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ABSTRACT: In this article the notion of convergence of series is extended
and statistically convergent series is introduced. Some properties are studied and
interesting results are established. The deviations are established providing
suitable examples.
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1. INTRODUCTION

The main object of this article is to introduce statistically convergent
series and some definitions. The idea is similar to statistical convergence of
sequences. The idea of statistical convergence was introduced by Fast [3], Buck
[1] and Schoenberg [9] independently. Later on it was studied and linked with
summability by Fridy ({4], [5]), Salit [8], Rath and Tripathy [7], Tripathy [10],
Conner [2], Maddox [6] and many others.

Definition
A series E x, -is said to be statistically convergent, if it’s sequence of
k
partial sums (s,), where s, = x; + x, + x; + .... + x, is statistically convergent.
Throughout sums without limit means it is from k = 1 to oo.
A series E x, is said to be bounded if it’s sequence of partial sums is
= K,
bounded.

The idea depends on the density of a certain subset A of the set N of
natural numbers. A subset A of N is said to have density 6(4) if
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“mIA—fln)-I:é(A) . where A(n) = {k < nik ¢ A} and |A| denotes the

R0

cardinality of A. Clearly finite sets have zero density, 6(4°) = 6(N-A) = 1-6(4),
whenever both sides exist. Throughout A° is the complement of the set A in N.
A sequence (x,) is said to be statistically convergent to o, written as stat-lim
x, = o, if for every ¢ > 0,

6[{k€N:|xk-alze}] =0
A subset K = {k; j € N} of N is said to be thin if 8’(K) = 0, it is

nonthin if either 6(K) # 0 or K fails tb have natural density. A series Z b, is

said to be a rearrangement of Y a, if each b, = g, for some k ¢ N.

Definition

A series is said to be statistically conditionally convergent if it is
statistically convergent but not absolutely convergent.
Definition

A series Y a, is said to be statistically non-negative term series

if 8[{keN:a,<0}] = 0.

A sequence (x,) is said to be statistically Cauchy if for every ¢ > 0,
there exists m = m(e) such that 6[{k € N: |x, - x,| = €}] = 0. A sequence
(x,) is said to be statistically bounded, if there exists a A > 0, such that é[{k €
N: |x, | > A}] = 0, see Tripathy [10]. Clearly a statistically convergent series
is statistically bounded, but not conversely.

2. PROPERTIES

The following lemmas will help us in establishing the results.
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Lemma 1 (Lemma 1.1, Salit 8D

A sequence x = (x,) is statistically convergent to « if a only if there exists
suchaset K = {k;, < ky < k; < ...} CNthat 6(K) = 1 and lim x, = «.

n-oo

Lemma 2 (Theorem 1, Fridy [4])

A number sequence x = (x,) is statistically convergent if and only if it is

statistically Cauchy.
A statistically convergent series may be unbounded. For this consider the

example.

Example 1
Let Y a, be defined by

(_1)"k’ h = k2’
a, =4 (-D", n-1=Fk, keN,

n
2

n’, otherwise.
Remark 1
All bounded series are not statistically convergent. This is clear on

considering the series Y (-1)".

Remark 2

A bounded statistically convergent series may or may not be convergent,
which is clear from example 2.

Example 2

Consider the series Y a,, where

-1 n =4k,
a, =3 (-1, n-1=£k% keN,
2

n—, otherwise.
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It is clear from definition and example 2 that "every convergent series
is statistically convergent but not conversely". Using Weierstrass completeness

principle we have

Proposition 1

A non-negative terin series is statistically convergent if and only it is
convergent.

Remark 3

If a series is statistically convergent then any rearrangement of it may or
may not be statistically convergent. For this consider example 2 and it’s
following rearrangement.

Yob, =1-1+4T141-1+91+1-1+16)"+1-1+(25)7 +....
From the definition and above examples we have

Proposition 2

If E a, converges statistically, then stat-lim a, = 0, but not conversaly.

Proposition 3

If Ean and Ebn are two statistically convergent series, then for
complex numbers a,ﬁ;z(a a, +Bb,) converges statistically to the
sum «y a,+PBb,.

3. MAIN RESULTS

Theorem 1

If a series Ean is statistically convergent then there exists such a

subset K = {k, < k, < k, < ...} of N that (K) = 1 and Eakl is convergent.
i
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Proof

Let Ean be statistically convergent, then by Lemma 1, there exists

such aset P = {p, < p, < p; < ...} C N with §(P) = 1 that (Sp') is

convergent. Let us construct a subset M = {m,, m,, m,,....} of Nas m,, = g, +
1, my, = g, where g; ¢ P, if there is repetition that is m; =m, , | for some I,
then count m; and reject m;, . Then 6(M) = 0= 6(M) = 1. Taking K = M*, we

have Y a, is convergent.
kek

Remark 4
The converse of the above result fails even if E a, is bounded, which

is clear from example 3.

" Example 3 ;
Let Y a, be defined by @, = (-1), n = &, k ¢ N and a, = 0,

otherwise.

Theorem 2
A statistically convergent series E a, has a thin subseries divergent to

oo if and only if it has a thin subseries divergent to -oo

Proof
Let }: a, be statistically convergent and has a thin subseries divergent

to oo. Then by Proposition 1, it follows that it has positive terms as well as
negative terms. By Theorem 1, there exists such a set K — N that (K) = 1 such
that (s,) converges on K. Let M be a thin subset of N such

that E a, = «. Then from definition of statistical convergence of series it
keM

follows that E a, = —, where B = K - M N K. Clearly 6(B) = 0.
LeB

Similarly the converse part follows.
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We formulate the following results, the proofs are obvious.

Proposition 4
A series E a, of complex terms is statistically convergent if and only

if the series of real and imaginary parts are statistically convergent.

Proposition 5

A number series E a, is statistically convergent if and only if for every
€ > o there exists m = m (¢) such that

vl o

If Ean converges statistically then the remainder tends to 0

Y q, =0

k=m

lim n!

n—o

Proposition 6

statistically and conversely.
Proposition 7
The following are equivalent.

i) Y a, is statistically convergent.

ii) There exists a convergent series E b, such that

6[{k € N: g, # b,}] =0.
iii) There exists such a subset K C N that 6(K) = 1

and Y a, is convergent.
kek

(iv)  There exists series Y x, and Yy, such that

a, = x, +y, foralln € N, where Y x, is convergent

and Yy, is statistically null.



On Statistically Convergent Series 7

Remark 5

In case of statistically convergent sequences, the limit remains same for .

decomposition theorem, but for series the limit may be different.
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ABSTRACT: 1n this work, we investigate some topological properties of
the sequences spaces defined by invariant convergence and related inclusions.

1. INTRODUCTION
Let o be a one-to-one mapping of the set of positive integers into itself
such that 0'(',',) #n for all positive integers n and m where

Oy = (o;',',;l)), m=12,..

A continuous linear functional ¢ on £ is called o-mean if it has the
properties:
(i) ¢ (x) = 0 when the sequence x = (x,) has x, = 0 for all n,
(i) ¢ (e) = | wheree = (1,1,...) and
(iii) ¢ X)) = ¢(x), forall € £,
when o(n) - n + 1, a o-mean is often called a Banach limit and V, the
set of bounded sequences all of whose invariant means are equal is the set of.
almost convergent sequences [C.C. Lorentz (1948)].
If x = (x,), we write Tx = (Tx) = (x,,). The space V, can be
characterized either (i) as the set of all bounded sequences x for which there is

an L so that lim¢_,(x) = L uniformly in n where
n

1) = 1 Ex 1, n =12.)

m+1 i=0 ‘o
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or (ii) as the set of all bounded sequences x for which lim N E X ol, is of the
m m+l;y »

L, where L. = o-lim x.
2. TOPOLOGICAL RESULTS

A paranormed space (X,h) is a topological linear space with the topology
given by the paranorm h. It may be recalled that a paranorm h is a real
subadditive function on X such that g(0y = 0, g(x) = g(-x) and such that
multiplication is continuous, i.e. N\, = A, x, = x imply that A, x, = Ax where
A A scalars and x, x € X.

Let p = (p) be a sequence of real numbers such that p, > 0 for all k
and sup p, = H < oo. This assumption is made throughout the rest of this
paper.

Let

lml(p) {‘ > kn l Y0 -, ,c,,(x)|‘p * congerges uniformly in n }
k k=1

l S=°'(pk) = {x su"p ’ZI: kp"_llll’b,(x) “l’k_b,(x)r" < «},

k

where  , (x) = E D Wogp = Lpp = %oy

M=

, .
[mo]p = {r 1 Y - L)|=0 uniformly in n for some L}

n k+1m0

[ /](p) {‘ YK "-lldb,(x) -d,_, ,,(x)]’”‘ converges uniformly in n}

k=1

iy - {"’ S ) dy 0 < w}

k

where  d, = d, (x) = Z}IE £.(%)

m=0
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p (constant) for all k, then we write [E"}p and [S"}p for

If py

-—

[50]([)) and [:9;0](‘9), respectively, if p, = 1 we write [50} and [Sa} for
k k

[50](p,,) and [E"](p,,)’ respectively. Moreover o(n) = n+1 we write for [S"](m)

and [S}](pk) [3], respectively.

Theorem 1

Let p = (p,) be bounded away from 0. Then [§°](p) is a complete linear
t,

topological space paranormed by

o M
h(x) = sup Ek”*“]wb.(x)—w,,_.ﬁ(x)rfj (1.1)
n \k=1

where M = max (1,supp,). The space [.STG](p) is paranormed by (1.1).
k,

Proof

We have
v <KX+ ), (12)

Where K = max (1,2""). Since,

A < max (LA, (1.3)

we have E kp"_lltp,m(lx+ BY) - ¥, (Ax+ |_;y)|""t
=1

<KK, g 900 -
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+K-K2k}_:l K000 - WL 0N (1.4)

—> 0

e os-27) = X,

as, s,t = oo for each fixed n. Hence, (x°) is a Cauchy sequence in C.
Since C is complete, there exists x € C such that x* - x coordinatewise as s =
oo It follows from (1.5) that given ¢ > 0, there exists s, such that
oM

(Z kpl_ll‘l"kn(xs—xt)_wk—l.n(xs ‘xt)lpk <€ (1.6)

k=1

for s,t > s,. Now making t—=co and then taking supremum with respect to n in

(1.6) we obtain
h(x®-x) < e,

for S > S, This proves that x* — x and xe[g‘o]( . Hence, xe[§o]( ) is
Py Pr

complete.
By taking o(n) = n+1 in Theorem 1, we obtain the following result

which is valid for almost everywhere convergence corollary. The

spaces [ﬁl]p) and [.§l]pk) are complete linear topological spaces relative to the

paranormal defined by the function.

M

h(x) = sup | K|, () -d,_,
k=1

n

Theorem 2

If p is a constant and p = 1, then

-— =

[S2], =154,
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Proof

Suppose that xe[:S'—o]p. Hence there exists an integer M > 0 such that

y kl’"|¢,m(x) Y @ s 1 2.1)
kM
for each n it is enough to show that,
M1 '
Y P00 - by G = O1), Vn. (2.2)
k=1
(2.1) implies that, fork = M
[¥a® ~ ¥ O —‘— <1
and so this implies
||pb,(x)—q:k_l‘n(x)| < 1,(k=2M,Vn) 2.3)
since Yo, = (k+ 1) (Y =Wy ) = R=D) (W = Wi2.0) 2.4)

it follows from (2.3) that, for any fixed k>M ’Ix":)l = O(1)Vn, and this implies

that |x;| is bounded. Hence,

.I‘llb,(x) _‘pk—ln( )l k(k+ I)El °(.)

= 0(1)

Hes I)Exu() = O(1),Vk and n.

It follows from this that (2.2) holds and this completes the proof.

Lemma

[wo]p—limx = L if and only if
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(i) w,-limx = L
and (i) —;-E 165 -L) U (x-LP = O)
o

as m - oo, uniformly in n.

Proof
Clearly [wu]p-limx = L for p = 1, Holder’s inequality of p > 1

1 m 1 m
— ) t (x-L)<— t, (x-L
mg; e )sm§|h(x )|

m
< Y [t x-DP mi
m -

that w, - lim x = L for p > 1. This proves (i). Again forp = 1

1 lp
(; E |tbl(x Y ARS] ,m(x—L)]P ]

k=1

p

m lp m
1 1
— 2 t, (x-L)P| + —2 -L)}P
: (’”H [iex~D) J (’”k=1 ¥ )

=), +y, (say)

Now, by hypothesis I, = 0(1) as m = oo, uniformly in n. Also, (i) gives us | ¥,, ’
(x-L)| = 0 as k = oo, uniformly in n, and hence X, = 0(1) as m - oo uniformly
in n.

This proves (ii) since

m lp m
(l Y = —L)IP) < (l Y [t L) - Wl ~L)|P)
m g , mi-1

lp

1 m lp
+ (—E 'qybl(x—L)lp )
m -1 .
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the converse part follows immediately.

Theorem 3

[So]pC[wo]p and if x € [wu]p , then
[wo]p—limx = w,-limx = L

Proof

Suppose that x'€[§n]p . Hence, if we write

Va® = X B [, =V,

k=m

then V,,, () is finite for each m = 1 and V,,,, (x) - 0 as m - o uniformly in

n.
Since every absolutely o-convergent sequence is o-convergent, we have w, - lim

x = L, (say).
Hence, to prove the theorem, it is enough to show, (by use of the
Lemma) that

1 m
— L (x)-¥, (xP-0 asm—> o
m kz=1: , kn kn Ip
uniformly in n. Since for k = 1
(tb.(x) - \pb'(x)) = k(\l’b.(x) ~V ,,(x))
We have
1 w 1 v
o [ U@ = 2 P[00 =,

m

Y k P(Via®) = Vo1 @) o

k=1

EIH
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1 Yy K(Vin®) = Veoy o))
my

V%) "
Y 1 n® Y (Vi ) = )

k=1

as m - oo uniformly in n. This completes the proof.
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ABSTRACT: Using the majorant method we find sufficient conditions for
the convergence of a Chebysheff-Halley-type method in a banach space. Two
different approaches are used. The first one utilizes divided differences of order
one, whereas the second employs Fréchet-derivatives of order one and two. Our
results improve al] our previous results as well as those of others.

AMS (MOS) Subject Classification: 47H17, 65H10, 65J15, 49D15.
Key Words and Phrases: Banach space, Chebysheff-Halley method,
majorant method, Fréchet-derivative, divided difference.

1. INTRODUCTION

In this study we are concerned with the problem of approximating a
locally unique solution x* of the nonlinear equation.

Fix)=0 ey
in a Banach space E, where F is a nonlinear operator defined on some convex

subset D of E with values in E.
We recently introduced the Chebysheff-Halley-type method given

by Y, =X, —[xn,xn]"l F(xn) )
L= =[] (] -kl Ma=(I-L,)" ©
X,,1=Y, —[xn,xn]“M"([xn,yn] ~[X%a]) (Pn = Xn)p 720, %,€D @

to find a solution x~ of equation (1) [5], [6], [8].
Here [x,y] denotes a divided difference of order one which is an operator

in L(E,E) satisfying
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[x.y] (x-y) = Fx) - F(y) and F'(x) = [xx] forallx € D, (5)

[5], [9], [17], where F' denotes the Fréchet-derivative of F.

Using the majorant method and the standard Newton-Kantorovich-type
hypotheses we showed that the iteration {x,} (n = 0) converges with order
eventually three [5]. These results constitute major improvements over all
previous ones. °

In this study we improve on these results even further by assuming that
the foilowing Zabrejko-Nguen-type conditions are satisfied

WP +hoy+hy) ~ eyl <Ay (1 +fot) + Ayt +bty) | (6)

for all x € U (5, t) = x €EE, |x-%] su},y € U, 1), Al
< R-t, |h| < R-t, 1,1, = 0 for some fixed R > 0 such that U(x,, R) S
D [1]. The functions A,, A, are continuous in both variables, and such that if one
of the variables is fixed then A, and A, are increasing functions of the other on
[0, R] with 4,(0,0) = A,(0,0).

Here we provide an error analysis as well as error bounds on the
distances ||x,., - x,| and |x, - x*|| for all n = 0. We also show how to choose
the functions A4, and A4,. Special choices of 4, and A, will led to all the previous
results [5], [6], [9], [14], [15], [17], [20].

In Section 3 of our study we present a different approach, and method
(Chebysheff-Halley-Werner) for solving equation (1) that uses first and second
Fréchet-derivatives only instead of first Fréchet-derivatives and divided
differences of order one.

The computational cost slightly increases this way but many researchers
find this approach more useful because it avoids mixing Fréchet derivatives and
divided differences. Another reason why we present this second method is
because we can compare our results (favorably) with earlier ones [5], [6], [12],
[14], [15], [17], [18], [20], [21].

