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8 INTRODUCTION

Let S be the class of regular and univalent functions f{z) = z + a,2° +..

in the unit disc U = {z:| |z| <1}.
The aim of this work is to prove new univalence criteria for some

integral operators.
Many authors studied the problem of some integral operators which

preserve the class S. In this sense, important results are dueto Y.J. Kim,
E.P. Merkes [3] and N.N. Pascu, V. Pescar [6]. *

Theorem A [3]

If the function f(z) belongs to the class S then, for any complex number
Y | ‘yl < % the function.

- 18]

0

isin S.
Theores 8 [6]
Let «, 3, v be complex numbers and the function h € §.

If i) Ref8 < Rea > ( and
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.. Req 1
s<—— forRea € |0,
iy vlsE lo5)
iii) [y]s—l for Re @ € l,
4 2

then the function

z B
= B-1 M ’
| G, . () {ﬁ{u ( p )du

@

belongs to the class S.
2. PRELIMINARIES

Theorem C [1]

. If the function f is regular in unit disc U, fz) = z + @, + ... and

p/©9)
@

(1-1z]) ©)

for all z € U, then the function f is univalent in U.

Theorem D [5]

Let o be a complex number, Re « > O and f7) = z + a,2* + ... be a
regular function in U. If : '

@
Fi€)

1- IZIZRea
Rea

“4)

for all z € U, then for any complex number 8, Re 8 = Re « the

function

P N A
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' z 7/ N
Fy@) = {ﬁ [ u"“f’(u)dul )
0
is in the class S.

Theorem [2],{4]

If the function g is regular in U and | g(z)| <1 in U, then for all { €
U and z € U the following inequalities hold . '

1-g()g(0) | | 1-2¢
. _ 2
and lg’'@)]| < I——Lg% (7
1- [z
the equalities hold only in case g(z) = € IZ "% where J€| =1and
+uz
lu| <1.
REMARK A[2],(319-322)
For z = 0, from incquality (6) we obtain for every { € U
’ () -20 ®)
1-2(0).8(0)
- ' €]+ 1s@)] : '
and, hence l8(D)] s 1+ O[] 9)
Considering g(0) = a and { = z, then
e@f< el (10)
l+fa].|z] .

forallz € U.
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3. MAIN RESULTS

Theorem 1

Let v be a complex number and the fuuction & € S, hz) = z+a,2*+...
o :
zh (Z) h(Z) <1 . | (1 1)

If
zh(7)

for all z € U and the constant || satisfies the condition"

) -
lyls (12)
a2l el ]
max (1 - |z|) |z| ——=
Jzf<1 1+ laz”zl
then the function
z I y ’ '
F - [ 4 )
U
0
belongs to the class S.
Proof
The function h is regular and univalent in U and, hence, @ + 0 for
z

' . Y
all z € U. We can choose the regular branch of the function (ﬁ(_zz)
z

which is equal to 1 at the origin.

The function F, deﬁﬁed by (13) is regular in U. Let’s consider the
function ' -
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(@ - L A®

where the constant |y | satisfies the inequality (12).

The function g is regular in U and we have

- _ v | H@ -k
8(@) v e

~ From (15) and (11) we obtain
l[s@] <1
forall z € U.

Using (15} and the definition of function h we obtain

0) = L
80 v 2

and, hence | g(0)| = |a,].
Applying REMARK A [2] of the function g we obtain

2| +la, |
1+a,]lz]

F,@)
F,(2)

1
lv]

forallz € U.

(14}

(15)

(16)

I

(18)
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From (18) it results that

|z + |a,|

+lay|lz|

Fi@)
1-[z]})z——
}( [z[?)z ,'(z)

<y l(l-l Plel s

forallz € U.

Let’s consider the function H:[0,1]-R

x+la,|

Hx) = (1-x)x——;
1+|a,|x

= k2l

Because H(%)>O it results that

max H(x)>0
x € [0,1]

Using this result and from (19) we have

2 Fg(z) 2 Izl+la2l
(1- 1z )Z% S‘IYIIIYZII?I([(I - |z| )IZIW

From (20) and (21) we obtain

2F,2)

1-
(1-izf?) o

(19)

(20)

for all z € U. From Theorem C, it results that the function F, defined

by (13) belongs to the class S.
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Theorem 2

Let «, 83, 7 be complex numbers and the function 2 € §, h(z) = z +
@ + ... ' '

I(Y ~

If M <1 . (21)
zh(2) .

forall z € U,

Re 3 =2 Rea > 0and : 22)

1
lv[s (23)
1-|z[2Ree, | 2] +]ay] .
l2]51 Reo. 1+|a,||z

then the function

z yp .
Y
G, @) = {p f u”“(i(i)) du (24)
; ) P
belongs to the class S.
Proof
Let’s consider the function
b4 A y V ) ’
f2) = f (—%‘9) du (25)
0

The function f is regular in U. Let the function

p@@ = =
Y| Az
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where the constant |y | satisfies the inequality (23). The function p is
regular in U. From (26) and (25) we obtain

= Y |ZH@-hE@) 27

and using the inequality (21) we have |p(z)| <1 for all z € U.

From (27) we obtain |p(0)| = |a,| and applying REMARK A[2] we
have

1| 2l*]a 28)
lyl-f(z)' 1+ a,]lz]

forallz &€ U.

From (28) it results that

1- |Z|2Reé zf’/(z) 1- Izl2Rea" lzl + lazl’)
Reo Fd63) s Il Rea l 1+]a,l Iz\rg)
Let’s consider the function Q:[0,1] - R
, _ (1 - x2Ree) x+|a,] .
Q) Rea 1+]a,|x % = Izl

Because Q(é—)>0 it results that

max Q(x)>0
x € [0,1]
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Using this result and from (29) we conclude

l-izl”‘" Zf’/(z) ax|(1 - 122 ,Zl+’azl
Rea | £l "Y'Esl[(l lzl)]zllﬂazllzlJ (30)

' From (30) and (23) we obtain

| #'@
@

_ 12Rea
L-[z] <1 31

Rea

forallz € U.

From (31) and Theorem D we obtain that the function

z 1/p
T, = [Bf u““f(u)duI | (32)
0

beiongs to the class S.

From (32) and (25) we conclude that the function Gy, defined by (24),
belongs to the class S.

Observation 1

From 8 = 1, Rea = 1, from Theorem 2 we obtain Theorem 1.

Observation 2

In this work we obtain the conditions of univalence which use the
coefficient a, too.
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ABSTRACT: In'this paper we obtain a set of criteria for the

elements of Q*(\/E) to be ambiguous, totally positive and’ totally

negative. Using these criteria we determine the behaviour of the

elements of Q*(\/r-l) " under the action of the modular group.

1. INTRODUCTION

For any non-square natural number n, the set

az—n’

Q*(yn) = {—a-:‘/—;:a,cez,

c c

2_ .

is a rational integer and ka, f———n,c) = 1} is invariant under the action
c

of the modular group G with presentation G = <x,y : x* =y’ = 1>,

For « =,‘_Z+‘/; € Q*(\/ﬁ), its conjugate o = _a_—j_ﬁ may or may not
c - c

have the same sign as that of o. If @ and « have different signs, then

« is called ambiguous number. If they are both positive then « is called
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totally positive. However, if they are both negétive, we call @ totally
negative. .

Mushtaq [3]; Aslam, Husnine and Majeed [1] and [2] have discussed

various aspects of Q*(ﬁ), and Modular group action on’ Q*(\/— ) .In
the following section we determme the conditions on @, b and ¢ such

2, .
that « = a+y/n ,where b= s totally positive, totally negative

c
of ambiguous number, and the action of group G on «, where « is totally
positive, totally negative or ambiguous number. For this purpose we
have the following results.

2. PROPERTIES OF QUADRATIC FIELD Qx{/n)

Lemma 2.1
An a = a;‘/'_l is a totally positive number if and only if
either, ¢>0 and a>0, b>0 (1)
or c<0 and <0, b<0 | @
Proof |

Suppose « is a totally positive number. Then@ and @ both are positive,

that is, g:ﬁ>0 and a_—ﬁ>0 .Let ¢>0, thena+v'n>0, av'n>0.
c c

So we have a>0. Also a®-n>0, i.e. bc> 0, This forces that > 0. Since,
¢>0. Hence a>0, b>0 c>0.
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~ Next, let ¢<0. Then a+/n<0 and a-{/n<0 . This implies a<0.

, . a’-n
Also, a*-n> 0, Implies b = <0 .
_ T c
Hence, ¢<0, a<0, b<0, as required.

Conversely‘, suppose that (1) or (2) is satisfied. In case of (1), ¢>0,

_ - |
then b = 27250 implies a>-n>0, This force that either a>/n
¢ ,

or, a<-/n . But a>0, so we must have a>/n

a+y/n ~ - a-yn
Hence, o = ——-—"/——_>0, a = ———"/—_>O
c c

This « is a totally positive number.

2_
In case (2), c<0,b = £2<0 implies a*n>0. This forags that
. c . =

either @>/n or, a<-/n . But a<0. So we must have a<-/n that

is, « = G20 and 7 - 250 | Thus «is 2 totally positive -

c . ¢
number.
Lemma 2.2
An o = a;ﬁ is totally negative number if and only-i'f
either, c>0 and a<0,b>0 ()

or, ¢<0 and a>0,5<0 @
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Proof

Suppose « is a totally negative number. Then « and « both are

negative, that is, a+\/r_z<0 and a_‘/ﬁ<0 . Let c>0, then a+/n<0,
c c

and a-y/n<0 . So we have a<0. Also a>n>0, i.e. bc>0. This forces
that b>0, since ¢>0. Hence, ¢> 0, a<0, b>0.

Next let ¢<0, then a+V'n>0 and av'n>0. This implies a> 0. Also a’-

. 2_
n>0, implies b = a4 "o . Hence, ¢<0, a>0, b<0 as required.
c .

Conversely, suppose that (1) or (2) is satisfied. In case (1), ¢>0,

2_
b=2%"50 , imply a*n>0. This forces that either, a>Vnora<-
c

v'n. But a<0. So, we must have a<-Vn.

a+/n — _ a-yn
Hence o¢ = ——<0 and a = ——<0
c c

Thus « is a total negative number.

2 ,
Incase 2), c<0, b = Y| , imply @*-n>0. This force that either
¢
a>V'n or a<+/n. But >0. So we must have a>Vn.

a+‘/'_’<0' and o = i——‘ﬁ<0
[ [

Hence o =

Thus « is a totaliy negative number.
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. Lemma 2.3

a+/n is an ambiguous number if and only if one of the
B _ :

An o =
following two conditions hold.
1) ¢>0,b<0
2) ¢<0,b>0

Proof

Suppose « is an ambiguous number. Then ¢ and « have different signs

that is « o <O0.

- 2_ 2_
And aa = & nawn _a’-n _ a "l=2,<0
‘ c ¢ c? ¢ ¢ ¢
Hence, we have either, >0, b<0
or ¢<0, b>0

Note that a can be both positive or négative.
Convefsely, suppose that (1) or (2) hold.

In case (1), ¢>0, b<O.

Then - = —— ==
2

or

This implies that « and « have different signs. Hence « is an ambiguous
number.
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In case (2), ¢<0, b>0.

(12"?1

Then é<0 or <0 , so

c c

. a+y/n a-yn
or _\/— __\/—<O
: c c
Again « is an ambiguous number.

3. GROUP ACTION AND QUADRATIC FIELD
The transformation y:C™ — C” defined by y(z) = Z—_l, z € C shall
. z '

denoted by y. It is easy to see that y* = 1, the identity transformation.

“For each a€Qx(/n) , y(@), Y @) and y*(a) form the vertices of a

triangle. If « is a totally negative number, what can we say about y(«)
and yX(@)?. The following theorem gives an answer to his question. This
result shows that under the transformation y we have a triangle with one
vertex totally negative and the other two vertices totally positive.

Lemma 3.1

Let o = a+/n be a totally negative number. Then the images y(«) and
C

y*() both are totally positive.

Proof

Since « = a+/n is a totally negative number, therefore by lemma 2.2

c

we have the following two cases:
>0, a<0, b>0 ' Y]

<0, a>0, b<0 2
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_ - a +/n
Now, y(a) = = 1. Cabryn 4 /n (Say)
a b <
} 2
al -n
Thus a; = -a+b, ¢, = band b, = = b-2a+c
G

1 (—a+c)+ﬁ B az*“/’;
= = (Say)
1-« b-2a+c c,

And yXa) =

2—.
a,-n
=

Thus a, = -a+c, ¢; = b-2a+c, b, =
c
2

In case (1), a<0, b>0 i.e. -a>0, b>0 implies that -a+b>0. Also,
a<0, b>0and ¢>0 implies b-2a+c>0.Soc, = b>0,a, = -a+b>0,
by, = b-2a+c>0. '

Hence, by lemma 2.1 y(«) is totally positive.

And, a<0, ¢>0i.e. -a>0, ¢>0 implies -a+¢>0. Also, a<0, ¢>0,
b>0 implies that »-2a+c>0. Thus, we have, ¢, = b-2a+¢>0,a, = -
a+c¢>0, b, = ¢>0. Again, by lemma 2.1 y*(a) is also totally positive.

In case (2), a>0, b<0 i.e. a>0, -b>0 implies that a-6>0 or -
a+b<0. Anda>0, c<0i.e. a>0, -¢>0 implies a-c>0or -a+c<0, -
a+b<0and -a+ c <0forces that (-a+b)+(—a+c)<00rb-2a+c<0. We

have,

¢ = b<0, g, = -a+b<0, b, = b-2a+c<0
¢ = b2a+¢<0, a, = -a+c<0, b, = c<0

Hence by lemma 2.1 y(«) and y*(c) are totally positive. -
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The following theorem explains the action of transformation x:C*—C”

given by x(z) = —_—1—, z€C”® on the totally positive or totally negative
z :

elements of Qx*(/n)

Lemma 3.2

For any a = ii‘/-é in Qx(y/n) , x transforms a ‘totally positive
c .

' (reépectively totally negative) « into totally negative (respectively totally

‘positive), element of Qx*(y/n)

Proof

Let a = at/n be a totally positive number, then by lemma 2.1, we

c
have,
either, ~¢>0,a>0, b>0 (1)
or <0, a<0, b<0 @
- - a,+/n
x(a) = I v (say)
« b 3

Thus, a; = -a,b, =
ILet ¢>0,a>0, >0
Then a; = -a<0, b; = ¢>0, ¢; = b>0.

Again, by lemma 2.2 x(«) is totally negative.



19

Behaviour of Ambiguous and Totally Positive or Negative ....
Now suppose ¢<0, a<0, b<0
Then a, = -a>0, b; = ¢<0, ¢ = b<0

Again, by lemma 2.2, x(«) is total negative.

Next, suppose that a = ;
Then by lemma 2.2 we, have.

.Either  ¢>0, a<0, b>0

or,  ¢<0,a>0,b<0

In case (1)’, @; = -a>0, b; = ¢>0, ¢; = b>0

In case (2)’, a; = -a<0, b; = ¢<0, ¢; = b<0

Hence, by lemma 2.1, x(«) is totally positive in both caées.
INustration

= 2_-
28+, _ (2872 _
46 46

Let a =

Here,a = 28>0, b = 17>0, ¢ = 46>0

So, « is a totally positive number.

- - a,+/2 _aR\2_
Now x(a) = =L = 22842 _ l\/—,bl=(28) 2 _
« 17 ¢, 17

a, = 28<0, b, = 46>0, ¢, = 17>0

>0, q,<0, >0

Hence x(«) is totally negative

+ . .
a+/n is a totally negative number.

46

(D
(2)
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T4+ -74)2 ~
Again we take a = 74 ‘/i,b Gl e 46>0
- 119 119

"a = -74<0,b = 46>0, c = 119>0.

which is a totally negative number.

' -1 + a,+/2 2_
And, x(a) = =%, = T4n2 _ 4 ‘/—,bl - 0972 4959
o 46 c 46

a =74>0, b, =119>0, ¢, = 46>0

This shows that x(«) is totally positive. If we take.

Fig.3.1



Behaviour of Ambiguous and Totally Positive or Nezztive ... 21

_ -28+Vf'b _ (-28)*-2" _ ~17<0
-46 -46

a = -28<0,b =-17<0, ¢ = -46<0.

So, « is a totally negative number.

a,+y2 -
8+¢’ . vrlb e S
-17 ¢ -7

x(a) =
a, =28>0, b, =-46<0, ¢, = -17<0.

So, x(«) is a totally negative number. Again if we g2

. 74+¢' 092 | 60
-119° -119.

a=174>0,b = -46<0, c = -119<0.

Which is a totally negative number.
T4nZ _ an2 (145
,b, = —= = -119
-46 ¢ -43
a, = -74<0, b, = -119<0, ¢, = -46<0.

And, x(a) = — =
o

~ This shows that x(«) is a totally positive.
These remarks are explained in [Fig.3.1].

The theorem given below states the action of transfrmation y defined

by ¥ = 271 ond of y* on the totally positive elezent of Qx+{y/n)
z
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Theorem 3.3

Let a = a+/n be a totally positive number, then one of the following
c :

conditions hold:-
1) If ¢>0,a>0, b>0 and y(e) is totally negative then a> b,

a<c and y¥(a) is totally positive. However, if y(«) is totally
positive then a<b, a> ¢ and y*(e) is totally negative.

2) If ¢<0, a<0, b<0 and y(e) is totally negative then
al>|p], |al <]c|] and yXa) is totally positive,
however, if y(a) is totally positive then |a|<|b],
|a] > ]c| and yXe) is totally negative.

Proof

a+ﬁ isa totally positive number, therefore by lemma 2.1,

Since o

we have the following two cases.

either c>0,a>0,b>0 )]
or - ¢<0, a<0, b0 : 2)
- - a,+/n
Now y(a) = o1 _ ( a+b)+/n = 1 n (Say)
o b <,
' - a,+/n
and Y@y = L - ot G
_ 1-a b-2a+c [
2
Thus a, = -a+b,c, = b,b, = = b-2a+c

I
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2
02 -n
And a, = -a+c,c, = b-2a+c,b, = =c
c
2

Suppose y(a) is totally negative, then by lemma 2.2, we have
either >0, q,<0, b,>0 (A)
or’ <0, a,>0, <0 (B)

Since y(e) is totally negative, by lemma 3 1, y¥«) is totally positive and
by lemma 2.1, we have

either >0,a,>0, b,>0 (@)
or <0, a4,<0, 5,<0 ; ' D)
Now, suppése y(a) is totally posiiive, then by lemma 2.1, we have
~ either >0, a,>0, >0 (P)
or <0, a,<0, b;<0 Q)

Since y(«) is totally positive, so by lemma 3.1, y*(«) is totally negative
and by lemma 2.2, we have

either >0, q,<0, b,>0 _ ®R)
or <0, ¢,>0, b,<0 . (S)
(1 Let ¢c>0,a>0, >0

Then in this case (B), (D), (Q) and (S) cannot hold because in these
~cases ¢, = b<0and b, = ¢<0 but we have taken ¢>0 and >0. So we

left with (A), (C), (P) and (R). That is,
¢ =b>0,a, = -a+b<0, b, = b-2a+c>0 (A)
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and ¢ = b-2a+¢>0,a, = -a+c>0, b, = c>0 ©)

Now -a+b<0, -a+c>0 implies that a>b, a<c

Again ¢, = >0, a, = -a+b>0, b, = b-2a+c>0 P) -

¢ = b2a+c>0,a, = -a+c>0,b, = ¢>0 (R)
~a+b>0, -a+c<0, together implies that a<b, a>c.

