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In the following, we let N be the neutrix, see van der Corput‘ [1], having
domain N' ="{1,2,...,n,...} and range the real numbers, with negligible
functions finite linear sums of the functions

Pl taInfn: AN>0r=12,..

and all functions which converge to zero in the normal sense as 7 tends
to infinity.

We now let p(x) be any.infinitely differentiable function having the

‘following propesties:

Q) p(x) = Ofor |x] =1
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) o0 =0,
(i)  p(x) = p(—x),

(iv) f_‘l p(x) dx = 1.

Putting 6,(x) = np(nx) for n = 1,2,..., it follows that {5,(x)} is a regular
sequence of infinitely ditferentiable functions converging to the Dirac
delta-function 6(x). '

~ Now let D be the space of infinitely differentiable functions with compact
support and let D’ be the space of distributions defined on D. Then if f
is an arbitrary distribution in D', we define

L@ = (f.8) ) = (), 6, — f))_

for n = 1,2,.... It follows that {f,(x)} is a regular sequence of infinitely
differentiable functions converging to the distribution f{x).

A first extension of the product of a distribution and an infinitely
ditferentiable function is the following, see [2].

DEFINITION 1

Let f and g be distributions in D' for which on the interval (a,b), fis the
k-th derivative of a locally summable function F in L7 (a,b) and g* is a
locally summable function in L? (a,b) with 1/p + 1/q = 1. Then the
product fg = gf of f and g is defined on the interval (a,b) by

K

fg = E (k) (_l)i (Fg(l))(k'l)

i=0 \i

The following definition for the commutative neutrix product of two
distributions was given in [3] and generalizes Detinition 1.

“ ~ B amemisen
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DEFINITION 2

Let f g be distributions in D' and let f, = f. 6, and g, = g6, We ‘say
that the neutrix product fOg of f and g exists and is equal to the
distribution h on the interval (a,b) if

N-lim (fngn,¢> = (h,¢)

n-e

for all function ¢ in D with support contained in the interval (a,b). Note
that if

lim(f,g,:9) = (19),

 we simply say that the product f.g exists and equals h, see [2].

This definition of the neutrix product is clearly commutative. A non-
commutative neutrix product, denoted by f o g, was considered in [5].

It is obvious that it the product f. g exists then the neutrix product fOg
exist and f.g = fOg. Further, it was proved in [4] that if the product fg
exists by Definition 1 then the product f.g exists by Definition 2 and

/g =fg-

- The following two theorems hold in [8] and [9] respectively.

THEOREM 1

Let f and g be distributions in D' and suppose that the neutrix products
fOg% (or f20g) exist on the interval (a,b) for i = 0,1,2,...,r. Then the
neutrix products fY0g (or fOog"™) exist on the mterval (a,b) for
k =0,1,2,....,r and .-

k
ﬂm=z@ewmwﬁ°
i=0 \i
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k
or fOe® = Xl 1 (Fomg)*?

i=0

on the interval (a,b) fork = 1,2,..., r.
THEOREM 2
The neutrix product x™" 18¥ (x) exists and

x—.r ﬁ, 89 (x) = ¢, 57+ ), ) 5

where _ . ] )

—1\s~1 .
= it Lo v 000 [ b -ulpPdu dv,

Jorr=12,..ands =0, 1,2,.... In particular

rs-Dey = CHPL ser
x787 D(x) “ent 5 (x), _7(2)

o

forr = 1,2,... Further, ‘ S \)

(C1F s Dy, CDT smse-ny o _CD™ s 1
(s—l)!x 08" Y (x) (r—l)!x 08V () (r+s-1)!6 x), 3 »

Jorrs =12,...

Now let us consider the Gamma function I'(x). This function is defined
for x > 0 by

T = fo""f-le-'dz
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and it follow§ that '(x + 1) = x I'(x) for x > 0. I‘(x) is then defined by
') = x'Tx+ 1

for —1 < x < 0. The function
) = T'(x) —x!

xtsDPx+1) — x7!

¥ 20 ies

Pl

" is an infinitely differentiable function on the interval (—1,1) and so we
define the distribution I'(x) on this interval by

I'(x) = x U+ fx)

_ x-1+E 1"(')(1) Xl

where x™' is interpreted in the distributional sense. More generally I'(x)
is defined by

'x) = x+D..x+n9]"'Tx+r+1)

¢
\

for —r -1 <x< —r and’r = 1,2,.... The function

1

TS gm0

I'(x) — ( - '(x +nr

fo =
o o P+ () x(x+1)...(x+r - l)
‘g » x(x+l) x+nr!

is infinitely differentiable on the open interval (—r —1 —r + 1) and we
define the distribution T' on this interval by =
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I = (=) [+ + )

for r = 0,1,2,... where (x + r)~' is interpréted in the distributional
sense, see [6]. The distribution I'(x) is of course an ordmary summable
function for x > 0.

We now prove the following theorem. : ¢
THEOREM 3

The neutrix product T (x) © 6 (x) exists and

@89 =(-1r!C,,, 370 x)

T o CDTDW) (o
Eo(s) ere )

forr,s =0,1,2,... In particular
T D (). §7D(x _rir-nt 5@r-D
(.80 == ®) ;
&)

r+i

- +§ (r—l) (_l)iF(ni)(l) 5(r~i-1)(x), .

forr = 1,2,... Further,

F(r—l)(x)[]a(s—l) (X) +I\(s—l) (X)D a(r—l)‘(x) = _ (S(" 1)'(1‘1_)::-)' 5(s+r-l) (x) +‘
r+s-1)!
‘s—l (S—l (- 1)'1"(”1')(1) §(s-i- 1)(x) +

i (r+i)

£ g,

i (s +7)
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forrs =1.2,...
Proof
We first of all note that
roxos? (x) =0

on every interval (a,b) not containing the origin. On the open interval
(—1,1) we have

M) =(-1yr1x" 1 +f9x)

el }+i+1) .
D)

=(-1rix7t+
1) o (rri+1)il

From equation (1)
Z-,_1D5(x)(x) = Cryrs §C+s+D (x), (7)

for r,s = 0,1,2,... and since f (x) is infinitely differentiable the product
of f7(x) and 6“(x) exists by Definition 1. We have

s I'v(r+i+l)(1)

r ) = is(s)
1@ = 30 T 51896
s T )
E(f}——-—-‘ D0 sog, ®)
i=0 it - :
B T s - (_l)iS! (-0 £+
since x'dY¥(x) Y 8¢ (x),

fori =0,1,2,..sandiszerofori = s + 1,5 + 2,....

The neutrix distribution product is clearly distributive and so
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I'9x)059(x) = (—’l)’ rix1o89%) + f(x)D69x).

Equation (4) then follows on using equations (7) and (8), equation (5)
follows from equations (2) and (8) and equation (6) follows from "
equations (3) and (8). ;

The following theorem was also proved in [8].

THEOREM 4

The neutrix products x,”" 08" (x) exists and

X708 = = 6, 8" © |
g f !
’forf =12,..ands =0,1,2,.... Iﬁparticular !
DM sty |
Da(r 1) ( (2r 1) , 10
X, (x ) " e ) (10)

forr = 1,2,.... Further,

D sy « LD e 2=~ EDZ g, (11)

(s-1! * r-1! 2(r+s-1)!

forr,s = 1,2,....
We next define the distribution I'(x,) by
F'x,) = x.7'+ fixy)

D, I‘(')(l) i1
i E il

i=1

where x, ! is interpreted in the distribtuional sense.

- We now prove
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THEOREM 5

The neutrix product T (x,) 0 8¢ (x) exists and

| IO%x, 089 () = (—1)’r!%cﬂl’g6("’"”(x)+

- (12)
(5| DT 56 .

+ —— 2 36 (y),

g (z) 2(r+i+1) .

forr,s = 0,1,2,.... In particular -
P(r-l) Da(r—l) =-~1 r!(r-'l)! 5(2r-1)
(*.) @ = -17 5 7y (x) +

(13)

i

+r—1 [r—l} (_,l)ir\(ru')(l) 6(’_i_1)(x),
oL i 2(r +i)

i=

forr = 1,2,.... Further,

r-1) ¢-1) s-1) r- _ E=DIE=D -
I¢ I(x,,)[]& D (x) +T% <x+)|:l5( D(x) = _m 3¢ T D (x) +

i 2(r+i)

-1 fp_ iTus+i
(' D) T goingg,, a8,

i 2(s+i)

forr,s =1.2,....
Proof

On the open interval (—1,1) we have
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M) = I o)

= (,—l)rr!x:r—l‘k lr)(x+)+ 2r)(x+)’
where

r+i+l) i s r+i+1) ;
fir)(’h) _ E IX M), | f(r)(x _ IX M,

s
i=0 (r+i+1)i! 2 i=s+1 (r+l’+1)l'
From equation (9)

089w = 26, 87 0@, (15) |

1
2
forr,s =0.1,2,...,

r) ) - 2[5 (‘l)iP(”M)(l) (s-i)
Ax)089® fg(i]___z(r+i+1) 6 v(x), (16)

Vo0 = LD gy,

since
2(s -i)!

fori = 0,1,2,...s, see [4] and
£ (x,.)89 (x) =0, : 17y

since £, (x,) is s times continuously differentiable and £,*>(0) = 0 for
i=0,1,..,s.

Equation (12) then follows on- using equations (15),(16) and 17), .
equation (13) follows from equation (10), (16) and (17) and equation (14)
follows from equations (11), (16) and (17).
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ABSTRACT: In this note we shall give the Koebe domain for
convex functions of complex order.

KEY WORDS AND PHRASES: Univalent functions, starlike

functions of complex order, convex functions of complex order, Koebe
dormnain. '

1. INTRODUCTION
Let A denoté’the class of functions fiz) = z + a,2> + a,z°> + ... which
are analytic in D = {z | |z| < 1}. A function fiz) in A is said to be a

convex function of complex order b(b # 0, complex), that is fz) € C(b)
if and only if flz) # 0 in D and

Re (1+ zfd(l))>o zeD 1.1
b f(z) ,

The class C(b) was introduced by P. Wiatrowski [4].

It should be noticed that by 'vgiving specific values to b we obtain the
following important subclasses:

i) aly = C is well known class of convex functions

it) C(1 - 06),0 < B <1 isthe class of convex functions
of order 8 introduced by M.S. Robertson [2].
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iii) Cle™* cos A), |}L|<-121 is a class of functions for
which zf'(z) is A- Spiralike.
This class was introduced by M.S. Robertson [2].

iv) C[(l{i)e'” cos l],059<1,]l|<12t— is the class of
functions for which zf'(z) is A- Spirallike of order 8

Definition

Let S(1 — b) (b # 0, complex), denotes the class of functions f{z) = z
+ a2z’ +a,2" + ...inD = {z| |z| < 1}. Which satisfy (fz)/z) # 0
forz = re? € D, and

1+l (zf—gg—lﬂ>0 z €D

Re
b\ f@

Then f(z) is said to be starlike functions of complex order.

Definition -

Let F be a set of functions fz), each regular in D. The Koebe domain
for a set F is denoted by K(F) and is the collection of points w such that
w is in D) for every function f{z) in F. In symbols

KF) = N f(D)

SfeF

Supposing that the set F is invariant under the rotation, so e~ f{d™* z)
is in whenever f{z) is in F. Then the Koebe domain will be either the
single point @ = 0 or an open disc || < R. In the second case R is
often easy to find. Indeed, supposing that we have a sharp lover bound
M(r) for flre?) for all functions in F, and F contains only univalent
functions. Then ’
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R = lim M(@)

~1-

gives the disc |w| < R as the koebe domain for the set F.

KOEBE DOMAIN FOR THE CLASS C(b)

In this section we shall give the koebe domain for the class of convex
functions of complex order under the condition [b|+4 |b| |[1-b| <1.

Lemma 2.1

A sufficient condition for the uﬁivelence of fz) in C(b) is
Ib] +416] [1-b] <1

Proof

Since f(z) E C(b) we can write.

_flo _
P(2) .1
b f@)

where P(z) is analytic in D and satisfies the condition P(0) = 1. Re
(P(z)) > 0.

From the equality (2.1) we find

fl@) _ biPE-1) .2)
f@ z ' '

If we calculate the derivative of (2.2) we obtain that

(Jdl(Z)]l _ bzP'x)-bP() +b 03
@ 2

z




16 ' : s Yasar Polatoglu

Simple calculation from (2.3) shows that

1 (J"-’(z)]2 ) PP - 26*P) + b 0.0
2\f/ 272 -

From (2.3) and (2.4) we get

2 ‘ -
f0d = L@ -Per 1+ A1 @)
: 22 22 L

If we take the absolute value of the both sides in (2.5) we obtain
b | - ~
.21 <2 pepio -tpop + 1+ UL iy 1) 26)
2122 222
On the other hand, M.S. Robertson [3] proved the inequalities given
below if P(z) is analytic in D and satisfies the condition P(0) = 1, Re

(P(z)) > 0, then

Rp@-peP+1]s—EL @7
(I-lz*

p@-1]s-212L } 2.8)

(-1zh

Now considering the relations (2. 6) (2.7) and (2.8) all together, we can
conclude that

Az | s —2— ||+ [B]|1-b] | 2.9)
- <.|z1) |

' Hence, from the Nehari tést [7], we get

2
, b|+4|b|[1-b
f2)z| < (_IZI)le L IS P

(2.10)
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* The inequality shows that the theorem is true.

Corbllary 2.1

Since C(b) = C for b = 1, the inequality |b| +4|b| |1 —&] < 1 reduces
1= 1. ThlS shows that all convex functxons are univalent in the unit
disc.

Corollary 2.2

Leth = e~ cos \, then the inequality |b|+4]|b]]| 1—b|A < 1 becomes
Icos?\|+|1—4sink|sl |

This inequality was fouhd by M.S. Robertson [3].

Lemmé 2.2>

Let f(z) be regular in unit circle and normalized so that f{0) =
f(0) —1 = 0. A necessary and sutficient condition for f(z) € C(b), is
that for each member s(z), s(z) = z + b,z2> + b,z® + ... of s(1-b), the
equation

s(z) = z(}m‘(ﬂ)2 zZzne€D, z#n - 2.11)
-n

must be satisfied.

Proof -

Let f(z) convex function of complex order in D, then this function is
analytic, regular and continuous in the unit disc. Therefore the equation
(2.11) can be written in the form.

5(2) = 2f @) Q1)

If we take the logarithmic derivative from (2.12) and snmple calculations
shows that



Koebe Domain for Convex Functions of Complex Order . 17

The inequality shows that the theorem is true.

Corollary 2.1

Since C(b) = C for b = 1, the inequality |b| +4|b||1-bf <1 reduces
1 =1 ThlS shows that all convex functxons are univalent in the unit

disc.

Corollary 2.2

Letb = e cos \, then the inequality |b| +4|b| |1—b|‘ < 1 becomes
| cos)\l + |1 -4sinA] <1

This inequality was found by M.S. Robertson [3].

Lemma 2.2

Let f(z) be regular in unit circle and normalized so that f(0) =
f(0) —1 = 0. A necessary and sufficient condition for f(z) € C(b), is
that for each member s(z), s(z) = z + b,2> + b,z> + ... of s(1—Db), the
equation

5(z) = Z(M)Z zneDz#n | (2.11)
-n

must be satisfied.

Proof

Let f(z) convex function of complex order in D, then this function is
analytic, regular and continuous in the unit disc. Therefore the equation
(2.11) can be written in the form.

5@ = 2f @) BN A V)

If we take the logarithmic derivative from (2.12) and sunple calculations
shows that
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Re[ ( 5@ _ )1] Rel1+1 f”(Z)J (2.13)
8@ : b )

Considering the relatibn (2.13) and the definitions of convex functions
of complex: order, the definition of starlike function of complex order
together we obtain that the function s(z) is starlike functions of complex
order.