2. CONVERGENCE ANALYSIS FOR THE CHEBYSHEFF-HALLEY
METHOD

We will need to introduce the constants
L =0,5 =2 ")’o - Xp " B2 "F'(xoyl " )]
for some fixed x, € D,

=1- 6(2A1(R1,O) + Az(RhO) + AZ(RI’ Rl))7 ) ¥
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a, = 1-B(4, (R,0) + 4, (R,0) | )

for some fixed R, and R with 0 < R, < R, the sequences for
alln =0 ' '

a,=1-B(4, +4,)(t,.0) | (10)
b, =B fol(Al +A) (A0 —xp| +tfx, %Ot ap
Cpr=B(1-8,.0)7%, | a1
d,=B [ (A ) - %o] # o] -5 ol -] (13)
ex=1-B(A, +Aj)(|%, %o}, O). | (14)

By, = f A A (S, )t A+ AN(S ot ) by S,

2y [ )t )a

Sa

¥ q"( L A1)t + f o *(’""")Az(t,s") dt), (15)

B(A(t,,0) * 4, (s,.5,) ’
1-B[24,(t,,0) +Ay(s,.5,) + Ay(t,,0)]

p, =

1-B(A,(t,,0) *4,(t,,0) 16)
1-B[24(t,,0) +4y(s,,.5,) +4,(t,,0)]

q, =

P 1 e KRN e e 8 | N
"L BRA (e O) Al o B sl Al O)

7, ~ P . ()
1-B[24,(|x,~%]:0) + Ay(fxs o] *[*uFnls[Ya~%o]) *Ax(}¥a~%}-0)]

r = 1 , (19)
1= B24,(t,.0) *Ay(5,.5,) * Ay (120)
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+__B_.h
a

S =1

n+l n+l n+l?

n+l

ot = 5+ B (A 1,,0)+Ayf5,08) 00

and the functions

T() =s,+ Z?T) ( fs:(Al +A,) () dEH A A (rn) rp(r)

[ 4,4 @ndt+q() ( [ A@rdt f;Az(t,r) dt)

+q() (A, (0) + A, (r)r},
a(r) = 1-B(A(r0) +Ar0)),

B(A,(r,0) +A,(r,r))
1-B(2A4,(r.0) +A,(r;1) +A(r0))

pir) =

1
[3(2Al(r,0) +A,(r,n) +A2(r,0))

and q(r) = I

We can now state and prove the main result:

Theorem 1

on [0,R]

(20)

21)

(22)

(23)

24)

25)

Let F : D S E - E be a nonlinear operator whose divided difference

[.,.] satisfies condition (6) on D. More assume:

(i) there exists a minimum non-negative number R, such that

I(R) < R;;

(26)

(ii) The numbers, R, R, with R, < R are such that the constants u, a,
given by (8) and (9) respectively are positive, and

U, Ry = D withR, < R.

@27
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Then (a) The scalar sequence {t,} (n = 0) generated by (15)-(16) is
monotonically increasing and bounded above by its limit, which is-
number R,;
(b) the sequence {x,} (n = 0) generated by (2)-(3) is well defined,
remains in U(xy, R,) for all n > 0, and converges to a solution x™ of
the equation F(x) = 0, which is unique in U(x, R).
Moreover the following estimates are true for all n = 0

1Y =%l 50—t (28)
[Fret =l $tns =50 | (29)
||x"-xnusRl—tn, (30)
"x"—s”"sR1 -5, (31)
(LSRN ELHPES W (32)
,le _x‘" Sle’;ml SRl _tml (33)

and Pu-x <5 =%, +d,(1-a,) (34)
— 1 '

where Hrar =fo (A1) ([Yn %ol * #[Xnss Va1V %ol s ~ ¥alt

A Fol I %al o laFol) X =2

- 71 '
Py .!;) (Al +A2) ("x" _,xo " * t"y n *n “ ? ﬂxn ~Xo ")")’ n xnﬂdt

31BN 01, ) o) b

R AR MO A A )l A B

Proof

(a) By (7), (15),(20),(21), and the monotonicity of the functions A, and
A,, we deduce that the sequence {t,} (n = 0) is monotonically increasing and
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nonnegative. Using (7), (15), (20) and (21) (forn = 0) wecan get t, < 5, < ¢,
< 5, < R,. Letus assume that f, < 5, < 1,,, < 5,,, < R fork = 0,1,2,...,n
Then by (20) and (21) we can have in turn

‘ 4
LaStat B {L : I(A 1+A2) (t,.sk)du(Al +A2)(sk,tk) (tm —sk)}

a(Rl)

{*‘h(f 4ty + [ "("‘ (t,.sk)dt)+pk f A, +A, (ttk)dt}

pr,
a(Ry)

(A (te.150) + AgfSpo1stia)) (Sior = tm)

{f (A +A )(t Rl)dt+(A +,42)(R],R)(tk+l so)}

£...%5

R,) te

A(t.R )dt+ "A Ats Rl)dt) +p(R,) f “(A1+A2)(t,R,)dt}

R
PAR) R 0)+AgR R - 1) <TIR) <R, by 26)

a(R,)

Hence, the scalar sequence {t,} (n = 0) is bounded above by R,. By hypothesis
(26) R, is the minimum nonnegative zero of the equation 7(r) - r = 0 in [O,R,]
and from the above R, = lim,,,, ¢,.

(b) Using condition (7), (20) and (21) we get x;, ¥y, € U (x,R,) and that
estimates (28) and (29) are true for n = 0. We first show that [x, x,] is
invertible for all n = 1. Let us assume that (28) and (29) are true for &k =
0,1,2,...,n - 1. Then we will obtain in turn

ks o] <[ews Yol * Yool <|Xesr 2l * Yo ~ oo
S e S (g mSE) *(S650) TS0 < By < Ry
and iy %o $[Vier ol *[Po~ol ket eut | *Peer el o] *Poo]

S e S (Sprtea) (G =Se) H(SkS0) +S0 S S S Ry
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That is, x,, y, € U (xy, R)) forall n = 0.
Using hypothesis (6) we can obtain

[ o) JHF (xe) = F o] < B e xe] = 05 %]
BlA (o O)+Axflx o[ :0)) < B{A;+4,)(t.0)

< B(A1+A2)(Rl,0)<l by conditiona > 0

It now follows the Banach lemma on invertible operators [9], [13] that
[x, x,] is invertible, and

s '] s £ foratn=o0. (35
n

Using (2), (3) and (4) we can easily obtain the approximation

F5yu1)= [ [P0 tees32) = FO) 02l
) F e 32 M, [ (Pl 1) e )
+M,F'(x [x",yn] %)) f [F’ (Y %,) [x",y"]](y"—xn)dt.

Then, by using the estimates
M| F ) N2 y] - s Zall < @
|M.] < P,
conditions (6), (35) and (28), we can obtain through the triangle inequality
L YR R LA A
A R A NI

+ LA (%] # a5 %))
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+A2(’|xn—x0" +")’n —xnn,"xn —xOH)] uxml —y""
- 1
* B [ At Aol ]y o X e
- 1
*d J (o] =l =)
+ Ay (o * A0, =, s [¥n ~ %o 17n ~Xa| 42
= I;,Hlsfol (A1+A2)(sn+t(tm—sn),s"),(tm—sn)dt
+ (A1+A2)(Sn”n)(t,.+1‘sn)+ P, LS,.(A1+A2)(t,t")dt
vq,|[ 4, (6,445,721, +A2(sn+(1—t)(sn—tn),sn)(sn—tn)]]dt
= hn+1

From approximations (2) and (36) we get
AR N i R

h

n+l  _ _
T Cn+l tn+l’

<

an+l

which shows (28) for all n = 0.
Using hypotheses (6) and (35) we can obtain from (4)

P =Yl <FE ) [ I %a] =P ] 5]

< @ulAs (%ol 0) * Ao (o] [P =%a o5l [P~

< rﬁ[Al (1320 s, £ )](5 1) =Epet S0

n

which shows (29) for all n = 0.
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It now follows from estimates (28) and (29) that the sequence {x,} (n =
0) is Cauchy in a Banach space E and as such it converges to some x” € U (x,,

R)) with F(x") = 0 (by (2)).
To show uniqueness, we assume that there exists another solution y~ of
equation (1) in U (x,, R). Then from hypothesis (6), we get

[ b s o) < BlA "o 0) + 4

<B(A,(R,0)+A,(R,0))<1,  (since a, > 0)

y*-x|.0))

-
x —xol

from which it follows that the linear operator [x", '] is invertible. From this fact,
(4) and the approximation

Fie)~F) <l i -
we obtain x” =y’

Estimates (30) and (31) follow easily from estimates (28) and (29),

respectively.
Using the triangle inequality, and the approximations

%ot =% =(Brt)(F (5
By = [ [t mx )5 4t(x, -],
A AR
( [ [rtfrtx),x, 0 t(xt )] - [, ,xn])(x “-x,)dt,

B % x|+ %] 0)

<[ 14,1
+A2((1 —t)ﬂx‘—xO" tx,., —xOH,O)]dt
< [ [A((1-D R +R,,0)+4,((1 DR +tR,0) dt

=A1(R1,0)+A2(R1,0)<1 (by hypothesis a > 0),

we can immediately obtain estimates (33) and 34).
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That completes the proof of the theorem.

Remark 1

(a) Let us denote the right-hand side of (6) by

Ayt iy 1oty + Ry 1)

Then we can choose

At Hh.t,t + 1L = x+h,,y+h,]-[x,
sttty +ha) o 55) xeu(x“":‘)"l;w(xoh) [[x+hysy+hy] - (x|
erf s R-1p . |iB2)| <R -2

Estimate (6) will now hold for the above choice of the function 4,.
(b) Let us assume that instead of condition (6) the following is true:

H[xo,xo]" ([xy] - [2:2D)] < g, (Dl x-2] + g, (D ]y-2]
for allx, y € U (x,, R), and q,, ¢, be two nondecreasing functions on [0,R] with

q:(0) = ¢,(0) = 0. For example we can choose.

= = : [ [x,}’] -[z,2]]
q,(r) = q,(n) st:t(;};xo’R) ezl by 2l ozl

For some applications of these results to the solution of nonlinear integral
equations we refer the reader to [9] and the references there.

Theorem 2
- Let f: U(x,, R) = E be a nonlinear operator satisfying
If@y) ~f@l sk @lx-2) +kMly-2l, @7
forallx, y, z € U(xy, r), r < R, and for some nondecreasing function k, and
k, on [O,R]. Then
VEsheysh)-Fen] < vl -vilt) vl hl) ~22(0), (38)
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forall x € U@y, 1),y € U, t), )] <=R-t, || < R-4,

v = fo 'kl(t)dt and v,(r)= fo '@2(t)dt.

Proof

Letx € U(x, t),y € Uxg, 1), "hll < R-t and "h2u < R,. Using
(37) for m € N, we obtain

iy o) ] = 32 Uik, ym ™k
-

—f(x+m_l G-1) h1 ,)""m_l(j" l)hg) i

m m

<3 ke 32 bl el )

j=
<vy () Vi) ot ol ) - volt)  as m > o0,

by the monotonicity of k;, k, and the definition of the Riemann integral.
Therefore another choice for the functions A4, and 4, is given by

Ayt by 1) = f,zl+llhllql(t)d’ s Aty Ry 1) = f,:z+'lhzn¢12(t)dt , (39)

Moreover if we let g,(r) = gy(r) = g for some ¢ > 0 and for all » € [0,R].
Then our results can be reduced to the ones in [5], which have improved the ones
in [5]-[8]. Furthermore, we can have

Aft ) = k] and Ay [hofs) < a]h)

which means that our estimates on the distances "y" —xnu and "xn -x'l can

easily be proved to be better than the ones in [14], [15], [17], [20] (and
references there) for all n > 0. These ideas can also be used for Steffensen’s

method [9].
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Remark 2
(c) Estimates (33) and (34) can sometimes be solved explicitly

for |x*-x,| forall n = 0. For example, choose ¢,(r) = g,(r) = q and 4, and
A, as in (39).

3. CONVERGENCE ANALYSIS FOR THE CHEBYSHEFF-HALLEY-
WERNER METHOD

Suppose that the nonlinear operator F defined on some convex subset D
to E, containing U(x,,R), with values in E,, is twice Fréchet-differentiable at
every interior point of U(x,,R) and satisfies the conditions

|F/(x+h) -F'x)| < A(r, IR, (40)
IF < M, | @)

and [F/x+h) - F"(x)| < B(r,ik]) forallx € U (x,, R),
0<r<RO<|h| <R-r (40)

Here A4, B are nonnegative and continuous functions of two variables such that

if one of the variables is fixed, then they are nondecreasing functions of the other

JdA(0,9)
dt

on the interval [0,R]. Moreover we assume that is positive, continuous

and nondecreasing on [O,R - r], with A(0,0) = 0.

Note that by setting for all r, || 2], A(r,| 2])) = c||#] for some ¢ > 0,
we obtain the usual Lipschitz condition on F' (see [4], [9]), whereas for
A(r, || 1])) = e | £} we obtain some generalized conditions considered also in
[9], but for Newton’s method. Conditions of the form (1) we also considered in
[22], for Newton’s method.

We denotg, by F'(x,) and F"(x,) the first and second Fréchet-derivatives
of F evaluated at x = x,. Note that F'(x,) € L(E,, E,) is a linear operator,
whereas F"(x,) € L(E,, E,)) is a bilinear operator for all n = 0, [2], [3].

Let x, € E, be arbitrary and define the Chebysheff-Halley-Werner
method on E, for all n = 0 by

Yo = %, ~Flx) Fx,), 43)
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Hx,.y,) = - F’(x,,)'1 F”(xn)(y”—x”) (44)

n) =

and X, = yn—lF/(xn)'l

-1
a
3 I—EH(xn,yn)} Fx )0, =%, (45)

Halley’s method has a very long history. One can refer to [5], [6], [9], [12],
[14], [15], [17], [20], [21] and the references there for some background.

In this study we are concerned with the problem of approximating a
locally unique zero x” of the equation

F(x) = 0.

Using the majorant theory, we will show that under certain Newton-
Kantorovich assumptions on the part (F,x,) the Halley-Werner method converges
to a locally unique zero x™ of equation (7). We also provide upper bounds on the

distances ||x" —x"" and "yn—x‘u foralln = 0.

Finally, we show that our results improve earlier ones [11]-[22].
It is convenient to introduce the constants

, 1, =0, (46)

n 2 =%}, B > [Flx)”
szn,tzsg=M, (47)
0 ! 2-BMn :
the scalar iterations for alln = 0
Snei = tn+l +D(tn+l)P(tn’sn) (48)
1
Lz = Saa +—2‘D(tn+])c(tn+l)M(Sn+1 '_tm])z’ 49)
- B 1
where D(tn) = " (ft (50)

1-BA0,t)’ ) = 1-—‘52ﬂb(t,)(sn-tn)

and Pt,.s,) = Lt,..lA(s" ) dt AL, ~t) (. -S,)
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. %C(tn)D(tn)M(sn SARN :"A(tn,t)dt
+ £2‘1C(tn) / :"B(tn,t)dz(sn-tn)2. (52)

Furthermore, we define the function T on [0,R] by

) =t,+D(r) [ f O'A(r,t)dt +A(r,pr+ -;-C(r)D(r)Mr f orA (r,t)dt]

L r , lalr?
=€) fo B(rf)dt+ 15 - COOM, (52)
1
where C() = ——m—— (53)
I—MD(r)r ‘

We can now prove the main result of this section:

Theorem 3

Let F: D C E| - E, be a nonlinear operator defined on some convex
subset D of a Banach space E, with values in a Banach space E,. Assume:

a) F is twice Fréchet-differentiable on U(x,,R) S D for some x, €
d, R = 0, and satisfies conditions (40)-(42);
(b) the inverse of the linear operator F’(xy) exists;

(c) there exists a minimum nonnegative number R,, with
T(R)<R,, ' (34
R <R; ' (55)
(d the following estimates are also true:
BA(O,R)<1, (56)
R
Mia| PR (57)

2 1-BAQO.R)
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B
R-F, f A0, dt<1 |
if R # R, or BAO,R) < 1 if R = R, (58)
Then :
@) the saclar sequence {t,} (n=0) defined by (48)-(49) is
monotonically increasing and bounded above by its limit R, for
alln = 0;
(ii) the Chebysheff-Halley-Werner method {x,} (n = 0) generated by
(43)-(45) is well defined, remains in U (x,, R)) for alln = 0 and
converges to a unique zero X~ of equation F(x) = 0 in U(x,R).
Moreover the following estimates are true:

"xn—x‘l <R, -t (59)

and |y, -x*|sR;-s, foralln=o0. (60)

Proof

(i) We will show that sequence {¢,} (n = 0) is monotonically increasing
and bounded above by R, and as such it converges to R, (by (c) and (54). From
(46)-(49) and (55) t, < 5y < 5; < f,. By assuming ¢, < 5, < t,,,, k=0,1,2,...,
n we obtain t,,, < 5., < &, from (48), (49) and the hypotheses on A and B.
Hence, {t,} (n = 0) is monotonically increasing. From (46) and (55) ¢, < t; <
R,, and from (49) forn = 0, t, < T(R, < R,. Let us assume that ¢, < R, for
k = 0,1,2,...,n+1. Then from (47)-(49) we get in turn

t

n+2’

=lpay +D(tn+l) [P(t’l ’sn) * % C(tﬂ*l)M(s’”l—tnd)z}

<t

n+l n n+l

+D(Rl)[P(t S,) % Cltyor) M(S,.y -tm)2]

<.. st+D

Ef"'As f)de+A(R, R)]

[(E (e —s,.)) +% C[R)D(R)MR, + %D(Rl)Rlz

i=0



32 loannis K. Argyros

[ frm ) Sl mm{ S5 6 <m) <m0y 590

Hence, {t,} (n = 0) is bounded above by R,. Moreover ¢, < s, < £,,, < R, for
all k = 0.

