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GEOMETRIC COONTINUITY
AN\D CUBIC INTERPOLATION
- Muhammad Sarfraz

Department of Mathematics,
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ABSTRACT

A description and analysis of an interpolatory cubic spline curve is made
for use in Computer Aided Geometric Design (CAGD). The cubic pieces are stitched
together with a generalized continuity: the parameters in the description of this
continuity provide a variety of shape control. This geometric cubic spline provides
not only a computationally simple alllternative to the exponential based spline
under tension [Cline ’74, Preuss’ 76, Schweikert’66] and the rational spline
methoods [Gregory and Sarfraz’90, Sarfraz’92] but also recovers thie well known
existing GC2 or C1 methods like cubic v-spline of Nielson [Nielson’86], y-splines of
Boehm [Bohem’85] and weighted v-spines [Foley’87].

KEYWORDS
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1. INTRODUCTION

This paper is motivated by the geometric continuity concepts
(i.,e. GC? or C1H of Nielson [Nielson’86] and Foley [Foley’86,87];
Nielson has used GC? continuity to join the cubic pieces together
whereas Foley utilized the Cl continuity to stitch the cubic pieces.
They achieved some shape controls like point and interval tensions
due to the parameters in the descriptions of their continuity
constrains. A most generalized concept of continuity than that of
Nielson or Foley has been considered idn this paper which not only
allows the user to join the cubic pieces with sufficient smoothness
but also permits to play freely with the shape of the interpolatory
curve. In addition one can recover easily the cubic v-spline method. of

Nielson [Nielson’86] and weighted spline and weighted v-spline
spline methods of Foley [Foley’86,87]. The continuity used, in this

paper, has been named as sigma(o) continuity for the sake of




convinience and the spline so obtained will be called as sigma(c)

spline. This cubic G-spline method also provides an alternative to the
rational spliens in [Gregory and Sarfraz’80, Sarfraz’92]; these
rational spline methods were also constructed to play with the shape
of the curve.

The cubic o-spline is based on a cubic Hermite interpolant
which is introduced in Section 2 together with some preliminary

analysis. Section 3 describes the cubic CO-splien an analyses its
behaviour with respect to shape parameters in each interval. Section

4 explains some special cases of this G-spline method and Section 5
consists of some illustrative examples.

2. CUBIC INTERPOLANT
Let F; € RY be given values at knots tl, i= O, ..., n—1, Where
tg <ty <,.,<tpandletV, W,e RN, i=0,.

The general form of a cubic, which interpolates at the knots,
is given by

P @) = (1—6)3F +30 (1—6)2Vz+362(1—6)W +e3F (1)
where

0=0®) =a~t)/hy hi=t, -t ‘ (2)
Obviously 0<0 <1,

Remark 1
The following can be noted:

(i) The curve segment (1) lies in the convex hull of the control
points {F;, V;, W;, F; 1} (see Proposition 2.1 in [Sarfraz’90]).

(ii) The curve segment (1) satisfies the variation diminishing
property (see Proposition 2.2 in [Sarfraz’90]).

(it1)  If the pieces Pi(t), i = 0,...., n—1, are joined together with any
kind of continuity, then the composed curve.

P(t) = P, i =0, ..., n-1. 3)

's at least C©.




(iv) The equivalent Hermite representation of (1) is obtamed.

when
V;=F;+hD}/3, W;=F; ,—hD;,,/3 (@)
where
PV =D]
: 5)
P(l)(’t 1) = Dl +1 ’ . ’ .

() The second derivatives of (1) at the khots ti and ¢;,,, are
obtained as:

{ PP ) = 2{3F; - 6V, + 3W,} /’
(6)

PP(t;, 1) = 2(3F;, | — 6W; + 8V;}/h°

3. INTERPOLATORY CUBIC o’-SPLINES'

Definition 2

We will call a function P(t) G-continuous at ¢t = ¢; if it
satisfies the following constraints. :

P;,) 1 P(t;)
P(l)'(ti+), =|0 Gl,i P(l)(ti_) ¥))
At; ) 0 Oyi O3 (?)(ti—)

- Now, we use this generalized form of continuity i.e. O-
continuity (c.f. (7)) to connect the pieces of the cubic (1). The second
and third equations of the G-continuity constraints (7) together with
equaions (4), (5) and (6) lead to the system of consistencey equations
+ {Hitia by 4 h

hGy; 103D, + Og; + 2h,0g; + 2h;_ 10, ;} D] (8)

+ by D) = 8hGg; Ay g + B8R Ay i= 1,




in unknowns D;, i = 0, ...,, n, where A; = (F;,; — F;)/h;. Hence for :

appropriate end conditions DB and D; and the constraints

Cp;=1,03;>0,09;20, Vi, (9

the system of equations (8) defines a diagonally dominant tridiagonal
linear system which can be easily solved using the LU decomposition
algorithm. Thus a unique cubic interpolatory spline is obtained

which is at least C1. (Since G;; = 1 we have D; = D;.)

¢

4. SHAPE CONTROL

Now we lock at the effects of the shape parameters on the :
cubic spline interpolant in the rest of this section.

(i) If we vary the Gy ;’s and keep the others fixed according to
(9), then

(ia) (Point tension) for fixed i = k if we assume Gy, —> o, then
the kth equation of the system of equations (8) results as:

lim D = 0. (10)
O2 p—x

Thus the curve at the point P, will appear to have a corner.

(i)  (Interval tension) Similarly as above large values of Gy,

and Cg,,, cause D, aud D,,, to approach zero. This
behaviour tigtens the curve in the interval {z,,¢; , ;1.

(ic) (Glohbal tension) Following in the same way as above, if

Cg; —> ®, for all i, then

lim D,=0,fori=1,.,n-1
O2 j>e

Thus the curve is globally tightened in [z, £,,_;].

(ii) (Biased behaviour) If we vary the G5 ;’s and keep the other
shape prameters fixed accor.ding to (9), then for any i if
O3; —> 0, the following relationship is obtained from the
system (8):




_ 34— Diy
i 9 .
This shows a biased behaviour i.e. the curve is inclined towards a
side of the interval [Z;, ¢;,,]. A similar behaviour can be observed

when Gy ; = Gg; —> .

5. SOME SPECIAL CASES

A number of spline methods can be obtained as a result of
distinct replacements of the parameters involved in the above
construction. For example

A. GLi = 03,1' = 1, 02’1- = 0
corresponds to the cubic spline interpolation.

B. The weighted spline [Salkauskas’84] can be obtained by
the following replacement:

9
G, = 1, 6y; = 0,,03,' =—, 0; > 0.
» t] (Di
C. The v-spline [Nielson’86] can be obtained with the
following choice:
GLi = 03'1' = 1, G2,i = Vi _>_ 0
D. The replacement
\VR ®;_y .-
L 01;=1, Oy; =4 04; = — .
1,i 2,i C‘)i, 3,i o; 2
where v; 2 0, ®; > 0, V i, gives weighted v-spline interpolation
method of Foley [Foley’87]. This also covers the cases B and C.

6. EXAMPLES
The shape control of the cubic G-spline interpolants is
illustrated by the folloiwng examples for the data sets in R2. Unless

otherwise stated we will assume Gy ; = 1, 0y; = 0, O3; = 1 in all the
examples.

L.




Figure 1. Interpolatory rational o-splines with o9 4 varying for point tension.

:

Figure 2. Interpolatory rational o-splines with 0y 4 and oy 5 varying
£ £
for interval tension control.
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Figure 3. fnterpolator_y rational o-splines with global tension
using the shape parameter oy ;. '

Figure 4. Interpolaéof_y rational o-splines with local and
global biased behuviour using o3 -

7




Figure 1 illustrates the effect of progressively increasing the
value of the point tension parameter o, 4 at the knot ¢, whilst Figure -

2 shows the interval tension effect due to progressive increases in .

Gg,4 and Gy 5. The Figure 3 displays the global tension effect due to

progressive increase in Gy ;. The values of the varying parameters, in
each curve of the Figures 1, 2 and 3, are taken as 0, 5 and 50

respectively.
Figure 4 demonstrates the result of Remark 4(ii) regarding
local and global biased behaviour; the shape paramter Gg is chosen as

1 and 50 in the first and third curves respectively whereas G3; is 50
for i = 4, and 1 elsewhere in the second curve.
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ABSTRACT

Sufficient conditions are given for the convergence of a two-point Newton
method to a zero of a nonlinear operator equation in a Banach space. The order of

convergence is three.
C.R. CATEGORIES: 5.1, 5.15.
AMS (MOS) SUBJECT CLASSIFICATIONS: 65H10, 65J15, 47TH17.
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1. INTRODUCTION

In this study we are, concerned with the problems of
approximating a locally unique zero x* of the equation

Fix) =0 ' 6))

in a Banach space E,, where F is a nonlinear operator defined on
some convex subset D of E; with values in another Banach space E,,.

The convergece of single-step methods, like Newton’s method
as well as Newton-like methods to a zero x™ of equation (1) has been
studied extensively in a Banach space setting, [11-[20]. But the
convergence analysis for multipoint methods is less developed,
although the fundamental theory was developed several years ago,
see [16], (17] and [19] and the references there. The reason is that

,the expresison F(x) cannot easily be dominated by a real scalar

10




function. It is well known, from the efficiency index point of view
[17], (19] that multipoint methods are faster than single-step

methods.
Here, in particular we consider a twe-point newton method of the
form

Yn=x,-F(x,)1Fx, @)

Xn+1=In~ F'(x )-lF(yn (3

for some arbitrary x, € D and for all n 2 0. The linear operator
F'(x)) is the first Frechet-derivative of F evaluated at x = x,. Note
that the evaluation of x,,, ; requires one inverse (F'(x,)"!) and two

function evaluations (F(x,) and F(y,)), whereas the regular
Newton’s method required the evaluation of the same inverse and

one function evaluation (F(x,)).

Using standard Newton-Kantorovich assumptions we will
show that the two-point' Newton method (2)-(3) converges to a zero
x* of equation (1) with order three, whereas the regular Newton’s
method has order only two.

Finally, our results apply to the solution of some nonlinear
integral equations appearing in radiative transfer [1], [2], [8], [8].
2. CONVERGENCE ANALYSIS

Let x, € D be arbitrary and for R > 0 such that U(xo, R) =
{x € E;/||x—x5|]| <R} c D.

We assume that

' F" )| <M 4)
and |[[F'x)=F || < K||x-y]] (5)

for all x, y € D. It is convenient to introduce the constants

n2|lyoxol |, B2[|1F'(xp)71[], 2,=0, k=M (6)

r1=.1___@-n . N

h ’

11




1+3[1—2hn _(8)

o=_L ©)
r

and the scalar iterations

(ry,)
Sn = n~ gr = (10)
-8'(¢,)
(s,)
Sne1 = Sy~ =" for alln 2 0, (1)
~n
where
M 1 i
gty = =—¢t2——¢t +—. (12)
2 BB
Note that if 2k < 1, r; is the smallest zero of the equation
g =0 (18)

We can now prove the main result: \
Theorem .

Let F:D C E; - E, be a nonlinear operator defined on
some convex subset D of a Banach space E; with values in another
Banach space E,. Assume:

(a) F is twice-Frechet differentiable on U(xy, ry) < D for some

%y € D, and satisfies (4) — (5);

(b)  the inverse of the linear operator F'(x,), x, € D exists and is
bounded;

(¢c) the following estimates are true:

2d 6
h<(7-+—1)—2=q,d—‘\/§- . (14)
and  BK(@3ry + ry) < 2. (15)

Then the two-point Newton method generated by (2)-(3) is

well defined, remains in Ulxg, r;) for all n 2 0 and converges to a
unique zero x” of equation F(x) = 0 in U(xg, ry).

12




Moreover, the following estimates are true:

o = x| [ <7y =2y, (16)
yp=2T|1 Sry =5, | 17)
and r;—t,= a —192_) 2;6(‘)131)3"‘1 foralln 20 (18)
Proof
We will show that if
Hyp —xpll < 55— 1 19
[EG) ] < g(ty), (20)
HEODI| < gsp) @1
and ||F'(x)7 | <-g'@)7, (22)
then ||, 1= Yull Sthei—Sm (23)
i1 = %ne1ll < Spe1—thsps (24)
HWFG,, DI < g,y (25)
and  [[F(x,, )| < g(s,,;) foralln>0. (26)

Using (3), (11), (20) and (22), we get
150 170 NS G2 L] 1P | 1S ) ) =04 151
Hence, (23) is true.
From (2)-(4), (19), (22) and the approximation
Ft,  )=Fp , )=FG)~F ¢p) (% 4 1=p) + (F'4p)=F () (g 175)

. _
= [ F Oty ) -0ty 5,2

0

1
+ f " H 20, 0 X A 4 17,)-
0

we obtain

13




M
HFGra DI S5 s 1790l 12+ MUyl |« %0479l

= % (ty o 1=8p)% + M(s,=t,) Uty 1—8p) = £y, p)

Hence, (25) is true. Also by (2), (22) and (25) we get
| |y n +1—xn+ll |S'F'(xn+l)_1| I'I IF(xn+1)I 'S“g’(tn+l)‘1g(tn+l)
= Spe1lhs -

Hence, (24) is also true.
Similarly, from (2), (4), (24) and the approximation

FOre) = FOpe) ~Flape1) One1—*ne1)

1
B fF”(erl + tWpa1 = Xpe1) -0 A@p 1% 1)’2’

0V
we get

M M :
[FGpep)] | S? l I‘xn+l“yn+1| |2S—é— (sn+1—'tn+1)2 =g(sp,1)

Hence, (26) is also true.
We have also the estimates
1% 4 1-%ol 11 125 4 1Yol 1+ 1¥0-%o | 11 1% 4 1Yn |+ 119nF0l | + | 19020l |
S Upyp) —8p) + (5, —8g) + 89Sty ST (27)
and
[1ns 1720l ISHYn e 1Yol I+ Yool IS Yns 17 %n 4 11+ [xn 4 1790 ]
+ [y —Yoll + Hyo—xol |l S . S Gspi1i—tpi) + yi178,)
+(5p1—8p) + (5, —8g) + 8595, 151, - (28)
Moreover, from (4), (6), (27) and the estimate

1
[ G| - 1 Gop-F ) <] [/ G |+ [ 1F (et )
0

(x,~xg)dt|| < BM ||x, —xol | < BME, —ty) <PMr; <1

14




it follows from the Banach lemma on invertible operators that
F'(x,,)"! exists and-for all n 2 1.

F e < p | = —g'@,)"1
I=[|1F'eg) || |F' (e )=F'(xg) || 1-BMt, "

[F ()]
29)

Hence, the iterates (2)—(3) are well defined for all n > 0.

It now follows that the sequence {x,} is Cauchy in a Banach
space and as such it coverges to some x* € U(x, r), which by taking
the limit as n — o in (2) becomes a zero of F since F(x") = 0.
Moreover by (27) and (28) X, ¥n € Ulxg, rq). The estimates (16) and
(17) follow easily from
I. [%n s 17%p | | S [xp i1 dnl ] + | lyn—xnl | Stpi1=Sp+sp—th=tpi17 1y
and
Hype1nll = lyn+1_xn+1, I+] Ixn+1—ynl 'Ssn+1htn+1+tn+1_sn =
$p41—Spforalln 2>0.

Moreover, from (8)-(12) we get

(rl_tn.)z
ry—s, =
1 " rl—tn+r2_tn

(ry=s) (ry—t, + 8, — 1)
rp =41 =

ri—=t,+rg-t,

(rg—s,) (rg—t, +s5,—t,)

and ro—tpe1 =

ry=t,+rg—t,

Hence, we get

ri—lisa -

ro=Ithi1

(30)

IA




Note that dO < 1, by (14).

‘Since,

r2"'tn=r1—tn+(1—62)g‘ ’ (31)

the result (18) follows from (30) and (3’1). '

To show aniqueness, let us assume that there exists another
zero y* of equation (1) in U(xg, r9). Then from (5) and (29) we obtain

1
[F' G| f [|F'&™ + ty" —x%) - F'(x")]| dt

-1—-_-65—1{—: [1x*—y*]] ft dt < BB (ry+rg) <1by (15)

(since ||x"~y"|| S ||x" ~xgl) + ||y" —xp|} Sry+ 1Y)

It now follows from the above inequality that the linear |

opeator

1 :
f Fx"+t@" —-xM)dt-
0 :

is invertible. From this and the approximation

F@y*) - F(") = j F'&" +to" —x"Mdt " —x),
0
it follows that x* = y*. 4
That completes the proof of the theorem.
Remarks |
(a) From the estimates
_ Hxp=yol ISV 1x9n 1+ 1 yp=ol | St,—5,+s,—80St,—NSr—M
and .
R e N e PR I R N A I R R 7Y Rt SUCT
ti,~1-8,48,~s¢<s,, 1~ N<r,—Mn, |
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it follows that x,,, ¥, € U(yy, r; — M) foralln 2 0. » 7

~(b) We can use the two-point method to approximate nonlinear -
equations with nondifferentiable operators. Indeed consider
the equatlon

F,(x) =0, : (32)
where Fix) = F(x) + @(x)
with F as before and @ satisfying an estimate of the from

HR® - QW || <K, ||x— y]| forallx € D. (33)

Note that the differentiability of @ is not assumed here.
Replaec F in (2) and (3) by F; and leave the Frechet-derivatives as
they are. Define the sequences {f,} and {s,} as the corresponding
{t,} and {s,} given by (10) and (11) respectively. The only change
_ will be an extra term of the form K (s, — ¢,) and K (¢, , | — 5,,) added.
at the right hand sides of (10) and (11) respectively and multiplied by
the corresponding fractions. Define also g, and g in (12) but add the
term K,t. Then following the proof of the above theorem step by step
we can show a similar theorem with identical hypotheses and
conclusions, but holding for equation'(32). (See, also [5]). '

(c) Similar theorems can be ﬁroved if relation (5) is replaced by a
weaker older estimate of the form .
[|1F'(x) =F') || <K ||x—y||P forallx,y € D

and some p € [0, 1], [5].

(d) Many times tue c:omputation of the inverse of the lienar
operator F'(x,) for all n > 0 is a: very difficult or an
irmpossible task. That is why we then recommand the two-
point modified Newton’s method given by

w, = v, - Fx) ! Fw,)

Upy1 = W, =~ F'xp) ' Fw,) foralln>0.

Bj just replacing (14) with
2h <




in the hypothesis of the theorem we can state and prove a similar
theorem, but holdlng for the above mentioned. The scalar 1te1at10ns

(10) and (11) are replaced by

gla,)
b, =a, - ,-lg =
n. n g'(to)' 0
b
Ay, = n_—g, n) foralln 20
) - gty

The estimates (16)-(18) now _become
BRI S T
Hw, —x*|| £ —-b_n foralln >0
(1 -6%ne?"
1-062

That is, the order of convergence of the abvoe method is two,
‘but we invert the linear foperator involved only once. Note that the
order of convergence of the regular Newton’s method is also two, but

then we have to invert F'(x,,) for all n > 0, (15].

and r;-a,< foralln = 0.

(e) Note that using the approximation
1 2%ty x™)
f[F’(x +t(y*—x")-F'(x*)1 dt = f f f'()dz
0 0

we can show that (15) can be replaced by BM (3r1 + rg) < 2, which
may be useful, especially when M < K.

() Uniqueness can also be established in the ball U(y,, ro = M)
We just need to replace in the above proofs r; by r; — M and
rq by ro — 1. Then our conditions become '

BK@ri+rg—4m <1
cor BM@ry+ry—4m) < L

3. APPLICATIONS

In this section we use the theorem to suggest new appr oaches
to the solution of quadratic intégral equations of the form i

18




: 1. .
x(s) = y(sJ + Ax(s) fq(s, ) x(t) dt (34)
: d ‘
in the space E; = CI0, 1] of all functlons contmuous on the interval
[0, 11, w1th nerm

lix]l = max [x(s)]
’ " Oss<1

Here we assume that X is a real number called the "albedo"
for scattering and the kernel g(s, ?) is a continuous function of two
variable s, z with 0 < s,¢ < 1 and satlsfymg

'(i) 0<q(s,t) <1,0<s,t<1;

(i) qs,t) +q(t, s) =1, 0<s,t<1

- The function y(s) is a given continuous function deﬁned on
[0, 1], and finally x(s) is the unknown function sought in [0, 1].

