 2—4 for our
cases.

This paper contains a generalization of some results of

(2,3,6,10].

2. - Existence of Solutions of (1-2)
To formulate such theorem we first introduce the general

assumptions for our problem (1-2). Let E denote the collection of all
non-negative functions u(*) which are defined and bounded on J.

Assumption H ;: Suppose that . _
1° f:IxYxRI—>RP, L:YXRI—RY and if x(¢) = f(t, y(*), A) for t€Y,
y€Y, AeRY, then x=Y, .

2° there exists a function Q:JxExR,—R, = [0, ©) which is
nonnegative, nondecreasing and montonicaly continuous with

respect to the last two variables (i.e. if u,>u, w,>w, then

Q(tu,,w,)NQtuw) for t, Q,0,00=0 and Q is such that th
condition :

ilf(t;x1('),u1)-f(t,x2('),u2)IISQ(t,ILrl(')—xz(°)H, N =Kol
holdsfor t € d,x, .x9 €Y, 1y . H5 € RY,

3° there exist a nonsingular square matrix B of order ¢ and
constants h20, d>0 such that kd <1. d>||B~![| and
[L(x(?), p) — Lx(*), (1) = B(u—) || < Af|pu—p|}. ®

for x=Y, U, [i=RY, where the matrix norm is consistent with the

. vector norm,

4° there exists a nonnegative, nondecreasing and monotonicaly
continuous function I:E-R,. I'(0) = 0 and such that for x;, x,€Y,
HLERT the inequality

[ILCxy (), ) — Lixg(), W S T(Jle(*) —x9() [P holds.
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Assumption H,: Suppose that
1° there exists a solution w”€E of the inequality
Qw), da-dh) L [Tw) + |ILue), APl + viO<w®) (D
where dh € [0, 1) and
v(t) =.“f(t, yo('), ko) _yo(t)”’ t €d,
2° in the class of functions weE satisfying the condition
w(t)<w™(¢), ted, the function w(t)=0, t€J and u=0 are only the
solution of the system
w@®)=Q (¢ w), d1-dh)"1 Tw()), te ®
‘u=d(1-dh) (w()

Remark 1
- It is known that the matrix norm is consistent with the
vector norm if

HCx[[ < [ICI] Ix]l,
where C is an gxg matrix and x€RY (see for example [11]).
To prove the convergence of the sequences {y,}, {A,} to the

solution (¥, MEYXRY of (1-2) we define two sequences by the
following relations:

ug=u"=d(1-dh)"L [T () + [[LOo™), Mg } (9)
u, ,—dlhu, + Fw,(H,n =0, 1,......
wolt) = w'@),t e d, } (10)
w, O=Q(, w,(), u,),ted, n=0, 1, ......
where dhe(0, 1)

- First of all we formulate the following.

and

Lemma 1
If Assumptions H; and H, are satisfied, then

i) 415w, <ut,n=01,...,
Wy O Sw,@® Sw*®), ted,n=01,..,

(i) u, >0,



w,@) —>0, ted.

(the last sign — denotes the uniform convergence on J if w,’s are

continuous),
n-1

(i) u, =@ u*+d 2 dR 1 Tw),n=1,2,.
i=0

n-1
(v) lim Y (@m)"1- TCw,() = 0.
n—ow i=0

Proof

The relations (i) we can prove by induction. In view of (9—10)
and (ii), the sequences {u,}, {w,} are convergent, so

lim u

n—ow
where & and iv satisfy the following equations

n =T, ’11_{:30 w,(t) — (), ted,
a=d[hi+ L)),
o) = Q, w(+), ), ted.

Hence and by Assumption H,, the function & equals zero and Z=0
‘too. By induction, we can get (iii) and this leads to the last condition

@iv).

Lemma 2

If Assumption H; and the condition 1° of Assumptlon Hy are
satlsﬁed then the estimates

Iy, = Agll Su*, =01, ... @
@~y Swr@,t € dn = 0,1, ..., (12
-hold true.

Proof

Indeed, the inequalities (11) and (12) are true for n=0. We
assume that they are satisfied for n20. Using the assumptions we see
that



An s 1=Ao = IBUBA,~Ap)-L¥, (), A,) + Ly, (), ALy, (), Ag)
+ L(yo("), Ag) — L(yo(*), AI||
< d{h|h,=Agll + T(Ulya() =36 1D + [ILiyo() A1}
<d{hu® + Tw*©) + |[LGp®), A1} - u”, gnd
[+ 1® ~30®O1 < [t 75, M) = £8, 300D, A ||
+ [, 7o), Ap) ~yo®]]
< Q| y,()=yoO i ||7~n-7»o||) + | Iftyo*)Ag)
= Yo®l
SQ @, w' ), u™) + |[FE, yo(), Ag) —yo® |
<w'®), ted.
It is clear that (11) and (12) follow by induction.
"We also need the following:
Lemma 3

If Assumption H; and the condition 1° of Assumption H, are
satisf_ied, then the inequalities

||x,,+j -M I Su,, n,j=0,1,.., (13)
[ j @ =y, O Sw, @), t€d,n,j=0,1,... (14)
hold.

Proof
The inequalities (13) and (14) are true for n=0 (see Lemma
2). Assume that they are true for n,j 2 0. Then we obtain

Prsjri=Anaall = 1BUBA, j=An) ~LOpn(), Apy P+ LOR() Ay)
+ L), Ay o) = L0 Ay
<d{h| Ay A ] + Ty, O IDY

_ <d{hu, + T(w, (N} = u,,, and
45+ 1OYn 1@ = 1 354/, R 1 ) 32, A ||
SQ @, (W jO = 32Ol Ay An 1D
SQ @ w, (), uy) =w,, @), t €.
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Hence we have (13) gnd (14) by induction.
The main result of this section is the following existence
theorem.

Theorem 1

If Assumptions H,; and H, are satisfied, then there exists a
solution (&, 5) €RIxY of the problem (1—2). This solution (X, ) is the
limit of the sequences {A,}, {y,}, respectively and the estimates

WX =All<u, n=01,.., © o 5)
5@ ~y,®O | Sw, @), ted, n=0,1, ..., - (16)

hold true.
Moreover, this solution is unique in the class satisfying the
relations; .

A=Al <u®, |F@) ~yo® || Sw*@), ted, an

Proof

Because of Lemmas 1 and 3 we see that the sequences {A,}, -
{y,} are convergent to A and ¥, respectively, and that the estimates
(15) and (16) are satisfied.

In view of the inequalities:
[FEFOLM-FO N < (I, 5C), D=, 3,0 A+ |y 4 1O-F D
QG IFO-YaO1 1Ay 1D+ |4 O-F O]
SQ@, w,(4), uy) + w,, 1) = 2w, 1@). i
and  |[LG),M)|| = |ILGE),N-LFEE,A,)~-BA-A,)+LF), A,)
~L@y,(), A) + BA =24, Il
Shu, + Fw, () + ||Bl|up, 1,

and Lemma 1, we see that (A, ¥) is a solution of (1-2). To prove that
(X, ¥ is unique we assume that the problem (1-2) has another
solution (A, ¥) in the class of functions satisfying relations (17), and

that (A, 3) & (7=», ;). We can prove, by induction, that
HA =M ll<u, n=01, ..,

7



SR

Wy ® -y, Sw ), ted,n=01,..
It means that 7=» = and ;(t) =¥(t), ted. This contradiction proves the
uniqueness of (A, 7) in the class pointed above.
Remark 2

Instead of (5) we may take the following process

Ape1=A =B 10, A) Ly, &), n=0,1, ..,

provided that the matrix quq is nonsingular for each y,€Y and
A, €RY.

Remark 3
Assume that:

(1) Y is a set of continuous functions on J and the mapping
t—>f(t, x(*), A) is continuous for t€d, x€Y, A€RY,

b ,
@) L&), =M af %(1) d1- P, where M,,, and P, are given

matrices,

-~

(iii) B, is a continuous matrix function on J such that

o~ b —
Mf B(t) dt is nonsingular.
a

The sequences {y,}, {A,} may be now defined by

Vs 1®=FIn(), A + B@® (A, ;=\, ted, n=0, 1, ..... |
b ~ (18)
M [ y,, (tdt=P
a
By (18), it follows that
Ans1=A,~(M [ B)dD | M [ f(¢, 3,0, A,) dt=P | n=0,1,...
a a



3. Uniqueness Theorem

- Now we will give the conditions under which the problem

(1-2) has at most one solution. These conditions do not guarantee
the existence of the solution of (1-2). We formulate the following

Theorem 2
If Assumption H, is satisfied and for (c, ) €EXR , the system

c®<Qt, c(), d1-dh)1 T(c()), ted 19
e<d(1-dh)"1 T'(c(*)) "
has only zero solution ie. ¢(2)=0, t€d and e=0, then the problem

(1-2) has at most one solution.

Proof
Assume that the problem (1-2) has two solutions

(W;x;) €RIXY, i=1,2. Put

c® = [y — x|}, 1€, e = [Ig— Uyl
Now, in view of the conditions 3°, 4° of Assumption H,, we have

[ty — Bgll = B UB(H;—Hg) ~ Lz (), Hp) + Lix; (), o)

| = Lixy(), Hg) + Lxy(®), ppl|]
<d{h||K; = Hgl] + Te(*N}, so

1 = Hgl] Sd@ = dh) 1T (e(*)). (20)
Similarly, using (20) and the condition 2° of Assumption H;, we can
write

c(t) = ||, x1(), 1y) — 2, (), U]

<Q, c(), d1 - d)y T, t € J.

By the assumptions of Theorem 2, we get ¢(¢)=0, t€J and
e=0 i.e. x)(t)=x,(), ted, and |;=U,. This contradiction proves this
theorem.

Remark 4

~ If Assumption H, is satisfied, then the functions c(¢)=0, t€d
and e=0 are only solution of (19) in the class of functions of E

satisfying the condition c()<w*(2), t€dJ.
9



By induction, we can prove
ct)<w,t), t€d and e<u,, n= 01,...,
and if n—»co, then c(t) = 0,¢t € J,e = 0.

4. Continuous Dependence

Consider the equation

Z(t) = fo(t, Z(.)’ Y)) te J) (21)
with the condition
Lyz(), ) = O, : (22)

where the vector functions f, and Ly have the same properties as f
and L, respectively. We have

Theorem 3
If Assumption H, is satisfied, and

1° (A, ), (¥, Z)ERIXY are solutions of problems (1—2) and (21—
22) respectively,

2° the sequence {v,} defined by
vo®=|F@® || + |Z®]), ted
U, 10 =Q(t0,(),d1-dh) T W, (N +v™D+v*@) (23)
ted, n=0,1, .....
v = [[ft, 2¢), ) —Z@®)]), t € J,
= [ILE(C), ¥) — LyG), V||
has a limit 7€E on J.
Then the realtions
1F@® =20 || <5@), t €, S (29
A =¥ £d@ - dr) 1 (L@ + v™] - (@25)
hold true.
Proof
Put  c=|A-F[, e®) = |[F&) —ZD]], t € J.

Now, in view of Assumption H;, we can write

10
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¢ = ||[BUB - ) ~ LFE), &) + LG, ) — LFE), )
+ LEC), ¥) — LEC), ¥) + LyGEC), M
<d{n||]A —¥|] + T([F¢) =2¢){| + v™"}, and
e@®) < I, 5, M) ~ £, 260, D | + |IfeE, 200, V) =20 |
Q¢ |FO -zOH AR -FIb +v'®)
= Q@, e(*), d1 —dm)-1 [T(e()) + v™D + v* @), t € d
Indeed e®) <vy@), t €d,
and hence, we see
e(®) QU vy(), d1 = dh) L [Ty + v™]) + v°@) = v (), ted.
Furthermore by induction, we can get
e Sv,), ted, n=01,.... :

Because of lim v,(t) = U(t), ted, we have the assertion of this

n—w
theorem.

Remark 5
Assume that there exists a solution v,€E of the inequality
Qt, vo(9), d(1—-dh)~1UT (v o() +v**1+ max(vy®), v*®))<v o), ted.

It is easy to prove
vV, 0, ted, n=01,..,
VS0, S vy, tedn=0,1,..
where
Vs 1 =Q0,0,(,d(1~dR) L [T, (N+0"D+0" @), ted, n=0,1, ...,

Hence lim En(t) = 0 (), teJ. Now, Theorem 3 is true with v
instead oF D, . '

5.. The Functional Equation

In this section we consider the following problem

YO =Fty B, yPo®)),...yBs @), X teJ,} 26)
Ly®), M) = O,

11



f: IX(RP)S x RISRP, L:RPxR‘I—>R‘1,} 4 @
Bid—d, Bi@ =0,i=1,2,..,s.

The problem (26) is a special case of.(1—2), and
f(t) y(.)) x) = f(t) y(Bl(t))y y(B2(t)),-"xy(Bs(t))’ l)’ tEJ’ (28)

L(y(), A) = Ly (), A). (29)
Now we assume that Assumptions H; and Hy are satisfied with

Qt, w(), ¢) = Qt, w(P,@)),...wR®, ¢), ted, (30)
Tw) = Tw®)). (31)

Theorem 1 on the existence of solutions of (1-2) implies.

with

Theorem 4

Suppose the condition (27) and Assumption H; (except 1°)
and H, are satisfied with f,L,Q) and I" defined by (28—31). Then the
problem (26) has a solution (A, y)=RIxRP which is a limit of the
sequences {A,}, {y,} and the estimates (15—16) hold too.

We introduce the equation

2@) = fo(t, 28,@®), 25, ®),....20,0, V), ted, = (32
with the condition
Ly(2(6), ) = ©, ' (33)

to formulate a theorem on the continuous dependence of solutions of
(26). Indeed, the functions f;, §;, L, have the same properties as f, B;
and L, respectively.

Theorem 3 implies

Theorem 5

Suppose the condition (27), Assumption H; (except for 1°)
and the condition 2° of Theorem 3 are satisfied with £,L,Q2 and I
defined by (28—31). Further, let (&, ), (¥, Z) €RIXRP be solutions of
(26) and (32-33), respectively. Then the inequalities (24-25) are
satisfied. '

12



Remark 6
Assume that there exist matrices X,,,, Z,,, such that for all

u€RP, veRY the matrix .

T(u, v) = D, L(u, v) + X(u, v) with D, L(u, v) = [OL(;(“’ U)]
v
J

has a representation of the form
T(u, v) = Py(I + Z(u, v)),

"with a constant nonsingular matrix P,. In addition, we assume that
[1PoZ(u, v)|| vy, |[X(u, v) || L v, for all ueRP, vERA.

Now with a suitable choice of B, namely B = P, the
condition (6) for our problem is satisfied with & = v + v,.

Of course we have

1
Lx(5),\)~Lx(®),1)~Po(A—p) =[ [ D,L(b), 1+ TA—p))dT—Pol(A—)
’ 0

1 .
= [ [PyZx(®), p+TA-p)-X(x(®),
0
L+ T(A—)] dT(A-L),
and hence, we have the assertion.

Now if p=q then we may take X(u, v) = D, L(u, v) (see [11]).
Moreover, if the vector function L is linear of the form

~

L(u,v)=1\7iu+ KIU—K

with lVIqxq, ﬁ'qxq, qul, then we may choose B=M+N provided that
it is nonsingular. Notice that ’
T, v) = M + ﬁ,vl = 0, ||f’[||$v2 =h.

Now we consider the linear case of functions Q and TI.
Assume that

s .
Q(t, Wi, Wo,...,Wg, c) = Z ll(t)wl + m(t)c, tEJ, (34)

i=1
Tw) = Nw, (35)
13



where /;: J—>R,,m:J—>R,  and N > 0.

Put M) = m(® d(1 —dh)"! N, |
V@) = m(t) d(1 - dhy~! [[Liyg®, Ayl + v(®

for ¢ € J with dh € [0, 1), and |

vy = [, Yo(B1®)s-20Bs ), A=y, 2.
For our linear case, (7) and (8) have the form

)
M@w®) + X LoOwB;@) + V@) <w(@), ted, (36)
i=1 A
)
w@®) = M@Owb) + X LoOwB;®), ted, - (37a)
i=1 )
u = d(1 - dh)y"} Nw®). (37b)
" Indeed, if
S = sup l:Mt + Zl,-(t):l <1, : (38)
ted i=1

" then the function

w*() = (1 — S)~1sup V(1)
J
is a solution of (36). *

Moreover, in the class of functions weE satisfying the
condition w(t)<w*(¢t), ted, the function w(z)=0, t€J and u=0 are the
only solution of (37).

The last assertion follows from the fact that

w(t) < (S w*®),ted,n=0,1, ...,

which can be proved by induction.

The condition (38) guarantees that Assumption H, is
satisfied for our case. Now we will give the conditions weaker than
(38). Of course, as the function w* of Assumption Hy, we can take the
solution of the following equation

, s ‘
M®w®) + > LOwP;@) + V@) = w@®),wed (39)
i=1

14



instead of the inequality (36).
For ted,i,=12,...,8 n=01,..,let

Forry = 5 Rigreeorfmeyyy o Ripeeorins
Bl@® =1,B2 &) = BB, @),
. 1 . - . .
1‘8(;) =5 1:10:'1.’1"”(” =4 @ l:lp"-?lnf'l(Bl.o(t))'

Now we are able to formulate conditions by which
Assumption H, is fulfilled for our linear case (34—35).

Lemma 4

® | § . 8 . . .
10 P(t) - Z Z Zl;('), ”ﬂn(t)M(B;O’."’ln(t)) < w’
n=0i0fl i =1

d s s » ’ . . . -
2° QY= T X e ZLO@) VPO 'n()) < o,
' n=0iy=1 i =1

3° P®) < 1, then

(i) the function w* defined by

w*(@®) = Q) + P(t) Q)(1-P®))-1, ted (40)

is a solution of (39), and there is no other solution of (39) in the class
of functions u €E such that u()<w*(5), ted,

@) in the class of functions ucE satisfying the condition

u(®)<w*(8), ted, the function u()=0, ted is the only solution
of the equation (37a).

The functions M, V, [;, B; are defined in this section.