That completes the proof of part (i).

(ii) We will show that if

[Vn=%a| s, -2, (n20), (61)

|F(Ea)] < Pltn-155,1) 21, (62)

"F’(x,,+l ‘"sD (tae1) (riz—l), | (63)
and % HH(xn, yn)ﬂ < % M D(tn)(s" - t") <1, (64)
then “x,l+1 y"“s 1~ Sp (65)

[F(enan)l < Plens,) ' (66)
and Wit = %net]| $8ney ~2pey forallm = 0.

From (41), (45), (62) and (63) we obtain

-4t

1 - 1
P snf g 15 50

1 pM
SEI__EZ(O—J—n)C(t")P(tn -195n- l) Li1 ™5,

Hence, (60) is true.
From (40), (45), (46), (51), (61)-(63) and the approximation



Convergence Theorems for some Variants of Newtons Method....

33

)= [ [P 5 3) < F ) e v

HF ) F s} -2)+ S~ Hexowa)] Fl)
F's )05 [y [F o+ 200 =50) - Fls )0, -5,
[ ‘%H(xnm)}‘lfo‘[F”<xu+t<yn—xn»—F”(a)]a—t)dt(yn—x,.>%

we obtain by using the triangle inequality in turn

1Fx,. )] < f A, tdt+A(”,s £)(ta1 ~,)

R ng Clt)D(t M5, -1,) [ ‘"A(z,,,t)dz

+_2—C(tn)f"B(t Adtfs, -1, = Pt,.s,)

We have also used the estimates
Fver=5al $Fnes ol * P~}
Bl Pavel sl
<. s(tm—s") +(s”—_so) +8, =L, <R,
AR AR |
and <[Vt et |+ 11 =Yl *Ya Yol + oo
' S o Sy Tat) H(lae1=0) + (8, ~50) S5, SRy -

Hence, (66) is true.
From (43), (61) and (66)

Hyml n+l < "F/((an)-ll * "F(xml)l D(n+l) ( ) S+t tn+l

(68)

(69)

(70
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- Hence, (67) is also true..
Moreover, from (40), (46), (56), (69), and the estimate

¥ -4 ) - F o) < B A1) < BARy) <1

is follows from the Banach lemma on invertible operators [13] that F'(x,)" exists
and

I N1 < HF/(xO)_IH <
SRR T

for all n = 1. Furthermore, from (41), (57), (61), (63), and the estimate

o LR B A KT KPR

< le“—' Dit,)i5, ) < ‘—’iﬂ DR)R,<1,

It follows that I- gH(xn,y") is invertible, and

-2

Hence, the iterates generated by (43)-(45) are well defined for all n =
0. Also, by (65), (67) and (61)

< C(tn) for alln = 0.

"xn+l -xn" Slha-b and "yn+| -yn" = Spe1 75, foralln = 0 (71)

It now follows from (71) and (i) that the sequence {x,} (n = 0) is Cauchy in a
Banach space, and as such it converges to some x° € U (x,, R,), which by taking
the limit as n - oo in (43) becomes a zero of F, since F(x) = 0. Moreover, by
(69) and (70) x,, y, € U (x,, R) for all n = 0. The estimates (59) and (60) now
follow from (71).

Finally to show uniqueness, we assume there exists another zero y~ of
equation (1) in U(x,,R). Then from (40) and (63), we obtain :

[F'ep Y [ IF O™+ -y ) - il
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1 * *
s [ Al -y I +tlr,~x"Ddi<1, by (19).

It now follows from the above inequality that the linear operator

fo 1F'(y‘+t(x‘ -y")dt is invertible. From this fact, and the approximation
; 1 F * * x ®
") ~FO") - [ FlO" (e -y N -y)dr

it follows that x* = y".
That completes the proof of the theorem.

Remark 3
(a) From the estimates
I% - yoll < Nz -3l + Iya-3ll < C-5) + G0-50 <t,-n <R -q

and [y -Yoll = 1ver - Tt + 15 = 2al + 132 - %l
= (an - tn+l) + (tn+l = sn) (Sn - S())
S S - <R -7

it follows that x,, y, € U(y,, R, - n) for all n < 0. Note also that R, is the
unique nonnegative zero of 7(r) - r = 0 in [0,R,] (by (54)).

(b) We can use the Chebysheff-Halley-Werner method to approximate
nonlinear equations with nondifferentiable operators. Indeed, consider the
equation

Fi(x) =0, (72)
where Fi(x) = F(x) + Q(x),

with F as before and Q satisfying an estimate of the form
loa+n) - 0w | < E¢ |hl).x € UxR), 0 < r <R, < |k <R-r

where E is a nonnegative and continuous function of two variables such that if
one of the variables is fixed then E is a non-decreasing function of the other on
the interval [0,R]. Note that the differentiability of Q is not assumed here.
Replace F in (41) by F, and leave the Fréchet-derivatives as they are. Define the
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sequences {t_n} and {s“n} (n = 0) as the corresponding {z,} and {s,} (n = 0)

given (48) and (49) respectively. The change will be an extra term of the form
E(t,, s, -t,) added in the definition of P(z,, s,). Define T, by T in (52) the insert
inside the bracket the term E(r,r). Then following the proof of the above theorem
step by step we can show a similar theorem with identical hypotheses and
conclusions, but holding for equation (72). (See, also [4], [9], [22].)

(c) Following the proof of the theorem, we can show the result (see also

[9D):
Theorem 4

Let F: D C E, = E,, E,, E, be real Banach spaces, and D be an open
convex domain. Assume that F has second order continuous Fréchet-derivatives
on D and that the following conditions are satisfied:

IF" @ -F 0l < e« eyl [F” @]
<M |F'@-F' »| <N|x-yl.
forallx,y € D '

IF o' = 8, Iyo - %] <,

2+2) \p2, 2N 12
(2-a) 32-a)f

b

485 if0<ax 1,}

"~ h=K . <{
Pu {.5 ifl<ac<2

and UQy,r,-n)<D

Moreover, we define

g(t):thz—_l_t+ﬂ, rlzL—__.____ \,1"’2’111’ and 9 = _1_—@,
2 B B . h 1+/1-2h
where r, is the smallest zero of the equation g(t) = 0. Then the Chebysheff-
Halley-Werner method (43)-(45) is convergent. Also x,, ¥, € U (¥, 1, - 1), for
all n € N,. The limit x" is the unique zero of the equation F(x) = 0 in U (x,,
Rhyn<rn <nifa=K, (orM=Kyandr, =nifa < K(orM < K).

Moreover, we have the following error estimates and optimal error
constants: '
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"xn -x‘" =n _tnl’ "yn -X‘" = rnl - 5

2
and r - tnl = (1 963):] 63"-'1 for alln = 0,

=0, Htyss)=~/(t)s" (15211

1
and th =s,f —%(sl~tl)2 g’(t,',) g”(t,:) Joralln = 0.
o1~ 2hfs)

(d) Several sufficient conditions can be given to show for example that under
the hypoteses of Theorems 3 and 4

5,7t < s,:-t: foralln = 0.

One such condition can be

D() [ fo "A(rdt +A(r,r + 13—100) D) Mr fo rA(r,t)dt] <81 -1,

g'(n
for all r € [0, min {r,,.R;}].

The details are left to the motivated reader.

(e) By Theorems 3 and 4, we conclude that under the order of
convergence for the Chebysheff-Halley-Werner. method is three, whereas for
Newton’s method it is only two [4], [13].

(f) Similar theorems can be proved if |#] in (40) and (42) is replaced
by a Holder condition of the form [|4]|? for some p € [0,1], [9]. :

(g) The function A can be chosen as

AR = sup  |Fi(x+h)-Fl@l,
xYEU(xq1)
thI<R-r

or  AGIAD = [T qwat
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where ¢ is a nondecreasing function on the interval [0,R] satisfying
1F'@) - Foll < e Ix-»l

forall x, y € U (x,, 7).
Similarly, the function B can be given by

B(r,irl) = sup  |Fl(x+h)-Fl(x)].
XYEU(xr) .
1k1sR-r

Other choices are to be equal to the usual Lipschitz or Ptak-like
conditions usually imposed on F (see, e.g. [4], [9], [22]). Other choices are also

possible.
One can refer to [9] for some possible applications of these ideas to the

solution of integral equations.

(h) Finally, if the right-hand sides of conditions (40) and (42) change to
A(r,r+ | 2]), and B(r,r+ | 2|)) a new theorem similar to Theorem 3 can then
follow immediately. Remarks similar to (a)-(g) above for the new condition can
then follow also.

(i) Using the estimate

[F'w] < [F'®)-F'e) | + [F'oo) < BRLO) + [Foo) || = M,
we see that hypotheses (41) can be replaced by the weaker one, given by

|Fr@l < m.

(j) The Lipschitz condition (42) can be dropped, but the order of L

convergence will be slower (see, also [5], [9]).

4. APPLICATIONS

X In this section we will give an example for Theorem 4 when a = 1

(similarly we can work for Theorem 3). We first note that by eliminating
¥, (n = 0) from approximations (43)-(45) we can obtain the method of tangent
hyperbolas (or Chebysheff-Halley) which has been extensively studied in [1], [5],
[6], [9], [12], [14], [15], [17], [18], [20], [21]. In all but our references it is
assumed that N > 0, which means that their results cannot apply to solve
quadratic operator equations of the form

P(x) = B(x,x) + L(x) + g, (73)
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where B, L are bounded quadratic and linear operators respectively with z fixed
in E,. We then have that P'(x) = 2B(x) + L and P"(x) = 2Q. Hence we get
M =2 |B| and N = 0. Integral equations that can be formulated in the form
P(x) = 0 have very important applications in radiative transfer [2], [3], [9], [10].

As a specific example, let us consider the solution of quadratic integral
equations of the form

*©) = YO +As0) [ a@Hx(de 74

in the space E;, = (]0,1] of all functions continuous on the interval [0,1], with
norm

lx| = max|x(s)].
0<s<1

Here we assume that A is a real number called the “albedo” for scattering
and the kernel g(s,¢) is a continuous function of two variables s, ¢ with 0 < s,¢
< 1 and satisfying

) 0<qs,0D=<1,0<st<1,q(0,0) = I;
() gD +qts)=1,0<st<1.

The function y(s) is a given continuous function defined on [0,1], and
finally x(s) is the unknown function sought in [0,1]. .

Equations of this type are closely related with the work of S,
Chandrasekhar [10], (Nobel prize of physics 1983), and arise in the theories of
radiative transfer, neutron transport and in the kinetic theory of gases, [2], [3],
[9], [10]. .

There exists an extensive literature on equations like (74) under various
assumptions on the kernel g(s,#) and A is a real or complex number. One can
refer to the recent work of [2], [3], [9] and the references there. Here we
demonstrate that the theorem via the iterative procedure (43)-(45) provides
existence results for (74).

For simplicity.(without loss of generality) we will assume that

g(sf) = = forall0 < s,¢ < 1, g(0,0) = 1
s+t
Note that q(s,f) so defined satisfies (i) and (ii) above.

Let us now choose N = .25, y(s) = 1 for all s € [0,1]; and define the
operator P on E, by '
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P(x) = Ax(s) fo ' S—i—t x(t)dt -x(s) + 1.

Note that every zero of the equation P(x) = 0 satisfies the equation (74).
Set xi(s) = 1, use the definition of the first and second Fréchet-
derivatives of the operator P to obtain using and the theorem,

+t

N=0, a=M=2|l[maxlfl—s-dtl=2|A|In2 = 34657359
0<s<1’0 8§ '

K = M\/3 = 600283066,

B = [ P()CPY = 1.53039421,

n > P()CPPQ)| 2 BAln2 = 265197107,
h = 243628554<.5

r, = .3090766, r, = 1.867984353

and @ = .165459951.

(For detailed computations, see also [2], [8] and [10].)

Therefore according to Theorem 4 equation (74) has a solution x and the
two-point method (43)-(45) converges to x”. Note that the results obtained in [1],
[12], [14], [15], [17], [18], [20], [21] cannot apply here, since N = 0. For
Theorem 3 we can take A(r,f) = of and B(r,t) = O for all r € [O,R]. The
computational details for this case are left to the motivated reader. “
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1. INTRODUCTION

Matched samples usually arise in situations where responses on
individuals are available before and after treatment. It may also arise in situations
when two individuals are matched on the basis of some characteristic. If
responses are binary both X;; before treatment and X,; after treatment take value
Oand 1. Let P(X,; = 1) = P;; and P(X;; = 1) = P, (i = 1,2,3,...,n). McNemar
(1947) provides a test of the hypothesis H,: P,;, = P,. McNemar’s conditional
test of H, has been justified by Cox (1958) using a linear logistic model for Py
and P,. We discuss the implications of Cox’s model in a Bayesian context and
propose a large sample Bayesian test of H,,.

2. THE LOGISTIC MODEL
Cox (1958) has proposed the following reparametrization

Pui =a,, and log Pai

=a,+B @.1)
Py Py

log

The reparametrization reduces the number of parameters from 2n to
n+1. The hypothesis to be tested becomes H, : § = 0.

Four different types of responses are possible for (X,;, X,). These are in
obvious notation (0,0), (0,1), (1,0) and (1,1). Let the observed frequencies for-
these responses be a, b, ¢, & d respectively. The distinct models of analysis are
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available to eliminate nuisance parameters P;. Cox (1970) for instance argues that
pairs leading to X;; + X, = 0 or 2 give no information about 3. One thus
considers only those pairs for which X;; + X, = 1. Conditional on this, the
distribution of b is given by

(b+c)[ eP 1Y
P(b) = 2.2
® ( b )(l+e“) [1+e”) @2

which is independent of a,. Use of (2.2) leads to McNemar’s test of H,.
However, Cox (1970) remarks that the requirement that the inference be true for
all set of o is a serious one. We do not find the argument, leading to the neglect
of pairs with X,; + X,; = 1 or 2, as sufficiently convincing. In particular (2.2)
is true in cases where all «’s are equal (a case corresponding to independence
of X,; and X,)). However, in this case McNemar’s test bears no resemblance to
the usual test of H,.

3.  BAYSIAN ANALYSIS FOR A GENERAL PRIOR

In (2.1), o; may be thought of as describing the property of the ith
individual and B measures the difference on the logistic scale between before and
after treatment responses. In many situations, it will be found both convenient
and realistic to assume that o; are independent and have the same distribution and
that 3 is independent of «;. This leads to the following representation of the prior

distribution. -

n(a,,az,...,a",[i_)=1t(ﬁ)g n(ai) | 3.1

He also observed that there are altogether 4 different types of responses.
This permits as to introduce two parameters p and ¢® (say) in the description of
m(c;), so that together with  the total number of parameters will become 3. Thus
3 parameters will describe the whole model. Such a scheme will make the model
sufficiently flexible and in the words of Cox (1970) saturated with parameters.
With this set up we have

1

a+f

P(X21=0|P~,02,B)=E( [p,02, B]=¢p(p., ¢?)

1+e

P(X,;=0|p,0%B) =E( L |y, B) = ¢5(1, 0%) (3.2)

1+e%
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- Henceforth we shall write ¢; and ¢, for ¢y(u,0® and ¢y(u,0?)
respectively. The probability for the four different types of responses are

0,0) : (P Py~ o)/(eP) = 6,

©O,1) : e (,-9y)(eP) = B,

(10) ¢ (dp-95)/(e*) = 6, e
1L,1) : (1-¢,)-(1-@,)/(e*) = 6,

A serious but very sensible implication of the model is that 6, 6, > 6, 6,
(or 8, > 6,) which simply states that X;; and X,; are positively correlated. The
likelihood given observations a, b, cand d is '

L(« 6] 0; 65 67) ~ (3.4)

When q, b, ¢ and 4 are large, a Bayesian test of Hy will depend on the
maximum likelihood estimates of 8 and its posterior variance. We, therefore,
discuss the maximum likelihood estimates of 8 (and ¢, ¢; or u and a?)

M=_L'£&{ge:_wwﬂ}_i%{g-<b+c><1+ef>+e"‘%} “o
|

op P lidp |6 0,+6, 6,/ dp |9, 6,+6, 6,

3.5)

48, fact_@rl1:eY 4] P[0 _@eafieet), )]
302 eP!|do? | @ 0,46, 08,/ do?|8, 6,48, 8,

bec _d :‘E&/ﬁ’&ﬂe/i’ﬁ?

Solving these two, we either have 2.9 .2
A dp  do¥ do?

6, 6,46, 6, dp
The latter will imply a relationship between u, 8 and ¢® regardless of a, b, ¢ and
d. Hence we have

1 i
a _ b+c _ d (.6)

When the values for 6,, 8,, 6, and 6, are put in log likelihood function we
get '
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logL=k+bp -(b+c) log (1+6P) 3.7

If there is no restriction on 8, the maximum likelihood estimate of 3 is
log b/a. However, since 6, > ¢,¢; permissible values of 8 have to satisfy this
condition which gives

ad > (e+c)2ep ‘ (38)
(1+€f)?