Equations of this type are closely related with the work of S.
Chandrasekhar [8]. (Nobel prize winner of physics for 1983), and
arise in the theories of radiative transfer, neutron transport and in

" the kinetic theory of gasses, [1], [2], [3], [8].

There exists an extensive htelatule on equations like (34)
under various assumptions on the kernel q(s, t) and A is a real or
complex number. One can refer to the recent work in {11, [2], [3] and
the references there. Here we demonstrate that the theorem via the
iterative procedure (2)-(3) provides existence results for (34).

. Moreover the iterative procedure (2)-(3) convérges faster to the
solution than all the previous known ones. Futhermore a better
information on the location of the solutions is given. Note that the
computational cost-is not higher than the corresponding one of
previous methods.

For simiplicity (without loss of generality) we will assume
that ’

q(s,8) = —— forall0<5,t <1,
Note that g(s, t) so defined satisfies (i) and (ii) above.

Let us now choose A = .25, y.(s) = 1 for all s € [0, 1}; and
define the opérator F on E; by ' '

- 19




1
F(x) = Ax(s) f 5 i tx(t) dt — x(s) + 1.
! .

Note that every zero of the equation F(x) = 0 satisfies the
equation (34). )

Set x4(s) = 1, use the definition of the first and second
Frechet-derviatives of the operator F to obtain using and the
theorem,

1
K =M =2|\| max| { —_a1| = 2 |A|/n 2= 34657359,
Oss<1 s+t
4]

B = [|F'(1)-1]] = 1.53039421,
n = ||FQ)1FQ)|| > BAln? = 265197107,

g = .494902504,
h = .140659011 < q,
r, = .28704852, ry = 3.4837317

= .08239685
and  2BKr; = .304497749 < 1,

which shows that x* is unique in U(xo, ry and not in U(xg, rp); since;
(15) is violated. (For detailed computations, see also {1], [2] and [3].)

Therefore according to the theorem equation (34) has a:
solution x* and the two-point Newton method (2)-(3) converges to ")
faster than any other method used so far according to (16) and (18).{
(See also, [1], [2], [3], [8]). Moreover the information on the location]
of the solution given here is better than the ones given before.
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1. INTRODUCTION

In this study we are concerned with the problem of
“approximating a locally unique zero x* of the equation

Fx)=0 68

in a Banach space E;, where F is a nonlinear operator defined on
some convex subset D of E; with values in another Banach space E,.

The convergence of single-step methods, like Newton’s
method as well as Newton-like methods to a zero x™ of equation (1)
has been studied extensively in a Banach space setting [1]-[19]. But
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the convergence analysis for multipoint methods is less developed,
although the fundamental theory was developed several years ago,
[15]), [16] and [18]. The reason is that the expression F(x) cannot
easily be dominated by a real scalar function. It is well known, from
the efficiency index point of view [15] that multipoint methods are
faster than single-step methods.

Here, in particular we consider a Newton two-step méthod of
the form
¥y, =x, - F'x) 1 Fx,) ' @
—F'(y,) 1 FQy,) ' S ®
for some arbitrary x, € D and for all n 2 0. The linear operator
F'(x,) is the Frechet-derivative of F evaluated at x = x,,.

Using standard Kantorovich assumptions we will show the*
the two-point Newton method (2)-(3) converges to a zero x* o:
equation (1) with order 4.

2. CONVERGENCE ANALYSIS

Let x5 € D be arbitrary and for R > 0 such that U(xg, R) =
{xe E{/||x—x4|| SR} C D.

We assume that

[[F''(x) || <M )
and  ||F'&)-F'O|| <K||x~yl| (5)
for all x, y € D. It is convenient to introduce the constants
N2 |lyo—xoll, B2 [[F' x|, to =0, k=Mnf (6)
1-41-2h |
1+ 3[1 ~ 2h
ryg = A n, (8)
- .
=, (9)
T2

and the scalar iterations
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(t,) .
s, =,2n (10)
g (tn) o
g(s,) ‘
t =5, — foralln 20, , an
n+1 n gl‘sn)
where
M 1 n .
g =—t2-=1t+ (12)
.. 2 B B
Note that ry is the smallest zero of the equation
gy =0 (Gf 2 <1). ' (13)
Theorem

Let F: D Cc E; — E, be a nonlinear operator defined on
some convex subset D of a Banach space E,; with values in another
Banach space E5. Assume:

(a) F is twice-Frechet differentiable on U(xy, r;) € D for some
xy € D, and satisfies (4)-(5).

(b) the inverse of the linear operator F'(xg), x, € D exists and is
bounded;
(c) the following estimates are true
1 - |
< —
h < 2 7 (14)
and BK (8r; + ry) < 2. (15)

Then the two-point Newton method generated by (2)-(3) is
well defined, remains in U(x,, r;) for all n > 0 and converges to a
unique zero x* of equation F(x) = 0 in U(xg, ry).

Moreover, the following estimates are true:

l lxn - x*l l < rl.'_ tn’ ‘ (16)
[y, = x| <7y —sp, (17)
_ (1-06% no! -1
and ry-t,= Y foralln > 0. (18)
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Proof
' We will show that if

Hyn%xn ]| < $ptn, HHFGp) | 1<8(25), ||F(y,,)l|<g(s ), (19)

| |F' ()1 <-g'¢t,), _ - (20%
and  ||F'Op)7 | <", @D
then | [%,, 1= Y|l Sthy1— 5, (22)
[¥na1~%nitll SSpye1—tnsp (23)
| FG,, Dl <gtn, ) (24)
and  ||F@,, D]l <86,,,) foraln20. (25)

' Using (3), (19) and (21), we get
s 19l ISHF O L FGR) | <8 (5,)78(5,) =t 4 15
Hence, (22) is true.
From (2)-(4), (22) and the approximation

Fp, 1) = Faty, ) = Fp) = F ) (K1 = Yn)
. ) :
= [F" (5 + tny1 ~yp) A =1 dtn s, ~ yp)?
| 0 |
we obtain
A 1 ,‘
HF(x_p+1)H SEM ”xn+1—yn”2< M(t,,1—s ) =8ths1)
Hence, (24) is true.

Also by (2), (20) and (25) we get

HYn-).l-xn.q.llI ||F’(xn+1)_1'| ”F(an.l)l |< -8 (tn+1)g(tn+l) =S p 41 tn+1 4
Hence, (23) is also true. ]

Similarly, from (2), (4), (23) and the approximation
Fyp,) = F(yn+1) = Flx,,p) _F’A(,xn+1) On+1 = %n+1)

1 .
- fF“(xn+ 10417 %04 V) 1-9 dt(y""’l - x”"’l.)z
0
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we get
1 1
HFGr DI SGM 2001 = Ynoal |2 SgM(sy,q— o2 =80, 0.
Hence, (25) is aiso true.
We have also the estimates

[2n 4 120 1] |25 4 130 |+ [ ¥o—%0| 1] 1% 4 1=¥n ]
+ [ynoll + |lyo—xoll (26)
S S@ue1—8,) + (5,89 +89<t,,,5r},

and -

”yn+1-xo||<|lyn+1-yo||+llyo-xo||<llyn+1-xn+1l|+|| s 1nl 1+
- Ily,,—y0||+||y0—x0||

S SGpe1tny 1) +(h 4 178p) * (854 178p) +(8,780) +89S8p, 4 1571 (27)
Moteover, from (4), (6), (26) and the estimate

1
HF @ | P& )-Fagl S| [P~ f [1F"*(xg+xp—xg)) (x,~xg) dE]]
<BM ||x, —xp|| <BM@, —ty) <PMr, < 1, (28)
If follows from the Banach lemma on mvert.lble operators that
F'(x,) exists and foralln > 1 ' »
-1

—UFe B 1)
1-| |F G| L F e, )-F ()| | 1-BMt,,
Similarly, we obtain

IF &) <—g'(s,)"1 foralln>0. (30)

| |F'CGx,)7 1<

Hence, the iterates (2)-(3) are well defined for all n > 0.

It now follows that the sequence {x,} is Cauchy in a Banach
space and as such it converges to some x* € U(xg, ry), which by
taking the limit as n —> o in (2) becomes a zero of F since F(x*) =

Moreover by (26) and (27) x,,, y, € Ulxg, ry). The estimates (16) and
(17) follow easily from- A

[*n s 1% [} S Txnp1=pl | + Lyp—x,11 < tn+ 17Spt8y =t 17ty
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and
Hyne1Vnll S HYperxnand] + Hxps 170!l SSpi1tns1ttne17Sy
=8,,1— 8, for all n20.

Moreover, using (7), (8) and (11) we get

KB
r.<—8,. = (r -1 )2)
1 T o -kpry "
K]
r —t = (r -8 )2’
17 1= 50 — KBs,) 1 ®n
K]
and ri—t = (r - S )2.
1"t h+1 201 —KBSn) 2 °n
Hence, we get
9 4 4n +1
r =ty _ (rl“sn - (’1—’" - (ﬁ-ﬂ = 6" 31)
rg—1h:1 re—$, rg =t 2!
Since,
r2 — tn = r]. - tn + (1 - 92) n (32)

6
the result (18) follows from (31) and (32).

To show uniqueness, let us assume that there exists another
zero y* of equation (1) in U(x,, ry). Then from (5) and (24) we obtain

1
[1F ()| f [1F'G* + ty* —x*) = F'x™)|| dt

0

K 1 1 BK

S——E— -y tdt <=———(r;+ry)<1by (12)

I—BKTIH y”f ZI_BKrl 1772 Yy
0

(since ||x* —y"[| < ||x* —xp]| + ||y* =2l Sy + 1)

It now follows from the above inequality that the linear operator

1
f F&™ + ty* —x%) dt
0
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‘is invertible. From this and the approximation

Fy") - F&") = j‘ F'x™ + ty" —x") dt 9 —x%)
0
it follows that x* = y*.
That completes the proof of theorem.

Remarks »
(a) from the estimates

Hxn—yOH < ”xn—yn” + Hyn_yO” Stn,_sn,""s‘n_so-<'-tn_'rl 5"1"'1

and

”yn+1—y0” < ”yn+1_xn+1“ + len+1;ynll + Hyn-yOH
SSna1 a1 Pl 1 TS S TS S Sy NS M.

It follows that x,, y, € U(yg, r; — M) forall n 2 0.

(b) We can use the two-point method to approximate nonlinear
equations with nondifferentiable operators. Indeed consider
the equations

» Fix) = 0, , (33)
where Fix) = Fx) + Q(x)
with F as before and @ satisfying an estimate of the form
[1Qx) — Q|| <K l|x—y|| forallx € D. (34)
Note that the. differentiability of @ is not assumed here,
Replace F in (2) and (3) by F; and leave the Frechet-derivatives as
they are. Define the sequences {f,} and {s,} as the corresponding
{t,} and {s,} given by (10) and (11) respectively. The only change

will be an extra term of the form K,(s, - ¢,) and K;(t,, ,; — s,) added
at the right hand sides of (10) and (11) respectively and mutliplied by
the corresonding fractions. Define also g as g in (12) but add the
term K¢ at the numerator. Then following the proof of the above
theorem step by step we can show a similar theorem with identical
hypotheses and conclusions, but holding for equation (27). (See, also

[4D.
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(c) Similar theorems can be proved if relation (5) is replaced by a
weaker Holder estimate of the form

- F@-FW||<K||x-y[|P forallx,y €D
and some p € [0, 1], [5].
(d) Note that using the approximation

1 TR S
,fwuﬁww—ﬂywumw=f f Fl@dz
0 [

we can show that (15) can be replaced by MB(3r1' + rg) < 2, whih
may be useful, especially when M < K.

(e) Uniqueness can also be established in the ball U(yy), ro — M.
We just need to replace in the above proofs r; by r; — M and
ro by ro — 1. Then our conditions become

_or BM (3r; + ry—4mn) <1
8. APPLICATIONS

In this section we use the theorem to suggest new approaches
to the solution of quadratic integral equations of the form

1
- x(s) = y(s) + Ax(s) f g(s, ) x(®) dt . ‘ (35)
0
in the space E; = C[0, 1] of all functions eontmuous on the interval
[0, 1], with norm
[lx}] = max x(s).
Here we assume that A is a real number called the “albedc”
- for scattering and the kernel g(s, t) is a continuous function of two
variables s, ¢ with 0 < s, ¢ < 1 and satisfying
() 0<gls,) <1,0<s,¢<1;

(i) g(s, 1) + qt,8) = 1,0<s,t <1,

The function y(s) is a given continuous function defined on
[0, 1], and finally £(s) is the unknown funciton sought.in [0, 11.
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Equations of this type are closely related with the work of S.
Chandrasekhar [7], (Nobel prize of physics 1983), and arise in the
theories of radiative transfer, neutron transport and in .the kinetic
theory of gasses, [1], [2], [7].

There eixsts an extensive literature on equations like (35)
under various assumtions on the kernel g(s, t) and A is a real or
complex number. One can refer to the recent work in [1], [2] and the
references there. Here we damonstrate that the theorem via the two-
point Newton method (2)-(3) provides existence results for (35).
Moreover the two-point. Newton iterative method (2)-(3) converges
faster to the solution than all the previous known ones. Furthermore
a better information on the location of the solutions is given. Note
that the computational cost is not higher than the corresponding one
of previous methods.

. For simplicity (without loss of generality) we will assume
that : ‘ ‘

qls, ) = forall0<s,t<1.

s
+1
Notethat g so defined satisfied (i) and (ii) above.

Let us nb\i'v choose A = .25, y(s) = 1 for all s € [0, 1]; and
define the operator F on E; by

1
s
F(x) = ?gc(s) f i1 x(t) dt — x(s) +.1.
Note that eve1y zero of the. equation F(x) O satisfies the
equation (35). ‘

Set xo(s) = 1, use the definition of the first and second
Frechet-derivatives of the operator F to obtain using and the

theorem,
. - |
K=M=2 IM max f ———dt| = 2 |A| In2 = .84657359,
0<s<1 s+t ‘
0

B = ||F'(1)-1]] = 1.53039421
n2 | |FQ-WFQ)| | = BN In2 = .265197107,.
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h = 140659011 < %

r, = 28704852, ry = 3.4837317
0 = .08239685
and  2BKr; = .304497749 < 1,

which shows that x* is unique in U(xg, .rl) and not in Ulxy, ry); since
(15) is violated. (For detailed computations, see also [1], [2].) )

Therefore according to the theorem equation (35) has a
solution x* and the two-point Newton method (2)-(3) converges to x*
faster than any other method used so far according to (14) and (16).
(See also, [1], [2], [7]). Moreover the information on the location of
the solution given here is better than the ones given before.
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1. INTRODUCTION
) Consider the quadratic equation
x =y + Blx, x) : (1.1 ‘
in a Banach spéce X, where y € X is fixed and B is a bounded
symmetric bilinear operator on X [71, {8]. '

~~ Most of the results obtained up to now with the exception of
the work in [6], guarantee the existence of a "small" solution which is

unique in a sphere centered at 0 € X. The hypothesis is that

1-4]|B{l.}lyll >0 - (1.2)
It is well known however that the real quadratic equation
B x =c + dx? '
has two solutions x,, x which satisfy the Vietta relations

dx; + x9) = 1

dx,xg = ¢ o (1.3)
We prove that if there exists an xg € X such that |

Blxg) = 1 1.4)
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~ where 1 is the identity on X and x is a solution of (1.1) then

Xy =xo—Xy
is a solution of (1.1) also and the Vietta relations (1.3) generalize in
Xas .
B(x; +x9) =1 _

By, xp) =y (1.5)

An application when X = R2 is given. The results obtained here can
easily be generalized to include polynomial equations of the form

x =My + M) + My(x, x) + ... + M (x,x, ..., x)

where Mj,j = 1; 2, ..., kis a j-linear operator on X [7] and M, € X is

. fixed.

We now state the Newton-Kantorovich theorem as it appears
in [5]. '
Theorem 1

Let X, Y be Banach spaces, U < X and suppose F : U — Y.
Assume that on an open set Uy < U. F is Frechet differentiable and
that

HF'@ -F'»]] <lx-yl| xnyeU,

Moreover, assume that I'y = [F'(xy)]"! exists on all of Y for some
%o € Ug Let { [Tyl <b and || T Fxp)|| <m. Suppose k = nbd < 1/2

and set
ry =i (1-—-\/1'—-2!&)
r2=l_}j(1 +\/1—2h)

and suppose S = {x/l |x —xl| <r;} © Uy, Then the iterates _
| tp,1 =%~ ToF) k=012 .,

are well-defined, lie in S and converge to-a solution x™ of F(x) = 0
which is unique in Uy M {x | ||x —x4]]| < rg}.

Let P denote an operator on X defined by ,
- Py = B%"s’_‘) mxty ‘1.6)




2.  EXISTENCE THEOREMS FOR THE
QUADRATIC EQUATION

We are going to apply Theorem 1 to this equation and for this
we need the Frechet derivative of P. This may be written as

P'(x) = 2B(x) — 1 2.1)
and we can easily find that
[P'&) =P | <2[IB}. [lx -]

for all x, y € X. This gives 2{|B|{ as a bound for { needed in
Theorem 1. ,
We now prove the existence of a "small" solution of P.

Theorem 2

Let P be defined as in (1.6). Suppose & = 2||B|] . |11 s%,

and define

0 W

rfgﬁmu—W—anwn)

m=ﬂ%W0+w—umbnﬂm

Then P(x) = 0 has a solution in the sphere S; = {x/||x|| < r;}
which is unique in the sphere S, = {x/}|x]| < rq}.

’ We apply Theorem 1 to P withxy = 0. Thenb = 1,1 = ||y]|
and/ = 2| |B]|. The result now follows from Theorem 1. :

We now prove the existence of a "large" solution of P.

Theorem 3
Let P be defined as in (1.6) and assume that there. exists
xp€X such that / B |
Bxg) =1 |

2.2)

t\')ll—t

Suppose h=2{{B[]. iyl <

36 | |
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1
and ri= g (= V1= 411BII - 11y11)

ro = sygyy (1 + VL= 411BI1 - [1y11).

Then P(x) = 0 has a solution in the sphere S; = {x | ||x—xy{|<r;}
which is unique in the sphere S, = {x | ||x —xo|| < ry}.

Proof

We have P(xg) = Bxg, xg) —xg + ¥y = X9 — X9 + ¥ = ¥,
Iy = [2B(xy) — II"! = 1. Therefore b = 1, 1 = ||y]| andf = 2]|B].
The result now follows from Theorem 1.

Theorem 4

Suppose that the hypotheses of Theorem 3 are satisfied, then
the roots x;, x5 of P of Theorem 2 and 3 are such that

(a) x; # x4 if (2.2) is a strict inequality
(b) thelinear operator B(x,) is invertible

(¢) the linear operator B(x; — x,) is invertible and

(B, —2))1]| < :
P N1-411B[] - (1]

Proof
(a) We have by (1.4)
1= [[I]] = |IB&p)[| < HBI|.]lxol!
and  2r < ”]13”S||xol|
Therefore X # xq.
(b) Now,
HI =BG || = |1BGo—x)[| S [IB[] . [lxo — x|
< By Ao NI 4Bl bIL
2||BJ|
37
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The Banach lemma then implies that B(x,) is invertible and
1 2
1= 1= Bepl| 1+\/1—4||B|| Lyl

(¢) We finally have using (b)

[1Bxg)] <

1-/1-4||B||. 2
| BéepBagr1] | <[] 1Y . '||B!'|' Lyl
| | 1+\1-4[ BI |l Iy
<1
The Banach lemma now implies that B(x; — x5) is invertible
and

1 < 1
| 1-| Bl B || \f1-4/|B||.||y]]
The theorem is now proved.

