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CERTAIN METABELIAN NILPOTENT LIE ALGEBRAS
OF MAXIMAL CLASS

G. Q. ABBASL
Department of Mathematics, Islamia University Bhawalpur,

Pakistan.

ABSTRACT

In this paper we describe the structure of certain metabelian
nilpotent Lie algebras of maximal (nilpotency) class over the field F; and
note that, if 5 < n = dim (L) and F is infinite, then the infinite number of
non isomorphic such Lie algebras starts fromn 2 7.

INTRODUCTION

A nilpotent Lie algebra L of dimension n = 3 over the field F
is said to be a Lie algebra of maximal (nilpotency) class if the dim
(L/L%)=2 and dim (Li/Li*1)=1 for i=2,..,,n-1. If, in addition,
(L%)2=0, then L is said to be a metabelian nipotent Lie algebra of
maximal class. ,

In this context we mention two papers [1] and [3]. However
the above definition is an analogue of the definition of metabelian
finite p-groups of maximal class (see, for example, [2]).

Unless otherwise stated, L is a meetabelian nilpotent Lie

algebra of maximal class and dimension n > 3. The present work is
divided into three sections. In section 1 we describe the structure of
such Lie algebras, in section 2 we discuss the classification problem
and section 3 contains the main results.

" In this section we describe the structure theorem of such Lie
algebras. We need the following.

Lemma 1.1. Let L be a Lie algebra with dim (L)= =
Then
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().  L,=CL(L?/L%) is a maximal characteristic proper

ideal
in L.

(). [Ly, LY <L*2% fori = 2,.,n-3.

Proof. ().  Note that for each x in L and Y in L?\L3, the
mapping ¢ x: L2/L3 — L3/L4 defined as ¢ x (y+L% = [x,y] + Liis
a linear. Since L(L2/L3 | L3/LY) is a one dimensional vector space of
such linear maps, there exists a mapping ¢: L — L with ¢, for all x
in L, which is linear and onto such that ker ( ¢ ) = L, with co-
dimension 1. Hence L; is a maximal ideal in L. Further if o € Aut
(L), thenot (L) < Lifori = 2,..,n-1; and if x & L,, then o ([x, L2]) <
o (L?) £ L?, so that a(x) , L,. This proves (i).

(ii). Follows by induction on i.
Note that for n 2 5, L, is both abelian and nonabelian.

The following result describes the structure of L. -
Proposition 1.2, Let L be a Lie algebra with dim(L) = n = 4. Then
there exists a maximal characteristic proper ideal L, in L such that
[L,, L?] < L% and if Xo € L\L,, x,€L,/L? and [x;; , x5] = Xx;, i =
2,...,n-1, then

(1) L = < xg, Xq,..,%p1 >is a vector space over F.

@ [%,x]=0for2<i<j

(3) [x;,x]=cx,q+ c5%,3 + ... +Cpi,1Xn.1 Where
Cj’S eF,

Proof. The first part is proved in Lemma 1.1 (i). Further, since L/L2
=<xy+ L% x,+L2 > ,wehave L? = <[ axy+Px;, yxo+0x;1 > = <
yB - ad) [x;, x5] >, and, therefore, [x; , X,] is the basis for L2 (mod
L3) as L is a metabelian nipotent Lie algebra of maximal class, so (1)

is proved. Further (2) follows from the metabelian property of L;
whereas (3) is a consequence of Lemma 1.1 (ii).

Thus in view of above Proposition, L can be defined with the
"
help of a set of parameters {cy,...,c;, 1}, Where cj’s eF; and every
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element x in L can be written uniquely as x = 3 Q;x;’ where ; ’s €
i=0
F. Conversly. '

Proposition 1.3. For each set of parameters {c,...,c,.1), G EF, there
exists a metabelian nilpotent Lie algebra L = L(c,,...,c,,.;) of maximal
class with dim(L) = n > 4 such that L contains a maximal
_characteristic proper ideal L, with [L; , L2] < L. Further if x, €
INL;,x €L\ L?and [x; |, xg] = x; fori = 2,..., |, then

(1) L = < xp,Xy,...,X,,.1 ~ is a vector space over F.

(2) [xi,xj]=0f01*2:i,an-l.

(3) [Xl ; Xl] = C4Xi+2 + ... + cn_i+ an'l’ 2 < i < n'3.
Proof. l.et M = <X,,...,x, ;> be an abelian Lie algebra of dimension
n-2, where n > 4, over F. Define a vector space L over F such that

L/M = < xq+M, x;+M >, [x;y, Xg] = x;, 1 = 2,..,n-1 and [xy, x;] =
C4X{,9 + . ¥ Cpy49X nop fori = 2,.,n-3. Then it is not difficult to
prove that L is a metabelian nilpotent Lie algebra of dimension n = 4
over F such that L2 = M, with L, = < x;, M > - maximal
characteristic proper ideal in L. Since dim(L/L?) = 2 and
dim(Li/Li*l) = 1, i = 2,..,n-1, L is a metabelian nilpotent Lie
algebra of maximal class.
€ 2. Now we consider the classification of such Lie
algebras. Let L = L (cy...,c,.;) and L' = L(c'y,...,c'; ) be two Lie
algebras of same dimensionn > 4. If ¢ : Lf — L is an isomorphism,
then :
n-1
') =Axy + Y ax;
i-1
n-1
(b(xll) = },l.xl + Z beJ
j=2

1)

where A, L, a;, b; €F with ALl £ 0; and
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' n=1 n=3
‘ j2 1~-2
a;by) [x1,x].
To calculaate images of other generators and verify the
defining relations, we introduce the following vectors

[}
]
ot

n-2

of height n-2, row basis vector X = (x,,...,X,,.1) and (n-2)x(n-2)
matrices

00..000
'10...00.0
01..000

0000...000Y
0000..00.0
0c,00...000
0c540...000

-

\2) Cp-1 +o C5¢40 )

Note that IC = CI, but (IC) § = (CI) y, where

0
Yo

Yn-2}
Then one can compute
¢ (x'y) =X (A6 + C(1a-ab)),

0..110

~«
[

and

¢ x'p) = A E-a,C) "1I2%6 + CAE - a,C)2I23, where E
is the identity (n-2)x(n-2) matrix.
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The matrix I"-3 with unique nonzero element in the left

. cornor, after multiplying with (AE - a;c)™1, Yields unique nonzero
element at the same place which is annahilated after multiplying
with matric C. Consequently we obtain

¢x’;,) = XAE-2a,C) 1"l b + p CAE - a,C) I 1g

d(x’,9) = X(AE - a;C) 31™4p + L C(AE - a;¢) ™4™
¢x',.) =X (AE - a;C) 2135 + n C(AE - a,C) n-3[n-33
= X (AE - a,C) ™35 = A™2 ux,
Further ’
¢ ([x'y, x'5]) = X (Ap CIb (UI3 - a4IB)).
Since the co-efficients for the- image of

Ix|, | x'z;l do not depend upon cg, c5, ... , ¢, linearly, we confine
ourselves to the case when the co-efficients of the image of [x’; , x’9]
depend upon ¢4, ¢5, ... N ¢,.1 linearly. The sufficient condition for
such case (which is a consequence of simple matrices multiplication)
is given by the followingt

Lemma 2.1. Let K be a fixed integer such thatn-1>K >

n+ . .
[—2—2_I; and ¢y = ¢z = ... = ¢,y = 0. Then c? is zero matrix.

£ 3. From now on all Lie algebras under consideration are L
' +
= L(ey, ..., ¢y.1), wheren-12 % > [-11—2—2] Then [x;, ;] = 0; and
CI¥-2 is a zero matrix. Hence

$(x'y) = T (k1 k-2p)

¢(xrn+1) = % (AN-2[n-35) = A2y x0L
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and
o x'y, x'D) = X (A CIB).

Lemma 3.1. Let 6 : L — L be a mapping defined on the
generators X, , X; of L by the following formula:

n-1
0 (xp) = Xo + 2 aix;,
i=2
n-1
6 (x)) =x; + 2 bx;,a,beF.
i=2

Then O can be extended to an automorphism of L.

Lemma 3.2. Every isomorphism ¢: L' — L (where L' =
L'y, e ¢’y and L = L (¢, ..., ¢,_;) ; defined by the formula (I)
in € 2) is a composition of the automorphism O from Lemma 3.1 and
the isomorphism ¢: L’ — L defined as

(Y (x'g) = A xga;%; a%;)
M L gy =

where A» Ll; a) € Fwith ), #0.
, n+2 . P
Theorem 3.3. For n > 5 and K > [—2—‘], Lie algebra L' is
isomorphic to L if and only if there exist A p € Fwith ), # 0 such
that pe; = 3 12¢';,i =k, ..., n-1. '
Proof. .By Lemma 3.2 it is sufficient to consider the
isomorphism \ defined by the formula (II). Then
W(x'), 5D = ye' x'y + o+ ¢ X ny)
. implies '

ZOUCD B = R (¢ ) KRIRZ + ¢y AR+ o+ ¢y ™
21n-3yp, :
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Note that in case of \y we take b = |

‘Hence .
G SR
e .
X L = | pex
\;lc,n-l)\,n-zj. \Llc,n-l)

Thus we have pe; = A%’ fori =k, k+1, ..., n-1.

Conversly if pe; = A%’ ,i=K, .., n-1, then'it is not
difficult to prove that he mapping 6: —> L defined as

o (x'y) = Ax,

o (x')) = px;, where A, L Fs.t. A #0,isn isomorphism.

If L, is abelianiecy = ¢ ,1 = ... = ¢,.; = 0, then, by above.
Theorem, L = L(0,0, ..., 0) is unique upto isomorphism; and hence

; Corollary 1. For n > 4 there exists a unique upto
isomorphism, metabelian nilpotent Lie algebra of maximal class with
abelian maximal characteristic proper ideal.

However L, is nonabelian if at least one of the c;’s is nonzero,
for k £i < n-1, n = 5. In this case we have.

Corollary 2. (i). All Lie algebras of the type L = L(0,...,0,°™
1), where ¢,,.; # 0, are, pairwise, isomorphic.
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~(ii). All Lie algebras of type L = L(0,...,0, ¢, 5,¢, ), Where
¢,.9 # 0, are divided into two classes; namely, L = L(0,...,0,1,0) and L
= L(0,...,0,1,1). -

To classify the Lie algebras L = L(cy,...,c,_;), where k < n-3
and ¢, # 0, we consider non-negtive integer h and the sequence q(0),
q(1), ..., q(h), whre K = q(0)<q(1) < ... <q(h) < n-1. Then the total
number of the sequences of such type equals to 2n-k-1, ,

Leth = | q[ - number of nonzero terms in q and C(q) be the
colection of all Lie algebras which are defined with the help of a set
of parameters {c,...,c, 1} in the folowing way: algebra L=L(cy,...,c,.
1) belongs to the class c(q), if {cq(o),...,cq(h)} is the set of nonzero
parameters of L. Then the Lie algebras belonging to different classes
are different upto isomorphism. Moreover. '

Proposition 3.4. Let L = L(cq(o),..;,cq(h)) and L' =
L'(c'q(o),...,c'q(h)) be two Lie algebras in C(q). Then L is isomorphic
to L’ if and only if |t ¢ ;) = yaD-2¢’q(@) , i = 0,1,...,h. In particular if
Cq) = ¢ qe0p then [ = Y9DZ and ¢ ;) = yID9O ¢ 0§ = 1,2,.h,

Corollary 3.(1). If h = 0, then all Lie algebras in c(q) are,
pairwise, isomorphic.

(ii). If A > 1, then the number of isomorphism classes in ¢(q) depends
upon the order of the field F. In particular if F is infinite and h > 1,
then c(q) consists of infinite number of non isomorphic classes of
such Lie algebras.

Remark. It is important to note that infinite number of non
isomorphic Lie algebras in ¢(q) starts from n > 7.

These results are analogue of certain results of [2] on finite
p-groups.
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ABSRACT

In the present note we study the central decompositions of those
finite p-groups G such that G = A Y B, where A is extra-special and B is a
finite p-groups with Z ,(B) abelian, so that Z,(G) is nonabelian with Z(G) of
order p; and prove that if

G=U1YU,YV;T..TV,
is an unrefinable central decomposmon of G with each Z9(U;) of order p2

and each V; extra-special of order p (so that Z9(G), which. is generalised
directly decomposable into Zz(U Y s and V ! s, is nonabelian), then G has

(1/n!).p (2"5 +2mn+n(n-1), (p2n ‘1)...(p4 '1)/(}32 -1n-1

unrefinable central decompositions, which are, pairwise, isomorphic if p is
odd; and if p = 2, then all of such decompositions are not necessarily
(pairwise) ismorphic.

INTODUCTION

The present work is in continuation of author’s earlier works
of [1] and [2] in which the central decompositions of extra-special p-
groups and the finite p-groups with abelian second centre and centre .
of order p, were discussed, respectively.

In the present note we study the central decompositions of
those finite p-groups G such that G = A Y B, where A is extra-special
and B is a finite p-group with Z,(B) abelian, so that Z,(G) is
nonabelian with Z(G) of order p; and prove thaatif G = U; ... Y U,

11
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Y VvV, Y .. YV, is an unrefinable central decomposition of G with
each Z,(U)) of order p? and each V; extra-special of order p3 (so that
Z,(G), which is generalised directly decomposable into Zy(U)) s and

Vj' s, is nonabelian), then G has
(1/n!)_p (’271) + 2mn + n(n-1), (p2n 1. (p4-1)/(p2-1)"'1

unrefinable central decompositions, which are, pairwise, isomorphic
if p is odd; and if p = 2, then all of such decompositions are not
necessarily (pairwise) isomorphic.

This work is divided into three sections. In section 1 we
define basic concepts and study the elementar propesties of central
decomposition of a group. In section 2, we describe, briefly, the
results of [1] and [2] as they will be used in section 3 for finding out
the exact (formal) number of the central decompositions of such
groups; and to classify them upto isomorphism.

E1. A finite set {U,,...,U,) of proper subgroups of a group G
is said to be a generalised direct decomposition (in short g.d.d) if

1) G is generated by U;,..,U;ie G = <U1,..,U.>, -
: ii) fori #j, Uiy and UJ- commute element wise; i.e [U;,
Uj] = {e}; and we write G g.d.d {U,,...,U.}. :
Such decomposition of G is said to be a central decomposition
(in short c.d) if Z(G) < U, for all i = 1,..,r. In that case each U;, is
called central factor of G and we write G = U; Y...YU,.

If G possesses such decomposition, then G is said to be
centrally decomposable, otherwise G is centrally indecomposable. .

Note that a ¢d G = U; Y..YU, induces a direct
decomposition of the factor group G/Z(G); ie G/Z(G) =
U,/ZUx..xU/ZU)).

Acd G =U; Y .. YU, of G is said to be unrefinable centrad
decomposition (in  short wu.c.d), if each U; 1is centrally
indecomposable.

Two u.cd, say, G = U;Y ... YU, and G = V|T ... TV  of a
group G are said to be isomorphic if r = s and for each i = 1,..,r
there exists j in {1,...,;s} such that U; is isomorphic to U;. ’
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Let U and V be two subgroups of a group G. Then U is said to
be centrally isomorphic to V, if there exists an isomorphism p:U — V
such that (up)u! belongs to Z(G).

Note that if U is centrally isomorphic to V, then UZ(G)
VZ(G).
Proposition 1.1. (Remak-Krull-Schmidt theorem (see, for example,
[5], pp120) ). If a group G has princpal series, then any two direct
decompositions of G with directly mdecomposable factors are
centrally isomorphiec.

13.

If G is centrally decomposable, then, in general, the central
factors of a u.c.d of G are not determined upto -isomorphism:and
hence two u.c.d of G are not necessarily isomorphic. Even more,
Tang { 0 ] proved that two u.c.d of a group may not have equal
number of central factors. However, an immediate consequence of
Remak-Krull-Schmidt theorem, proves that

Proposition 1.2.IfG = U;Y..YU,and G=V; Y ... YV, are two
u.c.d of G such that each U/Z(U) and each V/Z(V) is directly
indecomposable, then r =s.

Again, ifG=U,; Y .. YU,and G =V Y .. YV are two u.c.d
of G such that r = s, even then they need not to be 1somorph1c For
example if ‘

D-<ab a2"! = e = b? blab—a1>,

Q=<cd;c?" 1=e,d2=c2n2,d'1ed=c'1> 7
are Dihedral and Generalised Quaternions, respectively, 2-groups of
maximal class and order 2", where n > 4, then G = DYD and G =
QYQ are two u.c.d of G which are not isomorphic. '

However, as we see in the following Lemma, if two c.d of a

group G have a common cen_tral factor, then the other central factors
are determined by the centralliser of the common central factor.

Lemma 1.3. Let G = AYB and G = AYC be two c¢.d of G. Then B =

Proof. Obviously B < C;(A). Conversly let ¢ € Cg(A). Then there
exist a in A and b in B such that ¢ = ab. But then x = x¢ = x80 = x3
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for all x in A; which implies a € Z(4) = Z(B). Hence ¢ = ab is an
element of B. Replacing B by C proves Cg(A) = C.

-£2. Unless otherwise stated, all groups under consideration
are finite p-groups with center of order p. ,

A non abelian group G is said to be an extra-special, if the

derived subgroup G’ = Z(G) = $(G)-the Frattini subgroup of G, has
order p.. ‘ :

It is well known (see, for example, [3] theorem 5.5.1) that a
non-abelian group G of order p? is an extra-special and is isomorphic
to one of the following groups:

M=<xyz;[x,yl=2,xP=yP=2zP=e=[x,2] =[y,z]>,
N=«< h,v;uPZ =vP=e,viuv=ul>forp=>3;and

Dy = <xy;xf=yl=e,yly=xl>,

Q=< u,v;u22d= e,u2=vZ vliuv=ul>forp =2
-Further a nonabelian group of order p3 is centrally

indecomposable and an extra-special group G has a u.c.d into
nonabelian subgroups each of order p3; and, therefore, G has order

pZr+l r > 2 (see, for example, [1].
Theorem 2.1. ([1] theorem 6). Let G be extra-special group of order
p?+*L r 2 2 Then G has exactly

| (1/r).pr@-D (p2r.1)... (p%-1) / (p2-1)™D y.c.d.