Thus in cases where ad < bc the usual estimate for g i.e. logh/o will
violate (3.8). There are two points to be noted carefully. First even with the very
general prior distribution for «;, restriction (3.8) is to be taken care of
McNemar’s test would be questionable in cases where ad < bc. Secondly precise
from for m(e;) such as a normal distribution with mean p and variance ¢?, which
we discuss in Section 4, will generally impose restriction even more severe than

(3.8).
4. NORMAL PRIOR DISTRIBUTIONS

Consider p(a,) to be a normal distribution with mean p and variance o®.
It may be checked that now

bo (-11,0%) = 1-¢ (,0%) (4.1

In a slightly different context McCullagh (1977) has suggested a beta distribution

for (e“'/l +e“‘). We remark that for small ¢ there is virtually no difference

between the normal prior for «; or a beta prior for (e®/1+e%). However, we
use the following approximation for ¢y:
(e -(s+B) 4 1) + l o?

. 2 ’
= 4.2
¢ﬂ (e_("+p)+l)(e"+ﬂ+l)+02 ( )

This approximation works extremely well for o as large as 1 or perhaps even 1.5
for selected values of p and ¢®. Table 1 gives the exact value of ¢, (evaluated
numerically) in the top row followed by the approximate value obtained from
(4.2) in the bottom row.
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Table 1. Exact value and approximate values of ¢, for different values of

pand o

o4 1 5 1.0 2.0 5.0
4751 3778 2694 1196 .0068

1 4750 3778 2694 .1196 .0068
4765 3843 | 2798 1289 .0075

= 4764 3840 2794 1290 .0076
4800 4008 3069 .1554 .0100

L 4794 3980 3033 1555 0102
4875 4369 3707 2318 0195

2 4848 4248 3523 2248 .0323

It is clear from Table-1 that the approximation in (4.2) works provided o is less
than about 1.5. For very large o, 6, and 6, become very small. This means that
unless b and ¢ are extremely small as compared to a and d, the approximation
in (4.2) can be safely used.

Note that ¢, and ¢, in (4.2) satisfy (4.1) and the condition that 6,6, > 6,0,. The
maximum likelihood estimate of ¢, and ¢, remain as in (3.6). The condition that
o > 0 means that

[2-a)e
2 >0 @.3)
(e* +1)[(e*+1)8,-1]
224 20,8,
Alsowe have e* = _—"_ >0 (4.4)

eﬂ[% -2¢0¢p}

where ¢, and ¢4 as in (4.2).
The maximum likelihood estimate of 8 is a value which maximizes
bB-(b+c) log (1 + €°) and satisfies (4.3) and (4.4).
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5. AN APPROXIMATE BAYESIAN TEST OF H,

A Bayesian analysis would require a precise description of 7(c;) followed
by a prior distributions of u, o* and 8. Often, however, an approximate method
is both useful and indicative of the nature of final analysis. We seek to provide
an approximate Bayesian test of Hy. We recall that the most important implication
of assuming any prior distribution for x(6) is that ¢, 6§, > 0, 03. Any Bayesian
analysis would have to take care of this restriction.

Instead of providing a prior distribution for n, 0 and B in the general
case we try a conjugate prior on 6,, 6,, 8,, 6, which are functions of x, ¢* and
(3 subject to the condition 6,0, > 6,0,. Precise description of w(c,) is available.
This would require a check up if the conjugate prior for 6, 6,, 6,, 6,, together
with 6,0, > 6,0, leads to sensible distribution for u, ¢* and 8. The prior
distribution is

«I16;",¢,>0 5.1y

such that 6, 6, > 6, 6;. The posterior distribution 6,’s is thus

% (N S el Y 5.2)

0,0
subject to 6, 6, > 0, 6;. Let Z =10galF4 and W = logf, - logf,, where H,

2Y3
becomes H, : W = 0. We, therefore, need the posterior distribution of W given
Z > 0. There is no condition on values of ¢; near 0 and loga,’s. The posterior
distribution of Z and W is a bivariate normal with means p,, pg,

. 2 2 . .
variances Oy, 07 and correlation coefficient p where

) -
OW'_"I
l"'z'logg‘d
b
2 1 1 f )
= 4+ — 5.3
WL | (5.3
02__1.+_1_+1+1 = -_1.+_.1_ lo,0
a b ¢ d b 7w

(see for exafnple Lindley-1964)
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POy
Og

Let Y=W- Z, then L is independent of Z so that the mean and variance

of L is unaffected by conditions Z > 0. Now

Ow
W=y+p—¥ z (5.4)
o, .

From (5.4), the posterior mean and variance of W given Z > 0 is

-

E(W|2>0)=E(t) +p -~ E@Z|2>0)
zZ

2
V(W|Z>0) = V() +(p %”) V(Z|Z>0) 5.5)
z J

These work out to be

OW e-b’/Z
E(W|Z>0)=p,+p , (5.6)
) oﬁn 1 - Q(-b)
1 -
02 b -2 =t
V(W|Z>0)= 0% - p? —| -2 ,_2m (5.7)

J2r|1-2(-D) [1-0(-b)F

_Fz
g

where
V4

As an approximation we may consider the conditional distribution of W to be
normal with mean and variances given by (5.6) and (5.7) Test of H, would
depend on the normal deviate

r . EW|Z>0) 5.8
1/V(W|Z>O
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It is interesting to note that T is always greater than

24

Ow

T, = (.9)

which would be normal deviate provided by McNemar's test. Also T uses all the
observations a, b, ¢ and d whereas T, uses only b and c. T is nearly equal to T,
when b is close to O (when p — 0) or when g /o, is large (because in this case
the condition Z> 0 becomes redundant).

6. NUMERICAL COMPARISONS

We have analyzed the following cases where different values of g, b, ¢
and d are provided in the same order.

Case I: (10, 10, 18, 20)
Case II: (10, 4, 12, 20)
Case III: (13, 8, 20, 13)

First a comparison of maximum likelihood estimates of § is provided where

61 =  Maximum likelihood estimates of f is satisfying (3.8)

ﬁ2 =  maximum likelihood estimates of (3 is satisfying (4.3), “4.4)
B, = EW|Z > 0)

64 = log(b/c)

The results are given in the Table 2.

Table 2:  Values q@l, B,. Bs, B,, Tand T, for different cases

Cases Bl Bz Bg 64 T To
Case-1 -0.60 -0.60 -0.60 -0.60 -1.65 -1.49
Case-I1 -1.10 -1.10 -1.11 -1.10 -2.33 -1.90
Case-III -0.92 -0.92 -1.03 -0.92 -2.67 -2.19
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In all three cases ad > bc. Different estimates of 3 are nearly the same for cases
I and II. However, for cases III these show slight differences. Then ad > bc
(which could be rare) these estimates are likely to differ substantially. Comparing
T and T, we find that T is always bigger than T, in magnitude. Also these values
are different in all three cases. Sometimes this can be crucial as in case II where
T, will not reject H, at 5% level but T will reject Hy,. These seems to be an
advantage in using T in place of T in that it utilizes all observations and also
takes care of the restriction imposed by the model.
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1. INTRODUCTION

The concept of é-open set was first introduced by Veli¢ko [12]. Super-
continuity was studied in [1,5,10]. In this paper, we introduce the notions of D-
set and D-continuous mapping, and prove that a mapping is super-continuous if
and only if it is both a-continuous and D-continuous.

2. PRELIMINARIES

Throughout this paper spaces always mean topological spaces on which
no separation axioms are assumed unless explicitly stated. A subset A of a space
(X,7) is called regular open (resp. regular closed) if Int(Cl(4)) = A (resp.
Cl(int(Cl(4)) = A), where Cl(4) and Int(4)) denotes the closure (resp. interior)
of A. The é-interior [12] of a-subset A is the union of all regular open sets of X
contained in A4 and is denoted by Int,(4). The subset A is called é-open [12] if
A = Intd(A4), i.e. a set is é-open if it is the union of regular open sets. The
complement of a 6-open set is called 6-closed. Alternatively,-a set A4 is called 6-
closed [12] if A = Cl(4), where Cl4) = {x e X: U N A% ¢, U is regular
open x ¢ U}. The family of all 6-open sets form a topology 7; on X such that
7, C 7. Since the intersection of two regular open sets is regular open, the
collection of all regular open sets forms a base for a coarser topology 7; called
semi-regularization of 7, than the original one 7. It is well-known that 7, = 7,.
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Definition 1

A subset A of a space X is called:
(a) semiopen [4] if A C Cl(Int(4), equivalently there exists an
open set U such that U C A C CI(V)
) a-open [11]1 if A C Int(Cl(Int(A))),
() o-semiopen [8] if AC Cl(Inty(A4), equivalently there exists a
d-open set U such that U C A C CI(D).

Definition 2

A mapping f: X = Y is called:

(a) Semi-continuous [4] if f' (V) is semiopen in X for every
open set Vof 7,

b) a-continuous [11} if f' (V) is a-open in X for every open set

' Vof Y,

(©) d-semi-continuous [9] ' (V) is é-semiopen in X for every
open set Vof Y,

) super-continuous [5} if f* (V) is é-open in X for every open
set Vof ¥,

3. A DECOMPOSITION OF SUPER-CONTINUITY

Definition 3

A subset 4 of a space X is called a D-set if = Ul\W, where U is a 6-open
set and W is a regular open set.

It is easily seen that a subset 4 is a Dset if and only if A = UN F, -
where U is a é-open set and F is a regular closed set. A §-open U set is D-set
since U = \¢.

Theorem 1: Every D-set is 6-semiopen

Proof

Let A=UNF be a D-set, where U is §-open and F = Cl(Int(F)). Since
A = UNFand Fis closed, by Lemma 2 in [12] we have Int(4) D> UN
Int6(F) = UNInt(F). Since Int(A) C A C F, Int,(A) = Inty; (A)) C Int(F). On
the other hand, Int(4) C A C U and thus Inty(4) C U N Int(F). Hence
Int,(A) = UNInt(F). Now we prove that A C Cl(Int,(4). Let x ¢ A and V be any
open set containing x. Then UN V is also open set containing x. Since x € F =
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Cl(Int(F)), there exists a point z e Int(F) such that z # x and zeUNV, which
implies zeUN Int(F) = Int,(A). Hence xe Cl(Inty(A4)) and thus A C Cl(Int,(4).

Theorem 2

Let A be a subset of a space X. Then A is 8-open set if and only if it is
both o-open set and D-set.

Proof

Since the necessity is clear, we prove only the sufficiency. Let A = UN
F be a D-set, where U is é-open and F is regular closed. Now A being a-open,
we have

UN FC Int(Cl(Int(U N F))) = Int(C(U N Int(F)))
C Int(CI(U)N Cl(Int(F))) = Int(C(U) N F)
= Int(CI(I)) N Int(F).

Since UN Int(CI(DY)), UNF=UNFHNUC (It CK) N N U=
UN IntF). But UN F DS U N Int(F). Therefore, U N F = U N Int(F). By
Lemma 2 in [12], F being closed, Int(F) = Int,(F) and hence A = U N Int,(F)
is 8-open .

From the discussion so far, we see that the relationships among D set,
d-semiopen set and some well-known open-like sets can be indicated in following
diagram:

d-open set open set
D-set «a-open set
d-semiopen set semiopen set

Example 1

(a) Let X = {a, b, ¢, d} with topology 7 = {X,¢,{a}, {c}, {a,b}.{a,c},
{a,b,c}, {a,b,d}}. Then {e,d} is 6-semiopen because Cl(Int,({c,d})) = Cl({c})
= {c,d}. {c,d} is also a D-set since {c,d} is regular closed and {c,d} = X N
{c.d}. But {c,d} is not c-open because Int(Cl(Int({c,d}))) = {c} 2 {c.d}.

(b) Let X = {a,b,c,d} with topology 7 = {X,¢,{a}, {c}, {a,c},{a,b,c},
{a,c,d}}. Then {c,d} is 6-semiopen because Cl(Int,({c,d})) = {b,c.d} D {c.d}.
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But {c,d} is not D-set since {c,d} is not é-open, {c,d} # X\{a} and {c,d} #
X\{c}. Also {c,d} is not a-open because Int(Cl(Int({c,d}))) = {c¢} D {c.d}.

(c) Let X = {a,b,c,d} with topology 7 = {X,¢,{a}. Then {a,b} is c-
open because Int(Cl(Int({a,b}))) = X D {a,b}. But {a,b} is not -semiopen
because Cl(Int,({a,b})) = ¢D {a,b}. '

Definition 4

A mapping f: X — Yis called D-continuous if f' (V) is D set in X for

every open set V of Y.
By Theorem 1, we have an immediate result.

Theorem 3

Super-continuity = D-continuity = 6-semi-continuity = semi-continuity.
In above theorem, none of the implications is reversible.

Example 2

(a) Let X = {a,b,c,d} with topology 7 = {X,¢,{a}1, {c}, {a,b},{a,c},
{a,b,c}, {a,c,d}}, Y = {a,b,c,d} with topology 0 = {X,¢,{c,d}}. Let f: (X,7)
- (Y,0) be identity. Then f is D-continuous and é-continuous but it is not super-
continuous.

(b) Let X = {a,b,c,d} with topology 7 = {X,¢,{a},{c},{ac},{ab,c},
{a,c,d}}. Y = {a,b,c,d} with topology ¢ = {X,s,{c,d}}. Letf: (X,7) = (Y,0)
be the identity. Then f is é-semi-continuous and neither D-continuous nor o-
continuous.

(c) Let X = {a,b,c} with topology 7 = {X,¢,{a}}, Y = {a,b,c} with
topology o = {X,¢,{a,b}}. Let f : (X,7) = (¥,0) be the identity. Then f is c-
continuous and hence it is semi-continuous. But f is not é-semi-continuous.

By Theorem 2, we have the following decomposition of super-continuity:

Theorem 4

A mapping f: X = Y is super-continuous if and only if it is both a-
continuous and D-continuous.

Although it is well known that super-continuity implies d-continuity, in
the above theorem we cannot be replaced a-continuity (or, D-continuity) by 6-
continuity because d-continuity is independent of both «-continuity and D-
continuity (see Example 2 and following example).
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Example 3

" d-continuity and D-continuity are independent of each other.

(@) Let X = {a,b,c} with topology 7 = {X,¢,{a},{c},{a,b}.{a c},
{a,b,c}, {a,c,d}}, Y = {a,b,c,d} with topology ¢ = {Y,d,{a,b}, {c,d}}. Let
f:(X,7) - (Y,0) be identity. Then f is D-continuous but not é-continuous.

(b) Let X = {a,b,c,d} with topology 7 = {X,¢,{a},{c},{a,b}.{a,c},
{a,b,c}, {a,c,d}}. Y = {a,b,cd} with topology ¢ = {Y,s,{a,b}, {c,d}}. Let
f:(X,7) = (Y,0) be identity. Then f is D-continuous but not é-continuous.

Neither é-continuity and a-continuity nor é-continuity and D-continuity
implies super-continuity (see Example 3(a) and 2(a)). To show that §-continuity
and continuity does not imply super-continuity, we have the following example.

Example 4

X = {a,b,c,d} with topology r = {X,¢,{a},{c}.{a,c}.{a,b,c}, {a,c.d}},
Y = {a,b,c,d} with topology ¢ = {Y,¢,{a,b,c}}. Let f: (X,7) = (Y,0) be
identity. Then f is 6-continuous and continuous. But it is not D-continuous and
hence not super-continuous. :

It is well known that the inverse image of a T, space (i = 0,1,2) under
a continuous injection is also a T, space (i = 0,1,2). However, in case of D-
continuity, the assertion is true for i = 0. '

Theorem 5

If f : X = Y us a D-continuous injective mapping and Y is a T, space,
then X is also a T, space. '

Proof

Let x,y ¢ X with x # y. Then f(x) # f(y). Since Y is T, at least one of
ftx) and f(y), say f(x), has an open neighborhood V such that f(x) ¢ V and f(y). &
V. Since fis D-continuous, f'(V) is D-set and x e f'(V), y € f'(V). Then
f'(V) = UNF, where U is d-open and F is regular closed, and there are two
possible cases fory € f(V): i)y € Uand (ii)y &€ F. Incase (i), xe Uand y
¢ U, in case (ii), ye X\F and xe F, X\ F is open and x &€ X\F. Hence X is a T
space. :



Jin Han Park

58

REFERENCES

1. C.W. Baker, On super continuous mappings, Bull. Korean Math. Soc.,
22(1985), 17-22. '

2. R.V. Fuller, Relations among continuous and various non-continuous
functions, Pacific J. Math., 25(1968), 495-509. :

3. N. Levine, A decomposition of continuity in topological spaces, Amer.
Math. Monthly, 68 (1961), 44-46.

4. N. Levine, Semi-open sets and semi-continuity in topological spaces,
Amer. Math. Monthly 70 (1963), 36-41.

5. B.M. Manshi and D.S. Bassan, Super-continuous mappings, Indian J.
pure appl. Math. 13 (1982), 229-236.

6. A.S. Mashhour, I.A. Hasanein and S.N. El-Deeb, a-continuous and «-
open mappings, Acta Math. Hungar. 41 (1983), 213-218.

7. O. Njistad, On some classes of nearly open sets, Pacific J. Math. 15
(1965), 961-970.

8. J.H. Park, B.Y.' Lee and M. J. Son, On é-semiopen sets in topological
space, J. Indian Acad. Math. 19 (1997) to appear.