Conversely, let s(z) is starlike functions of complex order in D, then
simple calculations from (2.11) we obtain that

%(z&_l)u _1 [ 22())_ _ Z*"} + b;lv(z.lv4)

5@ b|f)-f)  z-n
If we take F(z,n) = [ 22f’(z) _ z+n} + b-1
ﬂl) -fn)  z-n b
the relation (2. 14) can be written in the form
- 150 1} 1 | | 2v 15
Fem { S(z) | ( f )

Considering the relation (2.15) and the definition of starlike functions of
complex order together we obtain

Re F(zn) > 0 : | (2.16)
= + l __2_. - Z f '

F(zn) =1 b(ﬂn) n) Z+... (?.17)

, _1.1 @

lim F(zn) = 1+— 7z L2 ) (2.18)

nz b fe

o]
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P

f(z) is convex function of complex order.

Corollary

By the relation (2.15), (2.16), (2.17), (2.18) the function

2 R0)-fin) z-n| b

3.inequality for this function we obtain

, 112 _2) .,
b\ fln) n

simple calculations from (2.19) we arrive that

Re .f_(_{)_ > —!—-
z 1+|b|

4 Corollary

If we take 7 = 0 in f{z,n) we obtain

f@ ] 1
F(z,0 2 -1f{+1-=
@0 = (Z ) b

“from the inequality (2.21) we arrive that

| @ ).
{ Re( (ﬂ:) ))?”D

fem) = [ 272f(2) z+n] , b-1

1 Thére_fore by using continuity the claim is proved. Hence it follows that

4 has a positive real part and is analytic in D, using the caratheodory

2.19)

(2.20)

@.21)

2.22)
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The inequali_ty (2.22) shows that all convex functions of complex o'rderi
a_ré starlike functions of complex order of order %
Theorem 2.1

The Koebe domain for the class C (b) is

R=1lmm@) = tim — 20 - L
Yim AR @A | T+

This result is sharp because the external function is

2z

79 = G epa

Proof

Let fiz) € C(b), the inequality (2.20) can be written in the form

L+ Jb| f9) , 1
_Re( . Z)zz,zeD @2

Therefore the function (1+lel j_‘(_zl) is subordinate to the function
, z i

(1 1 ) . Using the subordination principle then we have
+2Z

2r
(1+]6h(A+n)

2

= r ol 225}
A+pDAa-n .( _. )‘

< /D] <

The inequality (2.25) shows that the proof of this theorem is complete.‘

It
re

It
nu
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Corollary 2.3

Ifb =1 — B, 0<B<1, then the Koebe domain for the class of the
convex function of order @ is .

R, = —Zf—ﬂ (2.26)

It should be noticed that this result is sharper than the M.S. Robertson’s
result [2]. M.S. Robertson has shown the Koebe domain for the convex
function of order G to be [1].

o 1

Lng lf‘3=5

R = 226-1_1 1
: if p==

2B -1 2

If we compare the result of (2.26) and (2.27) we can clearly see the
numerical dlfference between them

g Ry, _ Ry,
12 T 0.666 0.301 ]
173 0.600 0618
1/4 0.517 0.586
/5 0.555 0.567
176 0.545 T 0.555
177 0.538 0.546
178 0.533 0.540
179 0.529 0.536
1710 05226 | 0532
711 0.532 0.529
/12 0.521 0.526
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C_orollary 2.3

1 fb =1 -8, O<B<1, then the Koebe domain for the class of the
convex function of order @ is .

R, = ﬁ | (2.26)

It should be noticed that this result is sharper than the M.S. Robertson’s
result [2]. M.S. Robertson has shown the Koebe domain for the convex
function of order 8 to be [1].

4

S, 1
Log2 lfﬁ=5
RkZ = 2p8-1 _
2 1 . 1
. if B+
2B -1 2

If we compare the result of (2.26) and (2. 27) we can clearly see the
numerical dlfference between them

B R, T R,
172 T 0.666 0.301 ]
173 0.600 0618
1/4 0517 0.586
1/5 0.555 0.567
176 0.545 T 0.555
177 0.538 0.546
/8 0.533 0.540
179 0.529 T 0.536
1710 05226 . | 0532
N 0.532 0.529
1712 0.521 0.526
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B Ry Ry
/13 0.520 0.524
1714 0518 0.522
115 0517 0.521
16 | 0516 0519
17 0.515 0.518
1718 0.514 0.517 |
719 0.513 0516 1
1720 0.512 : 0.515 i
Corollary 2.4

Let b = 1 then we obtain the Koebe domain for convex functions

R =

N | =

This result is well known.

Corollary 2.5

Letb = e™ cos A, then

R=—21
: 1+cosA

This is Koebe domain of the class C(e™™ cos N

Corollary 2.6

The Koebe domain of the claés C(1—-B)e ™ cos N) is

R=— 1
1+(1-B)cosA
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ABSTRACT: In this note, we construct reversed random
evolutions on finite state space, continuous-time markov chains. The
proofs use the sample path approach of random evolutions. These
results completely settle the issue concerning the proper order of the
operators in the random evolution structures, and further explains the
connections between forward and backward random evolutions.

KEY WORDS AND PHRASES: Random evolution, markov

chain, semigroup of bounded linear operators

Research on the random evolution of a family of semigroups {7z),
t=20,i=1, ..., N} with switching among semigroups controlled by a
finite state, stationary markov chain v was begun by Griego-Hersh [3] to
study equation of the form

ou

> Ai+Qi, a0) = f

where Q is the infinitesimal matrix of v, A4 is the infinitesimal generator

of a semigroup R(®) on a Banach space B , and i(?) = R@) f,
where fe B

In [6 and 7], the author showed that the random evolutions of Griego and
Hersh were backward random - evolutions and constructed forward
random evolutions. Forward random evolutions provide a probabilistic
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approach to the study of a different but analogous class of Cauchy
problems.

The purpose of this note is to directly obtain reversed random evolutions
from the markov chain. This gives additional insight as to how the
random evolution structure relates to the mechanics of the Markov chain.
- Here we repeat some of the arguments contained in [8] for completeness.

- Surveys of the literature on random evolutions are given in the papers of

"Cohen [1], Hersh [4] and in the books of Ethier and Kurtz [2], Jordache

[5], and Korolyuk and Swishchuk [9].

2. REVERSED RANDOM EVOLUTIONS

Suppose v = {¥(r), t = 0} is a right-continuous Markov chain with state -

space {1,...,V}, stationary transition probabilities p,(¢), and infinitesimal
matric Q =< ¢q; > = <p',(0)>. P, is the probability measure defined
on sample paths w(f) for v under the condition w(0) = i. E; denotes
integration with respect to P;. For a sample path w € Q-of v, 7; (w) i§ the
time of the jth jump, and N(?,w) is the number of jumps up to time ¢.

Let {Ti(r), t = 0, i = 1, ..., N} be a family of stfongly continuous
semigroups of bounded linear operations on a fixed Banach space B. 4;

 is the infinitesimal generator of T;. Let D, be the domain of 4. B is the
N-fold Cartesian product of B with itself. A generic element of B is
denoted by f = (f}) wheref, € B, i = 1,....N. Wé'equip B with any

appropriate norm so that LAl-0 as }:|-0 for each i.

Definition 2.1

A backward random evolution {R(t,w)., t = 0} is defined by the product
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R®) = Tq(7) "(’1)(71 m ) T"(’mn) (= )

- Definition 2.2

For ¢+ = O define the matrix operator R(H on B specified

componentwise by

R, = E[ROf)-

The following results now follow from Griego and Hersh [3]. -

Theorem 2.3

{R@®),t > 0} is a strongly continuous semigroup of hounded linear

operationson B .

Theorem 2.4

Theinfinitesimal generator A of R() isgivenby A = diag(A,,.-..Ay)
+ Q in matrix form, or considering A as acting on column vectors we
get

Uf); = Afi+X 9 %

Corollary 2.5

The Cauchy problem Jfor an unknown vector i(t), t > 0,

-3; = Au,+ Eq,, 1, @04 = f @.1)
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is solved by 4(t) = RW)f, for f € D = D;xD,x...xDy.

Definition 2.6

A forward random evolution is {S(¢,w), ¢ = 0} defined by the liroduct

S@ = Tv(r,,) (t- Tn)'Tv(rn-l)(Tn = Tpog)- Tv(r,)(rz =) oy (T)

where N(t) = n.

Here, a forward random evolution is obtained by reversing the order of
the operators in a backward random evolution.

Definition 2.7

For ¢+ = 0 define the expectation semigroup U(®) on B

(componentwise) by

(00f), = ¥ E[s®f; v = B,
where E,.[S(t)f,.; v = k] = E,.[S(t)ﬁl(v(,)=k)].

The following result is proved ih [6 and 8].
Theorem 2.8

The Cauchy problem for an unknown vector i(t), t > 0, is solved by

du .
—5,,5 = Agu+Y g, u, 504) = f (2.2)
i J

is solved by () = U@®)f , for fe D .
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The system (2.1) is reminiscent of the backward Kolmogrov system. For
this reason we call (2.1) the backward system for the random

evolution. R(?) is called a backward random evolution semigroup. The

generator of U(z) is the matrix transpose of A, the generator of R(?) .

The system of equation (2.2) taken with the system of equations (2.1)
form a formally adjoint system. It is on this account that we call the

semigroﬁp U1z the transpose of the semigroup K() . The system (2.2)

is the analogue of the forward Kolmogorov system. For this reason, we
call (2.2) the forward system for the random evolution. U(¢) is called a
forward random evolution semigroup.

Having constructed the forward random evolution semigroup U, we will
now use the operator set-up in definition 2.6 to obtain "reversed" random
evolutions (see[8]). Let use rename S(), M(), and use it to obtain a
backward Kolmogorov system. In so doing, we show the backward
Kolmogorov system depends essentially on the fact that almost all sample
tfunctions of v(z) have a first discontinuity, which is a jump. similarly, the
forward Kolmogorov system depends essentially on the existence of a last
discontinuity, which is a jump, in the interval [0,7]. Thus, the forward
Kolmogorov system for random evolutions may also be obtained by
using R(z) from definition 2.1 in place of S(z) in Definition 2.7. ‘

Befinition 2.9

A reversed random evolution {M(t,w), t = 0} is defined by the product

M@ = T‘,(Tn)(t =T, TV(T..-I)(T" = Tpet) - Ty (T1)

where N(t) = n.

The proof of the following lemma is essentially the same as that of
Lemma 2 in [3] and is thus omitted.
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Lemma 2.10

Ifg:Q->Bis Bochner P; -integrable for a fixed i = 1,...,n, then for each
t = 0 the function w > M (t,0)g(w) is Bochner P-integrable and

E[M®)g|F](®) = Mt,)Eg|F) (@),

for almost all w with respect to P,, where F, is the g-algebra generated
by the random variables v(u), 0 < u < t, that is, F, is the past up to
time t for the Markov chain. ,

B, = {f' € B:f-f, lsisN}
Definition 2.11

For t > 0 define the (matrix) operator T(?) on B, specified
componentwise by '

(fof); = EM®f,,),  where f= ().

As in Lemma 2.10 we see that M(?) f,, is Bochner integrable. Below we
will show that T(s) defines a semigroup on B. We call T(r) the .
"expectation semigroup" associated with the random evolution M(z).
Theorem 2.12

{f'(t), tzO} is a strongly continuous semigroup of bounded linear

operatorson B, .



On the Reversal of a Random Evolution , 31

Proof : ) .

- That T(?) is strongly continuous in ¢ and is a bounded linear operator

followed from [3] or [8]. Thus we need only check the semigroup
property. It suffices to show that for each i,

(F@e+9)f), = FOTGF);-
Let 6> be the shifted path defined by the requirement that
v(u,ﬁ,w) = v(u+t,0) for every u = 0. Define gob,
by (g °6,)(w) = g(8,w) . Thenthe Markov property of v(t) is expressed
by the formula .E,.[goe, |Ft](w) = E,, ,[8] foralmost all o[P;]. We can’

omit « and write simply _E,.[goet |Fr](oq) = E,,[g]l. Itis easy to check

that M(t) satisfies the multiplicative formula
Mt + 5) = M(t) o 0. M(s).
As a result for fixed i, we have
(fe+s)f), = EM@+9)f]
= E,.[E,.[M(t+s)f IF,]]
= E[E[M®) © 6, M(S) £y | F]]

- E,[M@) © 8, E[M(s) f.y |F, ] |F, ‘|

(by Lemma 2.10.and the fact that M(f) o 6, depends
onF,u=ys)

= B [MOE[M&]
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(by the Markov property of v)
- (foTwf),  QED.

Theorem 2.13

The Cauchy problem for an unknbwn vector d(t), t > 0,

i, N ‘ N
a_':' - Z g @, @(0) = f (2.3)

is solved by i = Tof ,

where feb-= {fc—' Byf = f 1sj<N, fe nDj}.
Proof

We need to prove that the infinitesimal generator of 7(f) is

A = diag (4,,...,A,) + Q with domain D. If 7 is the first jump of

v then

(Twf), = E,.[M(t)f;t>t]‘+Ei[M(t)f;t'Ei2t] |

T,OfP,(c>0+ [EMOfl© = 1P € dr)
0 .

e W T+ [ E[E, M -DIT,0)f |t = 1|P,(x € dr)
0
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T 0 f Y E|[E M- r)]T(r)f}( ) q,,p,,(r>) dr)

JFI

t

L0 [ X TenT.0f) e, ) dr

0 J#i

Letting s-lim denote limit in the norm of B we have, for f, € D,

A7), = s~ lim — [T(t)f) —f]

no

no

- slim L 1 [ ROV

t

s - lim = [ ¥ (Te-NT,00f) 4,0, dr

n~no L 0 J*i

=Afi-af; + X apf,;

Jj=1

'=A$fi +Z qujj' .
N

By' standard »senil'igr.g(r)up theory we obtain the results of the theorem.
REMARK

The construction of reversed random evolutions settles an issue about the
order of the operators in a random evolution (see {3 and 4]).
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APPLICATION OF THE LAPLACE " _
METHOD TO THE ASYMPTOTIC BEHAVIOUR'
OF THE TAIL PROBABILITIES

Hasan M. Ymeri

ABSTRACT: The object of this paper is to formulate some
assertions about the probability tail behaviour of various distributions
under large deviations. Here we review some results from Laplace’s
theory and give its consequences for the theory of large deviations. At
the end of the paper we shall discuss an approach to quantil
approximation problem via large deviation theory.

KEY WORDS: Large deviation theory, Laplace Theory, quantil
approximation. .

Procedures using saddlepoint approximations, conjugate distributions or
Edgeworth expansions are widely applied both to large deviation theory
of probability and to mathematical statistics, {1-4].

Concerning the Laplace method for determining the asymptotic behaviour
of so called laplace integrals it seems that its application to the mentioned
fields has received considerably smaller attention up to now. Therefore
in the present paper we review some results from Lapalce’s theory and
give its consequences for the theory of large deviations.

To be more precisely, we shall formulate some assertions about the
probability tail behaviour of various distributions under large deviations.

Throughout this paper we shall consider laplace integrals

b .
FQA) = f fx) W dx,
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where f and § satisty the conditions
H f, 5 € C(a bD;
ii) max {S(x)| x € [a, b]} is attained only at the point x = a

iii) £, § € €= (la, a + €]) for some € > 0, and §'(a) = 0

b
iv) f | )] e*°® dx < =, for some A, > 0.

Theorem 1_

The following asymptotic expansion formula and representation formulz
are true. ' : .

F) =@ Y ¢ A% s> 0 (1)
k=0 : :

_ f(a) elS(a)
A S

and F(A) ~ as —> oo Q)

where ¢, = (-1)*! M* (&)—] la
S'x)

Remarks

1. Relation (1) means that for zirbitrary n

lim A.'”l

Ao

F()fe*s@ - ¥ ¢, ).-H] = 0

k=0
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2. Relation (2) means that

lim £y 2 3@
ie " 2 oS

3. M* denotes the k-th power of the differential operator

1 d

M= —— =
Si) dx

Now, let (Q, «, P) be a probability space and x a random variable
defined on it. If x is generalized Gamma distributed with parameters o«
> 0,5 > 0and p > 0 then the asymptotic (A - o) behaviour of the
tail probability

0 bp/¢ .
Pax) = [ & Ple B gy A >0 3)
{ T(/) |

~an be determined by applying Theorem 1 with functions
fx) = xP~h.
Sx) = —bx*

and

[he followings Theorem summarizes the respective conclusions.