(2)’ Now lét ¢<0, a>0, b<0.

Then in this case (A), (C), (P) and (R) cannot hold because in thus case
¢, = b>0and b, = ¢>0 but we have taken »<0 and c<0. So we left

with (B), (D), (Q) and (S). That is
¢ = b<0, a = -a+b>0, b, = b-2a+c<0 (B)

¢, = b-2a+¢<0, a, = -a+¢<0, b, = ¢<0, (D) .

Now -a+b>0 and -a+c<0, implies that [a| > |b], |a] <|c].
And ¢ = b<0,a, = -a+b<0, b, = b—2a+c<o, Q

¢ = b-2a+c<0, a, = -a+¢c>0, b, = ¢<0, (S)
So, -a+b<0 and -a+c>0 implies that |a| <[], [a|>|c].
Remarks: ﬂ |

The converse of theorem 3.3 is not true, that is if a>b, a<c or
la]l >|b], |a]l <|c], then y(e) may not be totally negative as is

evident from the followmg example.
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Example
_ 4+,/1_1,b _le-11
5 "5

~which is a totally positive number.

Let o

anda=4,c=5,b=1,a>b, a<c.

3*‘/_ “‘+‘/_ = 9-11 = -2

G

But y(a) =

=1>0, g, = -3<0, b, = -2<0

y() is not totally negative.

-4+/11 , _ 16-11 _

Again, if we take o = ,
-5 -5

a=-4<0,c=-5<0,b =-1<0

So « is totally positive.

3+/11
-1

But y(a) =

a=-4,¢c=-5b=-1
lal =4, |c| =5, [b] =
la]>]b]. |a] <]c]

Here again, y(«) is not totally negative, because

a = 3>0, C = 'I<O, b| = 2>0
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Apart of the coset diagram depicting the action of G and Q*(m) is

given below.

Fig.3.2

Remark

The converse of the above theorem 3.3 is not true that is, if a<b, a>c¢
of |a] < |b|, |a]>|c]| then y(a) is not totally positive.

Example

Let @ =4+/11 ,b=16-11=5 *
a=4>0,b=5>0,¢c=1>0
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So, « is totally positive and a<b, a>¢

c, 5 5

But y(o) =

1411 _ am/_ 1-11 _ -0 _
5

= 1>0, bl = '2<0, Cl = 5>O
which is not totally positive.

—4+\/ﬁ
-1

Again,

a=-4<0,b= E'lﬂ =l§ =-5<0,c =-1<0

This is « totally positive
lal =4, 5] =5, |c| =
lal <l2], la]>|c]

-1 +/" a,+/11

3

But y(a) =

____l—ll = _:E = 2>O

a, =‘1<0, C, ='5<0, bl = 5 5

which is not totally positive.
A part of coset diagram depicting the action of G on Q+{y/n) is given

below:

See page # 34

Fig.3.3
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Theorem 3.4
Let a = ff—‘/—i be an ambiguous number then x(«) is always an

¢
ambiguous number.
Proof
Let ¢ = f—t‘@ be an ambiguous number then by lemma 2.3, we have v

c

the following two cases.
(1) c>0, b<0

(2) <0, b>0

NOW. x(a) = ':'1_ = -1 ¢ a—\/ﬁ = ¢ —a+\/; = ¢ _a"'\/;i
-« a+/n a+y/n a-ﬁ a’-n - be

c

_a;ﬁ B Gl (Say)

x(et)
G

2_ - 2 2
an _ (za@)-n _ 4N
< b b

TFhusa, = -a, ¢, = b; b, =

Case (1), Let ¢>0, b<0

Then ¢, = b<0, b, = ¢>0

Hence, by lemma 2.3, x() is an ambiguous number.
Case (2), let c<0, b>0

Thenc¢, = >0, b, = c<0
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Again, by lemma 2.3 x(«) is an ambiguous' number.

a+yn .° .
/n is an ambiguous number then under -
c .

Now we show that'if a =

the transformation y we have a triangle with one vertex totally positive
and the other two vertices ambiguous.

Theorem 3.5

Let o = a+/n be an ambiguous number then one of y(a) and y*() is
c :

ambiguous while the other is totally positive.

Proof

a+/n be an ambiguous number then by lemma 2.3, we have
c

Let o =
the following two cases:
a c>0, b<0

¢
@) ¢c<0, >0

: - - a,+/n
Now y(a) = 2L = ( asb)rfn _ &/ (Say)
o b Ccy :
az"n - +b2_
Thus a, = -a+b, ¢, = b, b, = ,2 _ (axby-n b-2a+c
c, b :
Any yia) = —L = (@rO+/n ay/n (Say)

l1-a b-2a+c Cy

2
a3°fl
=c

So, a; = -a+c, ¢; = b2a+c, b; =
c
3
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2
a’-n
. <0 or a*>n<0

In case (1), ¢>0, b<O0 implies that £<O i.e.
c c

So a can be both positive or negative._
First we take a<0,
a<0, ¢>0 implies that -a+;'>d.
a<0, b<0 implies either -a+b>0 or -a+b<0.
If -a+b>0 then -a+c¢> 0 forces that (-a+b)+(-a+¢c)>0
or b-2a+c¢>0
So, ¢, = b<0,a, =-a+b>0, b, = b-2a+c>0
¢ = b-2a+c>0,a, = -a+c>0, b; = c>0
By lemma 2.3 lemma 2.1, y(a) is ambiguous and y*(c) totally positive.

If -a+b<0 then -a+c¢>0 forces that either (-a+b)+(—a+c)<0 or (-
a+b)+(-a+c)>0 i.e. either b-2a+c<0 or b-2a+c>0.

-

Let b-2a+c<0
Then ¢, = b<0, g, = -a+b<0, b, = b-2a+¢<0,
¢ = b-2a+c<0,a, = -a+c>0,by, = ¢>0

This shows that y(x) is totally positive and y*(«) is ambiguous b-
2a+c¢>0 implies that

6, = b<0, az = -a+b<0, b2 = b-20+c‘>0,

G = b-2a+c>0,a, = -a+c>0, by = ¢>0
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Hence y(«) is ambiguous and y*(«) totally positive.

Now we take a>0
| Then a>0, b <0 implies that -a+5b>0.

a>0, ¢>0, implies either -a+c<0 or -a+c>0.

If -a+c<0, then -a+b<0 forces that (-a+b) + (-a+c)<0 or b-
2a+¢<0.

So we have

¢, = b<0, a, = -a+b<0, b, = b-2a+¢<0,
¢ = b-2a+c<0, a; = -a+c<0, by = c>0
Hence y(q) is totally positive and y*(«) arﬁbigﬂous.
Again, we take -a+c¢>0 then -a+b <0 forces that
either (-a+c)+(-a+b) <0 or (-a+b)+(-a+c)>0
That is b-2a+c<0 or b-2a+c>0
Let b-2a+c<0 then
¢, = b<0, a, = -a+b<0, b, = b-2a+c<0,
¢ = b-2a+¢<0, a; = -a+c>0, b; = ¢>0
This shows that y(e) is totally positive and y*(c) ambiguous.

If b-2a+c>0, then
¢ = b<0, a, = -a+b<0, b, = b-2a+c>0,

¢ = b-2a+c>0,a; = -a+c>0, b, = c>0
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By lemma 2.3 and lemma 2.1 y(a) is ambiguous and y*a) totally
positive. -

Case (2)

at-n

¢<0, b>0 implies that £<O ie. <0 ord@n<0
C

CZ
So a can Be both positive or negative. First we take a<0
Then a<0, >0 implies that -a+5>0
a<0, c<0 implies either -a+c>0or -a + ¢<0
If -a+c¢>0, then -a+ 5> 0 forces that
(-at+co)+(-a+b>0o0r b-2a+p>0
So G =b>0,a, = -a+b>d, b, = b-2a+c>0
G = b—2a‘+c>0, a; = -a+c>0,b, = ¢c<0

Hence by lemma 2.1 and lemma 2.3 y(«) is totally positive and yz(a)‘
ambiguous. '

If -a+c<0, then -a+b>0 forces that either (-a+b)+(-a+c)<0 or
(a+b) + (-a+c)>0, that is b-2a+c<0 or b-2a+c>0.

Let b-2a+¢<0, then

¢, = b>0,a, = -a+b>0, b, = b-2a+c<0
C3 = b-20+c<0, a; = ‘a+c<0, b3 = C<0

So y(a) is ambiguous and y*(e) totally positive.
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Again we taken b-2a+c¢>0, then
¢, =b>0,a, = -a+b>0, b, = b-2a+c>0
¢ = b-2a+c>0,a; = -a+c>0, b; = c>0
So y(a) is totally positive and y*(e) ambiguous.
Now we take a>0.
Then a>0, ¢ <0 implies that a-c>0 or -a+c¢<0.
~And a>0, b>0 implies either -a+b<0 or -a+b>0.

Let -a+b<0, then -a+c<0 forces that (-a+b)+(-a+c)<0 or b-
2a+c<0

So ¢, =b>0,a, =-a+b<0, b, = b-2a+c<0
¢ = b-2a+¢<0, a; = -a+c<0, b, = c<0
So, y(e) is ambiguous and y*(«) totally positive.
Now we tﬁke -a+b>0 then -a+¢<0 forces that either
(-a+b)+(-a+c)<0or (-a+b)-;-(-a+c)>0
That is b-2a+¢<0, b-2a+¢>0,
Let b-2a+¢<0,
¢ =b>0,a, =-a+b>0, b, = b-2a+c<0
¢ = b-2a+c¢<0, a; = -a+¢<0, b; = ¢<0On

S0, y(a) is ambiguous and y? (a) totally positive.
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If b-2a+c>0, then

¢ =b>0,q =-a+b>0, b, = b-2a+c>0
c; = b-2a+c¢>0,a, = -a+c<0, b; = c<0

Again by lemma 2.1 and lemma 2.3. y(a) is totally positive and y* (oz).
- ambiguous.
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SOME PROPERTIES OF HADAMARD HYPERNETS
WITH CLASS SIZE 2
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Quaid-i~-Azam Campus, Lahore 54590, Pakistan.

ABSTRACT: The designs considered are such that the design and
its dual are symmetric affine resolvable, with each parallel class
consisting of two blocks and any two non-parallel blocks meeting in
points. It is shown that any three mutually non-parallel blocks meet in
u#/2 points. Some properties of these designs are thus established that

could be used for classifying the designs.

1. INTRODUCTION

There is a natural correspondence between Hadamard matrices of-order
2y and affine 1~ {4u,2u,2u) designs whose duals are also affine; u being
the number of points common to any two non-parallel blocks. These
designs have been studied in various guises, for example: Hadamard
systems in [7], symmetric nets in [4} and Hadamard hypernets in [6]. We
denote these designs by H,(u) in this paper, and note that any three
mutually non-parallel blocks of an H,(u) meet in u/2 points. An
unordered quadruple of mutually non-parallel blocks of an H(u) is
defined to be a D-quadruple if the intersection of any three of them is thé
same pu/2 tuple of points. In this article we discuss some properties of D-
quadruples and thus develope a characterization for these designs.

2. BACKGROUND

A t-design Il with parameters z— (v,k,\) where v>k>0and t=1, is an "
arrangement of v objects, called points, into subsets called blocks, so that

each block consists of & points and any subset of ¢ points is contained in
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exactly A blocks. Normally, the total number of blocks is denoted by b.
A design IT is said to be symmetric if b = v.

The dual design TI" of II has the blocks of II as its points and then a
block of II" is defined for each point of II to consist of all the subset of

blocks containing that point.

I1 is resolvable if its blocks can be partitioned into subsets, called
parallel classes, such that each parallel class partitions its set of points.
Clearly each 'parallel class has size m = v/k. In this case two blocks are
said to be parallel if they are in the same parallel class and non-parallel
otherwise. If II is resolvable so that any two of its non-parallel blocks
meet in a constant number of points, say u, II is said to be agffine

resolvable. It is. easy to see that u = k/m.

If IT is an affine resolvable 2—(v,k,\ > 0) design with m blocks in each
parallel class and u points common to any two non-parallel blocks, then
the parameters of IT are completely determined by the integers 7 and p
[1]. We shall denote such designs by A4,,(u).

Lemma 1 [5]

Let a and c be two non parallel blocks of an A, (1) I1; then there exist at
most m + 1 blocks containing the p points common to a and c. '

We call an affine 1—(v,k,r) design a net (m,r,u), where m = v/k is the
number blocks in a parallel class and u = &/m is a constant such any two
non-parallel blocks intersect in u points. Note that nets are equivalent to
the orthogonal arrays of strength two of Bush and Bose [2].

An (m,r,p) net whose dual is also a net is called a hypernet, In this case
[3], r = pm = k and so a hypernet is symmetric. Since r is determined
by p,m, we shall refer to such a hypernet as an H,(x) and say it is
Hadamard if m = 2. Hadamard hypernets and Hadamard matrices are

closely related (see [4], [6] or [7]).
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Lenima 23]

Let a be a block of an H,(p) II, p> 1. The design I1, obtained by taking
the points of a as points and the intersections with a of blocks not

parallel to it as blocks is an Ay(p/2).
3.  D-QUADRUPLES

Lemma 3

Any three mutually non-parallel blocks of an H,(1) meet in p/2 points for
u>1.

Proof

Let IT be an H,(1) and let d be a block of II. Consider the affine 2-
design II,. Since any two non-parallel blocks of II; meet in u/2 points,
any three mutually non-parallel blocks meet in u/2 points.

Lemma 4

There exist at most four blocks containing the u/2 points common to any
three mutually non-parallel blocks of an H,(1), p>1. :

Proof

Let g, b and ¢ be any three mutually non-parallel blocks of an H,(u) II.
By lemma 1 there exist at most three blocks containing the p/2 points
common to the non-parallel blocks and and aNc of II,, which is an
Ay(u/2). Hence in II there exist at most four blocks containing the pu/2

points of aNbNec.

Definition 5

An unordered quadruple (a,b,c,d) of mutually non-parallel blocks of an
H,(u) 11 is called a D-quadruple if the intersection of any three of them

is the same p/2 tuple of pomts
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The number o of such D-quadruples in I1 is called the characteristic
number of I1.

If d is a block of 11 then the degree of 11 is the number of D-quadruples
of Il in which d occurs.

Notation

Let a be a block of an H, (w)II. Then the block parallel to a is denoted
by a’ and the parallel class {a,a’'} is denoted by a.

The following is easy to verify.

Lemma 6

Let a,b,c,d be four mutually non-parallel blocks of an H,(p) I1. Then
(a,b,c,d) is a D-quadruple of 11 if and only if (a,b,c',d’) is a d-quadruple

of IL
Corollary 7

The characteristic number of dny Hy(u) is a multiple of 8.

Definition 8

A block a of an H,(u) 11 is called a hyperplane if for any two blocks b
and c, where a, b and c are mutually non-parallel, there exists a block

d such that (a,b,c,d) is a D-quadruple.

- A hadamard hypernet H,(1) is said to be complete if for any three
mutually non-parallel blocks a,b and c there exists a fourth block d such

that (a,b,c,d) is a D-quadruple.
Lemma 9

~ Let I1 the be an H,(). Then:



. \h_\

Seme Properties of Hadamard Hypernets with Class Size 2 39

Proof

(i),

(i)

i) a block of Il is hyperplane if and only if it is of degree 4(u-
1)(2u-1)/3.

it) 11 is complete if and only if the characteristic number of I1
is 4p-1)u—1)/3.

Let a be a hyperplane and let (g,b,c,d) be a D-quadruple
containing a. Since there are 44 —~ 2 blocks in II non-parallel to
a, we have 4u — 2 choices for b. After selecting b we have 4u
— 4 choices for c, since there are 4u — 4 blocks non-parallel to
both a and b. Hence for a given hyperplane a the unordered
triple (a,b,¢c) can be chosen in (4p — 2) (4p — 4)/3! = 4(u ~
1)(2u—1)/3 ways. Now by Lemma 4 we have only one choice
for d, such that (a,b,c,d) is a D-quadruple. Hence the degree of

ais 4(u — Du—1)73.

Clearly IT is complete if and only if every block of II is a
hyperplane. Thus II is complete if and only if every block of II
appears in 4(u~1)(2u—1)/3 D-quadruples. Since there are 4u
blocks in II and 4 blocks in a D-quadruple, therefore II is
complete if and only if the characteristic number of II is

4p 4(p—12p~1) 3.4) = 4u(p—1D2u~1)/3

Corollary 10

There cannot exist huperplane in a H,(u) with x a multiple of 3.

Theorem 11

If a is a hyperplane in an'Hz(y), u> 1, then the A(Y4u) induced (as in
Lemma 2) on a is isomorphic to the affine design formed by the pointes

and hypernets of AG(n,2), where p = 2"\,
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Proof

It follows, since a is a hyperplane, that in the A,(%4 ) the intersection of
any two non-parallel blocks is contained in a third block. Therefore by

Norman’s theorem proved in [5] the A,('2y) is as asserted in as asserted
(since all its blocks are good).

Corollary 12
If an H,(p) has a hyperplane, then g is a power of 2.
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ON A CHARACTERIZATION OF F,(2) THE REE-
EXTENSION OF THE CHEVALLEY GROU
F,(2)..IV S
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ABSTRACT: In this paper we obtain a result which improves the
result of Husnine [5] and takes us nearer to the characterization of
groups with a noncentral involution whose centralizer is isomorphic to
the centralizer of central involution in the Chevalley Group F,(2).

1. INTRODUCTION

The centre of a Syllow 2-subgroup, S, of the Chevalley Group F,(2) is
the four-group. Following {3], we denote the three involutions of this

centre by X,;, Xp4, Xy, Xps-

According to section 2 of [3], we have S = II S;i =1, ...,24; M = D,
=1IS,, i # 10; Ds = IIS,, i # 5 where, S;, = <x,> is a subgroup of
order 2. The centralizer of x,, in F,(2) is generated by the x;, s, w,, w,
and ws subject to the action of w;, s, on the x; s given in Table-1, the
commutator relations between x; and x;, given in Table-2 and the -
relations w2 = w,2 = wl = (W, wp)* = (W, ws)® = (W, ws)> = 1 as
stated in [3]. In Husnine [5] the following result has been proved:

Theorem D

Let G be a finite group with a noncentral involution y,, such that
C = Cy(y,) is isomorphic to the centralizer of x,, in Fy(2). We identify
C with this centralizer. Then the following hold:
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i) There is an element « in the normalizer of S in G such
that u acts on Z; (S) as the graph automorphism of Fy(2),
permutes x; and x;,, X = X3 X (@) Xy (B) and
X = X% (B) Xy (oz) afB € {01}

ii) There is an element Ng(M), such that w acts upon Z(S)
as wy, in Fy(2).