9. J.H. Park and M.J. Son, On é-semi-continuous mappings and é-semiopen
sets submitted.

10. LL. Reilly and M.K. Vamanamurthy, On super continuous mappings,
Indian J. pure appl. Math. 14 (1983), 27-32.

11. I.L. Reilly and M. K. Vamanamurthy, On «-continuity in topological
spaces, Acta Math. hungar. 45 (1985), 27-32.

12. N.V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78

(1968), 103-118.



Punjab University
Journal of Mathematics (ISSN 1016 - 2526)
Vol. xxxii (1999) pp. 59 - 66

CELLULAR FOLDING

E.M. Elkholy
Department of Mathematics, Faculty of Science
Tanta University, Tanta, EGYPT.

R.M. Shahin
Department of Mathematics, Faculty of Education
Tanta University, Kafr El-Sheikh, EGYPT.

ABSTRACT: In this paper we introduce the notion of cellular and neat
cellular foldings on a category of complexes equipped with cellular subdivision
such that each closed n-cell is homeomorphic to a closed Euclidean n-cell. Then
we obtain the necessary and sufficient conditions for a cellular map to be a
cellular folding and a neat cellular folding respectively.

1. INTRODUCTION

Let K and L be directed complexes and f: |K| - |L| be continuous
function. Then f: K~ L is a cellular function if .
) for each directed cell ¢ € K, f(¢) = + 7 where 7 is a directed
cell inL,
) dim (f(¢)) < dim (o), [4]
Let K and L be complexes of the same diensin n and K be equipped with
finite cellular subdivision such that each closed n-cell is homeomorphic to a

closed Euclidean n-cell.
A cellular map &: K -» L is a cellular folding if $ satisfies the following:

@ For each i-cell & € K, & (€) is an i-cell in L. i.e. & maps i-
cells to i-cells.

(ii) If e contains n vertices. then ®(e) must contain n distinct

‘ vertices.
~ In the case of directed complexes it is also required that $ maps directed
i-cells of K to i-cells of L but of the same orientation.
A cellular folding & : K-» L is a neat cellular folding if L" - L* consists
of a single n-cell. Int L.
The set of complexes together with the neat cellular foldmgs form a
category which is a subcategory of the category of cellular foldings and we
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denote it by N(K,L). Thus if N(K,L) # ¢. then dim L = dim K. A
- Throughout this paper we use the term complex to mean a complex
equipped with cellular subdivision such that each closed n-cell is homeomorphic

to a closed Euclidean n-cell.
2. CHAIN MAPS AND CELLULAR FOLDING.

The next theorem gives the necessary and sufficient condition for a
cellular map to be a cellular folding. :

Theorem (1)

Let K and L be complexes of the same dimension n and ¢ : K = L be a
cellular map such that  (K) = L # K. Then & is a cellular folding if the map

$, : G, (K) = C,(L) between chain complexes (CP(K)‘,ép),(CP(L),é;) is a chain
map.
Proof

Let ¢ be a cellular folding, ten it is a cellular map and we can define a
homomorphism $,:C(K) - C, (L) by
d(0) if ®(0) is a p-cell in L,
3, (o) =
L] if dim (®(0)) < p, [4]
and since a cellular folding maps p-cells to p-cells, $, (0y) is ap-cell in L for
all A. '
Thus for a p-chain C = a, 0/’+a, 0,+a, 0,7 € C,(K) where a’s € Z°
and ¢;’s are p-cells in K.

@,(0)= <I>p(a1 ol +a,05+...+a_, ,,,)
®,(0) = <I>p(a1 of) + <I>p(a2 0’2’) +ot Qp(a,;,, 0':,)
= a, Qp(o’l’) +a, Qp(o’z’) +..+a, Qp(oﬁ,’,) eC,(L).

Now since the closure of both ¢, and $(0,?) has the same number of distinct
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vertices then QP~‘06p=8", O<I’p, where ap:Cp(K)~C 4(K) and

8",:CP(L)~CP_1(L) are the boundary operators, that is to say the following

diagram commutes

. D,
—p ) C @
p
- ' Y5
“p ! - %
|
C ([«';); - e 1(L)
v -] ' ’ : p-
| S |
Fig

and hence ¢ is a chain map.

Conversely, suppose ¢ is not a cellular folding, then there exists a j-cell ¢ in K
such that ®(0) is a m-cell in L, where m # j. Since @, is a homomorphlsm from
the p-th chain of K to the p-th chain of L, then

n-1
(E A, o Y o) =Yy ).ltb(og’))+).n¢(o)
1-1
but (o) is not a j-cell, then &, cannot be a j-chain map and hence our
assumption is false and we have the result.
- 2.1 ' Examples
1. Let K be a complex such that |K| is the infinite strip {(x,y): —o < x

< o, 0 < y < 2} equipped with an infinite number of 2-cells such that the
closure of each 2-cell consists of four O-cells and four 1-cells, see Fig.1.
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Yy

______ €1 € €. € .o &
] ,=‘ I “1 ¢

l et‘ Ieo ° o [ (D
_g ! 2 : 5 ;e‘z ! e” ‘ | ‘e
_____ i - . | < eo l e;

| 2 ‘
C ¢ 1€ Coa -
- AR e Gy 5 €
_ y
K

Fig.1

Let L be a complex with six O-cells, seven 1-cells and two 2-cells. The-
cellular map @ : K - L defined by

. [0 where m=12,.,6 and
<I>(e,,) = e . .
0 n-m is a multiple of 6

ole?) - e{z ifiis odd
(el) I P
e, ifiis even
This map is a cellular folding.
2. Consider a complex K such that |K| = S* with cellular subdivision

consisting of two O-cells, four I-cells and four 2 cells. Let & : K-> K be a
cellular map defined by
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_@ ., e
K | oK)
Fig.2

This map is a cellular folding with image consisting of two O-cells, two
1-cells and a single 2-cell, see Fig.2.
3. Consider a complex K such that |K]| is a torus with cellular subdivision
consisting of three 0-cells, six 1-Ocells and three 2-cells.

N N

\ A
(_ // \

\Qi/ 2

. ez

4] )
— e -

& .
\
\\\_)

P (K)

Fig.3

Any cellular map. ® : K - K which has two vertices in the i Jmage 18 Not
a cellular folding since &, is not a chain map in this case.
4. Consider a complex K such that |K| is a torus with cellular subdivision
consisting of four 0-cells, eight 1-cells and four 2-cells.
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Fig.4.

A cellular map ¢ : K — K defined by

(e e 60 &%) = (0 &0 0 ¢
€1,6,,65,6,) = (e;,6,,65,€,

¢111_1111111'1
€1,€3,...,€3) = (€],€,,€],€,5,65,65,€;

<I>(e,2,) =e12, n=1234.

This map is a cellular folding with image consisting of two O-cells, three 1-cells

and a single 2-cell.

5. Consider a cell-complex K such that |K| = S? with cellular subdivision
consisting of four 0-cells, six 1-cells and four 2-cells, see Fig.5.
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\L,f/\ —n N
2 / T
/ [ 61' \ / \
\ / \
1] ! b /1 ,
¢ 1 e 2 i1
3 e: /e< —== % e’ J€s
; < - i - ;
: | /
".\ o C; 7 //
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N ti
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Fig.5
Let ¢ : K — K be a cellular map defined by
(el 2 6% 6% = (0 el &0 °
€,65,€65,6,) = (€,6,,6;,€,
Dle! el el el el o)) = (el ol ¢! ol ol !
€15€3,€3,€4,€5,€c) = (€1,€1,€4,64,€5,€¢
22
Bler)=e;, n=1234.
. . . . 2 2 .
This map is not cellular folding since e1,<1>(e1) does not contain the same
number of vertices.

3. NEAT CELLULAR FOLDING

The following theorem gives the necessary and sufficient condition for
a cellular map to be a neat cellular folding.

Theorem (2)

p:C

p

If & e N(K,L) such that $(K) = L # K, then ® is a neat cellular folding
iff the mape ¢

- C, (L) between the chain complexes
(CP(K),ép),(CP(L),ép') is a chain map and HP(K) =ker <I>;, where
¢, : H(K) = H(L), p = 1 is the induced homomorphism.
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Proof

Assuming that ¢ is a neat cellular folding, then it is a cellular folding and
hence the map &, : H(K) - HyL) between the chain

complexes (CP(K),ép),(Cp(L),o‘p/) is a chain map. Now consider the induced
homorphism ti’p' : H(K) = Hy(L), there is a short exact sequence:

0> ker &, > HyK) > Im &,
where 7" is the induced homomorphism by the inclusion. since & is sutjective. we

have Im @; -HP(L)=0, but H, (L) = O for neat cellular folding, hence the

above sequence will take the form:
O~ker¢;~HP(K)~O.
The exactness of this sequence implies that
H (K)=ker®, .
Conversely, suppose ¢, is a chain map between chain complexes

and HP(K) =ker <I>; but $ is not neat then L" — L*™! consists of more than one

n-cells. Thus

H(L)~Z, H(L)=0, forp =1.2,..,n
and H (K) ,=HP(L)®kertI>p #ker®, forp =0

. hence the assumption is false and & is neat.
It should be noted that examples (2) and (4) are neat cellular foldings.
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Synopsis

The paper deals with real functions defined on a real open interval (A,B)
(-0 < A< B < +w). A triple (f,g,h) of functions is said to be locally
g-Lobatchewski if for each x ¢ (4,B) there exists 8(x) > 0 such that
fx)? = g(x+kh(x—K) holds for each k, [k| < &(x). In the paper a full
description of the family of all locally g-Lobatchewski triples is given.

1. INTRODUCTION AND PRELIMINARIES

In the general theory of functional equations, Lobatchewski’s functional
equation

+v)2
%) =fOy) (or fix)* = fix+k)fix—k)) @)

is well known. In the present paper we shall deal with the following generalized
form of Lobatchewski’s functional equation

+ 2
/(%) - 0Ih0) (@GL)

with three unknown functions f, g, 4. Especially we shall deal with a local form
of these functional equations. With this aim the functional equation (GL) will be

investigated in the form
fo* = ge+kh(x—k)) (GLy)

Note, that analogous generalizations of Cauchy equations have been investigated
by Pexider [1].
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Definition 1

Atriple (f,g,h) (f:(A.B) =R, g:(A,B) >R, h:(A,B) = R, R— the real line,
(A,B) C R) is said to be locally g-Lobatchewski at x (A, B) if there exists &(x) >
0 such that (GL,) holds for each k, |K| < b(x). We say that (f,g,h) is locally g-
Lobatchewski if it is locally g-Lobatchewski at x for each x €(A, B). Let LGL stand
for the set of all locally g-Lobatchewski triples.

In the following, using solutions of (GL), a full description of the
families LGL will be given. Local form of functional equation (L) in paper [3]
have been investigated. Recall some definitions and results of [3] that will be
used in the following text.

Definition 2

(/3]) A set MC (A,B) is said to be an s-set if
(i) M is closed and countable;
(ii) Jor each xeM there exists 6, > 0 such that for each k,
0< k< é, x+ke M if and only if x—k e M. ¢

Definition 3

([3]) A set NC (A,B) is said to be a semisymmetric (ss—) set if
(i) N is closed;
(ii)  for each xeN there exists 6, > 0 such that for each k,
0< k<6, x+tke Norx—keN.
Theorem A

([3]) Let f: (A,B) = R. Then the following statements are equivalent:
(@) [ is locally Lobatchewski at each x €(A,B), i.e. for each x
€(A, B) there exists 6(x) > 0 such that (L) holds for each k,
K| < & (o)
) there exists an ss—set N such that N = {x ¢(A,B): f(x) = 0},
~ foreach interval (a,b) contiguous to N there exists a function
g (a,b)~R which fulfil (L), an s—set MC (a,b) with the
collection {J.} of contiguous intervals of M in (a,b) and a
real sequence {a,}, such that f|J, = ag|J, holds for each n,
and f is locally Lobatchewski at each xeM.

2. RESULTS AND PROOFS

We begin with the following Theorem 1 which must be known, but we
are not able to give any references. It is stated in more general form than we
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shall use in the proof of Theorem 2. In the following R” stands for n-dimensional
euclidean space and K(x,r) C R" denotes the open ball centered at x, with the
radius r > O.

Theorem 1
Let DCR" be an open and convex set.

(a) Let functions f:D - R, g:D - R and h: D - R fulfil (GL).
Then
I. there exists an additive function ¢: R" - R and real constants
a and b with ab> 0, such that '

fx) = t/ab e*®, g(x) = ae®® and h(x) = be*® (1)

holds for each xeD, or
II. one of the following possibilities occurs
f =20, g =0, hisarbitrary, or
f =0, h =0, gis arbitrary. (2)
®) Each triple (f,g,h) of real functions defined on D of the form
(1) or (2), where o: R" - R is an additive function and a and
b any real constants with ab > 0 fulfil (GL).
In the proof of Theorem 1 we shall use the following Lemma. Let D C
R’ be open and convex set, 0 € D. Let r be such a positive number that K(0,2r)
C D. if a function ¢: D — R fulfil the equation

V(x+y) = (@) ¥ (3)
for each x, y € K (0,r) then there exists a unique function r: R* - R fulfilling

(3) such that T|D = . If ¢ # O, then y(x) = e*® holds for each x € D,
where ¢:R* - R is an additive functions.

Proof of the Lemma
Let ¢ be a solution of (3). By induction we can verify, that

v = p2 @)

holds for each x e D and m = 1,2,.

Suppose that there exists x0 € D such that d/(xo) = 0. Choose arbitrary
xeD. Then there exists a positive integer m such that x’ = 27™ x e K(0,1/2) and
X, = 27" x, € K (0,1/2). Consequently x' — x” e K(0,r). According to (4) we
have
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Y@ =l = ([’ -x) 2P =l -2 () =0

i.e: ¥ = 0. Then obviously 7 = 0 (:R" = R).
Suppose that Y(x) = O holds for each x ¢ D. According to (4) y(x) =
0, hence ¥(x) > 0 holds for each x ¢ D. We can define the function y,: D - R
by
Yox) = logy(x) %)

From (3) it follows that yy(x+y) = ¥(x) + ¥,(y) holds for each x,y e K(0,r).
The last equation is the Cauchy equation on a restricted domain and there exists
a uniquely determined additive function ¢ : R* = R such that ¢|D = y,. It
follows from (5) that 7(x) = e¥® holds for each x eR".

Proof of Theorem 1

(a) The following two cases will be considered: (I) there exists x,eD such
that g(x,) # 0 and h(x,) # 0; (I) g(x) = 0 or h(x) = 0 holds for each xeD.

(I) Suppose x, = 0 e D, a = g(0) # 0. Obviously ab > 0. Put fy(x) =
(ab)~! f(x/2)? for every x e D. Setting in (GL) y = 0 (x = 0) we obtain

8x) = a fy (x) (h(x) = bfy(x)). ©)

Choose r > 0 such that K(0,2r) C D. If x,y ¢ K(0,r), then x + y e D and a
bfy(x+y) = f(x+y)/2)* = g(x)h(y) = a bfy(x) f(y). The function f, fulfil the
assumptions of the Lemma, hence f(x) = e*® holds for each x ¢ D, where
¥ : R"— R is an additive function. The expression (1) is an easy consequence of
the definition of f, and (6). ‘

Suppose now that 0 € D, or g(0) = 0, or h(0) = 0. ThenOe D, = D
— X,. It is easy to check that function F: Dy » R, G: D,»Rand H: D, > R
defined by ’

R = fatx), Go) = gl+xy), H) = h(r+xy) (7)

fulfil the equation (GL) on D,, G(0) # 0, H(0) = 0. By the method used int he
proof of Theorem 1 in [2] we can verify that expression (1) holds.

(ii) If g(x) = 0, or h(x) = 0 holds for each xeD, then (GL) implies f(x)
= 0 for every xeD. We will prove that the expression (2) is satisfied. On the
contrary suppose that there are xeD and yeD such that g(x) # 0 and h(y) = 0.
Then 0 = f((x+y)/2)* = g(x)h(y) # 0 a contradiction.

(b): Straightforward verification.
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Theorem 2

Let f: (A,B) = R, g: (A,B) > R, h: (A,B) = R. Then the following
statements are equivalent:

(a) (f,g,h)e LGL;

(b) there exists an ss-set N = {x ¢(A,B) : f(x) = 0} and for each xeN
either g(x) = 0, or h(x) = 0; for each interval (a,b) contiguous
to N there exists an additive function ¢y : R - R, an s-set
M C (a,b) with the collection {J,} of contiguous intervals of M in
(a,b) and real sequences {a,}, {b,} with a, b, > 0, such that

fld, =+ Jab e g|J =ae® hiJ =b T (8

holds for each n, and (f,g,h) is locally g-Lobatchewski at each
xeM.