Proposition 2.2, ([3] theorem 5.5.2). Let G be extra-special of order

p?r*+l r > 2. If G has exponent p, then all of the u.c.d of G are,
pairwise, isomorphic. In fact each of the u.c.d of G is isomorphic to

- M™=MY .. ... YM.If G has not exponent p, then each of the u.c.d of

G is isomorphic to either N'M™, for p = 3 or D%@Q4™, for p = 2,
where 1 <t. < r. Moreover N*M™¢ is isomorphic to NM™1if t > 1 and
MT is not isomorphic to NM™1 for p > 3; and D%@Q4™t = D3Q5™1, if t

>1and Q ; # D3Q r{;l for p = 2. In particular, N2 = NM and M? #

NM;andDngg,andD;,Qs:th.
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Lemma 2.3. Let G be a group with Zy,(G) of order p2. Then G is
centrally in-decomposable and K = C;(Z,(@3)) is a maximal subgroup
of G.

Proof. Suppose G is centrally decomposable and G = AYB, where A "
and B, both, are nonabelian. Then G/Z(G) = A/Z(A)xB/Z(B), and
Z(G/Z(G) = Z(A/Z(A)XZ(B/Z(B)). Since Z(G/Z(@)) has order p,
either Z(A/Z(A)) or Z(B/Z(B)) has trivial order. In that case either A
~ or B is abelian, a contradiction. '

_ Further obviously K = Cg(Zy(G)) is a proper normal
subgroup of G and G/K is isomorphic to a p-subgroup of Aut(Z,(G)).
Since lAut(Zz(G)) | = p(p-1), G/K has order p, and, therefore, Kis a
maximal subgroup of G.

In [2] we consider the central decompositions of those groups
G such thaat G = U, Y ... YU,, where each Zy(U)) has order p?, is a
u.c.d of G so that Zy(G) = g.d.d { Z2(U)) ;i = 1,..,r } is abelian of
order pr*1, r > 2, Because otherwise there exist p-groups with Z(G)

of order p, Zy(G) abelian of order p3 and Z2(G) = g.d.d {A,B}, where
both A and B has order p?, yet G is centrally indecomposable.

Example 2.4. Let

lal 3.2>8.3
_ - 01a,a5]|,
G=UTH4,p) = < 001 ag ,aiazp>.Theq
0001
1001
0100 h 3 Z,(() = h
ZG) = < 0010 | as order p; and Z,(G) = < X,%5,X3 >, where
0001
1010 1000 1001
_Jo100 _lo101 _|o100
15106010 |°* 0010 |"™ | 0010
0001 0001 0001

Note that Z,(G)/Z(G) = < x,Z(G) , X,2(G) >, where x,Z(G)N
x,Z(G) = Z(Q@); and, therefore, Zo(G) = g.d.d { < X1,X3 >, < Xg,X3 >
}, where each <x,,x3> and <X,,x3> has order p2.
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Suppose G = AYB, where A, B, both, are nonabelian
subgroups. Then G/Z(G) = A/Z(A)xB/Z(B) and Z(G/Z(G)) =
Z(A/Z(A)XZ(B/Z(B)). Since |G/Z(G) | = p, either 14/Z(4)| = p3
and |B/ZB) | = p2, or vise versa. If |B/Z(B) | = p2, then B is extra-
special of order p3 and B/Z(B) = Z(G/Z(B)) = Z(G/Z(G)) has order
pZ. In that case Z(4/Z(A)) is trivial, which is not possible. Hence G is
centrally indecomposable.

Lemma 2.5. ([2] Lemma 2). Let G = U;Y ... YU, be a u.cd of G
with each Z,(U;) of order p2. If G = V|Y ... TV isacdof Gis a cd
of G with each Zy(V}) of order p?, then ‘ :

i) r=sand G = V,Y .. YV isau.cdof G.
i) Fori = 1,...,r, UiZy(G) = ViZo(G) , where 1 <j <s.

i) - Ml = Cy,(Zo(Up) is a maximal subgroup in V; for some 1 <
<s. / '

‘Theorem 2.6 ([2] Theorem 2). Let G = U; Y ... YU, be a u.c.d of G
with Zz(Ui.) of order p2, i = 1,...,r. Then G has exactly p(2) u.c.d;

and if Z,(G) is elementary abelian (as it is for p = 3, see [4], Theorem
3.7.7), then all u.c.d of (7 are pairwise isomorphic.

If p = 2, then Z,(G) is not necessarily elementary abelian.
Examples of such groups are the 2-groups of maximal nilpotency
class, namely, D-the Dihedral group, Q-the Generalised Quaternions

and S-the Semidihedral group; each of order 27, n> 4. ‘In this case
(as we see in the following Theorem) all u.c.d of G are not necessarily

isomorphic.

Theorem 2.7 ([2] theorem 3). Let G = U1 Y ... YU, be a u.c.d of G,
where each U;e { 8,D,Q }. Then each u.c.d of G is isomrphic to either
SrtDt, 0 < t < r or QDT !..Moreover

Da*d-1Q if s = 0 and q odd

aspdpa=
S*DIQ4= SsD4+d gtherwise

£€3. In this section we study the central decompositions of

those groups G such that G = U; Y ... 1| YV, is a u.c.d of G, where
each Zo(U)) has order p% and each Vj is extra-special of order p3;
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and, therefore, Z5(G) = g.d.d { Z,(U) , VJ } is non abelian. The
~following Lemma is an analogue of Lemma 2.5.

Lenrma 3.1. Let G = UlY YU, YV, Y ... YV, be a u.c.d of G with
each Z,(U,) of order p? and each V- nonabhan of order p3. If G =
A Y .. A YB,.JYB isacdof G such that each Zy(A,) has order p?

and each Bj is nonabelian of order p3, then

) r = mands = n; and, therefore, G = A; Y ... YA YB; Y ..
YBnisau.cdofG.

i) Foreachi = 1,...,r, U;Z5(G) = A Z4(G) for ke {1,...,m}.
iii) M; = Cy,(Z2(Uy) is a maximal subgroup in Ay for 1 <k < m.

Theorem 3.2. Letr,s 21and G = U, T U YV, Y .YV, bea
u.c.d of G, where each Z,(U;) has order p2 and each V;is nonabehan
of order p3 Then G has exactly

(l/s') p (2) + 2rs + s(s-1) (p2s 1) (p4 1)/(p2 1)s- -1

u.c.d.

Proof. Let U= U; ¥ .. YU,and V=V, Y .. YV so that G = UYV
is a ¢.d of G. Then the numbel b of all u.c.d of G is given as b =
b b2 b3, where

b; = number of u.c.d of the type U = U;Y .. YU,, each
Z,(U,) of order p?,
‘ by = number of u.c.d of the type V = V,Y ... TV, each V;-
nonabelian of order p3.

bs = number of c.d of the type G = UTV.

Since by,by are already known (Theorem 2.1 and Theorem 2.6), we
calculate by. Note that A = Z,(G)/Z(G) is elementary abelian; and,
therefore, can be considered as a vector space over Z,, which has
skew-symmetric bilinear form f: AxA — Z, such that BERY) =
z*([x,y]), where X, 7 € A, x,y are the pre-image of X, § (respectively)
and z is the generator of Z(G), where Z(G) has order p. Then

Ag = Kerf = {X€ A; BRY) = 0forall§e A} = Z(LD/Z(U).
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and, therefore, A = A; @ A,, where A, is a subspace of A with
nonddegenerating bilinear form [3. Since the pre-image V’ of the
subspace A, is extra-special isomorphic to V; and Cg(V') = Cy(V) =
U, where UNnV'= Z(G), we have G = UYV’ another c.d of G.
Consequently the number of c.d of G of the type G = UYV is equal to
the number of decompositions of A of the type A = A, @ A;.

Note that for any bilinear form of A, defined as above, the
kernel A is fixed. Thusif A = A; @ A; and A = Ay © A, are any two
decompositions of A, then A; = A/A; = Ay, and if o is such
isomorphism, then a(al) = ay + ay, where a; € A, for i = 0,1,2. Since
the pre-image of A, is extra-special isomorphic V; and V has 2s
generators and a; € Ay = Zo(U)/Z(U) has pT choices, we have, the
number of choices for a; € A; is p?s. Hence the number of
decompositions of A of the type A = Ay @ A, is p?'s, i.e by = p2rs.
Putting the values of by,b, and by, we have required result.

Corollary 3.3.Let G=U; Y .. YU, YV, ... YV  be a u.c.d of G as in
Theorem 3.2. Then, if p is odd, then all u.c.d of G are pairwise
isomorphic. In particular, if Z,(G) is of exponent p, then each u.c.d of
G is isomorphic to G = U; Y ... YU, YMS: and if Z,(G) has not
exponent p, then each u.c.d of G is isomorphicto G = U1 Y ... YU, Y
NM.s-1 .
Proof. Let U =U; Y .. YU,and V=V, Y .. TV, so that G = UYV
and Z2(G) = g.d.d { Zo(1), V }. If Z,(G) has exponent p, then Z,(U)
is elementary abelian and V has exponent p. Now Theorem 2.6 and
Proposition 2.2 yield the result.

If p = 2, then, of course, Z,(G) has not exponent p; and all of
u.c.d of G are not necessarily isomorphic. Examples of such groups
are those 2 groups G such that G = U; Y .. YU, YV, Y .. YV, is a
u.c.d of G with each U; € {S,D,Q} and each V8 {D3,Q@3}. In th1s case
we have the following result
Theorem 3.5. Let G = U; Y ... YU_ YV, T ... YV, be a u.cd of G
such that each Uje {S,D,Q} and each Vje { D3,Q, }. Then each u.c.d
of G isomorphic to either S*tD'QS;, 0 < t < r or D*QS; = Q*DS;3 or
DrDs4 = Q*Q%3. Moreover
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[ @DYyifs =0
S spdoya = {5‘ .
, QY3 sQIDY; = $5Q9D9, = S5QIDY; otherwise.

Proof. The above assertion follows from the fact that DDg = QQs,

D@3 = @D3 and SDQ3 = SQQ3 = SDDj. For this let

-2 - .
U=<um;m2"! = e, u2 = m2®?%, wlmy = m-1+202B

>, where 0 < o, < 1. Then

Difo = =0
U = Qifaa=18=0
Sifa=08=1.

Let V= <xyz;[x,yl =222=xt=¢y?= zY&y'lxy =x1>,
where 0 <y <1. ThenV=D;ify=0and V=@, ify = 1.

If G = UYV, where Z;(U) has order p2 and V € {D3,Q3},
then, by Theorem 3.2, G has exactly 4 u.c.d; and if G = AYB is one of
them, then, by Lemma 3.1, K = C5(Z,(U)) = < m > is a maximal
_subgroup in, say, 4; and, therefore A = < ux®y®, K >, where 0 < a,b
< 1. Similarly B = < xm2(n'3)c, ymz(n's)d>, where 0 < c¢,d < 1. Since
A and B commute elementwise, we have a = d & b = c. It is easy to
check that, if U = S,D,Q , then A = 8,Q,D , respectively; if V = D3,Q3,
then B = Q3,D3, respectlvely

REFERENCES

[1] Abbasi, G.Q.-Extra-special  p-groups and  central
decompositions. The Punjab University Joumal of Maths.
1984-85 (XVII-XVIII) 63-68.

t2] Abbasi, G.Q.-Central decompositions of finite p-groups with
abelian second center and the center of order p (in Russian).
Vestnik MGU Ser. 1, Mech. Math 1985(2)75-7

{3] Gorenstien, D. Finite Groups. Chelsea Publishing Co. New
York, 1980.

(4] Huppert, B.-Endliche Gruppen I. Springer Verlag New York,
1967.



20

Central Decompositions of Finite p-Groups

(5] Kurosh, A.G.-The Theory of G'rodps (Vol.II). Chelsea |
Publishing Co.N.Y. 1960.

(6] Tang, C.Y.-On. uniqueness of central decompositions of
groups. Pacific J. of Math. 1970 (33) 749-761.



Punjab University
Journal of Matliematics
Vol. xxix (1996) pp 20-26 ] )
ON INVARIANT SUBSETS OF CERTAIN QUADRATIC
FIELDS UNDER MODULAR GROUP ACTION
M. Aslam, S.M.Husnine, A. Majeed
Mathematics Department,

Universily of the Punjab, Lahore.

ABSTRACT
The. paper is concerned with the determination of integers, units, and primes in
r! 2 .
. _.ann a‘-n . .
Q (\/71 ) . is a rational integer and (a,
invariant under the action of the Modular group G = <y x2=y3 =1 > The
number of ambiguous integers, ambiguous units, non ambiguous units, and

ambigunous primes in Q.(\/;z-) are also found.
1. INTRODUCTION

For any two rational integers @ and b, (a, b) denotes the greatest
common divisor of @ and 5.

2.
227 ¢)=1) which is

For any non square  positive rational integer n, let

2. 2.
Q'r(\/_n)= {ﬂc@ : ac 2 is a rational integer and (a,ac n,c)= l}.

Anelement =a+b\Jn a,b € Q,b#0,in Q(\n) is said to be

an ambiguous number if o and its conjugate & = a - b \/-r; , as real
numbers, have different sings. ‘

Mushtaq [5] has proved that Q'(\/—rz) is invariant under the group
action of G = <xy : x2 = y3 = 1>, where x: C' — C are the Mobius
transformations defined by:

1 z-1
X@2) = -7, = 2-0) and C’ is the set of non zero complex

-
4

numbers.

91
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He has further shown that Q'(\/;) contains only a finite number

of ambiguous numbers and those occurring in a particular orbit of Q'(‘\/;D
form a unique closed path in the coset diagram under the action of G on

0" (\/n).

The exact number of ambiguous numbers in Q'(\/;) has been
determined in [4], as a function of n.

In this paper we determine the integers, units, and primes in

Q'(\/;) (c.f.[2] for definitions) and also find the number of ambiguous
integers, ambiguous units, non ambiguous units, and ambigous primes of

o'(\).

A The notation is standard and we follow [1], [2], [3], [4] and [5]. In
particular for any real number x, {x] denotes the largest rational integer not
greater than x. .

2. INTEGERS IN Q*(\/n )
This section is concerned with the determination of integers of

Q'(\/r_z). The number of ambiguous integers of Q'(\/r_z) is also found.

In contrast to the integers of Q'(\/;) found in [1] with n as a
square free positive rational integer we, throughout this paper, assume that
n=k2m, where m is a square free positive rational integer and k is any non
zero rational integer. Since either m = l(mod 4) orm =2, 3 (mod 4), we
discuss these cases separately.

Theorem 2.1
Let n=k%m. Then:
l. If m = 2 or 3 (mod 4) with k any rational integer or if m = 1

(mod 4) and k is even then the integers of Q‘(\/;) are all of the

a+lln

*1

form

2. If m = 1(mod 4) and k is odd then the mtegers of 0 (-\/_) are

atyn a+tyn

+1' +2

either of the form
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Proof:
Let n=kZm.
' a+ jn .
1. Suppose that m = 2 or 3(mod 4). Then, by [1], o e€Q (\ﬁ)
a+n a+k\m
is an integer if and only if" c\[- = p \L— = + 3 are rational

integers. That is so if and only if ¢ |a, and ¢ |k. But then
. 2 — k2 2 _ k2
c? | (a* — mk?) so that c IL‘Z__cl_l and (a,_(a___m_)_, ¢)=c¢

4

2 k2 o .
Since (a,(_”__c_'_l’__l, ¢) = 1, c= * 1. Henice the integers of 0 ('\/;z-)

a+3ln
+1

are all of the form

22 “*k\fegm

Ne\t let m = 1(mod 4). Then, by [1]

c
is an integer if and only if §'= a ‘2&, % where @, B are rational
k
integers. But then o = a= B — so that cl (a+k), cl 2k. Let (c, k) =

Then d l k so that, as c| (a+k), d l (at+k). But then d I a. Sod=(a, d)=(aq,
(c,k)) =(a, c, k) But (a, c, k) = 1. Hence d = 1. Since (c, k) =1 and c| 2%,
cl k, cl 2 so that we havec=1 1 or £ 2.

Case (1) Suppose that & is even. Then as (¢, k) =1, ¢ = * 1. So
a—illﬁ is an integer of Q'(\IrD.

Case (2) Suppose that k is odd.

@) Ifc=%1, then obviously (a, @—?—kz— c)=1 d 'a—z———ﬂl—(ﬁ

at+y\/n
rational integer, so —:ll[: is an integer of 0* (\/rD

(i) Ifc=1%2, then,askisoddand d (a + k), a is odd. Leta = 2r + 1,
k=2t+1, wherer, € Z. Asm=4s+ 1 for some s € Z.
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So (@ —mkYy =4 [r2 +r— 5 (42 + 4t + 1) — {2 —t] and.
consequently, 1] (@’ — mk?).

(@’ — mk?) . o . :
Hence —+§_— is an even rational integer. Since a is odd, (q,

2 — mk? : a+n
'(E‘L). *2)=1. Thus -i is also an integer of Q'(\/;).

+2 12
“This completes the proof.
Theorem 2.2. ‘
Let n=k%m. Then:

1. If =2 or 3(mod 4) with & ahy rational integer or if m = 1(mod 4)
and &k is cven, then the number of amblguous integers in Q (\/—) is
2+4 [/nl.

2. If m = l(mod4) and k is odd then the numbér of ambiguous
intcgers in Q'(\/;) is 2+6 [\/;] or 4+6 [\/;]. acéording as [\/;] is even or
odd respectively.
Proof:

Letn=klm.:
1. If m =2 or 3(mod 4)with k any rational integer or if m = 1(mod4)

and # is even then, by theorem 2.1, the only integcrs of Q'(\/;)

'—3E If o —i .is an ambiguous integer

of Q'(\/;), then & & = a? — n <0 = a2 < n. So the possible,
values of a such that a? < n are

0.+ 122, oo, £ [\/n].

Hence the number of ambiguous integers of the form

0*(\n) is 2+4[nl.
2. If m = I(mod4) and k is odd then, by theorem 2.1, the only

j TSN

integers of Q'(\/;) arc cither of the form — reaatl

are all of the form

%llﬁof
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a+4/n )
“_{jﬂ is an ambiguous integer of Q'(\/;) if and only if a? < n.

The possible choices for such an a are:
0,1, %2, oo, ERRL ™

5 .
a—n. . . . .
Moreover 5 is rational integer if and only if 2| (n—a%. Ann

is odd, a is odd. So such possible values of a in (*) is [\/n] or [\n] + 1
according as [\/;] is even or odd respectively. Hence the number of

: +
ambiguous integers of the form “_+_2SE of Q'(\/;) is 2[\/;] or 2([\/'£]+1)

according as [\/;] is even or odd respectively. As proved above the number

a++n
of ambiguous integers of the form —‘ﬁ[of Q'(\/E) is 2+4[\/;]_ Thus the

total number of ambiguous integers in Q'(\/Z) is 2+4[\/r_1] or 4+6 [\/'r;]
according as [\/—7;] is even or odd respectively.