We refer the reader to [3], for the description of the group F,(2). All
notations are standard and follow [1] and [2]. Throughout the remainder
“of this paper, we shall refer to the Table 1 & 2 of [3], Table-3 and
Table-4 of [4] and Table-5 of [5] by their numbers without referring to

the papers.
2. ACTION OF Ng(S) ON Z, (S)
In this section we prove the following Theorem.

Theorem E

Let G be a finite group with a noncentral involution ¥, such that
C = C4(y)) is isomorphic to the centralizer of x,, in F(2). We identify
C with this centralizer. Then the following hold:

(i) There is an element « in the normalizer of S in G such
that » acts on Z(S) as the graph automorphism of F,(2),
permutes xg and X5, X;" = Xjg Xy () Xy (B) and xpg* =
X7 X1 (B) Xy (@); @ B € Xp3, X° = X5 X (@) X (B) and
Xig' = X; % (B) Xy (@); @ B € {0, 1}.

ii) There is an element w in N; (M), such that w acts upon

Z; (S) as wy, in Fy(2).
1ii) X" € Xy 8y Sy X" € X385 Xy

iv) X&' € Xy Sy Sy X" € X6 Sy S5
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We complete the proof of this theorem in a sequence of lemmata.

Lemma 2.1

Z(S) = 83 84 S6 811 Zs (5)
Z(Ds) = 8.5, 8y Zs (Ds)
Z(M) = S, S5 Si15 Zs (M)

" Proof

This is directly verified by Table 2.

Lemma 2.2
There is an element u in Ng(S) such that u satisfies theorem D, x,* € x;

S S X" € x4 83y Saae

Proof

-

Let u be an element of Ny(S) such that u satisfies theorem D. Then u
normalizes Z,(S) and permutes Z(Ds) and Z(M). So, x3" = x, 2 € Z(S).

If z involves x;3-then x,* = x, x5 2, 2, € 2 ().
Thus, [%,", Xi] = [xs X152, Xa] = X7 Xy X

We apply «' on both sides to obtain [x3, x,’f;l]\ = X3 Xp3Xy,. This implies

that x; is conjugate to x; x,; X3 X,4 Which is conjugate to x; x,, under x,q
in S. This contradicts Table 3. So x;" = x, 2, z;, does not involve x,;. If
x,, appears in z;, then x;* = x, X)4 2,. S0, [xy" Xy3] = [xg X14 23, X3] = X1

This implies [x3, x,";] = x,, which implies x; is conjugate in'S to x; Xx,.
This contradicts Table 3.
If x,, appears in x,", then [x¥, x;5] = x,,. Conjugating both sides by u

we find that x; is conjugate in S to x; x,,, again a contradiction to Table
3. If x; appears in x3", then [x;%, x»] = X,, x5,. Thus conjugating both
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sides by u' we find that x, is conjugate in S to x; x,; x,, which is
conjugate to x, x,, violating Table 3.

Let x;" involve x;5. Then [x;%, x,;] = xy,. This implies x; is conjugate in
S to x; x,,, violating Table 3 again. So far we have proved x;* = x3, 2,
Z € Z; (5) and z does not involve xg, X5, X3, X4 and X;s.

‘Now, if x,4 appears in x;°, [xy%, x;,] = x;, which implies as above that x,
is conjugate to x; x,,. If x; appears x;*, [x;", x;0] = X;5 X;,. Conjugation

by ' yields that x, is conjugate to x, ;s X, = (xale)"‘x. By Table 3

we conclude that x,, and x, can not appear in x;".

If x,¥ involves x4, then [x¥, x;] = Xy, X,, thus conjugation By ' implies |
that x; is conjugate to x; X, X in S, a contradiction to Table 3. '

If x,, appears in x;*, then [x;, X} = x,, which implies x; is conjugate to
X; Xy in S.

If x,, appears in x;%, then [x;%, x,] = X3 X3 Xy, which implies x; is
conjugate to x; Xy X5 X5 X3, () X4 (B8), wWhich is conjugate to x; x; x,, in
S. This contradicts Table 3.

Thus x4 and x,; can not appear in x;".

Let x,, appear in x;". Then x;* = x4 Xy 2, 218 in Sy S5y Sp3 Sy Thus [y,
xs] = x,, which implies x, is conjugate to x; x,, in S. So x,, is not
involved in x;". Let x,, appear in x;. Then [x;%, xs] = Xy x5,. This implies
x; is conjugate to x; x,; X, which is conjugate to x; x,, under x;,. This
- violates Table 3. Thus x,, and x5, do not occur in x;". Thus x;* = x, x,,
(@) Xz (B) X34 (7). S0 [x, 5] = X3 234 (B).

Now conjug:ition by «' yield that x; is conjugate to x; X, X, () which
is conjugate to x; x,, (8) by x,,. Now Table 3 forces, § = 0.
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2
Hence, x;° belongs to x, Sy x,; and x,* belongs to x; S, .x,. Since, i

satisfies theorem D, x,* belongs to x; S,, S». This proves the lemma.

Lemma 2.3

There is an element u in Ny(S) such that u satisfies lemma 2.2, x* € x,,

Proof

Let ube as in lemma 2.2. Now u permutes Z, (M) and Z; (D;). So,
X% = x,, z, z belongs to Z; (Ds) N Z; (S). If x; appears in z, then [x",
Xx] = X Conjugation by u' yields that x, is conjugate in S to x; x,,,
contradicting Table 3. If x, appears in z, then [x, x,] = x,, again
leading to a contradiction to Table 3. Thus x; and x, do not occur in x;".

Let xg* = X3y xi5 (@) xj9 (8) 2. Then [x¢*, x5] = X7 X Xp3 () X4 (B)-

Now conjugating both sides by &' and using Table 2, we find that x,
becomes conjugate to xg X;; (@) X, (). Now Table 3 forces a = 8 = 0.

So x5, x;9 can not appear in xg".

Let x8' = x;; x;; (@) X3 (B) z. Then [x¢", x;] = x;5 X6 (@) X7 (B) X ().
Now conjugation by u”' yield, x, is conjugate in S to x4 Xy, (@) Xy (B).
Now x4 x,, Xp; is conjugate in § under x, x;3 X, X3 t0 X5 X;; which is not
conjugate to x, by Table 3, x4 x5, is conjugate in S to xg x,; and xg x,; is
conjugate to x4 Xy in S. They all violate Table 3. So x;,, x,; can not

appear in x;".

Let x;* = x,, X 2. Then [x*, xg] = X, X5, This implies x, is conjugate
in S to x; x,,. But x, and x, x,, belong to different conjugacy classes in
S by Table 3. So x, can not occur in x". Let x; = x;; x4 () x;5 (B) 2.
Then [x, X3] = x5 X6 (@) X}7 (B) X (o). Now conjugating both sides
by &, we find that x; becomes conjugate in S to X X Xy, (@) Xp3 (B) X34
(c). The last expression is conjugate under x, x; to X5 Xy, (c) X,; (6). But
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in S, x4 xp, is conjugate to x; x,,, Xg Xz iS conjugate to x, X6 and x; X, Xo
is conjugate to x, x,,. Since x;, X4 X5, and x, x;¢ are in distinct conjugacy
classes of S, x,,, x,5 can not occur in x4". If x,; appear in xg", [x", x;] =
x,;. This implies x, is conjugate to x; x,; which is conjugate x, x,, in S.
This contradiction to Table 3 shows that x,; does not occur in x,".

Thus we have x¢' = x;; xj; (@) X5 (B) X (y) and x,," = xé Xy () X3 (20)
Xy4 (B) x54 (€). Writing u for u x,, (B+e€), We get x,,° = x5 x5 (7) X5 (@).

Thus xl": = X x,,(e)x,,(Y) . This forces x5 = x;; xp7 (@) x5 (y) and

X' = X Xy () X5 (c0). This completes the proof of lemma 2.3 and there
by theorem E is established. :
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ABSTRACT: In this paper we study the action of the group H =

<ty =y = [> on Q'( n} and establish the existence of an

alternating sequence of totally positive and totally negative numbers of

Q'(\/;l_) that comes to an end when an ambiguous number shows

up.

1.  INTRODUCTION
The Modular group G has the presentation G = <Xx,y:x(z) = —1/z,
y@) = 71, pui = xyx. Then t(z) = —1/(z+1)and x? = y* =

=1
The group H = <t,y> is thus a subgroup of G. Various properties

of Q'(\/r_z) and Modular group action on it have been discussed in

Mushtaq [4], Aslam, Husnine and Majeed [1] & [2], and Imrana,
Husnine and Majeed [3). Here we study the action of H

on Q*(/n) = {a+y/nYec : a,c€z ; b = (@*-n)jc isarational integer, and

(a,b,c) = 1}. We recollect that & €Q*(y/n) is called ambiguous if a and -
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its conjugate have different signs. If they are both positive we call them
totally positive and they are both negative they are called totally

negative.

For each «eQx(y/n) Ha), £(e) and F(a) = o form the vertices of a

triangle. If « is a totally positive number, what can we say about #(«)
and (c). The following theorem gives an answer to this question. This
result shows that under the transformation ¢ we have a triangle with one
vertex totally positive and the other two vertices totally negative.

In the following sections we shall be using lemma 2.1, lemma 2.2 and
lemma 2.3 of [3] without mentioning the paper. :

2. THE ACTION OF H

We prove the following theorems on the action of H on Q+(y/n)

Theorem 2.1

If « =2 +‘/'_l is a totally positive number then (o) and £(c) are both
c ,

totally negative.
Proof

Let o = fi—‘/; be a totally positive number.
c

-1 _ (ca-9+fn _ &tV
= = (say)
+1 2a+b+c ¢

tHe) =
o

2
al_n
=¢c =2a+b+c

. Thus we have, a;, = -a-c,b, =
c
1
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b)+ﬁ _ .az"'\/;

b <,

and £(a) = {22 (say)

2—

where a, = -a-b,b, = —f2a+b+c,c2 = b,

¢

. a+yn . . ‘
Since, a = ———‘/: is a totally positive number so by lemma 2.1. we
c

have.
either ¢>0,a>0, b>0 nH
or c<0,a<0,b<0 2)
In case (1), a>0, ¢>0 implies a+¢c>0 or —a—c<0
a>0, b>0 implies a+b>0 or —a—b<0
So we have, ¢ = 2a+rb+c>0, a = —a—-c<0, b =¢>0
¢ =b>0,2, = —a—b<0, b, = 2a+b+c>0
By lemma 2.2 f(cr) and £ (o) are totally negative. |
In case (2), o = 2a+b+c<Q, a, = —a—c> 0,b, =<0
¢, =b<0,a, = —a—b>0, b, = 2a+b+c<0
Again by lemma 2.2. Ha) and () are totally negative.
The theorem given below states the action of transformation ¢ defined

by #2) = _:ll and of # on the totally negative element of Q+(y/n)
l+
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Theorem 2.2

" Let @ = -a—-f—‘@ be a totally negative number, then one of the following
c

conditions hold.

(1) Ifc>0, a<0, b>0 and #(c) is totally negative then |a| > b, '
|a] <c and A(a) is totally positive. However, if #(a) is
totally positive then |a| <b, |a]>c and () is totally

negative.
(2) If c<0,a>0, b<0 and #(c) is totally negative thena> |b|,

a<|c| and (a) is totally positive. However, if #(a) is
totally positive then a< |b|, a>|c| and F(e) is totally

negative.
Proof
Since a = 2 ;‘/'_' is a totally negaﬁve number, therefore by lemma 2.2,
we have;
either ¢>0, a<0, b>0 (1)
or c<0,a>0, b<0 2)
Now  #a) = —L = (cazo)+yn @ *yn (say)

a+l 2a +b+c [

and (o) = (—a—§)+ﬁ B LML (say)
) C2

Thus 4@, = -a-c,c, = 2a+b+c,b, =



. Action of the Group H=<t,y:t’=y*=1> on the Quadratic Field 51

2
~a, = -a-b,c, = b,b, = aZ. 2a+b+c,
&

Suppose () is totally negative, then by lemma 2.2, we have
either ¢,>0, 2,<0, b,>0 (A)
Cor 6<0,8>0,5<0 (B)

Since, #(«) is totally negative, by theorem 2.1. Aa) is totally positive,
'So by lemma 2.1 we have

either ¢,> O, a,>0,5,>0 - ©
or <0, a,<0, b,<0 - (D)
Now suppose t(a) is totally positive then by lemma 2.1, we have
either ¢,>0, a; >0, b,>0 (P)
or <0, a,<0, b,<0 Q)

Since r(c) is totally positive, so by theorem 2.1, X(«) is totally negatlve
- and by lemma 2.2. we have

either ¢,>0, a,<0, b,>0 - (R)
or  <0,a4>0,5,<0 _ S)
€)) Let ¢>0, a<0, b>0

Then in this case (B), (D), (Q) and (S) cannot hold, because in these
cases b, = ¢<0, ¢, = b<0 but we have taken »>0 and ¢>0. So we

are left with (A), (C), (P) and (R), that is

= 2a+b+c>0,a, = —a—c<0,b, = c>0 (A)
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C, = b>0,»a2 = —-a—-b>0,b, = b+2a+c>0 (O
Now ——a—c<b and —a—b>0 implies that |a| >» la| <c.
And ¢ = 2atbte>0, g, = —a—c>0,b, = ¢c>0 (P)

G = b>.0, a, = —a—-b<0, b, = b+2a+c>0 (R)

—a—b<0and —a—c>0 implies that |a| <b,|a| >c.
(2)  Letc<0,a>0,5<0

Then in this case (A), (C), (P) and (R) cannot hold, because in these
cases b, = ¢>0, ¢, = b>0 but we have taken »<0 and c<0. So we

left with (B), (D), (Q) and (S)
That is ¢, = 2a+b+c<Q, a =—-a—c>0,b, =c<0 (B)
¢, =b<0,a, = —a-b<0, b, = 2a+b+c<0, (D)
~a—b<0and —a—c>0 implies thaté> Ib', a<|c| since c<0, b<0
And ¢ = 2a+b+c<0,a, = —a—c<0, b, = c<0 Q)
¢ =b<0,a, = —a-b>0,b, = 2a+b+c<0, (85)
~a—b>0 and —a—c<0 implies that a< |b|, a> |c|.

. n . .
Now we show that if a = a_+__\/___ is an ambiguous number then under
c

the transformation ¢ we have a triangle with one vertex totally negative
and the other two vertices ambiguous.
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Theorem 2.3

Let a = a+yn be an ambiguous number. Then one of #(«) and ()

c
is ambiguous and the other is totally negative.

Proof

Let a = E—@ be an ambiguous number. Then by lemma 2.3 we have

c
the following two cases

a) - c>0,b<0
)] c<0, b>0
-1 _ (-a-+yn _ @tm

Now Ha) = sa
@ a+l 2a+b+c I (s2y)
e a,+yn
and 2(a) = (cab)rin _ & /n (say)
. b C,
2
al -n
Thus a4, = -a-c, b, = = ¢,¢, = 2a+b+c
. C1 ;
) _
az -n
a, = -a-b, b, = = 2a+b+c,c, = b
. C2
. b . az-n 2
In case (1), ¢>0, b<0 imply that —<0 i.e. 3 <0 ora*—n<0.
: s . :

So a can be both positive or negative.
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First we take a<0
<0, <0 imply that a+5<0, so ~a—b>0
a<0, ¢>0 imply tl';at either a+¢c<0ora+c>0
If a+¢<0, then a+b<0, forces that
(a+b)+(a+c) = 2a+b+c<0
We havé
| C = 2a+b+c<0,a, = —a—-c>0,b, = ¢>0
¢, = b<0,a, = —a-b>0,b, = 2a+b+c<Q,

By lemma 2.3 and by lemma 2.2. t(c) is ambiguous and t? () is totally
negative.

If a+c¢>0, then a+b<0 implies that either (a+b)+(a+c) =
2a+b+c<0or2a+b+c>0 '

Let 2a+b+c<0
Then ¢ = 2a+b+c<0,a, = —a—c<0,b, = c>0
6 =b<0,a, = —a-b>0, b, = 2a+b+c<0

" Again by lemma 2.3 and lemma 2.2. t(cr) is ambiguous and t(c) is
totally negative. -

If 2a+b+¢>0
Then ¢, = 2a+b+c>0,a, = —a-¢<0, b, = c>0
¢ = b<0,a, = —a—-b>0, b, = 2a+b+c>0

Imply that t(d) is totally negative and t¥(«r) is ambiguous.
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Now we take a>0

a>0, ¢>0 imply that a+c>0 or —a—c<0

a>_0, b<0 imply that either a+b>0 or a+b<0
If a+b.>0, then a+c¢ >0 forces that (a+b)+(a+c¢) '=_2a+b+c>0
So ¢ =2a+b+c>0,a, = —a_—c<0, b = é>0 .

&2 — <0, a, = —~a—b<0, b, = 2a+b+c>0,

Thus t(e) is totally negative and t*(a) ambiguous. |

If a+b<0, then a+c>0 forces that either (a+b)+(a+c)
‘ 2a+b+c<0 or 2a+b+c>0

' Let 2a+b+c<0

| Then ¢, = 2a+b+c<0, a, = —a—c<0,b, = ¢c>0
¢ =b<0,a;, = ~a-b>0, b, = 2a+b+c<0

So t(cx) is ambiguous and t(e) is totally negative. |

If 2a+b+c>0

Then ¢, = 2a+b+c¢>0,a, = ~a-c<0, b, = ¢>0

Imply that t(c) is totally negative and t*(cr) is ambiguous.

2
a’-n
—<0 ora*-n<0.

In case (2), c<0, b>0 imply that 2<0 or
c ¢
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So a can be both positive or negativt.
First we take a<0
a<0, ¢<0 imply that a+c<0or —a—c>0
a<0, b>0 imply that either a+b<0 or a+b>0
If a+b<0 then a+c<0 forces that (a+b)+(a+c¢) = 2a+b+c<0
So ¢ =2a+b+c<0,a, = —a—c>0, b; = c<0
¢ =5b>0,a, = —a—-5b>0, b, = 2a+b+c<0
Thus t(e) is totally negative and t(cr) ambiguous.

Now if a+b<0, then a+c¢<0 forces that either (a+b)+(a+c) =
2a+b+c<0or2a+b+c>0.

Let 2a+b+¢<0

Then ¢ = 2a+b+c<‘6, a = —a—c>0, b, = c<0
¢, =b>0,a, = —a-b<0, b, = 2a+b+c<0

Imply that t(c) is totally negative and t*(«) is ambiguous.