[heorem 2

"he asymptotic behaviour of the tail probabilities (3) is described by the
ollowing asymptotic representation formula
bp/é-l AP e-bl'

(/o)

Pxz1) - A @

nd the asymptotic expansion formula
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BPI® p-bae (k41 '
P(x2A)=—2_ 3% ¢, AEDE A0 (5)
T(p/a) kzo -

where one has to take

¢, = (ab),
k

¢, = (@b)*! [N p-ia), k = 12,...
i=1 .

Remarks .

4. If p/a is an integer then the series in (5) will be only a finite sum
taking into account terms up to the summation index k¥ = p/o—1.

5. Although the Gaussian distribution is not really a special case of the
generalized Gamma distribution it is possible to-apply Theorem 2 to the
study of the asymptotic tail behaviour of the Gaussian distribution too as

will be shown in formulas (6) and (7).
Proof

Replacing x by Ax in (3) we get’

o bPle

A? F(.°
Teay © T

P(x24)

Y

where F(% = f Pl g B gy
1

is a Laplace integral with parameter A* instead of A and the same
functions f and S as above.-




Application of the Laplace Method to the Asymptotic Behaviour .... 39

The maximum of the function S(x) = —bx* for x € [1,) is attained
only at the point x = 1. .

Obviously, conditions (i) and (iii) are fulfilled, too. Choosing A\, = 1,
one gets:

fxp" et dx f xPl e85 gy = bP% 1fo [(pla) <

1 0

Hence, all assumptions of Theorem 1 are fulfilled and we have the
asymptotic representation formula
fa -1

P(xz21) ~ I{’;/a)

- - q
AP g b as AN-— oo,

In order to determine the coefficients ¢, of the asymptotic expansion
formula (5) we have to consider

) k 4
(-DF! 1 4y ¥ L.
: ~abx® ! dx} | -abx*!

1 4dY
xa—l dx

(xp-a) L=1

= (ab)™! [

It is easy to deduce by mathematiéal induction that
¢, = (ab)™,

. _
¢, = (@b)*' 1 p-ie), k = 12,..

i=1

Taking into account the factor N° ab”_‘"/l‘(p/a) we get the asymptotic
expansion formula (5). ‘ '

We shall formulate now some special conclusions from Theorem 2.
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Let x ‘be ‘a standard Gaussian random variable. Then the asymptotlc
behaviour of the tail probabilities

@

1 2
Plxs}) = [—— S
(ﬁn][e

can be obtained applying Theorem 2 with parameters @« =2, b = 1/2
and p = 1.
We get the wellknown formulas
Pead) ~ —L ¢ as A oo ©)
V2TA _

and  P(xsA) = — b ey
V2T A

p_QED! .
xz(l o o M A o (M)

Putting @ = 1, we have a Gamma distributed random variable with the
parameters b > 0 and p > 0. We get the asymptotic representation

formula

P(x l"——b/'\ e A—> oo 8

We determine the ceefficients ¢, now. In the case of p being not integer
we make use of the relation

I'ix+1) =xI'x), x € R, x =« —1, =2, ...

Then the coefficients can be written in the form
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- p+t 1@
Ci Tk

If p is an integer we get the same result putting

T® Lo for k>p-1
T8 |

Therefore we have the asymptotic expansion formula

P(x21) = (bAy™! eb? fj [(bA)" T@E-B]', A= (9
k=0

where in the case of an integer p the series is defined to be only finite
sum taking into account terms up to the summation index & = p~".

For another application of the laplace method to large deviation theory
let x be a Weibull distributed random variable with parameters & > 0
and p > 0. Then (o = P) '

P =)~ e, A— oo (10)

and in the asymptotic expansion formula (5) the coetficients ¢, are equal
to zero for k € {1, 2, ...}.

Let us return now to the case of a standard Gaussian random variable
x.Z,_, denotes the 1-a quantil of the distribution function of x, i.e. ‘

7 -«
L f e P dy = 1~¢

2r .

Obviously, The quantil z,_, tends to infinity whenever « tends to zero.
Hence, for sufficiently small « > 0 the solution A = z°,_, of the

equation
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42
a = e VP2

1
Vo
can be used as an approximation to z,_,. Let N = 1. Then

a < (2m) exp {—N2}
and A< (-2ha-InQ2m)?
This yields
a = [27) (=2 In & — In 27))]72 exp {—N/2}
and
| Az {-2ha—-In27) ~ In(-2Ina}”

so that
e ~{~2Ina —In Q2 7)}”? as a0

However, { —2 In a —In (2 )} is still a quite crude approximation to
Z,-. in statistical relevant cases of or. A numerical study shows that

{(-2na - In(27) = In (=2 In a)}'?

is a better approximation to z,_,, and differs from it not more than 0.12
if « < 0.05 and not more than 0.022 if ¢ < 0.0001.
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ABSTRACT: In this paper, the problem of an alternative
definition of distribution x,”" using the locally summable function In x,
~is discussed. Although the distribution x, ™" In’x, is considered as a
single entity and not as a product of the distribution x, ™" and the
locally summable function In’x,, our results show us that
differentiation of x, In’x, acts as if it were such a product.

AMS Subject Classification (1985): Primary 46 F 10.

KEY WORDS: Alternative definition of distribution, Locally
summable function. '

For A > —1, the distribution x,* is the locally summable function
“gefined by

N x*, x>0,
x, =
_ 0, x<0,
‘When A < —1 aad A # -2, —3,..., the-distribution x,* is defined

+inductively*by=the equation

(xm)/ =(A+1) x*

+
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It follows that if —r—1 < A < —r, then

<xf,<b(x)> =]' [‘b() 5 <I>('(0) }dx
o 0

o <I>°(0) ) I
_{x [q;() E Y x H1-x) x| dx
)

r-DIA+n)!

for arbitrary test function ® in the space D of infinitely differentiable
functions with compact support, where H denotes Heaviside’s function.

Note that if r = 1, then E.;lo is understood to mean an empty sum.

Gelfand and Shilov (2] ‘define the distribution F_,(x,, A\), when
—r—1 < X\ < — r, by the equation

< F_(x,,A), P(x)>

! r2 r-1
f ¢(x) E o' (0) i (I) (O) H(]. x) x’" 1
0 ! (r-1)!
for arbitracy ® in D.
They then define the distribution x, =" by .
X, =Fo (xy, = r @)

~for r = 1,2,.... We will denote F_, (x,, — ) simply by F (x,, — r) and
it follows easily that '
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d = (_l)r t
= Ax,,-r) = —rF(x*,—r—1)+T 80 (x)

Thus with x, 7" defined by equation (2), equation (1) is not satisfied with
r=-2,-3,.... :

This seems to be rather unfortunate and so an alternative definition of
x, " was given in [1] by letting Inx, be the locally summablie function

defined by

Inx, x>0
Inx, =
: 0, x<0

then defining x,~! by the equation

(nx) = x 3)

. and more generally defining x, =" inductively by the equation

(x—nl)/ - -(r—l) x;r . | (4)

+

for . r = 2,3,... . With this definition of x,”", equation (1) is then
satisfied for all values of A.

It can be proved easily that
x+~l = F(x+9 - 1)
and it then follows by induction that

e (=1)y _1\ AC-D ' ’
x, = Flx,, r)+————(r‘1)! Y@r-1) 8 ® %)

forr = 1,2,..., where
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0, r=0

() =1 &
® Y Ui, rl
i=1

The distribution x,* In‘ x, is defined by

F .
x+
OA®

A
=x, In® x,

for N'# —1, =2,....and s = 1,2,... . Then x,* In® x, is locally
summable function for A > —1 and

<xiL n‘x,, <I>> = }'x‘ In® x [tib(x)—rf: ﬂg) x'] dx
‘ 0 )

i=0 il

- r=2 i = ]
= f xl In® x {q)(x) _E Q(zfo) xi _ fl()r_ll()o') % H(l _x) xr—l} dx
0 i=0 : :

. C1¥ st @70 0
r-D' -+

for —r—1 < AN < —r,5s = 1,2,.... anid arbitrary ¢ in D.
It follows easily from the definition that

(xiL In’® x+)/ = Ax} I x +sx} 7 I x, 6)

for N # —1, ~=2,.... and s = 0,1,2,... . Although the distribution
x,» In® x, is considered as a single entity and not as a product of the
distribution x,* and the locally summable function In® x,, equation (6)
shows us that differentiation of x,* In® x, acts as if it were such a
product. ‘
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Now we consider the problem of defining x,; ~7In’ x, so that equation (6)
is satisfied for all A and s = 0,1,2,... . Gelfand and Shilov [2] define

x,”" In* x, by equation

&F -r
F_ (x,\],.,=x, In'x
axe Tt -

for r,s = 1,2,... . From now on, we will denote this distribution by

Fx,,-1) In* x

Csothat  (FX,,r) In'x,, ®()

p : 2 50 -1
=[x x 0w -3 T - ‘I’( 1§?) H(1-%) x| dx

0
* for arbitrary ® in D.

Theoi'em 1

[F(x+, -r) In® xJ/ = -rFx,,-r-1) In* x, +sFx,,-r-1) In"! x,

forr,s = 1,2,... .
Proof

For arbitrary ® in D we have
(Fg..n) 0* 2], @@) = ~(Fx.. ) In° x., @ <x)>

e el -3 299 2

_ r-1
J BT oony A
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p ; 1 50 g0
=[x i xr i xes)|@09- Y 2 Dni - 2D pgyyar) e
0 ) i=0 1! rt

= (~rFfx,,~r-1) It’ x, +sF,,-r-1) ™" x,, ()

forr,s =12, ... The tesult of the theorem follows. -
It follows from the theorem that with Gelfand and Shilov’s definition of -

the distribution x,~" In® x,, equation (6) is satisfied for all N and
5 =1,2,..., even though it is not satisfied for r = —~1,—2,... when

s = 0.

In order to define x, ™" Iir’ x, so that equation (6) is satisfied for all A and
s = 0,1,2,..., we first of all define x,™” In® x,, by the equation

i) = o) 5 o,
for s =-‘O‘,1,2,..:, 'so that eduation (6) is satisfied with A = 0 and
s=12,...
Theorem 2
x, ! in‘ x, = F(x,, —1)In*x,
fors = 0,1,2,....
Proof

We have
(s+1)<x,“ In x, <I>(x)> = (I x+,<I>1(x)>"

. . |
= [ In° xd [0 -B(O)] - [ I xd B(x)
0 1



some New Theories in the Theory of Distributions _ .51

= (s+1) [ x7! In® x[®(x) - B(O)H(1-x)] dx
J .

= (s+1) <F(x+,—:1) In x,, Q(X)).

for s = 0,1,2,... and arbitrary & in D. The result of the theorem
follows. ' -

More generally we now define x,™" In’ X, by the equafion

x, In®x, = (x,,~7) In" x, +(r(—; ‘P(r 1) 6'1(x)

for r,s = 1,2..., where

-
It
o

0,

CF0) = .0

for s = 1,2,..., with particular case ¥, (r) being equal to ¥(r) defined
above. Note that in the particular case r = 1, x+‘1 ln X, isin agreement
with Theorem 2. :

Theorem 3

-r 1 -r-1 ~-r-1 -
(x+ In* x+) = -rx, " In® x, +sx, In"'x,

forr,s = 1,2,... .
Proof

Using the definition of x, ™" In’ x; and Theorem 1 we have
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(x:r_ In® )c+)l = —rF,(x+,—_r —‘1) I’ x, +sF(x+,i-r—1) X

s-1 + (_I)r _ (2] =
x In*" x —_(r-l)! ‘fI'S(r 1) ' (@) ’

T A P ) Gl PO
= -r F(x,,—r—l) In® x, +T— (N8 () +

o 7 _1yr+1 :
S+ S [F(x*v, —r—l) In* ! x, +—(——1)—'x‘Ps_l(r)} 80 (x) =
: _ rt
= -t x, + s It x,

for r,s = 1,2,...

It follows that with this definition of x+" Inx,, equation (6) is satisfied
forall A and s = 0,1,2 .

The distribution x_* In* x_ is defined by replacing x by —x in the
distribution x,* In* x, for A% —1, —2,... and s = 0,1,2;... and the
distribution F{x_, —r) In® x_ is defined by replacing x by —x in the
distribution F(x,, —r) In* x, for r = 1,2,... and s = 0,1,2,... . We
therefore define the distribution x_~" In* x_ by replacing x by —x in the
distribution x, " In* x_ for r = 1,2, and s = 0,1,2,... . It follows that

x7Inf x: = Fle.,-r)Inf x_- T (-8 ()

(r- 1)’
forr =12, ...and s = 0,1,2,... . and that
A x_t = MM Infx. — s M Intt x

forallAand s = 0,1,2,... .
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m—

We finally define the distribution x™" In* |x| by

x"In’ |x| =x,"In"x, + (—1)x_."In" x_
forr=12,...and s = 0,1,2,... . It follows that
xIn’ x| = Fox,, = nlnfx, + (=1y Fx_, = ) In x_

so that this definition of x™" In*| x | is in agreement with Gelfand and
- Shilov’s definition. We then of course have

et |x]|) = = x| + st | x]
forr =1,2,... ?md s=012,....
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1. INTRODUCTION

it is a well known fact that the nth partial sum of the harmonic series
never equals an integer when n > 1. This is a surprising property
considering that these partial sums grow unboundedly with increasing ».
In view of such a result one may naturally question whether there exist
other such positive-rational-termed divergent series having non-integer
partial sums. In this paper we shall answer in the affirmative, by
considering a family of series whose terms are formed from the integer
multiples of the reaprocals of generallzed Fibonacci sequences ;wen by.

Un =.PUn—1 - QUn—za

where (P,Q) = 1 with U, = 0, U, = 1. For our purposes the choice of
such-a class of sequences is entirely a reasonable one, as the resulting
family of series contains as a special case the harmonic series (i.e. when
(P,@) = (2,1)). In order to achieve the main goal of this paper it will
first be necessary, in Section 2, to extend the above result concerning the
partial sums of the harmonic series, so as to include the case of integer
multiples of this series. In particular, we shall demonstrate that for any
sequence of integers {b,} in which for every prime (b,p) = 1, the

b .
corresponding partial sums E:=1 —, are non-integer for n > 1. By
’ : .

modifying the proof of this result, it will then be possible to establish a
- similar conclusion (see Theorem 3.1) for the partial sums of these series
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= b, | ' ‘
2 /7R (1)

where U, is generated with respect to a relatively prime pair (P, Q) which
satisfy either [P| > @>0or P # 0, @ < 0 and the sequence {b,} is
such that (b,, U,) = 1 for every prime p. The required divergent series
can be obtained from this family by imposing an additional assumption
upon the sequence {b,}. As we shall see, one of the main difficulties
with establishing Theorem 3.1 lies in finding the values that P and Q
may assume in order that U, ¢ 0 for n > 1. By employing some well
known results on generalized Fibonacci sequences, we will show that the
only relatively prime pairs (P, Q), in which U, = 0 for some n = 1, are
(—1,1) and (1,1). Consequently, the above restrictions on P and Q have
been chosen so as to avoid such problem values. In addition to these
~ results, we shall further demonstrate in Section 3 that the partial sums of
(1) remain non-integer, when the terms of the series are "thinned out",
by summing over index values which are either odd or a multiple of a
fixed integer. ' o '

2. HARMONIC CASE

The argument upon which we shall establish the non-integer status of the
partial sums (denoted S,) in this and the following section, will be based
on the simple criterion of divisibility. As §, can be reduced to an
expression involving a single fraction, with denominator equal to either
nl or UU, ... U, our task will -be to produce a factor of these
denominators which fails to be a divisor of the -corresponding
numerators. Once such a factor has been found, we can then conclude
that S, is non-integer. To this- end, we require the following technical
lemma.