3. UNITS AND PRIMES IN 0*(\n)

In this section we investigate the units and primes in Q'(\/;) and
determine the number of ambiguous units, non ambiguous units and
ambiguous primes in Q’(\/;z_).

It is mentioned that an ambiguous unit (respectively prime)
is a unit (respectively prime) which is an ambiguous number in

0*(\r).
Theorem 3.1
Let n=k%mn. Then:

1. If m =2 or 3 (mod4) with k any rational integer or if m = 1(mod+)

a++/n . -
and k is even then an integer —I_?C in Q'(\/;) is a unit if and

i‘)lnil +)Zn

t1

only if n £ 1 is a perfect square and these units are
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2.

Proof:

a+'\/;ora+\[r—z

If m = 1(mod4) and k is odd then an integer 11 2

in Q'(\/D is a unit if and only if n £ 1 or n * 4 is a perfect

t\ntl1+yn t\nt4+n
1 or +9 .

square and these units are

9_‘*_3@ in 0*(\n) is a unit

By [2], we know that an integér o= ”

SOSN=t1ad=a-n=t1Sal=ntl1Sntlis
a perfect square.

. . atyn .
Likewise oL = 12 isaunit< NO)=x1

2 p

Sl =

perfect square.

Theorem 3.2

Let n=k2m. Then:

If m = 2 or 3 (mod4) with k any rational integer or if m = 1(mod

atyn~ . o
4) and k is even then an integer —+1£ in Q'(\/ID is a prime if n
Tp is a perfect square for some rational prime p and these primes
t jn tp + jn

are
*1

If m = 1(mod 4) and & is odd then an integer 2

Q'(\/r—z) is a prime if n * p or n * 4p is a perfect square for some

i\/n +p +\/;z or
+1

rational prime p and these primes are

=t1oal=nt4a’=nt4>ntdisa

a+\/;orb+\[;in
+1 ‘
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By [2], we know that an integer oL = %Elin Q'(\/;) isa prime
if

N@) = a & =a? —n == p, where p is a rational prime.
Soat=ntp.

That is if » * p is a perfect square. Then a i\j;z-

wherea == ‘\/n #p, are primes of Q'(\/;z-).
+
Similarly an integer o = —AE in 0* (\/—) is a prime if N(Q) =

2
as—n . . . . . .
ad= a - *p, where p is a rational prime. So & is a prime if

a’=ntip.
a+_\_ln
*2

Hence isaprimeifa=*4/n £4p.

he converse is false; for example the eight numbers

\/ 10+ 6 + \[
ng (\flO) are all primes whereas 6 is not a rational

prime.
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ABSTRACT

Let Qy* (o, 8, k) be the class of analytlc functions f in the unit dlSC
with {0)=0, /! (O)—l and satlsfymg ~

zf (2 (2/ ( ))
[(1=X) g(z) +A 1€ P(a), k>2

zel, where P (€) is a generallzed form of the class P .of functions of
positive real part. We discuss some properties of this class.

KEY WORDS AND PHRASES: analytic, close to convex functlon star
like, convolution.

1991 AMS SUBJECT CLASSIFICATION: 30C45.
1. INTRODUCTION

Let P (Q) be the class of functions p analytxc in the unit dlSC
E={z: lz I <1}, satisfying the properties p(0)=1 and

f Im—lde_kn

where z=rei°, k=2 and 0< o<1 see [4]. We note that, for a=0, we obtain
the class Py (0) defined by Pinchuk [5] and for a.=0, k=2, we have the class
P of functions with positive real part. The case k=2 gives us the class P(Q)
of funttions with positive real part greater than o..

29
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27 -i
1 1+(1-2Q1) ze 'fl
p@)=3 | — du(t
0 .

where L(f) is a function with bounded variation on [0,27] such that

2R 27
f dun=2 and [ ldu @l <k
0 0

The class P, (Qt) is a convex set and for pe P (Qt), we can write
k 1 k1
P@=G+3)p @~ (G—3) P,® P &P EP(Q)

Let fand g be analytic in E with:

S e
f(zy= 3 a,z,,82= Y b,z,, then the convolution (Hadamard)

n=0 n=0
product of fand g is defined by

e}
(g) @)= 3 agp,z
n=0

Definition 1.1
Let f given by

o0
f)=z+ Y a 2"
n=2

be analytic in E and for A complex with Re A=>0, let

N HL@ @ i
A-M o +2 T &A@, @D,

0<a<l, ge $*(8), 0<8<I1. Then feQ, (. 8, k), (z€E). We note that

6)) 0q(a, 8, 2)= K(t, ). the class of close to convex functions of
order & type 8[2]. ,
(ii) 04(0,0,2) = X, is the well-known class of close to convex functions

introduced by Kaplan [1].
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2.  PRELIMINARY RESULTS '

Lemma 2.1 [3]: Let u=u +iu, and v = v, + ivy and W(u,v) be a
complex valued function satisfying the conditions.

@) (u,v) is continuous in a domain D C c2
(i)  (1,0) € D and ¥ (1,0)>0.
(iii)  Re ‘¥ (iu,,v,) < 0 whenever (iu,,v,) € D and

oo
l .
v S 7 (1+u g). If h(z) = 1+ Z cn2™ is a function, analytic in E, such
m=2
that [h(z), zh’ (z)] € D and Re W[h(z) ,zh ' (2)]> O for z€E , then Re h(z) > 0
in E.
Lemma 2.2 {6]: if p(2) is analytic in E with p(0)=1
and if A is a complex number satisfying Re A 2 0 , then
Re [p(z) + Azp' (2)] > o, (0<0t<1) implies Re p(z)>ot+ (1-¢t) (2p-1)
where ¥ is given by

. 1 ‘
Y=YReA)= f (1+tReA)-1 4t (2.1)
! ;

which is an increasing function of (Re A) and ) < o <1. The estimate is.

sharp in the sence that the bound can not be improved.

Lemma 2.3 [7]: If p(2) is analytic in E ,p(0)=1 and Re p(z)>— zeE, then for

any function F, analytic in E, the function P.F takes values in the convex
hull of the image of £ under F.

3. MAIN RESULTS
Theorem 3.1

Let f£Q (a., 8, k) , A>0

Then ‘[é)z_) € P () , where
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’

20 + _Z
_20+ A8, Reh=Re Z&

2+ A5,
and ‘ ' . .
_ Re h (2) ,
1 I h(z)l 2 h(z) & p(8) ,0 Sﬁl <l1.
Proof:
Forg SS' ©) let
"L(‘g(z))“‘ [(A-v) P(Z) +v1
where
"p(z)=(£ + —1-)P1 - (E— l)P2 R Pl, P, € P, pi(0)=1, py(0)=1
@)
2(@) =(1-7v) [(4 E)pl (4 2)P2] +Y
&+ D 1a-vern-E-D 1a-vp, + 1
So,

A @ .G @) —~ -
a 7"}%’2“1 Sy~ LN plary-o + AdI- -nESh

= G+ 2 [A-Pp+ Y-ayhdl- 7);;’(-’271 &) (1ypyry-ayha-
»ELy | e

The right hand side of (3.2) belongs to Py(at) , since f SQ;'(G. 0, k).
Put
P;(z) =u, zp;'(z)=v, then

(s, V)= [(A-Y)pi(y —o+A(1-y) E1q

Y, V)= (1=Y)u +y—t) +A, (1-Y)y.
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Re W (iuy, v))= Re [(1-Y)iu, +(y—01) +l(1—y)‘;,—1]
1
=(y-a) + M(1-Y) v; Re

Reh
Re Wiy, v))= (Y-0) + A(1-0)v, l—hT—; :

Reh
Re W(iu,, vy)= (Y-00) + A(1=7)v, 8, , ITT; =5,

’ 1
Now, for v;< — 2 (1+u g) , we have

Re W(iu,, v)) < (y-a) - % A(-y) 8, (1+u g)

2
€@y-20)-A (1-18;} —A(1-7)Bu y]

where
A=2(y-a)-A(1-7)9; ,
B=—A(1-1)5,<0.

- Re W(iuy, v;) <0 if 4<0 and this gives us A value of y as defined by (3.1). -
We now apply lemma (2.1) to conclude that Rep(z)>0 in £ and hence f£X

. 9)
Theorem 3.2,

Let (1-A) f +M(Zf) eP ().  (3.3)
Then f'e .'Pk(};) where 7 is defined by (2.1)
Proof: :
Let /' (2)=p(2), p(0)=1.
F@+Af"@=p@) +A z p'@.
PR +Azp@EP (@) (3.4)
Letf (2) =p(z) , p(0) =1
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k1l k1 '

PG+ —G—3)] G5

We have to show that p, , p; € P,(t) , (Rep, > 0, Rep,> 0)

p(+ Az p'(2)] eP, (o).

From (3.5) we can write

, ko1 ' k 1 '
p@) Az p'@ =+l Az p ] - G [P+ Aap, @)

From (3.4), the right hand side of (3.6) belongs to Pk(d). This implies that
p@ +Azp'(2)] eP(@) ,i=1,2

Now, using Lemma 2.2, we deduce that p ;€P(y) ,i=1,2, and hence
p€EP, (). This completes the proof.

Theorem 3.3
Let J be convex univalent in E and f€Q, (Y, 1, k). Then (Jy)

€0, (7, 1, k) forz€E

Proof

Let H =(J.f). Then

H'@) +Az H'(2) = (Do) @) + A (Do) (2)
% , %

Ry o]+ [Z 2 )]

_9@

z

*If @ +At” " (2)]
Re [—@—2(—2-)- ' (2) +Az " ()] GP(o).

(1-3) 521 +A () €P(a)

(1-M)'H' +A (zH")’ €P ().
H'-AH' ' +A (H'+zH'") =H' +AZ H' ' €P(Q)

, , D k1 k|
H +AzH =7 G+ + G-l €P(Q)
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4 ’ k 1 @ k l @
H +hzH'' = G+3) G *p)— G —3) (G *p).

but

%)
(-z— *p) €P(QL), since p,, p, EP(Q), by using Lemma 2.3

%)
[5+r] ep
k1 I v~ :
[G+2) G Py - G- G *Py] ePy).
In fact a more general form of theorem 3.3 can be obtained as follows.
Theorem 3.4

Let 4 be .analytic in E, #(0)=0, h’ (0)=1 satisfy the condition
Reﬂza?%‘ , ZEE.
Let feQA (@, 1, k), thén (fik) €0, (0., 1, k).
As an application of this theorem we have the following.

Theorem 3.5

Let f€Q, (a, 1, k). Then Q, (@, 1, k) is invariant under the
following integral operators

r4
D fem L
0

2 Z
ii) (0= 7™ f Ar) dt  Libra's operator.
' 0

—xt

.z R
iii) f3(z)=f@—t—m dt, lxl<1,  xz1.
0

1+c #
A [ dt |, Rec20,
_ ) ‘
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[1@= )45 (2).
f2(2)=f(2).®2(2).

/@)= R2)D5(2).
J4@)=12):D 4(2).

O, i=1,2,3,4, are convex and

a0

D,@=-log(1~-2)= Y % 2",
n=1
o0
C2(og(l-zytny . R 2
D, @)= z = Z n+1 7
n=1
1 1—xz ® (1-x"
Dy (2)=—1log ( y= 3 2z,
1-x 1- (1=x)"
n=1
Id <1,x#1.
0
1+
On(z)= Zln +z z" ,Rec20.
n=

Let 1}, |1, be linear operators defined as
Wy V)] =21

K, 2] =IN2) + 2/ (2)] 12
Theorem 3.6

Let f£Q; (O, 1, k),. Then
z *
(’l.f:—[(l—z)z]f:zf €0, (O, 1, k).
forlzl <2-J3 and

—22Y/2
mer=EEDr=arn so@ b

for|2| <';". .

The proof follows at once when we use theorem 3.3.

Awatif A. Hendi
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ABSTRACT

Rings in which eVery module is embedded in a flat module are
characterized.
1. INTRODUCTION

We consider all rings to be associative with nonzero identity 1 and
all modules unitary. R—mod and mod—R will mean the category of abelian
groups, category of left R—modules and category of right R—modules
respectively. (4, B) (respectively [4, B] denote, Hom, (4, B) [respectively
Homy, (4, B)] where 4, B € Ab (respectively 4, B € R—mod or mod—R). If
S is any other ring then R—mod—S represents the category of left R, right S
bimodules. We write Hom and ® for Homy and ® for Homy and ®g
respectively. Unless stated otherwise all modules are considered to be in
R-mod. — and — will mean monomorphism arrow and epimorphism
arrow respectively. Integral domain means a commutative ring with no
nonozero zero divisor. 3 (respectively Jg) represents the class of
modules in R—mod (respectively in mod—R) which are embedded in flat
modules in R—mod (respectively in mod—R).

A module 4 is said to be in (left) E.F. module if it can be

embedded in a flat module. Similar definition for E.F. modules in mod—R
holds. For the commutative case E.F. modules were introduced by Enochs
[3]. In the general case Colby [2] has introduced an L.F. ring in which
every injective module is flat. Thus an LF. ring is a ring in which every
module is an E.F. module. Any regular ring is an LF. ring, Kaplansky [5],
so every module of a regular ring is an E.F. module. E.F. modules are a
more natural generalization of torsion free modules and for an integral
domain the two notions coincide, i.e., a module A4 is torsion free if and only

39
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if A is an E.F. module. However it is not necessarily true in the general
case. Ansari [1] proved that if R is a two sided Ore domain then the two
notions coincide in the non-commutative case also. .

If I is an integral domain and Tthe classical field of quotients of |
then for a module 4 the following sequence is exact.

AITA) > Ted >TIe 4 (.1
where T(4) is the torsion submodule of 4, Matlis [7]. Ansari [1] obtained a
generalization of sequence (1.1) in the general case utilizing E.F. modules. -

E.F. modules give rise to E.F. rings such as injective flat modules
give rise to LF. rings. Colby [2] has provided various characterizations of
LF. rings. The aim of this note is to show that some of these
characterizations can also be used to characterize E.F. rings. -

2. LAZARD'S LEMMA ,

A ring R is said to be a left (respectively right) EF. ring if every
module in R—mod (respectively in mod—R) belongs to rRJ (respectively
Ip). - | |
A module is said to be finitely presented if it is the homorphic
image of a finitely generated module F such that the kernel of the
associated epimorphism is also finitely generated.

Let E be the injective envelope of one copy of each simple module

in R—mod then for M in R—mod (M, E) = M" belonging to mod—R is called
the Matlis dual of M and there exists a natural monomorphism from M to

M'*. Further, M" is injective in mod—R if and only if M is flat in R—mod.
Matlis dual in mod—R is in R—mod and N* is defined in a similar way and
for N belonging to mod—R, N* is in R—mode and N* is 1nject1ve in R—mod
if and only if N is flat in mod—R.

For modules M and N there exists a natural homomorphism
OuN:I[MR] ® N — [M, N] defined by Oy (Bn) (n) = fim)n for [
belonging to {M, R], m in M and n in N. Oy is an isomorphism if M is
finitely generated and projective or A is finitely presented and N is flat.

- Lemma 2.1 (Lazard [6]). For a module M the following conditions are
equivalent:

¢)) M is flat. A

(2) For every finitely presented module P the map.

Opm: [P.RI® M — [P.M]

is an isomorphism.
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3 For every finitely presented module P, the map

Cp - [P.R]® M —> [P.M]
is an epimorphism.
“) For every finitely presented module P and & belonging to [P,M]
there is a finitely generated free module F, P belonging to [P.F],
belonging to [F,M] such that o = J3..
3. CHARACTERIZATION OF E.F. RINGS

Now we come to our main result for the characterization of E.F.

rings. The proof is a modified version of theorem 1, section 2 of Colby [2]
for LF. rings.

Proposition 3.1, :
For a ring R the following conditions are equivalent:

(D Risleft E.F.

Q) Every finitely presented module is a submadule of a free module.
'(3)  For any free F in mod—F, F* is flat. ‘
Proof: :

(1) implies (2): Let N be a finitely presented module and © the
embedding monomorphism from N to a flat module 7. Then by lemma 2.1

there is a finitely generated free module A and homomorphisms [3, r such
that the following diagram comutes with B monomorphism.

6
N iy
B\ /7
(2) implies (3): Let F be free in mod—R then F” is injective in R—mod. Let

P be finitely presented in R—mod and L be finitely generated free in R—
mod containing P. Then the following diagram is commutative

oL,F
CRA®F —-— (F)
al 18
(PRAOF —-—> (PFY
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Since F* is injective, B is epimorphism and G, " is an isomorphism, since .
L is finitely generated and free so that Gp . is an epimorphism. Thus F'is
flat by lemma 2.1.

(3)  Implies (1): Let M be in R—mod and /(M) be its injective envelope
then (/(M))" is in mod—R. There is a free F in mod—R and an epimorphism
d from F to (/(M))" which implies that the sequence F —> (I(M))® is exact
which in turn implies that the sequence [(I(M))', E1l — [F,E] is exact
where E is the injective envelope of direct sum of one copy of each simple
module as described in the introduction, that is the sequence (/(AM))™* —

F* is exact. Since F* is flat and /(M) < (/(M))**, I(M) is a direct summand
of F* so I(M) is flat. Thus M is embedded in a flat module. Hence R is left
EF.
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ABSTRACT

In this paper, by employing a group-theoretical procedure the invariants
(elements of integrity basis) of the function W( E, S, A, n) are determined over
the arbitrarily chosen crystal class 3m. This function physically corresponds to the

internal energy function in the nonlinear theory of perfectly elastic materials with
couple-stresses and can be used to derive the related constitutive equations for

stress and couple-stress.
1. INTRODUCTION

In the theory of continuous media, there are two sets of principles:
The Basic Principles (Field Equations) which are valid for all materials
and the Constitutive Principles by which the structures of different
materials are taken into account [1, 2]. The second set of principles places
certain restrictions on linear and nonlinear constitutive equations.

In this study the restrictions placed on the internal energy function
W(E, S, A, n) , by one of the constitutive principles (the Material
Invariance Principle) will be. inspected over the arbitrarily chosen crystal
class 3m. This energy function in the nonlinear theory of perfectly elastic
materials with couple-stresses has been developed by Toupin [3] and used
to derive general constitutive equations for stress and couple-stress.