If 2a+b+c>0

Then ¢, = 2a+b+c>0,a, = —a-c>0, b, = c<0
¢ =b<0,a, = —a-b<0, b, = 2a+b+c>0

Hence by lemma 2.3 and lemma 2.2 t}«) is ambiguous and t¥(a) is
totally negative. ’

Now we take a>0
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a>0, b>0 imply that a+5>0 or —a-b<0
a>0, ¢<0 imply that either a+¢>0 or a+¢c<0

If a+¢>0 then a+b>0 forces that (a+b)+(a+c) 2a+b+c>0

So we have
= ia+b+c>0, a = —a—c<0, b, = c<0
¢ =b>0,a, = ~a—b<0, b, = 2a+b+c>0
Thus t(c) is ambiguous and t¥(c) is totally negative.

If a+¢<0 then a+b>0 forces that (a+b)+(a+c¢) = 2a+b+¢c<0 or
2a+b+c>0.

Let 2a+b+c<0

Then ¢ =2a+b+c<0,a, = —a—c>0, b, = c<0
¢ =b>0,a, = -a-b<0, b, = 2a+b+c<0

Thus t(a) is totally negative and t¥() is ambiguous.

If we take 2a+b+c>0

Then ¢, = 2a+b+¢>0,a, = —a~c>0, b =<0
¢ =b>0,a, = "—-a-b<0,b, = 2a+b+c>0

- Hence by lemma 2.3 and lemma 2.2, t(c) is ambiguous and t(c) is
totally negative.

3. EXISTENCE OF AN ALTERNATIVE SEQUENCE

In this section we prove the existence of an alternate sequence of totally
positive and totally negative numbers. We start with a definition.
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Definition

For real quadratic irrational number « eQ+(/n) we define norm of « as

l«] = |a|, where « = %@

Theorem 3.1

Let « = a;‘/; be a totally negative number.
Then @ Iy @l > el ly@l > lof

(i) ta) || < laf, if t(x) is totally positive and
)] < ], if t*(c) is totally positive

Proof

Let a = atyn be a totally negative number.
c .;

Then by lemma 2.2, we have
either c>0,a<0, b>0

or c<0, a>0, b<0

Let us take ¢>0, a<0, b>0

i) Since « is totally negative so, by lemma 3.1, y(a), y* {«) both
are totally positive.

(carb)+/n _ GtV
b

G

Now y(a) = (say)
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(-a+c)+yn _ G%*Vn

2 -
() b 2are :, (say)
Thus we have, '
-n
a, = -a+bb, = = b-2a+c,e; = b

G

2
ay-n .
a, = -a+¢,b, = = ¢,6, = b-2a+c.
123

(-a-)+yn _ &*Vn Say)

And t(e) =
b+2a+c G
-q- a,+
P = CaBR 2ol (o
b A
' a-n
We have a, = -a-c,by = 3 = ¢,¢, = b+2a+c
G
ai-n
a, = ~a-bb, = —— = b+2a+c,c, = b
C4

b, = b(b—2a+c) = b* — 2ab+bc>bc . a<0

by, = c(b—-2a+c) = bc—2ac+c’>bc a<0
Thus be,>be, byey>be ‘

at-n>a*—n, azz—;n>az—n

at > ad,a? > a
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Thus  [a,|>[a| and |a,| > |a|

Iy@§>lal and |y* @} > ||

(ii) Since a = a+yn is totally negative So, by theorem 3.1
c :

either t(e) is totally positive and |a| <b, |a|>c¢
or t’(«) is totally positive and [a] >b, |a]| <c

If t(a) is totally positive then |a| > ¢ implies —a>c since a<0 and
—a>c imply that —a>0, —a>cor —2a>c.

So —2ac>c, ~2ac—c*>0 or 2ac+c2<0
We have by, = c(b+2ﬁ+é) = bc+2ac+*<be, bye;<bc
al—n < @®—nor |a;| <|a|

So that [t@)] < [«

Again, if t%(c) is totally positive then |a| >b imply —a>b since a<0,
now a<0 and —a>b implies that ~a>0, —a>b, s0 — —2a>bor —2ab

—b2>0 2ab+b*<0

Now byc, = b(b+2a+c) = b+2ab+bc<hc
b,c,<bc |
alt—n<a*—n
la,| <|a|

Thus €@ ] < [«
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Theorem 3.2

+/n "
Let o = g——‘@ be a totally positive number, then
c

@ el > fel, 1f@f > [}
i)  ly@| < ll«l, if y(a) is totally negative.
Iy(@] < ll«l, if yXa) is totally negative.

Proof:

Let « = & +Vn be a totally positive number. Then by lemma 2.1, we
. c
have

either ¢>0,a>0,b>0

or ¢<0, a<0, b<0
. Let us take ¢>0, a>0, >0

@) Since a = —a—iﬁ is a totally positive number, so by Theorem
c

3.1 t(e) and t¥(e) are both totally negative.

bic; = c(b+2a+c) = bec+2ac+c*>be, because ¢>0, a>0,
b>0

b, = b(b+2a+c) = b*+2ab+bc>be
We have byc;>bc and bc,> be
a? -n>a*~n and a}l —n>a* -n

las|>Ja]  and  |a]>]a]
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le@l>lal and el > el
(i) Since a = ii’_z is a totally positive number, So by theorem
3.3[3].

Either "y(a) is totally negative and a> b, a<c

Or y¥o)is totally negative and a<b, a>c

If y(«) is totally negative then a>banda>0 imply that 2a >b, 2ab >P,
s0 2ab-b*>0, b* —2ab<0

b, = b(b—-2a+c) =.p* ~2ab+bc< bc, because b*~2ab<0

Thus b,¢; <bc.
a’-n < @-n, So, |a| <|a| or |y@] < |«

Again, if y*(a) is totally negative then a>c, and a>0 implies that

2a>c, 2ac> 3.

So, 2ac~¢*>0, F—2ac<0
Thus by, = c(b—2a+¢) = be—2ac+E< be, because —2ac <0,
b,c,<be | )
) —n<a —n, So, |a,| <|a]
Hence ||y¥()] <[]
Theorem-3.3
Let a = 5—%@ be a totally negative real quadratic irrational number.

Then there exists an alternate sequence a = of, ay, @5 ....... oy of
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~ totally negative and totally positive numbers where «, is an ambiguous
number in the coset diagram for the orbit o®. :

. Proof

CLet « = -a-ll/—; be a totally negative number. Then by lemma 2.2; we
c

have

either c>0,a<0,5>0
or ¢c<0,a>0, b<0

Let us take ¢>0, a<0, b>0
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a+yn is a totally negative number, so by lemma 3.1 y(«)
Cc .
and y*(«) are both totally positive and by Theorem 3.1 (i) {

Since « =

Iy@l-> |af and [y* @] > || | (A)

Also, since y(a) and y*() are totally positive, therefore by Theorem 2.1.
ty(a), ty(a), ty* (), t*y*(e) are totally negative and by Theorem 3.2 (i)

ly@l > ly@l. 1€ y@] > |yl
and (B)
Iy > Iy, 18] > Iyl
Combine (A) and (B) |
Ity > ly@] > Jel
Iey@ | > Iyl > J«|
lty*e | > §y*el > fel
12 Y@ > y@]> ||
If we take [a| = [a], [y@)] = [al, [ty @] = |a]
Thus we have |a;| > |a,| > |a| in each case. so if wé continue this

process then it is impossible to obtain an ambiguous number, because a
become maximum or minimum. On the other had as o is totally

negative, So by theorem 2.2
either t(ar) is totally positive.

or t? (@) is totally positive.
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Let t(c) be totally positive, then by Theorem 3.1 (i)

Il < faf | ©)
Since t(a) is totally poéitive, So by theorem 3.3.

either yt(e) is totally negative,

or yt(a) is totally negative.
and be Theorem 3.2 (ii)

Iyt @] < Jee]

Iyt < [t (D)
Combine (C) and (D)

@l < @l < ol

Iytel < lt@l < e
Similarly, if t%) is totally positive, then

Iye@| < [é@] < |le]

Iyl < ¢ @ I<l |
Ifwe take |af = |a], [t @] = |a]. |t@] = |a,]
Then |a,] <|]a,] <|a| in each case

o |a| < flai] < ol
So, we have.an alternate sequence a, (totally negative) «, (totally
positive) and a, (totally negative). Now if we start from the vertex o, we

get the totally positive vertex o; and so, if we continue in this way we
have an alternate sequence. oy, o, a,, a3 —~-— of totally negative and
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.totally positive numbers, such that [af > ley || > [er] > ....... and
leols el Jeal -....... is a decreasing sequence of positive integers

which must terminate. After a finite number of steps we have a number
«,, such that

e, l<(/m) . Where a, = i'lé@uamll = la|<yn

Soa® —n<0or (d+y/n){d-y/n)<0

Hence 4+yn and é+yn are of opposite sings and so, « is an

ambiguous number.
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ABSTRACT: In this paper, the main purpose is to define and to
investigate the sequence space C(s,p) and to determine the matrices of
classes (C(s,p),f.) and (C(s,p),c) where £, and c are respectively the
space of bounded and convergent complex sequences.

Key Words and Phrases: Kothe-Toeplitz dual, C'(s,p), Matrix
transformation. -

1. INTRODUCTION

Let Vand Wbe any two subsets of the space of all sequences of complex
numbers and let A = (a,,) be an infinite matrix of complex numbers. We
say that the matrix A defines a matrix transformations from Vinto W and
denote it by A € (V, W) if for every sequence x = (x,) € V the sequence

A(x) = (A,(x)) is in W, where

A =X a, %k
, k=1

The main purpose is to define and to investigate the sequence space
C(s,p) and to determine the matrices of classes (C(s,p),f,) and
(C(s,p),c), where £, and c are respectively the spaces of bounded and
convergent complex sequences and for p = (p,) with inf p,> 0, the space

C(s,p) is defined by

Csp) = {x = (x): z 272,k |x,|f <=, 520 )

r=0
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where I, denotes a sum over the ranges 2'<k < 2"+

Obviously, the sequence spacé

Ces(p) = {x = (x): £ 27Z x,[fr< = ),

where inf p,> 0, which has been investigated by K.P. Lim ([3],{4]) is a
special case of C(s,p) which corresponds to s = 0. And C(s,p) 2

Ces(p).

Throughout the paper the following well known inequality (See [1]) will
be used frequently.

For any C>0 and any two complex numbers a, b:
labl < C(lalsC? + |b] (1)
where p>1 and p~'4+¢~' ='1.

To begin with we can show that the space C(s,p) is para-normed by

M
gx) = [ T 272,k x, ;)f"] @

if H = sup p,<o and M = max(1,H). Clear g(6) = 0 and g(x) =
g(—x), where 6=(0,0...... ). Take any x, y € C(s,p). Since p,<M and
M=1, using Minkowski’s inequality we obtain that g is subaddivite.
Finally we have to check the continuity of scalar multiplication. For any

complex 6, we have

M
g(Ax) = (2 (2”Er k™ ,*kxk , y,’)

r=o

< sup, |A[° M o)



| The Sequence Space C(s,p) and Related Matrix - 69

Now let A0 for any fixed x with g(x) #0. Since

0272 k™ |x <o
S5 K[ 5 |)
there exists an integer m,> 1, for [\]| <1 and >0, such that

ZR27Z k| Ax, | ['<€ 3

m( K[ Ax | f 3
Taking |A| sufficiently small such that |[A["<eg/g(x) for
r= 0,1,....,mo—¥1, we then have

m,~1

T 275,k | x| Vr<e @)

r=o

(3) and (4) together implies that g(Ax)—~0 as A=0.

It is quite routine to show that (C(s,p),d) is a metric space with the
metric d(x,y) = g(x—y) provided that x, y € C(s,p), where g is defined
by (2). And using a similar method to that in [2] one can show that
C(s,p) is complete under the metric mentioned above.

2. 8 AND CONTINUOUS DUALS

If (X, g) is paranormed space, with paranorm g, then we denote by X" the
continuous dual of X. If £ is a set of complex sequences x = (x,) then E?
will denote generalized Kothe-Toeplitz dual of E,

E? = {a: ¥ ax, converges, forall x € E}.

Theorem 1

If1 <p,< supp,<o and p,"'+g,”' =1, r=0,1,2,..... then
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CPsp) ={a-= (@) : }3(2’max,k" [ ] )q’N“”< w, $20 for some)

integer N> 1}

" Proof

Let 1<p, < supp,<o and p,”'+q,”! = 1, forr = 0,1,2,.... Then take

pep) = {a: 5(2’max,k’ |a, | )" N <, 520 for some integer .

r=o

N>1}.

We now want to show that C%(s,p) = u(s,q). Let x € C(s,p) a € u(s,q).
Therefore using inequality (1), we get

z lakxkl = }.‘.E,Iakxk|
k=1 r=o

= :o}.‘,,k‘ | a [k | x|

r

< 3 2'max k* | @, |27 B,k | x|

r=o

sN(z ('max k* [a, | J*N "+ 2272k [xk‘, f
r=o r=o .
So L} ax,| is convergent, which implies that T a.x, is convergent i.e.
a € C%(s,p). In other words C%(s,p) 2 u(s,q). Conversely, let us suppose
that £ a,x, is convergent and x € C(s,p), but a & u(s,q). Then we write

that

z (2'max k| a, )"N™" = = for each s20
r=0 :
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and for every N> 1. So we can find a sequence 0 = n(0) < n(l) < n(2)
<.... such that for v = 0,1,2,.....
n{v+1) _
M, = T (2maxk*|a,|)"(v+2)**>1

r=n(v)

Now define a sequence x € (x,) as follows: for each v,

Ty = 27 (M (rf [ aye |) q; N-"y’sgn aypM, )

for n(v)<r<n(v+1)—1, and x, = C for k# Mr) where M) is such that
Ny ay,, = max, kK |a,|, the maximum is taken for k in [27, 2"*).

Therefore.

n(v+1)-1 4
frvs) ™

)] (2’N(r)" | Ay

. r=n(v)

n(v+1)-1
= M;l(v+2)-1 ) (ZrN(r)s , aN(’) ,)4,(v+2)~q,lp'

r=n(v)

= (2! .

It follows that % aq,x, = % (v+2)' diverges. Moreover

k=1 v=0
n{v+1)-1 .

3 20k r

ren) ( | % |

(v+1)-1 | -
. (ZNCY | ayg, | P )™ M)

r=n(v)

n{v+1)-~1 _ ‘
S(V+2)-2M;l b (ZrN(r)s I aN(r) I)qy(v+2) 9./p,

r=n(v)
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72
= (v+2)?

Hence,

% (2"2,k" | %, l)p's T (v+2)2<w i.e. x € C(s,p). And this
-0

r v=0

contradicts our assumption. So a € rp(s,q) i.e. u(s,q)=2C%Gs,p). Then
combining these two results we get

Cs,p) = us.q)

Let us now determine the continuous dual of C(s,p) by the following
theorem.

~ Theorem 2

Let 1<p,< sup, p,<oo. Then C'(s,p) is isomorphic to u(s,g) which is
defined by (5).

Proof

It is easy to check that each x € C((s,p) can be written as x=X x,e,
s k=1

where ¢, = (0,0,....1,0,0,.....) where 1 appears' at k-th place. Then for
any f € C(s,p) :

x) = I x,fle,) = X x,a,
) k-lb’(k) ket £ F

where fle) = a,.
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By theorem 1, the convergence of X ag.x, for every x in C(s,p)
k=1

implies that a € u(s,g).
If x € C(s,p) and if we take a € u(s,q) taken by Theorem 1 \

o

Z a,x, converges and clearly defines a linear functional on ((s,p).
k=1
Using the same kind of argument to that in Theorem 1, it is easy to
check.that :

z | a,x, | N( bX (2’maxrk’ | a, I)q’Nw’ + 1} g(x)

k=1 r=0

whenever g(x) < 1.

Hence I a,x, define anelement of C'(s,p). Obviously, the map
k=1

T:C'(s,p) = u(s,q) given by T(f) = (ay, a,,.....) is linear and bijective.

Hence C'(s,p) is isomorphic to u(s,g).

3. MATRIX TRANSFORMATIONS

Theorem 3

Let 1<p < sup,p,<o.Thend € (C(s,p),£,,) iff there exists an integer
N>1 such that U(N) < oo, where '

U(N) = sup, EA(Z’A,(n,s))q'N'q%w

T r=o

and p,”'+¢,”' =1, r =0,1,2,....., where

 A(n,s) = max, ¥ |a,,|, where for each n the maximum is taken for k
m [’2r, 2r+l]‘
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Proof

Sufficiency. By inequality (1), we have

k)fl lan,,‘xk | = EO)J, ' G, 1 % ,
= Ezrk‘la"’klk“"xkl 7

<N g:o(z'A,(n,s))"' N+ Eo(z"'sz" | %) < e

r=

Therefore A € (C(s,p),{..).

Necessity. Suppose that A € (((s,p),f ) but that

sup, B (2'4,(ns)f" N = = for every integer N> 1.
r=0

Then kE) an’;xk convergences for every n and for every x € Cis,p)

whence (a,),k = 1,2,..... € C%Gs,p) for every n.

By Theorem 1, it follows that each A, defined by 4,(x) = X q, X 18
k=1

an element of C'(s,p). Since C(s,p) is complete and since sup,
|4,(x)| <o on C(s,p), by the uniform boundedness principle there
exists a number L independent of n and x and a number <1 such that

4] sL

for every x € 5(6,6) and every >n, where 5(0,8) is the closed sphere in
C(s,p) with centre the origin and radius 6. Now choose an integer 0> 1

such that Q8% >L
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sup, I (2°4,(ns))" Q" = =,
. 0

r=
there exists an integer m,> 1 such that
m

R = ZAm) Q"> 1. ™

o
=0

~

~ Define a sequence x = (x,) as follows:
x, =0if k22™""

and  xy, = 2" §MiP: , N(ry a, ,N(,)' -1 (QN(r)’sgn a, ,N(r))O'q'jp v

x, = 0 (k= N(r), for 0<r<m,) where M(r) is the smallest integer such
that N(r¥* | @, x| = max, & |a,,|. Then one can easily show that
g(x) <4 but |A,,(x) | " > L, which contradicts to (6). This completes the
proof of the Theorem.

Theorem 4

Let 1<p, < sup, p,<o. Then A4 € '(C(s,p),c) iff

4.1) a,, > x, (n>o, k fixed)

(4.2) there exists an inieger N>1 such that UN)< oo,
where U(N) is defined as in Theorem 3.

Proof

Suppose A € (C(s,p),c). Then A4,(x) exists for each n=>1 and lim, 4,(x)
exists, for every x € C(s,p). Therefore, by a similar argument to that in
Theorem 3, we have condition (4.2). The condition (4.1) is obtained by
taking x = ¢, € C(s,p), where ¢, = (0,0,...,0,1,0,0,...) where 1 appears

at k-th place.
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For the sufficiency the condition of the Theorem imply that
T (2'max k° | =, |)" N < UN) < = - (8)
r=0 : ’

convergent for each x € ((s,p). Moreover, for each x € C(s,p), there
exists an integer m,= 1, such that

gn( = T (2T k¥ |5 | <1

r

If g, (x) *+ O thenby then proof of Theorem 2 and by inequality (1) we

have

: Ian,r“kll“klsN( 5 2B,(n9" N""+1) AN ©)

t

[

k=

where B (n,5) = max, k¥ |a,, — o«,].