We note that the spectrum of B(x,) strictly dominates the
spectrum of B(x;). If L is a linear invertible operator and ||L~!||< ¢

[BGey—xg)7!| | < [ B! | .

then A€o(L) implies %SIMSI |L||. Then the bound on ||B(xy)~1]]

implies that if A € 6(B(x,)), then

A ZTllBlﬁH L 5 1B | 2 sup (k] : keGBE )}

Proposition 1
Let x4 be as in (1.4) and x,, x, be solutions of (1.1) with

x1+.x2=x0

then B(x, + Xg) =1 }
Bxy,x9) =y ,
The above are called Vietta relations in Banach space.
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Proof
We have
B(x; + x9) = Blxg) = 1
also  x; + x5 = 2y + B(x, x;) + B(xy, x5)
= 2y + B(xy + x5, x; + x9) — 2B(xy, x3)
=2y + x; + x5 — 2B(x}, x5) '

So Blxy, x9) =y

Proposition 2

Let x; be a solution of (1.1) then x5 = xy — x; is a solution
also. '

Proof
We have
y + Blxg—x,, xg—x;) =y + Blxpxg) — 2B(x,xq) + Blxy,%q)
=y+x9—2x) + B(xy, x7)
=y—y+ (xg—x;)

Proposition 3

Let x,, x9, X3, X4 be solutions of (1.1) and x, x" be such that
B(xp) = B(xy") = L The following are true:
(a) If X+ X9 =X, |
Xp +x3 =%
then xi=x3 |
and xg = xg
(b) If xX; + X9

X0
- '
x3 + x4 —xo
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then X9 = X3
X1 = Xg
and xp = Xo'
() If B(xy, x3) =¥
X+ X9 = X
. Xg+ X4 =Xg
and B(xy) is invertible, then
X=Xy
X3 = X3
and  xg =X
@ If X1+ X9 =Xp

X, + Xg + X3 =%

then x3=0
y=0
xp = Xg'-

() hisa solution of k = —y — B(h, h) if and only ifxy + hisa
solution of x = y + B(x, x).

) IfB(x) = 0impliesx = 0 thenxy— o'

Proof
(a) We havex, —x3 = xo—Xo or Blxy) = Blx)
Now,
x; -y = x; — Blxg, x9) = Blxg, EN
= X = B(xs, x1 + xg) = Blxg, x3) = %3
= xg = Xq -
(b) By hypothesis B(x; + x5) = B(x; + x3) =1
= B(xy) = B(xy)

X9~y = B(x;;, x2)
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= x9 = B(xg, x9) + B(xj, x;) = Blxg, x; + x5) = x5
= %y = xgand by (a) x; = x;, and x5 = x4’
(¢) B(xy, x3) = B(xg, x)
= B(xg, x; —x4) = 0 and since B(xy) is
invertiblex; = xand by (a) x, = xgand xy = x;’.
(d) We have,
0 = Blxy' — xq, Xg' —%g) = Blxy', o) — 2By, xg) + Blxg, %o)
=xy’ — 2%y + x5 = x5 — X, ’
Similarly
0 =2x,—xp so-
= Xg=%xy = x3=0>=>y=0.
(e) Ifxy + his asolution of (1.1) then
=1 xg+h =y + By + hxq+h)
=y + B(xy, xg) + 2B(x, h) + B(h,h)
=y + xp + 2h + B(h,h)
ey = —y — B(h,h)
() We have B(xg) = I = B(x")

= Bxg—x5) = 0 = x5 = x;/

Proposition 4

then x0 = x,’

Proof
We have
x; =y +Blx;,x)) =y + Blxg + x4 —x9 + 27 — 25, X3 + X4~X9+2,—29)
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= X9 + x4 + X9 — 2B(xy, X3 + Xx4)
=x3+x4‘_x2 '

= X;+Xg=x3+%xy = X5 =xg

3. APPLICATIONS

Example
-Let X = R? and define a bilinear operator B on X by

' m - P v,
B(w, v) = § (W, wy) Do iz }
1 7 ban 2212 v

B 921 bag
(blllwl +b19iWy  by19W; + blzzwj

(vj
bp11Wy + bgg Wy bg1oWy + bggoWo/
(5111W1V1 +by9; WV + b11,W,Vy + 5122W2Vj

bg11W1Vy + b1 W5V + bg1a W1 Vg + boga W,V

Consider the quadratic equation on X given by z — y + B(z,2), where
) . ‘

b3 48 o :

y= =l 1 pbu1=-3b19=1b19 =1 bypp = -1
8 o

‘D219 = =1, b911 = 1, bygy = ~1and bygy = -1

2 2
or 2 =32, + 22y29 — 2,

- 48
= 4 2 222y — 2 3.1
Zg= gt~ 222 3.1
For a bilinear operator B = (byp) i Jy & = 1, 2, ..., m in

L(R:, Ri’) , one as in [7] has
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m
sup max ),
Heff=1 @ Jj=1

m
2 bk Exls (3.2)

[1B]]
K=1

where x = (§;, &y, ..., €,,). We now apply (3.2) for m = 2 to easily
obtain that

[1B]] = 6.
Now, 1=4.[[BI[llyll = 1=4[[B[L.llyl| = 1-4655=5> 0.

Therefore according to Theorem 2 there exists a .unique solution
zeS = {x| |Ix]| € ry = .02440776}. This solution can be found

using Newton’s iteration and it turns out to be z! € S such that

z; = .0200308

z; =.0200308

1
< 2
It is now easily seen that if 2= 1 then B(2)=1. By Proposition 1
2,

25 = ~.5 - 0200308 = —.5200308

22 = —.5—.0200308 = —.5200308

The same solution can be found if we apply theorem for x; = 2.

Finglly, the other two solutions of (3.1) are
3

z,=- .25
3,
z, = .1318813
4 3
and z, = -25 =-5 -z,

: 3
2j = —.6318812 = —.5 — 23

Also, note that Bz}, z2) = y, B(23,z%) = y, Bzl + 22) = B(z3+z%) = L
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ABSTRACT

This paper explains the use of unequal probability sampling in finite
populations Cochran (1977). Comparison among the well known selection
procedures have been carried out. Variances of the estimated population total from
all possible samples and exact variances have been calculated. Numerically it has
been shown that for population where either the mean per element is proportional
to y;/p; or rises as size increases with high correlation, the unequal probability
sampling method is better than equal probability method.

KEY WORDS

Unequal probability sampling, selection procedures.

1. INTRODUCTION

In general, the sample survey involves sampling from finite
population. There are two important components to any sampling
plan. The first component consists of the selection procedure in
which the sampling units are to be selected according to some well
defined procedure. The second component covers methods of
estimation which prescribes how inference to be made from the
sample to the population as a whole: These inferences may be either
enumerative or analytical.

Enumerative inference only to describe the particular finite
population under study, analytical inference in same sense to explain
it. Analytical and enumerative inferences proceed entirely different
paths. For analytical inference the model used its own probability
structure and for enumerative inference a quite different probability
structure. The co-existence of these two methods of inference is a
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matter influences very sharply on samples drawn with unequal
probability.

_ The use of unequal probability sampling was first suggested
by Hansen & Hurwitz (1943). They demonstrated that the use of
unequal selection probabilities within a stratym frequently made far
more efficient estimators of total than did equal probability
sampling. The probability of selecting ith unit is the sum of
probabilities that it is selected either at first or the second draw.

2. BASIC THEORY

Hansen and Hurwitz (1943) presented the general theory for
sampling with unequal probabilties and with relacement. They
suggested an unbiased estimator for population Y

.1
YHH = 3 L] @0

where p; is the probability of selection of the ith unit.

The variance of y'gyy is

N y2. '
Var(y g = — (,Z L Y2J (2.2)
n D) P;
The variance estimator of (2.2) is
' 1 2 (¥ 2
var(y'HH) = Z '-l--y’H ) (2.3)
nn-1) =1 ¥i ) .

Horivtz and Thompson (1952) presented general theory for samling
with unequal probabilities and without replacement. They suggested
an unbiased estimator for population total Y
. & Vi
YHT = L
i=1T

(2.4)

where T; is the probability of inelusion of the ith unit in the sample.
- The variance of y'yp is

v PN 1 ZNZ i _Y.L 2.
al(}' HT) = 9 il]::l (ﬂiﬂj-—TCg) ;l' - ch » | (25)
J#i ) ‘
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The variance estimator of (2.5) is

T, )2
Uar(y — Tl ) ) (Y Y (2.6)
2 ij=1 u T W
J#

For the purpose of comparison, Brewer’s (1963) selection will be
used for n = 2. Two special estimators are also included:

(i) Murthy’s estimator: They used Yates and Grundy draw by draw
procedure and suggested unordered estimator following the
work by Raj (1956). For n = 2 viz.

1 Y1 Yo »
temm = ———— [ (1—py) + =21 —p))] @.7
symm 2 ~py Do Py 2 Dy 1
The variance of ¢, is
N - 2
1 1-P;-P;(y; .y
Var(z )==3>p; ——~——i(p - (2.8)
‘ symm 2 i;!'=.1plp.]2_Pl_Pj i pJ
_)#l

The variance estimator of (2.8) forn = 2 is

(1-p) A=-py) 1—p;—pg) 2

Py (1-py) A —p; — by 6}_1_-_7_2) 2.9)
(1-p; —py)? p

(ii) Rao-Hartley-Cochran estimator: Rao, Hartley and Cochran

suggested their own selection procedure and suggested an
unbiased estimator for population total

var(tsymm) =

n

, Yu T,

Yruc= 2 : :, (2.10)
i=1 ¥t

where p;, is the sample value of normal measure of size P;,, ;= i P;

i=1
B n - .
and ) 7; = 1. The variance of (2.10) is
i=1 :
0
Vary'gae) = ——2—— [ 5 - ] @.1D)

NN~-D  Ham
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An unbiased estimator of (2.11) is

n
2 _
.§1N‘ n y 2
var(y'RHC) = l_——n—-— Z ‘J'[i &%t’—y RHC) (212)
N2 Y N2 it TH
11
i=1

3. COMPARISON

We will compare these method with simple random sample
without replacement, Ratio to size without replacement and
probability proportional to size with replacement. Their estimators
and variances are not stated here as they are well known to the
readers. For this purpose, the following three different artificial
populations (Cochran 1977) are considered.

Population-A: In population-A the mean per element, which is
proportional to Y;/Z;, is uncorrelated with relative
size and correlation between mean per element and
relative size is Zero.

Population-B: In this population the mean per element rises as the

‘ size increase. They are highly correlated and
correlation is exactly one.

Population-C: In population "C" the unit total has little relation to

. the relative size. They have negative correlation

which is —0.852.

Following populations were used. For s1mphc1ty, we took the
same relaive measure of size.

Table 3.1

Relative | Population

size, Z; A "B | ¢
0.1 0.3 0.3 0.7
0.1 0.5 0.3 0.6
0.2 0.8 0.8 0.4
0.3 0.9 1.5 0.9
0.3 1.5 1.5 0.6
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Table 3.2
Estimator Variance of the estimated population total
A" B* c* A* B+ c+*

¥'srs 1,576 2.715 0.248 | 1.575 2.715 0.248

y'"'(Ratio) | 0.344 . 0.351 1442 | 0.375 0.207 0.778

'0.300 0300 1.650 | 0.400 0.240 1.480

¥'pps

y’HT 0.300 0.300 1.650 0.246 0.248 1.252
y' 0.304 0.304 1.540 0.267 0.236 1.130
| Y symm

y’RHC 0.371 0.841 1.693 0.300 0.180 1.110

* Using all possible samples.

+ Using the variance expression.

Table 8.2 shows the variance of these estimates for
population A, B & C. The computation involves to generate all
possible samples from different selection procedures to calculate the
estimate of each sample and their corresponding variances.

CONCLUSION

First, consider the simple random sample estimator with
equal probability without replacement. The variance of the estimates
of population A and B are greater than the variances of the other
methods. While in the case of population ‘C’ it has smaller variance:
than the others. So, we can say that in simple random sampling

~ without replacement the estimate is found to be of poor precision for
- the population like A and B. While for the population of the type ‘C’
this estimate is found to be more precise.

The Ratio to size estimate without replacement has smaller
variances for the population type A & B. And has greater variance for
the population C. It performs slightly similar to the variance of
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unequal probability sampling method of estimating population total.
One should be careful to use ratio to size estimate because it has bias
for small sample size.

Probability proportional to size with replacement also gives
the good estimate of the population total as compared to unequal
probability sampling estimation. The method is preferable for small

population size.

In the methods of estimation of population total using
unequal probability sampling without replacement, the sample
variances of estimated population total show that they are precise
than other methods like simple random sampling, Ratio to size with
replacement except population C (It is best estimated by simple
random sampling without replacement). Among unequal probability
sampling, the Brewer’s method is a little ahead to the others in
precision for population A and B. While in population C the
Murthy’s method is better than the other two.

In other words, it is better to use unequal probability
methods of estimation of population total (without replacement) for
population A and B having small strata, where n = 2 cluster of units
has been drawn from each stratum. In the population C, in which the
units total bears little relation to the sizes, simple random sampling
with equal probabilities is much better.
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ABSTRACT

A property of Hadamard hypernets is described. This property is shown to
be enjoyed by all those Hadamard hypernets which are obtained from generalised
Hadamard matrices. Conversely it is established that if a Hadamard hypernet with
class size 3 has this property then it is obtained from a generalised Hadamard

matrix.

INTRODUCTION

A generalised Hadamard matrix GH(m}l, G) is an mpxmy

matrix H = [k ;] all of whose entries are from a group G of ordered m .

such that if i #j then each element of G occurs exactly p times as a
difference h;;—h;;. If m = 2 then H is an ordinary Hadamard matrix.

A Hadamard hypernet H(m, p.), of class size m and index L,
is a symmetric affine resolvable design with m2jL points and mp

points on each block such that its dual is also affine resolvable. Such

designs have been studied-in many equivalent forms: Hadamard.
systems in [5], symmetric nets in [1] and Hadamard hypernet in [3].
For surveys see [2] or [4].

If H= (A ] is a GH(m, G) matrix, we can construct a
Hadamard hypernet H(m, 1) as follows. Label points by pairs (&, i)
- and blocks by pairs [&, i] where & € G and i = 1, 2, ..., mlL. Define a
point (at, i) and block [B, j] to be incident if and only if af3~! = k.
Then it is easy to verify that this incidence structure is a H(m, L),
However given a H(m, 1) there does not exist a general algorithm for
constructing a GH matrix from it. In what follows we shall describe a
property which must be satisfied by a H(m, j,l) if it is at all possible to
construct a GH matrix from it. Finally we shall show that it is always
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possible to construct a GH matrix from a H(3, ) if it has this
property.

A translation o of a H(m, yu) D is an automorphism of D
which is either the identity or else it is fixed-point-free but fixes
every block class as a set. Thus if o is a translation every block is
parallel to its image under & and « fixes no point, unless o = 1. If &
also induces a translation of the dual of D then a is called a

bitranslation of D. The bitranslations of D form a group I'(D), of
order at most m, which is normal in the full automorphism group.

If the order of I'(D) is exactly m then I'(D) is regular on each
point class and each block class. That is, for any two parallel blocks
(or points) there is a unique bitranslation mapping one onto the

other. We shall call a H(m, 1) D to be class regular if order of I (D) is
m. 7

Consider a class regular H(m, p) D. Choose distinct
representatives {p,, Py, .., P,,,} from the mp point classes and
{B;, By, crey Bmp} from the myl block classes. Then the matrix
H = [hy;], where hj; is the unique bitranslation in I'(D) which maps
p; onto the unique parallel point incident with B;, is a GH(m, G).

Thus if a Hadamard hypernet is class regular then it is possible to
construct a GH matrix from it.

" THE Q PROPERTY

A Hadamard hypernet is said to satisfy the {) property if
given any two non-parallel blocks X,, Y, and any block X, parallel to
X, there exists a unique block Y, parallel to Y, such that every point

in X, MY, is also parallel to a point in X, N Y.

Lemma 1

A H(m, p) hypernet D has the () property if and only if the
following property holds. Whenever X, X' and Y, Y’ are two parallel
block pairs from different block classes, then either every one or

none of the points in X N Y is parallel to a pointin X' nY’.,
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Proof

Suppose that D has the {2 property. Then there is a unique
block Y, parallel to Y such that every point in X N Y is parallel to a
point in X' N Y, This implies that if X N Y has a point, a. say,
parallel to a point @’ in X' N Y’, then @’ is in X'MYj and in X' N Y,
since X' contains only one point parallel to a (namely a’). Thus the

parallel blocks Y’ and Y, have a common point, a’, and so Y' = Y,
The proof of the converse is straightforward.

Lemma 2

. If an H(m, |) has the 2 property then so does its dual.

Proof

Let x; and y, be parallel points and let x5, ¥y be another pair
of parallel points from a different parallel class. Also suppose that

Xpxg € AN L NMAY

and ¥,y € B mB
where A, is parallel to B;. We shall prove that each A; is parallel to
some BJA, iL,j=2, ..,

Let C be the block parallel to A; which contains the point y,
and let .

Y1 29 02, € By NC '
Then, because of the 2 property, x, is parallel to z, for some
k=2,..,l. Since y, and z;, are both parallel to x, and are both incident
with B,, we have y; = z;,. But By, ..., B, are the it blocks containing
¥y and y,. Hence C = B; for somej = 2, ..., {L.

Lemma 3
Any H(m, 1) obtained from a GH(m, |1) has the 2 property.
Proof

For ¢ € G note that the mapping ¢, : Him, W) — H(m, y)
defined by
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bg: G, ) > G, 00) b, [, o] > [, ac]

is a bitranslation. Let A;, A, and B;, By, be two pairs of parallel
blocks. Suppose that a point (i, &) in A; N B, is parallel to a point
(i, B) in Ay N B,. Then clearly the bitranslation ¢u[3 which maps
(i,) onto (i, B) maps every point in A; M By onto a point in Ay M
? B,. Hence every point in A; N B, is parallel to some point in A, N
- B,

) The following theorem establishes that if a Hadamard
hypernet with class size 3 has the { property then it is obtained
from a GH matrix.

Theorem

If a Hadamard hypernet with class size 8 satisfies the {2
property then each of its bitranslation is either of order 1 or 3.

Proof

Let {A;, A, A3} be any block class of a H(3, p)hypernet D.
Then the points of any point class {xl, Xg, X3} can be labelled so that
x;isonA;i=1,23.

Define a mapping f of the points of D onto themselves by
f(x;) = x;, ; all suffixes being considered module 3. It is clear that f
maps no points onto itself and maps any block onto a subset disjoint
from the block. We shall show that f maps blocks onto blocks and,
since f is clearly bijective, it will follow that f is an automorphism of
D.

Let X be any block. We show that f(X) is a block parallel to
but different from X. If X = A;, then clearly f(X) = A;, ;; so assume
that X is not one of the A;.

Since D has the Q property, f(XNA;) = X;NA4;,; G = 1,2, 3)
for some block X; parallel to but different from X. Therefore, since
there are only two possibilities for each X;, X;, X, X3 are not all
different. Suppose Xy = X3. We shall prove that X; = X,.
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" If X, # X, then {X, X;, X,} is a block class of D. We then
have f(X M A;) = X; N Ay, fIX M Ay) = X, M Ag and fIX N Ag) =
X, N Ay Now f(X; N Ay) = X' M A, (by the Q property), where X’
(#X,) is parallel to X;. But X' # X,, because f(X M A) = X, M A,
and X M Ay, X; M A, are disjoint since X and X, are distinct parallel
blocks. Similarly X" # Xz and so X' is non of X, X; and X,; a
contradiction. Hence X, = X,. Therefore (X M A) = X; N A;,; U =
1,2, 3) and, since Y = YA; U YA, U YA, for any block Y, it follows
that f(X) = X, where X, is parallel to but different from X.

It is now evident that f induces a bitranslation of order 3 of
D. As the order of the group of bitranslations of D is at most 3, any of
its bitranslation is either of order 1 or 3.