Proof
We prove the function w* satisfies the equatmn (39). At first,
we see that

s s © s s . , . '
LB = L@ ¥ X .. XL B VBB
i=1 !

i=1 n=0i,=1 i,=1

L] 8 s . . .
= Z Z z llo’""l’”‘1(t)V(Bl°""’l’”‘l(t), tEJ,
A X n+1l n+1l
n=0iy=1 i =1
and, by changing the sum index, we have

15



ill,—(t) QB;®) = QW) -V(®), t e d.
i=
Similarly, we can get-

i L) PB;@1)) = P(®) —M(®), t € J.

i=1
Now, combining it and using 3°, we have

M@w™ () + ili(t)w*(ﬁi(t)) + V(@)

i=0

= M@®)Q®) [1 + PB)(1-P®))"1] + Q@) + QB)A-P®))~1(P(t)-M(?))
=w*@), t €d,

sow" is the solution of (39).
Indeed, the function w” is the unique solution of the equation

w) = P@®) wb) + Q@) = Sw®), ted. - (41)
Let uy<€E be a solution of (39) such that uy(t)<w*(t), t€J. Put
Q1) = M@) uyd) + V@), ted.
- It is known that the equation ‘
)
w@®) = 3 L) wB@) + 0,@), ted o (42)
: i=1 )
has a unique solution
go(t) = P() uy(d) + Q@) = Suy(t), ted,
in the class 0Sw(®)<w" (), t€J. Since u, is also a solution of (42) in
this class, then go=u,. Hence u; is a solution of (41), and now
up=w". .
The part (ii) may be proved by a similar argument.
Remark 5 '
Suppose that
1° a20,B,)<Pt,0<PB;<lted,i=12..,s,

2° L =1,20,i=1,2,..,s,

16



30 . M(t) = Mltg, t e J, Ml Z O,
£ VO =My, ted, M,=>0,

' s
5° 0< 3B < 1,m = min &, p),
i=1

s
6°  My=1- YL BS-Mpts>o,

i=1

then the assumptions of Lemma 4 are satisfied and

.8 -1
w* (@) <M, [tP + M;15 bP /M) (1 - Zl,-B‘,-’J ,t€d

Ci=1

Theorems 1 and 4 and Lemma 4 imply.

Theorem 6
Suppose Assumption H; (except for 1°), the assumptions of
Lemma 4 and conditions (27, 34—35) are satisfied with £,L,{) and I”
defined by (28—31). Then there exists a unique solution (X,&)e RIxRP

of (26) with the properties (15—17), where
ug=u*=d(1~dh)~! [Nw*®) + ||L(yy®),Ap|]]

n-1

>

Up=(dh)*u*+dN Y (dh)* 1w, (b), n=1, 2, ......
‘ i=1 J

h

wy@® =w"®) = QW + P(t) Q) A-P®B))!

s
W, 1 D=2 L) w(Bi®) + m(Du,, n=0, 1,.....

i=1 : J.

Now Theorems 3 and 5 and Remark 5 imply.

Theorem 7

If :
1° Assumption H; (except for 1°) and the conditions (27, 34—35)

are satisfied with f,L,{2 and I defined by (28-31),
2° the assumption of Lemma 4 are satisfied with V, instead of
V, where

Vo) =m(t)dv** (1~dh)-1+max@* (@), |F®) ||+ |Z@®) |, ted
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= [[LE®), ¥) — Ly(Z®), V),
v*(@) = |1t ZB ), ZBgO)...... ZBLN, V) —Z)]] €T,
then ,
IF@® —2@)|| < Q@) + P@) Q) 1 ~P®) Y, ted
1% - 711 <dN Q - dh)1 Q) (1 — P! + JO~dh)y ™,
' 6 Tl;e Differential Equati;m with Deviated Argumenfs
Consider the problem | '

x' () =ft, 2(0Ly (). 2@, E0)x B ()),...x" By (),N), ted = [O,b]} (43)
x(0) = x, € R?, A(x(b)) = O € RY.

The functions f:JX(RP)"*$xRI-RP, a,:d>d, B;:d—J, A:RP—RY are
continuous. We seek a parameter AcR? and a function x€C,(J, RP)
such that (43) to be satisfied (C1(J, RP) denotes the class of all

continuous functions from J- into RP with a c‘ontinuous first

derivative).

_ By the substitution y(t) x'(t), the problem (43) is equivalent
to the followmg one.

y@&) =F@t,y,A),ted

: b 44)
A, + { ywdv) = © !

with  Fty,M)=f(tx,+ f YO, .0, + f y(0dT, y(BO),...,

y(Bs(), A).

The problem (44) is a particular case of (1-2). A question of
the existence and uniqueness and continuous dependence of
solutions on the right-hand side of (44) was considered in [2,3,6—10].
- Using the general considerations we give the results more general

than obtained in [2,3,6,10]. The numerical methods for fmdmg a
numerical solution of (43) are considered:in [4,5].

We introduce
Assumption Hj. Suppose that
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1° the functions f:Jx(RP)" +$xRI—>RP, A:RP—>RY are continuous,
2 @, B CW, D, a0 = Bi0),i = 1,2 1 j=1, 2 s,

3°  there exists a nonnegative function Q:Jx(R,) *s*1oR,,
which is nondecreasing and monotonicly continuous with respect to

the last r+s+1 variables Q(z, 0, ..., 0)=0, and
N Xy Xy 1y weor Bgr W) = [, Bpyerey Fon By B W]
RTINS NN X ATRIERS NN~ ANl
for ted, U, i € RY, x;, %, gj,EjeRP, i=1, 2, oy =12, 8.

4° ° there exist a nonsingular square matrix B of order ¢ and
constants £>0, d>0 such that hd<1, d>||B-1|| and

b b
[1AG,+ { F(ty,l)dD-Alx, + { F(ty,Wdt-B(fi—p)| <k [i~p]|

for |, fieR9, yeRP, where the matrix norm is consistent with the
vector norm.

5° thére exists a nonnegative, nondecreasing and mono-tonicly
continuous function I':R, >R, ['(0)=0, such that the inequality

1A - A@ | <T(llx - gl
holds for x, geRP, _
6°  there exists a solution u”€C(J, R, ) of the inequality
o, (t) @, (t)

Q¢, [ wds, .., [ w@dt, uB@), ... uBe),
0 : 0

d(1-dh)"1 T*w)) + v(?) Su®),ted, - (45)

' 5 o ) e (®
where I"'(u)=r(fQ(t, fu(‘c)d‘c,..., fu(‘c)d‘c, uBi@),...,
0 0 0

: b
u(B,),0d1) + ||Atx, + [ Fit, 35, A dD],
- ' 0

v® = ||F(t, ¥or Ag) — oD 1]s 1€,
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7° in the class of functions ueM(J, R ) satisfying the condition
0<u(t)<u*(t), ted, the function u(t)=0, t€J is the only solution of the
equation

a, () a, () v
Qe, [udr,.., [u®dt, u@B@),..uB,®), d1-dh)1x |
0 0

@) = u@), ted, | (46)
b @, (®) @)
where ™) = I'(f Q¢, [udr,... [u@dt, uB@ON,...,
. Q Q 0

u(B ®),0)dt)
(M{J, R,) denotes the collection of all measurable and bounded

functions in J with a rangein R_).

Now the functions Q and I are of the form

a, ) a (t)
Q, ut),0) = Q, f u(D)dr,v.., f w(T)AT, u(B @), u(Bs®),0),

.b Cll(t) ar(t)
Tu®) =T Qe, [um@dr,... [udr, uB;@),...uBy@),0d).
‘ ‘ 0 0 : 0

Indeed, Assumption Hz guarantees Assumptions H; and Hy
to be satisfied. We define the sequences {y,} and {A,} by the
relations

Yy ® =Fty, A, ted,n=0,1, ... o @7
Aas1=A,—B 1Dy, Ay, n=0,1,... 48)

i ‘ b
where D(y, A) = Alx, + fF(t, y, M) dt),
0

and  yo€C(J, RP), AgeRY are arbxtrary fixed elements.

~ Theorem 1 implies
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Theorem 8 .

If Assumption Hj is satisfied, then there exists a solution
- (LJ)ERIXRP of (44) which is the limit of the sequences {A,} and
- {y,} and the estimates (15—16) hold with the sequences {u,}, {w,}
defined by
ug =4 =dl-dr)1T"@h) }
Up,q = dlhu, + I w,),n=01,..
wo(t) = u*@), ted

a, () a.(t) .
w, ,1O=0@¢, {wn(t)d‘r,;., fwn(‘r)d‘r,w,,(Bl(t)),..,wn(Bs(t)),u,,)
0

ted, n=0,1,...

Suppose we are given the problem

2(t) = Fy(t, 2, 1), ted _
& ' (49
Aglx, + fz(t)dt)=® ‘
: 0

with
)] P (D)
FoltzN)=fotZ,+ [2z(0dr,..%, + [2(0d1, 2(8,@),..2@)),

0 0

‘where fo, Ag, X, P;, 8, ¥ have the same properties as f,A,xp,a,Bj,l.
Now we are in a position to formulate the theorem on the continuous
dependence of solutions of (44) on the right-hand side of (44).
Theorem 3 implies.
Theroem 9

If Assumption H (except for 6°—7°) is satisfied, and

1° A, %, (, $ERIXRP are solutions of (44) and A(49),
respectively, :

2° the sequence {v,} defined by
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ve(®) = @ || + |Z® ||, ted
a(® a. (6

Un 1= Q0 { v, (VAT,..., { V(DT (B0, 0B (),

d(1-dh)"UT ™ W) +v™"] + v™"1+0°(t), ted, n=0,1,....
v'e) = [[F¢, 2,7 - 20|, t € J,

b b :
v™ = [[AG,+ [P, Z, P dD - AgE, + f Fot, 2P dtll,
0 . ]

has a limit 7:J>R_,
then the inequalities
|F@) — E(t)_H <o), t € d,
Hx - Y1 £d@ = dh)~ [T**@) + v™"], hold.
Now we consider the linear case for Q2 and I'. Let
: r s
. Q(t,cl,...,c,., dl’“‘"ds’ do) = Z kl(t) Cl + Z ll(t)dl + m(t)do, (50)
i=1 i=1
T(c) = N¢, N > 0, (51)
where k;, [;, meC(J,R,),i =12, e Py J = 1,2, 8.
Put  M;®) =m@)d1- dr)"1N, t € J,

b )
V, ) =m@®d(1-dh)1[|AC, + [ FtyeredD ||+ [[Ftyere =@ I
0 ) .

ted.
Now (45) and (46) are of the form
. -, |
Gu(t) + M@ [ Gu(v) dt + V() <u(@), ted, (52)
0
' b
Gu() + M@ [ Gu(vdt = u(®), ted, (53)
0 .

22

Ty,



r a,(t)

3 ki(®) f w(t)dt + zz(t)u(ﬁ @), ted.
i=1 i=1

where Gu(t)

[
M ~

b r
Put Qo) = T k() + M@ [ 3 ki(vdr,
: 0i=1

i=1

r s
Py = X ki) a0 + X L), ted,
i=1 i=1

b
Q;® = My® [ Py(v)dt + P,(@), ted,
0

. b . b '
uo(t) = Vi) + A - [ Qu(ud 11 Qo [ Vy(Ddr, ted,
0 0 .

" ul(8) = (1 - sup Q&)L sup V,(1), ted.
ted ted
Theorem 8 implies.

Theorem 10

If
1° the conditions 1°-5° of Assumption H; and (50-51) are

satisfied;
b

2°  fQudt < land ;) = 0,t€d, j= 1,2, ...
0 .

‘or
2°°  sup Q) <1,

ted .
then the assertion of Theorem 8 is true with the function u"'=u0 or
u'=u; for the case 2° or 2°°, respectively.

Now, we want to consider the problem (43) of the delay type
when the functions o; and Bj satisfy the conditions -
0<ou(t)st, 0<B(<Bjt, 0<B;<1, ted, i=1, 2, ..., 1 j=1,2,...55. (54)
Assume that (50) and (51) are satisfied with
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-
D ki) =k, i) = tEJ_] =12,..., 8. ' (55)
i=1

Now (45) and (46) are in shape of’

by -
Hu@®) + My(®) [ Hu(vdt + Vi() = u@®), ted, (56)
0
b
Hu@®) + M@ [ Hu(tdt = u@), ted, (57)
0

where Hu() = k f u(t) dt + Zlu(B 1), ted.
i=1

Here we are in a position to formulate a lemma by which the
conditons 6° and 7° of Assumption Hj are satisfied for the linear
case (50—51) of Q and I" when the problem (44) is of the delay type.

Lemma 5 (see[3]). If
1°M;, V, € CJ, R,) and are nondécreasing,
2°0<P;<1,i=1,2,..,s,

S
3°0< XIB;< 1,120,
i=1

w § 8 fn-1 n-1 -1 '
T= > .. 2| |Vt Il B; <o, II.=1&T;€CU,R,),
in=1 =0 7 J:O J 0

. n=0i;=1

S (n- -1
5° To(t)= Z Z > CH l; J l(t_;"i—-lo Bij)<°°’ and T,€C(J,R)),

n=0i,=1 i ="

6° there exists a unique nondecreasing solution u €C(J, R ) of the
equation

p = S 8 ""Bl
v =3 Y T X0 S u(‘r)d‘c+—T2(t) f Hu(t)dt+— T,0),
0

n=0i,=1 l =1

ted, k20, : _ (58)
24



then
6]

(ii)

in the class of functions ueM(J, R +) éatisfying the condition

0<u()<u(?), ted, the function z is the unique, continuous
and nondecreasing solution of the equation (56),

in the class of functions ue M(J, R,) satisfying the condition
0<u(t)<u @), ted, the function u(f)=0, t€d, is the unique _
solution of the equation (57).

Theorem 8 and Lemma 5 imply.

Theorem 11

If Assumption H4(1°—5°) for the linear case (50-51), and the

conditions (54) and (55) and also the assumptions of Lemma 5 are

*

u .

1.

satisfied, then the assertion of Theorem 8 is true with z instead of
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ABSTRACT .

. A description and analysis of a rational cubic spline curve is made
" for use in CAGD (Computer Aided Geometric Design). This rational spline
provides not only computationally simple alternative to the exponenetial
based spline under tension [Barsky’84, Cline’74, Preuss’76, Schweikert’66]
but also provides an alternative.to the well known existing methods like
cubic v-spline of Nielson [Nielson’74], y-splines of Boehm [Bohem’85] and
weighted v-splines [Foley’87]. The method also recovers the rational spline
with tension [Gregory and Sarfraz’90] and the v-spline of Nielson
[Nielson’74] as a special case. Two shape parameters are introduced in each
interval which provide a variety of shape controls like point and interval
tension. The spline is presented in interpolatory form.

Keywords. Rational cubic spline, rational Bernstein-Bezier, interpolation,
tension, shape control.

1. INTRODUCTION

A rational cubic spline with tension was described and
analysed in [Gregory and Sarfraz’90] with a view to its application in
CAGD (Computer Aided Geometric Design). It provides a C?2
computationally simpler alternative to the exponential spline-under-
tension [Schweikert’66, Cline’74, Preuss’76]. Regarding shape
characteristics, it has a shape control parameter associated with each
interval which can be used to flatten or tighten the curve both locally
and globally.

‘ This paper generalizes the idea of the rational cubic spline
with tension and introduces some further shape parameters in the
description of continuity when the piecewise rational functions are
stitched together. The shape parameters provide a variety of shape
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controls like interval and-point tensions and they occure in the
scheme in such a way that given n data points, the rational spline
has 2n-1 parameters that control the shape of the piecewise rational
cubic curve. Thus the characteristics and the number of shape
parameters occuring in this scheme are similar to those in weighted
v-spline [Foley’87] except with the difference that our interval
tensions will play a more extensive role as compared to the interval
weights in weighted v-spline of Foley. In addition to this our scheme
involves a rational piecewise function whereas in [Foley’87]
piecewise cubics were used. Furthermore a GC? continuity will also
be achieved as compared to only C! continuity.

The rational spline is not restricted to homogeneous
coordinate form of having a GC? cubic spline numerator and
denominator. Thus, in general, it is not a projection from a GC2
cubic spline in R4 into R3 as, for example, in the case of non-uniform
rational B-spline (NURBS). This, we believe, gives more freedom to
develop shape control parameters for the curve, which behave in a
well defined and well controlled way.

The shape parameters of the rational spline can be utilized to
achieve a variety of shape controls like point and interval tensions.
Since the spline is defined on a non-uniform knot partition, or by
cummulative chord length, or by some other appropriate means.

The rational spline is based on a rational cubic Hermite
interpolant which is introduced in Section 2 together with some
preliminary analysis. Section 3 describes the geometric rational
spline and analyses of its behaviour with respect to shape parameters
in each interval is done in Section 4. Section 5 consists of some

illustrative examples.
2. C!PIECEWISE RATIONAL CUBIC HERMITE
INTERPOLANT
A piecewise rational cubic Hermite parametric function
- PeClty,t ], with parameters r;, i=0,...,n—1, is defined for te[¢,¢; ],
i=0,...,n—1, by ‘
1) P@® =Pyt;ry)
(1-0)3X;+0(1-0)2(r X;+k,D,) + 62(1—6)(r,)q+ —hD;, 1)+63X
1+(@r;-3)0601~-6)
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where the notations X; and DielRN are, respectively, the data values
and the first derivative values at the knots ¢;, i=0,..,n with

t0<t1<""’<tn’ hi=ti+ l_ti’ 9= (t—t‘)/h‘ and riZO.
The function P(¢) has the Hermite interpolation properties
that
(2) P(tl) = Xi and P(l)(t‘) = Di’ I = 0, eey T
The r;, i = 0,..,n—1, will be used as shape parameters to
control and fine tune the shape of the curve. The denominator in (1)
can be written as
1-08+r,00-02+r,0621-6) + 03
The case r;=3, i=0,.,n~1, is that of cubic Hermite
interpolation and the restriction r;2-~1 ensures a positive
denominator in (1). ' ‘
For r; # 0, (1) can be written in the form
( P(t‘,r) Ro(e,r )X +R1(9,r )V +R2(9,r )W + Ra(e,r) i+D
where v
(4) V1=Xi+thl/rl,m=Xz+ th+1/r
and Rj(e;r,-), =0, 1, 2, 3, are appropriately defined rational functions
with ’

3
G D Rj(e;ri) =1.
Jj=0
Moreover, these functions are rational Bernstein-Bezier
weight functions which are non-negative for r;>0. Thus in RN, N>1
and for r;>0, we have:

Proposition 1 (Convex hull property)
) ‘The curve segement P; lies in the convex hull of the control
points {X;, V;, W, X, ,}.
We now consider the variation diminishing property of the
rational cubic and for this we require some preliminary analysis. Let

3
6) p@® = 3 a;A G) 6t (1-0)*% and
i=0
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) .
M q@ = Tq3)0i 1 -0
o N .
be scalar curves with a;>0, V;. Since p() is a Bezier curve and since
a;>0, we have

V(p) < V(avo yevey 03A3) = V(Ao geeay Aa),

where V() denotes the number of sign change of a function or
sequence. Also, since g(0)>0, we have ‘

) VG;—) = V(p) < V(Ag ..., Ag).