Lemma 2.1

Suppose p, and p, are consecutive primes. If the integer m # p, is such
that 1 < m < p,, then (p,, m) = 1. :




)
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Proof

We need only consider those integer m € (p,, p,). The result holds
trivially if p, and p, are twin primes, as consecutive integers are
relatively prime. Suppose p; + 1 < p, and assume m is an arbitrary
composite number satisfying p; < m < p, with (p,, m) # 1. Clearly
then m = 2p,, however by Chebychev’s theorem there exists a prime ¢
€ (P, 2p,). Hence there must exist another prime ¢ such that p, <
q < p,, but this is a contradiction as p, and p, are consecutive primes.
Consequently (p,,m) = 1 for all integers between p, and p,.

We are'now in a position to establish the non-integer status of the partial
sums of those series formed from the integer multiples of the Harmonic
series. It should be noted, that an alternate proof exists for the case
b, = 1 of Theorem 2.1, which is based on an argument involving the
occurrence of the highest power of 2 in the sequence 1, 2,...,n (see [3,
p.176]). This argument however cannot readily be moditied to prove the
following more general result.

Theorem 2.1

Suppose {b,} is a sequence of integers with the properly that @ bp) =
Jor every prime p, then the n-th partial sum of the series E:ﬂ = s

n
never an integer for n > 1.

Proof

If n = 2 then the result holds trivially since by assumption, 2 does not
divide b, ard so S, = b,/1 + b,/2 cannot be an integer. Assume now

n> 2 and consider

- br albl +a2b2+m+anbn Mn ‘
Sp= X =- — i @
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where a,, = nl/m for m = 1,2...,n. Let p be the largest prime strictly
less than n. Clearly p|a, for all m # p, since p is present as a factor in
each such terms a,,. Now, by definition p< n < p’ where p’ is the next
consecutive prime to p, so by Lemma 2.1 (p,m) = 1 for all m €
{1,2,....,n}\{p}. This in turn implies via hypothesis that p cannot divide -

the integer q,b,. Thus we have produced a factor of n! which fails to
divide into the numerator M, of (2). Consequently M,/n! cannot be an
integer. :

3. GENERALIZED FIBONACCI CASE

In this section we shall extend Theorem 2.1 by establishing a similar
result for those series of the form in (1) where U, is a generalized
Fibonacci sequence. From this class of series, it then will be possible to
construct the desired divergent series. The key to generalizing Theorem
2.1 lies with employing a well-known result of generalized Fibonacci
sequences (see Theorem VI of [1]), which states that the greatest

common divisor of any two terms U, , U, in a given sequence is equal
to the term in the sequence having index (m,n), that is (U, , U,) =
U(,,)- By combining this property with Lemma 2.1, we will show that
U, (where p is the largest prime less than n) is the required factor of the
denominator in the fractional expression for S, which aHows us as
before, to deduce the non-integer status of S,. However, before reaching

this stage we must first ensure that the partial sums ofthese series are =

well-defined, by choosing P and Q so that U, # 0 for'n > 1. To
achieve this end let us momentarily digress, by introducing awell-known
algebraic formula for U, and its companion sequence-V, , the so—called
generalized Lucas numbers.

Remark 3.1

As U, and V, are defined by the following second-order linear recurrence
relations

Un = PUn—l - QUn—Z and Vn = PV"—l - QV"‘2 ’

where Uy = 0, U, = 1 and V, = 2, V, = P, it can easily be shown that
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u, = “‘g and V,= o + g

where a, (3 are the roots of X* — Px + Q = O when the relatively prime
pair (P,Q) are such that the discriminant A = P* — 4Q # 0. Clearly
(o, B) form either a complex conjugate or a real distinct pair of roots for
the above quadratic. It should however be noted, that the only time when
A = 0 fora (P,Q) = 1 occurs when (P,Q) = (2,1) or (P,Q) = (=2,1),
which correspond to the cases U, = n and U, = (—1)"*! n respectively.

With the above expression for U, in hand, it is clear that U, = 0 for
some m > | if and only if o™ = ™. Via this equality, we shall argue
that if a sequence {U,} contains a zero for n > 1, then necessarily the
ordered pair (P, Q) can only assume either (—1,1) or (1,1). To facilitate
our argument, it will be necessary to make use of the following well-
known result of algebra concerning symmetric functions, a proof of
which is not included-however, interested readers can refer to Theorem

1.9 o 1]2].

Lemma 3.1

Let R be a ring. Then every symmetric polynomial in:R[x,,....,x,] is
expressible as polynomial in the variables o,,..., 0, over R, where o, is the
coefficient of X"~ in the monic polynomial

o) =@x —x) ... (x — x,,}.

The proof of the following result was partly motivated from the
discussion following Theorem 1 of [1]. '
Propbsition 3.1

If the generalized Fibonacci sequence {U,} is generated with fespect to
the relatively prime pair (P,Q) # (1,1), (=1,1) then U, # O for all
n=l1.
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Proof

We establish the contrapositive. Suppose there exists an m > 1 such that
U, = 0, then by Remark 3.1 o = 8", where «, § are the roots of x*
'—Px + Q = 0. Consider now V, = 2¢" and 0" = o?”, we claim that
(V,., O™ = 1, this will be demonstrated later. Note that as both 2o and
o’ are integer, we must have o € Z\{0}. Consequently if 2o, &™)
= | theno™ = 8™ = + 1, that is, both .« and 8 are-then m-th roots of
unity. We consider now the following two possible cases.

Casel: A=P -40 <0
In this instance («,() are a cdmplex conjugate pair given by

. [4_ p2 s _p2
a =—————P+l ;Q Li ‘and |3k=.————P I;Q P

Since «,B are the m-th roots of unity they must necessarily have their
complex moduli equal to one, thus Q = ||*> = [8|*> = 1. Butas P* <
4Q = 4, it is immediately apparent that P can only assume the values 1

or —1.
Case2: A =P —40 >0

If B are distinct reals which are the m-th roots of unity, then we can
only have (a,8) = (=1)1) or (1,—1). Inanyevent P = a + 8 = 0 and_

0=of=-1

Hence from these cases we conclude, as P # 0, that if a zero occurs in"_
a given generalized Fibonacci sequence {U,}, then the ordered pair (P, Q)
can only assume the values (—1,1) or (1,1). To complete the argument
let us now validate the claim made earlier. It will suffice to prove that
(V,, Q) = 1 for every n = 1. To this end consider the following

binomial expansion

(x+ By ="+ + aofl,(a,p) =V, + afl(a,). .. (3)
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Clearly I, (,8) is a symmetric polynomial in Z{e,8]. Consequently, by
Lemma 3.1, I(«,B) can be expressed as a polynomial in g, = P and
g, = Q over the ring R = Z. As a result I,(a,3) must be an integer for
all n = 1. Hence from (3) we conclude as P is relatively prime to Q,
that (V,, Q) = 1 foralln = 1.

With the above result established, we now have only one more obstacle
‘to overcome, before reaching the main theorem of this section. In
modifying the proof of Theorem 2.1, our argument will become invalid
ifU, = + 1 for any prime p, as 'this factor will divide into the
numerator, of the fractional expressien for §,. One approach to avoiding
this problem, is to find P and Q which-give rise to sequences {U,} whose
absolute terms are monotonically ingreasing, since then |U,,,| > [U,]
> 1forn > 1. Fortuﬁﬁ't‘ely,rtﬁerefis_an abundanece of such P and Q, to

see this we first must consider the foowing result.

* Lemma 3.2

Consider the sequence {U,} generated with respect to the relatively prime
pair (P,Q). If f],, is another generalized Fibonacci sequence with (P,Q)
= (=P,Q) then U, = (=1y"*' U,.

Préof

We argue using induction. Clearly U, = 1 = (—=1)*.U,, thus suppose the
result holds for all integers n < m. Then

Oy = =P, = Q=1 Uy

m+1

P(=1)y"? U, = Q(=1)™* Uy

= (=1 {PU, — QU,_}

Hence U,,, = (-1)"* U,,, and so the result holds for n = m + 1.
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Now if P > 0 and Q < O then clearly U,,, > U, > 1 forn > 1,

while if # = —Pand 0 = O then by Lemma 3.2 |U,| = U, and
so |U ol > }T,] > 1 whenn > 1. For the case P > Q> 0we

first prove by induction that {U,} is monotone increasing. Clearly U, —
U,=1>0, assuming U, —U,_, > 0 form = 1 then »

Upi -~ U, = P-1)U,~QU,,
= -QU,,l -Q0U,_,

Q{Um, - U, >0.

Consequently by a similar application of Lemma 3.2 as above, we
deduce that |U,,,| > |U,| > 1 when n > 1, for those sequences

generated with respect to a (P,Q) satisfying |P| > Q > 0.

Hence if either P % 0, @ < 0 or |P| > Q> 0then U, ;e + forall
prlmep )

Remark 3.2

Note that in the case | Q| > P > 0 it generally cannot be concluded
that U, # + 1 for every prime p, since there are infinitely many such
(P,Q) where U, = 1. Indeed, since U, = P* — Q, one may set Q= PQ
~1 for any P € Z\{0,1}, with (P,Q) = 1 by construction.

As the above restrictions on P and Q exclude the case (P,Q) = (1,1) or
(—1,1) and so the possibility of U, = 0 for any n > ¥, we can now
argue in a similar manner as before to prove the following
generalization of Theorem 2.1. = - '

Theorem 3.1

Suppose {U,} is a generalized Fibonacci sequence generated with respect
to a relatively prime pair (P, Q) which satisfy either |P| >0 >00r
P # 0,0 < 0.If {b,} is a sequence of integers with the property that

0
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b, U) =1 for every przme p, then tke n—th pamal sum of the series

E b,/U is never an integer for n' > 1.

Proof

"It n = 2 then the result holds trivially since by aésumption U, cannot
divide b, and so S, = b,/U; + b,/U, cannot be an integer. Assume now

n-> 2 and consider

s =z": b, _ab+ab+ab, M,
"ZUTT U0 UU,.U

r=1 “r 1¥2 " 1

N ()]

where a,, = (U,U,...U,)/U,, for m = 1,2,...,n. Let p be the largest prime
strictly less then n. Clearly U, |a, for all m s p, as U, is present as a
factor in each such term g,,. Now be definition p < n < p’ where p’ is
the next consecutive prlme to p, so by Lemma 2.1.

U, u,) = c,m) =U, =1,

forallm € {1,2,. n}\{p} This in turn implies via the hypothesis that
U, cannot divide a,b,. Thus we have produced a factor of U, U, ... U,
Wthh talls to d1v1de mto the numerator M, of (4). Consequently M,/(U,
U, ... U) cannot be an integer.

It is now a simple matter to.extract the positive-rational-termed divergent
series, having non-integer partial sums. To induce divergence of the
series in Theorem 3.1, we shall need to impose an additional assumption
on the terms of the sequence {b,} as follows.

Corollary 3.1

Suppose {U,} is a-generalized Fibdraccisequence generated-with respect
0 a relatively prime pair (P,Q)satisfying P> Q>0 or P>0, 0<0. Let
"N be any fixed positive integer and {b,} a sequence of positive integers
with the property that (b,,U,) = 1 and'b,N > U, for every prime p. Then
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the n-th partial sum of the divergent series Y - 7" is never an
n

integer forn > 1.
Proof

The terms of the series in question are positive and by Theorem 3.1 have
partial sums §,, that are non-integer for n > 1. In addition we clearly
- must have

.
s> %
P

psn

b ;
However —£ > % > 0 and so b,/U, # o(l) as p - oo, consequently
p .
the sum on the right in the above inequality must grow unboundedly with
increasing n. Thus §, » o as n - oo.

Remark: 3.3

If we set N = 1 in above, then one could choose b, = U,,,, since then
0,, U) = (Upy;, U) = U, = 1and U,,, > U, Hence, one such
divergent series would have partial sums given by

which are non-integer for n > 1.

To conclude we now demonstrate that the series in Theorem 3.1 continue
to have non-integer partial sums, when summed over index values that
are either odd or a multiple of a fixed positive integer.
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Corollary 3.2

Suppose {U.} is a generalized Fibonacci sequence generated with respect
to a relatively prime pair (P, Q) satisfying I.P | >0>00r P>0, 0<O0.
If {b,} is a sequence of integers with the property that (b, , U,) = 1 for

every prime p. Then the n-th partial sum of the series E:=1 by /Uy s
is never an integer for n > 1. '
- Proof

Without loss of generality assume {b,} is sequence with b,,, = U,,.. Then
{ Theorem 3.1 the partial sums

i b2 l. c b2r
_ r- ] - -1 _
s SZm _2 — +m or S2m-l = E +m 1’

. r=1 ("2!—1; L=l ("2’-1

are non-integer for m > 1. Thus in either case, the partial sums over
odd index values must be non-integer.

To establish a similar conclusion for those summands taken over indexes
of the form nr, where r is a fixed integer, it will be necessary to impose
an alternate assumption on the sequence {b,} as follows.

Corollary 3.3

Suppose {U,} is as above and let r be a fixed positive integer. Let {b,}

be a sequence of integers with the property that (b, , U,/U) = 1 for

every prime p. Then ihe n-th partial sum of the series E:=1 b U, is

never an integer forn > 1.

——
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Proof

Set U, = U,/U, noting here that U, # 0 as'r = 1. We first show that
U, is a generalized Fibonacci sequence generated with respect

to (P,Q)=(v,,Q". The following well-known identity

Un, = V, U("_l), - Q U(,,_z),' ..... A . S (5)

can be verified directly by substituting the expressions for U, and V, of
Remark 31 Dividing both sides of (5) by U, yields

07: = Vr 01:—1 - Qrﬁn—Z’

in addition we clearly-h’avé Uy, = 0 and U, = 1. Consequently U, is an
integer and so U,| U, for all n > 1. Furthermore as P and Q are such
that the sequence { | U, |} is monotone increasing it follows that

U(n+l)r Ljﬁl_' > Ur
U

> !
r Ur

2

U

4

for n > 1. Hence by assumption"_and Thebreni 3.1 the partial sums

Sn=E &:Ur _El— f2_+ _bl
m=1 Um Ulr U2r Unr

are non-integer for n > 1. The result now readily follows as U, is an
. integer. : : :
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BOUNDARY VALUE PROBLEMS FOR RETARDED
IMPLICIT DIFFERENTIAL EQUATION S

T. Jankowsk1
(Technical -University of Gdansk)

D. Garmaa
(Mongolian National University)

Questions of existence and uniqueness of solutions for systems of
retarded implicit differential equations with nonlinear boundary
conditions are the subject of our stdy. Given are  quite general
sufficient conditions for existence of unique solution of such problems. . '
The solution is‘given as the limit of the method of - successive
approximations. It is shown that the Seidel-type methods are
convergent to this solution under the same assumptions as the method -
of successive approximations, but the error estimates are better than the _
correspondmg ones obtained for the method of successive:

approxirnations.

1. INTRODUCTION

A problem of a numerical solution of boundary value problems for
retarded differential equation was considered by many authors(see, for
example [1],[2],{3]). The corresponding tesults are established under the
assumption that the original problem has a unique solution. Existence and-
“uniqueness of solutlons of boundary value problems for implicit ordinary .
differential equatlons were discussed-in [4]. The results stated in this
paper are an eextension of paper [4]): -

We consider the followmg retarded 1mphc1t problem

(t,x(t),x(al(t)),....,x(ar(t)),x(t)) 0,t e I [0 b], - (1a)
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gx(0),x(d)) = O, : (1b)

where F:I X (RPY** » R?, g:R” X R’ - R’, o:] = I are given (O is zero
vector in R?). Our objective is to obtain sufficient conditions under which
problem (1) has a solution. Due to this fact it is convenient to transform
problem (1) into an integral one.

Put s = x(0), y(®) = x'(¢), t € I. Then problem (1) takes the following
form

a;(9 aff)
F[t,s+fy('c)dt s+ fy('c)d'c, ,s+ fy('c)d'c,y(t) =8,tel (2a)

) |
g(s,w [ y(r)dr) =0 (2b)
0 .