Cbroilary '

A Hadamard hypernet H(3, |1) is obtained from a GH(3L, G)
if and only if it satisfies the {2 property. :

Proof

As noted earlier the group I'(D) of bitranslations of a H(m, )
hypernet D has order at most m. Since a H(3, [1) with Q property
has a bitranslation of order 3, the order of the group of bitranslations
in this case is exactly 3. Now we can construct a GH(3{t, G) from this
~ hypernet using the algorithm described at the end of the
introduction. The converse follows from Lemma 2.
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ABSTRACT

In this paper we consider a single unit system with N spares and K repair
facilities. The system fails when the spares are emptied. It is assumed that repair

tie and failure time have the exponential distributions with parameters {1 and A
respectively. We are interested in determining the expected time to system failure,
the long-run availability of the system and also to know the number of spares and
repair facilities required to achieve a preassigned long-run availability for given

values of A and .

1. INTRODUCTION

Consider an equipment or system which consists of a single
unit. When the unit fails one unit from the spare pool is used to
repalce it immediately. The failed unit is sent to a repair facility for
repair. The repaired unit is kept in the spare pool after repair
completion. The system is considered failed when a unit failed and
the spare is emptied. That is all the spares are in the repair facilities
waiting for repair. The failure times of individual unit has an
exponential distribution with parameter A. The time taken to
complete repair on a failed unit is also exponential. It is assumed
that (i) the repairs are carried out in the order in which the units fail
and that replacement of a failed unit with a spare one does not take
any time and also there is no switch-over time.

2, EXPECTED AND VARIANCE OF TIME TO SYSTEM
FAILURE
Let N(#) be the number of failed units in the system at time ¢.
The system fails when N() = N. Let Pj(t) = P{N() = j}. N@) is
considered as continuous time discrete state stochastic process.
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Let TON = T01 + le + ... + TN—].,N

then, Toy is the time to failure starting from state 0, and Ty_; y is
the time the system will be working after it has jut been restored
through a repair completion from failure. {T;;,,} is a sequence of

independent random variables and E[T;,] = A-L.
Let f; ;+1(t) be the passage time density from state i to state

i+1. ,

Then fon® =fo1"f12 " faz ™ o * fo1,n®

The time spent in any state i has an exponential distribution with

parameter ¥; = A + [;, where J; is the repair rate when in state i

and f; N(®) = Af; -1 (@) It s eas11y seen that

fiie2(0) = 3"Y et +_ e_Y‘ fz—l 0" fzz+1(t)
Yi Yi

Using Laplace transform, we have
A M
Eii+ 1(8) = s + ;\, + 8i-i, 1(8) 8ii+ l(s)

l

A

s+i—pg 6]

differentiating, we have

E[Ti,i+ = —g;,i+ 1(0)

1
T+ BT )

where 6, = -—}-”l— = ﬁ Gi)

hence E[Toy] = ,Zo = i e.i



If k=

then

1, the number of repair facilities,

W; = | foralli

A g
w' P
N—ll i
"ou - £ 75 P

=  P - p-N._ N)
A1-p) (p—l '

By differentiating g; ; , 1(s) twice, it is seen that

hence

3.

i=0

|
|
, |
Var(T;;, 1) = (B(Tj_ )2 + lg-tiVar(Ti_l,i)2 |
N i '

Var(Toy) = 3 ({E(Ti—1,i)}2 + % Var(Ti_Li)2) |
’ |

1

THE STATIONARY AVAILABILITY OF THE SYSTEM
The Stationary availability of the system is the probability

that the system is working after a long period of time and is defined

as Py.

Where

So that

PN=

Expected time to system failure
Expected time to system failure
+ Expected time to system reacti-
vation after failure. »

The stationary unavailability is given by

Expected time to system reactivation after failure
1~ Py = Expected time to system failure + Expected time to
system reactiva*isn after failure,

E[Ty 1 n]
1

ElTN_yn] + 7
Hy

PN=
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¢ ¢
R XGNJJE% jZ% J
ey, 5o . L o
N—1J._Z0 J+EI; <0
6
hence 1-Py= NN
6.
%0

When k = 1, the stationary unavailability is

PN a-pp¥N . 1
5 ,—l—pN” 1fp¢1andN+11fp—1.
2 P
Jj=0

For various values of N, A, 1 and & (the number of repair facilities),
a table of stationary availabilities can be constructed to reveal their
relationship.

Hence a choice of additional number of spares and or
additional repair facilities can be made to achieve the same
stationary availability based upon their relative costs.
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ABSTRACT
°°(I

Let T ,(a, b, A, B) denote the class of functions fz) = £ —Z1%+npin

(a,,p 2 0;p € N = {1,2,..,}) which are analytic and p-valent in the unit disc
U = {z: |z] < 1} and satisfy the condition

2P F () —p [
Bz1P f'(z) - [pB + (A~ B) (o — o)l

<b,zel,

for0<a<p,0<b<1-1<A <B<dand0 < B < 1. Further f(2)

is said to belong to the class C,(a, b, A, B) if and only if plzf'(2) €

T,(a, b, A, B). _
In this paper we obtain for these classes sharp results

concerning coefficient estimates, distortion theorems, closure
theores, modified Hadamard products and some distortion theorems

for the fractional calculus.
Keywords: AMS (1991)

1. INTRODUCTION

Let Sp denote the class of functions
f(z2) =2P + Zlap+nzp+"(p eN={1,2..0 (1.1)
n=

which are analytic and p-valent in the open unit disc U = {z:{z]<1}.
We say that f(z) belongs to the class S (a, b, A, B) if f(z) € §,
satisfies the condition
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APF@ -p I
Bz17 f'(z) — [pB + (A~ B) (p - a)]|

<b,zelU - (1.2

for0<a<p,0<b<1-1<A <B<1and0 < B<1.Furtherf(z)
is said to belong to the class K, (q, b, A, B) if and only if plf(2) €
Spla, b, A, B). Recently Aouf [4] showed a distortion theorem,
coefficient estimates and radius of convexity for the class Sp(a,b,A,B).

In particular, Sp(a,' b, -1, 1) = Sp(a, b), is the class of
functions f(2) € S, satisfying the condition

plzlPfz)~1 I

<b (ze U, 0pla<1, 0<b<1) (1.3
plzlPf(z) + 1— 2p"1a| (z e )

The class Sp(a, b) was studied by Owa [13]. Also SI1(0, b, —1, 1) was
studied by Padanbhan [18] and later by Caplinger and Causey [5].

Furthermore Owa [11] studied the class S,(a, b, -1, 1).

Let Tp denote the subclass of Sp consisting of functions
analytic and p-valent which can be expressed in the form

@ =?= 3 2", @, €0Gp=N) 14
n= .

We denote by Tp(a, b, A, B) and Cp(a, b, A, B) the classes obtained by
taking intersections of the classes Sp(a, b, A, B) and Kp(a, b, A, B)
with T, respectively. ,

We note that Tp(a, 1, A, B) is studied by Aouf [3] and
Tp(a, b, ~1, 1) and Cpyla, b, ~1, 1), 0 <pla<1,0<b<1,are
studied by Owa [12]. Also TP(O, 1, A, B) was studied by Shukla and
Dashrath [21], for A = ccand B = §, T,(0, 1, &, B) and S,(0, 1, &, ),
~1<0o < B<1,0< B<1,are studied by Owa and Srivastava [17].

In 1976. Gupta and Jain [8] studied the class T,(a, b, -1, 1).
Moreover Silverman [22], Silveran and Silvia [23], [24], Ahuja and
Jain [1] and Owa and Aouf {14], [15] have studied certain subclasses
of univalent functions with negative coefficients. For other classes of
analytic p-valent functions with negative coefficients, Goel and Sohi
[7], Srivastava and Owa [26], [27] and Aouf [2] showed some results.
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2. COEFFICIENT ESTIMATES

Theorem 1

A function f(z) deﬁned by (1, 4) is in the class T (a, b, A, B) if
- and only if

Z <p+n)(1+bB) ayn S (B-A) b -

This result is sharp, the extremal function being

 B-Mbp-a
&= - Toasm?

The proof of Theorem 1 follows on the lines of the proof of
Theorem 1 in [3]. The details are omitted.

(n 21) . 2.1)

v Corollary 1
Let the function f(z) deﬁned by (1.4) be in the clazss
Tp(a, b, A, B). Then we have

B-A)bp-a

, >
P””‘(p+n)(1+bB) n21.

The result is sharp with the extremal function given in (2.1).

Theorem 2

A function f(z) defmed by (1.4) is in the class Cp(a, b, A, B) if
and only if _

z (p+n)2(1+bB) Qpyn < (B - A)b(p a) p.

This result is sharp, the extremal function being

B-A)bp—ap
@ +n)2@A + bB)

f(2) =2P— P (n21). 2.2)

Proof

The function f(z) is in the class Cp(a, ‘b, A, B) if and only if
2f@)/p € T,(a, b, A, B). Now, since -
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o) i,

p+n

by replacing ap+nlbyp a, in in Theorem 1, we have the theorem.

Corollary 2

Let the functin f(z) defined by (1.4) be in the class
C, (a,b,A,B). Then we have

<B-Abp-ap
p+"—(p +n)2(1 + bB)’

nz=1.
The result is sharp with the extremal function. given in (2.2).
3. DISTORTION THEOREMS

Theorem 3
Leta functlon @ deﬁned by (1.4) be in the class T (a b A, B).
Then we have |

(B-4A) b@—a)p Iz.|p+l
@+ n)?01+bB)

(B~ 4) b(p — a)p et
@+ 12 +bB)

@] 2 |z]P ~

and If@| < |z|P +

for z € U. Further

. B-Abp-a)
Ir @] 2plziP~ - u+£)a,ﬂp
i . . S'plzj’"l . B-Abp—-a) l2|P
, plz|

1.+ 56B) .

for z € U. These estimates are sharp and are attained for the
function

(B—A) b(p —a)
@+ 121 +bB)

The proof of Theorem 3 follows on the lines of the proof of
Theorem 2 in [3]. The details are omitted.
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Corollary 3

Under the hypotheses of Theorem 3, f(z) is included in the

o s . . (B-A)bp—a)
~ disc with center at the origin and radius 1 + @+ D2 +5B)

Further f(2) is included in the disc with center at the origin and 7

.. p+b[pB+ (B-A)@P-—-a)
radius (1 + 5B) .

Theorem 4

Let a function f(2) defined by (1.4) be in the class C,(a,b,A,B).
Then we have ‘

B-Wbp-0) .

171 2 121P =152+ 5B)
and If@)) < |z|P + Ef:f);b((f::]); |z|p*1
for z € U. Further

@1 2plept - O R el
and IF @] 2plz|p1 - Zf:f))zb((lp::g; |z17

for z€ U.If p € N— {1}, then we have

, ., (B=Abp-ap, .
— 2 _ 1
If'@]| 2pp-1) |z|P 1+ 5B) |z|P

, . (B - A) b(p —a)y _
_ 2 1
and I @] <—P(P 1) |z}P~% + {1 + bB) |z|?

for z € U. The estimates for f(z) and f'(2) are sharp and are attained
for the function

_B-Mbp-ap ., ?
@+ 121 + bB)

fiz) = 2P
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Proof
By using Theorem 2, we obtain

(P+1)%(1+bB) Z Qpin S Z @+n)2 (1+bB) a,,, < (B- A)b(p—a)p
n=

which implies that

it _(B-A)bp-ap
=1 P”‘_(p+l)2(1+bB)

Consequently we have

-]
@1 2 |21~ T gy, l21P*

- -
2 [z|P - Iz|p+lhzlap+n

(B-A) b —a)p |z[p+1

2 2P - D2 7 5B)

-]
and @) < (2P + 3 ap,, L2l

o
< |zfP + lzlp*lngl Ap4n

B-M)b@-alp | ,,1
@ + DZ(1 + bB)

< |z I‘P +
for z € U.
In order to show the second half of the theorem, by using

(B —A)b(p—akp
Z @+n)a P*”_(p+1)2(1+bB)’

we obtain
IF@| 2 plzjp-1- z @ + n) ay,, 2Pl
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2 plz|Pt =zl T @ +n)ay,,
n=1
L (B-A)bp-ap
1 p
2 plzlP (@ + 1% + bB) l2|
and @] < plz|P~t+ Zl(p + 1) ay,, (2Pl \
. n= ?
SplzlPl+ (2P T @+ n)ap,,
n=1
. B-Abp-ap
< p-1
<Pl + o aree P
for z € U. Furthermore, forp € N — {1} and z € U, we have
'@ <p@p -1 |z[P~2 - Zl @+n)p+n-—1ay,, |z|p+n-2
n=
<pp-1) |z|P? - |z[P~1 Y (@ + n)? pin
n=1
' o (B=Abp-ap, ..
< —_ p-2 } p-1
Spp -1 |z G eD 2|
and
@1 <p@ =1 22+ 5 @ +m)@+n-Day,, |z|p+r-2
. n=
<p@e -1 [2[P2+ [z)P1 T @+ mia,,,
n=1
_ B-A)bp-—-a)p 5
<p(p— 2 -1
| <P -V [P+ s Pl
by using theorem 2. .
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Corollaory 4

Under the hypotheses of Theorem 4, f(z) is included in the

. . . . . (B—A) b(p—a)p
disc with center at the origin and radius 1 + ___—(p+ D? (145B) and f'(2)

is included in the disc with center at the origin and radius p +

B-Abp-ap

@+ DI+ bB) Further f'(2) is included in the disc with center

N _ L B=A) b —ap
at the origin and radius p(p — 1) + (1 +bB)

4. . SOME PROPERTIES OF THE CLASSES T,(a, b, A, B)
AND C,(a, b, A, B)

In this section we derive some useful properties of the classes
T,(a, b, A, B) and Cp(a, b, A, B) by employing Theorems 1 and 2.

Theorem 5
<pand0 < b; <by < 1. The we have
‘Tp(al, b2, Al’ B2) o Tp(a2, bl’ A2, Bl)

Theorem 5 is an immediate consequence of the definition of
Tp(a: b: A’ B)

Theorem 6
<pand 0'< b; £by <1. Then we have

Cp(ay, by, Ay, By) D Cylag, by, Ay, By

Proof

Let the function f(z) defined by (1.4) be in the class C,(ay, b,
A9, B)), By =B; + eandby = b; + 3. Then, by Theorem 2, we get

ngl @ +m)2 1 +b1B)a,,,<B;—A)bp-a)p.
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Hence

Z (p +n)2 (1 + byByay,,

8

S (p+n)2[1+@b;+0) (B +€)la,,,
-

—,

El’(p +m?21 +bByap,;,; + SBI’E1 (@ + n)? Gpin

+ €b; Z @ + n)? p+n+56 Z (P"’n) p+n

(B, — Ay by(p — ax)p
< (B, - Ay by(p—ap)p + 8B; — 12+b1131 z

(By — Ag) bip —ay)p (B, — Ay by(p—ay)p
+ €b; T+ Db,B, + €d T+5,8,

<(B;—Apb;p—am)p + 8B~ A)p—ayp
4+ €b(By—Ap) @ —agp + €8(By — Ay 0 —agp
= (B;—Ap) (by +8) (p—ag)p + €(B; ~ Ay (b,+0) (p—ag) p
(B~ Ap by + app + By~ Ap by 0 —ag)p
<(B;—Ap by +a)p

which gives that f(z) € Cylay, by, Ay, By)-

Theorem 7

Leta functlon f(2) defined by (1.4) be in the class C, (a,b,A,B).
Then f(2) belongs to the classes:

@ T.([AL*tD, A8 thatis
PUp+1 >

Cyla, b, A, B)cT(B—(—l{—Qb A, B)

Gy T

A
p(a, b, l—a—l&-, B),that is
p+1" _
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B + pA
Cpla,b, A, B) C Tp(a, ey B)

Proof

To prove the first part (i), since f(z) € Cp(a,‘b, A, B), we have

2 ©+m+bBa,, B-ADbP-a)p

n_

p+1
Cm _pd +a)
= (B A)b(p ——_p+1 )
with the aid of Theorem 2. Further
SH(l + a) <
p+1

for0<a < p and p € N. Conequently we have the first part (i) with
Theorem 1.

Similarly, since f(z) € C,(a, b, A, B), we have

- (B—A)b(p—-a)l
n§ @+nr)(A+bB)a p”,_. D+ 1

_(n_B+pA
—( p+1)b(p
B +pA

P41 <Bfor-1€<A<B<1,0<B<1

Note also that

-1=<

and for p € N, and the second part (ii) follows at once.

5. CLOSURE THEOREMS

Let the functions f;(2) be deﬁned, fori =1, .., m by

f;(2) = 2P ~ 21 Aipsn? (@50 20,p €N) (5.1)
n=

We shall prove the following results for the closure of
functions in Tp(a, b, A, B) and Cp(a, b, A, B).

71




Theorem 8

Let the functions f;(z) defined by (5.1) be in the class
Tp(a;, by, Ay, By, fori = 1, ..., m. Then the function k(2) defined by

1 @® © R :
h(@2) = 2P — gngl (ngl.ai,p+n)z’p+n _ (5.2)

is in the class T (a, b, A, B), where
a = min {a} b = min {b;}, A= min {A;} and B= min {B;} (5.3)

- 1<ism 1<ism 1<ism 1<ism
Proof

Since f;(2) € T (a;, b;, A;, By for eachi = 1, ..., m, we have
Z @+n)Q +bB)alp+n_.(B —A)b; (p
by Theorem 1. Hence we obtain

Z @+ n)( E:l ai'PHJ = ;ll“ni { §1 @+ n) ai,p+n}

=1 ln=

<L § {(B,l- —A) bi(p—ai)}<(B—A)b(p—a)_
T m s 1+ b,B; - 1+B. °
because
(B1 —A1)b1(p—a]) > (BQ—AQ) bz(p—aQ)

for al S_a2, bl > b2, Al < A2 and Bl 2 B2. Thus_ we ge;t
T e+ma +bB)( z a,pmj_(s A)b (p -

which shows that h(z) € Ty(a, b, A, B), completing the proof of
Theorem 8.
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Theorem 9

Let the functions f;(z) defined by (5.1) be in the class
C,(a;, b;, A;, By, for each i = 1, 2, ..., m. Then the function h(z)
defined by (5.2) is in the class Cpla, b, A B), wherea, b, A, and B are
defined by (5.3).

The proof of Theorem 9 is obtained by using the same
technique as in the proof of Theorem 8 with the aid of Theorem 2.

Theorem 10

Let the function f(z) defined by (1.1) and the function g(z)
defined by

82) =2 = T bpun P by 20, pEN) (5.4)
¥ T L

be in the classes Tp(a, b, A, B) and Cp(a, b, A, B), respectively. Then
the function k(z) defined by

p+1) & v
1 =2 = (BE5) £ oy + bpunt 2

is in the class Tp(a, b, A, B).

Proof

Since f(z) € T (a, b, A, B) and g(2) € C (a, b, A, B), by using
Theorem 1 and The01 em 2, we get

Z (p+n)(1+bB) p+,,_(B Ab@-a)

(B A)b(p—a)P
p+1

and Z(p+n)(1+bB) pin S
Therefore, we have

+1
2’;,+1)Z(p+n)(1+bB)[p+n byinl SB-A) b —a)
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which implies that k(z) € T,(a, b, A, B), and the proof of Theorem 10
is thus completed.

Theorem 11

Let
@=2, @eN
B-A)b (- :
and foen@ =2 -Ep - n)) (l(ﬁ bg)) P+ (p eN)

for n=1,2 ... Then f(2) belongs to the class Tp(a, b, A, B) if and
only if it can be expressed in the form

w0

f@ ..= nzl A'p+n fp+n(2)’

-]
where A, , 2 0 and nZ___:l Apin =1

Theorem 12
Let f,(&) =2° (@ € N)

. _B-Abp-ap
and Tp4n® = P = VT (1 + bB)

Pt" (P eN)

forn = 1, 2, .... Then f(z) belongs to the class C,(a, b, A, B) if and
only if it can be expressed in the form

o0

f@) = 3 Npinlprn®,

where X, , 2 0and nz_:l Apen=1

Préofs of Theorems 11 and 12 follow on the lines of the proof
of Theorem 8 in [3]. The details are omitted.