Let p(B®) now be considered as planar curve, say,
p®)= (p,(0), po(©)) where A;=(x;, y,)€R? and let L=ax+by+c=0 be
any line. Then the number of times the line L crosses the rational
cubic curve p(6)/q(0) is the same as it crosses the cubic Bezier curve

p(0), since g(0)>0. This number is (usmg similar argulents as in
[Goodman’89])

Viap,+bpy+c) = V(@Y ax; ( ) 0i(1 -0)3i+bY a,y,( )9‘(1—9)3"+c)

V@ x; Cs) 0i(1 - 0)3% + bY y; G) 8i(1 ~ 9)-3-1
+ex (3o - o3

V(Z (ax; + by; + ¢) ( ) 0i(1 - 9)3-1)

< Viax, + byy + c,...,.axg + byz + ¢)

= the number of times the line L crosses the ploygon
ey
These arguments can be extended to a rational curve of any
degree in RN with any hyper plane of dimension N—1. Thus we have:

Proposnlon 2 (Variation diminishing property)

The curve segment P; crosses any (hyper) plane of dimension
- N-1 no more times than it crosses the control polygon joining X;, V;,
Wi Xy

The rational cubic (1) can, then, be expressed in the form
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9 P;tr) = L;(0) + e;t; r;), where
10 Lo =Q0-0)X; +0X,,,,
h;0(1-0) {(A; - D;) (8-1) + (A; - D;, )6}
1+(r;-30611-6)

This immediately leads to:

11 ei(t;ri) =

Proposition 3 (Interval tension property)

- For given fixed (or bounded) D;, D;,,, the rational cubic
Hermite interpolant (9) converges umformly to the linear interpolant

(10) on [t;, t;, 1] as r;—0 i.e.

12) lzm lle; ||— lzm NP; -]l =0

l
dirn denotes the umflorm norm). Moreover the component functions
of e; tend to zero monotonically, both uniformly and pomthse on [t

1+1]

Remark 4

The interval tension property can also be observed from the
behaviour of the control points V;; W; defined by (4), and hence of

the‘Bernstein-Bezier convex hull, as r;—>»0.
3. GC? RATIONAL CUBIC INTERPOLATION

Now we construct a GC? rational spline interpolant. This
requires knowledge of the second derivative which, after some
simplification, is given by
2{a; (1-0)3 + B,0(1-0)2 + v,02(1-0) + §; 93}

h; {1 + (r—3) 6(1-9)}3

(2)

(13a) P7 (t;ry) =

where
a; =riA;=Dy)—D;,, + D,
B: =3(A;-Dy,
Yi = 80,1~ Ay,
8 =rD;, - A‘)_ i+1+ D
We now follow the familiar procedure of allowing the

derivative parameters D;, i=0,...,n to be degrees of freedom which
are constraimed by the imposition of GC2 continuity conditions

(13b)
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P;.,) 1 P@;)
(14) |PDO¢Hl=]0 1 = [ PD;)
PO¢ ) Lo v; 1] LPP¢

These GC? conditions give, from (13a) and (13b), the linear |
system of consistency equations ’

(15) hD 1 + {hlhl_lvi/2 + h‘(rl_l_l) + hi_l(rl—l)} Di + hi—lDl"rl

e
= hiri_l Ai—-l + hi—l riAi, 1= 1,..., n—1.

With appropriate end conditions Dy and D,, (15) is a tridiagonal |-
linear system in the unknowns D;, i=1,...,n—1. Assume that

(16) r;2r>2, v; >0,

then the tridiagonal linear system is strictly diagonally dominant and
hence has a unique solution which can be easily calculated by use of
the tridiagonal LU decomposition algorithm. Thus a geometric
rational cubic spline interpolant can be constructed with tension

parameters r;, i=0,..., n—1, and Vv;, i=1,...,,n~1, where the special
cases are such that
A. the case r; = 3, v; = 0, Vi corresponds to cubic spling
interpolation. ,
B. thecasev; = 0, Vi corfesponds to the rational cubic spline
with tension [Gregory and Sarfraz’90].
C. the case r; = 3, Vi corresponds to Nielson’s Vv-spline
[Nielson’74].

4. SHAPE CONTROL
We now examine the behaviour of the geometric rational
spline interpolant with respect to the tension parameters r; and v; in

the following propositions.

Proposition 5 (Global tension property)

Let 1€COt,, t,] denote the piecewise linear interpolant
defined for z€[¢;, ;1] by I() = [;(2), see (10). Suppose that r; are as
in (16) and v; are assumed fixed. Then the rational spline

interpolant converges uniformly tol as r—>, i.e. on [y, ¢,]
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a7  lm [|P-1]} = 0.
r-w
Proof

Suppose r; = r, i = 0,..., n—1. Then from (15) it follows that

Ay + by AY
(h; + h;_p)

(18) lim D, = , i=1,.,n-1
r-w

More generally, for r; satisfying (16), it can be shown that
(19)  max. |D;|l.Smax(]|Allr/((~2)+hvy/2), 1Dl 1D, 1}
where

200 |All, = max HA e andh-omax h;.

0sisn. <isn-1

Hence the solution D;, i = 1,...,n~1, of the consistency equations (15)
is bounded with respect to r. Now, from (11), the tension property
(12) of Proposition 3 can clearly be extended to the case of bounded
D;. Thus applymg (12) on each interval gives the desired result

an.0
KProposition 6 (Local tension .property)

Let v; 20, and r; 2r > 2, V i and consider an interval

(tg, tp, 1] for a fixed kE{O,...,n 1}. Then, on [t;, ¢, 1], the rational
_spline interpolant converges uniformly to the line segment [, as

r,— and Vi is kept fixed, i.e.
21 ) - = 0.
21 riz_r:zw 1P — ]| =0

Proof”

- The boundedness property (19) holds as in Proposition 5
(where we can assume the additional constraint rp2r>2 to the
hypotheses currently being imposed). Thus (12) applies for the case

i=k.[]
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Remarks 7
~ We note that

(i) the tension properties in Propositions 5 and 6 can also be
applied in the scalar case. We apply this to the curve segment

¢, Pi(t;r)) ER2, te(t;,t;, 1), with control points
22)  {@X), G+ hifry, V), @ 1=hy/ry W), 1, X D}
This is a consequence of the identity
(23) t=Ro(O;r)t;+ RO+ hy /1) + Ry(8ir) ;. 1-R;/r)+ Ry O3t 4 ¢

" In fact, (¢, P(t)} can be considered as an application of the
interpolation scheme in R? to the values (¢;, X;)€R? and derivatives
(1,D)eR2,i =0, .., n.

(i1) increasing r; tightens the curve both locally and globally (c.f.
Propositions 5 and 6). For the range 2 < r; < 3 the rational
spline produces a more flexible, i.e. looser, curve than the
cubic spline curve, both locally and globally.

Now we look at the effects of the shape parameters v; and
consider the curve as parametric one. It can be noted that

(T1) (Point tension) for fixed i=Fk if we assume v;—>0 and
keep r;, i=k—1, k fixed, then the kth equation of the system of
equations (15) results as:

(24) lim D, = 0.
vk—boo

Thus the curve at the point P, will appear to have a corner.

(T2) (Interval tension) Similarly as above large values of v,
and v, ., (Where r;, i=k—1, k, k+1 are regarded as fixed) cause D,
and D, | to approach zero. This behaviour tightens the curve in the
interval [ty, 2, . 1]
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Remark 8

' The above interval tension property (T2) does not hold for
the first and last intervals unless we assume the natural end
conditions i.e. D;=0, i=0, n. The spline curve can be globally
tightened if the interval tension property is applied, in this fashion,
in each of the interval.

5. EXAMPLES

The tension behaviour of the rational cubic spiine
interpolants is illustrated by the following simple examples for data
sets in R2. Unless otherwise stated, in all the Figures the parameters

v; will be assumed as zero V i and the parameters r; as 3 for all i.

The Figure 1 shows the effect of a progressive increase in
global tension with r = 3 (the cubic spline case), 5 and 50. The effect
of the high tension parameter is clearly seen in that the resulting
interpolant approaches piecewise linear form. Figure 2 illustrates the
effect of progressively increasing the value of the tension parameter
asry = 3, 5 and 50 in one interval, whilst elsewhere the tension
parameters are fixed equivalent to 3. Figures 3 demonstrate the
result of Remark 7(ii) regarding the achievement of a looser curve
- than a cubic spline curve; the second curve of the figure is a cubic
spline curve whereas the first and the last curves show the local and
global behaviour against the value 2.1 of the corresponding shape

parameters.

The Figure 4 illustrates the effect of progressivley increaisng

the value of the point tension parameter v, at the knot ¢4 whilst the
Figure 5 shows the interval tension effect due to progressive

increases in v, and vj.
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Figure 1: Interpolatory rational splines with global tension r;=r.
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:

Figure 2. Interpolatory rational splines with tension r 4.varying.

8

Figure 3. Interpolatory rational splines can produce looser curves than cubic spline.
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Figure 4. Interpolatory rational splines with v 4 varying for point tension.

000

Figure 5. Interpolatory rational splines with v4 and vg varying for irterval tension f
control. :
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6. CONCLUDING REMARKS

An analysis of a GC? interpolatory rational cubic spline is
developed with a view to its application in CAGD. It is quite
reasonable to .construct a rational form which involves two shape
parameters per interval and provides a variety of local and global
controls like interval and point shape effects. In particular, it has
been found that only one shape parameter per interval is enough
when local or global interval tension is required. The rational spline
method can be applied to tensor product surfaces but unfortunately,
in the context of interactive surface design, this tensor product
surface is not that useful because any one.of the tension parameters
controls an entire corresponding interval strip of the surface. Thus
as an application of GC? rational spline for the surfaces, Nielson’s
[Nielson’86] spline blended methods can be adopted. This will
produce local shape control which is quite useful regarding computer

graphics.
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ABSTRACT

A B-spline like basis has been constructed for rational quadratic
splines. The design curve, thus formulated, produces a freeform curve with
point tension contral (both locally and globally) due to the presence of
shape parameters in its description.
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1. INTRODUCTION

One of the common problem in CAGD (Computer Aided
Geometric Design) is the designing of curves. Many people have
worked in this area in the last couple of years. For example Boehm
"[1] used curvature continuous cubic splines, Dierecks and Tytgat [2]
utilized beta splines, Nielson [3] has made a presentation of Nu-
splines, Foley gave the description of weighted Nu-splines [4],
Sarfraz [5] has made use of rational splines etc. These spline
methods have the capability to design different shapes and then
make changes in a different way according to the provision in the
method. The above mentioned methods make use of cubic or rational
cubic splines for their construction.

. This paper presents a method, for the designing of curves,
using the rational quadratic B-splines. This generation of freeform
curves has parameters to control the shape. We first construct the
freeform rational quadratic spline curve in the following section.
Effects of the shape parameters are analysed and demonstrated by

illustrative examples.
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-2, CONSTRUCTION OF FREEFORM RATIONAL
QUADRATIC SPLINE CURVE

This section provides the structure of the rat10na1 quadratic
spline (B-spline representation) with shape control.
2.1. Local Support Basis

For the purpose of the analysis, let additional knots be
introduced outside the interval [t ¢,], defined by 7_;<f;, and
ty<tp,1<tn+9<ln,,3 Let r;>r>0, i=0,..,n+2, be shape parameters
-defined on the extended partition ¢_;<...<t,,9<%,,3. Let h;=t; —1;
and O =(t—t;)/h;. Rational quadratic spline functions ¢;,j = 0,...,n+2,
are constructed such that

0 for t<ty,
@21 ¢ = {

1 for t2> tj* 1-
On the two intervals [tl, ti1d i = J-1,j, ¢; will-have the
rational quadratic form

2.2) $;) = Ro(©; ) d;¢) + RO 1) Vl’\.i + Ro(0; 1) ;4 1),
where R,(0;r), k = 0, 1,2 are defined as:
Ry©;r) = (1 —0)2/Qy(0; ry),
R(©;rp = rB(1-06)/Qub; r,
Ry(0;r) = 02/Qy®; ry)
where Qy®;r) = (1-6)2+rH1-6) + 62
, The functions R,(6; r;), k=0, 1, 2 are actually the Bernstein-
Bezier weight functions. :

The requirement that d)jeCl(—oo,ao) (in particular at ¢;_,, ¢;
and ¢, ) uniquely determines the following
- 21, i=j
(2.32) Vj,; = {O, otherwise
(2.3b) ¢;(¢;) = p;, where

(24) W = B/ hiogry + hyry_y), _
The local support rational quadratic B-spline basis is now
defined by the difference functions
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(2.5) Bj(t) = (bj(t) - (bj +1(t), J = (0, (TS (2 S 1.

Thus, there immediately follows:

Proposition 2.1 (Rational B-spline)
The rational spline functions Bj(t), j=0,..,n+ 1, are such

that - ' .

(2.6) (Local support) Bj(t) =0, for t e (tj_l, tj+2),

n+l
(2.7 (Partition of unity) 3 B;(t) =1 for t € [to, ,].
j=0 -

An explicit representation of the rational quadratic B-spline =
B; on any interval [z;,¢;, ;] can be calculated from (2.3)-(2.5) as
2.8)  Bi(t) = Ry(8; 1) Byt + R1(©;r) V;; + Ry®; ) Bilt; . 1),
where : :

(2.9 Bjt) =V;; =0, for i#j,j +1,and

(2.10) {BJ’(’J’) =W Viger

B_](tj"'l):l_“'_]’ Y]J*l = 0.

Careful examination of the Bernstein-Bezier vertices of Bj(t)
in (2.8) shows these to be non-negative for r;>0 and we thus have:

Proposition 2.2
The rational B-spline functions are such that

(2.11) (Positivity) B;(t) 20, for all ¢.

2.2 Design Curve
To apply the rational quadratic B-spline as "a practical
method for curve design, a convenient method for computing the
curve representation

n+1l
(2.12) p(t) = Y P;Bi(t), t € [ty t,],
. o j=0
is required, where P;e R2 define the control points of the
“representation. Now, by the local support property,
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i+2
(2.13) p(®) = L P;Bit),t € [t;, t;,1),i=0,.., n-1L
J=i
Substitution of (2.8) then gives the piecewise defined rational
Bernstein-Bezier representation

2.14) p(® = Re®;r)) F; + Ry(®;r) V; + Ry(®; r) F,, |, where

Fi=Q-pw) Py + WP,

(2.15) {Vi - P,

Let Xi=[FiViFi+1]T’Z [P PPZ+1]
-y oy

and Y;= 1

1-p; g Hiva

then the transformation (2.14) can also be represented in matrix
notation as

The transformation to rational Bernstein-Bezier form is very
convenient for computational purposes and also leads to the
Variation Diminishing property [7]:

2.3 Shape Preperties

The shape properties of the rational B-spline representation
are examined in the following propositions.
- Proposition 2.3 (Point tension property)

Let r; be as assumed in Subsection 2.1 and r,— for some &,
i<k<n. Then following holds

(2.17) riz_r:zoo p(ty) = P,

Proof
- From (2.8) and (2.13),

n+l
Pty =Py, = 2 (P;—Py) Bi(ty)
Jj=0

= (Pp,1~ PP B(tp) .
(by local support property)
= Ppy1— PRl
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It can be simply shown that

lim y, =0,

rk—)eo

and thus, (2.17) follows straightaway.(]
Remark 2.4

Proposition 2.3 shows that if r,—>c0, then the part of the
design curve is pulled towards the control point P,. This could be

proved directly by studying the behaviour of the Bernstein- Bezier
control points in (2.15). This approach can be fOIIOWed to prove the

following:
Corollary 2.5 (Global tension broperty)

Letr;2r >0,i = -1, ..., n+2, and let P denote the rational
B-spiine control polygon, defined explicity on [t;, ¢; .11, i=0,...,n by

(280 Pt)=(1-0)P,+0P; ;,0(t) = (t—t)/h;.

Then the rational B-spline representation (2.13) converges

uniformly to P on [tg, ¢, . 1] as r—>.
3. EXAMPLES

For illustration of the tension results, consider a data set in
R2 which define the control points of the rational B-spline
representation. The curve in Figure Al is the quadratic B-spline
whereas the curves in Figures A2 and A3 demonstrate the shape
effects at one and two adjacent data points respectively. Global shape
effect is shown in Figure A4. It should be noted that, in all these
_ figures, where ever the shape effect is achieved it is done by taking
shape parameters equivalent to 50 and otherwise they are considered
equivalent to 2 everywhere.
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Figure A2
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Figure A3

.Figure A4
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4. CONCLUDING REMARKS

A local B-spline kind of basis' has been constructed to
generate a freeform C! rational quadratic curve. The geometry of the
curve has the provision in its description for the alteration of the
shape of the curve. This alteration is due to the presence of the
parameters in the rational functions. Alterations in the shape of the
curve can be made any where according to the desire of the user.
Being a rational quadratic scheme, it is computationally economical,
Moreover computation of the curve has been suggested through the

- ’ . . k3 . . -
Bernstein-Bezier representation which is quite convenient for
computational purposes.
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INTRODUCTION

Jungck [2] generalized the Banach contraction principle by
introducing a contraction condition for a pair of commuting self
mappings on a metric space. He also pointed out in [3] and [4] the
potential of commuting mappings for generalized fixed point
theorems. Subsequently a variety of extensions, generalizations and

- applications of this followed; e.g., see [5], [7] and [8]. This paper is a

continuation of these investigations.

Let (X, d) be a metric space. We shall use the following
notation and definitions. '

CB(X) = {A: A is a nonempty bounded closed subset of X},
N, A) ={xeX:(JaeA) {dxa) <)}, wheree > 0.
H(AB) = {inf {e>0:ACN(g, B), BCN(e, A)} if the infimum exists,

o  otherwise

This function H is a metric for CB(X) and is called Hausdorff

metric,
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Let T : X = CB(X) be a mapping, then C ¢ = {f: X > X : Tx
C fXand (Vx € X) (Tx < Tfx)}. T and f are said to be commuting

mappings if for each x € X, f(Tx) = fTx € Tfx = T(fx). A point x is
said to be a fixed point of a single valued mapping f (multivalued
mapping T) provided fx=x(x&Tx). The point x is called a coincidence
point of £ and T if fxeTx. For details see Nadier [6] and Rhoades,
Singh and Chitra [8].

MAIN RESULTS

Lemma 1

Let X be a metric space and T : X — CB(X) a continuous
mapping. Let f € Cp and continuous such that f and T have a
coincidence point z in X. If lim f®z = ¢ < oo, then ¢ is a common fixed
point of fand T. e '

Proof

Obviously, fz€Tz implies that. f2z€fTzCTfz. Therefore

**leTrre. It follows that reTtr. Moreover ft= f lim fz= hm f’”lz t.
Hence tis a common fixed point of f and T. e

Theorem 2

Let X be a metric space and T : X — CB(X) a continuous
mapping. Let f, geCqy and continuous such that the following
condition is satisfied:

H(Tx,Ty) < Ad(fx, gy) + B{d(fx, Tx) + d(gy, Ty)}

+ C{d(fx, Ty) + d(gy, Tx)} + D{1 + d(fx, gy)}1

d(fx, Tx) d(gy, Ty), (1)

A+B+C
1-B-C-D
is a common coincidence point of fand T, and g and T. -

for all x, yeX, A, B,C,D>0and 0 < < 1. Then there

Proof
Assume that M = “+B+C) . Let xo be an arbitrary but
(t-B-C-D)
a fixed element of X. We shall construct two sequences {x,} and {y,}

as follow. Let x; €X be such that y; =fx;€Tx,. Using the definition of
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Hausdorff metric and the fact that TXcgX, we may choose
Yo =§x2€Tx1, such that .
d(y1, ¥9) = d(fxq, gx9) <H(Txy, Txy) + A + B + C.