Proof

(a) implies (b): Let (f,g,h) ¢ LGL. First we show that f: (A,B) = R is
locally Lobatchewski at each x e(A,B). Let §(x) have the meaning of Definition
1. Choose k, |K| < &(x). Analogously to the proof of Theorem 2 in [2] we can
check that f(x+k)f(x—k) = f(x)*, hence f is locally Lobatchewski at each
xe(A,B) and its form is described by Theorem A,(b). If x € N, obviously either
g(x) = 0, or h(x) = 0. Each non zero function ¥:(a,b) = R ((a,b) C R), which
fulfil (L) has the form ¥(x) = ce*®, where ¥: R = R is an additive function and
¢ # 0 is a real constant (Theorem 1, f = g = h). Let (a,b) be an interval
contiguous to N. Then for (a,b) there exists an additive function y: R = R, an
s-set M C (a,b) with the collection {J,} of contiguous intervals in (a,b) and a real

sequence {c,} such that f |Jn=cneq'“" holds for each n, and f is locally

Lobatchewski at each x ¢ M. The expression (8) is an consequence of Theorem
1.
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Synopsis

We consider the functional equation f(x+h(x)) = f(x) + f(h(x)) where
h is a given function. We show that under some conditions imposed on h every
solution f of this equation which is differentiable at zero and (in Theorem 2)
continuous at the points of discontinuity of h is actually a linear function. This
is improvement of former results by Forti from [2].

1. INTRODUCTION AND PRELIMINARIES

The present note is connected with a paper of Forti [2]. Using a slightly
different method of proof we are able to improve some results obtained there. In
order to keep the terminology used in [2] let us recall first the following.

Definition

Let X,Y be groups and A be a class of functions from X into Y. Let ZC
X x X. If every function f belonging to A and satisfying the Cauchy equation.

fety) = fx) + f(y) - (.h

 for all (x,y) e Z satisfies this equation for all (x,y) ¢ X * X then we say that the
condition (Z,X,Y) is redundant for the class A.

In the sequel we shall deal with conditions (Z,, R, R) where for a given
function h: R - R we denote Z, = {(x,h(x)): x eR}. In [3] Zdun proved that if
h is strictly increasing, continuous and h(0) = 0 then (Z,, R, R) is redundant for
the class of functions differentiable at zero. Some generalizations of this result
are due to Dhombres [1]. Here we make the same assumptions on h as Forti but
we prove that (Z,, R,R) is redundant for larger classes of functions.
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2. MAIN RESULTS

In this section our main results are given. We shall prove first the
following:

Theorem 1
Let h: R - R be continuous, h(0) = 0 and
@) xh(x) > O for all x # 0, or

(ii) x(h(x) +x)< 0 for all x # 0.
Then (Z,, R, R) is redundant for the class of functions differentiable at 0.

Proof

Let f: R - R be a function differentiable at 0, f(0) = 0 and define g: R
- R by

@ - {ﬂx)/x, x#0,
27 ro x-0

Then g is continuous at 0 and moreover f solves the equation
f(x+h(x)) = f(x) + f(h(x)) ' @.1)

if and only if g solves

_ X L h® :
g(x+h(x)) TThe) g(x) Py g(h(x)) (2.2)

for x # 0.
Now it is sufficient to show that g is a constant function. We may also

assume without loss of generality that g(0) = 0. Let us fix an e > 0. Continuity
of g at O implies that there exists at > 0 such that

lgli-w [ < e 2.3)

Put T:= sup {t >0 : (2.3) holds for t}. Then |g| 1| <e. Suppose that T <
+ oo and consider both cases assumed in our theorem.

® Denote Br: = {t¢(0,T) : h(t) = T} and C;: = {te (—T,0) : h(t)
< — T} and put
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{inf B,, B,*0, : {sup C,, C,#0,
b =

T,  B.=0; “l-. ¢,

Wehave 0 < b < T, —T <.¢ < 0 because h(0) = 0 and h is continuous.
Hence, b+h(b) > T and c+h(c) < —T as h is continuous and xh(x) > 0 for
x # 0.

Take a y € (0,b+h(b)). There exists an x (0,b) such that y = x+h(x).
From (2.2) we derive (taking into account that h(x) < T.

h(x)

T+ h() |gh(x)) | <e

|8} | =|g(x+h(x) | S k0 lg( )| +—="

Similarly if y e (c+h(c), o) then |g(y)| < e. Thus |g(y)| < € for all y €
(c+h(c), b+h(b)) > (—T,T) which contradicts our supposition and proves that
|g(y)| < efor all yeR. e being arbitrary we conclude that g = O in the case (i).

(i1) Equation (2.2) may be equivalently transformed into

) o)+ —Fg0). 2.4)

h _
=5 "

Observe that now for any x # 0 we have —x/h(x) e (0,1) whence x+h(x)/h(x)
= 1 —~(—x/h(x)) e (0,1). Denote by u the function given by u(x) = x+h(x) for
x € R. It is easy to see that h(x) < u(x) < o for x > 0 and h(x) > u(x) > 0

for x< 0. Denote by R; and Sy the sets {t e (0,t) : u(t) < —T} and {t e (—T,0)
: u(t) = T} respectively and put

inf R;, R;#0,
r =
T, R,=0

s=

sup S;, S;#0
-7, §,=0

Continuity of u and u(0) = O imply that 0 < r < Tand -T < s < 0.
Moreover, h(r) = u(r)—r< —T and h(s) = u(s) —s > T.

Fix a y e(h(r),0). By the continuity of h there exists an x €(0,r) such that
y = h(x) and (2.4) with the fact that u(x) ¢ (—T,0) gives
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180) | = | gCh(x) | < "h(‘;" g |+ 75 [0 | <e.

In the same way we obtain for y e(0,h(s)) that |g(y)| < e. As in the case (i) we
infer that g = 0 in the present case, too. This completes the proof of the
theorem.

Let us remark that Examples 4 and 5 from [2] show that neither
continuity of h at 0 can be dropped nor can h vanish for some x # 0. Let us also
remark that in general continuity of h cannot be replaced by a weaker condition,
e.g. by requiring that h transforms intervals with O as an endpoint on to
intervals. This is seen by the following.

Example: Define h, : (0, + o) =R by

x, x € [0,1/2),
h(G) =1 1/2)QA-x), x € [1/2, 1),
]_/2, X € [1,+oo)’
andh: R—->Rby
h,(x) x<@
h(x) =
-h,(-x), x<0

Then h(0) = 0, xh(x) > 0 and the image under h of any interval with 0 as an
endpoint is an interval while f : R —» R given by

x-1, x < -1,

flx) =4 =x, [x] <1,
x+1, x21

is a nonlinear function, differehtiable at 0, continuous in a neighborhood of 0,
and is a solution of (2.1).
Finally let us prove

Theorem 2

If h:R — R is such that h(0) = 0 and (iii) —x* < xh(x) < Oforx # 0
then (Z,, R, R) is redundant for the class of functions differentiable at 0 and
continuous at the points of discontinuity of h.
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Proof

: As in the proof of Theorem 1 fix an e > 0 and denote by T the
supremum of all positive t’s for which (2.3) holds. We have |g| _rp| < e.
Suppose that T < + oo. Condition (iii) implies that 0 <x+h(x) <x for
x > 0and 0 > h(x)+x>x for x < 0. Thus in particular —h(x)/xe(0,1) whence
(x+h(x)/x) € (0,1). Moreover

0<T+WT) < T or ~T<hT) <O0. 2.5)
An equiva]ent form of (2.2) yields

16D | - T 2D geronemy + D guey
< 2D (gcrenay | + D gm) [<e.

The last inequality follows from (2.5). By hypothesis g and h cannot
simultaneously discontinuous at T. Now, if h is continuous at T then because of
(2.5) there exists a T, > T such that x+h(x) ¢ (0,T) and h(x) ¢ (—T,0) for x ¢
(0,T,). As before we get |g(x)| < e for x € (0,T,). Therefore in both cases there
exists T,> T such that |g(x)| < e for x €[0,T;). Analogously we can show that
[g(x)| < e for x e(—T,,0] where T, > T, which implies that |g(x)| < e for x
€ (—T,, To) D (—T,T) and contradicts our supposition. As in Theorem 1 it
follows that g = O which ends the proof of Theorem 2.

Example 8 in [2] shows that in general h and f cannot have common

points of discontinuity.
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ABSTRACT: For the Cauchy-Riemann system the boundary value
problems, with point conditions, are presented and the existence and uniqueness
for their solutions is proved.

1. INTRODUCTION

In may problems of computational fluid dynamics there appear to be
advantageous in working with the corresponding first-order elliptic systems. The
simplest elliptic system of the first order is the Cauchy-Riemann system
Y, = —¢,, ¢, = ¥, and every pair of sufficiently smooth functions ¢ and ¢
satisfying this system also satisfies the Laplace equation. The inhomogeneous
Cauchy-Riemann system which, in planar cartesians, appears as below

div (¢, ¥) =1
curl (¢, ¥) = f,, ' (1

has been of interest for the researchers in the last two decades, see for example
[Borzi et al. 1997], [Chang & Gunzburger, 1990], [Ghil & Bagovind, 1979],
Hafez & Phillips, 1985], [Lomax & Martin, 1974], [Neittaanmiki & Saranen,
1981], [Nicolides, 19921, Rose, [1981] and [Vanmaele et al, 1974].

Collectively the Cauchy-Riemann system (1) is elliptic while individually
both the partial differential equations are hyperbolic. If ¢ and ¢ are twice
continuously and f; = f, = 0 then ¢ and ¥ are harmonic. For the ellipticity of
the system (1) we refer to [Wendland, 1979].

The following basic boundary value problems for the Cauchy-Riemann
system are known. For a square domain @ = (0,1)x(0,1) with boundary T',
Vanmaele et al. [1994] consider the Cauchy-Riemann system (1) with boundary

conditions

¢ € H*T)) is known on ', = {0} x (0,1),
2
¥ € H*T,) is known on T, = T\T',,
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and prove the existence and uniqueness of a solution (¢,y¥) € H'(Q) X H'(Q).
The result is valid for any rectangular domain. Chang & Gunzburger [1990],
[Neittaanmiki & Saranen, 1981b] and Vanmaele et al [1997] discuss the div-curl
system (2,1) with the boundary conditions '

(O, ¥) X n=20 onT, 3)

where n is the outer unit normal and (¢,y) X n = ¢n, - yn,. The well-posedness
of (1), (3) is proved in H'(2) x H'(Q) subject to he compatibility conditions

[ aa =0 (4)
a

Subject to the compatibility condition

[ £ 49 = o, )
a
The problem
(,¥) .n =0 onT, ©6)

considered with the system (1) is well-posed in H'(Q) x H'(Q), see [Vanmaele
et al., 1994], [Chang & Gunzburger, 1990] and [Wendland, 1979].

In a rectangular domain @, for example (0,2 7) X (0,x) for g; € H*(T),
i = 1,2; the following boundary conditions for the div-curl system (1) are also

important:
¥ =8 (&) on T, =(0.2m) x {0}

¢
Yy =g ) on I, =(0.27r) X {n}
and that both ¢ and  are periodic in the x-direction, that is,
$(0y) = @2y),
®)
¥v(0,y) = ¥(2my).

Equations (8) are sometimes referred to as periodic boundary conditions. Subject
to the compatibility conditions
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2r =

2z .
[ [fidedy = [ (g,0-8,) dx, ©
0 0 0

the boundary conditions (7), (8) together with (1) determine ¢ € H'(Q)
completely and ¢ € H'(Q) up to an additive constant [Ghil & Balgovind, 1979].

In this paper we shall discuss the boundary value problems with point
conditions for the Cauchy-Riemann system.

2. CAUCHY-RIEMANN BOUNDARY VALUE PROBLEM -1

Let T' denote the boundary of a simply-connected domain Q< and
G(Q) be the subspace of the space G(Q) generated by the functions which

are harmonic in © and continuous in Q = QUI'. We consider the Cauchy-

Riemann system

¥,+¢, =0
in Q (10)
V-9, =0
with the boundary condition
y=fonT, (11a)
and ¢ = ¢’ at a single point P€eQ. (11b)

Theorem 2.1
For f € ((T'), the problem (10)-(11) possesses a unique solution

(#,9) € G(RQ)xG@Q).

Proof
Step I. It is well-known, see for example [Mikhlin, 1970], that the Dirichlet

problem for the Laplace equation

Ay =0 in Q, (12)
gy =f onT,
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is a well-posed problem in the pair of spaces (G(Q),C(@)).¢ is determined
uniquely everywhere is G(Q). Let this unique solution be \b

Step II. We will prove now that for the unique ¥*e€G(Q) if there exists

satisfying ¢~ (10)-(11), then that ¢" will be unique. Let us assume that ¢,, ¢,
with ¢, # ¢, are two such solutions for the same ¢ and that é be defined
as 6 = ¢, —¢,. From (10) is follows that

5, =0,
8, =0,

which imply that 6 = constant. Also (11b) implies that § = 0 at P which shows
further that 6 = 0 and uniqueness of ¢ follows.

‘Step III. To prove the existence of ¢~ we proceed as follows. Let R(x,y) be an
arbitrary point in Q. We can always choose as path from P to R consisting of
- horizontal and vertical straight lines. For example, in Figure la, we show one
such path, while in Figure 1b we show another. It is sufficient to consider
Figure 1a. We choose a line PQ within Q such thaty = y, = fixed along PQ.
To construct ¢~ along PQ we integrate the equation (10a) along PQ and obtain

$°xyp) = ¢ - [9,(2.ypdA (13)
X’ .
To construct ¢~ along OR, we integrate the equation (10b) along OR and
obtain :
y
$°xy) = ¢" Gy + [ #ixA)dA (14)
. ”

Using (13) in (14) we get

x y
¢°xy) = ¢ - [w,0.ypdAr+ [ ¥ (x1)dA (15)
Xp . e
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Figure 1. C-R Boundary Value Problem-I
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It is obvious that all the terms on the right hand side of (15) are known which

shows that ¢ is known at an arbitrary point R and hence everywhere in Q.

Step IV. Now we show that ¢(x,y) satisfies the original C-R system (10).
Differentiating (15) with respect to x we obtain

y
S &) = -y + [ FrA)dA

Yp

which, since ¢~ is rarmonic, can further be simplified as

y
S xy) = - vy - [ ¥ AL = - ;). (16)

Yp

Similarly differentiating (15) with respect to y we readily get
¢,(xy) = (%) an

Step V. We recall from the step I that ¢* e G(Q). It is well-known, see for

example [Mikhlin, 1970], that a function which is harmonic is some domain has
derivatives of all orders in that domain. Therefore is follows immediately

that l[l;y, l[l;x € C(Q). Consequently it can easily be shown from (16), (17) that

¢" is harmonic in © and hence from step Il is follows that ¢"€G(Q). Thus
there exists a unique (¢*,¢°)€G(Q) xG(Q).

Remarks 2.1 (Well-posedness and Ill-posedness)

® In the pair of spaces (H*(Q), H*(")) the Dirichlet problem for the
Laplace equation is well posed [Girault & Raviart, 1986]. It is easy
to prove that the Cauchy-Riemann boundary value problem (10)-(11)
is well-posed in the pair of spaces (H'() X H'(Q), H*(I)).

® The Dirichlet problem for the Laplace equation is ill-posed in the
pair of spacés (H'(2), C(I')). see for example [Mikhlin, 1970]. The
Dirichlet problem (12) for ¢ being ill-posed in (H'(®), C(T")) thus
implies that the Cauchy-Riemann boundary value problem (10)-(11)
is ill-posed in the pair of spaces (H'(Q) X H'(Q), C(I").
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For the properties of the Sobolev spaces on the domain and regularity of
the boundary, we refer to [Girault & Raviart, 1986].

Remarks 2.2
If, in a simple-connected domain Q< # with boundary ', we consider
the Cauchy-Riemann system (1) for f;, £, € H'(Q) with the boundary condition
y=fE H*T)onT.
¢ = ¢ at the single point PeQd
then there exits a unique solution (¢,¥) € H'(Q) X H'(Q).
The proof can be established on the same lines as in the previous proof.
For the Poisson equation Ay = F in Q (where F = 4, f, + 9, f;) considered with
the Dirichlet conditions y | r = f, there exists a unique solutlon Y = ¢ in H(Q)

[Girault & Raviart, 1986]. It is simple to show the uniqueness of ¢ = ¢ in Q.
The existence of ¢ can be shown by construction, firstly along y = Yy

$°xyp) = ¢+ f i(y5) = ¥5(75)] d2 (18)
and then  V (xy)eQ,

$'(xy) = ¢+ f i(hsyp) - 95(hoyp)] dA+ f [#7xA) £ W)|dA(19)

Yp

Finally, it is to show that ¢ satisfies (1). From (19) it follows that

y
$:(xy) = fi{ryy) - ¥,y + [[Walx ) -0, £xA)] di

Yp

y
= fi{xys) - ¥y + A, [[fiA) - gy x0)] dA

Yp

= fi(x) - ¥, ().

Similarly from (19) it can be shown that
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G, (6y) = W (xy) ~f,(x¥),

and the proof is complete.

3. CAUCHY-RIEMANN BOUNDARY VALUE PROBLEM - 11

Below we consider the Neumann boundary condition in conjunction with
two point conditions for the Cauchy-Riemann system.

Theorem 3.1
Let T' denote the boundary of a simply-connected domain Qc . Given

1
f.f,€HY(Q), feH*T); the Cauchy-Riemann system (1) in @, with the

boundary conditions (as depicted in Figure 2)

¥, =fonT ' (20)
and V= '/,P} at a single point P € Q (21)
¢=¢"

Figure 2. C-R Boundary Value Problem-II
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possesses a unique solution (¢,¥) € H'() X H'() subject to the compatibility
condition :

[ {h)n-fyds=0. 22)
T
Proof

Let us consider
AYy = Fin Q 23) .

where F = div (f;, f)). It is well-known, see for example [Girault & Raviat,
19861, that the Neumann problem (20) for the Poisson equation (23) possesses
a solution ¢ € H'() which is unique up to an additive constant subject to the
compatibility condition

[Fdcdy - [fas,
- a r

which on substituting F = div (f3, f;). and using divergence theorem, can further
be written as the required compatibility condition (22). Using the point condition
(21a) the indeterminacy is eliminated to determine ¥ uniquely in €.