Clearly (9) holds if g, (x) = 0. Since

% (2*3,(n,s))"' N <2UN) < » |

r=m,

from (9), it follows immediately that limZ ¢, ,x, Z ukik. This shows

R~

that A € (C(s,p),c) which proves the Theorem.
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ABSTRACT: For a Ring R which is embedded in a ring D
relationships of D and D/R with R-modules are discussed. Evolution
of the notions of D-torsion and D-cotorsion modules over general rings
from the notions of torsion and cotorsion modules over commutative
rings is reviewed and finally D-torsion and D-cotorsion modules are
generalized as D-torsion modules and D-cotorsion modules. Several
existing results for D-torsion and D-cotorsion modules are carried over -

to D-torsion modules and D-cotorsion modules.

1. TERMINOLOGY AND NOTATION

We will consider all rings to be associative with nonzero identity I and
. all modules unitary. If R is a ring then we shall suppose that T is a

subring if a ring D. Ab R-mod and mod-R will mean the category of
abelian groups, category of left R-modules and category of right R-
modules respectively. (A.B) (respectively) [A.B]) will denote Hom,(A.B)
respectively Homg(A.B) where A.B € Ab (respectively) A.B € R-mod
or mod-R). We will write Hom, ®, Ext. Tor, Ext" and Tor, for Homg,
®g, Extg!, Tor,®, Extg" and Tor,® respectively. Unless stated otherwise
all modules will be considered to be in R-mod. R™ will mean R-{O} and
K = D/R. We always have the exact sequence in R-mod (respectively)

in mod-R).

R-+-D-=K

where — and - represent the monomorphism arrow and the epimorphism
" arrow respectively.
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Integral domain will mean a commutative ring with no nonzero zero
division. An entire ring R (i.e. r,s € R, rs = 0 if and only ifr = Q or
s = () is said to be a left Ore domain if Rr " Rs # Oforallr,s € R".

2. INTRODUCTION

Much variation exists in literature regarding the definition of torsion,.
torsion free and divisible modules however, we adopt these concepts as
usual that is x € A in R-mod is said to be a torsion (respectively torsion

free respectively divisible) element if rx = 0 for some r € R’

(respectively rx#0 for any r € R, respectively there exists, for every
r € R" an element y € A such that x = ry). A is said to be a torsion
(respectively torsion free, respectively divisible) module if each element
of A is torsion (respectively if every nonzero element of A is torsion
free, respectively if every element of A is divisible.

Relationships between D the embedding ring of R and modules in R-mod
or mod-R exhibit interesting properties. These relationships characterize

various classes of modules as well.

If I is an integral domain and I the classical field of quotients of I. Then
a modules A is torsion if and only if [A,I] if and only if I® A = 0. In
the general case the assertion "D ® A = 0 if and only if [A,D] = 0"
is not necessarily true. However, in Ansari [2] it is proved that in case
of a left ore domain, replacing D by the minimal left skew filed Q of R
the assertion holds as good as in the commutative case. if R is a ring
with R its maximal left quotient ring then Diana Yun-Dee Wie [15] has

defined a modules A to be torsion modules if [4,R]=0 and a modules
B to be a bad modules if R®B=0.

If R is any ring and Y € 'mod-R then Y is said to be pseudoflat if and
only if for any L € R-mod satisfying y ® L0 and any monomorphism
o;L—+N, 1,®a:y®L -» y®N is nonzero. If Y € mod-R is pseudoflat
then a modules M is said to be torsion in the sense of Wakamatsu [14]

ifY®M=0.
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Considering R to be any ring and d any other ring in which R can be
embedded we define a modules A to be D torsion (respectively D-
~ reduced, respectively D-cotorsion if D&A = 0 (respectively [D;A] =
0, respcctively ExtY(D,A) = 0 for n = 0,1 Ansari [2]. D-torsion

modules generalize the concept of a torsion modules and a bad modules
whereas, D-reduced and D-cotorsion modules generalize similar concepts
appearing in Matlis [10] and Henderson and Orzech [9] for the
commutative case. For the noncommutative case reduced modules over
left Ore domains are treated in Qureshi [12] and Ansari [6] and over

general rings in Ansari [5].

Relationships of K = D/R with modules in R-mod.or mod-R are also of
considerable importance. A modules A is said to be D-injective modules
if Ext(K,A) = O Ansari [1]. This is a generalization of a similar concept
appearing in Henderson and Orzech [9] for commutative rings.

If I is an integral domain then [A, I) = 0 where A is a torsion modules
and since I is injective, also we have Ext [A,I] = 0. Thus the concept of
a cotorsion modules is as sort of dual to concept of a torsion modules.

In the noncommutative case if R is a left Ore domain then this sort of
duality remains restored Ansari [2,6]. D-torsion modules and D-cotorsion
modules are discussed in detail in Ansari [2,5]. We will generalize the
concepts of D-torsion and D-cotorsion modules to D"torsion modules
and D"-cotorsion modules and carry over certain results appearing in
Ansari [2,5] regarding D-torsion and D-cotorsion modules to D-torsion

modules and D-cotorsion modules.

3. RELATIONSHIPS OF D AND K WITH R-MODULES

In this section we provide some useful results concerning torsion, torsion
free divisible modules for the noncommutative case. Relationships of D

and K with R-modules are also investigated.

Proofs of the following results are similar to the parallel results for
integral domain appearing in Cartain and Eilenberg [7, Chapter VII].
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Proposition 3.1

e} [A,C] = O whenever A and C in R-mod are torsion and torsion
free respectively.

2) B®A = 0 for all torsion (respectively divisible) modules A in
R-mod and divisible (respectively torsion modules B in mod-R.

Obviously we have

Corollary 3.2

If D is divisible in mod-R, then for a torsion modules AD®A = 0.

For a modules A the map A\:A - A defined by \(x) = rx for all r €
R is said to be a left multiplication by r. Obviously A, € (A,A). Thus

Propositibn 3.3

1) A modules A is torsion free if any only if A, is injection for all
r € R,

) A modules A is divisible if and only if A, is surjection for all r
€ R . _

‘Corollary 3.4

D is torsion free and divisible if and only if each left rriultiplication of D
is an abelian group automorphism. :

Proposition 3.5
For any other ring S, A € S-mod-R, B € S-mod we have:

1) A divisible in mod-R implies that Homg(A,B) is torsion
free. ' e
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2) If C € S-mod, u:B — C anr epimorphism, A torsion free
and divisible in 'mod-R then Homy(A,B) and
Homg(A.C)/1 mu™ are torsion free and divisible where
p = [1,,4): Homy(A,B) - Homg(A,C) is defined by (a)

w'(0) = ((@)f)u where a € A.
Proof
)] Same as Cartan and Eilenberg [7, Chapter VII, Corollary 1.5].

) If A is also torsion free in mod-R then for s € S,a€ Aandr
€ R’ we have ‘ ‘ '

'sa = (sa)'r (sa, (sa)’ € A in mod-R

and also

s(a'r) (a,a’ € A in mod-R)

sa =
= (sa')r

i.e. (sa)’ - (sa’)r = O which implies that (sa)’ - (sa’) = 0, since A in
mod-R is torsion free so that (sa)’ = sa’.

Furthermore, for a,, a, € A we have

(a+a) = (a +~a,_)’r (a, +a,, (a,+3,)’' € A inmod-R)
and also |
(a;+a,) = a,; r+a,'’r | (a,, a,, 3, a3, € in mod-R)
= (a,’+3a,)r

i.e. (a,+a)'r - (2, +a,)r = 0 which implies that ((a,+3,)’ -
(a,’+a,"))r = 0 so that (a,+2a,)’ - (a,"+a,”) = O, since A in mod-R in
torsion free. ilence (a,+a)’ = a;’+a,’.



-84 ~ Mubhammad Rashid Kamal Ansari

Define g:A - B by (a)g, = (a’)f for all a € A in obvious notations. -
Then g, is well defined as well as g, € Homg(A,B).

Also for r € R’, ar = (ar)'r implies that a = (ar)’ which implies that
(a)(rg,) = (ar)g, = (ar)’f = (a)f which implies that rg, = f. Hence Hom
(A.B) is divisible in mod-R. :

In a similar way Hom(A,C) is also divisible in R-mod and hence also
Homg(A,C)/Imy’”.

Consider now ¢ € Homg(A,C) and r € R". Then r$=0 implies that
r¢ = p'f for some f € Homg(A,B) which implies that r¢ = [1,,u](f) =
fu. ;

Further a € A implies that

(a”r) ¢ (a = a’'r as in (1) above)
(@")(r¢)
= (a")fu

@@ ¢

Thus (2) ¢ = (a’) fu

Now since Homg(A.B) is divisible in R-mod, f = rg, f,g € Homg(A,B).
We have

(@ ¢ =(@)fu
= (a')(rg)u
= (a'ngu
= (a)gu

so that ¢ = gu which implies that ¢ = [1,,u]g = p" g € 1lm p". This

implies =0 . Thus Homg(A,C)/Im u is torsion free.

Recall that we have assumed R to be a subring of aring D. Now D €
R-mod-R so that for D divisible in mod-R we have :
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Corollary 3.6
(1)  For a module A, [D,A] is torsion free.

) If D is also torsion free in mod-R then for A.B € R-mod and an
epimorphism pu:A = B, [D,A] and [D,B)/1m u” are torsion free
and divisible where u* = [1p,u]:[D,A] - [D.B].

Further we have

-. Proposition 3.7
D in mod-R is divisible if any and only if every element of R is a left

unit in D and D is divisible as two sided module if and only if each
element of R” is a unit in D.

3.1, 3.3 and 3.7 remain valid for left replaced by right with obvious
changes.

In addition if D is diyisible both in mod-R and R-mod then we have

Proposition 3.8

(n For every B € Ab, (D,B) is a torsion free and divisible module.

(5] For every module B, {D,B] is a torsion free and divisiblc
submodule of (D.B).

Proof

) D € mod-R implies that (D,B) € R-mod. Let f € (D,B) and
r € R™ such that rf = 0. Then (x)(rf) = O for all x € D. D
divisible (in mod-R) implies that every element of R™ is a left
unit in D so that (xr')(rf) = O for all x € D where 1’ is the left

. inverse of r in D, which implies that x(r'rf) = 0 for all x € D,
that is if = O for all r € D which implies that Df = 0. Hence
f = 0 so that (0.B) is torsion free.
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Now forr € R forf € (D,B) define g:D -+ B by (x)g = (xr")f
for all x € D where r" is the right inverse of r. Then g €

(D,B) and
x(rg) = (xng
= ((xor")f
= (x(rr")f
= (x)f

for all x € D which implies that f = rg that is f is divisible do
that (d,B) is divisible.

2) Consider a2 module B and f € [D,B]. Then forr, s € R and x

€ D we have:
(X)) = (X))
= (s(rx)) f
= (s((rx) f)
= s((x))rf))

which implies that rf € [D,B] so that [D,B] is a submodule of
[D,B] which is obviously torsion free.

Defining g as in (1), forr € R", s € R and x € D we have:
(sxr") f

(s((rx")H)
s(xg)

(sx)g

so that g € [D,B] and f = rg that is f is divisible. Hence [D,B] is
divisible,

Recalling that K =.D/R we now investigate the relationship of K with
R-modules. In this regard we first mention the following:
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Proposition 3.9

If D is divisible both in R-mod and mod-R then for B € Ab (K,B) is a
torsion free module.

Proof

Consider the exact sequence

R—-D-=K

which gives the exact sequence
(K,B) = (D,B) > (R,B)
so that (K,B) is a submodule of (D,B) hence torsion free. -

By the above proof it is also evident that if D is such that (D,B) is
torsion free then (K,B) is torsion free.

Now we mention a result of Ansari [3] as follows:

Proposition 3.10
For a module M, Tor (K,M) = O implies that the sequence

M-D®M-> DM

is exact.

A module A is said to be an e.f. module if it can be embedded in a flat
module Ansari [4]. The following result concerning e.f. modules is also

reproduced from Ansari [4].
Proposition 3.11

If D is flat in mod-R then Tor,(K,A) = O for each module A and all
n=2 and Tor(K,A) = 0 in case A is an e.f. module.
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Some more results regarding the relationship of D and K with R modules
_the behaviour of R and K in various situations and exactness of certain
sequences involving D and K can be found in Ansari [1,3,4]. The
properties of D and K in case of a left Ore domain with D replaced by
Q the minimal left skew field of R can be found in Gentile [8], Qureshx

[11,13] and Ansari [2].
4. D"-TORSION AND D"-COTORSION MODULES

In this section we will generalize some concepts and results appearing in
Ansari [2,5,6].

A module A is said to be D"-cotorsion module (reépectively D™torsion
module) if Ext*(D,A) = 0 (respectively Tor, (D.A) = 0).

Thus a D%cotorsion module is a D-reduced and a module which is both
D°-cotorsion and D'-cotorsion is a D-cotorsion module (respectively D°-
torsion module is a D-torsion module).

If {A}ic; is a family of modules then Ext%(D,ITA) = IIExt'(D,A) and
Tor,(D,]JA) = [[Tor(D,A), so we immediately have

Proposition 4.1

(1 Every direct product of D"cotorsion modules is a D"-cotorsion
module.

2) Every direct sum of D"-torsion modules is a D"-torsion- modules.
Proposition 4.2
Let , ) A-B->C

be an exact sequence of modules. Then B is D*-torsion whenever A and
-C are D -torsion. :
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Proof |
We have the exact sequence _ .
.- Tér,,(D.A)» - Tor(D.B) - Tor(D.C) - ...

.>D®A->D8B »D®C G
from which the result follows.
Proposition 4.3
If A-B-C
is an exact sequence of modules then

(1) If A and C are D"-cotorsion then D is D"-cotorsion.

2) A is D"-cotorsion whenever B is D"-cotorsion and C is
D™'-cotorsion.

3) C is D"-cotorsion in case B is D"cotorsion and A is
D"*'-cotorsion.

Proof
We have the exact sequence
‘ [D,A] - [D,B] - {D,C] = Ext(D,A)
- Ext(D,B) -»...~ Ext*'(D,C) = ExtY(D,A)
- Ext"(D,B) -» Ext(D,C) - Ext"*(D,A) — L 3.2)
from which the results follow.. |

The following corollaries are immediate consequence of the sequence
(3.2): '
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Corollary 4.4

If C is D™cotorsion and D"'-cotorsion, then

Ext(D,A) = Ext'(D,B)

Corollary 4.5

If B is D™cotorsion and D“ ‘—cotorsnon then A is D™cotorsion if and only
if C is D™!-cotorsion.

Some results appearing here are generalizations of some results included
in the author’s doctoral thesis submitted at the University of Karachi and
some results appearing here form a part of it. The author wishes to
express sincere thanks to Professor M.A. Rauf Qureshi for his kind
supervision. N.S.R.D.B., Pakistan and Federal Government Urdu
Science College, Karachi, acknowledged for a partial financial support

and the grant of study leave respectively.
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‘ABSTRACT: In the present paper, we study the rate of
convergence of modified Baskakov type operators for functions of
bounded variation, using probabilistic approach.

1. INTRODUCTION

The Durrmeyer type integral modification of Baskakov operator was first
introduced and studied by Sahai and Prasad [6]. Sinha et al. [7] improved
and corrected the results of [6]. Recently Gupta [5] defined another
modification of Baskakov operators by taking the weight function of Beta

operators on L, [0,00] as

L) = ki_'io Do By 0N, xE[0, ) A
Pl |

where pn,k( x) = (n +II§ - 1) X k/(l +x)" +k

and b, (& = t*Bk+1,m)(1 +)nkel (1.2 |
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B(K+1,n) being the Beta function given by k!(n—1) !/(n+k)!.

Guo ([3], [4]) has established the rate of convergence of the Durrmeyer
operators and Meyer Konig and Zeller operators for functions of
bounded variation. As the operator L (f,x) defined by (1.1) give better
_approximation than the earlier integral modification of Baskakov
.operators studied in [1], [6] and [7] etc., this motivated us to study the
rate of convergence of L (f,x) for functions of bounded variation, using

some results of probability theory.
2. AUXILIARY RESULTS

In order to prove the main theorem, we shall need the following results:

Lemma 2.1

[2, p.104 & 110]: (Berry-Esseen Theorem). Let X, X,,...,X, be n
independent and identically distributed (i.i.d) random variables with zero
mean and a finite absolute third moment. If p, = E(X,% >0, »then

sup | Fi(x)—¢(x)| < (0.409) ¢,,,
xER

where F, is the distribution function of (np,)~'(x;+X,+....+X.),¢ is the
standard normal distribution function and {,, is the Liapounov ratio

given by &5, = (oy/p,")n'2, py = E| X, |

Lemma 2.2 [8]

If (§), 1 = 1,2,.... are independent random variables with same
geometric distribution

¢ =k = _x_kL w0 i=12
p(i ) 1+x l+x" ’ yLoyere

then E(5) = x, p, = E(§i—E(H))* = x(1+x)
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n
and n, = I {, is a random variable with distribution

i=1

 P(n,=k) = (n+ic+l) (_1_%_& = p® @.1)

Lemma 2.3
If y is a positive valued random variable with a non-degenerate
probab..ity distribution, then we have

E(y?) <[E(y)]**, provided E(y*), E(y) <o
Proof '
If f be a convex function, then by Jensen’s inequality we have

f(E(x)) < E(f(x)).

| Now suppose f(z) = 7*?, then fz) = gz'zﬂ >0 for z>0 and hence
f(z) is convex function and by applying Jensen’s inequality, wé have
(E@)°<E(*) i.e. @) <EE)H™.
Letting z = y®, we get the required result.
Lemma 24

For every keN, xe (0,0), we have

Pﬂ oA 2{9x(1 +x)+1PH4+{x(1 +x)}‘/f @.2)
2/n (1 +x)P4
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Proof
By (2.1) we have

=P(k1nk N, knx)
yrx(l+x)  Jn(I+x)  Jnx(1+3)

Using Lemma 2.1 with a, = x-and b+ yx(1+x) (from Lemma 2.2),

we have

_k-nx -
Jde®) 2(0.409)
|P(P(n,, =k)) ——f k- glnfc dt|< ———:’3 (2.3)

n b,
vnx(1+x) '

Now, we calculate p;, by an easy computation, we can show that

T,(x) 5(;:)*1 -1, T = “(x)k 1 _,
1+x) 1+x

k=o\1+x) 1+x
o0 x k )
I,(x) = Z kz( ) = (1+2x)x 2.4)
k=0 1+x +X .
- x 1
Tx) = Z i — = x[1+6x(1+x)]
k=0 \l+x) 1

o k
T = T k5| L = x[1+14x+36x2+24x°
4 1+x

‘ - i
Alsoif M (x)]= Z (k-x)" k)L stands for the central moment of
k=0 1+x) 1+x

order r about the mean T(x) i.e. x, it is easily checked
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4 : .
M(x) = _20(;)(‘1)j74_,(x)(7, (x))j
7= ,
= x(1+10x+18x*+9x% (using (2.4)).