74




6. THEOREMS INVOLVING MODIFIED
HADAMARD PRODUCTS

Let f(2) be defined by (1.4), and let g(2) be defined by (5.4).
For the modified Hadamard product of f(2) and g(2) defined here by

[*g@) =2~ Z Qpinbpin?*h - (6.1)

we first prove

Theorem 13

Let the function f(z) defined by (1.4) and the function g(2)
defined by (5.4) be in the classes T,(a;, b;, A;, B;) and
Tp(ag,bg,A9,By), respectively. Then' the modified Hadamard product

f* g(z) defined by (6.1) belongs to the class T (a(2p - a)/p, b,
A(2B - A), By), where

a = min {a,, ag}, b = max {b;, by}, A = min{A,, Ay} and B = max
{B]_s B2}- (6-2)

Proof

Since f(z) € Tp,(ay, by, Ay, By) and g(2) € T(ay, by, Ay, By),
by using Theorem 1, we have

Z @+n)A+bBYa,,, by,

): @+n)1+bB)ay,,b,.,

(Bo—- A byp—a)p
@+ 1) (1 + byBy) ’

- wf(252)

= [B2- A@2B—-A)] b (p —a (pr" "D

<SB-Abp-a
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where a, b, A and B are given by (6.2) and (for convenience b, = min
{b;, by} and By = min {B;, B,}.

Now observe that

—1_<_A(2B—A)<B231and0<B2SI

for -1<A<B<£1and0<B<1 {
and OSa(zp_a)<p
p
0<a«<p.

Consequently the Hadamard product f * g(z) is in the class

T, (a (@;—") b, A(2B — A), 32) by Theorem 1.

In a similar manner we can prove

Theorem 14

Let the function f(2) defined by (1.4) and the function g(z)
defined by (5.4) be in the classes C,(ay,b,,A1,B,) and C,(ag,by,Ag,By),
respectively. Then the modified Hadamard product f * g(z) defined

by (6.1) belongs to the class Cp(a (2pp- a), b, A(2B — A), Bz) whefe
a, b, A and B are given by (6.2). A ‘

Theorem 15

Let the function f(z) defined by (1.4) and the function g
defiend by (5.4) be in the same class Tp(a, b, A, B). Then the
modified Hadamard product f * g(z) defiend by (6.1) belongs to the

class Cp(a (2"; "), b, A(2B — A), 32) )

Proof

Since f(2) € Tp(a, b, A, B) and g(2) € Tp(a, b, A, B), by using
Theorem 1, we have

zl @ +n)?1+bB)2a,,, by,

n=
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sn};1 @ +m?Q +bB)2a,,, by,

a) ]
Note also that.
~1<A@B-A)<B?<1 and 0<B2<1

<(B-A)2b%p —a)?

<[B2—A@B-A)Ib [p- a(fpp'

for ~1<A<B<1and 0<B<1
and 0”£a(g£l):—q-) <p

for 0<a<p

and Theorem 15 follows immediately.

Theorem 16

Let the function f(2) defined by (1.4) and the function g(z)
defined by (5.4) be in the same class Tp(a, b, A, B). Then the
modified Hadamard product f * g(z) defined by (6.1) belongs to the

— —_ 2
class C, (a (pr a), p, (L+ 26A)B— bA ,B).

1+ 5B

Proof
It follows from Theorem 1 that

B+ A)2b2(p-—a)?

s 2 2,

DI A D (1 + bB)
[+ 2AB-bA21. [ (2p-a

S [QrBABCbATY, [, (222

Observe also that
(1 + 2bA)B — bA?

1< <
<=7 8B <B=<1
for . —-1<A<B<1and 0<B<1,
and the proof of Theorem 16 is.completed.
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7. FRACTIONAL CALCULUS

Various operators of fractional calculus (that is, fractional
integral and fractional derivative) have been studied in the literature
rather extensively (cf., e.g., [6, Chapter 13], [9], [16], [19], (20], (25,

p. 28 et seq.], and [28]. We find it to be convenient to restrict
ourselves to the following definitions used recently by Owa [10] (and |
by Srivastava and Owa [26]).

Definition 1 (Fractional Integral Operator)
The fractional interal of order k is defined, for a function f(z),
by

1% f&)dd & > 0),

_k
D
, @)= I‘(k)f @ — &)1k

where f(2) is an analytic function in a simply connected region of the
z-plane containing the origin, and the multiplicity of (z ~ &)*~1 is
removed by requiring log (z — £) to be real whenz — & > 0. '

Definition 2 (Fractional Derivative Operator)
The fractional derivative of order k& is defined, for a function f(2), by

k 1 AE) dE
D —_— 0<k>1),
@ =i k) &z f - E)t O=k>

where f(z) is constrained, and the multiplicity of (z — E)k is
removed, as in Definition 1.

Definition 3 (Extended Fractional Derivative Operator)

Under the hypotheses of Definition 2, the fractional derivative of
order n + k is defined, for a function f(z), by

’”kf()— Lot o) 0<k<nneNU O, ;

where, as also in (1.1) and (1.4), N denotes the set of natural
numbels
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Theorem 17

Let a function f(z) defined by (1.4) be in the class Tp(a,b,A,B).
Then we have

D, f(>|>—9’—f1—, ot {1 1 (B-A)b@-a) [5[}7

(7.1)
and
Tp+1) k 1 ° (B-A)b@—-a) |z|
]D ﬂ)l>————r(p " k)l z|P {1+(p+1+k)' (1 + bB) }

(7.2)

for 0 < £ < 1 and z € U. The bounds (7.1) and (7.2) are sharp and
are attained by the function f(z) defined by

Te+n . { 1 (B-A)b (g—a)}’ |

D, f()l>r(p B @+1+k)’ (1 +6B)

B-Abp-~ap

- —_ 1
o f@=F- T ma e 2

The proof of Theorem 17 follows on the lines of the proof of
Theorem 9 in [3]. The details are omitted.

Corollary 5

Under the hypotheses of Theorem 17. D;kf(z) is included in

the disc with center at the origin and radius

To+ 1) { 1 (B—A)b(p—a)p}
r(p+1+k) @P+1+ I3 (1. + bB) ’

Using Theorem 2, we have
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Theorem 18
Let a function f(z) defined by (1.4) be in the class Cl',(a,b,A,B).
Then we have

I'p +1) Bl 1 B-Abp-ap
|ztP* {1'(p+1+k)' @+ D +bB) [zi}

“k
D =
z 1@ IF'p+1+k)

and

b T'o + 1) 1 B-Abp-ap
< SE p+k *
D, f(z)_r 1t 2| {1+(p T1TD GiD T8 IZI}

for 0 < k < 1 and z € U. The result is sharp for the function

B-Abp-ap
@+ 1A +5bB)

flz) = 2P —

collary 6
Under the hypotheses of Theorem 18, D;kf(z) is included in
the disc with center at the origin and radius

F'p+1) {1 1 (B—A)b(p—a)p}:
Tp+1+k) @+1+k°" @+1)A+0bB) J°

Theorem 19

Let a function f(2) defined by (1.4) be in the class Cp(a,b,A,B). z
Then we have '

k... Te+D 1 (B—_A)Vb (p-a)p
> T o qalpkil] ——
lsz(Z)l " Tp+1-k) Izl {1 @+1-k) @+ 1) (lbe) !ZI}

and . W

I'p +1) 1 (B-A)b p—a)p
' L. LS p-k
Torih 2 {1+(p+1.~k)'(p+l)(l+bB) |z|}

for 0 <k < 1andz € U. Then result is sharp. ~ . /

|fo(z) | <
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Proof
et G@) = Bl‘?i“—@zk Df f2)

p+1)

= To+n+DI@+1-k)

+n

n'= 1F(p+n+1—k)r(p+1) p+n

=2P - Z @ +n) Bn) a,,,2°*"

where
B(n) = IF'e+n)T(@+1-k)
Fe+n+1-mHIE+1D
Nothing
0 < B(n) £BQ) = ——t—
@+1-k)

with Theorem 2, we have
[G@)| = |z|P — BQ) |z|p+1 Z @p+n)a Upin

1 B-Ab@-ap

2j2)P - .
1 , @+ 1~k (p+1)(_1+bB)

ind - |G@)| < |z|P - BQ) |z[P+] Z (@+n)a

A +n

1 B-Abp-ap

< [z|P
sl +(p+1-—k)' @+ 1A +b6B)

(n 21).

' |p+1

hich give the inequalities of Theorem 19. Since equalities are

itained for the function f(z) defined by -

k
D =
2" = T

at is, by

F'eg+1) of. 1 (B A)b(p—-a)p
Z {1 (@+1-k) (p+1)(1+bB)}




B-Abp-a)p

— +1
(p+1)2(1+bB)zp ’

f(z) = 2P

we complete the assertion of Theorem 19,

Corollary 7
Under the hypotheses of Theorem 19. Df f(z) is included j,
the disc with center at the origin and radius )

I'+1) {1 . 1 (B~A)b p-a)p }
T(p+1-k) @+1-k @+1DA+DbB)
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ABSTRACT

In this paper we establish some common fixed point theorems without
using the continuity for mappings in a normed space and in a metric space
satisfying some contractive conditions. ‘

1. INTRODUCTON

Let T be a self-mapping on a Banach space B. For any x,in B
we shall consider the Mann iterates process {x ,} [3] as:

X, = (1—c)x, +c,Tx, forrn 20.
where {c,} satisfies
@ cp=1, G)0<e, < 1,forn 20, (i) Lim ¢, > 0.
As stated in [5], we assume the following requirement
@iv) ;Iflf?o sup ¢, > 0 instead of (iif).

In 1988, H.K. Pathak {3] established the following two fixed point
theorems: ‘ ‘

Theorem A

Let K be a closed, convex subset of a normed space N and let
T be a continuous self-mapping on K such that

O 1Ty | Sty { 1o LR LI e el ] o)L D e el )

UTxy}} (-ty=Ty{{] Jly-Tyil (1] Tx—y}}] }
1+ [[Tx-yi] 7 1+ |ly-Tyl}.
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for all x, y in K where 0 < ¢ < 1, {x,,} the sequence of Mann iterateg
associated with T be same as in (1), where {c, } satisfy (i), (i) & (iii),
if {x, } converges in K, then it converges to a fixed point of T.

Theorem B

Let K be a closed, convex subet of a normed space N and let
T; and Ty be two continuous self maps on K such that

| |J2=T x| | U= |5-Tgy| 1 }|5-Toy|| [1-] |=-Tyy|])
<H>1|T1:-T2y|nsqmax{ux—nl, T T T

[{Tyx=y|] [1-]|ly-Toyll} Ily-Tng-[l—HTlr-ylll}
1+ [Ty -yl ’ L+ fly=~Toyll

for all x, y in K where 0 < ¢ < 1, {x,,} the sequence of Mann iterates
associated with T'; and T, are given below:

For x5 € K, set

Xgns1 = (1 —cp) 2o, + chlen’_ }
x2n+2 = (1 - Cn) x2n+1 + ch2x2n+1 forn = <0, 1, 2, .....

where {c,} satisfies (i), (ii) and (iii). If {x,} converges to « in K and if

u is a fixed point of eiither T or T, then « is the common fixed point

of T]. and T2.

In 1990, P.P. Murthy and H.K. Pathak [2], improved the result of
Paliwal [4] and they proved the following theorem.

Theorem C

Let (X, d) 'be a metric space, T; and T, be self maps on X
such that: /

d(x, T %) d(y, Ty)

— .+ Bdx, .
dx,y) +d (¢, T;x) + d(x, sz)

am d(Tx, Ty < o

for all x, y in X, x # y, where r, s > 0 are integers and o and 3 are i

non-negative real numbers such that a + 3 < 1. If for xg € X, the
sequence {x,} consisting of the points.
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r - .
Xg9n+1 = TiXop, X9n 49 = T1¥9, 41, has a subsequence {xnk} converging

to a point u € X, then T; and T, have a unique common fixed point
u.

In this paper we remove the continuity hypothesis of the
mappings T and T;, Ty from Theorems A and B and we give
examples to justify our theorems. Further we extend Theorem C to a
more generalized contractive condition. Finally we prove a common
fixed point theorem on a complete metric space.

2. MAIN RESULTS

Theorem 2.1

Let K be a closed, convex subset of a normed space N and let
T be a self-mapping on K satisfying condition (I), {x,,} the sequence
of Mann iterates associated with T as in (1), where {c,} satisfy (i),
(ii) and (iv). If {x,} converes to a point « in K, then u is a fixed point
of T.

Proof
From (iv), we infer that

%._1_)12 Cn =P > 0 for a subsequence {cnk} of {c,}.

Thus, we obtain

xn+1—(1—cn)xn u
Txnk'-' : p a k%%=uask——>oo.
. n,

In (I) putingx = Xp 2y = UwWe get

|, = Ty || (1~ |2, —Tu]]]

HTx, —Tu Smax{ x, ~U )
(Tan,~Tul] S ma | a7l |~

[l%, —Tul| (1=]|%, = Tx, 11115, — || (1=||u~Tu|l]

’

1+||xnk-—TxnkH 1+[|Txnk—u||

IIM—Tull[l—HTxnk‘ulll}
1+ | u— Tuj|
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As k — o0, we get

Hu—TuHSqmax{o,o, lNw—Tul] o _|lu=Tul| }
1+ [Ju—Tull 1+ ||u-Tul|
ie. |lu—Tul||<gq [lu—Tul

1+ [|lu—Tull
ie. |lu-Tu||2<-(1~¢q) |Ju~Tul[<0

Hence u = Tu, i.e., u is the fixed point of T.

Theorem 2.2

Let K be a closed, convex subset of a normed space N and lgt-

- T, and T, be satisfies condition (II), {x,} the sequence of Mann

iterates associated with T, and T, as given by (2) where {c,} satisfy

(), (ii) and @iv). If {x,} converges to u in K then u is the common
fixed point of T; and Tj.

" Proof - v
{x,} is a sequence of Mann iterates associated with T, and T,
and converges to u. '
From (iv), we infer that
Lxm ¢, =p> 0fora subsequence {c, } of {c,}.
Thus, we obtaln :
Xon, +1~ (1 =€y )Xoy,
TiCon, = & . "—)-‘gli=u'ask—>00.
: Cn, p
Similarly, one can show that T2x2n +1 > U, ask —> oo,
Putx-uy—x2n +11n(II)weget :

[ la-Tqu| (1] Iu'szznk+1| |1

T, ame] |
e Ttan,  Hsmes Hon, o

l lu"T2x,2nk+1| [(1-}|u-Tyul]] ”Tlu_xan+1| [11-] Ixznk+1‘T2x2nk+1l 11
1+ ”u—T2x2nk+1” 1+ ”Tlu_xan+1”
[1%2n, 41~ Toxan 41l (1= [T —xgy 41l }

1+ | |x2nk+1 - T2x2nk+1| l
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as k — ©, we get

||T1u—-u||gqmax{0’ lu=Tpl] 11T —ul] }
1"'HU—T1uH 1+HT1u-—.u”

u-— u
HT1U u“<q Jl 1 “
1+ |fu~—Tul|

ie. ||Tu-ul|2<-1~-g) |lu~Tu||<0

Hence T,u = y, i.e., u is the fixed point of T,.

Similarly, we can prove that Tyu = u. _

l.e. u is the common fixed point of T, and Ty. This completes the

proof,

By suitable extensxon of Theorem (C) we establish the
following theorem:

Theorem 2.3

Let T, and T4 be two selfmaps on a metric space (x, d) such
that

d(x, T;x) d(y, Tpy)
dl,y) + dx, Ty) + d (7, T1x)

avy)  d(T. % 1y)< o

d(x, y) [d(x, Tyy) + d(x, T3]
+ B - — +ydx,y)
dx, Tx) +d (@, Tyy) + dlx, y)

forall x,y € X, x # y where r, s are positive integers and &, 3 and y
are non neagative real numbers such that

a+B+y<l.
If for x; € X, the sequence {x,} consisting of points
r ] ’
Xon+1 = T1%on Xon+2 = ToXons 1 3

has a subsequence {x,, } converging to a point z € X, then T, and T,
have a unique common fixed point u.
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Proof
Using condition (IV), we have

r S
d(x2n+1, x2n+2) = d(Tl x2n, T2 x2n+ 1)

r s |
d(x2n’T1 x2n) d(x2n+ 1 T2 Xon+ 1) i

<a
d(xgp, X9p41) + d(x2n’T; Xgn4+1) + dXgp, l’T; Xop) |

d(x2n’ Xon + 1) [d(x2n’ T; Xon+ 1) + d(xZn’ T’1-x2n):l

+
d(xgn, TiXgn) + d(gn, 1, To Xgp 4 1) + dCop, Xgp47)
+ Y d(xg,, X9p,,1)

= dXopn Xon41) dXop 41, Xon 1 9)
d(xg,, Xop 4 1) + d(Xgy, X954 9) + d(Xg, 1, X954 1)

d(xg,, Xop 4 1) [dxo,, X0, 4 2) + d(me Xop 1]
d(xgp, Xop 4 1) + d(Xgp 41y Xon49) + dxgp, X954 1)

+B

+ Y d(xg,, X9p, 1)
S(a+ B+ Y dxgy,, 295, 1)

d(xgpn 41 X9 +2) S7d (Xgp, X954 1)s
where r=o + B +vy < 1.

Similarly, we can show that d(x,,, xo, , ;) S rd (xg,_;, X5,) proceeding
in the similar manner, we have

(%9, .4 1 Xgn12) STd Cegpy Xop 4 7) S T2 dlxg, 3, Xg5)
<r2ntld(xg, xq)
This shows that {x,} is a Cauchy sequence.

Since the subsequence {xnk} of the sequence {x,} converges to u,
then .

.

lim x, =uex
n—w

Hence, we have

d(T u, Xgn ) = d(T] u, T, Xgn 1)
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d(w, T} u) dGgp _y, Ty %o 1)

<a .
d(u, xan_l) + d(u,T; xznk_l) + d(xan"_'l,T; u)

d(u, %9, ) ld(w, T, Zon 1) + dl, T7w]
+ B - . + Y du, x9, _1)
d(u, Tlu) + d(xznk_l,TZ xan_l) + d(u, xznh_l) k

Letting k — o0, we get d(T] u, u) = 0
Then T; u = u. Similarly T; u=u.

Hence T; and T; have a common fixed point u € x. Now, for the
uniqueness of u, if possible, let v(v # u) be another common fixed

point of T and T;, then

d(u,T; u) d, T; v)

du,v) = d(T]u, Tyv) S . ;
d(u, v) + dw,T,v) + dw, T, w)

d(u, v) [d(u, Ty v) + d(u, T] w)]
+B . - +vdw,v)
d(u, T, u) + d,T, v) + d(u, v)

SB+Y)du,v) <du,v) (B +7y<1).
This is a contradiction. Hence  is the unique common fixed point of
T and T},
Now, we prove that u is a fixed point of T; and T,.
We have

r+l

i.e. T u is a fixed point of T;. But z is a unique fixed point of T;.

Tiu = u, similarly Tou = u.

To prove the uniqueness of u, let w(w # u) be another fixed point of
T, and T,. Then
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d(u, w) = d(Tu, Taw) = d(Tiu, Tow)

dw, T} u) dw, Ty w)

_<_ o S . r
du,w) + dw,T, w) + dw, T, u)

d(u, w) [d, Tyw) + du, T] u)] -
+P - . +ydu,w) <@ +7) du, w)
d, T, u) + dw,T,w) + d(u, w) o

e, du, ) <SP + V) dw, w), B+ < 1.
Which implies that u = w.

Hence u is the common fixed point of T; and T,

Remark 2.1
(i) If we put B = 0in Theorem 2.3, we obtain Theorem C.

(i) IfweputPf =0T, =Tyandr =s = 1in Theorem 2.3, we
obtain a result of Jaggi and Dass [1].

Now, we give examples of some discontinuous mappings which are
satisfying Theorem 2.1 and Theorem 2.2 and have a fixed points.