Notice that a solution of (2) consists of two elements: s € P and
y € C({,RP) (C(I,R?) denotes the collection of all continuous functions
x: - R). ' :

A solution of (2) may be now found by the method of successive
approximations constructed by

a,() a®. .
[t,s +[y,)dr,s, f Ya(D)dTses, + [ y,.(f)dr,y,.d(t)]

= _@, tel

_ \ :
Sy = S, —B'l.g(s",sn +fy"(r)dr] 3)
0 .
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for n = 0,1,..., where s, and y, are given and B is some p X p non-
singular matrix connected with g. To solve problem (2) also the Seidel-
type methods may be applied:

o, a,()
[ts f}’,.(t)dt §,+ fyn(t)d‘t WS, t fyn(t)dt,yml(t)] 6, tel, (4)

b

§n+l = _n —B—l'g §n’§n+fyn+l(t)dt], 5" = So» )70 : Yo
0
b

5, =5,-B.g En,§n+f§n(t)dtJ, 5, =Sy Yo = Yo Q)
0

0

t (!1(1) ()
F[ Saet fy (0)d1,5,, f RO f (r)dr,y,.ﬂ(t)]

for n = 0,1.... It is shown that the sequences (3)-(5) are convergent to
the solution of problem (2) under the same conditions, but the error
estimates for the Seidel-type methods (4) and (5) are better than for

method (3).
2. ASSUMPTIONS AND LEMMAS

Let us now introduce some assumptions.

A, There exist constants K; > 0 and X > 0 such that the
relations:

Pttty FlotoRdot)] 5 X Kifeo2l

"f‘(t,zo,zz,.,.,z,,z) —F(t,zo,zl,...,.z,,z_ )| < Kiz -zZ]
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hold for 24,2502, 200 ZgpersZp 22 € RP .

A, There exist a nonsingular matrix B of order p and
constants a, by = 0, b, < 1 such that the condition -

s =52 =B [g(s051 *2,) = 8(s25, * ]| < bofs =3+ aofts -2

holds for s,,-5,, z,, 7o € RP.
A, For any ¢+ € [ and y, ,...,y, € RP there exists
¥ € R? such that :F(t,yo,yl,...,y,,y’) =0 . l

A,  There exists a solution ¥~ € C(I,R,), R = [0, o), of
the equatlon . '

w=Lu+v, ' 6)
= b

f u(t)dt+— f u(t)dt o R

where (Lu) (t) =

7

Ty

i= o .

t]

:«LN

w(t) = .s‘upp’(nllf)

Ogrsr

- ay(s) a,(t)
[r,s0 + [yy(®de,s,+ f V(T80 + f yo(r)dryo(r)],

K
1-b,

B! g[so,so f ¥o(7) dt]
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*

A, In the class of measurable functions u: /=R, u < u’,
function u = 0 is the unique solution the equation

Lu=u. V(7)
Lemma A '
The sequences {u, (1)}, {w,} defined by the following formulas:
ut) =u"@®,t el | o A'

r a0

- K : ,
cu (=Ko +2fu(®dt+Y = [ u(t)dr, n= 0,1,..,

- ®
. 1 b : b T :
Po 1-b, [aol)-u'(r)dr + B—lg(so’so +{)’o("-')d‘r:)
b .
Wpyp = bo("n+aof",,(‘f)d‘f, n =0,1,.. ©)
0 .

are convergent to zero.

Proof

It is clearly that u,(f) = 0 and w, = O for any n = 0,1... . By induction,
we can prove U, () < u,f) and w,,, < ©, Hence, the proof is
complete. ,
Lemma B

The sequences (&, (®)},{@,} and {z,(0},{@,) detined by the following

formulas:
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A =u'®, tel

’ alf)

. - K t - i f - _
a, = K(o"+?o{u"(r)dr +§ X {u"(r)dr, n=0,1,.., (10)

By = gy By = by®,+ay [, (v)ds (11)
and
u(t) = u*@, t €1
’ al()

| - K, o AV
u, (@ = K(on+1+?0fu"(‘t)d‘t +2 ?' f u(v)dc, n=0,1,., (12)
0 i= 0

b
Bg = ©o  Gpy = by, +a, [U(t)de, n =01 - (13)
0

are convergent to zero. Moreover, the estimates

GOsu,®, u®s<@, tel,d, <0, 0,50,

are satishied for n = 0,1....
Proof

We can do the proof by induction.
3. EXISTENCE RESULTS

Our objective in this section is to give sufticient conditions under which
problem (2) has a solution.
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Theorem A

Let assumptions A, - A hold.

Then problem (2) has a solution (¥,s) being the limit of the sequences
{y,} and {s,} defined by (3).

Estimates

||§(t)—y"(t)" su(),tel ']]E—s"" <0,

are true. Moreover, (¥,5) is a unigue solution of (2) in the class of

functions satisfied the relations

||§(t) Y| s '@, t el ||§—s0" < @,

Proof

Using assumptions A, - A, to équalities:

() 2,0
F|ts,+ f (0,5, + f VDT, + f V(O30 |-

a0 a,(1)
-F [ts,+ f V(D) d,s, + f V(0,05 + f VDT, 0| =

. a9 afn)
F |ts,+ f Yo(£)d 7,50+ fyo(r)dr S * f YRy, | -
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a,(n a,(0)
-F [r,s + f Y, (D dt,s,+ f Y (), ...5, + f y"mdr,yo(t)]

a,(0) a()
-F [t,so + Yo .5y + f V(D50 + f Yo(T)dT,y, 0 |

Syl =80 =8, S -B1

b
(s s +fy (‘l:)d‘t] [so,s0+fyo(t)dt
0 .

: - b
- B'lg[so,so+fyo(r)dt),
' 0

we obtain the following inequalities:

X0

Z, () sK.v +—fz (x)dx +E fz (R)de+E@®, t € 1,

n+1

<byv +aofz,,(1=)df +n,
.0 .
where . 2,() = |y, @ -y O v, = |s,=S}> -

Ogtst

o) e
E@ = supp(‘)l’ (r,so fyo(z)dz,so][ [ yoordt+ [ yo(z)d&,yo(r)]

K

tel

»

b
|

(14)

(15
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K,
i=0

K=
K

'n:

b
B'lg{so,so + fyo(t)dt
0

Note that

20 = -3 @] = 0su® = u®), vy = Js,=5] = 00

Furthermore, Using assumptions A, - A, by induction we can prove that
~ the following inequalities:

@3] su*@ =10, t € I, fs,~s5] <@, (16)

hold for n = 0,1.... Moreover, from the relations:

al(’)

t
Flt8yn [Yamn 05000+ [ 055y |+
1} 0

a9

+ [ Yren DY n® |-
") ;

a;(’)

-F|ts, .+ f ymm(t)dt Spm* f Vpem(TIATsisS, |+
)

a)
+ [ DTy, O =
0

a,(® a(t) :
F 25, + f Y (D)5, + f YD)y + f YDy 10
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a,()

t
-F [t,smm + f Y (D)d1,s,,, + f Ypem (OS5, +
1 - o

a(®
+ f y,,,,,.(r)dr,y,,.q(t)], tel
0

- = _ -p-1
Speme1 “Sms1 = Snem " B

b "
0 0 )

‘and assumption A, - A, result the following inequalities

4

A
e a1 Bm 5ol 5 [Teun® 20015

0
r K' alo) 7 7 .
+ -E' flypu.m(t) —ym(t)", t EI’
i=1 0

b .
[Saomer ~Smet| < BolSuom =Sl *0 [Prom® ~¥ul®)] d
[1]

for n,m = 0,1,.... .

Hence, Using estimate (16), by induction for m, we can prove that the
following estimates:

llyn+m+1 (t) —qu.l(t)" s um;l(t)’ ‘IIS]H'"[')] —Sm+1| 2 wmq-l (17)
are true for n,m = 0,1,.... : , ?

The seqliences" {.(0)}, {S,} are cdnvergent and have limits because both
sequences {u,}, {w,} are convergent to zero by Lemma A.
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Let limy,(® = y(®,t €I, lims, = 5.

n~eo n-o

Then from equality (3)_, it is clearly that (y, §) is a solution of problem
(2).
From estimates (17) we can get

"i(t) 5,0 <u,@®,tel, DE -5, <o, .

The proof is complete.

The next theorem shows that the sequences (3)-(5) are convergent to the
solution of problem (2) under same conditions.

Theorem B

Under the assumptions of Theorem A, we have

lim §,() =limy () =y ,t eI, (18)
lim §,(t) = lim 5, = 5, o (19)

n-o n-+o«

where (3, §) is the solution of problem (2).

Moreover, the error estimates

F,0-30] < 4,0 .t €I, |55 < a,, (20)

P.®-70] s 5@, tel, |55 <5, @

are satisfied for n = O,l,....
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Pi'oof

Notice that, By Theorem A, problem (2) has the solution (y, s) . Using
assumptions A, and A2 to the following equalities:

a,() a0
[z,w [Fdnss [ Foyde,..5+ [ y(r)dr,y(z))

0
0] 4,0 '
F|t5+ f y@dus+ [ Hods,..5+ [ FMs5,.,0 |-
0 -0

: a,() . a,(t) :
[t,s + f Fo(2)d 3, + f P, 5, + [ yn(r)dr,y,,l(t)]
) a0
-F |15+ f y(e)dz,5+ f Y5 [ s, ,.,l(t)J

smss -5-B71

b
[ fym,(r)dr] [s5+ fj"(t)dt)],
[}
we obtain :
-~ - i)~ Ko y - oy
o @ -FO] SKJS, 5]+ =2 [|5,)-FO)a=
0

L2 (0

+E = f [0 5] dv,

b

St =5 <o 55 =5] a0 [ Fres @ -F @) dr.
' o

|

TV o
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Furthermore, By induction with respect to 7, we can show that estimate
(20) is satisfied. By a similar argument, we can verify (21).

From estimates (20)-(21) and Lemma B we obtain equalities (18)-(19).
The proof is complete. Notice that the sequences (3)-(5) are convergent
under the same conditions but the error estimates for sequences (4) and
(5) are better than for sequence (3).
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NUMERICAL SOLUTION OF BOUNDARY VALUE
PROBLEM FOR RETARDED DIFFERENTIAL
EQUATIONS

T. Jankowski
Technical University of Gdansk.

D. Garmaa

Mongolian National University

In this paper we study the numerical solution of boundary value
problems for retarded implicit differential equations. For the boundary
value problems the backward Euler method is combined with iterative
ones. The conditions,for this convergence are obtained.

I. INTRODUCTION

We consider the retarded implicit differential eQuation of the f(‘)rm'
Ry )y ®) = 0 € R, 1 € [abl,a<b, ()
with the nonlinear boundary condition |
8@, y(b)) = 6, o S
where F and g are given continuous vectors in R? (6.is zero element in,
R?). Here « is a retarded function. Indeed, o is given. We assume that
a(@) =a,a < o) < tfort € Iand « is continuous on I. Let p € C

(I,R?) be a umque solution of problem (1-2) If F does not depend on the
third Variable then we have an implicit differential equation of the form

Fiy®, y'®) = ©
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and problems of numerical solutions for such types of equations were
discussed in [2]. The results stated in this paper are an extension of [2].
Some results for numerical solutions of equations of the form

y'@® = fey®), tE€lab]
can be found in papers [1], [3].

We consider the simplest possible procedure based on the backward
Euler method combined with iterative ones. We construct an implicit

method defined by the nonlinear equatlon :
¢ (ti’y(ti)7 Z(ti)’ (y(tiﬂ) - .Y(t:))/h»h) =0,i= 0,1,..,.N -1, (3)

where & is an approximation of F. We need to solve equation (3) for
¥(t,,,). Indeed, y(¢) is an approximation of the exact solution ¢(#) of
problem (1-2) at the point # while Z(7) is an approximation of ¢(a(f)). We

choose a positive integer number N and select mesh points £ (i =
1,...,N) by the formula ¢, = a + i.h with the step &z = (b — a)/N.

To solve problems (1-2) numerically we construct the implicit méthod
defined by the following nonlinear equations

o,y 2 0%, -y /nk), = ®, i =0N-1,j=0,1., @)
n _ O N1 i =

z! = yh @ (k,yk h, e(z)) i =0N-1, j =01,., (%)

o =08 ghlyY) J= 0., ©®)

with y,/ is an arbitrary vector in R,

Note that in the above notations

(1) y; Z; are the approximations of the exact solution ¢(z) of
problem (1-2) at the point 7, and «x(t,), respectively
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@

A3)

k; is the integer part of (a(t,) — a)/h.

Indeed, a(t) = 4, +h.e(i) fore(i) = (alt) — a)/h—k;

The conditions for ®,%, will be defined later. Of course,
we may take & = Fand &, = 0.

B is a nonsingular g X ¢ matrix and j is a number of
approximations.

The procedure (4-6) works as follows:

(1)

Q)
3)

Take j = O and for the initial given value y/” find y/
for i = 1,...,N solving the equations (4) and (5),

determine the value y! from (6),

apply again (4) and (5) for finding y!!! (i = 1,2,...,N),
and so on to obtain the sequences of the values y? for

i=0,1,.,Nandj=0,1,....

11. ASSUMPTIONS AND DEFINITIONS

To obtain some results we need the following assumptions apd

definitions.

Assumption Al

Suppose that:
10

20

PIX R XRI XRI XH->RI, H=[0,h), hy > 0,

there exists a function ¢;: F X H > R, = [0,00) and
constants L, L, > 0 such that for ¢t € I and u,, w,, 4,
i, U; € R, h € H we have

|® (1,11, 105, 3, By~ ® (8, 10y, 105, 25, B)|
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86

< L Hul-u—lﬂ+ 2"112—5;"+€1(t,h)

: N-1
and Hm k.Y e(f,h) =0 , where ||.]| denotes a
: New £ _
norm in RY,
3° there exists a constant L, > 0 such that the inequality

[ltb(?,ul,uz;ua,h)—¢(t,u1,u2,u3,ﬂg>ll; L, ﬂu3—;i;”
holds fort € I, u,, u,, u,, i, € RPand h € H.

4 &0 X R xR X H X Hy— R, H,=1[0,1) and there
exists a constant L, = 0 such that the inequality

"tbl(t,ul,uz,h,x)" <L,
~ holds for any point (¢,u,,u,,4,x) from the domain of &,.
Assumption A2

Assume that:

¢ there exists a nonsingular square matrix B of order g and
constants m;, = 0, d > O such that || B™'|| < dand

"B(ul—uz)—g(ul,u3)+g(u2,u3)" < m1||ul—u2" for u,,uy,u; € R,
where the matrix norm is consistent with the vector
norm, -

2° there exists a constant m, = 0 such that

"g(ul,u,')—g(ul,u_z)" < mz’"uz-Z;" for u-l,uz,ziz € R,

Now we introduce the definitions of consistency and convergence.
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Definition 1

The method (4-6) is said to be: 60nSistent with problem (1-2) on the
solution ¢ if the following both conditions

1@ o®,0(a@®),(e(t+h) - 9(@®)/h B < e, (t,h),

N-1
im k.Y, &(t,h) =0
N-o i=0 .

are satisfied, where ¢,: I X H—>R,.
Definition 27

The method (4-6) is said to be convergent to the solution ¢ of problem
(1-2) if

m  max [y7-o()] - o,

Joeo

im - 0_ | _
11:{2 i=IOI,‘ff.N " & cp(a(ti))ﬂ 0,

Joo

I11. CONVERGENCE OF METHOD (4-6)

Now we can formulate the theorem on the convergence of method (4-6).
Theorem

If Assumptions Al and A2 are satisfied and:

1° there exists the unique solution ¢ € C' (I,RY) of
problem (1-2) and || ¢'(®) ]| < Ls, where Ly = 0,

2° the method (4-6) is consistent with problem (1-2) on the
solution ¢,
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3° m = d(m, + myD) < 1 with D = exp(L(b — a)), then .

the method (4-6) is convergent to ¢ if N, j = oo,
Moreover, we have the following estimations of errors

max BP0 < Dnp-o

+ BN[I +d.m,.D.(1 -m/)/(1 —m)], j=0,l.. )

max [2-gfafy)] < Dmpi-ed

+ BN[1+d.m2.D,(1 —m’)/(l-—m)]+h(L4+L5), j=01L. (8
where

NG

By = h. Y (1+hLyV 17" [ALy + (e, (t,, 1) € (£, H)/ L),
n=0

L = (L, +L)/L,, L, = L2(L4;L5)/L3
Proof
We note that the equality
(" biten 31"} o) - @ (177,20 (0 101) - 0 () )
= 0 (5, 0(t) @ () (0 (1) -9 1)) 1)
= @ (1 0(t). @ () (0 ()~ 9 () )

- Ot 20 ()~ 0 ) R

is satisfied. By Assumption A1 and definition of consistency, we obtain
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[P

N N A ) R

yul (P Hl" "yl _(P ")

Hence,
1+hL hL
vgls(Tl] v,mf—LE.m?hLi et (R, ©)
3 3 3 ,
wh¢re |
o = pl-e) o = |27 -eeg)] @ - 0.
Moreover,

o = [k ol 20 ) 0o o) o)

a(r,.) ’
< vm+h L+ f lo’®) d= <V +h(L,+Ly) (10)

’k‘

where Vm ‘max Ut
Oslsi C

From (9), we see that

0 (I’ZILJ vl hL* [V[’]+hL +L ]+— [e h) + e, (t;, b))

U,
3

3 3

= ll +h(iz—Li)] V(’] h*L, e LL) [e l(ti’h)+e2(ti’h)]
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= (A+hL) VP + R, + Li [ey(tuh) + e, )]

3

Using the definition for V!

o e— A
Oslsx+l

we have

1 h -
<(L+hL)V? B L+ [e(toh) + et k)i = ON-T,

3

VU]

i+l

and hence
i-1
vl < a+hLy vy + Y (A+hLyi
, & ,
h .
. l22L0+f3 (el(tn,h) + ez(tn,h)) ,i = O,N, an

Moreover, by Assumption A2 and (11), we obtain

Vol = 3™~ w50 = 35" -B g0’ N) - 9ol
= |5 [B0s" - 00) 205" V|
= |B[B06" - 00) ~6"s 0x) 506" @) ~86" ) (00 @)

sd’(ml"yf,’] - ‘Po" + mzlly,[,’,] - ‘PNH) < d.(ml . Vf,’] +m,. V,[;;])
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. N-1 '
<d{ [m1 +m,(1 +hL)N].'Vg] +m,. Y (1+hLV1™"
n=0
. [tho +hiLs(e,(t,.h) + &, (tn,h))]}
<d.{ (m, +m,.D). V& h.m,. E (1 +hLN 1

n=0

[hL +(&{t,ph) eyt R) Ly ]} = 0,1,...