- In W, S, A, 1), E is the strain tensor (a symmetric second order
true tensor) defined by

Oxp Ox
1 p OXp
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S and A are the symmetric and antisymmetric parts of D which is
defined as the curl of strain and given by '

' 1 02 x, 0x,, '

Dy =3 €y, ~ )
vo3Tm ox 0X, ax,,, ‘

where x; and X; are the rectangular Cartesian coordinates of a material
point in the deformed and undeformed states respectively, and €, is the
alternating symbol. S and A are second order traceless pseudo tensors
given by

S;=7 @y +D), : 3)
l .
A,‘j = E (D,j = Dﬂ), (4)

Finally, M is the entropy density (a constant).

The material invariance principle states that constitutive equations
must be form-invariant under the set of symmetry transformations
describing the symmetry properties of the material considered. On the
other hand, it is known that symmetry transformations of crystalline
materials form groups (point groups {S} ) [4,5,6,7]. Thus, these two
remarks lead us to suggest a group-theoretical procedure for the solution of
this problem.

2. FURTHER REMARKS ON THE PROBLEM AND THE
METHOD ;
In accordance with the form-invariance requirement mentioned
above and omitting the constant 1], we may write

W(Es S: é) = W(E,s S,’ A,) 3)

which should be satisfied under each symmetry element 8, € {S}. Here E’,
S’ and A’ are the transformed forms of E, S and A respectively. The effect
of (5) is to enforce the argument tensors to form certain combinations
I, (E, S, A) (m=1,2,....) which remain invariant under the symmetry
group of the material considered. These invariant combinations are said to
form an "integrity basis" for the function W(E, S, A), which then can be
expressed as a polynomial in I, rs. If none of the invariants I, is
expressible as a polynomial in the remaining elements, then the set I,
form an irreducible integrity basis.

The typical multilinear elements of integrity bases in terms of
" general symbols representing basic quantities (which are linear
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’cokmbinations of the independeni componeénts of argument tensors) are
available in the literature [8] for most of the crystal classes. Thus, the
problem reduces to the actual computation of the basic quantities in terms
of the argument tensors involved in (5). .

In [8], it is noted that considering transformations of linear
combinations of the independent components of a tensor is advantageous
than those of its individual components. Let T,T,,...T, be the s
independent components of an argument tensor T Consider 5 linear
combinations Ui = Lij Ty (i, j = 1,2,....,5) of these components. The set of
the quantities U,, Uj,..,U; may be split up into the subsets [8].

_ (Uhyeeeet, U)), (Upsqseeee, Uy (Upgqseeee, UY) (6
such that each subset forms the carrier space of one of the irreducible
representations I'; of the point group considered. The quantities (6) are
referred to as "basic quantities” and may.be obtained in terms of the
independent components of argument tensors explicitly with the
application of the following formula [8, 9].

g s
U@)= X D' (PXSD(SIT, (0 = 1yeersdpir = LillS), N
k=1 , ,
where U; (p) is the i-th component of the basic quantity Up)

associated with the irreducible representation I P = {D (p) (S)} (of
dimension d) of {8}, g is the order of {S}, « denotes complex
conjugate, and {D(S)} is a reducible representation of {S}.

In (7), we proceed by takingi = 1, ¢ = 1 and compute U,(p). If
U,(p) is ponzero we determine the remaining components Uy@), -

Uy@),...U fiﬁ) (p) which together with U,(p) form the carrier space

for I'p. If U,(p) happens to be zero; we take q = 2 and repeat the
process until we obtain all basic quantities needed. '

It is also to be noted that the computation of the basic
quantities may be simplified further by first decomposing the
argument tensors over {S} considered. We recall that a tensor t <A>
of the bqsiéj;symmetry type <A> forms the carrier space for the

irreduciblé representation <A> of the general linear group GL(3)
[4,5]. If we pass from GL(3) to {S}, which is a subgroup of GL(3), the

irreducible representation <A > becomes reducible [4] over {S}, i.e,,
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<k> = z n Jrj . (8)
J .

where Fj's are the irreducible representations of { S} and available in
the literature [8]. The coefficients nj’s are evaluated+ by the well-
known formula [4,5]

g
SHE DY CYCRPAYCR ©)
k=1

where xj'(gk) is the complex conjugate of the character X;(Sy) of Fj and
% <A> (8,) is the character of the representation <A>. The decomposition
(8) simplifies the actual computation of the basic quantities. Since the
coefficients nj’s give the numbers of the corresponding basic quantities and

the irreducible representation I';’s reveal the symmetry types and the
dimensions (numbers of components) of the basic quantities to be
computed.

3. DETERMINATION OF INVARIANTS

As noted in the previous section, it is advantageous to decompose
the argument tensors E’, 8', A’ in (5) over the point group {S}
considered. For ease of reference, the irreducible representations of 3m and
the relevant character systems obtamed are given in Table I and II
respectively. ,

Table L Irreducible Representations of 3m and Associated Basic Quantities

m | I | 8 | s | R |RS |RS | BO
r 1 1 1 1 1 1 o0, ..
I, 1 1 1 -1 -1 -1 | P9,
Iy E A B E G H a, b,...

| 1o [-1/2 V372 12 —3/2]
In Table I, E‘[o 1] A= a2 —12d° =7 L _J32 —1/2
[1 o] -1/2 3/2 H=[—1/2 —3/2
=L L V372 12d0 = -V3/2 1/2
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Table IL Relevant Character System of 3m

M. Shafique Baig

x m| I [ 8 |8 | R [RS|[RS
T, 1 1 1 1 1 1
xT, 1 1 1 -1 -1 -1
x5 2 -1 -1 0 0 0
1L ops 6 0 0 2 2 2
Xr(z) 5 ~1 -1 1 1 1
Wi 3 0 0 -1 -1 -1

Using (9) and Table I, II and keeping in mind that Sis traceless
[10], the argument tensors are decomposed over. 3m- as

E: <2> = 2", + 2T,

§: (2 = TI,+2I;
A:<ll>= T,+ I

(10)

Then referring to (10) and Table I, it is observed that the basic quantities
(11) given below are to be determined explicitly.

- Associated with T, :
d, ®’'(in terms of components of E )

@'’ (interms of components of § )

Associated with T2 :
b4 ( in terms of components of A )

Associated with I'; :
a,b (in terms of components of E.)
c,d (interms of components of S)

e (in terms of components of A )

(11



Invariants of Energy Function W(E , 8, A, 1) 48

Next, using the formula (7), the basic quantities specified in (11) are
computed explicitly. The results are given in Table III below:

Table IIL Explicit Forms of Basic Quantities

I, E » s A

T, | Eyy +Eg, Egy S11+ Sy

I, | - Ayg

I [ 2Eqy ] [E31] [Su + 322] [323] [Azs]
E11-Egp- " LEg, 281 7 LAyt 431

Now using the general results provided in [8], the following typical
multilinear elements of the integrity basis for W(E, S, A) over 3m are
listed: : v :
degiee 1: '
degree 2 : a,b, + ayb,, PV’
degre:e 3: a2b202 - alb102 - blcla2 - Clalbz, lp(albz - azbl) (12)
degree 4 : W(a,b,c, — a,b,c, — bycya; ~ czazbl)-

Thus, using (11), (12) and Table III, the invariants of the
polynomial function W( E, S, A) over 3m are obtained as follows:

degree 1 : (3 elements)

Eyy+ Ep, E33, S1y + Sy

degree 2 : (16 elements)

42, + (Eyy ~ Egp)?, By + By, (S + Spp)? + 4825, S%p3 + 823, A%
+ A%y, A2, 2E By + Exy(Ey) — Eyp), E5(Sy) + Sp3) + S12(Ey — Ep),
2E1;853 — S31(Eyy — Eyp), 3E 2493 + A3 (B — Epp), E3y(Syy + S39) +
2E53S12: E31S33 — Ep3S3ys E3jAas + Epadsy, Syz (S1y + Spp) — 281553,
Az 81yt S32) + 281945, Sy3d a3 — 345

degree 3 : (45 elements)
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@) (5 elements) .

(Eyy — Eyp)® — 12E%; (Ey) — Eyy), B3yy — 3E% Epy, 4831, — 35)5(5), +
5320?8331 + 382383, 435, — 342445,

(ii) (20 elements)

The 20 clements obtained upon substituting two different vectors from the
set

8= (2B, Ey — Eyp), b= (B3, En3), ¢ = (S1y + Sp2, 25)),

d = (Sp3, —=S3)), € = (423, 43))

in all possible ways in typical element

axbyey —ayhiey = bycjay - c1a1by

(ili) (10 elements)

_ The 10 elements obtained upon substituting three different vectors
from the set given in (ii) in all possible ways in typical element

aybyey — arhie; — bycjay; — c1a1by '

(iv) (10 elements)

The 10 elements obtained upon substituting two different vectors
from the set given in (ii) in all possible ways in typical element (2,6, —
~ ayb,) and then multiplying the resulting expressions by ¥ =4 12+
degree 4 : (35 elements) ' ‘

The elements to be listed here are obtained from the 35 elements
constituting (i), (ii) and (iii) of degree 3 as follows:

(a) interchange first and second components of a, b, ¢, 4, e, in
the 35 elements mentioned above.

() multiply the resulting expressions by ¥ =4,,.

4. CONCLUSION

The results given here are in good agreement with those given by
Huang [11] who obtained the invariants of degree three or less applying the
theorems in the theory of invariants [12] by using classical methods. We
further note that our results consist of the invariants of degree four or less
which is a complete integrity basis for the problem under consideration.
Finally, it is to be noted that the group-theoretical procedure employed
~ here may easily be extended to determine the integrity bases for
W(E, S, A) over all the crystal classes.



Invariants of Energy Function W(E , 8, A, n) 50

REFERENCES _ .
1] Eringen. A.C., Mechanics of Continua, Kriger Publishing
Company,, New York, 1980 )
2] Hunter, S.C., Mechanics of Continuous Media,
John Wiley & Sons, New York, 1983,
{31 Toupin, R.A., Elastic Materials with Couple-Stresses,
Arch Rational Mech. Anal. 11, 385 (1962).
[4] Hamermesh, M., Group Theory and Its Application to Physical
Problems, Addison-Wesley Publ. Co. Inc., 1964.
5] Murnaghan, F.D., The Theory of Group Representations,
Dover Publ. Comp., 1963.
61 Bhagavantam, S., Crystal Symmetry and Physical Properties,
’ Acad. Press, New York, 1966. '
[7] Jaswon, M.A., and Rose, M.A., Crystal Symmetry: Theory of
Colour Crystallography, John Wiley & Sons, New York, 1983.
[8] Kiral, E. and Smith, G.F., On the Constitutive Relations for
, Anisotropic Materials. Int., J. Engng. Sci., 12, 471 (1974).
9] Lomont, J.S., Application of Finite Groups, Acad. Press, New
' York, 1959. ‘ )
[10] . Baig, M. Shafique, Magnetic Symmetry Restrictions on the
Transport Equations, Ph.D. Thesis, Gazi University ANKARA,
1991. , ) _ ‘
[11]  Huang, C.L., The Energy Function for Anisoiropic Materials
with Couple Stresses-Cubic and Hexagonal Systems, Int. ]
Engg. Sci., 6,609 (1968).
[12] Weyl, H., The Classical Groups, Their Invariants and

Representations, Princcton University Press, 1946,



Punjab University
Journal of Mathematics
Vol. xxix (1996) pp 48 - 53
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ABSTRACT

Traceless tensors from the irreducible representations of the full
orthogonal group O(n). These irreducible representations are different from those
of GL(n). In this paper, the decomposition of traceless tensors over the single
coloured - crystallographic (classical) point groups { S} is discussed. Then,
restricting the problem to 3-dimensional space, traceless symmetric tensors of
order r<4 are decomposed over the triclinic, monoclinic, rhombic crystal systems
and the results are listed in a table.

1 INTRODUCTION

It is known that crystallographic point groups {S} representing the
geometric symmetry properties of the classical crystal classes [1-3]. Since
symmetry is a tensor property, those tensors with particular symmetry will
be transformed among themselves under the general linear group GL(n).
This suggests that the whole linear space of r-th order tensors is reducible

to the tensor t<A> of the basic symmtry type <A>, [4—6]. In other words
the tensor t<A> form the irreducible representations of GL(n) which are
named by the same symbols <A>.

In [4], it is shown that the "operation of contraction” commutes

with the orthogonal transformations S which satisfy S;; S, = S§j; Si; = 5jk~
For example, consider an r-th order general tensor ......... i~ By setting
the first two indices equal to each other and summing over all values of i,

= iy , the (12)— trace (contraction)

l = - N
130 guunnnniy = B pgeenennir = B0 12 b1 12 3eveeeeir M

51

N
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of the tensor t is obtained, which is obviously a new tensor of rank (r—2).
Now consider its transformed form under an orthogonal transformation S,
ie, :

r (12 — 4! — : .
C i3 Dornie = i i3eeevic = Sitjt Siajs Siajaeeee-Sigjs G1jaeeeevr )
L)
812
- 1
Si3j3"""Sirjr tj3

’
=112
TN —

From (2), we conclude that the operations of contraction and tensor
transformation commute. Secondly, if we conclude the r-th rank tensors for
which all pair-traces are zero, from (2) it is observed that they are
transformed among themselves under the transformations induced by 0(n).
- In other wbrds, traceless tensors of given symmetry types form irreducible
representations of 0(n). These irreducible representations are different from
those of GL(n). Since the process of repeated contraction provides traceless
tensors of order », r-2, r-4.......; the irreducible representations of 0(») may
be obtained by a regular removal of two boxes in a repeated manner, from
the corresponding Young frames {4] of the irreducible representations of
GL(n). When we go from 0(n) to the crystallographic point groups {S}, the
irreducible representations of 0(n) to the crystallographic point groups {S},
the irreducible representations of 0(n) will be reducible. The next section is .
devoted to this reduction problem when n = 3.

2.  REDUCTION OF 0(3) OVER CRYSTALLOGRAPHIC POINT
GROUPS

Traceless tensors of given symmetry types which from irreducible
representations of O(n) can be obtained explicitly by applying the
corresponding Young symmetry operator {4] to the traceless tensors of rank
r. Thus, an irreducible representations of 0(n) is associated with a Young
frame <A> = < A; A,..... A,>, where A;'s are non-negative integers
satisfying A +Ay+eecetAy = 7 5 A 2 A, 2.2 A, However, not all
Young frames are admissible. There is a general theorem in the literature
(see, for example, [4] , P. 394) stating that "the traceless tensors
corresponding to Young frames in which the sum of the lengths of the first
two columns exceeds the dimension n of the space, are identically zero”.
Further, the admissible frames -(diagrams) can be paired into "associate
‘diagrams” Y and Y’ as follows: The length "a" of the first column in ¥ is a
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< n/2 , the length of the first column in Y’ is (n—a); and all other columns

in Y and Y’ have the same length. For example, if » = 3, in general <> and
<r,1> are associate diagrams.

In order to describe the irreducible representations of 0(n) formed
by the r-th rank traceless tensors, a symbol (L) = (ul,....,up) and its
associate are used [4], where .

Byt My Feep =1, My 2 [ 22 Hp 20

n/2 - if n is even

P= [n—l /2 ifnisodd ®)

when n = 3, from (3) we see that p = 1, |1, = r and one of the irreducible
~ representations of 0(3) is (1;) = (r), and its associate will be (it,, 1). But
these two representations are not independent [4] and in particular
(M, 1) = det (Sp) (1y), S € {8} : . “4)

Hence, the irreducible representations of 0(3) may be denoted by a single
label (W,), i.e., they are furnished by the traceless completely symmetric
tensors of order r = |,. :

~ The number of independent components of a traceless tensor t(LL;) -
with symmetry type (l,), gives the dimension of the irreducible
representation (}1;) and is found to be

X n (1) =21,+1 T
~ Now, if we go from 0(3) to any pomt group {S}, the irreducible
‘representation (JL,) of 0(3) will be reducible, i.e.,

w)=2 nT; - o ®
i

where, I'.'s are the irreducible representations of {S}. The numbers nj's are
obtained by the formula (see, for example, [4]).

1 .
n; = E 2 Xy G K S : : @)

where, g is the order of {S}, %u1y ) is the character of the representation
(K,) and X, (+) is the complex conjugate of the character of I' The
character A(u1) (Sy) is evaluated by the following formula ( {7], P. 230 ).
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Aty G = a1 G a5 S ' ®)
The simple characters q,, (S;) in (8) are obtained from the m-th order
determinant [7,8]

S, -1 0 ¢ 0
1182 8¢ -2 o . .0
Im (Sk =; $3 S2 S 1 -3 . .0 (9)

S Sm—l Sm—d m-3+ - 51
where, Sﬂ = trace @ﬁk) '

Using (8) and (9), the character i,;)(") are evaluated first and
then by (7) the traceless tensor under consideration is decomposed over any
point group {S}.

3. APPLICATION

As an application, we consider the decomposition of the space ([L;)
= (4) of a traceless completely symmetric 4-th order tensor over the

rhombic-dipyramidal class mmm (D,,). For ease of reference, the .

symmetry elements and the irreducible representauons of mmm are listed
in Table L

TABLE L Irreducible Representations of mmm.

mmimn I |D; | D, | Dy | C | R [ Ry | Ry
T, 1 1 1 1 1 1 1 1
T, 1 L) -1 1 L
I, Pl-1 (=1 1 }-r] 1]
r, L -1 {-11{1 L -1 | 1] 1
r, 1 1 L1 by =1 =-1]-1
r, 1 L' t—1 -1 |-1-1{1 1
ry L A A R s B S U D R A U
r, L b -t {1 =11 !




65 M. Shafigue Baig
From (8), we write i
sy G = a4 S) ~Q S _ ; (10)

and using (9) evaluate ¢,,(-) (m = 1,2,3,4) in terms of SB (SB = trace (§Bk))
as : :

q = Sj :
)

Q=7 (5 *+5) (D
1

3 =37 (5 + 35,5, + 25y)
L ¢ 44652 2

Qy =37 (51° + 65,%5; + 85,53 + 35, + 65))

Next, the traces Sy = (B = 1,2,3,4) needed in (11) and the relevant

characters are evaluated for mmm (D,p). The results are listed in Table
IL

TABLE II. Relevant Characters for mmm.

mmm Sy IS2|S3Sqfa 9|9 |%jxyn]lxnlrs| X
l 3 3 3 3 3 6 10 15 3 5 7 9
DpDpDy | -1} 3 -1} 3 |-1})2]-2]3]-1 1 | -1 1
c 33|33 |-3]6]-10fj15|-3] 5 |-71]29
RByRy- | 1|3 f 1|3 |1j2]2]3]1 1 1 1

Using (7), Table I and Table IT we get the numbers nj's as

n=3, ny=ny=n=2 n'=ny’=ny'=n,'=0 (12)

Hence the reduced form of (it,) = (4) .