3. EXAMPLES

Example 3.1

Let N = R, the set of all real numbers regarded as a normed
- space. Let K = [0, 1] and define a mapping T of K into itself such
that :

x/2 ,05x <1
0 ,x=1
It is clear that K = [0, 1] is closed and convex also T is discontinuous

mapping on K and satisfies the condition (I) with 1/2 < g < 1 and 0
is the unique fixed point of T.

Tx={
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Example 3.2 N
LetX = [0, 1], T, and T, be two self-mapson xletr =s = 1

and
{x/(x+3) ,05x<1/2
Tlx =
x/6 ,1/2<x<1
d T ={y/(y+1) ,0<y <1
T T e y=1

both T, and T, are discontinuous and satisfies all conditions of
theorem 2.2 also 0 is the common fixed point of T; and T,.

Now we prove the following theorem on a complete metric
space.

Theorem 2.4
Let E and F be two selfmaps on a coplete metric space (x, d)
and there exists a positive integers p(x) and g(x) such that
d(x, BP@x) d(y, FI9) y)
d(x,y) + d(x, F40)y) + d(Y, EP@x)

+B d(x, y) [d(x, FA9)y) + d(x, EP® x)]
d(x, BP@ x) + d(y, FI0)y) + d(x, y)

(v) dEPX) £, FaMy) < o

+ydx,y)

for all x, y in X, where o, 3 and Yy are non-negative real numbers
suchthata + B + v < 1. '

Then E and F have a unique common fixed point in X.

Proof -
~ Letx, € X, and define the sequence {x,} by
(x9,) : = )
Xone1 = B0 xy, o= B F2nel

If Xon+1 = Xan .9, then {x, } is a Cauchy sequence.

Let  xg,,1# X9y, for eachp # g, then
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_ (xo,,) qx )
i1, 5049 = BT, BT

(x9p,) glx )
s E)g;n 2r) d(x2n+ 1 FX2n f’iHl )

qlx ) (z9,,)
dxgns X2n41) +.d(x2"’ Fx2n E’IHI ) + ,d(x2n+1’ E)Jz)n 2

<a

' qlx ) @9;)
d (g, Xop 41) [d(Egn, FxL 720+ 1) + d(xy,, Ex) *27))

(x9p,) ’ ( )
d(xZn’ E"gnxzn ) + d(x2n+1’ FXZ,ff’}” ) + d(x2n’ x2n+l)

+ Y d(Xgp, X9p 41)

S+ B+ 1) dlegpy, Xop . 1) < Axgp, Xgp i1 (@ + B +y < 1)

Thus, we have , ’
d(xgn 41> Xon+2) < d(Xgp, X9 41)

Proceeding in the similar manner, we have

d(xg, 1 Xon+9) < d(xé,,, Xon4+1) < d(Xg,_1, X9,) < ... < d(xg, xq)

{x,} is monotonically decreasing sequence which converges to a real
number. Thus {x,} is a Cauchy sequence and ’}Lr)ré x, =ueX

Now, we shall prove that EP% u= FI = o
dxgn , 1 FI u) = dELE2, IO 1)
déxy,, E)(;’(:‘Zn)) d(u, FI :

d(xg,, FI™ w) + d(u, E)é;f:%)) + dlxy,, u)

. LQ

g, W) [d gy, FI% u) + dixy,, BXLI2V)]

Ay, BLE) + d(u, FI™ w) + dixg,, w)

4 + Ydxg,, u)
Letting n — o, we have dw, F¥* ) = 0

e u = F1%_Gimilarly EP“ u = u.

Hence EP™ and F? have a common fixed point « € X.

Let v also be a periodic point of E and F

ie. EPPVy=F1Vy =y,

94

TN




then

=

du, v) = dEP® y, FI¥ )

du, BP ) dw, FI® p)
&A@, F9 ) + d(v, BP9 1) + d(w, v)

+B du, v) [du, FI®y) + du, EP@)]
du, EPWy) + d(v, FIWy) + d(u, v)

+yd(u,v)= (P +Y)d(u,v)

du,v) <dw,v) B+y<1

a contradiction. Which impliesu = v.

Now, we prove that u is a fixed point of E and F -
since u = EPWy = EPM Ey = EEPW y = E u.
Thus E u is a periodic point of E.

Now

from the uniqueness of u, Eu = u.

Similarly Fu = u. Hence u is a unique common fixed point of E and F

in X,

This ends the proof.

Remark 2.2

If we put B = 0 in theorem 2.4 we get Theorem 2 of Murthy

and Pathak [2].
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ABSTRACT

In this paper, we continue investigating fixed points of mappings :» ¢
spaces.

1.  INTRODUCTION

In 1975, Kasahara ([8], [9]) gave a very useful treatment for
finding fixed points in general spaces (called L-spaces) in which all
the metric properties, in particular, the triangle inequality, are not
used. So far a few results have appeared in the literature (see K.
Iseki [6]). In [1]; We presented some results on L-spaces using root-
condition (a contractive condition by M.S. Khan [7]).

In this paper, we continue investigating some more results of
fixed points of mappings in L-spaces. Throughout X denotes a d-
complete, L-space [6], where d is non-negative real valued function
defihed on XxX and d satisfieds : d(x, y) = 0 implies x = y, unless
otherwise stated. F01 ‘the preliminaries, we refer to K. Iseki [6] and
Kasahara ([8], [9]).

Let T:X—X be a mapping such that for each x in X T"ix - a
implies T(T"ix) —> Ta. Then T is called an orbitrally continuous
mapping [2].

K. Iseki ([4], [5]) proved some results concerning fixed points
of certain mappings in metric spaces. We prove theor‘em 1 and 2
using similar contractive conditions respectively and obtain fixed
point theorems in d-complete L-spaces.
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Theorem 1

If S and T are orbitrally continuous self maps on X such that
forallx,yinX

d(8Sx, Ty) £a d(Sx,x) + bd(Ty,y) + cd(x,y)
wherea,b,c > 0anda +b + ¢ < 1, then S and T have a common
fixed point.
Proof
Letxyin X be arbifrary. Define a sequence (ﬁc'n)'iﬁ X as:
Xon+1 = SXop, Xon = Txgn_;. Then
d(xgp 41, Xan) = d(Sxgp, Txony)
<@ d(Sxgy 4 1%gn) + b d(Txg 1 %9 1) + € d(EanXan 1)
= ad(xg,,y, Xgp) + b d(xgp, X9, 1) + ¢ d(tg,, g, 1) OF
b+ec

' d(x2n+1» Xon) Sq3 d(x2n7 x2n-1)’ where 1= 1-a <1
o . a+c
Similarly d(xonXgn-1) < qad(Xgn_1X9,_3), Where g5 = b <1

In general, d(x,, 1, x,,) < qd(x,, X, 1), q = max {g1,92} < lor

d(x,,,, x,) < g*d(x;, xp). Consequently, 2 d(x, 4, x,) <.
From the d- completeness, {x,} has a limit a in X, that is hm x, = a.
Since S is orbitrally continuous, we have llm Xon = @ 1mphes
lim Sx,, = Sa. This gives Sa = a. Similarly,"We have Ta = a. This
Completes the proof.
Theorem 2

If T is an orbitrally continuous self mapping on X such that
d(Tx, Ty) < a [d@, Ty) {1 + dx, Tx)}/1+d(x, y)] + b {d(x, Tx) +
dly, Ty)} + cd(x,y) forallx,yinX,a,b,¢ > 0,a + 2b + ¢ < 1, then
T has a fixed point.
Proof

Let x; be an arbitrary point in X. Define a sequence {x,} in X
as: x,,1 = Tx,. Then
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dx,, x,,1) = d(Tx,_;, Tx,) <a [d(x,, Tx,) {1 + d(x,_;, Tx,_)}/1+
d(x,_;, x,)] + b {d(x,_;, Tx,_;) + d(x,, Tx,) + cd(x,_q, x,,)

= ald(x,, x,, 1) {1 + d(x,_y, x,)}/1 + d(x,_q, x,)] + b{d(x,_;, x,,) +
dlx,, x,,1)} + cdx,_q, x,) or dx,, x,,1) < ¢ d(xn_l, x,), where
g=b+c/1—a-b < 1.

Similarly, d(x,_,, x,) <qd(x,_,, x,,_1). Continuing till we have

dlx,, x,.1) < .. < q"d(xg, xy) or dx,, x,,1) < g'd(xg, xy).
Consequently Zd(x,,x, , ;) <. By the d-completeness of X, {x,}—>a.
Since T is orbitrally continuous, therefore, lim x, = a implies lim
Tx, = Ta. This gives that Ta = a. This complétés the proof. o

If ¢:[0, ©) — [0, ) is a non-decreasing and upper semi-
continuous from the right with ¢ < ¢, # > 0, and $(0) = 0, then
J. Matkowski [10] proved that ¢"*(t) — 0 as n —> 0.

 Hicks [8] proved theorem 1 in which he established the
necessary and sufficient conditions for a certain mapping to have a
unique fixed point in complete metric spaces. We generalize this in
d-complete L-spaces as: S

Theorem 3

Let S, T be orbitrally continuous self maps of X such that
d(Sx, TSy) < ¢d(x, Sy), forallx,yin X. Then Sand T have a common
fixed point.

Proof

Let x, be an arbitrary point of X. Define a sequence {x, } inX
as:Xo, 1 = szn,xZn = Txy, ;. Then

gy ¢ 1%05) = d(SxZn’TS'x2n— ) < ¢ dlxgp,Sx9n~2) = ¢ g Fon-1) or
(%o 4 1r%9n) < & d(xgp,x9,.1)- Similarly

d(xy,, X9, i) < ¢ d(xg,_1, X9,_9)- In general, we have

dx, , 1, %,) < ¢ d(x,, x,_;). Continuing till we have

dix,, 1, %) < ¢*d(x;, x5). Using lemma [5], we conclude that

2 d(x,, 1, %,) < . Then by d-completeness of X, -{x,} > xinX
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Suppose S is orbitrally continuous, then lim x,, = x gives’

n—wo
hm Sxg, = Sx or x = Sx. Similarly we can have x = Tx. Thig
completes the proof ) ‘

M.S. Khan ['7] proved a result (see theorem 2) concermng a
fixed point of a self mapping in metric spaces, we generalize this
result in L-spaces. Moreover, this theorem classifies L-spaces in
which each x in X is a fixed point. '

Theorem 4
Let X be a L-space and T be a self map of X. Let F :
XxX—>R, be a mapping such that F(x,y) = 0iffx = y and

F(Tx, Ty) > {F(x, Tx) F(y, Ty)}1/2, for all x, y in X. Then eachxin X
is a fixed pomt of T.
Proof

Let x in X be arbitrary. Then

= F(Tx, Tx) = {F(x, Tx) F(x, Tx)}¥/2 = F(x, Tx) or F(x, Tx) =
implies x = Tx. This proves that each x in X is a fixed point of T.
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ABSTRACT

In this paper we continue investigating some more fixed point theorems in
Saks sapces. .

INTRODUCTION

Okada [12], Singh-Virendra [24], Kulshrestha [9], and
Naimpally, Singh, Whitefield [11] extended Goebel's coincidence
theorem [4] to L-spaces, 2-metric spaces, metric spaces and
" multivalued contraction mappings on metric spaces, respectively.
Park [17] generalized Goebel’s coincidence theorem using Meir-
Keeler’s contraction condition [10]. Later Jungck’s theorem [5] was
improved by Singh [19] for a pair of commuting mappings satisfying
some conditions to have a unique fixed point. Then results regarding
a triplet and a quadruplet of mappings were also established (see [1],
- [31, [6]-[9], [17]-[25D).

In 1986, Y.J. Cho et- aI [2] proved a coincidence theorem for
three mappings on an arbitrary set having values in Saks spaces and
derived a fixed point theorem for a triplet.- of mappings not
necessarily continuous. These results are, in -fact, extension of
findings of Khan [7], Singh-Singh [23], Yeh [25].

In this paper, we present some more fixed point theorems in
Saks spaces satisfying an SR-condition (a condition due to M.S. Khan
[7]) and rational inequalities. Theorems 2-5 also give classification of
Saks spaces in which each x in X is a fixed point. For classification of
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complete metric spaces and fixed point theorems satisfying a rational
inequality, we refer to [8] and [18], respectively. -

In [14] Orlicz has proved the following lemma:

Lemma

Let X, d) = (X, N, Ny) bea Saks space. Then the following \
statements are equivalent:

(1) N, is equivalent to N, on X.
(2) (X, N;) is a Banach space and N; <N, on X.
(3) (X, Ny) is a Frechet space and N, <N, on X.

"~ For the preliminaries and general information of Saks spaces,
we refer to [2], [13]-[15].

The following theorem gives a‘ﬁxed' point of a sequence of
self maps in Saks sapces satisfying an SR-condition.

Theorem 1

Let (X, d) = (X, N, N,) be a Saks space with N; equivalent ¢
to N; on X, Let {S,} and {T,} be sequences of self maps such that
for all x, y in X and for every positive mtegers m,n,0<h <1, we
have

Ny(Spx — T,y) S h{Ny(S, x — x) N2<T,,y—y>} 1/2

Then {S,} and {T,} have a unique common fixed point.

Proof

Define a sequence {x, }in X as: xg, = T x2n_1, Xopy1 =
Sn+1x2n Then .

- Nop(gp 41— %9s) = Np (S 1%0n = TpXon-1)
Sh{Ny(S, , 1%9n — %95) Ng(TpXg,. — Xg,_1)}1/2
= h{Ny (g, 1~ Xg,) Np(xg, — %9, D}/2 1

or .N2(x2n'+1 ——.xzn) < gN, (xg, — X9,-1)» ¢ = B2 < 1. Similarly
Nolxop = x9p-1) < qNg(xg, 1 — Xg,-9). In general Nolx,,; — x,) <
g"N,(x;—xg). Since N; < Ny, this implies N;(x,, , ;—x,,) < g"Ng(x;—x¢).
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This shows that {xn} is a Cauchy sequence with respect to N,. By
lemma, (X, N 1’), is a Banach space. Therefore {x,} — x in X. Now

Ny(x = T, ) < No(x — x5, ) + Ny 41 — )

= No(x =295, 1) + No(Sy, 4 1%9n = Tie)

< Nk — X9, 1) + R{N(S,, %on — Xgn) Ng(T,x — 2)}1/2

= Ny(x —x9,,,) + h {N2 (X9, 41 — Xo) Ng (T, x — x)}1/2
Since N; <N;, we have
Ny(x = Tpox) < Nj(x ~ X9, , 1) + R{N (g, , | — Xgn) N1(T,x — )} 1/2.

When n — © we obtain Ny(x — T,,x) = 0 for all m or x = T, x for all
m. Similarly No(S,,x — x) < Ny(S,,x — x9,,) + Nylxg, — x) gives x =
S,.x for all m. This proves that x is a common fixed point of {S,} and
{T,}. The uniqueness is trivially obtained.

Let & : [0, ) — [0, ©) be a non-decreasing and continuous
on the right such that @) < ¢, fort > 0. Clearly @(0) =

The following theorems 2-4 class1fy Saks spaces in Whlch
each x in X is a fixed point.

Theorem 2

Let X;, @) = X, Ny, N2) be a Saks space and T a self
mapping of X satisfying

D(Ny(Tx — Ty)) = {Ny(Tx —x) No(Ty — y)}1/2

for all x, y in X. Then for every x, x = Tx.

Proof
Let x in X be an arbitrary point. Then

0 = B(0) = B(No(Tx — Tx) 2 {Ny(Tx — x) Ny(Tx ~ 2)}1/2 = Ny(Tx—x)

or No(Tx — x) = 0 implies x = Tx for all x. This completes the proof.

Corollary

Let (X, @) = (X, N}, N,) be a Saks space. Let T : X — X
satisfy forallx,yinX, k > 1,
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N,(Tx — Ty) 2 h{Ny(Tx — x) No(Ty — y)}1/2

Then each x in X is a fixed point.

Proof

Define @ : [0, ) —> [0, ®©) by @) = t/h. Then using the
above theorem, we obtain the required result.

Theorems 3 and 4 are similar and are left to the reader.

Theorem 3

Let (X, d) be a Saks space and T : X —> X be such that for all
x,yin X,

B(N(Tx-Ty) 2 {N3(¢~Tx) + N3 — Ty)} {No(y—Tx)+ Ny(x — Ty)}-1
Where No(y — Tx) + No(x — Ty) # 0. Then each x in X is a fixed point
of T. .

Theroem 4

Let (X,, d) be a Saks space. If a self map T : X —> X satisfies
BN (Tx~Ty)2{N2(y~Tx) + Noe—Ty) HNE " (y=Tx) + Nyp-m(x—Ty) } 1
for all x, y in X, where ,N‘;—m y—Tx) + N‘;_m (x — Ty) # 0, m21, p>2,

m < p, then each x in X is a fixed point of T.

..Theorem 5

Let (X, d) = (X, Ny, N,) be a Saks space with N; equivalent
to N,. Let S and T be self maps such that for all x, y in X,

N (Sx-TSy)<c{N5(Sy-Sx) + Nj (x-TSy) HNG " (Sy-Sx) + Ny (x-TSy) } 1

where N‘z’_m(Sy'— Sx) + Ng-m(x -TSy)#0,m21,p=>2,m < p and
0 < ¢ < 1/2. Then S and T have a unique common fixed point.
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Proof
Define a sequence {x,} in X as: x5, = Txy,_1, X941 = Sxg,,.
Then N (35,1 = %3,) = Ny (S5, — TSy, o)
< ¢ {N§(Sxgy_g — Sxy) + Nj (g, — TSxg, )} {NP™(Sxg, 5~Sp,) +
N, "(xg, ~ TSxg,_5) '
= ¢ {NjUgn-1 — %gns1) + Nylegn = %90} (NG Gigng = %am41) +
NG " (xg, — %gn)}
=c N'; (xgp-1 = X9, 4+ 1). Thus we have
NG (gny 1~ %on) SEN gy —Zon, 1)
or Ng(xgn 4 1~ %3n) < ANg(xg, 1 — X35 1)
S h{Ny(rgn_y — %gn) + Nyltgy = %95, D}, h = c1/2 < 1
or Ny(g, 41 — Xg,) < qNplxg, — xz,,‘_l), whereq = h/1-h < 1.
Similarly, ' '
Ny(xgn = Xon_1) SN (9,1 —Xgn,q)-
In general
No(x, .1 —%,) SqNo(x, —x,_1) < ... Sq"Ny(x; — xp)

or
No®p 41 = %5) < q"Ny(x; — %)
Since N, < N,, this gives
N 41— %p) < Nolxy — xp).

This shows that {x,} is a Cauchy sequence with respect to N;. By
lemma, (X, N;) is a Banach space and therefore {x,} converges. to
some x in X. Now
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N7 (Sx —x5,) = N5 (Sx — TSxg,,_5)

< c{NG(Sitg, o — Sx) + No(x — TSxg, 5)} {N) " (Sxg, o~ Sx) + NO ™
(x — TSxy,_5)} e
= c{NY(xy,_1—Sx) + No(x - x2n)} AND ™ (g, — Sx) + Np " (x—xy,))

when n—»o0, we have N';(Sx —-x) < cN';(x —Sx)or(1—c¢) N";(Sx - Xx)
<0or N3 (Sx—x) = 0or Ny(Sx —x) = Oorx = Sx.

Now , .

N (x — Tx) = N’ (Sx — TSx) < ¢{Np(Sx — Sx) + Nj (x — TSx)} {N; "
(Sx — Sx) + Ny ™ (x — TSx) |

N (x — Tx) < N7 (x — Tx) implies Ny(x — Tx) = 0 or x = Tx. The
uniqueness is easy to obtain. This completes the proof.
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ABSTRACT

A new related fixed point theorem on two metric spaces is given.
Key Words
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54H25.
The following related fixed point theorem was proved in [1].

Theorem 1

Let (X, d) an”’ (Y, p) be complete metric spaces, let T be a
mapping of XintoY a+ -t S be a mapping of Y into X satisfying the
inequalities

p(Tx, T Sy) < ¢ max {d(x, Sy), p(y, Tx), p(y, T Sy)},
P(Sy, T Sx) < ¢ max {p(y, Ty), d(x, Sx), d(x, S Tx)},

forallxinXandyin', where 0 <c¢ < 1. Then ST has a unique fixed
point z in X and TS has a unique fixed point w in Y. Further, Tz = w
and Sw = 2.