Hence
VI < miV®ed. my. By (1-mi)/(1-m) er)

N-1

with ~ B, = h.z;) (LRLN ™ [RLy + (€, (t,H) + €t h))/Ly).

Combining (11)-and (12) we arrive at the following estimation

max b -e@)] < D.m/ Hygn_%"

+ By [1+d.my.D.(1-m/){(1-m)] (13)

Similarly, from (10) and (13) we have

mex 20~ o] = D -0

+ By [1 +d.m,.D.(1-m’)/(1 -m)] + h(L,+Ly) (14)
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Summarizing (13) and (14) with conditions of Theorem, we can see that

the sequence { ,[’]} is convergent to the solution of problem (1-2) if j,

N - oo,
1Y. Numerical calculations

Now we consider the boundary problem
22y +Sin(ty) + 2y - Sin (8y(%‘t))—1r(t2+22t) =0,t€[02]
Cosy(0)) + Sin(y(2))+5y(0) -1 = 0 (15)

We can check that the function y(f) = « /2 is the unigue solution of this
problem. To solve problem (15) numerically we apply the nonlinear

algorithm for y,+l defined by the equations
0 _ 1 Wl
22.&-‘h—y‘—+3in(z.&1‘—h—y’—]+2ym ~sin(8Z) - n ({1 +22¢) = 0, (16)

i=01.N-1,j=0,1,.

2z = | an

with ¥ (0) =y,
¥, is a fixed initial value

o) = y20)- [COs( S(0)) +Sinfyy) +5y8 (0) - 1] (18)

where h = 1/N, k(i) is the integer part of ¢,/(2h)
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So it is easy to see that
& (1,15, U,h) = 22u, + Sin(tuy) + 2u, — Sin(8u,) — 7@ + 22)

and Assumptions Al and A2 are satisfied withL, = 2, L, = 8, L, = 20

andm, =2, m =1,m, = % .

The equation (16) has exactly one solution for y,-[i], because

7
—I—,Cos t.M .t si<l.
22 h ! 11
Moreover m = d.(m1+m2.D) = l 2+].exp 2.2+20
6 20 )}
= = 0.8<1

1
2+e)<—.4.8
@2+e) ;

(= Q=N

All conditions of Theorem are satisfied, so the method (16-18) is
convergent to the solution ¢(¢) of (15). The numerical results are shown
in the following table.

A J = y7(0) W(2) 2(2)—y"(2)
0.1 1 0.04662 6.04459 0.23859
5 0.04201 6.04691 0.23627
10 0.03801 6.06323 0.21995
0.05 1 0.02851 6.16652 0.11666

5 0.02412 6.16854 -0.11464
» 10 | 002412 | 6.17256 0.11062
0.01 1 0.00572 6.25983 0.02327
5 0.00463 6.269970 0.01134
10 0.00424 6.27905 0.00413
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ABSTRACT: Wec shall prove open mapping and closed graph
theorems independent of category argument for locally convex K-
spaces. A version of closed graph theorem about a polish group acting
transitively on a complete metric space is obtained.

INTRODUCTION

The application of Baire’s category argument is an essential tool for the
proofs of some fundamental theorems of functional analysis. Some
authors have sought proofs of these results without using Baire’s theorem
(see Khan and Rowlands [2] and Swartz [7]. Here we continue with this
theme; in particular following techniques of Pap and Swartz [6] we shall
establish versions of open mapping and closed graph theorems for locally
convex K-spaces. We shall also establish a closed graph theorem for
homogeneous ;spaces by employing category dependent open mapping
theorem’ due to Koshi and Takesaki {3]. Incidentally our work deals with
the inter implication of these two important theorems as well.

TERMINOLOGY

Let X and Y be Hausdorff locally convex spaces. For any" lihear mapping
T between X and Y, there is a natural linear map T’ (adjoint of T) from

DT)={y €Yy Tis continuous on X}

to X’‘and is defined as T' Y'= y'T.
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Note that many of the properties of T are reflected through

corresponding properties of T'.

A sequence {x,} in X is called K-convergent if every subsequence of {x,}

: ()
has a subsequence {Xn,} such that the subserires Y K, converges to
k=1
an element of X. A K-convergent sequence 6bviously converges to 0 and
it X is complete, then any sequence which converges to 0 is K-

convergent. In general a sequence which converges to 0 is not K-

. ¢
convergent. For instance in real space C,, the sequence {—’}, where {e;}
: v i b

is the sequence with 1 at ith coordinate and 0 elsewhere, converges to 0
but is not K-convergent. We shall call X to be a K-space if every
sequence converging to 0 is K-convergent.

Let P be a family of seminorms on X and § be family of bounded
subsets of X. The pair (§,1.1) induce a locally convex topology on x’ via
family P’ of seminorms given by

PP —sup {| X (x)]:c € A, A € B}
Similarly if Y is a locally convex space with family 0 of seminofms,
then Q' will be induced family of seminorms defining a locally convex

topology on Y'. also'the pair (5,Q) will induce a locally convex topology
on L (x,y) via the family of seminorms

I T],a = sup {q(TX): x € A, A € B}
(For details see Swartz [8]).
RESULTS
" Proposition 1

Let DT) € X and T: D(T) -» Y be linear. Then
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(@ - T'isclosed

®) If T is closed and Y is reflexive, then D(T"’) is dense in
Y'. :

Proof:

(@) Let {y,} be anet in D(T’) such thaty,” =y’ and T' y,’ = x’ for
some x" € X-andy’ € Y'. Then for x € D(T),, Ve (Tx) =y’
(Tx) and y.' (Tx) = T'y, (x) - x' (x). Thus y’' (Tx) = x' (x)
for all x € D(T). Since x’ is continuous so y E D(T’) and
T'y" = x'. Thus T’ is closed.

.(b). . It is. sufficient to show -that given y, # O, there - exists
Y’ € D(T’) such that y'(Y,) # 0. Clearly (o,y,) & G(T), graph
of T. As G(T) is closed in X x Y so by Hahn-Banach
theorem, there exists Z' €(X x Y)’ such that z’ (O, Y‘,)A # 0
and z’ (x, TX) =0 for all (x, Tx) € G(T). Define y' € Y’
by y’ (y) = z' (0,y). Note -that 'y’ (y,) # 0. Further define
x' € X' byx x) =2z'(x,0). Then

O = z(xTx) = 7'(x,0) + z'(0,Tx) = x(x) +y' (T(x))
Thus y'(Tx) = —x’ (x), for all x € X and hence Y’ € D(T").

Proposition 2

Let T be a linear map with domain D(T) € X and range in Y where Y
is complete. if T is bounded and closed, then D(T) is closed.

Proof

Let x€ D(D" ' Theh there exists a net {x.} in D(T) such that x, - x.

Then for each q € Q there exists some M > 0 such that q (Tx, — T xQ
< Mp(x - x,), forall e, A > o',
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So {Tx,} is cauchy and hence converges to some y € Y. Since T is
closed, therefore y = T(x) and x € D(T) as desired.

Theorem 1

If X is a locally convex K-space, then T':D(T’) - X’ is continuous.
Proof

Similar to the proof of theorem 3 of [6).

Theorem 2 (closed graph theorem).

Let X be a locally convex K-space and Y be a reflexive locally convex
space. If T:X - Y is linear and closed, then T is continuous.

Proof

First we show that D(T’) = Y'. By prop. 1(b), D(T ') is dense in Y'.
‘Also by theorem 1 and prop. 1(a), T’ is continuous and closed.
Therefore by prop. 2, D(T”) is closed and so D(T) =Y"

QTx) = sup {|y T@®)| :q' ¢") < 1}.

sup {|T'y' )] : q' (¢) = 1}. -

< pesup fp' (T'y):q' ) < 1}
< px) sup {|T' |, 0t 4" (0) < 1}
where ppEPandy €EA'={y €Y :q (') < 1}.

Hence q(Tx) < M.p(x) for all x € X implies that T is continuous. The
above closed graph theorem enables us to give the following.
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Theorem 3. (open mapping theorem)

Let X be a reflexive locally convex space and Y be a locally convex K-

“space. If T:X = Y is linear, onto and continuous, then T is open.

Proof

Put A = X/N(T). Obviously quotient map ¢ from X to A is open. Let

S be the induced map from A onto Y. Themap T = S 0 ¢ is continuous
so S is continuous. Also S™' : y - A is closed. The space A is reflexive

from X is so. By theorem 2, $™" is continuous and hence S is open. This

gives that T is open.

For any topological space X, G will denote the topological
transformation group defined on X which is polish (separable complete
metric) group acting transitively on X (that is for each x,y € X there
exists an element g € G with g. x = y). The action ¥ : G x X - X is
defined as ¥ (g,x) = gxforg € Gand x € X.

Theorem 4.  (cf. [4] ).

Let G be the polish group acting transitively on a complete metric space
X. Define for each x € X, the map F:G - X by F(g) = g.x. If Fis
continuous and bijecitve, then F™! is continuous.

Proof

By theorem B [3], F is open. Clearly F~! exists and so F! is
continuous.

The above theorem enables us to establish the 'following.
Theorem 5 (Closed graph theorem for homogeneous spaces).

Let G,X and F be as in theorem 4. The map F for each x € X is
continuous if and only if its graph G(F), is closed.
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Proof

Supbo'se that F is continuous and '(g,x) € G(F) . Then there exists g,

€ G such that g, » g and F(g_) - x. But F(g,) » F(g) and so x = F(g).
Now (g,x) = (g,F(g)) € G(F) and so G(F) is closed. Conversely let
G(F) be closed and so it is complete is (G x X, dgx) where

doxx [(g.%), (8", x)} = {[ds (.87 + {4, (x, xOP 3

Cénsider f:G(F)’—> G given‘by
f‘A(g,lf‘(g)) =8
obviously f is bijective. The c‘ontin’uity of f ‘follo‘ws’ from
do(fe.F®)). f(g, Fg)) = do (g’,.g;)
< doxx((8, F(®), (8 F(g))
Now - d, (F(g), F(g.) | < doxx(s F(@), (2 F(2))
= dosx (£ (@, 7 (2)

and the continuity of f~! imply that’F ié continuous.
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ABSTRACT: Let o denote a real quadratic irrational number -

a+yn . S .
, Where n is a non-square positive integer and
c

2
a -n . . . -
a, , C are relatively prime integers. Let- G denote the

modular group <x,y: 22 = y* = 1>. In this paper we have obtained

a classification of Q*(y/p) and a partition of Q'(\/E) under the
action of the modular group.

INTRODUCTION

/ A
. a' +b'yn .

Every quadratic irrational number R where n' is non-square
c _ _

2
. a+yn a‘-n i
can be uniquely represented as ——£ where =b is an integer

c c '

and (a,b,c) = 1 (see Q. Mushtaq [3]). We denote the set of all such
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numbérs for a particular n by Q*(\/;z')' . Q. Mushtaq [3] has shown that

under the action of the Modular group PSL 2,2), Q“( n) is invariant.

Imrana Kousar, S.M. Husnine, A. Majeed in [4] have-investigated the
behaviour of ambiguous and totally positive or totally negative elements

of Q*(/n) under the action of the modular group. The same authors in

. [5] have discussed the action of the group H = < t,y: £ =y = 1>
on the quadratic field. In section 1, we classify the elements

of Q‘(\/;) for any odd prime p with respect to the odd-even nature of

ab,c. -

For number theoretic results we refer the reader% to [1]-and [2] and for
the modular group action to [3].

SECTION I

We start with the following definition.

Definition 1

2

. 2_,
Let o = a*‘/é b=2"P yn4 (a,b,c) = l,we say that ¢ is oftype
c ¢

[#,v,w], where u,v,w denote the even or odd character of a,b,c
respectively.

Theorem 1 °
. a+yp . | . ., a’-p
Let ¢ = —= € Q (\/;), where p is an odd prime, b = and
¢ ‘ ¢ :
= 1. If « is any of the type

(cr, b,0)

) [odd, even, odd] and  4]b
(i) - [odd, odd, even] and 4 divides ¢
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(ii))  [even, odd, odd] and 4 divides exactly one of
' (b—1) and (c—1)
(@iv) [odd, even, even] '
Then p = 1 (mod 4)
' ~ However, if « is any of the type

) [odd, even, odd] and ~ 4|b
(vi) [odd, even, odd] and 4|c : .
(vii)  [even, odd, odd] and 4 divides either both of

(b—1) and (c—1) or
: ‘none of them.

Then p = 3 (mod 4).
Proof

(@ Let « be of type [odd, even, odd] and 4|b. Then

a=2% +1, b=4k, c=2%+1

—
As p=2"P
[
2k, +1)%-
we have -4k2=—(——-u
2k, +1
ie.  p=4k +1 where k =k’ +k — 2k, — k,

Hence p=1 (mod 4)
- (i) Let o be of type {odd, odd, even] and 4|c. Then

a=2k +1, - b=2%k,+1, ¢ = 4k,

2
a —
so that b = P
C

gives p =4k + 1
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where k, = k> + k; — 2k, k; — ky
Hence p = 1 (mod 4)

(iif)  Let a be an element of type [even, odd, odd] and 4 divides
" exactly one of (h—1) and (c—1).