@ =3I, +2I, + 2y + 2T, \ 13)
is obtained. This reduction means that the nine independent components of
a traceless completely symmetric 4-th rank tensor form the carrier spaces
of the irreducible representations I” j of mmm which appear in (13). .

By straight forward application of the procedure described above.
are obtained the decomposition of completely symmetric traceless tensors

of order r < 4 over the triclinic, monoclinic, rhombic systems and list them
in Table III. All such problems can be treated in the same manner.
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TABLE III. Decomposition of Traceless Tensors of order r < 4 over certain classes

(Y] Crystal Classes
KC| 2(Cy [ m(c) [2m(Cyy) 222(D) 2mmm (C,,) mmm (D,y)
m 3r, (ry+2r, [ory+r, l"2+21'3 I'2+I'3+I'4 | PR Y2 [y +T3 4T,

(2)| 5Ty [3T+2l, |3T)+2T, BT +2T, |20 +T,+ 5+l |20 #0405+l 2T +T+T3+T,

3) 70y [3T 44T, |40 +3T, 3Ty+dly (T +2lp+205+2T, 20 ~T)+205+2T . I +2, +2I5 +2T,

(4)) 9T} [STy#4T; |STy+4T, [STy+4T, [3T) 420420 +20, |3 203 #20 320, [3T 25+ 20 5420
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ABSTRACT

‘We show how it is possible to put different stability types such as Routh-
Hurwitz and Schur-Cohn on common grounds by establishing. direct links between
them. In the process, we obtain natural and elegant extensions of both Pascal's rule
and the binomial theorem, which prove useful in establishing our main results.
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1.  INTRODUCTION:

A linear system of differential equations is said to be Routh--
Hurwitz (Schur-Cohn) stable if and only if all of its eigenvalues lie in the
left half of the complex plane(within the unit circle). The problem of
locating the eigenvalues of a system of differential equations has fascinated
mathematicians for decades, and the literature is full of ingenious methods,
analyses of these methods, and discussions of their merits. Over the last
forty years or so they had tremendous impact on various areas of control
theory. In case of real systems, the theory of stability is well developed.
These are results which mathematicians and engineers are familiar with
and they can be readily applied to theoretical problems in differential
equations and linear algebra as much as to practical problems in electrical
" engineering and electronics, see for example [4], (6], {11] and {13] to

87
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mention just a few. The case of complex coefficients has- received much
less attention in t'e past, but recently a flurry of results has been reported,
among many others see [1], [2], [5], [7], [9] and [14]. Many fresh attempts
were made to put stability criteria of different natures such as Routh-
Hurwitz and Schur-Cohn on common grounds, by invoking the intimate
relationships that might prevail between these various stability types, for
some very recent works in this direction see [3], [8], [10] and [12].

This paper is basically a contribution to the mainstream of
bringing together these two important types of stability. It is structured as
follows: In section 2 we give the necessary definitions.and notations. In
section 3 natural extensions of Pascal's rule and the binomial theorem are
obtained which are then applied in section 4 to prove the main results.

2, DEFINITIONS AND NOTATIONS:
By inductioxi, define the following sequence of sets:
ZM={z,2y, .. 2y}
for all n 2 1, where for any positive integer j, z; is a real or complex
number.

A j-subset of Z(" is a set consisting of j elements of Z(") having
different subscripts.

C (jn)denoteS the set of all j-subsets of Z("),

If1<k< (?) where (?) is the binomial coefficient, let P&Ill{) be

the product of all j elements of the kt subset of C(?)
- g — (m) _
LetS > P forj 1, ceeerr, n,and S 0 - l1foralln>1.
k= 1

' I =1 . .

Foranyj=1, ....,n,let w; = %—_ﬁ which is equivalent to z;=
1+w
—1-__+ Slmllarly, let WD ={ w; ,w, , ... , W, },and let D(J) be the set

W
of all j-subsets of WM If 1 <k < (;l) , Q(jrll{) denotes the product of all ;
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@)

.Let Tj-(") Z Q for allj Sl U ,
k=1

(n)

elements of the k' subset of D i

n,and Ty =1 foralln > 1.

A given linear system of differential equations is said to be Routh-
Hurwitz ( Schur-Cohn ) stable if and only if all its eigenvalues lie in the
left-half plane ( inside the unit circle ).

If A is an nxn real or complex matric , and X(¢) is an n-
dimensional column vector function of t , let X' = A X be a system of
differential equations , with eigenvalues z; , z, ; ....... , Z, - Then the
characteristic polynomial of this system may be written in both factored
and expanded forms as follows:

n n )
=11 (z- z) = > al,.z"‘f where g =1 by definition. Similarly if X’ =
i=1 Jj=0 :

B.X is a system with eigenvalues w; , w,, ......, w, (Where W, is related to z,
z —1 _ ‘
of the previous system by W=7 1] ), then its characteristic polynomial
\ j y

is

n n ‘
gwy= T[] w- w)= > b, w™l, with by = 1.

i=1 J=0

3. BASIC RESULTS:
The following results are needed later.

Lemma3.l S+ S( W = SeD forallj =1, e, 1

Proof. If1<j<nletC= Cj n) x { z,,; } be the cartesian product of the

two sets Cfn) and { z,,, }.

j-1

. . ;
If { d; } (j-l) is the family of all subsets forming C;?l) , then it
- i=1

is clear that C is in a one-to-one correspondence with the set @ = { ¢,
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A n n

{ Z,, } s =1 e, , (j-l) } , and card C = card @ = (j-l) where card

X denotes the number of elements of a set X.
Now ( Cj(”) vud)c Cj("”) and Cj(”) "~ O = J | since no j-
subsets of Z(" contain z,,,, . Hence
1

card (C™ U @) = card C(" + card ® = (31) + (jfll) = (n;— ) = card
C (1)

.,

Therefore Cj(”) u ® = Cj("”) , from which it follows

automatically that SJ,(”) + Sﬁll) Zpay =S D forallj=1, ... , N

Lemma 3.1 is an extension of the famous Pascal's rule,

n
Theorem 3.1  flzy= 2, (—1Y Sj(”) Fior)
Jj=0
Proof. We proceed by induction on n.
z—z;=z- 85, hence our proposition is true for n = 1.

n
Suppose flz) = 2. (— 1Y §{™ 2" then
Jj=0
n n ,
f2) - @=z,) = 2 (- Y SW 2 = ¥ (= 1Y Sz, but
J=0 J=0

n n
- o) (n+1)
Z (—I)ISJ(n)znjan: 2 (=1 lSj-l Iz H (- DS n+1

J=0 J=1
(n+1) (n)

since S n+l =S n Z,., - Hence
‘ n (n) +1
f2) - (z— z,. )= 21+l 4 Z (= 1y zi+l (S}(n) + SJ'»] z)+ (-1"
Jj=1
n+l!
(zii) = Y (-1 Sj(””) z"J71 by Lemma 3.1 and the proof is
j=0 |

complete.
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Theorem 3.1 is an extension to the well-known binomial theorem.
The following is now clear,

Corollary 3.1 Sj(") =(-1Y a;and T,(") = (1Y b forall j = 0.1,....n.

The intimate relationship between Routh-Hurwitz and Schur-Cohn types of
stability could best be expressed by the following:

Theorem 3.2 The system X' = A.X is Schur-Cohn stable if and only if
X’ = B.X is Routh-Hurwitz stable.

1+ z~—1
Proof. Suppose z = ) i or equivalently w = 7+ 1 where z and w are

w
complex numbers. The following relationships can easily be established

20zz—-1) 2(w+in)
w+w=—T—"—7 and z. z -1 = 57—, from either of which it
[z+1]2 F1-wl2
follows that | z | < 1if and only if Re w < 0.
4, ROUTH-HURWITZ IN TERMS OF SCHUR-COHN:
Ifr and s are non-negative integers , define:
s! .
1 >
( ) ri(s—n)! lf S=T
0 ifs<r

For technical purposes we also define:
_ s ‘
( i) =1land ( 1) = 0 for any integer s 2 0.

If X’ = AX and X’ = B.X are the two systems defined in section 2
with their corresponding characteristic polynomials, then

Theorem 4.1

!

t s
z Z (- l)min(p.l)ﬂ+r (i - 1) (
=0s=0r=

)a,

[v]z

tl+r

n
Y (-1ra,

r=0
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t if t<p
n—t ift > p

@

Proof. Let1<p<n. Bycorollary3.1 (-1’ b, = 3 Q(plix).
: k=1

We  bring all terms Q(pli() to a ~common denominator

n
D,=I] (z,+1).Call N, the numerator , hence (—1)? b, =

r=1 P

A typical clement in the sum appearing in N, is

n n
[T(z,-1). [I(z,+1)

(= r=1 © - 8=p+1 ifp<n

P n i
IMT(z,-1) ne=n
r=1 .

All elements of N, can be produced from £, by considering all
possible positions of the p minus signs of t into the n factors of ty- It is

. . n
clear that the constant term in Np is (—1)? (p) and

n
Dp= > (—1Ya,.
r=0

Let 1 £t <p. We propose to calculate the coefficient of

*
£ (n) S . .
sm =% P\ appearing in N, . But first we note the following:
k=1 :
If we consider the product of 'any t factors chosen from the
set{z, -1, 1<r<pru{z,+1,ptl<s<n}ifp<nand from the
set {z,— 1,1 <r<n}if p=n, this product clearly shows up in exactly
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(;:: of the elements forming N, . This leads tc the fact that the
arrangement of the factors in such products is not significant. Therefore all
ftnlz for 1 <k < ( ) have the same coefficient, which is that of S, (")

(n) (n)

Hence, it suffices to calculate the coefficient of P 1 where naturally P t1

5
r=1
Next we explain our strategy in producing all terms-of N_ from #p :
As a first step , consider the terms of N, corresponding to aﬁ possible

positions of the ( p — t) minus signs into the ( n — t ) different positions
indicated in ‘

D n :
=H(zj—l). [MTz-1)y. TI(z,+1).
j=1 k=t+1 m=p+1

p—1t

n—t

where we suppose t < p < n . If ¢, is the coefficient of P(tli) calculated

among these terms , then ¢, = (—1)P~! (;—t)‘ Thecasest<p=n,t=p<

nand!? = p = n lead to the same conclusion.
Next we go back to tp and consider the block of (p — ¢+ 1 ) minus

p
signs appearing in the product [] ( zy—1)of 1, which we shift one step
k=t
to the right to get to the position:
-1 p+1 n
O JI(z-1).(z+1). JI(z—-1). Tl (z,+1)
Jj=1 k=t+1 m=p+2
P—t1+1

n—t
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Then consider the terms which arise from all possible positions of the ( p —
t +1 ) minus signs into the ( » — ¢t ) factors shown in (1). If ¢, is the

(n)
Ptl

then ¢, = (—1)7~t+1 (;’:& 1) .

coefficient of calculated among these terms,

In general if 1 < s <, shift the block of ( p — ¢ + s ) minus signs

p
of the product IT (z; — 1) one step to the right to obtain the position.
k=t-s+1

t—s p+1 n
() I[TG-1)(z+1). TI(z-1).  IT (z,+ 1).

J=1 k=t—-s+2 m=p+2

P—t+s
n—t+s—1
(n)

Let ¢, be the coefficient of P ¢ calculated among the terms of &, which

1
correspond to all possible positions of the ( p — ¢ + s ) minus signs into the
(n—t+s— 1) different positions shown in (2).

s
We claim that ¢, = [] (-1 (S 1) (n t ) for all s,
rel r-1 p—t+r

1 < s £t. We proceed by induction on s. Our claim is true when s = 1.
Suppose it is true for s where 1 < s <t. In t,, wemove the (p —t+s+1)

b
minus signs appearing in the product [] ( z; — 1 ) one step to the right.

k=t-s
So we are in the position:
t—s—1 p+1 n
3) [T(-1).(z+1). Tl(z-1). JI(z,+1).
J=1 k=t-s+1 m=p+2
P—t + s+1

n—t+s
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p+1 p+1
Since [l (z-1)=(z_-1). IT (2.~ 1) . the product
k=t-s+1 _ k=t—-s+2
p+1
[T (z,— 1) corresponds to shifting in t, the (p — £+ s) minus signs
h=t—-s+2 '

P
showing up in the product IT (z,— 1) one step to the right to get the
k=t-s+1
position already shown in (2). If ¢, as defined above, then by our induction

assumption.
.- % v (s—l) (n—t )
d r—-17 “p—t+r’
r=1
p+l
Once this done, we go back to H (z; — 1) in (3) and shift the
k=t—s+1

(p—t+ s+ 1) minus signs one further step to the right to get the
position:

t-s—1 p+2 n

4) I1 (zj=1). @+ Dz + 1) [Tcze+1) I @D
Jj=1 k=t-s+2 m=p+3
P—t+ s+l

n—t+s—1
Call ¢'; the coefficient of P(tri) calculated among the terms of N,
corresponding to all possible positions of the (p — ¢ + s + 1 ) minus signs
into the ( n — ¢ + 5 — 1 ) different positions shown in (4). If we compare
(4) to (2) , we realize that in (4) we are dealing with the product
p+2 p+1

I'T (z, — 1) whereas in (2) we dealt with- [ (z.— 1) . therefore

k=t—s+2 k=t-s+2
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we may obtain ¢’ by replacing p + 1 by p + 2. or equivalently p by p+1lin

¢, Thercfore
Z (.._1)p—-l+r+1 (S 1) (n t )

r=1 p— t+r+1

Itis clear thatc ;= ¢, + c . Hence

-3 e ¢ (n ' )+ Z( et O )

r=1 p—t+r+1l
s—— —
= (- 1)p—t+r (S 1) ( -1+ 1) + Zl(_l)p——t+r+l (i"l) (;-:+r+ 1)
r=

* Z( 1)p_erH(r 1} (p t+r+1) . l)p—t+s+l (S— )(p t+s+1)

r=1

L T e CEICT, )
r=1

+( 1)p—1+.\'+1( )( —t+s+1)
Since (:‘1)+(r_—_1) = (r) and by shifting indices, we get

s+1 :
= > (-t (s ) (n ¢ ) proving our claim.
r=1 r-17 *p—t+r

The coefficient of S (") is therefore

ZC-HW(“ O+ 5 Z(l)ﬂ"*’( )(nt )

s=0 s=1r=1 p-t+r

t s
=3 Z o G T )

s=0r= p—t+r
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Now let p +1 < t < n7 and reconsider

r t n -
G H=I1(z-1). [T(x+1). Il (z,+1),
Jj=1 k=p+1 m=t+1

t—p

t
where we suppose £ <n .

Again we propose to calculate the coefficient of S, . First
consider all terms of N, arising from all possible positions of the (¢ - p)
plus signs into the ¢ different positions shown in (5). Let ¢’y be the

. (n) ~( -
coefficient of P " calculated among these terms, then o= (t—p) ft=n
, we are clearly lead to the same conclusion.

In general if 1 <5 < n -1, in (5) above we shift the block of

s . .
(t-p+s) plus signs of the product [] (z; + 1) one step to the left to
k=p+1
- get:
p-1 t+s-1 n
(6) I (z;—1). [T (z+1). (25— 1) IT(z,+1).
J=1 k=p m=t+s+1
t—p+ts
t+s—1

If ¢'; is the coefficient of 'P(:i) calculated among all terms of N,

corresponding to all possible positions of the ( t — p + 5 ) plus signs into
the (¢ + s — 1) different positions shown in (6). By an induction similar to
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s
. ) -1, (t
the previous one, we show that ¢’y 3 (-1)f (r—l) (t—p+r) for all s,
r=1
I<s<n-1t

The coefficient of S(™ is therefore

n—t

=n§§ 1y )( )

s=0 s=0r=0 t-p+r

N
Soif (~1)? b, =5, then

DP
b t s n—t
N, =X XX )(t ) s
t=0s=0r=0 TPHr
n n—-t s
+ T T serCC. s
t=p+I=0r=0 P

Easy to see how by, can be brought to the form stated in the theorem.
5. SCHUR-COHN IN TERMS OF ROUTH-HURWITZ:

The converse of theorem 4.1 states the following:
Theorem 5.1  If ' as defined before , then

t' s
> 5 % comer G2 Vs,
t=0s=0r=0 : p-t +r
a i ’
n
> b
r=0

S

forallp=0,1,.... ,h—1.
Proof. Suppose 1 <P <n-—1, them
C. o

— _om _ (n)
O™ ay =5 o= ,E Pk
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From both sides of this relation we cancel out the factor (—1)"P and we
bring all terms in the right-hand side to a common denominator

NI
I1 (w, — 1) .call N, the numerator . Hence a,, = B’B )
r=1 P

It is clear that D'p = (-1)" [] &, . A typical element in the sum

r=0
appearing in N’ is
n-p n
Il (w,+1). IT (w,-1).
r=1 s=n=p+1
n—p p

This element is entirely similar to ‘o of theorem 4.1 except that the w's
replace the z's. Therefore ,

b L s n—t
N, =¥ ¥ T ener( )( ) 1

t=05=0r=0 tptr

n n—t s
22 Ry, )1,
t=p+1=0r=0 P

% tz: i( l)mn(p,r)+n+r (S 1)( t )b
' r-1Mpt|+r

fori<ps<n-1.
Let N’; be the numerator of the right-hand side of (7)
corresponding to p = 0. Then

. n n-t s s1v st
Ny =D+ > Y X (L (r~1) (t+r) b, , which reduces to
t=1s=0r=0
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N, -(1V+'Z(1Y”b Z(lyﬂq,md
t=1 t=0

n n
+
Da,=8,M=T1]z,=¢" [] (E“_—'i' . Therefore
t=1 t=1 ™

n n
Z (—l)tbt Z (_1)14—nbt

=0 _t=0
an n - n ’
QU N 2 b
r=0 r=0
We conclude that relation (7) covers the case p = 0 and the proof is
complete. .
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ABSTRACT

The classical rational cubic Bezier function in its most genéral form is
used to construct a C2 interpolatory spline. The spline is local in the sense that
~ changing data at one point requires the processing to be performed in the
neighbouring intervals only. Further, the free parameters embeded in the
description of the spline are used to determine a €2 monotone interpolant through

monotone data.
Keyword: Globally C?. Rational cubic spline, Monotonicity.