Since TxCfX, we may choose x3€X, such that yy=fxg=Tx,
and d(yy, y3) = d(gx, frg) < H(Tx,, Txy) + —2+ B+ o2
2 Y3/ 2 [X3) = v Y TR _c-Dy

By induction we-produce two sequences of points of X, such
that .

Yop+1 = [Xops1 € Txgy

Yor+2 = 8%opro € Txop,1s (2

where & is any natural number. Furthermore,
dWop+ 1 Yor+2) = d(fXop 11 8%op 4 9)
< H(Tx2k, Tx2k+1) +

(A + B+ C)%k+1
(1-B-C-D)2

and  d(op.9 Yop+3) = d@%op10 Mo, 3)
(A + B + C)2k+2

S.H(szk+1’ Txop4o) + (1-B—-C—D)2k+1

Hence d(fxgp 1, 8%op42) S Ad(fxgp, 1, 8xgp) + B{d(frgp, 1, Txge. )
+ d(gxqp, Txgp)} + C{d(fxgy 1, Txop)

+ d(gxgy, Txgp, P} + D{1 + d(frgp, 1, gx2k>}‘12k )
(A + B + C)er?
d(fxop, 1 Txgp 1) d(gxgy, Txg,) + (1_B_C_D

<(A+ B+ Cd(fxg, 1,8%9) + B+ C+ D)
d(fx )4 (A + B+ C)2k+1
2%+ 1 8X2k +2 (1-B-C-D)%

< Md(fxop , 1, 8%gp) + M2R*1L,
Similarly,
d(gxop, fXop, 1) < Md (Frop_1, gxop) + M2E.
it further implies that |
dO, Yo 1) SMPLA(,, gxy) + (ﬁ - 1) M~

For p21 and m = n + p, we have -
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d(yn+1’ym+1) Sd(y”+]_’yn+2) + d@n+2’yn+3) +..+
d(Yn-{.p’ yn+p+1) S {Mnd(fxl, gX2) + nM"+1}
+ {MP*+1d(fx;, gxo) + (n + DM™*2} + ..+
{M*+P-1d(fx,, gxo) + (n + p— 1) M**P}

n+p-1 . n+p-1 i
< Y Mid(fxq, gxo) + 2, iMItL
i=n i=n

It follows that the sequence {y,} is a Cauchy sequence.
Hence there exists z in X such that y,—>z. Therefore fxy, , ;—z and
8%9,.9—>2. The continuity of T implies that Tfxg,;—>T2z and

Tgxqgp . o—>Tz.

From (2), we have
8f%op+1 € 8Txg, © Tgxgy
18%3p+2 € [T 11 © Tfxgp, 1.
Since f and g are continuous, by letting 2—>, we obtain
gz € Tz and fz€ Tz
This completes the proof of the Theorem.

Corollary 3

Let X be a complete metric space and T : X - CB(X) a
continuous mapping. Let f, g € Cr and continuous such that (1) is

satisfied. Moreover, assume that
{fz, gz} € Tz implies lim f*z = lim gz =t < ©,
= n—w )

Then ¢ is a common fixed point of f, g and T.

Remark 4

Several other results may also bé seen to follow as immediate
corollaries to Theorem 2. Included among these are the following,
Dube and Singh theorem 1 [1], Jungck [2] Kaneko [5] and Nadler

theorem 5 [6]. '
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ABSTRACT

~ Using the Secant method we approximate a solution of a nonlinear
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1. INTRODUCTION
Consider the equation v
F(x)=0 (1
where F is a nonlinear operator mapping a subset E3 of a Banach
space E, into another Banach space E,.

In this paper we are concerned with approximating a solution
x* of equation (1) using the Secant iterations

Xpe1 =%, —OFG,, x, ! Flx,),n20 ~ 2)

where x_; and xdeE3, and OF is a consistent approximation of the
Frechet-derivative F' of F. Denote by N the class of all continuous

nondecreasing functions w : |R*—|R* with w(0)=0. Most authors
(see, for example [1], [3], [6]) impose a condition of the form

118G, ) =G| Sw(||x—y||P + ||x—2[|P),0<p<1-

for all x, y, z € E5. However, this condition does not provide sharp
error estimates for the Secant method when O<p<1 (see, for
example [1], [3], [6]). In the elegant paper by Galperiz and Waksman
[2] sharp error bounds have been found for Newton’s method using
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the notion of w-regularly continuous operator. Here, using a
generalized notion of the above definition we provide sharp error
bounds for the Secant method. Qur results can be reduced to the

ones in [2] for OF = F’ and are compared favorably with the ones in
[1]1 = (7], for OF = F' (or not). '

2. CONVERGENCE RESULTS
Given an operator G : E3 x E; — E,, we say that G is w-
continuous at a point (y, z) € E5 x Eg if the function w belongs to the
class -
K(G,(,2); E3gxEg) = {weN | Vx€E; | |G(,2) — G'(0) ||
Sw.max{||x =y, [lx—z[|})
and that G is w-continuous on E;xEg if w belongs to
K(G, E3xEy) = {weN | V(3,2), (x,x)€E3xE; | |G(,2) — G’ ()|
Sw (max{||x=y|l, ||x— 2]}

All functions of ghe first set are called here local continuity
moduli of G (at (y, z)), whereas those of the second set are called

(global) continuity moduli of G (on E x Eg).

Let N™ denote the subclass of N consisting of all weN that
are concave. For an operator G : E3 x E; — E,, denote

H(x,y, 2) = min {||G'@]|, | |IG®, 2)||} x,5, z € Ej.

Given weN™, we say that G is w-regularly continuous on
EgxE, if, for all x, y, z € Eg, the inequlaity

wl(H(x,y,2) + | |Gy, 2 - G'&)| ) —w(Hx, y, 2))

Smax{|ly —x||, ||z —x]{}. (3)
Here w~1(s) stands for the least root of the equation w(t)=s.

Clearly, w1 is an increasing convex function defined on [0, w(0)).
Because “of w~! convexity, the above inequality implies

weK(G,E3xEy). As in [2] we can show that the converse is not true.
For x_j, x5, x, y € E; we define the numbers o, B, r, a, b, g by
llxg—x_ Il < o, }|8FGxg, x 7! F@[] < B, v = [Ix — ¥l
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a — b, the functions
max{R, 0},

a = w ([|G@|], b=wi(|{GWI[]) -1, q
q@s, t), R*, A, B, Dbyq(s, t) = min{t,s —t},R*

A(a, b ;) = f [w(min{a, (a—qs,0) *}+t)~w(min{a, (a—q(s, t))*})] dt,
0

B(r) = D() + 2w r + a + 3, with

1- @) + wm)

D(r) = Alagbgr), ag=ag(r) =w-N1—-w(a)-w(r), and by=b(r) =
w1 (1-w(a)—w(r)-r.

Finally, define the iteration {t,}, n 2 -1byt_; = 0, ¢y = &, t;=0+f
and forn 2 0.

t =t _;D(‘rnl b v Wity | 1=5)Ey 4 ~tp) v wlmax(l, o ~bytn 1=t DUy 4 1785)
n+27 'n+1 1-(witg—t_y) +w(maz(t, , 1~tg, t,~tg 1)

‘We can now state the main result:

s,

Theorem v L

‘Let F:E;CEy—>E,

IS

Assume:
() there exist xpx_,€E; and positive numbers o, B such that:
SF (xg,x_,) is invertible, and | |xy —x_;|| <, N
[ I8F (xg, %" Flxg)| |<B; | "
(ii) the number o is such that 1-w(0a)>0 and there exists a
minimum number r*€ (0, w=1(1 — w(a)) such that

B(r) <r forall r € (0, '] (4)

(i) Us=U@,r") ={xeEs| |lx—x]| <r’}Es

(iv) The operator OF(xy, x~1)71 8F : UxU-L(E;, E;) is w-
regularly continuous on UxU and F is Frechet differentiable
on U. Then ;

(1) the function A does not increase in each of its first arguments
and i increases in the third one;

(2) the iteration {t }, n=-1 is increasing and bounded above by

r* with t*= lim t, <r*;
n—>«©
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i

(8) the operator 0F(u, v) is invertible for all u,v € U;

(4) the Secant iterations (2) are well defined, remain in U(x,, t")
and converge to a solution x* of equation (1);

(5) " is the unique solution of equation (1) in Ulx,, r*);

(6) the following estimates are true forall n > -1

Hxpe1 =Xl Sthi1— : (5)

[ * »*

Hx, =x"|} <t7 ~t,; 6)

D( |x,_ ;=% I D+w(]lx,_1=x, | D1Ix,_;-%, || +wimaxillx, = [z, %, ol[Dilx,_ 15,1

o<
Nl 1] fegw_y) + wlmar{TTrsgl 1. [ixy-rgl 1)

and )
DAY fr=r, 1D #wl 575, 1) |15, 1] +iwtmas{ | #5511} 1t ()
lepy1=mplIshieex, 11+ T rgx_; 1D * womas{[[%,-%q1 [l Frpy Fo 1)

(8)

(7) the convergence condition (4) and the estlmates (5)—(7) are
sharp.

Proof
(1) The proof of this part as identical to the correspondxng one in
(2, Lemma 2.1] is omitted.
(2) The first three members of the iteration {¢,}, n>—1 are such
that ¢ <ty<t;<r*. Therefore the denominator of the fraction

appearing in the definition of the sequence is positive. That is t; < ¢
(since the numerator is obviously nonnegative). Let.us assume

‘tkﬁ.tk,t 1» k=-1,0, 1, 2, ..., n. Then by the definition of the sequence
t,},n 2 -1, ,<ty,q. Thatis ¢, <t, o for n = k+1. So far we

showed that the scalar sequence {¢,}, n>~1 is increasing for all
n>-1. We will show that ¢,<r" for all n>~1. For n = —1, 0, 1, this is
true by hypothesis. For n=2, t,<r", since t,<B(r")<r *. Let us assume
that tkSr . £=-1,0,1,2,...,n, then

D(t1-tg) + (tg=t1) + o+ Dty 1=tR)<D(ty , 1=t} <Dty , 1-20)<D Wty , <D
since the function w is increasing and

(ty=ty) + (tg—t]) + ... + (tp=tp_y) + (4, 1—ty) = tp,1 — to. Moreover
w(max{t, , ;~tg, t,—%oN<w(™), k=-1, 0, 1, 2, ..., n. Hence #, | <B("™)
<r*, which completes the induction. Therefore the sequence {t,},
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n>-1 is increasing and bounded above by r* and as such it converges
to some ¢* such that 0 < t* < .

(3) Let us observe that the linear operator dF(u, v) is invertible
for all u, v with max{||u — x4, | [v —x¢{[} < w~l (1-w(o)). Indeed

[18F(xg, 21" (BF(u, v) — 8F(xg, x_ ) 1<} |8F (%, x_ 1 (OF(w, v) —
Flagh|] + [{8F(xg, x_)"WF' (xg) — OF(xg, x_;)|] < wlmax{||u -
%ol |}) + w(a) < 1, so that according to Banach’s lemma OF(x, v) is
invertibel and :

[ 18F (u,0)~18F (xg%_1) | [ S[1—(w(] |xg~2_4 | ])+w(mcix{| [u=xq| 1,
[ lv=xol [3ID]. ' _ (10)

It now follows that if (2) is well defined for n=0,1,2,...,k and
if (5) holds for n<k, then '

[|2g—x,|| <t, -ty <t*—t, for n <k.

This shows that (10) is satisfied for u=x; and v=x; with ij<k.
Thus (2) is well defined for n =%+ 1 too. Also from

Nz —xpll St -ty <y <87
we obtain xp € Ulxy, 89

(4) —(6) We now choose x, y, 2z € U and bound each one of the
three norms that appear at the right hand side of the following
estimate

[ITF@) -F») ~-F' @) -] < [ITF@) -F@) -F'@) -] +
[ITF @ - F'@) -] + ||TE x) - F@, 2)) @x—y]|,

where T denotes SF (xg, x_;)~L. Using (3) we obtain

) |
HTE@-FO-F 00| = | | [TF @+ty-0)-TF mla-yadt] |
0

1
S SUHTF @+t —2) = TFW| - |z - y]] dt
0

58



1
< wwLH,x+ 10 +2| [y-x | )-ww 1 H@px + -2 [2-y| [d2
0 .

,
< f[w(min{a, (a—q(s, ) *} + t) —w(min{a, (a—q(s, )* })1 dt
0

= Ala, b, r) 1n
where we've used the result from [2, Lemma 2.1] that
| w I Hy, x+t(y—x))) = min {a, (a—q(s, ) *} forx,y € U, 0<t<1<r,
' 0<t<r.
Moreover
[|ITF' ) = TF'G) = || < || TF' &) - TF'W ] ||x ~y|| S wlr)r.
Furthermore |
| ITSE(, 2) — TF' (%)) (x — )| | <w(max{ | |x—y]], | lx-z[ |} ||x~]|
Sw(max {r, ||x—-2z[[}r.
Since ||x_;—xgl| < to~t_; and ||x;—xg|] < t;~ty let us

assume that |[xp,—x,||<t,, 1~y k£=-1,0,1,2,..,n, and apply the
above estimates for x=x,  , y=x}, 2=x,_q, U=x;, 1, and v=x;.

Then, we obtain

[xpe9=xp, 111 = 1] OF G, 1xp)" L SF (xgx_)) [OF Gxgx_ )7t (Flxy )
- “‘F(xk) - SF(xk’xk—l)) (xk+1—xk))]l |

< H8F Gy y xR 2T | o || T(F Gej )~ F ) ~OF (g g 1)) (s 120 | |

A@b gy x4 wllley o g =xpl DIy =xp || twimaxdileg y —xp |1 1egy o2 1} Uy g -5, 1D 12)
s {
1-(w]| |xo—x_1| D + wimax{]|x) , l—xol I+ }lxg-xgh

L Agbyty, =)l )y, ) rwOmaxlty, ety b D Gyt

1-(w(ty-t,) + wimax(t,, ~to.t,~t, )

= t4,97 14, - That is the estimate ||x,, ;—x,||<t,,;~t, is true for
n=k+1 too. Hence, {x,}, n>-1 is a Cauchy sequence in a Banach

space and as such it converges to a point x"€U. Note that the
numerator of the last inequality is an upper bound for | |TF(x;,{){|

which tends to 0 as k—x.
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Hence, by continuity F(x*)=0. The estimate (6) now follows
easily from (5).

To show uniqueness, let us assume that there exist two
solutions x* and y* in U(x, r*) and consider the estimate F(x*) —

F(y") = L*(x"—y") with

1
= fF'(y* +ti" —y")) dt
o s

Then as before we can show 111 — TL*|| < 1. That is L* is
invertible which shows that x*=y".

. _
Set L= [F'" + t(x, —x") dt
0

and use the estimate (12) for k=n—-1, x,,, ;=x" to obtain

|1x,~x*|| = [|IL7IFG&) || = [[(TLY ] . [[TFG,)[]
Al 15, 1=, 1Y + w5, 3=, 1D {15, _yox, L+ wimardilx,_ =%, e, y=%, a1} (1%, =5, 1D
T=w(l Trg—s_ 1D + wimax{[[x*xg) [ .[Tx,-%gI 1)

Moreover by taking norms in the identity
x,, =%, =x"—x, + (T8F(x, x,_ )" UTFx*)-F(x,)-8F (x,,,x,_ )" ~x,))]
and using (11) we obtain ‘

l Ixn+1—xnl ISI lx*_xnl l +

Alag,bg, Hat-xp | D +wl| [x*=x, | ) | [x*-x, || + wOnax{]|x*-x ]],]|x*-2,_{||D [|a*-2,]]

1-w[[xg-*_1]) + wimax([[xp-%q| 155 _1-Tgl 1)
(7) This follows exaétly as in part (5) in Theorem 2.1 in [2], which
completes the proof of the theorem.

It can easily be seen that if w is linear and the sequence
[]x*—x,|| is monotone then (7) and (8) ean-provide an upper and
lower bound on ||x*—x,]| respectively expressed in terms of the rest
of the norms.

Let w(t)=ctP for some pe[0,1] and d‘e'ﬁne the real functions
f,g by F(r) = (4+3p) cr'*P + (1 + p) (caP—1) r — (1+p) (a.+P) erP +
(1+4p) (0+B) (1—coP) A and G(r) = 1 ~ coP — crP.
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It can easily be seen that conditions (ii), (4) become
equivalent to

F(r) <0 and G@) > 0.

Case 1: Letp=1 and define the numbers ry, ry, r3 and A by

1+cB-\/Z-r2=1+cB+\/Z N Sk A
' Tc ’

Te 173 c

f‘1=

A=Q1+cf)2-14 +B) A —-ca)e.

It is simple calculus to show that if re{ry,ry) and A>0, then
conditions (B) are satisfied and the conclusions of the theorem hold
Gf the rest of the hypotheses are satisfied).

Case 2: Let p = —;—and define the number s, s, rg by

s =0 +p)(coPt=(a+ B, s, = -1—+7—C-C—Eand rg = l—:—cﬁ

Assume that

§<0,52>4(4 +3p) (1 +p)(d+ P) @A —caP)candf(s,) <0 (14
Then there exist two positive roots r, and rz with ry < r5 of

the equation f(¢) = 0. Let [ = (0, rg) [ry, r5] # <.

Claim: Then for all r€l, conditions (13) are satisfied.

Indeed the function
h@) = (4+3p) r2+(1+p) [(coP-1)—(o+B)c) + (1+p) (&t+B) (1—coP)

has a minimum at s,,. The first two assumptions of (14) imply that
this equation has two positive roots. Taking into account that
f(s,;,) <0, since f(¢) is continuous, f(0)>0 and f(¢)>0 for ¢ sufficiently
large we are assured that f(¢) has two positive roots ry and rs. That .
completes the claim.
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ABSTRACT

It is shown that a discontinuous contractive mapping T on a O-
complete vector lattice must be (0)-continuous at a fixed point. The same is
true for pair of maps. There are a number of theorems of the form, if the
sequence { x ,} of Mann iterates of a certain type (0)-converges to a point p,
then p is a fixed point of the map T. Further, if (0)—lim x,, =p, then p is a
fixed point of T if and only if T is (0)-continuous at p.