We now prove the following related fixed point theorem.
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Theorem 2.

Let (X, d) and (Y, p) be complete metric spaces, let T be o
mapping of X into Y and let S be-a mapping of Y into X satlsf:'ylng the
lnequalltzes

d(Sy, S Tx)<c ¢ (x, ), (1)
p(Tx, TSx) <c vy (x, ¥), (2)

Forallxin X aﬁd yinY for which .
g(x, y) #0#hix,y),

where 0<c<1,

x5 ey
d)( , )— ( ), \V(x,y) h(x,y)

and
fGey)=max{d(x,Sy)p(y, Tx),d(x,STx)p(y,TSy),d(Sy,STx)p(y, Tx)}
g(x,y)=max{d(x,STx),p(y,TSy), d(x, Sy)}, o
h(x,y)=max{d(x,STx),p(y,TSy), d(y, Tx)} .

Then ST has a unique fixed point z in X and TS has a unique fixed
pointwin. Further Tz = wand Sw = 2.

Proof

'Lep'x be an arbirary point in X. We define sequences {x ,} in
X and {y,} in Y by

(ST = z,, TSTI™ 1z = y,
for n=1,2,.

‘We w111 assume that x, # x,,; and y, # yn +1 for all n,
otherwise, ifx, = x, ., andy, =y, ., for some n, we could putx, =2
andy, = w. Applying inequality (1) we get ' '

d(xy, Xp 4 1) = d(Syy, STx,) ,
< Cd(xn’xn+'1) p(yn’ Yn+ 1)
) . ) 'maX{d(xm xn+1)’ p(yn, yn+1)}
from wheh it follows that

d(x,, "x.:n sV = ép(yn’ Yn+1) 3 ‘
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Applying inequality (2) we get
p(yn’ yn+1) = p(Txn_p TSy,,)

ed(,_1, %) POy Yns 1)
" max{d(x,_y, %), PO Yps1)?

from which it follows that
PO Yns1) S edx,_y, xn).
-It now follows from inequalities (3) and (4) that

d(xn) xn+ 1) S Cp@m yn+ 1) S cznd(x) xl))

for n = 1,2, ... Since ¢ < 1, it follows that {x,} and {y,} are Cauchy
sequences with limitszin X and w in Y.

Applying inequality (1) we have
d(Sw, x,,) = d(Sw, STx,,_;) ,
< ¢ max {dGe,_y, Sw) pw, y,), dy_1,%,) P, TSW),
d(Sw, x,,) pw,y,)} x
x [max{d(x,_, x,), pw, TSw), d(x,_;, Sw)}1~1.
Lettingn tend to infinity, we have d(Sw, z) < 0 and so Sw = 2. '
Applying inequality (2), we have ’.
P(T2,7,) = P(T, TSy, 1)
< c max {d(z:x,_1) PWp_y, T2), d(2, ST2) PGy, Y)s
| dx,_, ST2) py,_p T} X
x [max{d(z, ST2), pWn_1, Yn)» PWp-1, TOHL.
Letting  tend to infinity, we have
" dw, T2) < cd(z, ST2) )
Applying inequality (1) again we have ‘
pz,, STz) = d(Sw, ST2)
. " ed(z, ST2) p(w, T2)
max{d(z, STz2), p(w, T2)}
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and it follows that

d(z, STz) < cpw, T2). ()
It now follows from inequalities (5) and (6) that

pw, T2) < cd(z, ST2) < c2p(w, Tz)

and so | -
STz = Sw = z, TSw = Tz = w.

To prove uniqueness, suppose that ST has a secorid disﬁncf
point z’. Then it follows easily from inequalities (1) and (2) that

dz',z) = d(ST2', ST2) < ¢p(Tz', Tz)
= cp(T2', TSTz) < c2d(Z, 2),
a contradiction. The fixed point z must therefore be unique.

The proof that w is the unique fixed point of TS follows
similarily. .
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ABSTRACT

In this paper, at first, we show that strong ideals are p- ldeals and p-ldeal is

~ strong iff it is closed. Next, we investigate the relation between strong ideals and

associative- ideals. We also show that. p-ideal, strong ideal and associative -ideal

coincide in qua51-assoc1at1ve BCI-algebra. Fmally, we give some examples of strong
ideals.

1. INTRODUCTION

In [1] the concept of strong 1deals was introduced. M. Dao,)x
[3], gave the notion of a regular ideal in BCI-algebras. In 4], it was
shown that strong ideals and regular ideals coincide in BCI- algebras.
-In [10], associative ideal was discussed ‘and the following results were
- obtained: a BCl-algebra X is associative: iff -evey ideal ‘of X is
associative ideal; X/A is associative BCI-algebra iff A is associative
ideal of X. In [7] the concept of p-ideal was introduced and some
intelesting results were obtained. In this paper, we will study the
relation among strong, associative and p -ideals. We also give some
examples of strong 1deals

Definition 1 [13:
An ideal A in a BCl-algebra X is called a Stl ong ideal if for
aceA,xeX-Aa*xeX—-A
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Defimtion 2 [3):

An ideal A in a BCl-algebra X is called regularifx *y € A
x € A implyy € A,

Definition 3 [8):
' An ideal A in a BCI- algebra X is called a closed ideal if 0 * o
€ Afora € A. Note that a closed ideal is a sub-algebra.

. Definition 4 [7]
: A nonempty subset A in a BCI- algebra X is called a p-ideal of
X, 1f1t satisfies: (1) 0eA (iDx*2)*(y*2) € Aandy € A imply
éxeA _ '
I (I)Let X be a BCl-algebra and A C X an ideal in X. Then
_jfollowmgs are equivalent: (i) A is strong, (ii) A is regular ([4]).
. (2)An ideal A of a BCIl-algebra. X is a p-ideal iff x € X and
0*(0*x) € Aimply x € A ([7]).
(3)Let A be an ideal of a BCl-algebra X, then x € A implies
0*(@0*x) e A7

Definition 5 [10]:

A nonempty subset A in a BCl-algebra X is called an
associative ideal of X, if it satisfies: (i) 0 € A, (i) (x *y) * z € A and
y*z € Aimplyx € A, wherex, y,z € X.

| Lemma 1 [10]: _ .
B “An ideal A of a BCI-algebra X is an associative ideal iff x, yeX
and (x *y) *y € Aimply x € A.
" LetX be a BCL-algebra, then
4)0* (x *=(0%x)*(0 "y), for allx, y € X ([7]).
(B)0*[0*(0*x)]) =0z, forallx € X ([7D.
(6)0 *[0*@&*yl=(0*y *(0*x), forall x,y € X (7D.
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(7)ot(xty)n= (Otxn)t(otyn),ot(otxn) - Ot(o'tx)n’ot
[0*(0*x)]*=0*x" foralln € N and allx,y € X. Where :
0% = (L (0% %) *x) ) *x ([11]).

Theorem 1 _
‘Let X be a BCl-algebra and A ¢ X be a strong ideal. Then A
is a p-ideal.
Proof

Forallx € X, we héve,

[0*0*x)]*x=0€ A.

Suppose that 0 * (0 * x) € A, using (1), Definition 2 and [0 * (0 * x)]
*x € A, we get that x € A. Hence A is p-ideal (according to (2)).

The .folldwi_ng‘ example shows that p-ideal may not be
_ necessarily strong and may not be a sub-algebra, ’f ‘

Example 1 [4]:

Let Z be the set of integers and "—* the minus operation, then -
(Z,-,0) is a p-semisimple BCl-algebra. Let us consider
A={0,1,2,3,...}, then A is a p-ideal (according to Theorem 3.3 of [7]). |
~ But A is not strong (see [4]). Also note that A is not sub-algebra.

Theorem 2 .
In BCl-algebra a p-ideal A is strong iff it is closed.

Proof . _ _
V Since every strong ideal in BCl-algebra is closed ([2]),
therefore necessity is true.

‘Conversely, let A be a p-ideal and be cldsed, we show that A
is regular. Suppose x *y € A and x € A. Since A is closed, therefore

0*x€A,0*(x*y) € A, 0,"‘ [0 * (x * y)] € A. By (6), we have
O**O0O*x)=0*[0*(x*y)] € A.
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Now,0*x € Aand (0 *y) * (0 *x) € A. Using the deﬁnition of ideal,
we get that 0 * y € A. Thus 0 * (0 * y) € A, because A is closeg

Using (2) and A is a p-ideal, we see that y € A. Hence A is regular, |
i.e. A is strong (by(1)). This completes the proof.

The following corollary is obvious.

Corollary 1
In a BCl-algebra a p-ideal A is a sub-algebra iff it is strong.

Theorem 3

Let X be a BCl-algebra and A € X be an associative idea],
Then A is strong.

Proof

,  Assume that x * y € A, x € A. Since x € A and A is an
associative ideal (Obviously, every associative 1dea1 is anideal )’

thelef01e 0 * (0 *x)cA (by [3]). Thus
[(O'fx)‘(O*x)]‘(O‘x) =0*(0*x) €A,
(O‘x);(O*x)=0€A.
Uging deﬁnition 5 it follows that 0 * x‘é A. Theh
(v*x)‘_yé Gry*x=0"x A,
x*ye€A. |

By deﬁnltlon 5, we have'y € A. Hence A is a 1egular 1dea, e a
strong 1dea1

The followmg example shows that a str ong 1dea1 may not be .
necessarily an associative ideal. :
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Example 2 ’
‘Let X = {0, 1, 2, 3}, and the operation * be defined by the
- table '

2 2 3 0 1

s | 3l1]3]o0

Then (X, *, 0) is a BCI-algebra, A = {0, 2} is a strong ideal in X. But
A is not an associative ideal, because (1*3)*3 =0 € A, 3 * 3=0€A,
l1gA.

Xi Ch_angchang‘[12] introduced a new class of BCl-algebras,
called quasi-associative BCl-algebra.

‘Definition 6 [12]:
BCl-algebra X is quasi-associative BCI-algebra, if it satisfies

(x*y)*z<x*(y*2),forallx,y,z€X.

Lemma 2 [12]:
A BCl-algebra X is quasi-associative iff it satisfies

0*(0*x)=0*xforallx € X.

Theorem 4

LetXbea qﬁasi-associative BCl-algebra and A be an ideal of-
X, then the followings are equivalent:

(i) A is associative, -
(i) Aisstrong,

(iii) A is p-ideal.
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‘Proof
By Theorem 3 and Theorem 1, we get that (i) implies (ii) anqd
(ii) implies (iii). Now, we show that (iii) implies (i). Let A be g
- p-ideal. If (x *y) *y € A, then :

0*{0*[(x*y) *y]} € A , (by (3))
But  0*{0*[(x*y) *yl} | ?
=0**[0*x*y)] "~ (by (6)).
={0*[0*G*N}*y .- o
=[0*@*N*y | (by Lemma 2)
=[0*x)*(0*y]*y (by (4))

={[0*(0*y]*x}*y

={[0*(0*M]*y} *x

=0*x _

=0*(0*n (by Lemma 2)

‘Therefore 0 * (0 * x) € A. Using (2) we have x € A. Thus (x*y)*y€A
1mp11es x € A. By Lemma 1, we get that A is associative ideal. Th1s
completes the proof.

Finally we give the following results.

Theorem 5 _

LetXbea BCI-élgébra. For all n € N, we define

T(X)—{xeXlO"‘x".—O} S

Then T,(X) are strong ideals (not necessarily associative) for all
neN.
Proof

Obviously, 0 € T,(X). We claim that T, (X) is an ideal in X. If
x*y,y € T (X), then .

| 0*@*y" =0, 0%yt =0
By'.(7), We have
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0*x"=(0*x")*0
=(0*x")*0*y")
=0*(x*y"
=0 |
Thus x € T,(X) and T,,(X) is an ideal of X.
Now, we claim that T, (X) is closed. If xET (X), then 0*x"=0.
By (7), we have :
0*(0*x)" = O-‘(O‘x") =0%*0=0
Thus 0*x € T,(X) and T, (X) is closed.
Suppose 0 * (0 * x) € T,(X), then 0 * [0 * (0 * 0)]* = 0. By
(7), we have
0*x*=0*[0*(0*x)]"=0
Thus x € T,(X). Using (2), T,(X) is p-ideal.

Hence T (X) is p-ideal and closed. Us1ng Theorem 2, we get
that Aisa strong ideal.

In Example 2, T,(X) = {0, 2} is a strong ideal, but it is not
assoclatlve ideal.

' .This completes the proof.

’

Corollary 2
Let X be a BClI-algebra, then X/T, (X) is p-semisimple BCI-
algebrafor alln € N..
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ABSTRACT .
In this paper we introduce the concept of a P-ideal m a BCI algebra and
characterize P-semi s1mple BCI- algebras by P-ideals.

L. INTRODUCTION

In 1980 K Isekl {5], mtroduced the concept of an ideal in a -
BCl-algebra. In [1], the concepts of strong ideals, obstinate ideals and
weak ideals were introduced and it was shown that if A is a strong
ideal in a BCl-algebra X, then X/A is a p-semisimple algebra.
Further, it was proved that the BCK-part denoted by B(X), of a BCI-

. algebra X is a strong ideal. M. Daoji [8], introduced another class of
‘ideals namely, regular ideals in BCI-algebras and proved some of its
properties. ‘S.A. Bhatti [2], proved that regular ideals and strong
ideals coincide. In this paper we introduce a new class of 1deals
namely, p-ideals and study some of its properties.
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2. PRELIMINARIES
A BCl-algebra is an algebra (X, *, 0) of type (2, 0) satisfying

the following axioms for all x,y, z € X.

D (@*»N*E*2)* @y =0

2) x*&x*y)*y=0

3 x*x=0

4) x*y=0=y*x D> x=y

(5) x*0=0=>2>x=0

6) x*y=0 < x<y.[5]

In a BCI-algebra X, the set BX) = {x € X:0*x =0} isa
sub-algebra of X and known as BCK-part of X. B(X) is an ideal in X.
IfB(X) = {0}, then X is known as p-semisimple [6].

(7) If X is a BCl-algebra, then followings are equwalent
- (i) Xis p-semisimple,
) 0*(0°*x =x,
(i) x*y=0 = x =y, forallx,y € X.[3]
In a BCl-algebra X, forx,y,z € X.
8 x*y)*z=x*2)*y. [5]
(9 x*0=x, xeX.[5].
(10) xSy=>z*y<z* xandx*z<y*z [5].,

(11) Let X be a BCI- algebra and A a subset of X. A is an 1deal in
- Xif,

i 0ecA
(ii) x*y€A, yec Aimplyx € A, [5]
(12) Let X be a BCl-algebra and x, y, z € X, then
@ x*@*G@*y)) =x*y |
) 0*©*(0*x)=0%x[2].
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3. P-IDEALS

Definition 3.1
A non-empty subset A in a BCl-algebra X is called a p-ideal of
X, if it satisfies:
(i‘)‘> 0 A;
() (x*z)*(*z)cAandycAimplyx € A.

Theorem 3.1
A p-ideal is an ideal.

Proof )

Let A be a p-ideal of a BCI-algebra X. By Definition 3.1 (i) we
have0 € A. Ifx*y € Aandy éA,thenwehave x*0)*@*0ecA
andy € A, sincex * 0 = x, y * 0 = y. By definition 3.1 (ii), it follows
thatx € A. Therefore A is an ideal of X. This coinpletes the proof.

Theorem 3.2
' Let A be a p-ideal of a BCI-algebra X, then
(13) 0*(0*x) € Aimpliesx € A.

Proof

If O*(O‘x) € A,then(x*x)* (0 *x) € Asincex *x = 0.
Note that 0 € A, because A is a p-ideal. By definition 3.1 (ii), x € A.
This completes the proof.

Remark 3.1 :
By (7) (iii), in a p-semisimple BCI-algebra X, (x * 2) * (¥ * 2)
=x*yholdsforx,y, z € X.

Theorem 3.3
A'BCI-algebra X is p-semisimple iff every ideal of X is a p-
ideal.
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Proof

- Let A be-an ideal of a p-semisimple BCI-algebra X. Suppose
that (x * 2) * (y*2) € Aandy € A. By Remark 8.1, x*y = (x*2) *
*2)eA=>x*yc A Nowx*y € Ay € Aand A being an ideal
implyx € A => A is a p-ideal.
Conversely, let X be a BCl-algebra in which every ideal is a p-
~ ideal. Then, especially, {0} is a p-ideal of X. Forx € X, we have

((x“‘(O"(O"‘x))) D* 0% = (x* x)*(O‘(O‘x)))"‘(O x)

=" (@©* x) *(0*(@* x)) = 0 € {0}. By definition 8.1 (ii),

x*[0*(0*x)] € {0} =>x*[0*(0*x)] = 0. Also, (0*(0*x))*x=0.
Hence, 0 * (0 * x) = x. By (7) (il), X is p-semisimple. This completes '
_ the proof.

Corollary 3.1
' A BCl-algebra X = (X, *, 0) is p-semisimple iff {0} is a p-
" ideal. : '

4. CHARACTERIZATION OF P-IDEALS

Theorem 4.1 :
. Anideal A of a BCl-algebra X is a p-idreal iff

(14) *2)*(y*2) € Aimpliesx *y € A, forx,y,z € X.

Proof o
‘ Assﬁm’e that A is a p-ideal of X and (x * 2) * (y * 2) € A, for
%,y 2 € X. By (1) and (8), 0 =((x*2)* x*M*“@ ) =((x*2)*
G*2N*@*y) = [(x*2* ¢ *2)]* (x*y) = 0. Let us consider
(15) [(x ™y * (x * )] * {[x 2) * (¢ *2)]* (x "'y)} = 0*0=0€A.
By definition 3.1 (ii)’ x*ye€A. ‘
Conversely, suppose that A is an ideal in X and (14) holds If

Txr*)* (e A andy € A, then by (14),x * y € A. By deﬁmtlon
3.1,Ai isa p- -ideal. This completes the proof. .
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Lemma 4.1
Let X be a BCI-algebra, then for x, y € X.
(16) 0*(x*y) =(0*x)*(0*y).

~ Proof

Since [(0*(0*x)* y]"‘(x y)=1[0* y)*(O*x)]*(x y =

then 0—((0*y)‘(0*x))‘(x y)
0*x={[0**O0O*x)]*x* y)} x
0*x={[(0*(O*x) "y} *x*y) *x
0*x={[0*(0*x)*x]*y}*x*y)
0"‘5c=((0“x)"‘(0"‘x)"‘y)"‘(x"‘y)
0*x=0"*y)*x*y. :
O*0)*(0*y) =(O*N*&*y)*©0*y)
O*)*O*N=(O*N*O*MN*Ex*y
(0‘x)‘(0*y)=‘0*(x"y). This completesthepfodf.

Theorem 4.2
Let X be a BCI- algebxa, then Xy 2€ X
a7 o0*{0*[(x* z)*(y 2)}} =™ y)"(O x).

Proof

0*{0*[(x*2) * (y* I} ,
=0*{[0*G*2]*[0* ¢y *2]} (by (16))
={0*[0*@x*2]}*{0*[0* G *2)]} (by (16))
={0*{0*[0*(*2]) *[0* (x *2)] (by (8))
=[0*@*21*[0* x*2)]  (by (12)
={0*[0*x*D]}* (¥ *2) o (by (8))
={0* 0 0" O ]} * G2 | (by (16))

={[0*(0*0]*[0*W0*2]} * (¥ *2) (by (16))
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={{0*[0*0*2]}*0*x)}*(y*2) (by (8))

=[0*2)*(0*)]* (y*2) . (by (12))
=([0*@*2)]*z}*(0*x) . (by(8)
= {[(0*y) *(0*2)]*2} *(0*x) (by (8)
={{[0*(0*2]1*2}*y}*(0*x) (by (16))
={lo*2*©O*2]*y}*(O*x) (by (8))

=(0*y*(0*x).