Next, in view of Lemma 2.3, we have

pys(M®)** = [{1+10x+18x+9x%)P/*

3/4
So the right hand side of (2.3) is less than —}—(9+ 1 ) as
‘/,‘, x(1+x)

0.818<1 and

knx

f\/ nx(1+x) "2/2dt< 1 < 1

k-1-nx V2rnx(1+x)  2ynx(1+x)

vnx(1+x)

Hence,

2{9x(1+x)+ 1P+ {x(1 +x)}
2/n be(1+x)P/4

Poi(x) = P, =kj<

_ Lemma 2.5

For x € (0,), we have

- k
(-1 [p,,0dt = Ep,, ®
k =0

Using (1.2), we also have b, (x) = np,.,,(X), so we have the followmg
equivalence form
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[t = %, () Q.5)
x 7=

The proof of the above lemma is simple and left for the readers.

Lemma 2.6

Let the m-th order moment for the operator L (f,x) be defined by

|4 = 5 b -x)"dt
wn® = TP { A0 (t%)

then

V0 = LV, = =% n>1
L ’ n-

V) = 2(n+1)x2+2(n+2)x +2,n>2.
= (=) (#-2)

Consequently for each x €[0,o0)
V(@ = Ofn D)
- The proof of the above lemma is simple and easily follows by

substituting r = 0 in [5]. In particular, we have V, z'(x) o 2x(1*x)
’ n

Lemma 2.7

Let K(x0) = Z p,,(x) bn,k(t). If n is sufficiently large, then
k=0 ‘ o
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@  For 0=Y<x, we have

fK (xp)dts—-—£ 2x(1+x)
“n(x-y)?

(ii) For x<z< oo, we have

2x(1 fx) )

[Expdss
d n(z-x)*

The proof of this llemma follows by using Lemma 2.6 (s¢e e.g. [4]).

3.  MAIN THEOREM

* In this section, we shall state and prove our theorem:

Theorem 3.1

Let f be a function of bounded variation on every finite subinterval of
[0,00) and let V,%(g,) be the total variation of g, on [a,b]. If f(t) = 0(t*)
for some positive integer o> 2 as t—>oo, then for n sufficiently large, we

have

IR R (6+7x) o, +x/f
| L3y | < E 5 et

-a-lry
+o(1)5__(_1_xl s [Rx+) -fx-)]
n 4/n

2(9x(1+x)+1P# + (x(1+x)}/* | (3.1
{x(l +x)}3[4 .

where V,%(g) is the total variation of g, on [a,b] and
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| fO-f(x+) x<t<o
gx(t)= I 0 t=x
| fO-f(x—), 0<t<x
Proof
We have

L,(fx) - Elif(n) +fx-)k : X))
< | Lgx) |* %-|f(x+) A=) | . | L, (Sign(t-x),%) |

In order to obtain the result, we need the estimates for L (g ,x) and L,
(Sign(t—x),x). Now, . :

L, Signt-x).x) = [ Sign(t-xK,x.0 dt
, 0

, ]K"(x,t)dt —7Kn(x,t) dt
X [} :

A (x)-B, (x), say.

Using (2.5), we have

A = [K ot = kzi P [b, )t

k
=X z
k-o(p" 'k(x)j -Op" ,k(x)]
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For simplicity, below we shall use the notation p, instead of p, ,(x).
An(x) = po2 + pl(po + pl) + Pz(Po + pl + pl.) + ...

=p2+pl+pl+t ... tpp+ P FDsF )
+plp, +ps +ps + )+ e )

Now, I = (p, +‘P1 +pyt+ . )p,t PPt )
Hence, 2A, X)-I =p2 + p? + p? + ...

By using Lemma 2.4, we get

1 [20x(1+x)+ 1 + x(1 +x))”4J
-1
RA,0)-1|< 2‘/;1[ (14

P Ne))
k=0pn’k

_ 1 2{9x(1+x)+1}3’4+(x(1+x)}”“}X
2/n be(1+x)P

Now, whereas A (x)+B,(x) = f K (knde =1 .
0

We have A (x)—B,(x) = 2A, (x)—1 i.e.

1 [200x(1+x)+1%4 + &x(1 +x)}”4} o (3.3)
2‘/,7 be(1+x)PH

To estimate L (g,,x), we decompose [0,o0) interval into three parts as
follows:

| A,0)-B,®) |
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L,@g.x) =

+

[8,0K (xnde

0

gy x+xjy/n B
[ 80K kndt [ g 0K, (xndt
0 : x-x/v/n

[ 80K @t
x+xpy/n

I

f ) &, (DK (x,5dt

R, +R, +R;, say.

t
Suppose An(x,t)=fK,,(x,u)du. We first estimate R;.
0

Let ¥ = x-xyn.

Using partial integration, we get

y y '
R, = [g,0K,(xndt = [5,00d, (A (x1)

y
= & (YA, (xy) - f A,(x0d,(g,(0)

Since [g,(y+)| = |8y+)—-g(x)| <Vy*+(g,), then by using (i) of

Lemma 2.7, we have
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y
| Ry | V(g A, G+ [ A, x0d,(-Vig,)

2x(1+3) , 2x(1+x) 1 d
ey e

_er( x)) )

<V (&)

Integration by parts leads to the following

y

1 L AN A
dl- = y
[ (x-1)? (Ve @y i zf ) (x- t)3 ’

-~

where V' is the normalized form of Vf(gx) and f’,’(gx) = Vi (8,

Consequently, we have

,Rl ! < Vx+( )2x(1+x) 2x(1+x)| ~ y¢ 8, o 2f d
n(x-y)? no| @y X o (X~ t)3
o - 2(1+0)| Yole) 2/ Vig)d
n x? . (x-1)}

Replacing the variable y in the last integral by - x-x/\/n , we get

I-I/\/I-l n
f Vx(g) dr - _1_ I) dt

x g
0 ! (x _t)3 2\x ji i /\/_

1 n

S_Z—x;kzjl Vx-x/\/i_i( ") '
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2.x(l+x) (,) 12
Hence, | R, | = ;—5;31 Vx_x/ i ( ;)
4(1 +X) &
— )Z‘.V_x/\/.( ) (3.4
- We now estimate R,. For x € 1, we have :
|8, @] = | 8,0-80) <V jﬁ( g) -
b . o
Since f dA (xn)<1 for all (a,b) C[0,c0), therefore
+x/f +x//k '
| Ry [V &)< ,,fo"“_,/\/;(g) | @.5)

Finally, we estimate R, setting z = x+x/yn ;

R, = [g 0K xddt = [2,0d,,(x0) .

We deﬁne. Q.(x,t) on [0,2x] as
Qx,t) = 1-N(xt-) , 0<x<2t

= 0 , X=2t
Then,

2 ’ o ..
R, = - [£0d,0,(x0)-8,@0 [K,(xodt+ [ 8,(0d,(A,xD)
: z x x .

= R3| + R32 + R33 , Say.
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Now, integrating partially the first term, we get

- 2x
R, = 8,z)Q,(xz)+ [0, d,g, )

where Q (x,f) is the normalized form of Q,(x,t).
Since Q,(x,2~) = Q(x,2) and | g,z=)| = V,*(&,), we have

2x
|R31| < V:- (g x) Q,,(X:Z) + f On (x’t) th V; (gx)

‘Next using (i), (u) of Lemma 2.7 and the fact that Q x0<Q,(x,5) on

[0,2x], we have

: . :
P 2x(1+x) | 2x(1+x) 1 d
l R, ,5 ( ) n(z—)? n (t—x)’ t x( x)

+ % [V,z_:_ (gx)j:K,l (x,u) du]

2x-
-, 2x(1+x) N 2x(1+x) 1 f
Ve = e

7 n(z-x)*

2 nx2?

| +1[V§_(g \ 250 +x)]

2x(1+x) | 2x(1+0) 1 4V58)
* n(z-x)* no o (@t-x?
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- gy 20, 2x(1+x){Vl'( D Ve ,)+27 Valg)dt
O n(z-x)? n 2 () (t-x)°

Thus

2"“*"){ Vg g
ENE f [

Replacing the variable int he last integral by x+x/y/n , we find that

Vig)dr y
N % L e gy
4 (t-x)3 2xz 1

— 2V
k=1

2x

Therefore

| Bsy |< ui;x) fo(&)*'kz Vit ie ) 3.7

Further for evaluating R,, using Lemma 2.7 (ii), we have

| Ry, |<8,(20) 2"'(;;") < 2(’1:‘) = e (3.8)

Finally, using Lemma 2.7(ii) and the assumption that f(t) = 0(f"), >0
as t—»oo, we find for n sufficiently large,
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[ Ry [sME P [ b, 0t dt
k=0 %

= ® (n+k)! tkﬂz
=MZ X
k=0p"'k( )2‘[ k'(ﬂ—l)‘ (1 +t)n+lz+1

Substituting k' = k+«a and n’ = n—a, we get
I g

= K- xe -
MZ , /
Ry <M 2 Sa——g %) i b, Andt

2x(1+x) 0(1)_:1(1_4'1) (3.9)
n

M/ -a
s s M (n-a)x?

Combining (3.6) to (3.9), we have for n sufficiently large

6(1+3) 3 xoxvEig \ gy X1 LR)
Ryls= = Zv:"" (&) 0(1)—————n (3.10)

Using (3.2) to (3.5) and (3.10), we are lead to (3.1). This completes the
proof of the theorem.

Remark

Exactly similar{y as in [3] and [4], we can show that the estimate in (3.1)
is essentially the best asymptotically.
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ABSTRACT: In this paper, we describe the general group of order

two GP: . We prove an arbitrary prolongation of a Lie subgroup of

GL(n,%) is a direct sum of additive Lie group of the form %* and a Lie
sub-group of GL(n,R). Then we show that an arbitrary prologation of
a Lie subalgebra of Mat(nxn) is a direct sum of an additive Lie
subalgebra of the form R" and a Lie subalgebra of Mai(nxn). In
conclusion structure group of every k’th order Geometric structure on
a given n dimmentinal manifold is isomorphic to an additive standard

. o :
group R, with 0<A<kX ..n_(?,in__g, and a Lie subgroup of

GL(n,R).

Key Words: G-structure, Matrix Lie group, Prolongation, Vector
bundle. 1991 MSC: 53 C 15.

1. INTRODUCTION

In this paper, all manifolds are finite dimentional pdracompact and, all
mappings and functions are smooth. ‘

Let M and M’ be two manifolds and ¢:M—~M’ be an immersion, and also
assume that m € Dom(¢), ¢(m) = m’, (x,U) is a chart contains m, and
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((x',U’) is a chart around of m'. The k’th order jet j,:cb of ¢ at m is

- denoted by the following coordinates: -

(x",x/f,x{", XD )
1 1

4 . dlodox),
LTI ax,-l,---’axi,

x(m)*

where i, i}, i,,..., i, vary in the set {1,2,..., dimM'}. The-x,-’; ..... & Will not
change by any permutations in the lower indices. »

Let G be a Lie subgroup of GL(n,)®) (the general linear group) and G a
Lie subalgebra of Mat(nxn) (Lie algebra of nXn square matrices with
real entries). We denote the k’th prolongatlon of G and G, by G and

G® respectively.
The group of all invertible k-jets with source and target in O (the zero of

R"), is denoted by GP: This is a Lie group which is proved

that GP)=[GL(n,R)]*

By Reinhart’s notation, an element of GP: can be represented by an n-

tuple (i, f2,..., fo), where f, for i = 1,2,...,n, is a polynomial of
variables of the form

. af;
£(0)=0, det [—|=0
[axj}

In this notation, the operation in GP: is

(oo ) K @1r o080 = (iB1r---180)s - Su815-180))-
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2, STRUCTURE OF GP,?

Proposition 1-
Let n be a natural number. Then there exist Lie group isomorphism

n?(3n-1)

GPi=% * P GL(n®),

22Gn-1)

n*(3n-1)
2

where ® ? s standard additive Lie group of R

Proof »

Lt M = {720€GP | 1% =[5, )
N: = { /36 €GPL| job = jod }.

" We prove this proposition in steps (a) to (g).

a) M is Lie subgroup of GP2.

For, let j;% and j are in M. Then (/02¢)*(102¢) = jo (doy)
and we have

Jo'@o¥) = (o'd)*(in'¥) = [S;]
Moreover, since (j?¢)~' = j,2(¢~") we obtain
7@ = Go'e)™' =[Sy

Therefore M is a subgroup of GP.2, and furthermore with
charts

ox, ox,

, n*(3n-1)
M ng(b - [._a_zg_y_J e 2 ,
hon
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is a Lie subgroup of GP2.

b) M is a normal subgroup in GP,’?

c)

For, let j;2¢ belongs to M and j,2y be a member of GP.2,
then

YGRS *() = jW™ 0 6 0 ).
On the other hand,
JTI60) = (o)) * (o' B (i)
= (o) *{8]*Ga'¥)
= 5]
therefore (j,2) ™ *(j26) *(j,2) belongs to M.
R0n-1)

M is isomorphic with the additive Lie group ®# 2

For, we define the function n:M - & 2 as follow:

n*(3n-1)

_FY Fe —
M;(au, o |o] (axax |0)e§t

The smoothness of function is easily proved. Then it is just
enough to prove that it is a "group isomorphism".

For this, suppose that -

k
BT -

two elements of M. Then
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n ((..., xk ak x x, ) oy X, + bh]2 K ...)),

'l'Z W ’

- ! l i
=n (.., (xk+bj:j2,letxj;) '1'2(x'| +b '1 ’1 X.lu szu)

iy
X x,.2+b inla x 12 xhnz y eee

i)
= x,+bt +af x x
N oo X jlilliz iy X; X e
B ook bk
—'ﬂ cesy xk ai‘iz iliz xi'xiz, ...)

' E gk
—(..., a;;, *b;» )

=n (, X+ ak X X, )+n( b,,x, Koo )

DU Iz

d) Nis a normal Lie subgroup of GP,2

For, let j¢ and Jot¥ are in N. Then (j %) *(jo'¥) = jo(doy)
and

(foz¢) *(/'oz'ﬁ)
Uo'®) *(io'¥)
Jo'(@oy)

Jo(doy)

also (jp’¢)™" = jo(¢™"), and
Joo™) = (i)™ = ('®)™ =Jo'(e™")

therefore N is a subgroup of GP,?
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Let j,’¢ belongs to N and j,’¢ belohgs to GP,2. Then
) *(ZB)* (o) = JW 0 6 o ).
Since j,'¢ = j,’¢, then (/O'¢>)*(/02¢) (o20) *(j,2¥); but

Go'®)*(¥) = (o'd)*(o'¥), therefore (i'¢)*(i'¥) =
Gold)*(jo). Hence we have

(o' D) *(o'¥) .= ('¥)* [Goz¢_’)*002¢)*002¢)]
_ = (jo'¥)* [’V ™) *(io’d) * (g ™¥)].
Hence jo(y 7 odoy)=j v odoy), and N is normal in
GP_2. On the other hand the function
7:N3j2% )¢ € GLLR) < K
induced a Lie subgroup structure on-N.
e) N is isomorphic with GL(n,R).

For, Let n be a function which is defined in (d) step. We

have n(( - X, ) (, b,-kx,.,...)) ( Ea *bix.,.. )

e

therefore n is a Lie group isomorphism from N onto
GL(n,R). '
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f) MNN = {j? id}, where id is identity function on ®". For,
let ji’¢p € MUN. Then j’¢ € M and j'¢ = j,' id. On the
other hand j’¢ € N and j’¢ = j,'¢. Therefore j,2¢ = jld.

g) GP} as a Lie group, is isomorphic to M®N.
For, let j§¢=(..., a,."x,.+ a,.zl,.zx,.lx,.2 ,) belongs to
GP?, ji’¢ = (.., A¥ x, ..) belongs to N

and jg ¥r=(. %+ Ay x,x,, .| belongs to M such that
jab =(iaw)=lis¢),

then we have
k k YL k
4; = a;, ZAi,izAj Af = ay,
inly _
thus, for all £,/ and j

v kb _ &k
L A‘-lizaj al - jl'

[

Let / be fixed, then

i _ni
and E A,-’:',-za,'l =Y aa);,

now if i, is fixed, then
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therefore A,.f,.z =y aﬁ(a'l)?(a-l)?-
Tt

Where [aj']‘-l =[(a "){.]. Hence GP,?, as an abstract group, is a direct sum .
of M and N. '

Finally by corollary at page 96 of [3], we access which we required.O

Corollary 1
Let G be a Lie subgroup of GL(n,%). Then there exists a Lie subgroup

-~ 2 -
G of GL(n,%) and an integer 7 such that 0<i< ™ CP)  and the

Lie group G® =« R*DG, where R" is the standard additive Lie group
of &

_ 3. STRUCTURE OF GP}

Lemma 1

Let Gand H bé two Lie subalgebraé of Mat(nXxn), then
HOGW = H" & G"-

Proof |

~ We note that (refer to [1])
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. therefore

(i

G Hom (R",G) N (R"® SH(R™)) 1

(GO&H)Y = Hom(®"G @ H) N (®" ® $£(R™))

Example 1

= (Hom(R",G) ® Hom(R",H))
N [R Q@ KR @ (R @ SHRY)

[Hom(®R",G) N (R" Q@ SHR™))]
@ [Hom(R"H) N (R ® SAK™)]
= ¢ ® H".0

We have proved that <®",+ >V = <®" +>.

a)

b)

It is proved that L(<R", + >)=(R", +).

As a Lie algebra <®",+ > is isomorphic to AMat(nxn),
where AMat(nXn) is the Lie subgroup of all nXn diagonal

‘matrices of Mat(nxn).

For we define

V. <{ X > - AMat(nXn)

(Xp5.0. %) = [0x].

We prove that “as a vector space <®",+ > (prolongation
of Lie algebra <®",+ >) is isomorphic to <®", +>".

For this let T belongs to (R")". Therefore T is a linear
mapping of R"XR" into R". Let Te.e) T T €, where.

{e,,...,} is standard basis for %°, and by definition, T;* =
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T* and T;* € A Mat(nxn) for all i,j,k. Thus T;} = &, and
T;*#0 & i = j = k. To see the result we define the mapping -

<R, +>D3 [T » (T €<+ >
e) By [4], if G is a Lie subgroup of GL(n,R), then Lie group
G is isomorphic with group of all linear mappings of
#R"+ G of the form a; (for TE GV) where
a4,v) = vA+T(v,.)), A € G, vER"

Therefore prolongation of Lie group (", + > consist of all
linear mappings of R"+L(R"H=R" of the form a; (for
T = [T} € ®R)"=R") where

a4, V) = (A+[T{1v,.)
(v, A +trasE (ﬂiv‘& a‘.)é".(.))