1991 Mathematics subject classification. 47H10, 46A40, 47TH89.
Key Words and Phrases. Fixed point, vector lattice.

The order theoretic fixed point theory has numerous
important applications to the kinetics of chemical reactions,
diffussion processes, the theory of nonlinear heat conduction and
mathematical biology. The first contractive definition is that of
Banach. It requires the mapping to be continuous in the whole space.
In 1968 Kannan [3] gave an example of a contractive definition that
does not require the continuity of the map. The purpose of the
present paper is to study fixed points in vector lattices for contractive
mappings. It is shown that these mappings are (0)-continuous at
their fixed point. The same is true for pair of mappings. In the sequel
we have obtained the analogue of results of Rhoades [5], Naimpally
[4] and many others. #

For notation and other facts regarding vector lattices, we .
refer to Cristeseu [1]. :
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Theorem 1 [Voicu (6)]
Let X be a G-complete vector lattice and T an operator from
XintoX.Ifforall y,z € X,
ITy) —T@| <ajy-z| + B(y-T®| + |]z—T@|) k
+7(ly-T@] + |l2=TW]) (@
where o, B,y € R, and a + 2B + 2y < 1. Then for any x€X the

sequence {T"(x)} is (0)-convergent to an element p of X and p is the
unique fixed point of T.

For sake of completeness we give outline of the proof of
Theorem 1.

Outline of the Proof
Define x,,=T"(x). In (1) take y=T"*P~1(x) and z=T""1(x) then

n-1 .
1%p4p = Xp| S lxg — x4,
-A
where A= —I;L—
- Y

It implies that {x,} is a (0)-Cauchy sequence in X. There
exists an element p in X such that

=(0) - hm x, = (0) = lim T"(x).
Using 1nequa11ty (1) we have, i
p=T@EN< A+ |p=2,] + &z, g —p| + PA" |xy—xy]
+ Yl =~ T@)| + Blp — T@®|
<Ylp-TE)| + Blp - TE)|.
It follows that, |p — T(@)| = 0. Theréfore p is a fixed point of
T. Uniqueness of p can be verified easily.
Theorem 2

Let X be a o-complete vector lattice and T : X — X. If there

exists &, B, Y € R, suchthata + 23 + 2y < 1 and for ally, z € X,
(1) is satisfied, then T is (0)-continuous at the fixed pointp. f
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Proof ,
From the Proof of Theroem 1, the sequence {x,}, defined by
x,=T"(x), (0)-converges to the unique fixed point p. Thus T(xn)—(gip.

Let {y,} be any sequence in X, (0)-converging to p. Using (1)
IT)-Ty) | <alx, —y,| + Bz, - Tx)| + |y, - TO)D
-+ Yx, = TR + |y, — T )
Salx, —y,| + BTG, —x,1 + [Tex,) —3,1)
+ Y2, = T(xy) | + [Tlx,) = TR | + [Tx,) — 3,1
= alx, -y, + B+7) [Tx,)—=x,] + B+y) [Ty,
\ + (B + V) [Tx,) - TO,)|.
" Therefore, _ '
(O~lim |T(x,) - T@)| < B+ v (0 - lim |T(x,) — TG,
n—co n—ac
It further implies, v
a-B-v —’}l_r)rgl° [T(x,) — Ty, | <0.

Since 0 < &t + B + ¥ < 1 —[3 -, therefore
©

|T(x,) — T, | = 0.
Hence |T(y,)-T@) |<|T@,)-T,)] + |Tx,)-pl ®5 0 and therefore

(U]

Ty, = TQE) =p.
Hence T is (0)-continuous at p. -
Theorem 3

Let X be a G-complete vector lattice and T : X —» X. If there
exists a, B, Y € R, such that o + 23 + 2y < 1 and forall x, T(y)€X.

IT@-T(TON]| <otlx - T| + B(Jx = T + | TG — T(TGN|)
. +7(lx = TGN + [Ter—T@]) @)
Then T is (0)-continuous at the fixed point p.

Proof

In (1), if we put y=x and z=T(y), we get (2). Hence from
Theorem 1, the sequence {x,} defined by x, =T"(x) (0)-converges to a
unique fixed point p.
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Let {y, } be any other séquence in X such that yn(o—))p. Using (2)
IT(,)~T(TG)) [ < 0Ly, =Tx,)| + By,=T@| + [Ta)~Tx) )
+ YT = TG + [y, = TGN
Saly,=T@y)| + B+1) [y, = (TG | + B+7)
IT(T(x,)) — Ty | + B+y) [T, — T(Tx,))].
Therefore,
1-B-v) - ,}lﬂ, [Ty, — T(Tx,) | <0.
Since (1 - 3 —¥) > 0, thus
[T(y,) — T(T(x,)| > 0. ,
Now, |T@y,)-T@)| < [T@,) - T(T(x,)| + [T(T(x,) —pl.
Letting n - o,
TG, - TE)| >0
Hence T(y,) 5> T(@) = p
Thus T is (0)-continuous at p.

Let X be a vector lattice, T : X — X. The Mann iteration is

defined by
xg€X,x,,; = (1-¢,) x, + ¢,T(x,), n20, 3)

where {c,} satisfies ¢y=1, 0<c,<1,n > 0, and X ¢,, = ©. We shall be
interested in those iterations for which {c,} satisfies

cg=1 0<c, <1 for n >0, @
and {c,} is bounded away from zero.
Theorem 4

Let X be a G-complete vector lattice, T : X — X, satisfying
one of the following contractive definitions at each pair of points

xyeX:
|T(x) — T(y)| <sup{clx~y|, [x—T@]| + |y—-T®»|, |x - T |
+|y-T@]|},c20,0<k <1, o G

|T(x) - T)| Ssup{lx—yl,%[lx—T(x)l + |ly—-TOI],
SUx=TO) + y=T@(],  ©
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At each pair of points x, y, T satisfies at least one of the
following:

[x=T@| + |y=T| <Plx-TE| + |y -T@®| + [x-yl,

1 2
-< .
3 < B <= 3 (7a)

[x-=T@| + [y-T®| + |T - Ty| <yllx-TH»]| +

|y—T(x)|],1Sy<§-, (Th)

[T(x) = T)| <8 sup{|x —y|, |x — T&)], |y - TW |,
l[l:c -T@) + |y-T®)|1},0<d <1 (Tc)

Let {x,} satisfy (3) and (4), and suppose that x,, —-)p Thenp
is a fixed point of T and T is (0)-continuous at p.

Proof
Since x,,; = (1—-c,) x, + ¢,T(x,).

Therefore,

(TG =) + 0= %) = = (a1 ~ 2,
-G

1
Hence |T(x,) -p)| <|x,—-p| + . % 41— %5
n

Letting n—»c, and from (4), we have T(x,) @-)p.
Substitute x = x,, y = p in each of (5)-(7), and then take the (0)-limit
as n—, we obtain T(p) =p

Let {y,} be any sequence in X with (0)-limit p.

Substituting x = xn,"y' = ¥, in each of (5)-(7), and, using arguments
similar to those from preceding theorems we obtain

| T(x,)-T(y,)| >0. Therefore,
1T = TE| < [T, = To + T, = TE)| >0

Hence T is (0)-continuous at p.
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Ishikawa [2] developed the following iteration scheme to
* obtain a fixed point for a certain class of maps defined over a Hilbert

space. Let x; € X,

y, = (1=-B)x, + B,Tx,), n 20, } ®
1= A -a)x, +a,Ty,),n=0,

 where 0<at,<B,<1, lim B, = 0, T a,B, = . In this paper we shall
use the conditions '

@ 0<o,PB,<1, () lim o, >0, @i) Lm B, <1.

Theorem 5

Let X be a 6-complete vector lattice, T an operator defined on
X with values in X and satisfying: for each x,y € X,

|TG) =Ty | <& sup{|x—y[, |x~ T, ly - T(Y)I,
x=T@| + ly—-T@|},0<k < 1. (9)

Let {x,} be defined by (8) with {a,}, {B,} satisfying (i) and
(i1). If (x, } (0)-converges to p, then p is a fixed point of T and T is (0)-
continuous at p.
Proof

It ‘follows from (8) that x,,; — X, = Q 2(T(,)—x,). Since
(W]

x —)p and (o, } is bounded away from zero, therefore [T (y,)—x, [—0.
@

Hence |p-T(,)| — 0.

Since T satisfies (9), we have
IT,) = Tex,) <k sup{|x, —y,1, 1%, — T@) |, [y, — To 1,
| | 25 = T | + 1y = T [}, (10
where |y,~x,|=|B,T(x,)+A-B,)x,—x,|<|x,~T@¥,) |+ (TE)-Tk)|,
7,~-To) | = B, Tx,) + 1—B,) %, Tw,)|
1%, = TO + [T — TR,
(B, Tex,) + (1= B,) x, — Tix,) |
lx, = Ty, | + |T@,) — Tlx,)].
Substituting these valuesin (10)
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|T(x,) — T <ksup{|x,— Ty, + [T)-TO) 5 12,~T@)| +
IT(yn) - T(xn)l’ Ixn - T(yn)l + ]T(xn) - T(}'n)l’ 2|xn - T(yn)l +
[T@,) — Tx,)|}

2k \ ©
S(l—k 'x"_T(y")lj—)O' |

. Using triangle inequality, it follows that
lx, - Tx,)| >0 and [p—Te,)| 0.
Again by using (9), we obtain ‘
|TCx,)-T@)| <k sup{|x, —p|, |x, — Tx,)|, |p — T@I, |
lp— T, + {x, -~ T@|} :
Sksup {|x,-p|, |x,-T,)|, [p—x,| + |x,-T&x)| + [T&,)-TP)|,
p - Tx)| + |x, -~ T, | + |T,) —T@)|}. ~
Letting n—>0, we obtain
[T@x,) — T@)| = 0.
Hence |p—T(@)| < |p — T(x,)| + |T(x,) — T@)| > 0.
It implies that p is a fixed point of T.' :
| Let {y,} be any sequence in X such that y, @-)p Since
IT() = T@)| € [T, = T + [T, —pl 0.
Hence T(y,) @) T(p), and so T is (0)-continuous at p.

Theorém 6

Let X be a G-complete vector lattice, T an operator defined on
X with values in X and satisfying:-

At each pair of poiats x, y € X, T satisfies at least one of the :
following: : '
[x=T@)| + ly=Te| <bllx =T} + |y - T@| + [x—¥]],

3
- : 11A
Sb<2, ( )

lx = TG)| + ly - TO| + |Tx) - TO)| <ellx—Ty| + ly - T@I],

=
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1Sc<g, ' (11B)

TG - Ty | <ksup{|x—y|, |x—Tw]|, |y - T,
%[’x—’T(y)[ +ly=T@|1}0<k<1. (11C)

Let {x,} be defined by (8) with {a,,}, {B,,} satisfying ()—(iii).
If {x,} (0)-converges to p, then p is a fixed point of T and T is (0)-
continuous at p.
Proof

From (8), we get x,,,,—x, = &,(T(y,) — x,). Since xn(o—)>p,
lxml—xnlgo. As lim o, > 0, therefore |T(y,) —xnlg)-)O.

0)

Thus [p-~T@,)I s p-x,| + |x, —T@,) | —0.

Case I: If (11A) is satisfied, then

2|T@&,) ~ T <A +b) [|x, = TG + 1y, = Tl |1 + bly,—x,],

Since |y, —x,| < B, [lx, — T@)| + |(Ty,) — T(x,)|] (12)

and  |y,~T(x,)| < 1-B,) [|x,-To)| + [T@,)-T,)|] (13)

Therefore

(2(1 + 8) - B,]

(1-b+ 8]

Case II: If (11B) is satisfied, then
3|Tx,) — Ty <+ DI|x,~T@| + |y, ~ Tx) |1

Using (13), we get

| TCxp) — TR < lxp, = TG

1+0@-By
[2-c+ (1+0)B,]
Case III: If (11C) is satisfied, then
| Tx,) = T | <k sup |z, = yul, %, = T, 13, = T

|, — T(y,) |

IT(x,) - TG, | <

1
5 [ = O] + 1y = (1)
Also
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1
5 U= [+ 17,=Te |1 S £ [, = T + A= B 12,~TCxp) ]

< lx, — TG, | + % ITx,) — TG, | (14)

'Using (12), (13) and (14), we have

|TCx,) = Ty)| < lx, = TG |

1-k
Thus in any case (11A, 11B and 11C).

20+b)-B, 1+0@-By & }
1-b+B, ' 2-c+A+0)B, 1-k
x, = TG, (15)

|T,)-T(,)| < max {

Since lim B, < 1, (15) becomes |T(x,) — T(y,)| — 0.

Therefore, |x, — T(x,)| 25 0 and lp — Tex,)| D o.

If (11A) is satisfied and x,, LY p, then we have

2|T@,) — T | <A +b)[x,— T@E)| + |p— T[]+ blx, —p]
A+ (|, - Txy)| + |Tx,) —T@] + |p =TI+ blx, —p|
If (11B) is satisfied and x,, g)l>p, then we have

c+1
2—-c

|Tx,) ~ T < [z, — Ty | + |p — Tx)|1.

If (11C) is satisfied and x,, g)l>p, then we have
| TC,) ~ T@)| <k {12, = |, %, — T&1, [p = TP,
1
5 Uz, = T@1 + |p = Tex,) |1}
<k sup {lxn _pl’ Ixn —T(xn)l’ |p —xnl + Ixn - T(xn)l t

Te)-T@), 5 [ty = T | + T = @] + Ip = Ty |1}

<

1-%

[lx,—p| + |p - Tx,) | + |x, — T(x,)]|]
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The‘refore, V 'T(xn) — T(p)l < max {1+b c+1 k

-pl +
1-b " 2’ 1—k} 1% =P
p—T@&,)| + [T@) —x,|1 + |x, — TCx,)|

. 1+b c+1 &
Thus lp—"I.'(P)l <lp—-x,| + |x, - TC,)| + max{l_b ‘oo’ 1—k}

[lx,—p| + |p~T@&)| + |[x,~T@ |1 + |x, — T(x,)]. It further implies
that, [p — T(»)| = o.
Hence T(p) = p.
o We now prove that T is (0)-continuous at p. Let {y,} be any
sequence in X with (0)-lim y,, = p. Then -
ITG,) — TE)| < [T@,) - Taxy)| + [Tk, ~ TE)] >0
Hence T(y,) = T(). It further implies that T is (0)-
continuous at p. '
. We now establish some results on Mann iterations for pair of
maps.

Theorem 7

Let X be a G-complete vector lattice, S, T be two operators
defined on X with values in X and satisfying:
|S()-T() | <ksup{c|x-yl,|2-S@) | + [y-TO |, |x-T® | + |y-Sx) |} (16)
where ¢ 2 0, 0 < 2 < 1. If there exists a point x; such that the Mann

iterates for S or T, defined by (3) and (4), (0)-converges to a point p,
then p is a common fixed point of S and T. Moreover, S and T are

(0)-continuous at p.

" Proof
Suppose the Mann iterates using S, (0)-converges to p. Since
{c,} is bounded away from zero. Therefore S(xn)“;))p. Using (16).

|S(x,)-T@)| £k sup{c|x,—pl, |x,—SC,) | + [p-T@)|, |x,~ T | +
' lp—S(x,) |},
Letting n — oo,
| lp = T@)| <k |p - T@)|.
Since 0 <k < 1, therefore |[p—T(p)|=0. Hence p is a fixed point of T.
Using (16), ,
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I1S®) -p| = [S@) - T)| <k|p-SE)|.
It further implies that S(p)=p. Hence p is a common fixed point of S
and T. . '

Let {y,} be any sequence with (0)-lim y,=p. Inequality (16)
implies, _ o :
SO ~SE)| = |S¢,) - TE)|
Sksup {c |y, pl, 1y,~SW) | + [p-T@), [y,~T®)| + Ip—SG)|}
Sksup {c ly,=pls lyn—pl + I TE-SGL] + [p-T@)I,

ly,=p| + [p~T@)| + |T@-SG,) |}

Letting n—0, we obtain '

1S0,) = T@)] S £ 1y, ~p] 0.
Hence S(y,) LN T() = S(p).

Thus S is (0)-continuous at p. Similarly, it can be shown that
T is (0)-continuous at p. '

Proof for Mann iterates of T is similar.

Theorem 8

Let X be a o-complete vector lattice, S and T be two
operators defined on X with values in X satisfying; for each x,y€X,

|SG) ~ T | <k sup{e [x-y], [x~S@)| + |y-TO)],
[x-T| + [y-S& [}, 4D

where ¢20,0<k < 1.Ifx, (O-))p, where {x,} is defined by

%0€X, X9, 41 = (1=Cgp)Xap + Cayp S(Xgp), } (18)
Xaneg = (1= C9p1 1) Xony1 + Conyy Tgn o)

where {c,} satisfies (4), then S and T have p as a common fixed

point, and S and T are (0)-continuous at p.

Proof

Since {c,} is bounded away from zero, and x,, ﬂ)p, it follows
from (18) that S(xy,) = p and T(x,,,, ;) = p. From (17),
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[S(x5,)~T(P)| <& sup {c|xg,~P|, [X9,~Sxy,)| + [p—T(@)]|,
[xg,—21 + |[p=SCg, ) [}
Letting n—>%0, we obtain |p — T(p)| < kIp — T)|. It implies that
T()=p. Similarly, we can prove S(p) =
Let {y,} be any sequence in X w1th (0)-lim y,=p. From (17)

[S(xy,)—T@,)| <k sup {c|xy, —¥,|, X9, = Sxg)| + |y, — T,
|2, =TWR) | + |y, — S(xgp) [}

<ksup {c lx2n _ynl3 ,xZn - S(xZn)l + Iyn - S(x2n)l +

[SCxq,) = TR, 19, — Slxg,) | + |S(xg,) — T + |y, — Sxg,) |}

k .
< sup {c¢ [x9, =¥, [x9, = Sy, )| + ly, —Sxg,)|}.

It implies taht [S(xy,) — T(,)| 9, 0. It further implies that

[T, — T@| 2 0. Thus T is (0)-continuous at p. Similarly, we can
prove that S is (0)-continuous at p.
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INTRODUCTION

For reN, let ¢, denote the r *! triangular number. It is well
r+1 .
known that ¢, = r_(_2__)_ In this note we pose and answer the
question: If seN is fixed, for what reN is ¢, ¢, a triangular

number? If there is an m such that ¢, —~t, = ¢, let us call (r+s,r,m)
a triangular triplet. This question is of interest in that, on the one

. 1 .
hand, the nth triangular number ¢, = ﬂ{%—) can be interpreted as

n

. . . +13-
the sum ¢, = ¥ r and as the binomial coefficient (n2 1) on the other.

r=1
So this work may lead to the question: If s is fixed, for what r is (r;s)

—GD a binomial coefficient (’Z) for #23? Moreover with very little

effort the answers to the above questions can be interpreted as

solution of the diophantine equation ¢,,+¢, =t, where k, m, neN. We
treat the question in two ways. In section 1, we find expressions for r
that depend upon factorizations s=ab where a>0, >0 and (q, b) = 1.