1. INTRODUCTION:

In two recent papers by Sarfraz (1992, 1994) the classical rational
cubic Bezier function in its most general form is used to construct an
interpolatory rational cubic spline. This splinc provides a C? alternative to
GC? or C! spline methods such as v-spline. Nielson (1984). f-splinc.
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Barsky (1981), y-spline, Boechm (1985), and weighted spline, Foley (1986).
This spline is a useful addition to CAGD literature due to its ability to
provide a variety of interesting shape controls such as biased, point, and
interval tensions. Further it recovers the cubic B-spline, de Boor (1978),
and the rational cubic spline with tension, Gregory and Sarfraz (1990) as a
special case. However, the spline is not local in the sense that a change in
the value of even one coordinate of a point, requires the entire processing
to be done again.

In this paper, we construct a C2 spline locally by using the rational

cubic Bezier function in its most general form. We also extend this locally
constructed C? spline to preserve the monotonicity of the data.

The rest of the paper is organized as follows: In Section 2 we
introduce the rational cubic Bezier function and use it to construct a C2
spline locally. Both slopes and curvature remain free and two methods
have been included in Section 3 to estimate them. Finally, in Section 4, we
extend the C? spline to ensure the monotonicity of the data.

2. RATIONAL CUBIC BEZIER FUNCTION:

Let {(t;, f) : i =0, 1,...,n} be given values where the t—values
define a partition of the interval [¢t), 1,], that is, f, < t, <... <t,. Further, if
d; denotes the derivative value at data point (1, f)), i = 0, 1,...,n then in
each interval [, 1;,,], a rational cubic Bezier function in most general for.
may be defined as below:

St = 20
g1

where
P =r (1= 0P+ AKL -9+ BOYL - O) +w,f,,0°
) =riQ-01+u6(1-62+v,0 A1 -6 +w0?,
Aj=ufi+rhd,
B, =v, [+l — whd+1,

withh, =t — 1, 8= — t)/h and r,, u;, v, w, are free parameters. The
piecewise rational cubic spline so constructed is C! and is called the
rational cubic Bezier spline. It has the Hermite interpolation propérties,
that is,

Sy=1,8SM@y=d, i=0,1,..n.
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Further, the rational cubic Bezier spline may be modified by
changing the values of free parameters. For example, the restrictions
r,=w; =1 and u,: = v; = 3 reduce this spline to standard Hermite cubic
spline. Alsor; >0, u; 20, v; 20, and w; > 0 ensure a positive denominator
in (2.1).

Sarfraz (1994) has extended (2.1) to a C? spline, but the methods
are not local as a change in data at one point requires the entire processing
to be performed all over again. In following theorem, we gives formulae to
extend (2.1) to a locally constructed C? spline.

Theorem 2.1: Let {(t, f;) : i =0, 1, ..., n} be given data values with ¢, < £,
< .. <t If 4 and m, respectlvely, denote the first and the second
derivative values at the dala points then the C! spline (2.1) is in C2[t,, t,]
if and only if, in each interval [t ¢,,,], the free parameters r; and w; are
determined as below:

_ l+l zﬁ},l
d a,ﬁ 4dd,+1

4dy, — 2,0

W, =
" aiﬁ 44, dl+l

where &, = hyn; — 2d,, B, = hm, + 2d,,\, ¥, =v,A, — ud,

~Y;
S =ul,+vd,,, A, —-’—*—'——

Xit1 ™

Proof: we begin by calcula[ing S) and SX¢;,,) which, after
simplifications, are as follows:

S (r)=—( di Wit y),

) i

2
S (1) = W(_ dir; = dp W+ 5),

where ¥, = vA, —ud; and 8, = u,A, + vd,,,. Now S(1) € C? [, t,,] if and
only if:

m;=7=— d,r;—dwty),

== (=dr,—d, w+5),
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which may be arranged into the following simultaneous equations:
ari+2d.,w, =2y,
2dir; + fiw; = 26; . :
The solution of simultancous équations (2.4) and (2.5) produces r;
and w; as in (2.2) and (2.3) respectively. Hence the proof.
3. ESTIMATION OF FIRST AND SECOND DERIVATIVES:
Thus for, we have assigned values to free parameters »; and w;

such that Si(t) € C? 15 1,]. We have so far taken first and second
derivatives arbitrarily. In this section, we give some practical choices of d,
and m;. The first choice is to assign d; a value using three-points difference
formula, Brodlie (1985), that is,

_ Ar+an
di - A1 + hthy
hiAi~1thi—14;
d_=_’_...___'__L, 2,3, ..n—1
! hioythy '

A L +A

dn = An—l + hn-—l hn—2 ,
n-11"n-2

and then repeating this three-point formula for m, using d,, that is,
Diy+Dy

m; =D, +_hl+h2 ,

_ hiDj~i+hj—\D;
e
-1
Dp—1+Dp-2

m =D
n -1 hn—1+hn—2 ’

where D; = (d,, —d)/h,i=12,...n— 1.

Next scheme is somewhat complex. Here, to find derivative d; at
(t;, /). a cubic polynomial is dctermined which passes ‘through the three
points (¢,_y, fi_1), (t,, f}) and (#;,. /;+1) and which gives a least-square fit to
the two neighbouring points (¢,_5. f;_,) and (t,,,, f;+), Ellis and Mclain
(1977). In order to take account of variation in the spacing of data, these
two points are weighted in proportional to the square of their distances
from their neighbours ¢,_; and ¢, respectively. The derivative of this cubic
at its central point (#,, f) is then assigned to d;. To estimate m;, we
calculate the second derivative of this cubic at the central point (1, f).

4. MONOTONICITY CONTROL:

Let {(¢;, f) : i=0, 1, ..., n} be given data values where the t-values
define a partition of the interval [¢,, ¢,], that is, 1, <¢; <... <1, and f;, and
»i=0.1, ..., n is monotone, that is
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P < f;+1Vi=01..n (monotone increasing)
"12fi Vi=01..n (monotone decreasing)

This kind of monotone data arise in various situations as
mentioned in Butt(1991). For example, in probability distribution, if
mutually exclusive events {(1;, ;) : i = 0, 1,..., n} constitute a sample and P
is the probability function, then ' :

PA, VA, U UA)=PADHPA,) + ... + P4),
where i = 3, 4, . . ., n, that is, the probability occurance of an event is
directly proportional to the size of the sample taken. This generates a
monotonically increasing data.
The C? spline developed in Theorem 2.1 does not preserve
monotonicity, in general. In this section we extend it to construct a

monotone C? spline through monotone data. In case f; = f;,;, then the
derivative assignments 4, = d,,; = 0 reduce S,(¢) to a straight line, that is,

S(ty=fforallt € [t, t,,,]

and so the monotonicity is preserved. For rest of the study, we assume that
Ji #fisy foralli =0, 1,..., n—1. The following theorem presents conditions
which ensure monotonicity. We have considered monotonically increasing
data only. The case of monotonicity decreasing can be developed in a
similar way.

Theorem 4.1: Let {(t, f}) : i = 0, 1,..., n} be a monotone increasing data,
that is, f; < f;,; foreachi =0, 1,...,n — 1 and 4, > 0, i = 1,..., n. Then the
C? spline of Theorem 2.1 is monotone increasing if the free parameters u;,

v, satisfy the following conditions:
w,-d.

w.d;

v, >—=2Lif r, > 0 otherwise v, <=1 4.2
4 J
ridi . . ridi

u; > ——if w > 0 otherwise u; < — 43
4 ! Py

ki’l uy; + kl.,2ul. + k,.,3 v, > k!-,4 4.4

iy up; + kjsu; +kev, > kig 45

withk,,; = A, kiy=d w, ki3=rQd;—d), k4=rwQd. =34),
ks =wQA ~d,), k.,e=—dr, k,;=rw 2d,—34).

Proof: We begin by calculating S,(!)(¢) which after simplification is given
by: ‘
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M =
2,( 1(:)9)5+ﬂ.-0<1—9>4+y,-6 2 (1-053+8,03(1-2+ 4,6 41— 6h+v,0 3
{q(6?}

where
a,=r}d,
Bi=a+ 2 vA - wdy)),
i=B—a+z, ‘
S, =u~V,+2,

H=V,+ 2w, (A, - rid),

i
Vv,i=wld,,,
with y, = GBrw; + u;V)A, — (uwd; .y + rvd).
S,.(t)r is monotonically incréasing if and only if SO = 0,
vV t € 1, t,]. The sufficient conditions for monotonicity will be:

20, f,20, 3,20, 6,20, 4;20, v,20.

Both @; 2 0, v, 2 0 arc non negative due to the necessary
conditions for monotonicity, viz. d; 2.0 i = 0, 1,...n. However,

B 20if 2rwd,, < r2d+2rvA

H L4 =
which after ignoring the non-negative term r2,d; reduces to the condition
(4.2). Similarly, [, 2 0 reduces to condition (4.3). Next, we consider
Y; 2 0, which after rearrangements, can be expressed in the form (4.4).
Similarly, &, 2 0 reduces to condition (4.5) and hence the proof.

5. CONCLUSION:

In this paper, we have used the rational cubic Bezier function in
its most- general form to construct a C? spline locally. We have also
extended it to preserve the monotonicity of the data. Future work will
extend this spline to preserve other shapes such as Convexity and
Positively.
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ABSTRACT

In this note a new expression for estimation of Sample Size has been
obtained which works well when the prevalence of disease or proportion of any
characteristic in the population is known. It also ensures at the same time that a
specified number of units having this characteristic are in the sample.

1. INTRODUCTION

~ In all the standard text.books on survey sampling, generally two
formulas for the estimation of Sample Size for simple random sampling are
given. The first one is:

n=[2%_q PU-P) / &,

where P is the prevalence of disease or proportion of any characteristic
present in the population, Z is the value of standard normal distribution
and d is the absolute precision required on either side of proportion (in
percentage points). If we take Z;_ = 1.96 (5% level of significance) or
2.58 (1% level of significance), d = .05 then for different value of P the

Sample Size.is: v
P 01 .02 03 04 05 .1 .15 2 25 3 35 4 45 5
n(l.96) 15 30 45 59 73 138 196 246 288 323 350 369 380 384

n(2.58) 26 52 77 102 126 240 339 426 499 559 606 639 659 666

Looking at the above table, we see as the prevalence rate is low the
sample size is also low where as if the prevalence rate is high the sample
size is also high. In facf the case must be opposite i.e., if the disease is rare
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the sample should be large and must be small if the disease is common. To
cover this point an other formula was developed.

n=[2%_q(-P)]/€?P

where € denotes the relative precision i.e., if P = 50% then 10% relative

precision mean 10% of 50% (note that d = 10% x 50% = 0.03). If we take ‘

€ = 0.05 or 0.10 then for different value of P at 5% level of significance
with Z = 1,96 the sample size will be:

P 005 o0.10 .15 20 225 306 .35 40 45 .50

n( =0.05) 29196 13830 8708 6147 4610 3585 2854 2305 1878. 13537

n( =0.10) 7299 3457 2177 1537 1152 896 713 576 470 384

P .55 .60 .65 .70 75 .80 .85 .90 .95
n( =0.05) 1257 1024 827 639 512 384 188 119 56
n( =0.10) 314 256 207 165 128 96 68 43 20

A natural course of action is that we should look for the formula
which cover the above point i.e. size of the sample must be large if the
disease is rare and at the same time make sure that minimum or more units
must having this attribute likely to be in the sample. In the next section a
formula for the estimate of sample size is derived using normal distribution
as an approximation to be binomial distribution.

2, DERIVATION OF NEW FORMULA:

We know that the normal approximation to the binomial

© - Z=(x—-np)\ np (1-p)

After simplification we get

np+ Z \Jp 1—p) n"2—x=0

Solving for quadratic in n!/2

_ —Z\[P 1-P++\[Z2P1-P + 4Px
- V2 |

OR

nl2
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—zA\JP 1=P)t {Z2 P (1 P) + 4Px}1/2 Jz
2P

We impose the condition that x < nP to get the maximum saple size

-Z \/P (1- P+ {Z2 P (1- P) + 4Px}1/2 T

2P

For Z=1.96 and for Z = 1.645 and for various values of P. The Sample Size
has been calculated and given in Table 1 and 2.

This formula works well when the prevalence of disease or
proportion of any characteristic in the population is known and at the same
time it also ensures that a specified number of units having this
characteristic are in the sample.

TABLE 2: Sample Size for Z = 1.95 and for different values of P
Z=1.96

PX 5 10 15 20 25 30 35 40 | 45 50
0.01] 1166{ 1836] 2469| 3083| 3684 4276| 4869] 5438; 6012| 6582
0.02| 581 915| 1231] 1538f 1838 2134| 24261 2715] 3002| 3287
0.03} 385] 608 819 1023| 1223} 1420| 1614] 1807] 1998 2188
0.04{ 288] 4551 613] 766 916 1063| 1209{ 1353] 1496| 1639
0.05| 229 363 489 611 731| 849 965| 1081 1195 1309
0.06f 190} 301 406} 508 608] 806/ 803] 899 995 1089
0.07{ 162] 257; 347| 435 520] 604| 687 770f 851 932
0.08] 142y 225 303 379] 454 528] 600| 672 744| 915
0.09( 125} 119| 269} 337 403} 468 533 597 660| 723
0.101 112 179 241 302] 362 421 4791 536f 493 650
0.11 102§ 162 219} 274| 328] 382] 434 487 438 590
0.12 93| 148 200 251 3001 349] 397} 445| 493 540
0.13 85( 136 184 231 277{ 322f 388] -410] 454} 598
0.14 79] 126f 171] 214] 256| 298] 340{ 380| 421| 462
0.15 731 1171 159 199] 239] 278{ 316| 355] 392 430




On The Estimation of Sample Size

84

PX 5 16 15 20 25 30 35 40 45 50
0.16 68 109f 148 186 2231 216 296 332] 367] 403
0.17 64 103 139 1711 210{ - 244 278 312] 345( 378
0.18 60 971 131 1651 198} 230} 262} 294] 325 357
0.19 57 91 124 1567 187 218 248 278] 308f 338

F 0.20 54 86| 117) 148 177 206f 235| 264 292; 320
0.21 51 82f 112 140} 168] 196{ 223} 251 2787 304
0.22 48 78] 106 134/ 160 187f 213} 239] 265 290
0.23 46 74 101 127] 153] 178 203 228 253] 277 .
0.24 44 71 97f 122y 146] 171 194} 218] 242} = 265
0.25 42 68 93 117 140{ 163 186] 209] 232f 254
0.30 34 56 76 96| 116] 135 154f 173 191} 210
0.35 29 47 74 81 98| 114; 131 147} 1637 179
0.40 24 40 55 70 85 991 113 127} 141 155
0.45 21 35 48 61 74 87 99 112 124} 136
0.50 18 31 43 54 16 71 88 100 111 122
0.55 16 27 38 49 59 69 79 89 100f 109
0.60 14 24 34 44 53 63 72 81 90 99
0.65 13 22 31 40 48 57 65 47 82 91
0.70 11 20 28 36 44 52 60 68 75 83
0.75 10 18 26 33 41 48 55 62 69 77
0.80 9 16| 24 30 37 44 51 57 64 71
0.85 8 15 21 28 34 41 47 53 591 . 65
0.90 7 14 20 26 31 37 43 49 55 61
0.95 6 12 18 23 29 34 40 43 51

s6]
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TABLE 2: | Sample Size for Z = 1.645 and for differcnt values of P
Z = 1.645
PX 5 10 15 20 25 30 35 40 45 50
0.01] 1024 16691 2282 2878| 3463{ 4040} 4611] 5178] 35740{ 6299
0.02 510 8321 1139) 14361 1729} 2017| 2303] 2586| 2867] 3146
0.03 339 553 5571 9561 1151 1343( 1533( 1121} 1909{ 2095
0.04 253 414 567 716 862 1006{ 1148] 1289 1430 1569
0.05 202 330 453 571 688 803] 9177} 1030} 1142} 1254
0.06 168y 275 376 475 572 668 763 857 V 951] 1044
0.07 143 235 322 407 490 572 653 734 814 894
0.08 125 205 281 355 428 5001 471 641 711 781
0.09 111 182 2491 315 3801 443 407 569 631 793
0.10 99 163 224 28" 341 399 445 512 568 623
0.11 90 148 203 2>° 310 362 413 4641 515 566
0.12 82 135 186} 254 283 331 378 424 472 618
0.13 75 124 171 216 281 305 349 392 435} 478
0.14 70 115 158 201 242 283 323 363 403 443
0.15 65 107 148 187 225 264 301 339 376| " 413
0.16 61 100 138 175 211 2471 2821 317 342 387
0.17 57 94 130 164 198 232 265 298 321 363
0.18 53 89 122 155 187 219} 250] 281 312 343
0.19 50 84 115 146 177 207 236 266 295 324
0.20 48 79 109 139 168 196 2241 252 280 308
0.21 45 75 104 132 159 186] 213} 240 266 293
0.22 43 72 \ 99 122 152 178] 203 229 254 279
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PX 10 15 | 20 | 25 | 30 | 35 | 40 | 45 50
0.23 41 68] 94 120 145 170] 194{ 218{ 243| 267
0.24 39 65 90{ 115| 139 162| 186] 209| 232| 255
0.25 37) 63] 8] 110| 133] 156] 178 200 223| 245
0.30 31 51 71 o1} 110] 128] 147 166| 184] 202
0.35 261 43 60| 77 93] 109 125] 141] 157} 172
0.40 22 37 52 66 81 95| 108) 122 136 150
0.45 19 33 | 46 58 71 83 96| 108] 120{ 132
0.50 170 29{ 40 52 63 74 85] 96| 107| 118
0.55 15{ 26 36{ 47 570 677 77 87 96| 106
0.60 131 23 33] 42 51 60{ 70 79 88| 97
0.65 12{ 21 30 38 47 550 63 72 80 88
0.70 11 19{ 27 350 43 51 58| 66 74 81
0.75 10 17] 25 32 39] 46 54 51 68 75
080 of 16] 23] 29| 36| 43| so| s6| 63 69
0.85 8 14 21 27 331 40| 46 52 58 64
0.90 7 13 19 251 31 37 42 48 53 59
0.95 6 12 17) 23 28 34 391 45 50 55
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ABSTRACT

In this paper we present some results concerning the optimal shape
design problém governed by the variational inequalities of the fourth-order. This
problem can be considered as a model example for the design of the shapes for
elastic-plastic problem. The computations are done by finite element method, and
the performance criterion is minimized by the material derivative method. We also
" discuss the error estimates in the appropriate norm and present some numerical
results.