To use Remarks 2.2. we need to show that if y € H'({) then there exists
a unique continuous extension of  onto the boundary I, at least for certain types
of boundary. We use a special case of Theorem 1.5.1.2 in [Grisvard, 1985]; let

Qc 9 have a C*' boundary T (i.e. Lipschitz continuous boundary) then the

mapping # - yu which is defined for u € C*(Q) has a unique continuous

extension as an operator from H'(Q) onto H'(T).

Now for the Cauchy-Riemann system (1) with ¥ known on H*T) in
conjunction with point condition (21b), the existence of a unique solution (¢, )
€ H'(Q) x H\Q) follows from Remarks 2.2.
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ABSTRACT: Secret Sharing Schemes are used in many institutions. For
sensitive data these schemes constitute a fundamental protection tool forcing the
adversary to attack multiple locations in order to learn or destroy the information.
In this paper we generalize the problem to one in which the secret is some data
which is distributed among all the dishonest participants.

1. INTRODUCTION

Secret Sharing Schemes are used in many commercial and distribution
environments. Secret sharing schemes were introduced by Blakley [2] and Shamir
[4]. A secret sharing scheme is a method of sharing a secret among a set of
participants in such a way that certain subsets of participants are qualified to
compute the secret by combining their shares. A secret sharing scheme is called
perfect if in addition any non-qualified subset of participants has absolutely no
information on the secret. One of the best examples is military where the key and
password is shared between s individuals of ranks r,,...r, (where w is a positive
integer), so that if a person of rank r; is incapacitated, then a person of rank
r; = r; or at least two participants of rank less that r, may replace the lost data.
Brickle [3], Simmons [5], [6] and Beutelspacher [1] have adapted the basic
schemes and constructed multilevel systems. In this paper we will show how
secret sharing scheme can be modelled on matrix and demonstrate how these can
be adapted to realize multilevel schemes when the participants are dishonest. To
begin with, we must formally define the secret sharing schemes.

2. SHAMIR’S SECRET SHARING SCHEME [4]

In this scheme n parties P, i = 1,....n, k-share a secret s, 1 < k < n,
if and only if the following conditions re satisfied:
(1) Each P, some information g; known to the parties P, j # i.
(2) The secret s can be easily computed from any k of the a;’s.
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(3) The knowledge of any k-1 of the a,’s no matter which ones they
are, leaves s undetermined.

A set {a,...... a,} satisfying (2)~(3) is referred to as (k,n) threshold scheme for
s. Let S be the finite set of secrets, and input is a secret taken from S. In addition
to the parties, there is dealer in the system, who has a secret input 5. A scheme
is a probabilistic mapping which the dealer applies to the input and generates n -
pieces of information. The piece of information (what a participant must
remember) is called share. For every i the dealer gives the i-th share to P;. The
dealer is only active in this initial stage. After the initial stage, the parties can
communicate, according to some pre-defined, possible randomized, protocol. The
parties are hones, that is they follow their protocols. However, they are curious
and after the protocol has ended some of them can collude and try to gain some
partial information on the secret.

2.1 Participants and Communication Model

Each participants in P is connected to a communication channel, C with
the property that messages sent on C instantly reach every party connected to it.
We assume that the system synchronized i.e. the participants can access at the

same time.
2.2 Time Periods and Update Phases

Time is divided into time periods (e.g., a day, a week, etc.) which are
determined by the common global clock. At the beginning of each time period
the participants engage in an interactive update protocol (update phase). At the
end of an update phase the participants hold me shares of secret s, i.e., share are
changed periodically.

2.3 The Mobile Adversary Model

Corrupting a participant means any combination of learning the secret
information (share) of he participant modifying its data, changing the intended
behavior of the participants, discommoding the participants, and so on. For the
sake of simplicity, we do not differentiate between malicious faults and "normal”
participants failures (e.g., crashes, power failures etc.).

3. THE PROPOSED SCHEME

Our model of secret sharing scheme based on matrix is as follows. A
matrix
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a, G, .. 4,
a a . a
21 %22 2n
A=
_aml am2 aan

_ of order m X n with entries randomly chosen from a set N = {0,1...9} is taken
to be the secret key. The subscript i and j of the elements a; of the matrix
indicated respectively of row and column in which a; is located. The a; lies at
the intersection of ith row and jth column of A. In this scheme there is a dealer
who distributes the shares among the st of participants who are ranked and placed
is levels r,,,,,r, where W is a positive integer.

(jap,1 =i < m 1 < j < n are shares of rank r,. -

If p is the number of shares then
((jaja, ...05,),1<is=mj=1Lp+1,2p+1,3p+1,..
< n are shares of rank r,.

If g is the number of shares then
(jagap, ...a5.),p<qgl<is=mj=1lqg+1+2+1
+ 3g+1,... < n are shares of rank r;.

(ja;a, ...a,), 1 <i<m,j=1 are the share of rank r,.

The order of the matrix is made public but the matrix is kept secret and
taken to be the key. The shares are distributed privately to the participants. When
a group of participants whose shares constitute the matrix A come together they
can construct the secret key. We assume that there are /; participants of rank r;.
However an incapacitated participant of rank r; so that the secret can be
recovered from the shares of all participants of rank r; = r;, or at least two
participants of rank less than r. Also a person may change his share in
embarrassment and confusion, then the error can be corrected by majority vote.
Consider the case of the military. Each row of the matrix is assigned a different
regiment. However if all the rows come together, they can reconstruct the matrix
and hence the secret key. In the case of cheating the dealer can change only the
cheated entries of the matrix without changing the whole matrix/data.
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ABSTRACT: In [2] We introduced he concept of p-ideal and posed the
following problem: characterize p-semisimple BC-algebras. Now we show that
every ideal is a subset of a p-ideal in BC-algebra.

Definition 1([2])

A nonempty subset A in a BCl-algebra X is called p-ideal of X if it

satisfies
(1) 0 € A,
(2) (x*y)*(y*z) € Aandy € A imply x € A.

Lemma 2([2])

An ideal A of a BCl-algebra X is a P-Ideal of X if and only if 0*(0*x)
€ A implies X € A, whereas x € X.

Lemma 3([2])

A BCl-algebra X is p-semisimple if and only if every ideal of X is a p-
ideal.

Lemma 4([2])

Let A be an ideal of a BCI-algebra X. Then X/A is a
p-semisimple BCl-algebra if and only of A is a p-ideal of X.
Let X be a BCI-algebra and A an ideal of X, denote
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Z(A) = {x € X|0*(0*x) € A}.
Obviously, A € Z(A) 2 BX)}BCK-part of X).
Remark
Z(a) is not L(A) in [1].
Theorem 5

Let A be an Ideal in a BCI-algebra X, then Z(A) 2 A is a p-ideal of X.-

Proof

Let x*y € Z(A)and y € Z(A), where x,y € X. Obviously 0 € Z(A).
By the definition of Z(A), we have 0*(0*y) € A, 0*(0*(x*y)) € A. Then

0*(0*xN*(0*(0*y)) = 0*(0*(x*y)) € A.

Since A is an ideal, so 0*(0*x) € A. This means that x € Z(A). Hence Z(A)
is an ideal of X. For any x € A, since (0*(0*x)*x = 0 € A, so 0*(0*x) € A,
it is clean that x € Z(A). Thus A € Z(A).

Suppose 0*(0*X) € Z(A), then 0*(0*(0*(0*X)) € A. Since

0*(0*X) = 0*(0*(0*(0*X))),

so 0*(0*X) € A. This means x € Z(A). By Lemma 2, Z(A) is a p-ideal of X.
Combining Theorem 5 and Lemma 4 we have.

Theorem 6

Let A be an ideal in a BCl-algebra X, then X/Z(A) is a p-semisimple

BCl-algebra.
In [3], it is shown that strong ideal and closed p-ideal coincide in BCI-

algebra.

Theorem 7

Let A be an ideal in a BCI-algebra X. Then Z(A) is strong ideal if and
only if A is closed. ’
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Proof

Suppose that A is closed ideal of X. If x € Z(A), then 0*(0*X) € A.
Since is closed, so 0%(0*(0*X) € A, which implies 0*x € Z(A). Thus Z(A) is
closed ideal. By Theorem 5, Z(A) is closed p-ideal, By Theorem 3 in [3], Z(A)

is strong ideal.
Conversely, suppose Z(A) is strong ideal. Then Z(A) is closed. Let x €

A, by definition of ideal we have 0*(0x) € A. This shows that x € Z(A). Since
Z(A) is closed, so 0*x € Z(A), i.e. 0*(0*(0*x)) € A. Thus

0*x = (0*(0*(0*(0*X)

This says that A is closed.
The following is easily verified by Lemma 2.

Theorem 8

Let A be an ideal of BCl-algebra X. Then Z(A)=A if and only if A is
a p-ideal.

REFERENCES

1. S.A. Bhatti and X.H. Zhang, Strong Ideals, Associative Ideals and P-
Ideals in BCl-algebras, PUJM Vol XXVII (1994), 113-120.

2. X.H. Zhang, H. Jiang and S.A. Bhatti, On p-ideals of a BCI-algebra,
PUJM Vol.XXVII (1994), 121-128. ‘

3. X.H. Zhang and S.A. Bhatti, Sufficient and Necessary Conditions for
Strong ideal in BCI-algebra, J. Hanzhong Teachers College 1 (1995), 13-
15.



96

Xiaohong Zhang and S.A. Bhatti




Punjab University
Journal of Mathematics (ISSN 1016 - 2526)
Vol. xxxii (1999) pp. 97 - 110

YIELD STRESS OF SEMI-RIGID AND FLEXIBLE
POLYMERS
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ABSTRACT: In order to measure the yield stress of aqueous solutions of
Polyacrylamide and Xanthan gum, Zero-shear viscosity of these polymers have
been determined. In steady shear, plateau regions of viscosity for both the
polymers were found. Oscillatory dynamic testing is also carried out in the linear
regime. It was found that both the polymers do not exhibit a true yield stress
because G decrease with decrease of frequency in oscillatory dynamic mode.

1. INTRODUCTION

There is the growing importance of bio-polymers like Xanthan gum and
synthetic polymers like polyacrylamide in such widely differing applications as
the food industries and oil extraction. In the former, Xanthan gum is widely
employed as a thickening or gelling agent [Cf.1], while in the latter both Xanthan
gum and polyacrylamide are of potential use in Enhanced Oil Recovery [Cf.2].

The present experiments have involved in Xanthan gum Keltrol F
(Supplied by Kelco) and the polyacrylamide Magnaflox E-10 (Supplied by
Colloids). Walters er al. [Cf.3] have investigated the rheological properties of -
these two polymers in different concentrations and found that near room
temperature 3%, 2% and 0.9 % aqueous solutions of Xanthan gum have a similar
shear viscosity response to 2%, 1.5% and 0.75% aqueous solutions of
polyacrylamide, respectively. They found that in steady shear flow Xanthan gum
solutions are highly shear thinning with low values of N, while polyacrylamide
solutions are shear-thinning with high values on N,. On the other hand in
oscillatory shear flow, Xanthan gum have high values of G’ while polyacrylamide
solutions have low values of G’.

The conformation of the Xanthan gum molecule has been well covered
by Rocherfort and Middleman [1] and Lim et al. [4]. It is usually considered to
be ‘semi rigid’. In contrast, polyacrylamide is generally regarded as being ‘very
flexible’ and it is largely this difference which gives rise to the substantially
different rheological response.
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We remark that the concentrations employed in the present series of
experiments would according to Wissbrun and Whitcomb [5,6] place the Xanthan
gum solutions in the liquid-crystalline category.

Whitcomb and Macosko [6] have reported that concentrated Xanthan gum
solutions (1% by weight and higher) exhibit an apparent yield stress. However,
later work by Lim ef al. [4], using dynamic oscillatory measurements and optical
birefringence studies, have indicated that Xanthan gum does not exhibit a true
yield stress because G’ decreases with decrease of frequency, and that the effect
may be attributed to the formation of a liquid crystal structure. They also
measured the zero-shear viscosity of Xanthan gum solutions and found that the
flow curve flattens at low shear rates.

Due to its semi-rigid molecular structure, Xanthan gum is highly resistant
to molecular degradation, with no loss of viscosity being reported after prolonged
steady shearing at v = 46,000 s~! [7].

However, the polymer is known to be susceptible to both biological and
chemical attack particularly at elevated temperatures and in the presence of
oxygen [8]. '

Walters ef al. [3] have been shown that unlike polyacrylamide solutions,
Xanthan gum solutions suffer from the effect of ‘pre-shearing’ in an oscillatory
mode of deformation. An aqueous solution of 3% Xanthan gum was exposed to
a steady shear flow and it was sheared for 60 seconds before oscillation. It was
observed that both dynamic viscosity # and dynamic rigidity G drop significantly
as the pre-shear rate was increased. :

Luyten ef al. [9] studied Xanthan gum solutions in steady shear flow at
concentrations 0.025% to 0.2% (w/v %) in 0.1% Nacl. They found two plateau
regions for these solutions with viscosities ranging from 0.75x1072 to 4 (Pa.s).

Bewersdroff and Singh [10] measured the zero-shear viscosity of these
solutions with concentrations ranging from 0.0025% to 0.075% (by weight).
They found that there is a plateau region at shear rate v = 0.001 (I/s) with a
viscosity of 0.15 (Pa.s) for these concentrations.

2. BASIC RHEOMETRY
Consider a steady simple shear flow represented by cartesian velocity
components: "

Ve=19y, V,=V,=0, 1)

where v is the constant shear rate. The corresponding stress distribution for a
non-Newtonian elastic liquid can be written in the form [11,12].

O ™ Oy = Nl(‘Y)’ Oxx = 0y = NZ('Y) (2)
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where oy is the stress tensor,  the apparent (or shear) viscosity and N, and N,
are the first and second normal-stress differences, respectively. In conventional
rheometry, it is customary to limit attention to n and N;.

In an Oscillation, shear flow is given by

V;=awycoswt,Vy=Vz=0, 3)

where « is a small amplitude, the relevant stress o,, is given by [4,5]

oxy=acof] cos wt+-€sin<wt 4)
3}

where 1) is the dynamic viscosity and G the dynamic rigidity.

For non-linear materials such as polymer solutions, the response will only
the linear if the amplitude is small; otherwise non-linear effects must be expected
and have to be accommodated (see § 4).

In the following sections, we shall refer to all rheometrical functions
defined above, except for the second normal stress difference N,. The
experiments were performed on Weissenberg Rheogoniometers and Controlled
Stress Rheometer (both Manufactured by Carrimed U.K).

3. ZERO-SHEAR VISCOSITY OF XANTHAN GUM AND
POLYACRYLAMIDE SOLUTIONS

In order to determine the zero-shear rate viscosity of Xanthan gum and
polyacrylamide and to see whether there is yield stress in both the polymers or
not, a controlled Stress Rheometer was employed. In this instrument a force or
shear stress 7 acts on the upper moving plate and this induces a movement v or
shear rate + on this surface relative to the lower fixed surface. In this manner it
is capable of measuring viscosity over a shear rate range as low as 107%(1/s). The
flow behaviour of the samples were investigated manually. The tests were
performed in a cone-and-plate configuration with cone having an angle of 1° with .
plate radius 2.5 cm. The measuring temperature was 20 C° throughout the
experiments.

For 3% Xanthan gum a plot of shear viscosity versus shear rate is given
in Fig.(1). It is clear from the figure that the sufficiently low shear rates, the
viscosity reaches a Newtonian plateau and as the shear rates are increased it falls
monotonically. There is some scatter of data at low shear rates but there is no
doubt that the viscosity shear rate curve flattens at sufﬁéiently low shear rates.
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From these results it is clear that the polymer flows at even low stresses
and the viscosity, although large, is always finite and there is no yield stress in
this polymer. '

For the 2% polyacrylamide solution, steady shear viscosity was obtained
with Controlled Stress Rheometer. The relevant data is given in Fig.2. At lower
range of shear rates there is some scatter of data but the viscosity is finite for this
polymer as well. '
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4. NON-LINEAR BEHAVIOUR IN OSCILLATORY SHEAR

It is of interest to consider large strain oscillatory shear flow for two
reasons. First, it is important to confirm that the conventional dynamic testing
is carried out in the linear regime. Secondly, the non-linear effects themselves
are able to tell us something about the rheology . of the solutions. In order to
ensure that the oscillatory data is in the linear region, strain-stress experiments
were performed. We employed the Weissenberg Rheometer (model R-16) in a
cone-and-plate combination with cone 1° 32’ for the present series of
experiments. Figs.(3) and (4) contain representative dynamic data for frequency
w = 5.0 rad/sec for 2% polyacrylamide and 3 % Xanthan gum solutions. In these

figures dynamic viscosity % and rigidity G are normalised by dividing the

corresponding values at very small amplitudes. The behaviour of these polymers
is typical of that expected for elastic liquids, with a linear region followed by

decreasing values of both % and G as the strain is increased, the fall in G
being greater than the fall in % [Cf.11].