We also show that if s # 1 and if there is another factorization s=a'b’

but a’#a, then these expressions give totally different sets of values
of r. In fact if s > 1, these (coprime) factorizations of s partition the

set {reN | t, ,~t, is triangular}. In section 2, we include an
alternative approach to the problem by producing an algorithm that
can be used for computing a sequence of triangular triplets for any

given seN.
1. Evéluating r from factorizations of's.

Our tools are the following elementary results that should
belong to undergraduate text books on number theory.
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Lemma 1.1

Let a,b € N. If (a b) = 1, then there exists k€N such that
ajlkand bk + 1.

Proof

Since (a, b)=1, there exist x, y€Z such that xa+yb=1. If x<0,
then we can put —xa=#% which gives yb =k + 1. Ifx > 0, we rewrite
xa + yb = lasx[b—(b—1)]la + yb = 1 or —x(b—1)a + (x+y)b = 1. Now
k=x(b—1)a gives (xa + y)b = k + 1. As we can always choose non-
zero x and y there is no need to consider the case of x = Q.

The following lemma can be proved using prime factorization
but the proof included here, which is definitely well known, can be
introduced at a much earlier stage.

Lemma 1.2
If, in N, a|bc, then a=a,a, where a, [b and a,|c.

Proof :
Let a;=(a, b). Then a=a,a, and b=ab, where (ay, by)=1.
Now a|bc implies a;aq]|a,byc, which imples aq|c.

First of all let us consider the Well-known case when s=1.
m(m + 1)

Then ¢, ,~t, is triangular if and only if r+1 = 2 for some
g ) 2 - ) )
“meN, ifand only if r = (m + )2(m 1) for some m&€N. Since r must

be positive we must have m > 1. Thus for m>1, r = (m + 2)2('" Y]

makes t, ,—f, triangular and conversely. We note that, for reN, if
t,,s—t, =t,, for some mem for some meN, then

r+s r
_rs+.s'2+s_m2+m @
2 2 !
So obviously m>s. We can rewrite (i) as
m2 +m—(s% +s) m-s)(m+s+1) ..
rs = ) orasr = %% i)

Thus if we know m, we can find r. Now s must divide
m(m+1). So we factorize s into coprime factors by Lemma 1.2 and
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invoke Lemma 1.1. Now the fact that 2 is in the denominator of (ii)
may cause a slight confusion. So for the moment, let us assume that
s is odd. In that case obviously one of m—s or m+s+1is even and so 2
does not interfere with the divisibility by s.

Proposition 1.3

Let s be an odd number. Then ¢, , ¢, is a triangular number
if and only if »

o + (t + D] [y + (2 — 1a]
r= - 2 ‘

where s=ab is a factorization of s such that (a, b) = 1, (0, By is a
solution of a + Bb = 1 with ay < 0 (B, > 0) and ¢ is an integer such

N b= o
thatt < 5
Proof

| o
(=) If t,, 4, =t,, for some meN, then by (i) r = L= IELLS

Now sl(m—é) (m+1+s) and so s = ab where a|m—s and bijm+1+s.
Since a|s and b|s, alm and b|m + 1. Now as (a, b) = 1, there exist

O, B¢ in Z such that acty+bf,=1. By Lemma 1 we can assume that
0l5<0 and By>0. This provides us with one possible choice of m, i.e.
m=|0ga|. For a more general solution we note that the general
solution of aa + Bb = 1 is given by o=y +bt and $=P,—at where ¢
runs over integers. Again to be able to choose m we must have.

a
o=0,+bt<0 (and By—at>0) so that ¢t < — ?0- (and t < %). Now as
m= [oc0+bt'la and as by (ii) m—s must be positive, we must have

fog + btla>s

or |ag + bt] > b
or a6+bt<—b.
-b-aq a o
. or _t<_b_—q=—1—_bg<—70
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%o %o

A simple calculation shows that — B < Toand sot < —1-— b

is the only restriction on ¢ to give us the required m= |0 + bt|a or
m=—(ay+bt)a. This leads to

_ [y + btya —ab] [-(ay + bt)a + ab + 1]
T 2ab
or,as Oga = 1— B,

[og + (t + DB [P, + (t - Da]

Indeed any factorization of s will give rise to a set of r’s and a
value of m for each r.

S I r= g+ ¢+ 1) b]2[—B0 + (t - 1a]

where o, BO, a, b and ¢ satisfy the conditions stated above, then

[oga + (¢t + 1) s] [-Bgb + (t — 1)s]
r =
2s

_[(og + bt)a + s][oga —1 + tab —s]
- 2s

_ [y + bta + s][(0g —bt)a —1—s]
- 2s

Let- m = —(0, + bt)a, then

—m+s8)(-m-1-3s)

r= 2s
2 2
s2+s m?2+m
or 2rs =m2+ m—[s2+s] or rs + >~ =3
mim+ 1
Hence t,+s—t,=—(—2-—l.

If in the proof of ‘necessity’ in Proposition 1.3 we had
proceeded without assuming that s was odd, we would find that

.- [og + (t + DB [Py + ¢ — Dal
= > : _
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where g < 0, ¢ is such that r is a positive integer. Now if s is even
and s = ab such that (q, b) = 1 and a is even, then since 0tzga +
Bob=1, By, must be odd. So —-B, + (¢ — 1)a is odd under all
circumstances. Now we show that oty can be chosen to be even. If o,
is even, we are done. If not, consider 1 = (b + 1) — b and hence
Ogb + 1—bla + Bgb = T or agd + Da + (By — cga)b = 1. Letting
agb+1) = o'y and (By — oga) = B’y, renaming o'y, B’y as oy, By, we
have the desired solution, i.e. with ., even. Now oy + (¢ + Db is
even only if ¢ is odd. If b is even, a similar argument can be used to
get By and ¢ will again have to run over odd integers. This leads to
the following statement.

Proposition 1.4

Let s be even. Then t,,s—t, is a triangular number if and only
if

_[og + @ + 1b] [-By + (¢ — Dal

T 2
where s=ab such that (a, b)=1 and (o Py is a solution of
oa+Bb=1 with ay<0. Moreover ¢ runs over odd numbers less than

b

(respectivley b is even).

From the computation angle: If r and s are given, then m may or may
not exist and if it does then it is a function of the factorization of s...
as we have already seen. So if r and s are given and m exists, then,

Ay
_—’

for some factorization s=ab with otga+,b=1 and for some #<-1- 5

, and o is even (B, is even) if and only if a is even

where ? is fixed by the value of r, m = |, + bt]a. The fact that m is
a function of the factorization s = ab gives rise to the questions: Can
two different factorizations give the same m? Can two different m’s
give the same r? (for a given s!) This provides a sufficient excuse for

the last part of our project.

Now for the last part of our project let us introduce the
following notation. Let 5§ = ab where (a, b) = 1. Define S(a, b) =
{reN|r=(m—-s)(m + 1+ s)/2s wherea|m and b|m + 1}. Now the
following result answers the questions raised above.
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Proposition 1.5 .
Lets = ab = cd where (a,b) = (¢,d) = 1. Ifa # ¢, then
S(a, b) " S(e, d) = ¢.
Proof
Suppose that S(a,b) M S(c,d) # ¢. Then there exist m, m'eN
such that
_m-9)m+1+s) m-5)m +1+s)

2s 2s ,
where a|m, bjm + 1, ¢c|/m’ and d|m’ + 1. The above equation
reducestom?2 - m'2 = —(m —m’). if m #m’, we have m + m’ = -1
which is impossible. Hence, m = m’. But m = —(ay + bt)a and

m'=—('y + dt')c for some Oy, 0y, ¢, ¢’ given by Proposition 1.3 and

1.4. This gives, with the restrictions on ¢, t'

oga + tab = 'gc + t'de (%)

Since a|cd, then a=ah where 2 = (a, ¢) and a,|d. Now as a
divides the left hand side of (*) and a|dc, we have ald'oc which
implies a,|a’y. Since a’yc + B'od = 1 and a,|d, we have a; = 1.
Hence a|c. Similarly ¢|a. Thus m = m’ only if a = ¢, contrary to the

assumption that a # c.

Corollary 1.6

For any factorization s=ab where (a,b)=1, S(a,b)"Sb,a)=¢,

unlessa = b = 1.

2. Sequences of triangular triples
To this point our work has been of technical nature, that is,
we have established existence of r and we have shown how the
factorization of s dictates the generation of r such that ¢, , — ¢, is a
triangular number ¢,,. But if one wants to find, for a given s€N, all

possible triangular triplets (» + s, r, m) such that ¢, ;—¢t, = {,,, then’
the first section is of no help. One aim of this section is to provide a
computer program for all required triplets of the kind mentioned
above. To develop -a computer program we need to produce an
algorithmic procedure. For that we proceed as follows.

Suppose we have for s, r, meN such that ¢, —t. = ¢,,. Then
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(r+s)r+s+1) r(r+1) m@m+1)

2 2 2

or s2+4 @+ Ds=m(m+1)

Obviously m 2 s. Solet m = s + k for some 2€N. This gives .

s2+ (2r +-1)s = s% + (2k + 1)s + k(k + 1) which gives

(2r+1)s=(2k+1)s+k(k+1) or 2(r—k)s=k(k+1) or (r—k)s= k(k2+ L ty.

* t
Obviously if m exists then s{t, and we haver = & + —SE.‘On the other

e ot k 1
hand if % is such that s|¢; then we can write r=k+?kor(r—k)s= (k2+ )

from which the equation can be easily. constructed. Hence for a given
k such that s|t; there is a unique triangular triplet (r + s, r, s + k) -
that satisfies ¢, ,~t,=t,,. This lead to the following "pseud-o code”
which may help in writing the proper program in the language the
reader is familiar with. ’

10 s=7?
20 k:1,2, .., 600
30 ¢, = kk+1)

2
e, . '
40 If S isan integer, go to 60

t
50 If f is not an integer next &

| . 43
60 Pmntr=k+-;—

700 Printx=r+s,y=rz=k+s
80 If ¢, - t, #t, print : there is something wrong
90 If t, — t, =1, nextk
The following is a program in Pascal that produces triangular

triplets. (We have chosen Pascal for availability. A program in Basic
“will work equally well.) ’

81



Program Triangular (QUTPUT):
CONST OutFile = ‘LPT1%
Columns = 4;

Number Printed = 28;

¢ .

Space = ;
VAR f. TEXT;
Procedure Triangular Triples (s: INTEGER);

VAR k, Count,
t,r,x, 2z,
tx, ty, tzz LONGINT,
BEGIN
WRITELN (f);
WRITELN ();
WRITELN ();
WRITELN (f; S =" 53);
WRITELN ();
WRITELN (®;
k= 0;
Count := 0;
WHILE Count < NumberPrint DO
BEGIN
k=k+1;
= (kYR + 1)) div 2;
IF ¢ MOD s = 0)

THEN
BEGIN
r:=k + (¢t divs);
X=r+s;
z=k +s;

Count := Count + 1;
WRITE (f, °’ C,x: 0, 0z,
IF Count MOD Columns = 0
THEN
BEGIN _
WRITELN (;
WRITELN (©);
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END
tx = x*(x + 1) div 2;

ty = r*(r + 1) div 2;

tz == z*(z + 1) div 2;

Flx—-ty <>t2)

THEN

BEGIN
WRITELN (f, ’ERROR’);
END;
END;
END;
END;
In the following we produce lists of triangular triplets for s=1,15,70.
s=1 '
¢ 3 2 2 ¢ 6 5 3 ( 10, 9 4 ( 15 14, 5
( 21, 20, 6 ( 28 21, T ( 36 35 8 ( 45 44, 9
( 55 54, 10) ( 66, 65 11) ( 78, 77, 12) ( 91, 90, 13)
( 105, 104, 14) ( 120, 119, 15) ( 136, 135 16) ( 153, 152, 17)
( 171, 170, 18) ( 190, 189, 19) ( 210, 209, 20) ( 231, 230, 21)
( 253, 252, 22) ( 276, 275, 23) ( 300, 299, 24) ( 323, 324, 25)
( 351, 350, 26) ( 378, 377, 27) ( 408, 405, 28) ( 433, 434, 29)
s=15
( 23, 6, 20) ( 27, 12, 24) ( 36, 21, 290 ( 38 23, 30)
( 49, 34, 35) ( 59, 44, 39) ( 73, 58, 44) ( 76, 61, 45)
( 92, 77, 50) ( 106, 91, 54) ( 125, 110, 59) ( 129, 114, 60)
( 150, 135, 65) ( 168, 153, 69) ( 192, 177, 74) ( 197, 182, 75)
( 223, 208, 80) -( 245, 230, 84) ( 274, 259, 89) ( 280, 263, 90)
( 311, 296, 95) ( 337, 322, 99) ( 371, 356,104) ( 378, 363,105)
( 414, 399,110) ( 444, 429,114 ( 483, 468,119 ( 491, 476,120)
=170
93, 23, 90) 114, 44,105) 147, 77,125) 205, 135, 154)

348, 278,209) 351, 281,210)
414, 344,230) 465, 393, 245) 538, 468,265) 634, 584,294)
741, 671,314) 810, 740,329) 907, 837,349) 912, 842,350)
( 1015, 945,370) -( 1096, 1026,385) ( 1209, 1139,405) ( 1383, 1313, 431
( 1510, 1440,454) ( 1609, 1539, 469) ( 1746, 1676,489) ( 1753, 1683, 190)
( 1896, 1826,510) ( 2007, 1937,525) ( 2160, 2090,345) ( 2392, 2322,574)

252, 182,174) 291, '221,189)

~ A~~~
—~ e~~~
_— -~
_— o~ -~
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ABSTRACT

A C 1 piecewise Rational cubic interpolant is utilized to solve the
problem of shape preserving interpolation. It is shown that the
interpolation method can be applied to monotonic sets of data. This
monotonic preserving interpolant has also the characteristics to control the
shape at data points i.e. it has point tension control. The scheme
generalizes the monotoniticity preserving results of Sarfraz [8].

‘Keywords. Rational, interpolation, plane curve, shape preserving,
monotonic, shape control. ~

1. INTRODUCTION

A number of authors have considered the problem of shape
preserving and shape controlling interpolation. For brevity the
reader being refered to ([1]-[10]). Some of the methods (e.g. [51-[7])
are global and non-parametric whereas some of the methods (e.g.
{2]-[4]) discuss local and parametric methods.

This paper uses a piecewise rational cubic interpolant to.
solve the problem of shape preserving interpolation together with the
characteristic of shape control provided at the knot positions. Both,
the shape preservation and the shape control effects, are obtained by
introducing some parameters in the interpolant. The results derived
here are actually the generalizations of the monotonicity results of
Sarfraz [8] who developed a C! shape preserving- interpolation
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scheme for parametric curves using a piecewise ratiohal function
with one parameter in one interval. Sarfraz derived the constraints,
on the shape parameters occuring in the rational function to make
the interpolant preserve the monotonic shape of the data.

The notion adopted here is that for parametric curves
although some mention is made for scalar curves as well.

This paper introduces some extra degrees of freedom, in the
form of parameters, in the rational interpolant of Sarfraz [8] such
that the resulting interpolant remains C 1. The treatment adopted for
monotonic shape preservation is similar to that in Sarfraz (8] except
that the extra degrees of freedom give rise to a new analysis together
with the benefit of shape control at the data points. Following section
begins with some preliminaries about this rational cubic interpolant.
The constraints with monotonic data, are derived in Section 3. These
constraints are dependent on the tangent vectors. The description of
the tdngent vectors, which are consistent and dependent on the given
data, is made in Section 4. The monotonicity preserving results are
explained with examples in Section 5.

2. THE RATIONAL CUBIC INTERPOLANT
- LetF; € R% i = 0,..., n be a given set of data points, where
ty < t; < ... < t, is the knot spacing. Also let D; € R?, denote the

“first derivative values defined at the knots. We consider the C1
piecewise rational cubic Hermite function defined by

@D Plg, 0=

(1—_9)3aiFi+9(1—9)2(ri+ai)Vi+e2(1—e)(ri+ai+I)Wi+93ai+1Fi+1
(1-0)2a; + 6(1-6)r; + 02, ;

0@ =t —1)/h;, hy =1, —1;and

. o Q1
(22) V,=F;+ — h:D;, W; = Fl+1 m;—lhiDm

We shall use this to generate an interpolatory planar curve
which preserves not only the shape of the data but also controls the

shape at the data points. Let
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P@t) = (py(0), po®)),
Fi = (xi, yl)
@3) 4p, = @7, D),

A; = (A7, A,

where, '
xX;,1—xp) Oie1 YD)
x_ i+l i Y _ i+1 1]
2.4) Ai ——_hi s Ai ———-————hi

and D; denote the tangent vector to the curve at the knot ¢;. It can be
noted that P(?) interpolates the points F; and the tangent vectors D;

at the knots ¢;.

The parameters Q;’s and r;’s are to be chosen such that o;20,
®;,; = 0and r; 2 -a, —0;,;, Vi, which ensure a strictly positive
denominator in the rational cubic. The scalar weights in he
numerator of (2.1) are those given by degree raising the denominator
to cubie form, since .
(1-0)20,;+0(1-0)r; +02%a,;, ; = (1-0)30, +8(1-0)2(r; + ;) + 62(1-0)

(ri+ai+1)+63ai+1
It follows that if

o ;120 and r; > O, —O, o,

then the denominator is positive, and from bernstein-Bezier theory
(see [10]), the curve segment Pl[t bl lies in the convex hull of the
control points {F;, V; W, F; +1} *and its variation diminishing
property holds with respect to the control polygon joining these
points. The case o;=1=q;,; recovers the rational cubic interpolant

in {8]. Thus from now onward we shall assume ‘

0<sq;, o;, ;=1
and this will not loss any generality.
The following tension properties of the rational Hermite form
are immediately apparent from (2.1) and (2.2).
2.1 Point Tension

The point tension behaviour can be 1mmed1ately observed
from the following:
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and

lim Vi = Fi’

a ,—~0

(1-6)2r,F;+0(1-0)(r;+ 0y, PW;+0%0; , 1F; , ¢
(1-0)r;+60;,,

tf;anOP | [ti’tn ll(t) -

llm Wi=Fi+1’

o ;20

(1-6)20,F; +6(1-0)(r; + o) V; + 621, F;
lim Pl[tt ](t) = it ,l i/ Vi i z+1{
110 iviv1 1-6) a; + eri

Thus if the pieces of the rational cubics are joined together

o

with bounded derivatives then the curve has a corner at the joining
point if the & associated with that point approaches infinity.