Take 4](b—1) and 44(c—1)

Then a=2k, b=4k +1, c¢=2% +1(kisodd)
2_
and p=2"P
d p
give p = 20k? — 4k, — 2k, — k) — 1

Since k; is odd, : S
2k12 — Ay — 2k, o ks_

is also odd. So,
p =22k +1)—1=4k +1

Hence p = 1 (mod 4)
(iv) - Let « be of type [odd, even, even]. Then

A=+ 1, b =2, c=2%
ai—p |

As b = .
c

p =4kt +k —kk) +1 =4k +1

where k, = k2 + k, — k.k,

Hence p = 1 (mod 4).
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(v)  Let o be of type [odfi;’- even, odd] and 4 b then
a=2% +1, b=2%,kisodd), c¢=2% +1
) _

a -p
¢

so that from b =

we have ‘ p = 2k, + 1,
where k= 2k2 + 2k, — 2kk; — k;
Now £, is odd because &, is odd. And so
p =20k + 1) + 1 =4ks + 3
Hence p = 3 (mod 4)

(vi) Let o be of {ype fodd, odd, even] and 4 |c then similarly as (v)
from ’ :

a=2% +1,b=2%+1,c =2, (k odd)

and b =

@k, +1)*-p
2k,

we obtain 2k, +1 =
P = 4k;+3

i.e. p = 3 (mod 4)

(vii)  Let  be an element of type [even, odd, odd] and 4 divides both
of (b—1) and (c—1) or none of them.
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First we take 4[(»—1) and 4](c—1). Then

a=2k, b=4k +1,c=dk + 1

b 2P
c

SO

gives p =4k, — 1,
where k, = k* — 4k, — k, — Kk,
Thus p = 3 (mod 4).
Now we take 4)’ (b—1),and 4§(c—1). Then by substituting
a=2k, b=2 +1,(odd) c=2% +1 (k odd)
2 o

in ; - p=87P
¢

gives p =2k —1

where  k, = 2k — 2kk, — k, — k;

is even because k, and k; are odd and 50
p=202k) — 1

Proves p = 3 (mod 4). - ;

Theorem 2 |

and (a,b,c) = 1. Then there exists no

R o 2 _
Let ¢ €Qyp) b = 22

" element of types:
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(i)  [odd, odd, odd]
(iiy  [even, even, even]
(iii)  [even, odd,even]

@iv) [¢v¢n, even, odd] in Q"(ﬁ;)

Proof

@) Let @ and ¢ be odd. Then o’ is odd and @ — p is even and

p=2P  ,-_- even/odd; s0, b = azc—p an integer forces that b

cannot be odd. »

(ii) Lét a b :ind ¢ be even. Then (a,b,c) # 1 so, a = even, b =

even, ¢ = even is impossible for an element « EQ’(JE) .

(iii) Let a and b be even. Then & .iS.even ahd a-p is odd, so -
« is even and @ — p is odd. | |

2_ ‘ '
a“ -~ . . .
so, b = P - odd/even, not an integer, contrary to our assumption.
c .

(iv) Leta =; even ahd ¢ = odd.

. ' S g2l
Then & is even and > — p is odd. so, b = 4P = oddfodd.
o ¢

2. B . .
@72 4 integer forces that b cannot be even.
c ;

Hence b =
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(iy - [odd, odd, odd]
(ii) [even, even, even]
(iii) '[even, odd,even]

(iv)  [even, even, odd] in Q*(yp)

Proof

0) Let a and ¢ be odd. Then a’ is odd and @ — p is even and

b=2"P .'_—.. even/odd so, b = azc-p an integer forces that b
cannot be odd.
(ii) Lét a, b and ¢ be even. Then (a,b,c) # 1 so, a = even, b =
even, ¢ = even is impossible for an element « € Q‘(JE) .
(iii) Let a and b be even. Then &° 1s even ahd a-p is odd, so

& is even and @ — p is odd. | |

, , ,
a’ - : L .

so, b = LS odd/even, not an integer, contrary to our assumption.

C .

(iv) Let a = even and ¢ = odd.

i : . _ 2_ .
Then & is even and @ — p is odd. so, b = 22 = odd/odd.
: ¢

, - 4 .
Hence b = 272 an integer forces that b cannot be even.
c _
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Theorem 3

2_
Let «e€Qlp), b =22 p=3 (mod4)
c

and a be odd and c be even then b cannot be even. In particular, if -
p = 3 (mod 4) then there exist no element of type [odd, even, even].

Proof
Let a be odd and ¢ even and p = 3 (mod 4), then

a=2% +1,¢c=2k,p =4 +3

2

As p=2"F
[
2k, + 17 - (4k, +3)
we have b=( 1] ~(#+3)
2%, -1 ‘
S TMTD _0dd _ gd (it k, s odd)
kz odd .
odd

(not an integer, if k, is even)
even o

So, b = @D 4 integer forces that™ b cannot be even. Hence if
c

p=3 (fnod 4) then there exist no element of type [odd, even, even].

Definition 2

Let. a = = , b=
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roa+p 4 d?-p

and o
c c

be the elements of Q*(yp). We Say that o and &’ are of the same type
(and write as o ~ «') if, as pairs (a,a’), (b,b"') and (c,c’) are even or
odd. '

Theorem 4

The relation ~ on pairs o,a’ of the elements of Q"(ﬁ) is an
equivalence relation.

Proof

The relation is reflexive as (a,a), (b,b), (¢;¢) as pairs are even or odd.
Now, it a~a’ then (a,a’), (b,b"), (c,c') are even or odd and so clearly
(a',a), (b',b), (c’,c) are even or odd, proving ~ is symmetric.

" Leta~¢'and o' ~a”

Then (a,a’), (b,b"),(c,c’) and (a’,a”),(h’,b"), (¢’,c") are even or odd.
This shows that (a,a”), (b,{)”), (c,c") are even or odd. Therefore ~ is
transitive.

Hence the relation ~ is an equivalence relation.

The equivalence relation defined above partitions Q"(ﬁ) into

equivalence classes. These equivalence classes are.

[odd, even, odd] and  4|b
" [odd, odd, even] and 4|c
[even, odd, odd] and 4 divides exactly one of (b—1)
and (c—1)

[odd, even, even] for p = 1 (mod 4)



112 . o Imrana Kousar, S.M. Husnine and A. Majeed

‘However, if p = 3 (mod 4), then the equivalence classes are

[odd, even, odd]  and  4f»
[odd, odd, even] and  4fc
[even, odd, odd] and 4 divides either both of (b—1)

and (c—1) or none of them."
SECTION II

Invariant subset of Q'(\/;)

In case p = 1 (mod 4), we have obtained an important partition

of Q"(\_/E) , under the action of modular group. The result is _V;stated m

the following theorem.

- Theorem 5

(- let =T 9-%[3 ¢ '/, b= 2P

C:

and « be of type [odd, even, even]. For any g € G, let’

gla) = 2_7\/_— €Q (\/’) X - a/2/—P

c T

Then « and o are of the same type.
Proof
Since G is genefated by
-1

x@ = L,y = 2L
4 Z

-each g € Gis aword inx, LY or y2 So, it is enough to show that x(e) and
y(a) are of the same type.

G
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-1 _ -1 _ =
x(a) = — = =
®  (a+yp)lc  a+/p
—d + a +
- 1b\/17 24 \/1; (say)
. ¢,
az—p
a =-a, b = L ¢, ¢, =b
21

And we) = (say)
: L b 2
: 2
a-p
So, a, = —a+b, b, = " b-2a+c, c,=b
2

Since a is odd and b,c are even a, = g is odd, b, = ciseven, ¢, = b
isevenag, = —a + bisodd, b, =b —2 a + cis even, ¢, = b is even.

This shows that the set of élements of Q‘(JE) of type [odd, even, even]

is invariant under the action of G.
Cor:

Let a = f—%‘@ € Q*(\/;)

of type [odd, even, even] with p = 1 (mod 4). Then the orbit a® of a
consists of the same type as a.
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Figure 1
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Theorem 6

~Letp = 1 (mod 4) and

e =22 ¢ o)

c

be an élement of types (i), (ii) and (iii) of theorem 1.’ Then the orbit o
of « contains all types of elements other than the type (iv).

Proof
x(a)=;1=._1 =€
«  la+yp)lc a+yplc
a, +/p
= 1 (say)
¢, .
a —
a = -a, b = 17P =¢, ¢, =D
¢
: ; _ - a
and ya) = a-1 _ (a+b)+\/1—) 2 \/; (say)
b ¢, f
So, a, = -—a+b, b, I b-2a+c, c,=b
c

Let « be an ‘element of type [odd, even, odd]. Then a, = a is odd,
b, =cisodd, c, =bisevenand a, = —a+bisodd, b, = v — 2a+c
is odd, ¢, = b is even. ' . .
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Thus [odd, even, odd] X [odd, odd, even]

i

y  [odd, odd, even]

i

Now let & be an element of type [bdd, odd, even]. Then a, = —a is
odd, b, = ciseven, ¢, = bisoddand @, = ~a + bisevenb, = b
—2a + cis odd, ¢, = b is odd.

[odd, even, odd]

=

AThus " [odd, odd, even]

3

_[even, odd, odd]

[

Next, let « be an element of type [even, odd, odd]

Then a, = —a is even, b, = c is odd, ¢, = b is odd. Anda,—a+b
is odd, bz—b—2a+c'1seven Cl—-blSOdd

Thus
[even, odd, odd] x [even, odd, odd]

i

[odd, even, odd]

L4
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Throughout this paper, let (X, d) be a metric space, f, g and h be
selfmappings. of X. For x, in X, if there exists a sequence {x,}
in X such that hx,,, = fX, hx;., = g%, for n > 0, then
O(f,g,h,x,) = [hx,:n = 1] is called the orbit of (f,g,h) at Xo. (X d) is
called (f,g,h)-orbitally complete at x, if every Cauchy sequence in

- O(f,g,h,x,) converges in X. For T in {f,g,h}, T is said to be orbitally

~ continuous at X, if it is continuous on O(f,g,h,x,). A point x in X is_
called a coincidence point of f and g if fx = gx. We recall that f and g
is R-weakly commuting if there exists some positive real number R such
that d(fgx,gfx) < Rd(fx,gx) for x in X(cf.[3]).

Let M be a class of real valued functions Q with the properties: W
2) 0<QE® < tfort> 0and QO) = 0;

B) u(t) = t/(t-Q(®)) is non-increasing on (0, + oo);
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c) foy u(t)dt < + oo fory >0; and

d) Q(t) is non-decreasing on (0, + o).
Liu [2] proved the existence of coincidence points for mappings f, g and
h which satisfy min {d(fx,gy), d(fx,hx), d(hy,gy)} - min {d(hx,gy),
d(fx,hy)} < rd(hx,hy) for all x,y in X and some r in (0,1).

The purpose of this paper is to investigate the existence of coincidence
points for mappings f, g and h which satisfy.

min {d(fx,gy), d(f,hx), d(hy,gy)} - min {d(hx,gy), d(fx,hy)}
< Q(max {'d(hx by). min (A0, drbnl) 9

tor all x,y in X and some Q in M. We follow the techmques of L1u 2]
to obtain the following results.

Theorem 1

Let f, g and h satisfy (*) and there exists a point X, in X such that (A)
f is orbitally continuous at x,, f and h are R-weakly commuting; (B) h is
orbitally continuous at x, and (X,d) is (f,g,h)-orbitally complete at x,.
Thenf and h or g and h have a coincidence point. '

Proof

Suppose that x, = x,,, for some n = 0. Then x, is a coincidence poinf
of fandh or g and h. Now suppose that x, # x,,; forn = 0. Se: -

d, = d(hx,, hx,;). By (¥) for X = X,, and y = X,,,, We have
min {dy, dooss} = Min {1, dony dooys} ~ min {d(hxz, hxays), 0}
< Q(max {dy, min {d, dus}})

= Q(d)
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We assert that d,,; < Q (d,,). Otherwise d,, < Q(d,,) < d,,, which is
impossible. Hence d,,+; < Q(d,,). Similarly, we have d,,,, < Q(d ).
Thus d;,; < Q,) forn = 0. Lett, = d,and t, = Q(t,.) for n = 1.
It is easy to see that 0 < t, = Q(t,,) = Q%(t) < t,,. This implies that
the sequence {t,} is convergent. Obviously we have

n+p-1 n+p-1
dihx, . hx, ) Z; d, < E 8 < _/;:'ip'u(t)dt

for all n, p = 1. Thus {hx,},., is Cauchy sequence. (B) implies that
there exists v in X such that hx, - v as n - o. Since f and h are
orbitally continuous at x, then fhx, - fv and h’>x, > hv as n - oo. It
follows from R-weak commutativity of f and h that:

~d(fv,hv) < d(fv,fhx,) + d(fhxs, hfx, + d(hfx,, hv)
< d(fv,fhx,) + Rd (hxy, fX,) + d(hhx,,,,, hv)

Let n tend to infinity. The d(fv, hv) < 0. Consequently fv = hv. The
completes the proof.

By using the method similar to the proof of Theorem 1 we have.

Theorem 2

Let f,g,h and x, be as in Theorem 1 and satisfy (C) g is orbitally
continuous at x,, g and h are R-weakly commuting.

Then f, g and h have a common coincidence point i.e., there exists t in
X such that ft = gt = ht.

Remark 1

Theorem 1 of Ciric [1] and Theorem 3.1 of Liu [2] are special cases of
the above theorem 1.
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ABSTRACT: Linear, sixth-order boundary-value
~problems - (special case) are solved using: polynomial
~splines of degree six. :

The spline function valies at the midknots of the interpo-

lation interval, and the corresponding values of the even-

order derivatives are related through consistency relations.

The algorithi developed approximates the solutions, and

their higher-order derivatives, of diflerential equations.

" Four numerical illustrations are given to show the practical
usefulness of the algorithm developed. It is observed that
this algorithm is second-order convergent.
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1 INTRODUCTION

When an infinite horizontal layer of fluid is heated from below and
is subject to the action of rotation, instability sets in. When this
instability is as ordinary convection the ordinary differential equa-
tion is sixth order; when the instability sets in as overstability, it is
modelled by an eighth-order ordinary differential equation.
Suppose, now, that a uniform magnetic field is also applied across
the fluid in the same direction as gravity. When instability sets in
now as ordinary convection, it is modelled by a tenth-order boundary-
value problem; when instability sets in as overstability, it is modelled
by a twelfth-order boundary-value problem (for details, see Chan-

drasekhar [4]).
Usmani [10], solved fourth-order boundary-value problem using

quartic splines.

In the present paper sixth-order and eighth-order bounda.ry-va.lue
problems .are solved using sextic and octic splines, respectively, in-
troducing some new consistency relations.