Corollary 4.1 - _
Let X be a BCI-algebra, thenx,y € X =

18) 0*(0*(x*y) =(0*y) *(0*x).

Proof
(18) follows from (17) by takingz = 0.

Lemma 4.2
Let A be an ideal of a BClI-algebra X, then x € A implies
0*(0*x) € A.

" Proof
=(0*0)*0*x)=0*0*x)*x=>0*0*x)*x=0
implies [0 * (0 *x)]*x = 0. Now (0 * (0 *x)) *x € Aandx € A and
" A being an ideal implies 0 * (0 * x) € A. This completes the proof..

Theorem 4.3 ‘
‘An ideal A of a BCI-algebra X iSAa p-ideal iff

(19) 0*(0*x) € Aimpliesx € A, forx € X.
Proof

If A is a p-ideal of X and 0 * (0 * x) € A. By theorem 3.2,
x €A,
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Conversely, let A be an ideal of X and suppose that 19)
holds. If (x *2) * (y * z) € A, then by lemma 4.2 0 * {0 * [x*2)*
(y * 2)1} € A. Now, using Corollary 4.1 and Theorem 4.2, we get that
0*[0*&x*=0"N*O0*x)=0*{0*[x*2)*(@*2)]) € A
implies 0 * (0 * (x * y)) € A. Since (19) holds for A, sox *y € A.
Thus (x*2)* (y*2) e A>x"*y € A ByTheorem41 A is a p-
ideal. This completes the proof.

5. P-SEMISIMPLE QUOTIENT ALGEBRAS

Theorem 5.1

Let X be a BCl-algebra and A be an ideal of X, then X/Ais a
p- sem1s1mple BCI- algebra iff A is a p-ideal of X.

Proof
Suppose that A is a p-ideal. For x € X we have

0*{0*{x*[0*(0*x)1}}

=0*{(0*x)*{0*[0*(0*0]}} | (by (16))
=0*[(0*x)*(0*x)] : (by (12))
=0€A. 4

According to Theorem 4.3, we have x * [0 * (0 * x)] € A
which implies Cy * (0 * x) = C, or Cy * (Cy * C,) = C,. Here, by C,,
we mean the equivalence class whxch contains x. By (7) (11) X/Aisa
p-semisimple BCl-algebra.

Conversely, if X/A is p-semisimple, then Cy * (Cy * C,) = C
implies x * [0.* (0 * x)] € A for any x € X. Assume that 0*(0*x) €A,
then it follows that x € A. Now x * (R (Ul x)] € Aimpliesx € A
and A is an ideal. By Theorem 4.3 A is a p-ideal. This completes the
proof. :
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Theorem 5.2

Let X be a BCl-algebra, then B(X) isa p- ldeal ofX

Proof

For x € X, suppose that 0 * (0*x) € B(X), then 0*(0*(0*x)=0.

On the other hand, by (12) (ii), 0 *x = 0 * (0 * (0 * %), hence 0*x=0.
Thus x € B(X). By Theorem 4.3, B(X) is a p-ideal. This completes the
proof. . :
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1. INTRODUCTION AND NOTATIONS

In this work, the Brauer characters of the projective (faithful)
irreducible characters of the covering group H of the Higman-sims
simple group H over an algebraically clsoed field of characteristics p
an odd prime, are determined. In [Au3], the modular irreducible
characters of H have already been determined and their free use is
made.

Among the others, M 4, and PZU4(5), the extension of the
simple group PSU,(5) by its field automorphism are the maximal
subgroups of H. The inverse images in H of thgse subgroups are,
respectively M, the 2-fold proper cover of My, and the group denoted
by P and their character tables are given in [Hu2] (or [Rul) and in
[Sa2] respectively. '

To determine the modular character, besides the other
techniques, the general method used in James and Kerber [JK,
section 6.3] will also be used without further reference. :

Ordinary, projective and modular irreducible characters are
named by their degree, with a subscript if there is more than one of
the same degree. Projective principal indecomposable ‘characters are
denoted by d’s and the corresponding Pl'ojective_irreducible Brauer
characters are denoted by ¢(least degree character occur in the
column d’s). A bar denotes the complex conjugate characters. But
the set of irreducibles, p-modular irreducibles and principal
p-indecomposable characters of a group G, for a prime p are,
respectively denoted by irr(G), irm(G) and idec(G). In case, the
characters are projective, these notation are replaced with irr(G),
irm(G) and indec(G). We will omitt the prime p when it will be clear.
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-Furthermore, TG (respectively J{G) denote the induction from
. (respectively restriction to) a subgroup of G.

2. THE 3-MODULAR CHARACTERS OF H

The group fI has 13-regular classes. Then there are 13-
elements in irm(H). The elements 1980 a, 19806, 2304a, 23045, 2520q
and 25205 belonging to irr(H) have degrees divisible by 32, hence
these all are in irm(H) and in indec (H) as well.

The 3-block of defect 1 contains only three elements namely
924a, 9246 and 1848 of irr(H) and thus its Brauer tree is trivially
known.

All the remaining elements of irr(HD) lies in the same 3-block.
Furthermore, this block contains only 5-elements of irm(H).

If now we take c; = (56 + 2.440) T H; ¢, = (2201980a);
¢y = (120 + 330) T H; cg = (22+1980) M c, = [(56®693)/2] T H

and c; = (126) 0 H Then the matrix R3(H) is the first
approximation toward the decomposmon matrix of H.
: R3(H) j
56 /
176a (;1[ 1 1 \ : !
176v | 1 1 v
616al3 1 2 1 1
616h{ 3 1 1 2 1
1000 1
1232al 2 1 1 ° 1
1232 | 2 1 1 1
179214 2 2 2 1 1

Kcl Cg Co €3 €&y ‘—‘5/

Clearly; ¢, in addition to ¢, contains ¢5. But comparing the
cofficient of ¢, and c¢g with ¢, on 616a yields that ¢, is a direct
summand of ¢y and c3. Hence subtracting off ¢, from ¢y and c3, the
columns we obtained are the elements of indec(H) and are denoted

by dy and d3 respectively. o !
Now, by expressing the tensor ploduct 5601386 of the :

element 1386 of 1ndec(H) with 56 in terms of elements of irr(H), we

have
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56+3.1232a+3.1232b+2.1000 + 2.1792 + (characters of other blocks)

Then 56®1386 = c¢; —dy —dg —.2.d, + 2.dg; thuscy; —dy —dg — 2.d,
exists and belongs to indec(H), we denote it by d,. This also
completely determine the decomposition matrix Dg(H), forp = 3.

D,(H).
56
176a & 1 )
176b 1
616a 1 1
616b 11
1000 1
1232a | 1 1 1
1232b 1 1
1

1792
\d d2 d3 d4 dy/

3. The 5-MODULAR CHARACTER OF H

In this cage all but the elements 1000 € irr(H), which also
‘belongs to indec(H), are contained in a 5-block. The group H has 11
5-regular classes and hence there remains 10 mgre elements of
irm(H) to be determined. On 5-regular classes of H, the following
relations between the elements of irr(H) holds;

1848 = 1792 + 56
2520a = 25206 = 12322 + 12326 + 56 (3.2)

The elements of irm(M) yields the only 5-block of nonzero
defect determined by Humphrey [Mu2], with Brauer tree given as:

126 154 56 154’ 126

(i) Each of the element (56 + 154), (56 + 154') of indec(M)
induceg to H has the following decompositions in terms of elements
of irr(H): .
56+ 176a+ 176b+616a+616b+924b+ 1848+ 1980a+2.1980b+ 2304a +

2304b+2520a+ 2520 (3.3)
56+176a+176b+616a+616b+924a+ 1848 +2.1980a+ 1980b+2304a+
2304b+2520a+2520b : (3.4)
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Later on, we see that (3.3) and (3.4) are in indec(H).

Moreover, in terms of 5-modular irreducibles of M, we have

564M = § (28) +  (28)
924adM = ¢ (28) + ¢ (120) + ¢ (440) + ¢ (210) + ¢ (126)

924ad M = ¢ (28) + ¢ (120) + d (440) + ¢ (210) + ¢ (126)

It therefore follows that the elements of irm(H) associated with (3.3)
and (3.4) are of degree 28 each and are also complex conjugate under

an outer automorphism as ¢(28), ¢ (28) € irm(M) has this property

under such an outer automorphism when restricted to M.

Now first of all we calculate the values of the elements

denoted by $(56), $(56) of degree 28 each of irm(H), corresponding

to (3.3) and (3.4) respectively, explicitly. The explicit values of
elements of irm(M) required in the calculation can be found in

[Hu2]. :
Clearly, ¢(56)¢1\A4 = $(28) and ¢(56) M = $(28) .

~

The values of $(28), $(28) € irm(M) on 5-regular classes is:

Ciass| JA | 2A | 3A |4A [7A | B* |84 | 64 11C c*

names

$p28))28 1 4 111 01010 21| a-ifih/2 | Q+if11)/2
0] 0] 0 |9 1] a+snfinse | a-afin/2

Now, since ¢)(28)® $(28) =1+ 55 + 210 + 385 + 133 (5-mod irre of
' M, see [Ja]). Furthermore 14M = 1; 554 M = 55; 210¢M = 210 and
518LM = 385 + 133. Then it follows that G(56)® H(56) = 1+556+

210+518. Therefore, the values of the characters of ¢(56)® ¢(56) on

5-regular classes of H are:
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Class | JA 111A | B* | 7TA | 3A | 6A | 2A | 8A | 6B |12A| 4C

names

Values| 784 | 8 | 8 | 1 | 0 |1 |16 4| 9| 1|64

Thus the values of $(56), $(56) on these classes are:

$(56) | 28 ja-iin/2|a+nfiDy/2| 0 | 1 | 1 | 4 | 2i |-8i]-i |-8
28 |a-if1ly/2ja-nf1ly2| 0 | 1 | 1 | 4 |-2i] 3| i |8i

$(56)

Thus, by denoting 33, cg ¢7 and 38, the inductionof the elements
120, (126 + 154"), (126 + 154), 330 € indec(M), respectively to H

and by ¢y, c5; the induction of 125+, 125~ € indec(P) to H, we obtain
the matrix R;(I,:I) as a part of the decomposition matrix for the

elements of irr(H):

1 A
RL(H)
56 (1 1 \
1762 | 1 1 i
1766 [ 1 1 .
616a | 1 1 !
6166 |1 1 1 . 1 .
924a 1 1 . .
o245 | 1 ' 1 ' 1 1 1 1
1232a 1 1 11 1
12325 11 1 1 2
1792 1 1
1 1 1 1 2
1848 2 1
1 2 1 11
1980a 1 2 1
1980n 1 1 1 12 1
1 1 1 1 1 1 2
2304a 1 1 o o 2
2304b 1.1 1 11 ; 9 9 9
2520a. 1 1 1 1 ' 9 9
25200 \¢; ¢, = 11 2 2.
1 2 c 3 04 05 C G CG C7 C

where ¢y = (21®1000), ¢; and ¢, are as given in (3.3) and (3.4),
respectively.
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(i) Next, we note that 176alM = 56 + 120 = 1765¥M. This
implies that 56 is contined in 1762 and 1765 as well; hence ¢ (176q):=

176a — 56 and ¢(176a) := (1765) := 1765 — 56, leaves distinct
plojectlve Brauer characters of degree 120 each and these when
restricted to M belongs to 1rm(M) Hence ¢ (1762), $(176a) Elrm(H
). :

Furthermore, 228¢(56) = 616a — 1766 + 176a — ¢(56) (3.5)

and

22@ ¢(56) = 6165 — 176a + 1765 — $(56) 36)

Now, (3.5) implies that the characters ¢(176a) and ¢(56) are

contained in 616a. Similarly, (3.6) implies that ¢(176a) and ¢(56) -
~ oceur m 6160. Hence it follows that ¢ 3 is the sum of two elements of
mdec(H) and thus it must splits to glve the columns czand c,

corresponding to ¢(176a) and ¢(176a), respecitvely. Obviously, we

have eight possibilities for the splitting of ¢ 5 that i,

176a + 616b + x.924a + (1-x).924b +y.1980a + (1-y).1980b + 2.2304a
+ (1 ~2).2304b + 2520a + 25206. 3.7

1766+ 616a + (1~x).924a +x.924b + (1—).1980a +y.1980b + (1-2).2304a
+ 2.2304b + 2520a + 25200. ; (3.8)

where 0 <x,y,z<1,

We shall now consider (3.7) only and then (3.8) can be
deduced. For convenience, we denote the (3.7) obtained by putting
the tripplet (0,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1) and (0,1,1) by T},
Tg, T3, Ty, Ty, Tg, T; and Tg, respectiv@ly. Then we note that the
inner product T;, Ty, Ty, Ty, T5, T, T; and Tg with the projective

Brauer character [(1056—55—133,~133,-518)® $(56) 1; (55@ $(56) I;

[(1408—22-98-210-280-518)® (56) I;  [0(56)];  [175® $(56) I;
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[55® $(56) ] and [(1056—55—133,—133,-518)@¢(56)], respectively, is

a negative integer. Hence the sixth possibility holds. This yields that
(3.7) and hence (3.8) are as follows:

¢y = 176a + 616b + 924a + 19806 + 2304a.
and ¢y = 1766 + 616a + 924b + 1980a + 2304b.

However no subsum of (c3) and (c:;) has degree congruent to 0
modulo 125, thus c; and c:; are elements of indec(H) so we denote
them by d5 and d:; respectively.

(iliy Now, from the above calculation, we have

$(924a) := 924a — §(56) — $(176a) — x.¢(616a)

and  §(924a) = $(924b) := 924b—(56) — §(176a) — x. $(616a),

with x = 0 or 1 and clearly they are distinct [see R;(H)].
It therefore follows that EB must break up to give the new elements

dg and d; of indec(H) associated with ¢(924a) and ¢(924a),

respectively. Since ¢(924a) and ¢(924a) are cdmplex conjugate

under an outer automorphism, whereas 2520a = 25200, remains
invariant under such an outer automosphism, so there are four
possible ways in which 56 can split into sum of two elements of
indec(H), and they are;

924a+x.1232a+ (1-x).12326+y.2304a + (1-y).23046 + 25202 + 25206 (3.9)

and
924b+(1-x).1232a +x.12326+ (1-y).2304a+y.2304b6 + 25202 + 25206 (3.10)

where 0<x,y<1 _

We shall verify these possibilities only for (3.9). We note that if
(x,y) = (0, 0) or (1, 0), then the restriction of (3.9) to M contians
$(28) € irm(M) with negative multiplicity and the inner product of-
(1056—55—1_331'41332_—518)8)4)(56) with (3.9) is —2 when (x, y)=(0, 1).
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Thus (3.9) and hence (3.10) are of the form:
Cg 1= 924a + 12320 + 2304a + 2520a + 25200,

and

c, = 924b + 12326 + 23046 + 2520a + 25200,

Clearly, we can take dg = c(; and d; = c; .

(iv) The tensor product [1750®((56)], with 1750 € indec(H),
gives : ,
€31:=176a+616a+6166+924a+ 9246+ 12320+ 1792+1848+2.1980a

+ 2.19806 + 2304c + 23046 + 25202 + 25205,
as a sum of elements of indec(H). Furthermore, ¢3,=dz+c,—~dg+ds.

It follows that dg is a direct summand of ¢, and subtracting this off
from c,, we get that d; € indec(H), by the usual argument.

Similarly, the tensor product [1750® ¢(56) ], yields that

0,231 = d:‘s + ¢5 + dg— d,. Hence dg = ¢5 — ¢; € indec(H).

At this stage, we have found 8 out of 10 elements of irm(H)
and two elements of irm(H) yet remains to be determined.

(v)  Next, firstly we note that
dg+d;=cg=cg+cr—Cg (3.11)

Now, since
$(1232a):=1232a-$(924a) and  $(1232a) =H(12328):= 12326-(924p),

are distinet elements of irm(H), then ¢ g must split to give cg, cé
corresponding to $(1232z) and ¢(1232a), respectively. Moreover

$(1232q) ‘and $(1232qa) contains the real characters 1792, 1848,
2520a and 25200 with equal multiplicity. We thus have six
possiblities namely; (0, Q), (1, 2), (0, 1), (1, 0), (1, 1) and (0, 2) for the
splitting of the column ¢ g that is

12322 + 1792 + 1848 + x.1980a + (1 — x).19806 + y.2304a +
(1—y).23045 + 2520a + 25200 . (8.12)
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12326 + 1792 + 1848 + (1-x).1980a + x.19806 + (1 — ¥).2304¢ +
¥y-2304b + 2520a + 25206 ' (3.13)

~where 05x,y<1.

The first four p0551b111t1es for (3.12) are not true, since (3.12) when
restricted to M contains ¢(28) (respectively, $(28)) with negative
multiplicity if (x, y) = (0, 0) (respectively, (1, 2); while the inner
product of (3.12) [693 — 55 — 518)] ® $(56) (respectively, $(56)) is a
negative integer for 8rd and 4th conditions. Let cg; & cgy denotes
(3.12) obtained form 5th & 6th possibilities respectively. However,

the R.H.S. of (3.11) implies that (cg — cgy) does not contain 2304e
which is contrary to the fact that 6 contains 2304a. Hence cg = cg;,
then dg = cg, by usual subsum argument, ’

Similarly, dé = cé = 08'1 € indec(H), corresponds to (3.13).

Thus we obtain a better approximation R‘Z(H) to the

: decomposmon matrlx of H for p =5
In fact, RZ (H) = D5(H) since none of the di’s is contained in

cyorcy. : R’ (H) = D5(H)

56 (

176a
176b
- 616a
616b
-924a
924b | 1 ‘ 1 , 1
1232a S o1 1
12320 |- _ Co 1 1
1792
1848
1980a
19800
2304a
2304b
2520a

2520b | : -
, \&1 e dyg dy dy ds dg c; dg d'/

\ .

e
L o S S O S Sy

=t

=R

P R T S S R
[y

l—‘l—“l'—lb—l‘t\')b—lb—l
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4 THE 7-MODULAR CHARACTERS OF H

Each of the elements 56, 616a, 616& 924g, 924b, 1232a, 1232,
1792, 1848, 2520a and 25205 of 1rr(H) is in 1rm(H) and in mdec(H) as
well since each of them forms its own block of defect zero.

The remaining 7-block of full defect contains the elements
wzly, 176a, 1760, 1000 1980a, 19805, 2304a and 2304» of 1rr(H) Then

126TH and 126 TH shows that 2304a and 23045 are connected with
1000. Moreover )
56TH = 176a + 1766 + 1980a + 1980b + (characters of other blocks)

The elements 1980Qq, 19806 € 1rr(H) are the only characters which
have nonzero value on the cliss (8a) for this block. Furthermore, we

~have ] :
21®924a=176a+ 1980a+ 1000+ 2304a + 230456 + (characters of zero defect)

Since there are always ambiguities Of sign associated with
projective characters if a group, therefore without any loss of
generality we will assume that the elements of 1rr(H) are indexed so
that the Brauer tree is as follows:

176a — 19802 — 2304a — 1000 — 23045 — 19806 — 1765

5. THE 11-MODULAR CHARACTER OF H

: All but the elements 56, 1000, 1792, 2520a, 2520b, 2304a and
23040, the later two being exceptional for p = 11; belongs to irm(H)
and these elements form an 11-block with full defect. Furthmore,

22 ® 616a = 56 + 2304a + (chalactels of zero defect)
20+LH = 1000 + 25200.

.20—TH_ = 1000 + 2520a.
22 ® 9242 = 1000 + 2304a + 2520z + 2520.

3301 H=2.1792+ 2.2304a+2.2520a+2.2520b + (characters of other blocks).
where 20* 20" € in’dec(lg), sice 11 does not divide the order of 1;.
| From above it follows that the Brauer tree of tue 11-block is:
56 __ 2304a —_ 2520q — 1000 — 2520p ___ 1792 .
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6. THE 2-MODULAR CHARACTER OF H
Since 2 divides the order of the Schur multiplier of the group
H therefore the 2-modular characters of H are precisely those of the
group H (see [Hul, [81).
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