3.

INTERPOLATION OF MONOTONIC DATA

For our purposes o;’s and r; will be chosen to ensure that the

interpolant preserves the shape of the data. This choice requires the
knowledge of P{V(¢) which is as follows:

(3.1) PV =

where

3.2)

b1:(1-8)1+b, ;6(1-6)3+b 3,;62(1—9)2+b 1,8%(1-6) +b5 64
{(l—e)zai + e(l-e)ri + 9201.1-;1}2

| (b1 = o] Dy,

by, = 204 [(r; + 0 ) Ay = 041Dy 4],
4 b3 =[(t;+r) (0, +1)+30,04 1 JA; (0 +70; 4 1D; 4
(0 +r) 04Dy,
2
(b5, = D

i+177i+1,

and we denote

3.3

(3.4)

= (b* h
b;; = (bj,i , bj,i).
Let us assume for simplicity that
Af#O, i=0,.,n—1,

and that the data is monotonic increasing and arises from a function.
Then we must have
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A
(3.5) A—;zo, i=0,.,n—1

Le. Af and A‘: ~are of the same sign. (The case of monotonic

decreasing set of data can be treated in a similar manner when, the
inequalities are reversed.) The necessary conditions for the
interpolant P(¢) to be monotonic are, then, the following:

o
3.6) —20,i=0,.,n-1,
D7

L
Le. Df and D‘lv are of the same sign. We also note that‘Df and D‘lv
must have the same sign as Af and 'A{ respectively. Thus we have
hy

the following:

Lemma 3.1
The monotonicity conditions imply that

A7 A, D) DT >0,
(37) AT D), A?D?‘zo

A D1 A D 20,
for i=0,.,n-1.
Remark 3.1
Let

(Byi=ATA,
B-=D?A“Y+D’.'A?
(3.8) < PBs;=A7D]. +AD

i+l z+1’
B = D, Dzy+1+DyDz+1’
\Bs,i = Di D:,

Then it follows from (3.7) that
@9 f;;20,j=1,.,5i=0,.,n1
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Now, P(¢) is monotonic increasing if a_nd only if
pz(l)_(i)
pl(l)(t)
ie. pl(l)(t) and pyI(¢) are of the same sign. Thus (3.10) can be
equivalently written as

(3.11) p{ V@) p, V20, Vit e lty t,).

After some simplifications, using (2.3) — (2.4) and (3.1) — (8.3), it can
be shown that for telt,,¢;, 11,

(8.10) 20, Vet t,l

. |
Z Yi.i 1-6)%e-1
=1 _
{1 - 9% + 61~ O)r; + 620, ¢}

(3.12) >p1'(1)(t) PV =
where k‘Yl,i.= OL?‘DfAD? ,
Y= by by, by bY ;= 20; [ryBa,; ~ s Bys = Bl
Yai = b1 bﬁ,i + by, bY, + by by
Yap = by by, + by b+ b.;,i, by, + by by,
Y5, = bi,i bg,i + b;,'i by1,i + bZ,z bﬁ,i + b:,i b';,i + b;,z’ bﬁ,i
Yoi = by, by, + b5, by, + by, b, + by, bg,i

_ X .y x Y x4y
V= b3, b5, + b5, b5, +b,,by;

3 .
Yoi = by, 0%, + 05,00, =205 [rBa—a(Byi~Bs ),

4 x
Yo = %y Diyy Dj,,
The conditions
(3.14) D;Dj’zo,j= ii+1

are necessary for the interpolant to be monotonic increasing on
[t;¢;+1] (see Lemma 3.1) and, assuming these necessary conditions,
sufficient conditions are '
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(3.15) ¥;,20,j=2,..,8
It should be noted that if A = 0, then D] = DY, = 0 and

hence B5; = B3; = 0. Moreover, py(t) = y;, t; <t < t;, 1. Therefore
P(t) is constant on [z,,¢; , ;].

If A} # 0, then a sufficient condition for (3.15) is

(3.16) r; >max{ Hl@“j Eii 1)}

Moreover, since

i3
(3.17) ax{ﬁz,i’ﬁa,i > max{a;,, » 1], 0 P

the choice,

318 r, = LuiPrit Bsp
B2,i B3,i

_satisfies (3.16) and provides nice graphical results. This is the same
choice as discovered in [8]. .

Remarks 3.2

The scalar case can be considered as an application of
interpolation scheme (¢, P(#)) in R2 to the values (¢;, F;)€R? and
derivatives (l,D{)ER? i=0,...,n. It can als be noted that A,-=(1,A3i').

4. CHOICE OF TANGENT VECTORS

In most applications, the tangent vectors D; will not be given

and hence must be determined from the data F;e R2,i=0,..,n We
describe here the geometric mean choices of tangent vectors for our
plane curves which satisfy the shape preserving conditions. The
geometric mean choice of tangent vectors is

D; = (AL M AHH, A )M ™), i = 1., 01,
with the end conditions
Dy = A" (A5 070, (a0 (43 )10
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D, = ((An_p™ &% )7 )M ),

n,n—-2 n,n-2
where h.
A= : , i=1,.,n-1
t (hl—l + hl) ’
h A, _
ho=1+37, A= 14722,
1 hn—2
A _Fy-Fy _F,—F,
2,0 7 _ ’ nn-2 = _ .
ty—1ty by ~lp-g

‘'These geometric mean approximations are suitable for
monotonic data since they satisfy the necessary conditions for
monotonicity and produce pleasing graphical results.

5. EXAMPLES AND DISCUSSION OF RESULTS

Demonstration of the results, of this research, is made onto
the data due to Fritsch and Carlson [1]. All figures except Figures
1 and 2 (these are standard cubic spline scalar and parametric curves
respectively) demonstrate the monotonicity preserving results
corresponding to the geometric mean derivative values of Section 4.
Unless and otherwise stated we shall take a;=1, V i (this is the case
of monotonicity preserving curves in [8] where the user does not
have freedom to play with the picture and make modifications in the
desired regions of the curve) and.the parametrization used here is
the chord length parametrization: some- other parametrization can
also be used. The curves in Figures 3 and 4 are, respectively, the
scalar and parametric monotonicity preserving interpolations. The
rest of the figures 5—7 represent monotonicity preserving parametric
curves with shape control: the curve in Figure 5 is tightened at the
sixth data point with og=.01: the curve in Figure 6 is tightened in
the sixth interval with ag=0t;=.01: the curve in Figure 7 is tightend
globally with a;=.01, ¥ i, such that it approaches the control polygon
in limit. Thus, in general, user can made interactions whereever the
picture is not pleasing and hence possesses a reasonable fascility in
hand to implement any monotonic data rising from some scientific

phenomena.
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(Figure 1)

(Figure 2)
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(Figure 3)

(Figure 4)
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(Figure 5)

‘(Figure 6)
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(Figure 7)

6. CONCLUDING REMARKS

C ! rational cubic Hermite interpolant, with two families of
shape parameters, has been utilized to obtain a C! monotonicity
preserving plane curve method with the provision of point tension
control. Data dependent shape constraints are derived on one family
of shape parameters to assure the shape preservation of the data
while the other family of parameters is left free to control and
finetune the shape further in the desired areas of curves. Choice of
the tangent vectors, which are consistent and dependent on the data,
has also been made. This scheme can also be implemented in the
scalar case.
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1. INTRODUCTION

We assume familiarity with Ore domains. However, a
reference may be made to [3], where it is shown that a left Ore
domain R can be embeded in a left skew-field D of fractions of the
form T~ IR, where T=R~{0}. In what follows R and D will be used in
this sense except in 3.8. '

The object of the paper is to carry over the concept of rank

from the category of abelian groups to the category R-mod of unitary
left R-modules, and study some of its features. Among other things,

we shall determine a necessary and sufficient condition for A€R-mod
to have prescribed rank in terms of a property of A, and show that
the rank of A is same as that of its injective envelope.

2. BASIC NOTIONS

Besides the idea of an Ore domain, we shall also need the
definitions of torsion and torsion free objects given in (4], which may
also be found in [3], where the words "T-torsion"” and "T-torsion free"

are used. In the following statments A,A’, ...., will stand for objects in
R-mod unless stated otherwise.

2.1 Proposition
The set A, of all torsion elements of A is a submodule of A,
and A/A, is torsion free. ’

We now state two more results, the proof of the first is given
in [4], while for the other reference may be made to [2]. In fact, the
proof of the second is similar to that of (1) in (1, ch. vii, p. 130].

2.2 Proposition
If A is torsion free, then its injective envelope is isomorphic
to D@RA ' :
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2.3 Propomtlon

D is flat as right R- module

In the next section we shall suppose that all tensor products
- are taken over R, or to be precise ® = ®xg.

3. THEORY OF RANK

We define the rank of A, denoted by r(A), by the dlmensmn of
the left Vector Space D®A.

3.1 Proposition
We have
(i) "r(A) = 0, whenever A is torsion,
i) r@) = Z r(A ), if A is the direct sumuJ A;. ‘
(iii) ‘r(A) = r(A ) + r(A'Y), m case the sequl:nce 0—2A' > A
—2>A"> 0

in R-mod is exact.

Proof

(1) follows, since D®A = 0 in case A'is torsion, and (ii) is
imediate by observing that D® U A, is isomorphic to  (D®A,). For
(iii) we use 2.3 to obtain the-exact sequence O—)ﬁéA'—)D@A—)
D®A’'—0, which splits. Hence we have (iii) in view of (ii).CC

From (i) and (ii) of 3.1 we immediately get

3.2 Corollary ,
Let 0>A’—>A—>A""—0 be an exact sequence in R-mod. Then
M) r@)= r(A”), if A’ is torsion,
(i) r(A) = r(A’), whenever A"’ is torsion.[]
3.3 Proposition
If E is the injective envelope of A, then
r(A) = r(A/Ay = r(E).

Proof

- We can suppose that A C E, so that E/A is torsion, and the
result fciiows using 3.2 on the exact sequences 0—>A;—>A—>
A/A;—0, and 0->A—>E—E/A—0.0
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3.4 Corollary
r(R) = r(D) =

Proof
Since D € R-mod is injective envelope of R, the result follows

from 3.3.0

3.5 Corollary

Let A be free with a basis B. Then r(A) = O(B), where O(B)
is the cardinal number of B. '

Proof

Since A is isomorphic to S Ry, where R, = R, for each b,
therefore, by 3.1 and 3.4 we obtain rI?A) 0B).0
Although, 3.5 establishes invariance of basis number for any

free object A, but this consequence is weaker in the presence of a
more general result (see [3, p.18]), which states that, if R, is.a

subring of a ring- R2 with identity element 1 € R, then Rl has 1BN
whenever R, does. Hence R has 1BN.

3.6 Proposition

Suppose that A is torsion free. Then the injective en\}elope E
of A is isomorphic to uJ D;, where each D;is D and r(A) = O(J).
1€ ’

Prooi

By 2.2 we have E = DQA = uJD
le

so that r(A) ="0O(J) by 3.1 and 3.4.0]
3.7 Proposition

A has rank o if and only if the injective envelope of A/A; is
isomorphic to “ D; with D; = D for each i and O(J) = a
l€ .

Proof
In view of 2.1 and 3.3 we can suppose that A is torsion free.
Let the injective envelope of A be isomorphic to uJ D;, where

a=04).
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ied

Thenby3.1and 3.3 r(A) = r(U D) = ‘ZJ r(D;) = O(J). The
converse follows from 3.6.] e .

Observe that we have not made full use of the properties of R
and D in the proofs of 3.1 and 3.2. Hence with obvious definitions
3.1, 3.2 and half of 3.3 may be stated, more generally, as

3.8 Px;oposition
Let R be a subring of a skew-field D, which is flat as right R-

module, and R contains the identity of D. Then the statements of 3.1
and 3.2 hold, and furthermore r(A) = r(E), where E is the injective

envelope of A € R-mod.0
It is an open question, whether a ring satisfying the

conditions of 3.8 is a left Ore domain.
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ABSTRACT

In this paper we investigate a finite group G having a subgroup
isomorphic to the centralizer of an involution in F 4(2) under a simpler
condition than that treated in Husnine [4]. '

1. INTRODUCTION

Let F,(2) denote the Chevalley group of type (F,) over the
field of two elements, say, '={1, 0}. Then the centre of a Sylow,
-subgroup S of F,(2) is elementary abelian of order 4. We denote the
three involutions of the centre Z(S) of S by ¢,, ty, and t3=t, 5.

Now in F,(2), C(t})) = C(ty) and C(t3) = C(t)) N Clty). In
Husnine [4] a characterization of F,(2) has been given by the
following theorem:

Theroem 1. {4]

Let G be a finite group and y,, a 2-central involution in G, so
that C = Cglyp = C@ty) and assume that G does not contain a
normal complement to C of odd order. Then G = F ((2).

In the above theorem the condition for y, to be 2-central
implies that a Sylow,-subgroup of C is also a Sylow,-subgroup of G.
We intend to generalize this result by removing this condition. In
fact we make the following conjecture which is more general.
Conjecture. Let G be a finite group having an involution y; such
that C=C(y,) in G is isomorphic to C(¢y). If y; is not a central
involution then, G = F ,(2), an extension of F(2) by the
automorphism of order two used by Ree in {5].

In section 2, we describe the group F,(2) and F,(2) following
Carter [1], Guterman [3], and Ree [5], so that the paper becomes
independent to a reasonable degree. :
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We state and prove our results in section 3. This involves the
determination of a Sylow,-subgroup of G and a 2-local subgroup of
G, not contained in the centralizer of y; in G.

All notations are standard and follow Gorenstein [2].
However, we define the conjugate of y under x to be x~'y x for the
elements x, y of a group G. We also write y * for x~*y x and H* for
x~1H x for the elements x and y and the subset H of G. The set of all
conjugates of an element y in G is denoted by cclg(y). We write
‘Sp_subgroup’ for ‘Sylowp-subg'roup’ and Zn for the symmetric group
of degree n.

2.1) The root system 2. of type (F,) consists of 48 roots; *

+§l— _/7 (iél, i_é] i_ém i&n)v Where i:jv m,n = 1' 2' 3' 4 and i'j' m, n
are all distinct. We takery = &4, ry = &3 — &4, 15 = &5 — &g, and
ry = & — &, — &3 — &4 as a system of fundamental roots. If we

denote the root ar; + bry + cr5 + dryy by (abed), then the positive
roots are:

r; = 1000, ro = 0100, rq = 1100, ry = 2100,
rs = 0010, rg = 0110, r, = 1110, rg = 2110,
rq = 2210, rio = 0001, rqp = 1001, rig = 1101,
ri3 = 2101, riq = 1111, ris = 2111, Tg = 2211,
ri7 = 3211, rig = 2102, rig = 2112, rop = 2212,
rop = 3212, rog = 4212, rog = 4312, roy = 4322,

Let A be the additive group generated by Y. We define an
inner product <,> on V = R ® A, *“the vector space over the real
numbers R, by <€, §j> = 0and <&;, £> =1fori,i=1,238,4;i#].
Forr,s € X let A(r) = <r, r>and s(r) = 2<s, r>/<r, r>. The values
A(rj) and ry(r) fori = 1, 2,5, 10 and 1 <j < 24 are given in table 1.

Foreachz, 1<i<24andeachs € X let w; i8) = s —s (rpr;.
Then w is a permutation of 2. The perutation group W generated
by {wi | 1 <i< 24} is the Weyl group of 2.

(2.2) W is of order 2732 and is generated by 51, 52, 55 and 1510.
Hay = | Ei Ejl, then generators w v 52, E5 and w 10 together with

* We identify I ; ® a withea € A.
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the relations (Eiaj)“ij = 1, {i, j}c(1, 2, 5, 10}, form a presentation
of W.

It will be convenient to think of the elements w € W as
permutations of {1 | 1 <i £ 24} defined as follows:

-

Ea)={{#§09=q; w(-i) = —w (@)
Jifw(r) =-r; ‘

The values w;(j) for i = 1, 2, 5, 10 and 1 <j < 24 are also
included in table 1.

Table - 1
i 3,055 ,@r) | |rirs) itrig| Ay | T
1 1 3 1 11 2 | -1 0 | -1 1 2
2 | 4|2 6| 2 (21|22 0| 2|1
31 8| 1] 7120 1|1 |-1]1]*4
4 { 2| 4| 8|18 2| 0]~ |-2]21]S8
51 5| 6|l—5 | 5| 01112 0| 2 {10
6 | 8| 5| 2| 6|2 1]1 0 2 |11
7171 7| 8|14 ] 0] 0] 11| 1|18
8 | 6| 9| 4|19 2|1y 12| 2/]12
91 9| 8| 9200102/ 2]13
10 {11 |10 |10 |-10 |3 | O | O} 2 | 1|5
1m (10§12 {11 | 141310 1 1| 6
12 {18 |11 |14 | 8 [ 1 |1 | 1 1| 8
13 |12 {13 |15 | 13 1] 0]-1 ] 0] 11]09
14 {15 |14 12 ) 7 )1 | 0| 1 1] 119
15 |14 |16 |13 |15 | 1 |- | 1 0| 1 (20
16 |17 |15 [16 {16 |-1 | 1 | 0 | O | 1 f22
17 |16 |17 |17 | 21 1} 0} 0 )-1 | 1 {23
18 {18 {18 {19 | 4 | 0 [ 0 |1 2 | 2|7
19 {19 |20 (18 | 8 | 0 [—1 1 2 | 2 |14
20 22 |19 |20 | 9 | -2 1| 0| 2] 2|15
21 (21 (21|21 (17| 0| 0 | O 1| 1 |24
22 |20 |23 [22 (22 | 27 |-1 | O 0] 2 |16
23 |23 |22 |24 |23 | 0 | 1 |1 0| 2 |17
24 |24 |24 |23 | 24 0| 1 0| 2 |21
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(2.3) From table 1, we see that the values a;;are as follows:

l1fori=1,2,5 10
2 for {i,j} = {1, 5}, {2, 10}, {5, 10}

a;;

@
a; = 3 for {i,j} = {1, 10}, {2, 5}
a; = 4for {i,j} = {1, 2}

(2.4) W acts transitivelyon {r € 2 | A(r) = i},i =1, 2.

Let I be a field with two elements and let F be the Chevalley
group of type (F o) over I'. Then F has the following properties:
(2.5) Fissimple.

(2.6) Foreachi, 1 <]<24, there existsa homomorphiém
$;:SL (2,2) > F.

For each®r € I', we define, ’ ;
0 a9 w01
xi(a) = d)i ((l 1) , x_j(@) = d)i (0 1) y Wp = d)i (1 0)

Note thatwl2 = (0?2 = (w; x;(D)3 = 1.

" (2.7) Foreachi, 1<i<24,letS; = {x;() | a € I'}. Then each S;
is a group of order 2. The elements of S; multiply according to the

rule x;(a)x;(B) = x;(c + B), o, B eI
(2.8) LetS =<S;|1<i<24> Then S is a Sylowy-subgroup of F.