1. INTRODUCTION:

The purpose of this paper is to develop an optimal shape design
which governed by the variational inequalities of the fourth-order for the
design of the shape for elastic-plastic problem. Since we know that much
work has been done in the optimal shape design for systems described by
partial differential equations ([7]), the main idea of this paper is to obtain
the optimal shape design for the systems described by differential
inequalities by introducing penalized differential equations and then taking
limits of the equations resulting from the penalized or differential
approximation. We develop the material derivative method ([10]) for the
optimal shape design of an elastic-plastic problem. The problem arises
when studying the torsion of a cylindrical bar of the section Q < R?2, the
bar is made of an elastic plastic material, f is a constant proportional to the
angle of twist of the end section of the bar which is not clamped. Several

87
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authors have proposed and studied the elastic plastic problem (see, [4], [5],
[8], [9]). For the formulation of the problem we consider a domain €,
which consists of two regions Q, and Qp (the elastic region and plastic

region, respectively). Then the stress potential @ satisfies the fourth-order
partial differential equation on Q,

1o — A2 = f, in Q, (situated in the interior of Q) 6]
lAp | =1,inQ,
with boundary conditions
©=00¢/on=0,onT, )

where L is a non negative constant. Consider the Sobolev space

. 3
HZO(Q)={¢|¢<—:HZ(Q),¢|F=5?|F=O}; 3

(where H? (Q) is the set of square integrable functions with squareable
second derivatives) since the domain Q2 is bounded and T is sufficiently

regular the mapping

g ASII 24,

defines on H2(2) a norm which is equivalent to that induced by H?(Q). It
is well known that (1) admits one and only one solution in H%(Q); this
solution is also the unique solution of the variational equation (of order 4),

for all ¢ € H?;(Q2)

[oBoAd+popdx=<f.$> Ve Hy() @
which is also the solution of he minimization problem
min '
12l Agl2dx — < f. §> 5
¢e HOZ(Q) [ fQ ¢ X f ¢ ( )

In (4) and (5), <, > represents the bilinear form of the duality between
HX(Q) and H?;(Q), and we thus have

<f.$>= [ [

Finally, let K be the closed convex subset of H*(Q). defined by
K={plge (. |Adl <lae inQ} )
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The problem we want to consider consists of finding the solution @ such
that

s=rin [ [, (agi2-27g)ax. 7)

Since the functional J is continuous and strictly convex on H%(Q), with

lim _
ol | 1(@) =+,

then by using the known theorem ([4]), which implies the existence and
uniqueness of a solution for (7). We denote this solution by ¢ which is also
the unique solution of the variational inequality

PEKMUP, -0+ W00~ >([,d-O)V ek (8
We note that the bilinear form in (8) is elliptic, that is

(A¢,¢)30(”¢H2,a>0,V¢EH§(Q) 9)

In particular ([4]) the optimal solution of (7) is also the solution of the
following:

J= [ 12 fQ(|A¢{2—2f¢)dx. 10

where

K'={plp e HYD), |Agl < 8(x,T)ae}, (v

O(x, I) is the distance from x to . Also, it is shown ([4]) that if Q is a
bounded open domain in R” with sufficiently regular boundary I, then the
solution of (7) is also a solution of (10), and of the equivalent variational

inequality: .

PEK (AP, - M)+ (P, ¢~ > ([, —9)V g K (12)
the bilinear form being defined as in (9). To solve the problem for the
systems described by the variational inequalities, instead of (1), we assume

another problem which is penalized form of (1), € >0, a penalty
parameter, that is, we shall introduce our first penalized equation,

AP+ 1O+ FOO = £,V @, € HY), a3
(where F(Q,) = 1/€ (9Z), and @~ = — sup(~@, 0), and 4 : ¥ =H}(Q) —>

I’ is a continuous and symmetric operator satisfying the coercivity
condition (9), and for instance, we may take, 4 = — A.A) whose solution
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@ tends to the solution of (8) when € tends to zero. For the existence and
uniqueness of the solution of (13), see [1]. It is well explained ([2]) that ¢
—> ¢ is not differentiable at ¢ = 0, we have defined F'(0) = 0. This choice

turns out to be unimportant because ¢e > 0, on Q, with expection of a
(zero-measure) subset of T".

2. COMPUTATION OF DERIVATIVES:

The material derivative method of shape sensitivity analysis ([10])
is used here for solving optimal shape problem for -our differential
inequality (8) by taking limit, as € tends to zero, of the equation resulting
from the penalized approximation introduced in section 1. Here we shall
explain how this method works for the systems described by the differential
equation, which will be helpful in solving our problem, that is, the optimal
shape problem for the systems described by a differential inequality.

The main idea of the material derivative method is to make the
derivative of the cost function as negative as possible by selecting a
suitable value of a vector field ¥ to be defined below. This vector field is
used for the perturbation of the domain Q into €, at time ¢, and the value
of the derivative of the cost function depends only on the value of this
vector field at the boundary. To minimize the cost function J(Q,), we shall
take the vector field 7, at ¢ = 0, in the opposite direction to a vector G, the
gradient of the cost function. By using this method, various formulae have
been obtained ([10]) for the derivative with respect to shape. Let Q2 be a
smooth bounded open set in R”, » > 2, and V' be a regular, n-dimensional
vector field defined on [0, 1] x U is an open neighbourhood of Q. Suppose
that he mapping x — V (¢, x) for any ¢t € [0, 1], has space derivatives
which are continuous and the mapping f — V (¢, x) is continuous for the
topology given by uniform convergence of these derivatives on any
compact subset of U. In this approach the deformation of the set Q, is
~ given by the solution of the ordinary differential equation

dx(t)/dt = V(t, x(t)), (14)

with the initial condition x(0) =X e Q Let F, be the. transformation,
which depends on V and is defined by the differential equation (14),

X x=x(t X)=F().X. 13)

since .X does not depend on ¢. The domain Q, and its boundary I, can now
be defined as: ,

Q,=F () Q) = {x € R": 3\ €.Q such that
= x(#) with x'(s) = V(x(s),5). 0 <s < 1. x(0) = X}.  (16)
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I, = F(V)I); of course Q5 =Qand ', =T, see figure. 1.

The cost function can therefore be considered as a function of €, as
follows:

JQy=172 { 1Ag [%dx - [ @e . a7

where ¢E’, is the solution of the differential equation (13) on €,. It can also
be considered as a function of ¢, by the mapping

10, >0, —>JQ). - (18)
We wish to define the derivative J'(€2)) of the cost function J(Q)) at Q,,

which depends on the vector field ¥; which will be chosen so as to obtain

the value of the derivative as negative as possible. Let. \ be-a smooth
function of x, which may depend also smoothly on . Then. we know (R11})]
that

d/dt f Qr\|j(t, x)dx = f Qr@\y/atdx + f o, div(y(t, x)))dx,

by applying Green's formula, we obtain

d/ dt er\u(t, x)dx = eraw/(?tdx + fFfW(t’ x)<V,n>dr, (19)

where div is the divergence operator,  is the unit exterior normal to T,, ¥/
is the velocity field, and <,> is the scalar product in R”" It is emphasized

that in this formula the derivative of Y/ with respect to ¢ is taken with x
fixed (not depending on f). In [10] there are many examples of such
derivatives. Now we’ again return to our main problem and write the
equation (13) ln variational form:

fa (AQ Aw +1Q  wHF(Q, ) w — fiw)dx =0, V w EHZ(Q) (20)
) ,

the unknown is denoted by ¢, €H?)(Q,). In order to climinate certain
problems related to the definition of w in .Q, which is variable with ¢,
suppose that w is the restriction to Q, of a function w EHZ(R™). We denote
by ¢ = 81 0t(@. ). Taking the derivative of the left hand side of (20) by
using (19), we have

fgr(A(p'E,wa +u(p'E'rw+F'((pe,,) (p’e’r w)dx +

[rBocAw @ )w—)<Vin>dl =0, ()
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(because @, = 0, on [)) where F'(9_ ) = 1/€(d/dOF(Q ). In similar
way, the derivative of the cost function J is:

JQ)= fQ’(A(p'e,,A(pe’, — S’ ¢ pdx + 172 fnl Ao, |2 <Vn>dl, (22)

Now we shall find the value of the first integral of (22). We define the
adjoint state PE’t € H20(Q,); for this we introduce our second penalized
differential equation as follows: '

APe,t + uPe,t + F‘((‘pe,t)Pe,t‘ = fl’ (23)
Pei=0,0n I,

where f; = (A.(Ap_ ) — f); the state P_, is needed to compute the
derivative of the cost function J(2,). The variational form of (23) is

fQ’(APG,wa +VpPe’,w + F'((Pe,z)Pe,fw) dx = fQ’flwdx, 24)

for all w € H2,(€),). Taking w = P in(21) and w= @', in (24), we get:
fQ (A(pe,,A(p’e D f(p'e,t)dx =- fF (A(pe,,APe’,) <V,n>dl.(25)
t ’ t .

because P, , =0 on I,. Thus : ‘
JQ) =12 I, dA@ 12 -2A0 AP, )<Vin>dl, (26)

or, ’
V@)= 1, Crjea<Vin>dl, 1)

where _
Ce,t = (I/ZIA(DE,II2 - A(pe,tAPe,t) (28)

and n is called the normal field on I’ ; (n is taken going out of Q). We sha’!
choose f = 0 throughout, and write (27) as

J(Q)=<G, V>, of course, G = (C¢ 1=g-n); 29)

this is called the gradient of J(€)) at ¢ = 0; it is distribution with support
on the boundary I',. Several different presentations of the gradient have
been developed; see ([3]). Since we know that the derivative of the cost
function J depends only on the value of V" so as to make the derivative of

the cost function as negative as possible. The corresponding value of the

;
;
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vector field ¥, to be considered unitary, that is | | V|| L, = 1, as explained
below, is of course determined by the following relations: '

| <G, v>1 < ttGll vl =1iGll; © (30)
the value of V" must be:
v=-G/tIGll. 31

Note that the choice | | V| ,L2 = 1 is justified, since ¥ is simply a direction
of optimum descent. We consider now the problem associated with the
variational inequality.
3. FORMULATION OF VARIATIONAL INEQUALITY:

Here we shall discuss the optimal shape problem for the systems

described by the differential inequality by taking the limits, as € tends to
zero, of the corresponding expression in the previous section 2; we shall
use the material derivative for solving it. The optimal shape is found by
success approximation starting form initial guess Q0; the algorlthm is then
developed by means of a material derivative method. As we notéd in the
previous section 2, the problem has been discretized, so that the shape €2,
is defined by the co-ordinates of the nodes; then, the expression for the cost
function J is: '

J(Q) = 1/21Q |A(pe’,|2dx—fnf(pe,,dx, (32)

where ¢ 1 is solution of (13). Now we shall take the limit as € tends to
zero, of these quantities. First we shall find the value of the limit of the

cost function J, as € tends to zero. Since we already know from the
existence solution of our first penalized equation ([6]) that

@ —> @, in Hg(Q) weakly, as € — 0,
and also ,
Q> @, in LXQ) sirongly, as € — 0,

so0 by taking the limit as € tends .. zcro. on both sides of (32) and since
Qc,—> @, in L) strongly, so :

th(|.A(peJl2 —f(pe_r)dx — fQ' [Ag,12 = fodx,

since the functional

: - Ix
¢ fsz(( 80,7 = foud.
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is continuous in L2(Ql); thus, we have

JQ) =12 fg [A@,2dx - fg fodx, (33)
t t

which is the required value of the cost function J(£2,). Now we shall find

the derivative of the cost function as € tends to zero. Taking limit

(as € — 0) on the both sides of (26), we get ‘

lim J'(Q,) =lim 1/2 fr (A, |2-2A¢_AP_ )<V, n>dl. (34)
0 bl 4 S ’ ’ '

€0

Now we shall need to find the limit of the vector P ( as € tends to zero; in
the appendix we prove the following theorem, Wthh shows that this limit,
P,, is itself the solution of a variational inequality:

Theorem A: As € — 0, Pe,—> P, in K, P, being the solution of the
variafional inequality, for P, € K,

 U@P,W—P)+ WP, w=P) > (fw-P)Vwek, (35
where X is closed convex set. Now, we shall find the value of the derivative

of the cost function when € tends to zero by using (34). Since we know
that

lime Ao A0 ) —fo'c pax =~ hmf (Ao AP, )<V,n>dl.,
t

€0 0
since

@' e, — @', in L) weakly, as € > 0,
then

QO —> ¢, in L2(Q) strongly, as € —> 0,
s0

lim f (A<pe,A<pe,) f(pe,)dx f ApA’) = fo' dx,

€0

since the functional

(p'r - er(A(p,A(p', —‘f(p’r)dx’

is continuous in L2(Qt), so the above equation becomes:

fr (A(pe,tAPe’[) < I/, n > dr == fQ (A(peytA(p'e,{) - f(‘p'eJ)dx)
! t
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and (34) gives rise to

J@)=172{, (AQ,|2-2A0AP)<V,n>dT  (36)
t

which is the required value of the derivative of the cost function J(Q,). As
before, the derivative of the cost function can be explicitly computed and
used to minimize J(Q).

J(Q) = fr, C,<V,n>dl (37)
where )
=112(1A9,|2 - 2A0 AP). (38)
also, we can write (38) in this way: o
J'(Q) =<G, V>, where, G = (C, n). (39)

As before, we choose V= — G/| [Gl1.
4. FINITE ELEMENT APPROXIMATION:

The finite element method is easily adapted to produce optimal
control of the partial differential equations because we simply have to
replace all the respective spaces - with their finite dimensional
approximations. We briefly review this method. We consider an
- approximation of (8) by 2nd-order finite elements. Let us consider a
triangulation T, of Q, and 7T is called the triangle, UT, = €, The
parameter h is the size of the largest side or edge. Then V and X,
respectively, are approximate by

Vp={v,lv,€C°v,=0,0nT,v,ITeP,, VT, €1, (40)
and
K,=KNV, G2}
giving the-approximate problem:
Find @, € K|, such that.
f (AQ,Awy, + L@, w,)dx > f fov, —0)dx, V w, € K, (42)
Qp Qp

then problem (42) admits a unique solution ¢,. The optimal shapes will be
found by successive approximations starting with an initial guess; the
algorithm is then developed by means of a material derivative method. We
note that the problem has been discretized, so that the shape is defined by
the co-ordinates of the nodes; then, the expression for the function J is now
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JQ, )= 121A, 12de— | dx 13
(€ th,' ?p, th,' f(P;,,l (43)

where @, is solution of (42) on Q,. The derivative of the cost function is

J(€Q, ) =112 fr;, (Ao, |2 = 2A¢, AP, <V, n> dF,
Jt

where Py, , is solution of variational inequality (35).
S. . ERRORESTIMATES:

Now we assume that f € IF for p > 2. We consider a one-
dimensional problem (8) and derive ‘on O(h) error estimate in an
appropriate norm.

One—Dlmensmnal Case

Suppose that Q2 =]0,1[ and, let we have f € L2(€)). Then problem (8) can
be written as

Find @ € K such that

1. 1 1 _
SO 0N+ [RO(P-@)dx > [flP-@)xV K, (44)
_ 0 0
were @" = d2Q [dx?. Let N be an integer > 0 and let & = 1 /N; we consider

x; = ih for i = 1,2,...,N, and ¢; = [x,_; — x], i = 1,2,...,N. We then
approximate HZO(Q) and K respectively by

H,,={@, € C'[0, 1], $,(0) = $,(1) =0, §,| , € P, i=12,.,N} (45
and o ) -
K=K Hy={¢, € H,, | ¢~ ¢, )1l <hi=12,.., N} (46)

with P, space of polynomial of degree < 2. Then approximate problem is
then defined by,

Find ¢y, € K, such that

f(P h(d Q) + fH(Ph ($, — Qpdx > ff(¢h (ph)dx v ¢h € Kh.(47)
0 0

The problem (47) clearly admits a unique solution. Now for finding the

approximation error | O P (pl | 2 H (0.1 We prove the following theorem:
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Theorem B Let ¢ and @, be the fespective solutions of variational

inequalities (44) and (47). If f € L2(0, 1), then we have
1o, — ol IHOZ(O,U = O(h).

Proof
Since @y, K C X, then it follows from {44) that

(4, #), ~ 0) + (@, ¢, — 0) > fl f(#, — @)ax.
0 ;
Then by adding (47) and (49), that V &, € K,
(@, — D), 0 — O) + O, — O, Oy~ @)
<Ay~ 0), 0, ~0) + WP~ D, 0~ ©)
+ (40, 0, — 0) + WO, ©) — Q) - flf(¢,, ~ @),
0

and hence, for all @, €K, .
cllo, - ol Izﬁg«m <Clig,- ol 12‘H§(0‘1)+u(cp, Py —P)

1 1
+J~(pn(¢nh_q.)n)dx_ff(¢h_(p)dx;
0 0

since f € L2(0, 1) implies that @ € H*(0, 1) MK, we have
' 1o 2 1,4 A
. J‘;‘x% ;xi(¢h—¢)dx=fgx—(g (¢~ @)ax
) 0
a4
< | IE;?( |1.2(0.1)l I P ol |1.2(0.1)-
Since we also know that ‘
& A
NEf 2y < Alull o+ 11 f1D 20,

so, by using (51) and (52), implies V ¢, € X,

(48)

(49)

(50

(D,

(52)

(53)
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+2( Tl Mol T+ fID20 1 T, = 0l 26,
Let ¢ € K; we define the interpolate T, by
TP € H,y,

(TP x)=Pxi), i=12.., N
We have '

’ Y x;
| ;ﬂ?(‘ch¢) I =, ¢ (x) h¢ (xj;L): 1/h f ¢u dx,
Xio1

and hence

ei < 1, since | ¢"] < 1a.e. 0n]0, 1[;

d?
E (1h¢)

we thus have
1,0k, Voek
Replacing ¢, by 1,0 in (54), we have
cllo, - ol |2H§(O,,) < Clltye - ol 12,,3 oD
+2(| [l F Hol I+ AT D200 [ The = @1 26,
Then the regularity property @ € H*4(0, 1) and (53) imply

CHpp =0l 12 < Chl Lol Ly, < CHl Il l Q11411711201 (59)

and
cll Thp ~ ol ILg o < Chllel I rtons
S Crx( Tl ol [+ #1201y,

98

(54)

(53)

(56)

(57)

(58)

(60)

where C denotes various constants, independent of ¢ and 4. The estimates

(48) then follows trivially from (58)-(60).