( V€, trans ﬁ(tévi+)2i(.))

Herethe trans; (.)istranslationby @& inR". It completes the proof.D

Lemma 2

Let G and H be two matrix Lie subgroups. Then
[H®GI" = HV & G*.

Proof

Suppose that H be a Lie subgroup of GL(n, V) with L(H) = H and G be
a Lie subgroup of GL(n, W) with L(G) = G, and let (v, ®w))®(5,D¢,) =
v, ®s5,)B(w,;®1,) be an elements of (VOW)QS*'(VOW)*) and
nOwY®(s,B1,) = (V,Rs5)P(W,®12) be an elements of (VEW)®
S ((vewy).
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Now, we define the bracket of these two elements (denoted by
symbol"[,]") as follows:

O wy) @ Dy .y (5,91) 0 (5,91
— (nOw) ® D owy (5:91) o (5,901)
= [v,®D, 5, 05—V, ® D, 5,0 5,]
@ w,®D,, (,ot) —w ® D, (f, 0 B)].
Note that this lies in (VO W)@ S (VS W)*).
“[,]" extends a bilinear mapping of (VO WS (VOW)*) X
(V@W’)@é"“((V@ W)*)) into (V@W)@S‘HH((V@ W)*). Recalling (1),
this induces a bilinear mapping of (H&® ¥ @ (H® G = (H» @ H®
® G® ® GY into (VO W)QSH*1(V® W)*), which is in fact a bilinear
mapping into (H® G)**? = H*+*+D & G¥**1, Moreover "[,]" makes the
vector space ’
(VOW)+(HOG)+(HOG) + ...
= [V+H+HD +...] & [W+G+GP + ..].

into a- Lie algebra. But, the bracket operation on the Lie algebra
(GO H)" coincides with the bracket operation already defined on

(HOG)+(HOG)D +...+ (3{69G)+(il-C®G)"‘;+(ﬂ-C®G)"‘+” +....
truncated at degree k (refer to [1]). Thus as a Lie algebra
L(HeG)") = LH)" & LGY.

This proves the lemma. O
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Lemma 3
Let G be a Lie subalgebra of Mat(n X n). Theré exist a Lie subalgebra
= . . . n2(3n;1)
G of Mat(nxn) and an integer 7 such that O<ri< — and the
Lie algebra G = R"DG, where R? is the standard additive Lie algebra
of R, -

Proof

Let G be a Lie subgroup of GL(n,}) where it’s Lie algebra is G (in this
case we write L(G) = G). Now we have, by corollary 1:

- - 2 -
GO = R'DEG, G<GL(n,R), 05n’s£—(32"—1-)

On the other hand (refer to [1]) we know that L(G") = G® G; therefore

2GOGV=L(R)DLG)

Hence, there exists a Lie subalgebra G of L(G) (and Lie subalgebra of

Mat(nxn) and an integer n’ with 0<n'<n such that GP=R"D(G).0

Proposition 2

Let n and m are two natural numbers. Then there exists Lie group
isomorphism

n*(3n-1)

GP =% * OGL»n®),
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mx 22GR-1)
where - R 2 has standard Lie group structure.
Proof

Let m be an integer greater than 2. Assume that result is proved for m
—1. Then o

)(l)’

GP; =(GP,™!

n?(3n~1) 0
e[m 2 @GL(N,%)}

n?(3n-1)

(1)
Jéﬂ : J BIGL(n, MV

n£(3n;l) '
=% 2 @cP! (by example 1)

m-1 xm

=% 2 DGL(n,R) (by assumption)

Then by induction Proposition is proved.O
Corollary 2
Let G be.a Lie subgroup of GL(n,R), and k be an integer. Then there

exists a Lie subgroup G of GL(n®%) and an integer /i such that

2 - _ -
0< 7 sf—(ﬂ—l—), and the Lie group G =RCP G , where %" is the

standard additive Lie group of %°.0
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Example 2

We study the GP? = {a+bx*+cx|a,b,c € R, c#0} where proved
that

(@ +bx*+cx) * (AX+Bx*+Bx*+Cx)
= (aC*+2bBC+cA)x* + (bC:+cB)x* + cCx.

Let M = {a+b’+x|a,b € R} and N = {ax|a € R-{0}}. Then N
and M are normal subgroup of GP,* and GP,*=M® N. On the other hand
we have proved that N is isomorphic with multiplicative group % —{0}.
For M, assume T = {a’+x|a € R} and § = {*’+al+x|a € R}.
We know that T and § are normal subgroups of M and M=S®T. But
with respect to above operation we have

@+ a +0)¥AX+AC+x) = (A+a)P+(A+a)+x,
(@P+0)*(AXP+x) = A+ +x

Therefore S and T are isomorphic with additive group $. In conclusion
GP} = (SRzl,+) @ (R-{0}, »)

Corollary 3

Structure group of every k’th order geometric structure on a given n
dimmentinal manifold is isomorphic with an additive standard group &™,

2(3p -
where O<m skxi—(e'—zn—i) , and Lie subgroup of GL(n,}).0

Proposition 3
Let G be a Lie subalgebra of Mat(nxn), and k be a natural number.

Then there exists a Lie subalgebra G of mat(nXn) and an integer 7
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aa o
such that 0<7 <k x ﬁ—(?’—;——l—z and the Lie algebra where GV« R°DG

R" has the standard Lie algebra structure.C
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1. INTRODUCTION AND STATEMENT OF THE RESULT

The work deals with the ultimate boundedness of the solutions of the real
differential equations of the form:

X9+ o (F)xD + Y, £)+h(E, £)+g®) + ()
= plt, x, %, % % %) (1.1)

in which the functions ¢, ¢, h, g, f and p depend at most on the
arguments shown in (1.1) and the dots denote differentiation with respect

to z.

Further it will be assumed that the functions ¢, ¥, A, g, f and p are
continuous for all values of their respective arguments and that the

derivatives gq:(z, w), %h(yz), g'y) and f(x) exist and are

continuous for all x, y, z and w.
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The problem of interest here is to investigate a specific property of
solutions of (1.1), namely the strong boundedness property of solutions
in which the bounding constant is independent of solutions. This problem
has received considerable attention on various special cases of fourth
order non-linear differential equations from a number of authors, for
example: ,Abou-El-Ela [1], Abou-El-Ela & Sadek [2], Asmussen [3],
Ezeilo & Tejumola [10], Harrow [12], Tejumola [20], Tiryaki & Tung

[21], and others.

On the other hand, firstly, Chukwu [5] obtained sufficient conditions for
the ultimate boundedness of solutions of the equation

20 +ax® + £(5) + ci + () +£,(x) =plex 7 xx )

Until this time I have not found out any research on the above problem
with in the relevant literature.

Equation (1.1) has an equivalent system
X=y, y=z, Z=w, w=u,
i = —p(W)u—y(z,w)—h(,2)~ g0 —RN)+pE.xy.2,W,1). (1.2)

obtained from (1.1) by éetting x=y, ¥=z, ¥=w and x* = u.
The boundedness result to be proved is as follows:

Theorem

. Further to the basic assumptions on ¢, ¥, A, g, f and p, suppose the
existence of arbitrary positive constants a, b, ¢, d, e and of sufficiently

small positive constants ¢, €,, €,, €,, €; such that

@) a>0,ab—c>0, (ab—c) c—(ad—e)a>0,
(1.3)

A = (cd—be)(ab—c)—(ad—e)*>0,e>0.
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) d-be)(ab-
i) A1=(L—(£:(‘:)_C)—(ag’(y)-e)>2eb forally (1.4)
p,=lcdbe) dlad=e) eo oy )

2 ad-e d(ab-¢) a

where d’=37(y), 30, g(0), y=0 !

(iii) o(w)=a for all w.
(iv) ¥(z,0) = 0 for all z,

0< ¥@W) _pce  for all z and w0, y,(z,w)<0 for
w

all z and w.

W) ﬂyz’z—)zc for all y and z#0, h(y,2)<0 for all y and z.

A
[ h(y.2) _cr < [pOw)-a] forally, wandz»0, where

e e A (ad-ef

Y s forall w.
40> 48% 16d*(ad-c)’

[e(w)—al < e =min [

i) 20) =0, 89:40%)-8D <p for all w.
y y -

eA

where 3 is a positive constant such that <———
d*ab-c)

|g’()—d| <e, for all y.
(vii) 0<e—f(x)<e, for all x, fix)signx = = as |x| = oo.
(viii)  |p@t,xy,z,w,u)| <A for all £,x,y,z,w and u, where A is a
positive constant.
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Then there exists a constant K whose magnitude depends only on
ab,c,deA A4 ,€,4 as well as on the functions ¢,¥,h, g and f such that

_every solution (x(t),y(t)?z(t),w(t),u(t)) of (1.2) ultimately satisfies

|x(0)] <K, |y®)| <K, [200| <K, |w®)| <K, |u®)] <K
for all sufficiently large r.

Remark 1
When @(X) = a y(EX) = bx, h(%X) = cX, g(x) = dx, fx) = ex and

pltxxi5x®) =0, equation (1.1) reduces to the linear constant
coefficient differential equation

X + ax® + bf+ck+di+ex=0

and conditions (i)—(vii) of the theorem reduce to the corresponding
Routh-Hurwitz criterion. »

Remark 2 ’
e(X)=a, Y(EX) = f,(X),h(x,5) =cX, then the conditions of the theorem

reduce to those of Chukwu [5].

Notation

In what follows the capitals D,D,,D,, ...denote finite positive constants
whose magnitudes depend only on the functions ¢,,h,g.fand p as well
as on the constants a,b,c,d,e,¢,,€,€,,6,,€65, and A; but are independent of
solutions of the differential equation under consideration. The D’s are not
necessarily the same each time they occur, but each D;; i = 1,2,3,...
retains its identity throughout.

¥
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2.

THE FUNCTION V(x,y,z,w,u)

The actual proof of the theorem will rest mainly on the certain properties
of the continuous function V = V(x,y,z,w,u) defined by

where

V=V +V,+V,

., 2d(ab-c)
2V, =u+2awu+——-= d zu+2f l#(z,s)ds
+[a2 _ d(ab_C)Jw2+2[c+ ad(ab-c) _ 5]ZW
ad-e ‘ -e
+28yu+2adyw+2wflx) +2wg(y)+2a f; zh(y,s)ds'
[b"("d Doy a6]22+2bﬁyz+2azg(y)
ad-e
_ 2, 2d(ab-c) ry
2eyz+2azfx)+(dc-ae)y +-————ad_e fo g(s)ds
2d(ab-c) s
+ 2220 o) 28 fo 'Rs)ds
5 = e(ab-c) ‘e
ad-e
A+2)@+w)sgnx, if |x|=|®+ul,
V, = '
(A+2)x sgn (@+w), if |x| < |®+ul,
W) = [T e ds,
—(A+Dwsgnx,  if |u]=2]|w],
V3 =

—A+2usgnw, - if |u|<|w],

@.1)
2.2)

2.3)

(2.4)
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The properties of the function V, which are required for the proof of the

theorem are summarized in Lemma 1 and Lemma 2.

Lemma 1

Subject to the assumptions (i)-(vii) of the theorem, there is a constant D,

such that

Vix,y,zwu)= — D, for all x,y,z,w and u,

Proof

The function V(x,y,z,w,u) can be rearranged as follows:

d dA
2V, =[" rawt———= . ad-e )_Z+5yr (_ad:_e—);[viy}z + 4, [w+az]?

} . ﬂ_g[(:’;:z}w (o ")“ (“5) (d) T Fzm

' - X, _ d(ab-c) '
where W, =28 [fis)ds Fois £),

- d(ab-c) dg_» dsc-ge-_ b
S [2 [ e yg@)] { c-ae e

W,=2a fo *h(y,s)ds - (ac)z?,

W= [ wzs)ds - bw?,

@25
2.6)

2.7)

GZJ},Z’ o
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A and A, are defined by (1.3) and (1.5), respectively.

The function W, can be estimated as in [5]. In fact the estimates there
show tnat '

eA 2
" 2[ 4d(ad-e) Jy

From (vii), (ii), (vi) and (2.2) we obtain

x . 2(ab-c) = _ _ (ab-¢)
Wya2e [ fyds + 22 [Role - £ - Z2FO)

x . 2(ab-c)
>2¢ [o “Rs)ds e £0) .

Because f%(0) is not necessérily zero, set D= (ab—c; F(0), then we
e

(ad-

have the following estimate

W, 22¢ [ "fis)ds-D,

We get from (v) for z=0

W,=2a ‘[@‘— c}sdsz 0.

but W; = 0 when z = 0, hence we have W, =0 for all yand z.

We find from (iv) for all z and w0,

AT "['”—(:*-’l —bJsds'z 0.

but W, = 0 when w = 0, there we obtain W,=0 for all z and w.
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‘Combining the estimates for W, W,, W; and W, with (2.7) we deduce
that _
d(ab- c) 8yl + dA o
ad-e (ad—e)z dy

+ + 2+——e—A—-— 2
+8,borad {4d(ad—e)]y

2V, z[u+aw+

+ (5—) w?+2e fo'xﬂs)ds'+2e[%]yz -D,.

Then we have

2V,2D. f fls)ds+2D,y*+2D 2 +2D5w +2Dgu +2€[ c:d b:]}’z-Do
Let ~ W,=D,y +2€[c‘2 bee]yz+D4z . (2.8)

Since  |yz] s(%)(yz +z%)

then we obtain
W.»D.y2— Cd‘be(yz+ 2,p ;2 D,(%+23)
52Dsy*-e|—— 2%)+D,z* 2 D;(y*+z
for some D, D7=(¥;—)min{D3,D4}, , if

ad-e P '
—_— ). 2.
es[Z(cd—be)]mm{Ds’D“ | 2.9
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Consequently

2V,2D, [ *As)ds+(Dy+Dy)y*+(D+ D)z +2Dgw? +2Dgu*~Dy,.  (2.10)

| From (2.3) and (v) we obtain
[Vl =A+2)le@w) |l + | u|1=@+2)@a+e) | w] + | u]],
since ®(0) implies that $(w) ‘=A W¢(0w), 0<o<l.
Also, by (2.4)
Vil <@+1)|w].
Then it follows |
2V,+2V, = — D, (| w| + | u)). (2.11)
Summing up the above discussion yields
2V2D, [ Rs)ds+(Dy +D;)y* +(Dy D)z +2Dgw* +2Dgu*-Dy([w] + u)-Dy
From the result obtained, it is evident that (2.5) and (2.6) can be easily
verified. : ‘

Lemma 2

Let (x(£), y(8), z(¢), w(t), u(?)) be any solution of (1.2). Then the limit

V'()=lim sup V(e ) 00+ h) 208 +h), W +R) e +R)) = VOK(0), 706,200, w(0), (1)

h0" h

exists and there is a constant D, such that

V*s-1 provided () +YO)+ZO+W®O+® = Dy (2.12)
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wheneyer O<é0=max[eo, €,€,,€, e3]se'4 is sufficiently small.

Proof

The existence of V' is quite immediate, since V, has continuous first

partial derivatives, and V, and V; are easily shown to be locally
Lipschitizian in'x, w and u, w and u, respectively. Therefore the
composite V = V; + V, + V; is at least locally Lipschitzian in x,y,z,w

and u.

An easy calculation from (1.2) and (2.1) shows that

E =— — 2_ lII(Z,W)_ + _ad(ab_C)
dtVl(x,}’,Z,W,u) [(P(W) a]u [a————-w c+é __._ad—e

Fzz[-————d(ab ~9 k0 -{6b+(ag’(y)-e)}}-[byg(v)--——d(ab'c)f’(x)sz
2 z ad-e
~a[e(w)-alwu -{M -C}zu _M[ tp(w) -a)eu-d[p(w)-alyu
b4 ad-e
+rg’(y)—d1zw+[f’(x)—e1yw—a[ﬂyz—’-z—’ ~clyz-ale-f Iy

-2 yiarz-sywem) 2R r sy [ v, 2.s)ds

~ad-c : ~e o
+azf k(3,5 [u+aw+ aﬁdb )z+6y}p(t,x,y,z,w u) (2.13)
From ¥@" b and 5=29P79) .o we find

w -€
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{a LLCAD I _y@;ﬂ}wz 2ew? (2.14)
w ad-e

By using kG2) 2c, [ab—c+6 - %ﬁ}w and (1.4) we have
e

z -

zz[il_(“_b‘_cl_@z) - {6b+(ag/(y)-e)}}z
ad-e b4

(cd-be)(ab=c) ; ;.\ . _ 1
ZZ[———-—-——ad_e lag/(y)-e! esz_(2)

22{———————(Cd_22)_(zb—c) - {ag’y) ~e}}=(—?)zz (2.15)

Since 80) >d and f(x)<e, it is clear that
Yy ] _
-{ayg(y) - i‘a%f_—:’—)f(x)yzjs(ed)yz 2.16)

Because of (v) and (iv), it follows that

z fo “h,(,5)dss0 and w fo "y, (z,5)ds<0 2.17)

On gathering the estimates (2.14)-(2.17) into (2.13) we obtain

. A '
V< —e—dy2 -1z —§w2+[u+aw+

1= g d(ali—c z+8y

e

18
piexyzwu) ~ Y W,

i=8

(2.18)
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= €2 [0/, . dab-o) | y@zw) _ A,
Wi (4)“' lg'0)-dlow (ad- )[ w }zw (16)2’

el fe e (5

" From (1.4) and (viii) we have

_G_dyz_e__bzz_ng

V,s-
8 4 4
d(ab-c) 3
+ |u|+a|w|+=——z]+8|y||4A-) W, (2.19)
ad"e i=8
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It can be seen from the similar estimates arising in the course of [23] that

W,=0, W, =0, W,,=0, W,,=0, W,,=0, W,;=0, W,,20
and W;s=0 | (2.20)

Thus, in view of (2.19) and (2.20), there are constants Dy, D,, and D,,

such that V, satisfies

Y S(D10y2+D1122+D12w2)fA |u]+alw]|+ %? [z]+8 |y] 221

From (2.3),(2.4) and (1.2) we have

V= —(A+2)[¥(ew)+h(,2)+/x) —p(t.x.y,2,w,u)] sign x,

if |x]=]|®+u],
(A+2) y sgn (d+u), if |x]| < | ®+u| (2.22)

Vo= (A+Dusgnu, if |u] =|w|

~(A+ DlpWu+y¥(z,w)+h(y,2)+80@) +1fx)
—pt,x,y.z,wu)] signw, if |u| <|w]|, (2.23)

Thus it will be clear from (ii), (iv), (v), (vi) and (viii) that I"{
and V, at the least satisfy
V,s  —(A+2f signx +D(|y| + |z +|w|+D),

if |x|=]®+u],
A+2) |y|,if |x]| = | &+u] (2.249)
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Vs —@A+)|ul,if |u] 2 |w],

@+ 1w +DCly | + [z + | wl +ul +1),

if |u]<]|w], (2.25)

From (2.21), (2.24) and (2.25) it can be shown that V' =V, +V; +V;

necessarily satisfies:
ff‘s—Ducv2+z2+w2>+A{|u|+a|wl+‘—""—”—‘9lzr+alyl}
» ' ad-e '
" -(4+20) sgn x+ADIARD +D(y|+[2] I+ |uf+1) (2.26)
according to |x| = | @+u| if [w]=]u] or
Vs—Dmcv’+z2+w2>+A[|u|+a|wn+i’—@ic—)|zl+‘al'yl]
ad-e
+A+2) [y[+A+D )| + D[y | +|z|+ [w]|+ Ju]+1) .27
according to |x| < |®+u]| if |w] = |u], and
ff‘s-Dmcv’+z2+w2>+A[|uf+a|w|+5‘£”—‘9|z'|+alyl]
_ ad-e
~(A+2)fx) sgn x-(A+1)|u|+D(|y|+[z]+|w[+1) (2.28)

according to [x| = | ®+u] if |w|<]u] or
7" <Dyt ew) ol a0 ] |
-e

~(A+1)|u]+(A+2)|y| (2.29)

—— — o
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according to |x| < |®+u| if |w| < |u].