These problems have the form

v 4+ o(z)y = YP(z), -o<a<lz<b<oo,
y(a) = AO ’ y(“)(a) = A2 ’ y(iv)(a) = A4 ’
y(6) = Bo , 3(b) = By , () = Bq
for snxth - order BVPs -
and . y
y‘”‘"’+¢(z)y = P(z), -o<agz<b<oo,
§(a) = 4o, §09)(a) = Az » §0)(e) = Ay, §*)(a) =
§(b) = By , §¥)(b) = By, §0)(b) = By, §)(b) =
for eighth — order BVPs '

(i.1)

where y = y(z), and ¢(z), ¥(z) and ¢(z), ¥(z) are continuous func-
tions defined in the interval z € [e, b], and 4; and B;, i = 0,2,4, are
finite real constants for sixth-order case and A4; and B;, i = 0, 2,4,6
are finite real constants, for eighth-order case.
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2 THE SEXTIC AND OCTIC SPLINES
2.1 CONSISTENCY RELATIONS

The interval [a, b] is divided into n equal parts, where n > 10 for
. sextic spline and n > 14 for octic spline, thus introducing n + 1 grid

points z; so that
z; = a+th, ¢=0,1,2,...,n,
b-a

To = a, T, = b and h =

The exact solutions of the problems (1.1) at z = z; are y(z;) and
#(z;), respectively. Let s; be the approximation to y at z; determined
by the sextic spline @;(z), defined on the sub-interval [z;, z;}1] by

Qi(z) = ui(z —2,)8 + bi(z — ;)5 +¢i(z — zi)*
+ di(z - .’l:,')3 + ei(z - :l:,')2 + filz-zi)+g9, (21)
i=0,1,...,n—1. :
The sextic spline s(z) € C5[a, b] caﬁ, thus , be defined as
s(z) = Qi(z), z €[z, ziya], 1=0,1,...,n—-1. (2.2)

The octic spline-is defined similarly (see [12] ).
The cogfﬁcients of (2.1) are determined, (see [11]), as

%= 720 Sz | : oo (2.3)

b= s, (2 4)

&G = 214 :(::1)/2 - Eh s - 192"2 ,(1'1)/2 , (2.5)

& = %s:-", - (2.6)
1w ,,s _ ey 1 a (.,)

“ = T 16" %2t 3
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. S
k +%§h4 '+11/2 , | ; : | | ( 2. 7)
1 P | " - 1 17 5 v
g = Siy12—zhsi~ sh2 i+1/2 _,hss" 381 h4 5;1)/2
1 5.0 _ 61,6 (i) : '
Tao et st o (29

‘The coefficients of octic spline are determined. similarly, (see [12]).
The odd-order derivatives of the sextic spline-are defined as (see [11])

v) _ (v v vi (vi
hs” = (51 - 51’,2>—‘h2<sf+3,2 ), (210

"

- .a
hs; = (sz+1/2 ;- 1/2) 24h2(3.(:'1)/2 :w1)/2) @)
- h4(s(”') ) '
384 i4+1/2 Si- 1/2
and ’ P
hsi= (8172 = s,( 1/2) — 25h* (sz+1/2 11—1/2) )
+ sh(s t:’l)/2 5T1)/2) - 15360"6(35:11)/2 .(111/2)
(2.12)
The add-order derivatives of the octic spline are defined similarly

(see [12])
The following recurrence relations are obtained to define even-order

derivatives of the sextic spline, (see [11])

his ,(wl)/g (S:-s/z - 43;—3/2 + 68:-1/2 ~ 48412 + S.+3/2)
- 4sosoh6( v 5/2 + 724s (m:g/z + 623Osf"'1)/2
+ 7245f:'1)/2+ s, =34, -2,

(2.13)
(Sic7/2 + 2852 — 17s;_3/2 + 28s;_1/2 — 17~9.+1/2

+ 284372 + 8:+5/2)
(W)

st (580, + 7225}, + 105435, + 235485(™),,
(iv)

(iv) (iv)
+ 1054357, + 7225%) /2t S;fs/z) ;
\ (2.14)
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hPsi iy = - Té(sf-s/z' = 205;-3/2 + 383i_1/2 — 208iy1/2 + Sis3/2)
(iv (iv) (i)
+ mh‘(s‘ 2 + 70053, - 33225 ,' 12
+ 700587, 4580 ), o (2.15)
i=3,4,......,n—2, ‘

(si-7/2 + 743:—5/2 + 798;_3/2.— 308s,_1/2 +. 793:+1/2
+ 743:+3/2 + 3:+5/2)

= ok (si_ " + 7225, +10543s]_ 3/2+23548s‘ 2

+ 10543, + 122873/ + Sty /2)
B (2.16)
and
(8i-7/2 — 65;_5/2 + 158;_3/3 — 208;_1/2 + 15->93‘+1/2 o
— 6si43/2 + Sits)2 iy - -
ok ( ) + 122670, + 1054363, + 235485
(i) (vi)

+ 105433‘(;'_'1)/2 + 722s'+3/2 + 3.‘+5/2) -
o - (2.17)

Following S.S.S. and E.H.T. [11], the fb]lowing new consistency
relation is determined, which can be considered to be the replacement -

for equation (2. 15)

hzs:"—l/2 = = ';(Siés/z - 163:‘—5/2 + 30s;_1/2 — 1684172 + Siya/2)
6, (Vl) (vi) (vi) A
+ 552960h (sis/at 7123'"’3/2 +47183' 12
+ 1128030, + fﬂ/z) . | (2.18)

" The consistency relations for octic spline are defined similarly (see

[12])
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Following S.S.S. and E.H.T. [12], some new consistency relations are
determined to define even-order derivatives of the octic spline.
To replace the following equation (2.74) [12]

i 1 .
W™, = 5 (Z19si_7/2 + 122,572 = 3175i_g/3 + 428513
1
- 3178“_1/2 + 1228“_3/2 - 198,‘+5/2) + mhs
(19s{,, +1243665{") , + 55019815,
+ 11541508s() , + 550198157, + 1243665{33,
+ 193‘+5’,2) N =4, (2.19)
the following consistency relation is determined - '
1w 1 .
hf f_l) 2= g (=8iz7/2 + 128;_5/2 ~ 398;_3/2 + 568;_, 2

. 1 :
= 39si11/2 + 12814372 — Siysy2) + 61931520

(uut viif) (viti
( 0+ 654855 + 305383550

h8

viit)

+ 11824725("), 4 3053835, 4 6548 ( ey
+s80,) (2-20)

To replace the following equation (2.76) [12]

h%s;_1pp = 5118560 (=7561s;_7/5 — 3787463;_5/, + 8001593s;_3/2
' —15230572s;_; 2 + 80015933;1/2 — 378746s,,3/2

1
- 1s: - p (iv)
= 1881sivs/2) + Tr3eata93800 (7561"' 712
+ 493740263(“” ) 2+ 142644480750

~ 59290966285 , + 1426444807s{\") ,

+ 49374025, , + 75615y ) i =5, 6,...,n 4,
| ‘ (2.21)
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the following two relations are determined

T 1 ‘ 7
h2si_1/2 = 192 (358,_7/2 2263;_’5/2’ + 7813,‘_3/2

~1180s;-1/2 + 781s,-+'1 /2 — 2268;13/2

. 6 (vi)
+ 35si45/2) = 247726080h (3531 -7/2

; (vi) i :
o+ 2290945, + 101271495(") /2 + 2169333250
(vi) (vi) (vi
+ 1012714957y, 5 + 2290943-,{3/2 + 353;15)/:»)

(2.22)

’aﬁd |
2 H 1 A
h si_1/2 = 180 (25, 7/2 — 273, 5/2 + 270s; _3/2

—4903,‘_1/2 + 27OS,+1/2 - 27 S,+3/2

1
2 ___ﬁ____h 25 (viit)

+ 2i45/2) ~ {g57045600 ( i-7/2

+ 13093s(’""’ +5912785{5) 4 21090145

-5/2
(viit) (viii) . {viti)

+ 591278500, + 13003550, + 2587}

C (2.23)

2.2 END CONDITIONS

The following end conditions for sextic spline are obtained (see [11])
(20s¢ — 3531/2 + 218375 — 75572 + s-,-/2)

. 7 " v 6 vi '

= Ihtsy — Zhis ( ) 4+ 46’1080 (13005s£/2) L (2.24

+ 98213§‘;'2) + 721s§‘7,_,’ §‘;2’\
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( 10sg + 2131/2 - 2133/2 + 1535/2 - 637/2 + 59/2) ‘
vt

= h2 " 25h4 (tv) + 46080 (982131/2 | (2.25)
+ 23547s§';;’ + 1054332;'2) + 72260 4+ o2
and

. (230 — Tsyy2 + 1383/ — 20s5/2 + 1—537./2 — 6392 + 'sil/z)
= bt — b+ gl (T21s(7) + 1054335572)_,

+23548s§';‘2’ + 1054335*;3 + 722500 + 887)

(2 26)
The remammg last three end condmons may be written snmllarly
The end conditions for octic spline can be seen from [12].

'3 THE SPLINE SOLUTION

For the solution of sixth-order BVPs the following system of equa-
tions can thus be written (see [11])

() MY=C+T, ¥
() MS=cC, . (3.1)
(itd) ME=T.

where Y = (%‘—-1/2) , T = (ti)’ E = (éi—l/2) yi1=1,2...,n,

M = Mg+ RBF , ' (3.2)

46080
S = (si—l/i’)’ l.‘;'l,2,.-,...‘.,n (33)

and
C = (&), t=1,2,...... N . (3.4)
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Also, Mg and B are seven-band symmetric matrices, with

[ —-35
21
-7

1

. Mo

and

[ 13005
9821
721
1

L.

21
-21
15
~6

9821
23547
10543

722

-7
15

. =20

15

721
10543
23548
10543

722
1

The matrix F is~d§‘ﬁxieduas‘ _

-20

1

-6 1

15 -6

1

722
10543
23548

10543
722
1

15

1
-6 1
15 -20 - 15 —6
-6 15 -20 15-
1 -6 15 =21
1 -7 21
1
722 1
10543 722 1
23548 10543 .~ .722
10543 23548. 10543
722 10543 23547
1 7210 9821

F = diag(qb;._l/g), 1= 1,2,...,71«'.4

and the vector C = '(é.’)-,_i =1,2,... ,nis defined as" .

.21

1 .
=T

(3.5)

1
721
9821

13005 |

(3.6)

(3.7
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~2040 + Lh? Ay — ZhiAs + B (13005«/;1,2
+ 93211/’3/2 + 721¢s/2 + ¢7/2) s i=1,
1040 — 3h%A4; — BhiA, + g (9821412

: + 235471/;3/2 + 10543¢5/2+ 7221/;7/2 +tg) , i=2,

. ~240 — 1h%4; — LR+ B (T214

+ T22%9y2 + Y11/2) =3,
Tass (Yizrya + 12252 + 105434;_a)2

+ 23548%;_1/2 + 10543%; 172 + 72291372

+ ¢i+5/2) , 1=4,8,...,n 3.

(3.8)

The deﬁnmons of ép—2, €n—1 and &, are anologous to those of

¢z, ¢z and ¢; respectively, except that the boundary values By, By
and B4 will replace Ag, A2 and A4 at the other end .

After determining s;_3/9, ¢ = 1,2,...,7 ,$0 and s, can be de-

termined using the differential equation (1.1). Moreover, sgzil)/z, i=
1,2,. s(()” ) and s can be determined using (1.1). The deriva-

tives s( 1)/2, i = 1,2,...,n, (that is, the fourth derivative of the

spline at the midknots) can be determined using (2.13) and (2.14)
and s; o i=152,...,m, (that is, the second derivative of the spline
at the midknots) can be determined using (2.15) and (2.16).

Now 1t is possible to determine the odd-order derivatives of the

"

spline; s; , i = 1,2,...,n—1 are determined using (212);8; , i =

1,2,...,n— 1 are determined using (2-11), (v) ,i1=1,2,...,n-1

III "
are determmed using (2.10), while so, Sny 805 Sp s s(") and s,(z) are

determined through the following relations, which are obtajned while
determining (2.10)—(2.12) .

h(si - 3:'—1) = h? 3;-1/2 + 24"4 5T1)/2 + Ts_zﬁhssa(itl)/z ) (3.9)

hsi = siy) = A, + ﬁh“ s, (10
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and
(s - ) = B2, (3.11)

For the solution of eighth-order case see({12])
4 NUNERICAL RESULTS
In this section, two problems are discussed to éompare the maximum

absolute errors for both old a.nd new consistency relations alongwith

the analytical solutions.
All calculations are computed in double-precision arithmetic.

PROBLEM 4.1

Consider the following sixth-order boundary-value problem

g0 Loy = —(24+ 11z +2%)e*, 0<z<1,
y(0) = 0 = y(1), 9"(0) = 0, 3"(1) = —de,  (4.1)
y)(0) = =8, y()(1) = —16e ‘
and the following eighth-order boundary-value problem
yiti) + py = ~(48+ 15z +2%)e™, 0<Lz<1I,
y(O) =0 = y(l),y(O) = 0,y(1)= _43’ (42)
y(0) = -8, y(™(1) = —16e, y)(0) = -24,

y(*)(1) = —36e.
The analytical solution of the above differential systems is
y(z) = z(1—z)e” . (4.3)

The maximum errors (in absolute value) in y,( bk = 0,1,2,...,5,
are shown in Table 1 for 6th-order case and k¥ = 0,1,2, ... ,7,in
Table 2 for 8th-order case.
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PROBLEM 4.2

Consider the following sixth-order boundary-value problem

y 4y = 6[23: cos(z) +55m(z)] -1<z<1,
y-1) =0 =y1), o
y(~-1) = —4cos( 1) + 2sin(-1), (4.4) ,

y"'(1) = 4cos(1)+ 2sin(1),
y#)(~1) = 8cos(~1) - 12sin(~1),
y()(1) = —8cos(1)-12 sin(1)

and the following eighth-order boundary-value problem

y) —y = —8[2z cos(z) + Tsin(z)], -1<z<1,

y(-1) = 0 = y(1),

y'(=1) = —4cos(—1) + 2sin(-1),

v (1) = 4cos(1) + 2sin(1), 4
y)(~1) = 8cos(~1) — 12sin(~-1), (4.5)
y¥)(1) = —8cos(1) — 12sin(1),

yi(=1) = —12cos(=1) + 30sin(-1),

y(*)(1) = 12cos(1) + 30sin(1) .

The analytical solution of the above differential systems is -

y(z) = (2% - 1)sin(z) . (4.6)
The maximum errors (in absolute value) in y; ) k= 0,1,2, y 9,
are shown in Table 1 for 6th-order case and &. = 0,1,2, , 7, in

Table 2 for Sth-order case.
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Table 1: Maximum absolute errors for Problem 4.1 (6th-order) with

n = 100 .
y Oldfor | Newfor | Oldfor | New for
[z3, Tn-3] | (23, Tn-3] | otherwise otherwise
k = 0]0.54x10"°]0.56x10-%]0.94 x 10~7 [ 0.35 x 10~7
k= 1[0.17x10"°[0.17x 10~° | 0.82x 10~% [ 0.23 x 10-5
k= 2]053x107°]0.55x107°[0.10x 107! | 0.72 x 103
k=3[017x1077]0.18x10~*] 042x10 | 0.29x 10-
k= 41010x10"°]0.69x10~* | 0.71 x 10° | 0.49 x 10?
k= 5]036x10"T10.12x 107 | 0.47x 10° | 0.33 x 107

Table 2: Maximum absolute errors for Problem 4.1 (8th-order) with
n = 32.

k
o

Old for
[ﬂ? 43 1‘n—4]

New for
[-7:4, xn—d

Old for
otherwise

New for
otherwise

0.81 x 10~7

0.91x 10~°

0.18 x 10*

0.10 x 107

0.24 x 10~°

0.26 x 10~°

0.43 x 10°

0.43 x 10°

0.84 x 10~°

0.90 x 10~

0.36 x 10°

0.36 x 107 |

Hpugn

0.27 x 10~

0.26 x 10~

0.38 x 10°

0.38 x 100

B R ENES

0.11 x 10~4

0.88 x 10~*

0.90 x 1012

70.90 x 102

0.48 x 1074

0.27 x 1073

0.88 x 1014

0.88 x 107

e

0.53x 10~°

0.88 x 10~3

0.44 x 1016

0.44 x 101°

o
FN P
e

~N| Ol kelwN~O

0.11 x 10!

0.12x 10°F

0.94 x 1017

0.94 x 1077
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Table 3: Maximum absolute errors for Problem 4.2 (6th-order) with

n = 100.
y}k) 0ld for New for 0ld for New for
[z3, zn-3] | [z3, ZTn=3] | otherwise |- otherwise °
F = 0[058x10°%]0.73x10°° | 0.87x10~7 | 0.92 x 10-7
F = 1]017x10°° |022x 105 |-0.52x 10-° | 0.28 x 10-°
k= 21049x107°]0.72x 10~° | 0.40 x 102 | 0.55 x 103
k=3]016%x10"%]0.23x107% ] 0.10x10 |- 0.11x 10
kE =4]050x10°%|0.71x10~%7 | 0.10x10 | 0.30 x 107
E = 5]052x10-2 [0.14x 10~2 | 0.47 x 107 | 0.30 x 10°

Table 4: Maximum absolute errors for Problem 4.2 (8th-order) with

n = 64.

k
4

Old for
[.’Eq Y zn—-‘l]

New for
[-’54, zn—«:]

0Old for

otherwise

New for
otherwise

0.12 x 10~°

0.46 x 10-5

0.16 x 107

0.17 x 10

0.29 x 10~°

0.78 x 10—

0.38 x 10°

0.38 x 10

0.71 x 10~°

0.12 x 101

0.16 x 103

0.32x 10

0.20 x 10~%

0.25 x 10~4

0.34 x 10'°

0.34 x 10*°

0.59 x-10~4

0.46 x 10~

0.80 x 10T

0.80 x 10!

0.18 x 103

0.12 x 10~

0.78 x 1014

0.78 x 1014

o] | oef o orf 2
I

fl

0.57 x 10~3

0.29 x 103

0.39 x 101

0.39 x 10!

bl

0.47 x 102

0.53 x 10~

0.83 x 1017

0.83 x 1017

s
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