We can now define an algorithm to solve the optimal shape

problem for the variational inequalities:

Algorithm
0. Thoose Q;, that is, {g%0}.

1. Compute (pr;:l .
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2. Compute P';:'
Compute G.
4, Compute the vector field V.
5. Let g&™ (p) = gk™ + p™ an approximation of

min
arg
0<P>pP max
This step involves a one-dimensional optimization in the direction of the
gradient; hence p,, . is an appropriate value.

JUg™ (P))).

6. Set gkom*1 = ghm'(p),

7. Perform a terminal check, if necessary go back to step 1.

6. DESCRIPTION OF THE PROGRAM AND ALGORITHM
USED:

1. A module for solving the direct problem (or state problem). We

give again the formulation of this problem:

Find @, € K|, such that

fg (AQ, Awy, + p@Qwy, — fw,)dx > 0,V w, € K, (61)
t
or find @, € K}, such that
oy < I(wh) YV w, € K, 62)
where /(@) is given by _ _
Ko =12  (1Ag,12 +2ule,l? ~2f0,dx, (63)
t
minimized over the convex set K,. The function 1(¢,), which may be
written J(Q;, Qg,eeee. (pN(]v)) to emphasize the dependence of ¢, on the
coefficients in @, = 1(p(p The problem can be solved by the

relaxation method, whlch is iterative in nature; let,
o _ Lo
0] B (@1, Paseeeees, Paqmy) BlvEN in K,

with (ph known, (p;:+1 is determined co-ordinate by co-ordinate, further
iterations in the algorithm being given by '

(pn+l ="+ w((pn+l/2 - Q") - 64)
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w is the relaxation parameter 0 < w < 2. The process described above is
stopped when .

ZIcp”“—cp /1 Zl ARSI
Si=1 1=1

(in our computational experiments we took €, = 107%).

2. A module for solving the adjoint-state problem, whose solution is
needed to compute the derivative of the cost function J (the vector G). The
adjoint state P, is given by the solution of the following variational

inequality; find P, € K} such that ‘
fQ;(_APh.Awh + uPhwh - flwh)dx. >0,Vw, Kh, (65)

where @, is given and is solution of (61). For this problem, we use the
same method as we used in the case of the state problem. In Butt ([1]), we
showed that this varijational inequality has a solution which minimized the
following functional: : '

IP) =172 fQ (AP, |2+ 21l P, |2 - 2f Pyydx, (66)
t

over the ¢losed function K.

3. A module for the computation of the derivative of the cost function
J when we know the solution @, of the state problem and the solution P}, of
the adjoint-state problem. In -the formula we must account for the
variability of he criterion domain. :

4. A module for the computation of the vector field ¥ when we know
the projected vector G, which we can get from the derivative of the cost
function J. For each moving node we cah compute the real vector if a
dlsplacement direction is 1mposed

5. A module minimizing the criterion functional when we know a
vector field V.- We used a one-dimensional optimmization routine with

optimal choice of step length p and eventually projection.

6. A drawing module for the plotting of the results related to a given
geometry. This is convenient for quickly analyzing computational results.
The finite element method (on triangles, using second order polynomials)

was used to solve the (61), (66) and (36) with f = 11, and p = 1. We
discussed two different domains for the problem. The triangulation is
composed of 289 nodes and 512 triangles (Square domain), and 217 nodes
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with 384 triangles (equilateral triangle domain), are shown respectively, by
figures 2 and 3. The shaded regions are the plastic regions.

7. CONCLUSIONS:

We have developed a method for the optimal shape design for the
shape of an elastic-plastic problem. The work has been helped by the fact
that our system is governed by a variational inequality, with all its strong
properties, which make the approximation much simpler. The main
theoretical result — Theorem A in section 3— shown that vector which
eventually defines the search direction for a minimum, is itself the solution
of an associated variational incquality:

APPENDIX
The main purpose of this appendix is to sketch the proof of he Theorem A.
Let the function P_ minimizes the function

I(P )—1/2f (lAP_|12+2ulpP |2 - 2fP )dx, (67)

over the convex set X; the function f, = (A(A@)—f). Then it is the
unique solution of (35). As € — 0, P_ tends to P, a function which
minimizes the functional

IP)=12 fQ(IAPI2+2uIPI2—2f1P)dx, (68)

over the convex set K. We note that such a minimizer is the unique
solution of the variational inequality of the Theorem A4 in section 3. By
taking limits as € —> 0 of both sides of (67), we can show ([1]) that /_
tends to /. The Theorem A4 follows from the fact that the corresponding
minimizers of these functionals are unique.
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Figure 1 Shows the deformation of the domain 2 into £,
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Figure 3
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ON THE MAXIMUM LIKELIHOOD REGULARIZATION OF
INVERSION OF LAPLACE TRANSFORM

M. Igbal
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King Fahd University of VPqtroleum and Minerals

ABSTRACT

A regularization method is presented in this paper for numerical
inversion of Laplace transform. Regularization is affected by Maximum Likelihood
technique using trigonometric polynomial approximation.

We propose to obtain an optimal amount of smoothing by calculating
regularization parameter, optimally. Numerical examples are given.

L INTRODUCTION:

The inversion of Laplace transform is a topic of fundamental
importance in many areas of applied physics and mathematics. -In the
terminology of ill-posed problems, the Laplace transform inversion is a
severely ill-posed problem; therefore considerable effort is required to
obtain an accurate. numerical value of the .inverse for a specified value of
the argument.

Attention has been paid by mathematicians, engineers, physicisls
and others to find ways and means of evaluating the inverse. Early methods
e.g. Widder {26]; Tricomi {19] and Sohat [16] involved expansion of the
inverse in series of Laguerrc functions, whereas Salzar [15] and. Nordan
[11] used orthogonal polynomials.

105
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Lanczos [7] and Papoulis [12] have described methods in which
the inverse transform is obtained as series expansions in terms of
trigonometric functions, Legendre and Laguerre polynomials. For a
detailed bibliography the reader is referred to Piessen [13], Piessen and
Branders [14]. McWhirter and Pike [9] used eigenfunction expansion for
Laplace transform inversion.

Davies and Martin [5] and Talbot [17] have given a fairly
comprehensive survey of methods of numerical Laplace transform
inversion, claiming that no single method gives optimum results for all
purposes and all occasions.

2, LAPLACE TRANSFORM INVERSION AS A FIRST KIND

EQUATION: o

Varah [21] has discussed four methods for dealing with linear
discrete ill-posed problems including Laplace transform inversion. In some
of his methods he has converted the ill-posed problem to a well-posed
problem by means of regularization. We shall compare our methods with
McWhirter and Pike's method and Varah's methods on the same test

examples.
The Laplace transform under consideration is denoted by £(s) and
is related to the (unknown) original function f(¢) by

¢ o]

S e faydr=g(s). | ()
0

The data function g(s), s >0 is given and we desire to find f(f) when t >
0 and f(r) = 0 for 1 <0, so that (1) holds.

Frequently, g(s) is measured at certain points. We assume g(s) is
given analytically with known f(t) so that we can measure the error in the
numerical solution.

We shall convert the Laplace transform into first kind integral
equation of convolution type. The convolution equation is an ill-posed
problem and the positivity constraints supply much needed information.

In order to convert the Laplace transform inversion into a
Fredholm integral equation of the first kind of convolution type, we make
the following substitution in equation (1)

s=a* and t=a¥ wherea >e 2)
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Then

g@) = f Iog ae™ f(a-y) a?dy (3)

Multiplying both sides of (3) by a* we obtain the convolution equation.

J Ka-pFo)dy =G, -®<x<o @)
-

where -
G(x) = a'g(a) = 5g(s) M
K(x)=loga.a*e® =logase™s .. o 5)

Fy) = fa¥=f® |

In order that we can apply our deconvolution method to equation
(1), it is necessary that' G(x) has essentially compact support, i.c.,
G(x) —> 0 as x —> * oo, which is a property, we demand from our data
function G(x).

We need to choose two number namely x,.. and x_.  such that
[Gx)| < €, whenever x > X, and x < x. with € =107+ |Gx)l. We
calculate x,;. and x, . -as the smallest and largest solution of non-linear
equation |G(x)| = €. We then pose the deconvolution- problem ‘on the
interval [0, 7] where T=x_, . —x ...

We shall use maximum likelihood unconstrained method of second
order regularization (i.e. p = 2) in T), (trigonometric polynomial of degree
N) to solve equation (4). The Fourier transforms of F(x), G(x) and K(x).in

(5) clearly must depend on "a' in (2). It is evident that "a' plays the role of
smoothing parameter in the numerical solution of (4) in addition to the

usual regularization parameter A.

" Let G, , = G(x,) = G(nh), n =0, 1, 2,... N — 1 denote the data on
[0, T]. Then we have the DFT

N-1 . |
A 2Tin :
Gog= T Ganexp (~T570) a0, 1o N 1 (6

n=0
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Similarly for the kernel function

ﬁa,q= NilKa’n exp (%nq) ,q=0, Lo, N—-1 ©)
n=0

where Ka’n =log aexp (— an ) an,

3. THE FILTER FUNCTION:

Now consider the functional
CF A =kF =Gl |, + Al FDI| 2 (®)

which is minimized over the subspace HP C L,.
Both norms in (8) are L,. F(?) denotes the second derivative of F and A the
regularization parameter.
The minimizer of (8) in AP is given by
L% Gogu
RO =3- [ Z Aa)- mfxp(twqx) 9)
—

F in (9) is approximated by

n G
Fran®= 2 Zg o % - exp(iwg) (10)
q=0

Na
K Nag
{where *A’ stands for fast Fourier transform). Where
|[KNgal?

Zoga=TR ~ an
b a |KNqa|2+kN2w:
and
: <
~ _ (wg 0 < q<N/2 19
Wy { IN<g<N-1 (12)
WN-4 3 <4gZ<

From equation (10) we know that the filtered solution Fy, ,(x) € Ty
which minimizes

(K, * ) o) = G2 + Al L FPl 12 (19)

M=

]

n=0

is
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n )
Fypna® =% 2 F ahg SXP(2Tigx) (14)
q=0
where
"A Ga q
Fa,}»,q = Za,l,,q Ka g . , (15)

The optimal A in Z,, . is still to be determined by maximum likelihood
method. Z, ; . is our filter function and X is instrument function in (11).

4. DETERMINATION OF OPTIMAL X (the Regularization
Parameter). MAXIMUM LIKELIHOOD (ML) METHOD

(unconstrained case):
In this paper we construct maximum likelihood (unconstrained

and constrained) methods, which determine A optimally. Our construction
of the methods is a simple extension- of the ideas of Anderssen and
Bloomfield [1, 2] and Wahba [25, 24).

Here we relate the second order convolution filter (11) to certain
“spectral densities which play a role in the ML optimization of A. Assume
that the data g, are noisy and that there is an underlying function Uy, € Ty,
such that ‘
G, = Uyx,)t €,=U,+ €,
_ We identify both », and €, with independent stationary stochastic
processes, since in general the expectation E(U,) is not zero.
Now consider F,, = Fp(x,) € Ty defined by
FK),=U, n=0,12,...N

where
K =y diag(hKy , )" (16)
. . L 1 (mi
and y is the unitary matrix with elements y, ., = W exp \y7s) >

rs=0,1,2 ... N—1.

Now,

= Izv: { X -1 1 exp (27 imn)ds,(w) (Davies [4].) }
2 mn f > | - .
0
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1

F,= f [K w17} exp(2mim,)ds,(w) -
0
where
Ky (%) = > K, , exp(—2Tiw,) amn
N—1
Assume that F,, is estimated by > gnm where l,, is a filter which we
n=0

shall relate to Z and [g,,] 1S penodxcally continued for n € [0, N], Then
- the error, .

N-1 o
z !mGrem , 4 (18)
| n=0 : :
is given by ° N
| exp(2miw,) [(K, ;0)t = 1y w)ds, (0]
0
1 A a ’
- f exp(2Tiw,) Iy (w)ds <(w) 19
0-

Using Davies [4], we have the variance of this error is

} | Ry son)t = Ton|? Pyondw § Jl"l Ty } Poondw )

o - 0 A
whlch is mlmmlzed when |

(w)KN M= PU(w) [ [Pyw) + P (W)] 21)

(where P, A{w) is the spectral density).

Since the discrete Fourier coefficients of the filtered solution must
satisfy .
' ﬁa;q,). hly qGN ga

Zq kq (hKa q)—l (22)
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we find
Zgng =P ngKnga (23)

In order to find optimal A, using Igbal [6] and Wahba [24], we have to
minimize

N—1
1 A
Vi (Aa) = ENIOg( > IG ~Zypg )? }
q: 1.

1 S
) Z log (1-2,, ) (24)
q= .
w.r.t A and a both, where a > e. We find that the overall minimum of V(\,
a) gives the values of A and a for which the L, error of the regularized
solution is least.
S. MAXIMUM LIKELIHOOD (ML) METHOD (Constrained

Case) .

In this section our maii intcrest is to develop a method for
choosing optimal A and ‘&', suitable for non-negativity constrained case for
regularization using maximum likelihood method usmg trigonometric
approximation. ,

We propose an extension of the ML method of the previous section
to the constrained case. The performance of ML regularization in the
constrained case is dramatically superior as compared to the unconstrained
case and it is too expensive to compute.

From the cross-validation (CV) constrained regularization method
discussed in Igbal [6] and Wahba [23], we conclude that the indicator set /

obtained through quadratic programming plays a key role in the algorithm.
It affects the filter function and ultimately affects the expression for

Vv (A, a). |
Our second order unconstrained filter is given by equation (11)

and ¥, (A, a) by equation (24). If I is the indicator set underlying the
matrix E (see Igbal [6]) i.e. the set of inactive constraints mdlces ITand L is
the number of inactive constraints.

We approximate the constrained filter by

Zgra q €1
Zpa™ { (25)
0

g el
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and V,; (A, a) in the constrained case is

' 1 c oA 112
Vi (A, a) = N log [ 2 A=Z5 ) IG’q,aII ]
g€l
o 2 *
+ 3 1G 1" = T log1-2",,). (26)

To minimize (26) we used linear search technique for each A evaluation in
the minimization process. Since VML(?», a) is not necessarily a continuous
function of A, we made a linear search in order to find optimal A,
corresponding to the least value of ¥ (A, a). We noted the corresponding
solution vector F;, then by suitable change of variable we found £, ().

6. PROBLEMS AND NUMERICAL RESULTS:

In this section we shall discuss two problems by McWhirter and
Pike [9, 10], and Varah [21]. In these problems all data functions have the
property g(s) = O(s)~! and no noise is added apart from the machine
rounding error. In both problems we have taken N = 64 data-points.

Problem 1 (McWhirter and Pike [10]).
® N

f e~ f(n)dt =g(s)
0

where

fay=rtet

g(S) = l 1+s 2
This problem has been taken from McWhirter and Pike [9]. We have

employed ML unconstrained method on this problem and results obtained
are shown in-Table I and Diag (1). :

Problem 2 (Varah [21}).

[e o]

f e~st f(t)dt = g(s)
0



113

> 2
<2

M. Iqbal

This problem has been taken from Varah [21], we used two methods on

Here
‘ 1.0 ¢
[ = -
0 t
and_
e—2s
g = 73
this problem
i) | unconstrained ML method.
(i) . constrained ML method.

Since this is a problem in which f(t) is discontinuous, we have experienced
Gibb's phenomenon very acutely in this problem. The Fourier series does
not converge uniformly. The failure of Fourier series to converge at
discontinuities is given-the name "Gibb's phenomenon".

(a) We have tried this problem usingﬂrunconstrained- ML method and
the results are demonstrated in Table 2 and Diag (2). There are
some negative lobes which need positivity constraints.

“(b) We also tried this problem using constrained ML method. The
results are better and reasonable as shown in Table 3 and Diag (3).
Table 1 (Problem 1)
(ML Unconstrained Method)
a I, H, A VML(A"‘) L norm
a=e 20.96 | 0.32750 | 0.6620x10710 [0.63927x10710 | 2.24x10~4
a=5.0 12.0 | 0.1875 | 0.1920x10-11 }0.39826x10"10 | 2.08x1074
a=10.0 | 9.00032 | 0.14063 | 0.3220x10712 |0.37123x10719 | 2.02x1074
a=150] 7.61 | 0.11875 | 0.1411x10712 10.57920x10710 | 2.19x1074
a=200| 696 |0.10875] 0.7920x110"13 | 0.52321x10~10{ 2.17x10~%
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Table 2 (Problem 2)
(ML Unconstrained Method)

a T, H, A VML(M‘) L, norm
a=e 16.10 | 0.25156 | 0.3020x1072 | 0.57231 0.63
a=50 9.0 0.14063 | 0.3021x10710 | 0.57226 '0.63
a=100] 672 | 0:1050 | 0.521x10-11 | 0.57196 0.61
a=150| 580 | 0093 | 0221x10°!! | 0.57182 0.59
a=200| 528 |0.08250 | 0.1163x10°!L | 0.57149 0.53
a=250] 494 0.7719 | 0.793x10°12 | 057189 | 057

Table 3' (Probliem 2)
(ML Constrained Method)

a | T, | H Y N VML(X“) L, norm
a=e | 1610 10.25156 | 0.5623x107!1 | 0.63215 | = 0.590
a=50 | 9.0 1014063 | 056731011 [ 063209 | 0577
a=100]| 672 | 01050 [ 0.9321x10712 | 062932 | 0537
a=150| 580 | 0963 | 0.7632x10712 | 0.63125 0.571
a=200| 528 0.08250 | 0.7612x10712 | 0.61399 0.570
a=250] 4.94 10.07719] 0.7912x10-12 | 0.63091 0.581

o
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- DIAG (1) MCWHIRTERS' PROBLEM (1)
LAP. TRANSFORM. SOL. BY M. L. METHOD

ab ey

12.-00 /6-"’* Jooo w0 oo 200

1

TRUE SOL.
SOL.FOR A =20
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DIAG (2) VARAHS' PROBLEM (4)
LAP. TRANSFORM..SOL. BY M. L. METHOD

o5 .
>
»
b 2 4
JH

TRUE SOL.
SOL. FOR A =20

i
s - * r * < - - -
0% 4.0 %™ t2.00 tboo Q0.50 Moo Ap.00 Ileo
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DIAG (3) VARAHS' PROBLEM (4)
LAP. TRANSFORM. SOL. BY M. L. NON - NEGATIVITY

.- 3.59
! s

319

0.3

-0.80

oy

A AA 7er 041 1594 )(_'iv.11 Ny 7w 3

TRUE SOL.
SOL. FOR A =20
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