The remainder of the claim can be proved by using the techniques
similar those used by Chukwu [5] and hence is omitted.
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ON SEMI NILPOTENT ELEMENTS OF A RING

W.B. Vasantha Kandasamy
Department of Mathematics, Indian Institute of Technology
Madras-600 036, India.

In this note we introduce a new notion in associative rings called the
semi-nilpotent elements. An element x of R is called a semi-nilpotent
element of R if x"x is a nilpotent element for some n and if x’—x = 0.
We say the element is trivially semi-nilpotent. We obtain some
interesting properties about these elements. For more about rings please

refer [1].

Definition 1

An element x of a associative ring R is called semi-nilpotent if x"—x is
a nilpotent element. If x"—~x = 0 we say x is a trivial semi nilpotent

element of R.

Theorem 2

If x is a nilpotent element of a ring R, then x is a semi-nilpotent element
of R.

Proof

Given x€R with x* = 0 clearly x"-x = —x so (—x)" = 0; hence our
clain.

Example 1

Let Z, = (0,1) be the field of characteristic twoand G = <g|g* = 1>
The group Z, G = {0,1,g,1+g} has be a semi-nilpotent element g*—g



144 W.B. Vasantha Kandasamy

=1+g(as g =1land -1 = +1 in Z) and (1+g)* = 0 which is
nilpotent element of z,G: ‘

Proposition 3

Even an element which is a unit in R can be a semi nilpotent element.

Proof

Obvious; from example 1 as gEZ,G with g = 1. Hence our claim.

Proposition 4

Every idempotent element of the ring R is a trival semi nilpotent element
of R. ,
‘Proposi'tion 5

A semi-nilpotent element need not always be a nilpotent eleinent of the
ring R.

Proof

Evident from example 1 g€ Z,G is semi nilpotent but clearly g is not a
nilpotent element of Z, G.

Proposition 6

Let Z, = (0,1) be the field of characteristic two and Gbe a group having
elements of even order. Then elements of G are semi-nilpotent elements

- of the group ring Z, G.

Proof

Let gE€EG with g = 1 then g”"—g = 1+g so (1+g)* = 0. Hence our
clain. -
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Theorem 7 -

Let k be a field of characteristic zero and G a torsion free abelian group.
The group ring XG has no semi-nilpotents.

Proof

Obvious as KG has no zero divisors KG has no nontrivial semi-
nilpotents. :

Problems
Can KG have no trivial semi-nilpotents if G is a torsion free non abelian
group? ’

Clearly this problem is equivalent to the zero divisor conjecture for-
group rings. Hence unless that conJecture is settled nothing could be said

about this problem.

Example 2

Let G = <g|g® = 1> and Z, = (0,1,2) be the prime field of
characteristic three. The group ring Z,G = (0,1,2,2g8,2, 1+g, 2+2g,
2+g, 2g+1}. The group ring Z,G has no nontrival semi nilpotents. In
view of this example we put forth the following problem.

Problem

If Z, be the prime field of characteristic p, p a prime and G = <g|g®
= 1> be a cyclic group of order gq.

1 If (v,q) = 1 can Z,G the group ring have nontrival semi
nilpotents? .

2) If p/q, can Z,G, the group ring have nontrival semi
nilpotents?



‘ 146 W.B. Vasantha Kandasamy

Example 3

Let G = <gl|g® = 1> and Z; = (0,1,2} be the prime field of
characteristic 3. The group ring Z,G = {0, 1, 2, g, g% 2g, 79, 1+g,
142g, 2+g, 2+2g, 1+g%, 1+2g% g*+2, 2+2¢% g+g* 2g+£%, 2
+g, 2g+2g% 1+g+g% 2+g+g%, 2g+g*+1, 2g%+g+1, 2+2g+g%
2+42¢%+g, 1+2g+2¢% 2+2g+2¢%}. In view of the above example Z,G
has nontrivial semi nilpotents. For (1+g)> = (1+g) = 1+1+2+2g =
1+ 2g; clearly (1+2g)* = 0, hence Z,G has nontrivial semi-nilpotents.

Theqrem 8

Let Z, = {0,1,....p—1} be the prime field of characteristic p and
G = <g|g’ = 1>; then the group ring Z,G has nontrivial semi-

nilpotents.

Proof

Consider the element 1+(p—-2)g€ZG, {1+(p—2)g}" - {1+(@-2)g}
= 1+(p~2) + p—1+2g = (p—2)+2g. Clearly ((p—1)+2g¥ p-2+2
= (. Hence the theorem.

Theorem 9

Let Z, = {0,1,...,p—1} be the prime field of characteristic p and G =
<g|g = 1>. Every element « in Z,G such that sum of its coefficients
is p—1 is a non trivial semi-nilpotent element of Z,G.

Proof

A

Clearly if «€Z,G where o = Lag’ with Za; = p~1 then; we have
of —a is such that the sum of its coefficients is p hence (¢#—a) = 0.°
Hence our claim. In view of the above theorem we prove the following

problems.
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Problem

Does there exists any other nontrivial semi nilpotents in Z,G where
G= <gle? =1>7

Theorem 10

Let Z, be a prime field of characteristic p and S, the symmetric group of
degree n, n>p. then the group ring Z,S, has nontrivial semi nilpotents.

Proof

Since S, is the symmetric group of degree n, n>p if we take the
permutation s, which permutes only p elements in S, then tha:
permutation s, generates a cyclic group of degree p. Hence by Theoren:
9 we have nontrivial semi nilpotents in Z,S,.
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A FORMAL ALGORITHM OF A SAMPLING
PROCEDURE FOR A 3-WAY STRATIFIED
POPULATION |

Syed Shakir Ali Ghazali
Govt. College, Bahawalpur.

Ghosia Masood Gilani
Institute of Statistics, University of the Punjab, Lahore.

SUMMARY: A formal algorithm of a sampling procedure for a 3-
way stratified population described by Chaudhary and Kumar (1988) -

is presented.

Keywords: Assigned probabilities, controlled selection, fixed
allocations, preferred samples, random allocations.

1. INTRODUCTION

Stratified random sampling is one of the most widely used sampling
techniques. In practice in many surveys it is possible to stratify the
population with respect to a number of stratifying variables. The need for
stratification by more than one variable might arise in part because
various kinds of information may be required from the same survey or -
because a sample of first stage units may be needed to serve over a
period of time in a great number of diverse surveys. But at same time the
- sampler faces the problem that the number of non-empty strata that can
be formed from the combination of several stratifying variables may be
very large and possibly even greater than the permitted sample size.

In order to achieve extra control over the selection of units, some of the

constraints of stratified random sampling have to be relaxed. For
‘example, sampling within one stratum may not be independent of
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sampling in other strata; the selection of.a unit in one stratum may deny
the selection of units from other strata. Further empty strata are
permissible and samples containing zero elements from one or more non-
empty strata are allowed. Consequently the theory of simple. stratified
random sampling may not generalize in this case. However, controlled
selection techniques may be used for sample selection and estimation

purposes.

Goodman and Kish (1950) described a method called controlled selection
for drawing samples for two or more way stratified population. The
notion of controlled selection is that it increases the probability of
selection of a preferred sample beyond that which is possible with
stratified random sampling, while maintaining the assigned probabilities
of selection for each population element, thus preserving the property of
a probability sample. At the same time the probabilities of selection of
non-proffered samples are reduced, generally to zero. paterson (1954),
Bryant (1960), Hess, Riedel and Fitzpatric (1961) Jessen (1969,70,75)
and Waterton (1980) also presented multiple stratification designs.
Ghazali (1994) has given the formal algorithm for the Bryant et al
method and suggested alternative simple method for improving the
design. Ernst (1981) has proved that a solution will always exist in the
two-dimensional case but Hess, Riedel and Fitzpatric (1975) have given
a counter example for the three-dimensional case.

Waterton (1988) has described the method given by Hess et al (1961).
Ghazali (1996) has shown that the procedure could fail even in simple
cases and suggested some modifications to remedy the problems. Ghazali
(1996) has shown that the Method-3 given by Jessen (1970) fails to
attain its objectives and yields solution only under specific conditions.
Some modifications are suggested to improve the design.

Chaudhary and Kumar (1988) have extended the Bryant et al (1960) 2-
way stratification design to the 3-way stratification case. They have given
only a verbal description but we present hare a formal algorithm for

implementing their procedure.
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2. NOTATION

Suppose that a population of N units is stratified by three stratifying
variables (factors) with I, J, and K categories. Thus there are 1XjXxk
strata cells. Suppose that N;, is the number of population units in the ijk-
th stratum cell such that

J 1 _ I K
Nx=}3 p> Nijk’ N.j.=? z Nijk’
j=1 k=1 i=1 k=1
J I J K
Nk=22N”k/ N=2Z N, =2NJ'—ENJ‘/
i=1 j=1 i=1- j=1 7 k=1

and Wy, = Ny/N is the proportion of population units in the ijk-th cell.
Further given the sample size n, let E;, = nWy, be the number of sample
units to be drawn from the ijk-th stratum cell under proportional
stratification. Ej, may be written as

E, = n,.;k * Pk ' 2.1)

where n,;-k is an integer and 0<py <1. Similarly,

J K . :
E =% Z E,.jk=n,._‘ P ' 2.2)
T ke 2
I K
. ’ J . . )
and E“k=.2 z E,.j.k=n_1+p.*/ 2.4)

where n, n; and n}, are integers and 0<p, . p; p.,<l.
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Also suppose that ny., n; . n; and n, are the number of sample units
allocated to the ijk-th cell, i-th level of the first factor, j-th level of the
second factor, and the k-th level of the third factor respectively in a

sample drawn by some design.
3. 3-WAY STRATIFICATION DESIGN:

For the population and the sample, defined in Section 2, assume that P; .,
P; and p ., defined in 2.2-4 respectively, are equal to zero for all i, j,

and kand set n, =n’,n =n; and n,=n}. Also assume thatm; >1,

n; =1, and n ,21. In the case when some of the n; , n;, or n_, are
equal to zero, they may be forced upward to be greater or equal to unity
by regrouping the adjacent categories.

In order to draw the sample we shall use the alternative scheme proposed
by Ghazali (1994). Chaudhary and Kumar (1988) have also proposed a
similar modification. However, they do not say why the modification is
done. As the implication of the scheme for the biased estimator they
write "It would not be improper to mention that the bias was likely to
increase with the use of modified sampling scheme and in terms of the
mean square error, the estimator would become less efficient.” In fact,
the consequences of this scheme are opposite to the above quotation. As
mentioned by Ghazali (1994), the main objective of the modification is
to reduce the discrepancies between the number of units to be drawn
from a stratum cell under proportional stratification and the expected
number of units under the Bryant design. This in turn reduces the bias
- and hence the mean square error of the biased estimator. It also reduces
the variance of the unbiased estimator. The alternative scheme is given

below: - )

as defined in 2.1, is taken as the fixed allocation. Thus in total

n‘jk,
1 J K '

u=% ¥ I ny units are allocated to the cells in advance as fixed
i=l j=1 k=1

allocation.



where b; , b_j-,' b ,, for all i, j, and k, and b are assumed to be integers.
In order to draw a sample of size b by the Bryant design a cube of size
bxbXxb is constructed. The sub cells of this cube are identified by
6(p,q,1), p,g,r = 1, ..., b. A sub cell is selected at random from b* sub
cells and 1 is placed in the selected sub cell. The values of p, g, and r
corresponding to the selected sub cell are eliminated and from the
remaining (b-1)® sub cells again a sub cell is selected at random and 1 is
placed in the selected sub cell.. This process is repeated a further b-2
times. By adding n; adjacent rows, n; adjacent columns and n , adjacent
layers of the cube an ixjxk cell. Now we present the formal algorithm.

4. THE ALGORITHM

Let Uy, V,!, V.2, and V,* be 0-1 indicator variables. Then the procedure
is given as below: .

Step 1
Set Uy, =0 p.g.r = 1, ...,b,
V,!=0,V? =0, and V}? = 0.
Step 2
Define A, = {p: V! = 0, 1<p<b},

A, ={q:V}! =0, 1=<q<b},
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Ay, ={r: V2 =0, l<sr<b}.
Select a value of p, q, and r at random such that p€EA,, qEA,
and r€ A,;. For these chosen values of p, q and 1, set V,'=1,
V,z2=1, V=1 and U,=1.
Repeat step 2 b-1 times.
Step 3 -

Let bRO = bco = bFO = O,

Define

b .
bp=. T Z,  kel...k,
r=bpg_p*1 :

Then by, is the number of sample units to be drawn from ijk-th cell
under the Bryant design. The final sample constitutes the fixed
allocations plus the random allocation obtained by the Bryant design, i.e.

n; +by.
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' PROF. DR. MOHAMMAD RAFIQUE
(1940 - 1996)

Prof. Dr. Mohammad Rafique breathed his last on June 17, 1996
Saudi Arabia while serving there as Professor of Applied Mathematics
at King Fahd University of Petroleum and Minerals, Dhahran. Prof.
Rafique, who was a man of many parts, will be long remembered by his
friends, colleagues and students for his qualities of head and heart.

Dr. M. Rafique was born in 1940 at Jallunder and migrated
along with his family to Pakistan on the eve of Partition. His school and
college studies were carried out at Sahiwal whereas for his Master’s
degree in Mathematics he moved to Lahore and got admission in Punjab
University. He had a distinguished academic record with first position in
B.A. and second position in M.A. examinations. After earning his M. A.
degree in Mathematics from the Punjab University in 1962 he joined the
Department of Mathematics as a Lecturer in September, 1962. His
appointment at the Department of Mathematics was a recognition of his
academic excellence by the then Head (Chairman) of the Department,
Prof. Dr. Manzur Hussain, who was always eager to bring good people
under his paternal fold. Since M. Rafique was keen to enhance his
knowledge and make himself more useful to the department, his efforts
0 earn a scholarship to pursue higher studies abroad proved fruitful and
he was selected by the Ministry of Education, Government of Pakistan
for a scholarship under the Colombo Plan. '

The period September, 1964 to July 1967 was spent by M.
Rafique at Bangor College of the University of Wales. Within a period
of three years he completed M.Sc. and Ph.D. degrees from that
Jniversity and rejoined his parent department on July 11, 1967.

Dr. Rafique was a very enthusiastic research worker and deSpite
ery incongenial environment and totally inadequate facilities he




158

published a large number of research papers, mostly in collaboration
with Prof. Dr. Muhammad Saleem of Physics Department. In fact Dr.
Rafique and Dr. Saleem are the duo of research scholars who did
pioneering work in establishing culture of research in the fields of
applied mathematics and mathematical physics, at Punjab University.

When the internationally known Pakistani theoretical physicist
Prof. Abdus Salam who was then Director of International Centre (ICTP)
Trieste became familiar with the work of Dr. Rafique, he asked him to
apply for a research fellowship at his Centre.

After having been offered a research fellowship Dr. Rafique
availed it and spent the period September 1971 to September 1972 at

ICTP.

He continued his teaching and research at the Mathematics
Department, Punjab University till September 1977, when he left for
Libya to join the Department of Mathematics at Al-Fateh University
Tripoli on a teaching assignment. He spent five years at Tripoli and
returned to the Punjab University on September 1, 1982.

He was appointed as Professor of Mathematics on April 14,.
1983. :

Dr. Rafique was not only a very enthusiastic research worker but
a very devoted and dedicated teacher. He was always liked and respected
by his students. He took pains in preparing his lectures and tried his best
in communicating his material to the students to their satisfaction.

His command over the subject, his deep interest in research, his
remarkable sharp critical approach and his zealousness in academic
pursuits always earned him high praise from all concerned quarters.

He wrote more than 50 research papers almost all of which were
either published in prestigious foreign journals or contributed to
international conferences. By any standard, this is a commendable feat
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and ensures him a high place among the eminent mathematicians of our
~country. '

He had a remarkable command over the English language and
could express himself in good English.

It is significant to remark that he was the first Pakistani
mathematician whose book on Special Relativity written in collaboration
with Dr. Mohammad ‘Saleem was published by a renowned publisher of
the Great Britain. This book has been appreciated in academic circles
throughout the world for its lucid presentation and for its due emphasis
on relativistic collisions and group theoretical concepts on which a
comprehensive treatment is not available in any other book on this

subject.

When the computers were introducéd in our University for
scientific research for the first time in mid-eighties, he gained, in a short
time, such a comprehensive knowledge of the subject that even the
experts in the field were pleasantly surprised and every body envied his
capabilities. No doubt, without his extreme interest, the role of
computers in scientific research in our University would not have been
significant even today. He learned the various software packages and
made use of them in his work. He also helped others in learning
computational skills. He delivered a series of lectures on FORTRAN
programming. These lectures, after some modification, were published

in the form of a book by the University.

Dr. Rafique was a deeply religious person. He took performance
of his duties as a matter of religious obligation and always tried to help
others - in particular he was generous in extending financial help to the
needy. He had memorised most of the Quranic text and was a voracious

reader of Islamic literature.

A most distinguished feature of Dr. Rafique’s personality was his
modesty. He never boasted or displayed an iota of arrogance. He was
always humble and helpful. Temperamentally, he was a cool and calm
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person who will rarely exhibit his passions but at heart he was very
affectionate and always enjoyed helping others. He was a man of
extremely pleasant manners and would never talk ill of any one. His
friends and colleagues had immense respect for him and will always
remember his charming and graceful:personality.

May God bless his soul!
(Khalid Latif Mir)

Note: I gratefully acknowledge considerable help from
Prof. Dr. Mohammad Saleem, former Dean Faculty of
Science, Punjab University Lahore and a life-long friend
of the late Dr. Rafique, in preparing this obituary.

(KLM)
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