24

Any element x&€S can be expressed uniquely in the form x= [T x;(a;)
i=1

which we shall abbreviate as x = IT x;(at;). Hence S has order 224,
The product of any two elements of S may be obtained by use of the
commutators [x;(1), xj(l)], 1 <j <j<24. The nontrivial commutators
are listed in table 2.

- Itis easily observed that Z(S) = S5;S,,.
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(2.9) Ng(S) =Sand SN W = 1, where W = <w; | 1 <i < 24>,
(2.10) Forw = w; w; ...w; , 1<j,, oy fy, <24, let
W=w; Wi . W,

Then wx; () w=t = x5 ().

The map w—> is a homomorphism from W onto W. If 7 =1,
Then u € Cw(S). It follows from (2.9) that u = 1. Therefore,

(2.11) The map w —> w is an isomorphism from W onto W.

(2.12) Foreachw € WletS, = <S; | 1<i<24; w(i) < 0>and

1

S, =<8, ]1<i<24; @@ > 0> Then SN S¥ = S, and S,
is a complement to S M'S¥ in S.
(2.13) Each element g € F can be expressed uniquely in the form
g =sws ' withs € S,w e W,ands’' € S,.
For any root r = ar; + bry + cry + dry, let
T = (2by + arg + dry + 2cry)/A(r)

Then r € 2.+ implies 7 € X *. For each i, 1 <i < 24 let { be defined-
by r; = 7;. The values I are included in table 1.

(2.14) There exists an automorohism ® of F such that

D (x;()) = xz(a0) for all @ € T and P(w;) = w; for all i,
1<i<24. This is the graph automorphism of F, used by Ree to obtain
the Twisted Chevalley groups. The extension of AF by the
automorphism ¢, which is of order 2, is denoted by F;4(2) and is
called the Ree-Extension of F.
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Table - 2

values (i,j : m) for which [x;(1), x;(1)] = x,,(1).

(1,10:11) (1,12 :13) (1,14 : 15) (1,16 :17)

(2,5:6) 2,8:9 (2, 19:20) (2,22:23)

(3, 10:12) (3,11:13) (3, 14 : 16) (3,15:17)

4,5:8) 4,6:9 (4,19:22) (4, 20 : 23)

(5,18 :19) (5,23 :24) (6, 18 : 20) (6, 22, 24)

(7, 10 : 14) (7, 11 : 15) (7,12 :186) (7,13:17)

(8,18:22) (8,20:24) (9, 18:23) (9,19:24)

(10, 17 : 21) (11, 16 : 21) (12, 15: 21) (13, 14 : 21)
values (i, : m, n) for which [x;(1), x;(1)] = x,,(1) x,(1).

(1,2:3,4) (1,6:17,8) (1, 20: 21, 22)

3,56:7,9 (3,19:21,23) |(7,18:21,24)

(2,11:12,18) |(2,15:16,24) | (4,10:13,18)

(4, 14:17,24) | (5,12:14,20) | (5, 13: 15, 22)

(6,11:14,19) | (6,13:16,23) | (8 10:15,19)

(8,12:17,23) | (9,10:16,20) | (9,11:17,22)

(2.15). {4]. Let W, = <w,wq,wz> and C,={sws'|s€S, s'eSw, weW}.

Then C; = Cplxy1(1)) (i) Z(C;) = Sy; (iii) C; = 04(Cy). Sp(6, 2)

(2.16). [4]. Let Wy=<w,wq,w ;> and Cy={sws’[s€S, weW,, s'€S,}

Then Cy = Cplxy,(1) ; Z(Cy) = Sy and Cy = 04(C,). Sp(6, 2)

(2.17). [4]. Let Wy=<w, wy> and Cy = {sws’|s€S, weW3, s'€S,}

Then Cgz = Cpxq;(1) 25,(1)) and Cg = O4(Cy), 2, where 2 is the

symmetric roup on six letters.

(2.18). [3]. LetR = <S§; | i > 0,i# 1,2, 6, 11> and
Cy={sws’' | s € R,w e <w;, w;p> s €S,
Then C4 = C(xls(l) x22(1))
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From now onwards, since the only involution in any root subgroup S;
of F,(2) is x;(1), we will write x; for x;(1) except where there is

ambiguity.
(2.19) We deﬁne Dl = H SJ’ (j * l);
- Then it is easy to check that D,y = Cg(x;) and Dy = Cg(xg3).

We write D;3 = M to correspond to [4]. Every involution of S
whose centralizer in S is of order at least 223 lies either in
Z(M)=87551S9, or in Z(D5) = S9;S95594. Hence M and Dy are the
only subgroups of S of order 223 with centers of order 23.

(2.20). ({3]; 4.1). Let v be an automorphism of S. Then
{V(Sy9); V(Sg9} = {Sgy, Sgyl.
(2.2D). ([3] ; 4.6). The group C; admits an automorphism 0 such that,
O(x,) = x1x22(ei), O(xg) = x4x93(€), B(x7) = 27x9,(€)
3. SLOW ,-STRUCTURE OF G AND THE Ng(M).

Theroem A :
Let G be a finite group with a non-central involution y; such
that C = Cg(y;) is isomorphic to Cg (2)(x21) = C;. Identify C with C;.
Then the following hold:
(1) Ng(S) is a Sylow,-subgroup of G and [N(S) : S] = 2.
(i) NgM)/M =2 ;5and NgM) C Cglxqgy). .
(iii) ~ Sisits own normalizer in Ng(M). In particular, no two of the
involutions x,;, x94 and x4,x,4 are conjugate in Ng(M).
Lemma (3.1)
Ng(S) is a 2-group and [N(S) : S] = 2.
Proof
Let g € Ng(S), then due to (2.23), {x21, } = {297, Xo4}:

Thus g2 € C. But N(S) is S due to (2.9). This implies g2 € S. This
proves the Lemma,

Lemma (3.2) .
For any geNgG(S)\S, Mé= D5, | =%24 and Z(NG(S)) <Xg91X94>
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Proof

Let U=Ng(S) and suppose g€ U\S. Now M and Dy are the
only subgroups of S of order 223 with centres of order 8. Thus

{MED%} = {M, D;}. Let M® = M. Then (Z(M))& = Z(M). Now from

table 2, x9, = [S, Z(M)]. Thus x2g1 =[S, (Z(M))E] = [S, ZAMD] = xqy,
a contradiction to the choice of g and the fact that S is an S,-
subgroup of C. Hence M® = D, and x5, = [S, Z(Dg)}-=x,, by table 2.
Now x5,%5, is the only nontrivial element of Z(S) centralized by g.
Hence the Lemma.
Lemma (3.3)

N(S) is an Sy-subgroup of G.

Proof _
Let U = Ng(8). If T € Sylow,(G) and U is properly contained
in T, then Np(U) contains U properly. But Z(U) = <x5x9,> and

Zo(U) = Z(S) by (3.2). Thus S = CU(Z2(U)) is characteristic in U
since Z,(U) is so. This implies S is normal in Np(U). Hence
Nr(U)=U, a contradiction. The Lemma is thus proved.

Lemma (3.4)

Xg91X94 is Not conjugate to any of x5; and x4, is G.

Proof
The centralizer of xo; has S as an Sy-subgroup whereas U, as

defined above is an S,y-subgroup of C(x9,x9,) and S # U. Also x4, is
conjugate to x,, in G by (3.2). This proves the Lemma.

Lemma (3.5)
NegM)C =S8S.

Proof
This is directly verified by the structure of C and the tables.

Lemma (3.6)
S is an S,-subgroup of Ng(M).
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Proof .

If possible, let T be an S,-subgroup of Ng(M) such that S is
properly contained in T. Then for ¢t € T/S, M! = D, by (3.2). This
contradicts the fact that # € Ng(M). Hence the Lemma.

Lemma (3.7) ,
N¢g(M) is not 2-closed (i.e., S is not normal in NG(M)).

Proof

From table 1 and (2.9), we find that w5 normalizes Dy but
does not mormalize S which is an S,-subgroup of N(Dg) in G by
similar arguments as in (3.6). Thus Ng(D;) is not 2-closed. Since M
-is conjugate to Dy in G, the Lemma is evident.

Lemma (3.8)
Ng(M)/M = 2., the symmetric group on three letters.

Proof

From (3.5) we have S = C(xg;) in Ng(M). Thus [Ng(M) : S]=
lcclNG(M)(le)'l < 6, since Z(M) has 7 involutions including x4 %5,
- Now [NG(M) : S] ust be odd due to (3.6). Also Ng(M) C Aut (Z(M))

= GL(3, 2) whose order is 23.3.7. Thus [Ng(M) : S] = 3 or 1. Due to
(3.7) we are left with [Ng(M) : S] = 3. This forces |[Ng(M)/M| = 6.
Again due to (3.7), Ng(M)/M cannot be abelian. Hence the only

possibility is Ng(M)/M is isomorphic to ;. Hence the Lemma.
Lemma (3.9)
NG(M) - CG(x24).

Proof

From tables 1 and 2 we find that No(D;) = <S, wz> = 23.D5.
So N¢(Dj5)/Dj5 = Ng(M)/M = Ng(D5)/Dj5 due to (3.2), which, in turn,
implies that Ng(M)/M = NCG(124)(M)/M_and are in fact equal. The
Lemma is proved.

Lemma (3.10)
S is its own normalizer in N(M). In particular, no two of the
involutions x4;, X9, and x,;x44 are conjugate in Ng(M).
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Proof

From (3.7) S is not normal in Ng(M) and from (3.8)
[Ng(M):S1=3. Hence N(S) in Ng(M) must be S. Now, by Burnsides
Theorem, no two elements of Z(S) are conjugate in Ng(M). But Z(S)
= {Xx91, Xo4, X91X94, I}. This proves the Lemma.

We have completed the proof of Theorem A: (3.1) and (3.3)
prove (1); (2.8) and (2.9) prove (ii) ; while (2.10) takes care of (iii).
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ABSTRACT

A C 1 piecewise Rational cubic interpolant is utilized to solve the
problem of shape " preserving interpolation. It is shown that the
interpolation method can be applied to monotonic sets of data. The scheme
generalizes the monotoniticity preserving results of Delbourgo and Gregory
[Deibourgo and Gregory’85].

Keywords. . Rational, interpolation, plane curve, shape preserving,
monotonic.

1. INTRODUCTION

A number of authors have considered the problem of shape
preserving interpolation. For brevity the reader being refered to
[Goodman’88, Gregory’86]. The methods in [Gregory’86] are global
and non-parametric whereas [Goodman’88] discusses local and
parametric shape preserving methods. ;

This paper uses a piecewise rational cubic interpolant to
solve the problem of shape preserving interpolation. The results
derived here are actually the extensions of the monotonicity results
of Delbourgo and Gregory [Delbourgo and Gregory’85] who
developed a C! shape preserving interpolation scheme for scalar
curves using the same piecewise rational functions. They derived the
- constraints, on the shape parameters occuring in the rational
function under discussion, to make the interpolant preserve the
monotonic shape of the data.

This paper begins with some preliminaries about the rational
cubic interpolant. The constraints with monotonic data are derived
in Section 3. These constraints are dependent on the tangent vectors.
The description of the tangent vectors, which are consistent and
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dependent on the given data, is made in Section 4. The monotonicity
preserving results are explained with examples in Section 5.

2. THE RATIONAL CUBIC INTERPOLANT

Let F; € R %1 =0,.., n be a given set of data points, where
tg<t; <..<t, We consider the Cl piecewise rational cubic

interpolant
(L p= _
(1-6)3F; +0(1-0)2(r;F;+ h;D,) + 62(1-0)(r;F; , ;=h;D; , ) +03F; , |
1+ (r;—3)061-96) '

e(t) = (t - ti)/hi’ hi = ti+1 - ti'
We will use this to generate an interpolatory planar curve which
preserves the shape of the monotonic data. Let
p@®) = (p@®), pa®),
Fy = (x;, 5,
(2) D; = (Df,DiV),

A, = (4], A,

where
@ mx) oy Qi — W)
A = h. , &y = B,

1
and D; denote the tangent vector to the curve at the knot ¢;. It can be
noted that p(¢) interpolates the points F; and the tangent vectors D;

at the knots ¢;.

The parameter r; is to be chosen such that r; > —1, which
ensures a strictly positive denominator in the rational cubic. For our
purposes r; will be chosen to ensure that the interpolant preserves
the shape of the data. This choice requires the knowledge of pM(¢)
which is-as follows:

3 p V=
(1-60)*D;+a; 6(1-6)3+a, 62(1-0)2 +a g ,6%(1-60)+ D, , ,61
{1+ (;-361-0)2

where

112



oy ;= 2(rA; - Dy y),

(5) Uy; = + 3) Ay —ry(D; + Dy, 1),
ay; = 20r;A; - D)),

and we denote

@ o=, o).

J Ji T
3. INTERPOLATION OF MONOTONIC DATA
Let us assume for simplicity that
(M A/#0,i=0,.,n-1,
- and that the data is monotonic increasing and arises from a function.
Then we must have
AN
® —=20,i=0,.,n-1,
i
ie. A’: and Aji' are of the same sign. (The case of monotonic

decreasing set of data can be treated in a similar manner when the
inequalities are . reversed.) The necessary conditions for the
interpolant p(t) to be monotonic are, then, the following:

D
9) —20,i=0,.,n-1,
D:

2

el Df and D{ are of the same sign. We also note that Df and D:'

must have the same sign as Af and A{ respectively. Thus we have

the following:

Lemma 1
. The monotonicity conditions imply that
X Ay x
A AY, D! D} 20,
(10) AT D!, A D} 20,
x ¥ X
A’D] A D] 20,

i+1’?
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for i=0,.,n~-1.

Remark 2

Let
(B1;= D] A) + D) AT,

(11) <B-—ADZ’+1+A‘Y irl?
Bs; =D} Dzy+1+DyDz+1'
LB4,i=

Then it follows from (10) that
(12 B;;20,j=1,.,4,i=0,.,n-1
Now, p(t) is monotonic increasing if and only if
. (1)( )
A3 =Sy (1)()— , Vtelty,tl

ie. py (@) and p,'V(t) are of the same sign. Thus (13) can be
equivalently written as A
(19 pi DO p, V)20, Vet
After some simplifications, using (2) — (6), it can be shown that for
tE[tU z+1]’

9 . .

2, 1-60)% et

j=1
{1-@;-3r,; 00 -9}

(15) pl(l)(t)pg(l)(t) =

*where

oD T Y _ o _
Yo = Dy, + oy, Dy = 2r; By — 2By,

" x Yy x
Vo= Dj g, + 07,00, + 0y, D},

1

X o
l=Dl.or:v3 +0L 0L2l+a o +a3’l.DZ

1,i
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X

x X X
(1) vs5;=D; Dy, i+a2,iag,i+a3,ia{,i+Di+1Dz¥

X
76i=a1,iD’ 1+0.2 a3 +a3,ay +Dl+1a’

X
Y7, = & I):'+14'(131a:y +Dz+1a2.i
x z
Y8, = COg; Df+1 + D,y ag,i = 2r; By — 2B3; »
Yo = z+1DZ+1

. The conditions
an 'DJ’.‘Dj?zo,j =i i+1

are necessary for the interpolant to be monotonic increasing on
[tst;.1] and, assuming these necessary conditions, -sufficient

- conditions are ]
(18)  v;;20,j=2, ..,8
It should be noted that if A{ = 0, then D:' = D:H = 0 and

hence B ; = By; = 0. Moreover, py(®) = y;, t; <t < t;, ;. Therefore
p(t) is constant on [¢;,¢t;, (1. ‘

If Af # 0, then a sufficient condition for (18) is

D +DF D+D
19 r > max 5 St i 2.2 1 4
‘ AF A
|14 |13

Moreover, since

ax{B?,l Blz} > max D +Dl+1 DY+DZ+1
B31 B21 Af ’ A{

(20)

the choice,

BBy + By
ByiBo;

satisfies (19) and provides nice graphical results.

@y =
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Remarks 3
As the denominator in (1) has the form
1-6¥+rb1-6)2+-06%1-6) +63,
therefore (1) can be written as
pit)=RyO;r) F; + R{(B;r) V; + RyO;r) W, + R3(B;r) F; 1,
where
Vi=F;+ hiDy/r;, Wy =Fpp)~hDip /1
and Rj(e; r),j = 0, 1, 2, 3, are appropriately defined rational
functions with ‘

3
2 R(O;r) = 1.
j=1 .
Now the scalar case can be dealt with as a consequence of the
identity
t=RyO;r)t;+R1(O;5r) (t;+hy/r) +Ry(Osry) (8, 1=hi/rp+R3O;r) 8, 1,
‘In fact this can be considered as an application of
interpolation scheme (¢, p()) in R? to the values (t;, F;) € R? and
derivatives (1, D;) € R2 i = 0, ..., n. It can also be noted that
A; = (1, A). Therefore the monotonicity constraints, in this case, are
Dy, + Di}
A; ’

i

(23) r;=2max {2,

which are san' - as in [Delbourgo and Gregory’85].
4. CHOIC * OF TANGENT VECTORS

In most applications, the tangent vectors D; will not be given

and hence must be determined from the data Fie[R2, i=20,.,n We
describe here the geometric mean choices of tangent vectors for our
plane curves which satisfy the shape preserving conditions. The
geometric. mean choice of tangent vectors is

D; = (A7 DM AH'™, A )M @' ™Y, i = 1., 01,
with the end conditions '
Dy = (A (AT )10, ALy @y '),
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D, = ((AZ_)™ (AT )7 (A Ay,

n,n-2 n,n-2
where
A e i =1 1
;= ————— [ =1..,n-1,
o+ Ry _
h h_
and ko=1+h—o,kn=1+h"1,
1 - n-2
A _F2-F0 ' _Fn_Fn-2
2,0~ _ v Ban-2 % .
Iy~ In —lnog

These geometric mean approximations are suitable for
monotonic data since they satisfy the necessary conditions for
monotonicity and produce pleasing graphical results.

5. EXAMPLES

The Figure demonstrates the monotonicity preserving results
corresponding to the geometric mean derivative values; the first and
the second curves in this figure represent the scalar and parametric
cubic spline interpolation respecitvely whereas the third and the
fourth curves are respectively scalar and parametric montonicity
preserving interpolations. The parametrization used here is. the
chord length parametrization. Some other parametrization may also

be used. -

6. CONCLUDING REMARKS

. C! rational cubic Hermite interpolant with one shape

' parameter has been utilized to obtain a C! monotonicity preserying

plane curve method. Data dependent shape constraints are derived

on the shape parameters to assure the shape preservation of the

data. Choice of the tangent vectors, which are consistent and

dependent on the data, has also been made. This scheme can also be
implemented in the scalar case.
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