In Figs.(3) and (4), the fall in both % and G is more pronounced for

the Xanthan gum solutions.

5. OSCILLATORY SHEAR FLOW
(i) Effect of Pre-shearing

It is well known that, unlike polyacrylamide solutions, Xanthan gum
solutions suffer from the effect of pre-shearing. In order to see the effect on 3%
Xanthan gum solution, we sheared the test sample in Controlled Stress
Rheometer at a constant rate for a period of 60 seconds before being tested in
oscillatory mode. The procedure was repeated at different pre-shearing rates of
q = 3, 30, 90 and 150 (I/s). The relevant data is given in Figs.(5) and (6). These
figures show that if the sample is pre-sheared at low shear rates, the dynamic
viscosity and rigidity are increased. Even if the pre-shearing time is increased up
to five minutes, the dynamic moduli are still found to be increased. If the same
sample is pre-sheared at high shear rates, the dynamic moduli are decreased.
There is a further decrease in the dynamic moduli if the pre-shearing rate is
further increased. So the degree of elasticity in Xanthan gum solution in
oscillatory shear depends on the rate of pre-shearing and consequently on the
state of its structure.
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It can be concluded from the above results that Xanthan gum solutions
suffer from the effect of pre-shearing. These results are constant with the
conclusion of Walter’s et al. [Cf.3] who found that the dynamic moduli are
decreased with increase of pre-shearing rate.

If the test sample is left after pre-shearing for a period which can be as
long as one day it will recover, and the dynamic moduli will return to their
‘unpre-sheared’ values [Cf.3]. However, gentle shearing for a period of 60
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seconds has the same effect. In order to investigate this behaviour a sample was
pre-sheared at ¢ = 800 (1/s) and subsequently pre-sheared at q = 3 (1/s) for 60
seconds. It was found that the dynamic moduli are once again increased and are
higher than the data taken with the fresh sample even if the pre-shearing
continues for upto five minutes. This is shown in the Figs.(5-6). So it appears
that there is a structure in Xanthan gum solutions which is broken down by high
shearing but is recovered by subsequent slight shearing. It is possible that this

slight shearing re-aligns the molecules and builds up the structure.
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(ii) Oscillatory Testing

The Controlled Stress Rheometer, old/Weissenberg Rheometer (model
R-16) as well as the new model were used to obtain dynamic data for these
polymers. As our main concern was to confirm the dynamic rigidity of both the
polymers, we compared the dynamic experimental results of the Weissenberg
Rheogoniometers with the Controlled Stress Rheometer data. . Relevant
comparison of dynamic data for 2% polyacrylamnde and 3% Xanthan gum are
given in Figs.(7) and (8)
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These figures show that there is a good agreement of most of the dynamic

viscosity 9 data for both the polymers. The dynamic rigidity G data taken

from both the instruments is also satisfactory. This gives us confidence in the
values of the moduli employed in the interpretation of the experimental results.
For the very low shear rates we expect the Controlled Stress Rheometer to give
more reliable results.

6. TESTING FOR YIELD STRESS

We know that yield stress can be measured in oscillatory dynamic tests
in which amplitude as well as frequency are varied [13,14]. Below the yield
stress the material behaves as a viscoelsastic solid and the response in phase
would be sinusoidal if the material is linear. As the amplitude is increased, the
stress wave would begin to develop a flat top and at high amplitudes a sharp
spike may be obtained [15]. The material is then above the yield. The yield stress
can be measured from the point where the stress wave ceases to be sinusoidal
[13].

Once again we employed the Controlled Stress Rheometer because it is
popular instrument for measuring the yield stress. The instrument was used in
cone-and-plate configuration with cone having an angle of 2° with plate radius
2.5 cm.

The representative dynamic data for 3% Xanthan gum and 2%
polyacrylamide aqueous solutions at frequency f = 10~* Hz. and displacement
amplitude 0.004 (rads) are given in Figs.(9-10). These plots have the same
frequency but different phase differences. It is clear that the applied and
measured waves for both the polymers are sinusoidal. The representative wave
forms for 2% Xanthan gum and 1.5% polyacrylamide are given in Figs.(11-12).
Both waves are once again sinusoidal.
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For the lower concentration of 0.9% Xanthan gum and 0.75%
polyacrylamide solutions there is some scatter of data at f = 0.0011 Hz., but still
the waves are sinusoidal. The relevant data are given in Figs. (13-14) at
amplitude 0.004 (rads.)

The output waveforms at high displacement amplitudes were found to be
distorted (i.e. not sinusoidal) due to non-linear region but no flat top at high
amplitudes was found. On the basis of these results (see also § 3), we are in a
position to confirm that there appears to be no yield stress in 3% Xanthan gum
and 2% polyacrylamide solution.
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Fig.13 Waveform for 0.9% Xanthan gum at f = 0.001 Hz.
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7. CONCLUSIONS

The following conclusion can be drawn from the present study of

polyacrylamide and Xanthan gum aqueous solutions:

1. The dynamic properties of Xanthan gum solutions can be
significantly affected by pre-shearing.

2. The dynamic rigidity for un-presheared Xanthan gum solutions is
higher than that of the corresponding polyacrylamide solutions, this
is a consequence of the gel-like structure which is easily broken
down by shear (See § 5). There is an increase in the dynamic rigidity
following a slow rate of pre-shearing, and a marked decrease
following a high rate of pre-shearing. A surprising observation was
the subsequent increase of the dynamic moduli when a slow rate of
pre-shearing immediately followed by a high one.

3. In Oscillatory dynamic mode, the dynamic rigidity G for 3%

Xanthan gum decreased rapidly as strain amplitude was increased
which indicates the break up of solution structure when larger strains

are imposed.
4. Xanthan gum and polyacrylamide solutions do not exhibit a true

yield stress because G decreases with decrease of frequency and the

effect may attributed to the formation of a liquid crystal structure.
5. There is no yield stress in both the polymers as the zero-shear
viscosity of Xanthan gum and polyacrylamide solutions show that the
flow curve flattens at low shear rates.
On the basis of the above results, we are in a position to confirm that
there appears to be no yield stress in Xanthan gum and polyacrylamide solutions.
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1. INTRODUCTION

A new class of polymer solutions, the so-called "Boger fluids" was
introduced by Boger [1] in 1977. These fluids exhibit a nearly constant viscosity
in steady shear while also demonstrating second order-behaviour of the first
normal stress difference over a finite range of strain rates. A Boger fluid’s
combined properties of constant viscosity and high elasticity, together with
optical clarity, make this type of fluid ideal for studying some elastic effects. An
obvious instance for the use of such a test fluid would be in an experimental
study where a difference in response between a Newtonian liquid and elastic
liquid of the same viscosity could be immediately identified with "fluid elasticity"
without the complication of shear-thinning effects. The first Boger fluid used to
study non-viscometric flows were aqueous solutions consisting of a small amount
of polymer dissolved in corn syrup [2,3]. Consequently, an organic based Boger
fluid was introduced consisting of a small amount of polyisobutylene (PIB)
dissolved in polybutene [4].

For several years, an item of considerable rheological concern has been
the sign and magnitude of Second Normal Stress Difference N, relative to the
First Normal Stress Difference N, in a simple shear flow. Although most
workers agree that N, for polymeric systems -is small, there has been
disagreement on magnitude and even on sign. The understanding of N, is
essential for the construction and evaluation of rheological theories and is also
important in many practical fluid flows where hydrogyamics and secondary
pattern are concerned, for instance it decides whether rectilinear flow is possible
in flow through pipes of non-circular cross-section or not.

Boger fluids have been used extensively to test techniques in different
laboratories and, also, their rheometrical properties have been studied for their
own interest. The current one of interest was the Boger fluid M, and D,.

Samples of polyisobutyelene solution labelled "M, " were supplied by Dr.
T. Sridhar of Monash University, U.S.A. It is a stable, highly elastic and
constant viscosity liquid, which consists of a 0.244 % polyisobutylene in a mixed
solvent consisting of a 7% kerosine and 93% polybutene. The solution and melt



112 <. Abdul Qayyum Bhatti

viscosity measurements yield an average molecular weight of about 3.8 million.
The solvent is a fluid in which N, behaves quadratically with shear rate and has
a relaxation time of 66 microns which is approximately three orders of magnitude
lower than the relaxation time of solution. The solvent viscosity is constant upto
a shear rate of 5000 (I/s). ‘

The Boger fluid designated "D," has a viscosity of 0.19 Pa.s. In this
sample low molecular weight polyisobutene was used as a solvent for high
molecular weight (4x10% polyisobutylene. This sample was prepared by
professor A.S. Lodge of Monash University U.S.A. We have measured second
normal stress difference of the Boger fluids M, and D, using the Weissenberg
Rheogoniometer manufactured by Carrimed U.K.

2. MEASUREMENT OF SECOND NORMAL STRESS DIFFERENCE N,

Various methods exist for the measurement of second normal stress
difference N,. We have used total normal force in cone-and-plate and plate-and-

plate to measure N,.
. We undertook a series of experiments on Boger fluids designated M, and

D, (both constant viscosity) to measure the second normal stress difference N,.
The relevant expressions in terms of total normal force in the parallel-
plate and cone-and-plate geometries are given by

2F(, . 1dInF
N, -N, | = ==[1+2 1
AR i 2( +2(11111,) M

na

N = 2£ @
Ta

respectively, where F is the total force, a is the radius of the plate and T, is rim
shear rate. Substraction of equation (1) from equation (2) at a particular shear
rate gives the second normal stress difference N,. Hence this method requires the
use of two separate experimental geometries and thus two completely different
experiments on a given fluid to evaluate N, This leads to significant
experimental error unless extremely careful and refined experiments are
performed, especially so since N, is usually very small.

The first normal stress difference N; was obtained on a Weissenberg
Rheogoniometer using the cone-and-plate geometry, with plate radius 3.75 cm.
and cone angle 1.5°. The relevant steady shear data for M, and D, are given in
Figs.(1) and (2). It is clear from these figures that viscosity for both the fluids
is constant and N, behaves quadratically over the shear rates studied. The same
apparatus was used to determine N, — N,, this time using the parallel-plate
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geometry with plate radius 3.75 cms. Different gap sets ranging from 500 to 250
microns were used. Error bars are inevitable in experiments and it may also be

associated with the method of calculation.

10! 10
Temp.20'C
o —
o
a
o— ] —
g 3
o ° 410
< A & & A Ao AT A a a
= m
s} —
- =z
g
N1
(=)
10° L - 102
Fig.1 Steady shear data for Boger fluid M,.
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Fig.2 Steady shear data for Boger fluid D,

Considerable difficulty was obtained in determining the second normal
stress difference N, for the fluids M, and D,. In order to make any sense of the
data, we found it essential to use shear stress as independent variable rather than
the customary shear rate. In view of the reasonable expectation that N, — N,
against the shear stress ¢ would be independent of temperature [5] such a
procedure at least removed one troublesome influence on the raw data, namely
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the effect of even very small changes of temperature between the cone- and-plate
and parallel-plate experiments which were needed to determine N,.

The most trustworthy results of many repeated experiments on N, for the
Boger fluid M, are given in Fig.3. In the figure the ratio of -N,/N; is plotted
giving equal weight to each gap set. Although there is considerable data scatter,
most of the N, data are significantly large and all negative. So the ratio of N,/N;
is found to be negative and | N/N,| < 0.2.

In Fig.4 the normal stress ratio, N,/N, for the Boger fluid D, is given.
It is clear that there is good agreement between the data of both runs. For this
fluid, we found the values of N, to be very small, opposite in sign to N;, and
N,/N, < 0.2. ° M

?

=N2/N1

’
-

{14 M{

SHEAR STRESS (PA)

0.0 :
) 10 100 1000
Fig.3 The normal stress ratio — N,/N, as a function shear stress for Boger
fluid M,. ; 0 ¢

P '

: ¢
i

~N2/Nt

SHEAR STRESS (PA) ﬂ

0-0 N N s -
100 . '

Fig.4 The normal stress ratio — N,/N, as a functlon shear stress for Boger
fluid D,.
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Although there is considerable scatter of data for both the fluids, the ratio
of No/N, is significantly large and all negative. Thus on the basis of our data for
both the fluids M, and D,, the Weissenberg hypothesis N, = 0 is, at best, a
rough approximation.

CONCLUSIONS

From the present measurement of the second normal stress difference N,

of Boger fluids M, and D,, the following conclusions can be drawn:

1) The second normal stress difference N, of Boger fluidg M, and D,
is generally negative and much smaller in magnitude than N,.

2) Total normal force measurements made in the cone-and-plate and
parallel-plate geometries do in themselves offer reasonably accurate
methods of determining N, if they are taken with painstaking care.

3) The main problem in this method is that N, is obtained by taking the
small difference between two large experimentally determined
quantities. This causes the N, values to be seriously affected even by
small experimental errors and the determination of derivatives of
experimental curves. Therefore, it is, difficult to avoid scatter in the
second normal stress difference results.
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NOTATIONS: Notations will be those of [1] except where mentioned
otherwise.

1. INTRODUCTION

A Q-group is a finite group all of whose ordinary complex
representations have rational valued characters, otherwise it is called a Q'-group.

The interplay between the structure of a finite group and its
representation has had, and continues to have, deep consequence for both
theories. By imposing certain conditions on the group, such as being abelian or
nilpotent, one is able to draw conclusions about its representations. Conversely,
restrictions on the representations can lead to specific structures. It is in this
context that we approach the study of Q-groups. It is quite interesting to note that
the order of a non-trivial Q-group must be divisible by 2 thus ensuring the
existence of an involution.

A transitive permutation group G of degree n>2 which has minimal
degree n—1 i.e. no non-identity element fixes more than one letter and a
subgroup H of G fixing a letter is non trivial, is called a Frobenius Group. A
subgroup K of G fixing no letter is called Frobenius Kernel and H is termed as
-Frobenius Subgroup (also called complement). It is known that G is the semi-
direct product of H and K.
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Among the transitive groups, the class of doubly transitive groups in
which only identity fixes more than two letters is very important and interesting
one. We call such groups Zassenhaus Groups. If G is a Zessenhaus Group and
N a subgroup of G fixing a letter, then N is a Frobenius subgroup of G with
Frobenius Kernal K and complement H. With these notations we call G a
Zessenhaus Group of type (H,K). This is an extremely important class of groups
for it includes two of the families of simple groups, the group L,(g), ¢ > 3.
{L,(g) is in fact image of special linear group SL(2,q) in projective linear group
PGL(2,9), called projective special linear group. It is usually denoted by
PSL(2,q), but here, for simplicity of notation, we shall denote this group by
L,(g)} and the Suzuki Groups. Since the order of a Zassenhaus group is even, it
thus bears directly on classification of Q-group.

2. DEFINITIONS AND SOME KNOWN RESULTS

Definition 2.1 [2]

Let m be an integer greater than I The set {[r]} of residue classes
module m, where 1 < n < m and n is coprime to m, is a group and is denoted
by G,. A routine proof, using the Euclidean Algorithm, shows that G, is an
abelian group, under the usual multiplication of residue classes. More over

|Gm| = 2 form > 2.
Results regarding automorphism group of a cyclic group are summarized

in the following proposition.
Proposition 2.1 [2]

Let G be a cyclic group of order m, then we have:
i) If G contains an element of order greater than 2 then lAut(G) |

= 2.
ii) If m is an odd prime, say p, then Aut(G) is cyclic of order

p— 1
iii) Aut(G) =
iv) If m = p" for some prime p then Aut(G) is cyclic group of order

P
Proposition 2.2 [6]

Let G be a finite group. Then G is a Q-group if and only if, for every
cyclic subgroup H of G, we have

N{H)/C{H) = Aut(H)
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From proposition n2.1 it follows that a finite group G is a Q'-group if
and -only if there exists a cyclic subgroup H if G such that

NAH)/CAH) # Aut(H).
Proposition 2.3 [6]

Let G be a Zassenhaus group of degree n + 1 and type (H,K). Also let
N be the subgroup of G fixing a letter. Then:

i) N is a Frobenius group with kernel X of order n and complement
H.

ii) K is disjoint from its conjugates and N = Ng(K). Moreover C(y)
S Kand C(y) € Nforall yin K where K = K — {e}.

iii) | NJH):H| = 2. ,

iv) |G| = hn(n+1), where h = |H| and & divides n — 1.

Proposition 2.4 [1]

Let G be a simple Zassenhaus group of degree n + 1 and type (H,K) in
which | H| is odd. Then H is cyclic and Ng(H) is a Frobenius group.

Proposition 2.5 [1]

Let G be a simple Zassenhaus group of degree n + 1 and type (H,K) in
which H is cyclic, H is inverted by an involution of G, and H has order n — 1
if n is even and order %A (n — 1) if n is odd. Then n = p” > 3 for some prime
p and G is isomorphic to Ly(n)..

3. SOME ZASSENHAUS Q'-GROUP

Theorem 3.1

Let G be a Zassenhaus group of degree n + 1, n > 4, and type (H,K).
if n — 1 is a prime, then G is a Q'-Group.

Proof

By proposition 2.3 part (iv) we have £ = | H| and & divides n — 1
which is prime, say p. As | H| # 1, H = p so that H is a cyclic subgroup of
G. Therefore Aut(H) is a cyclic group of order p — 1 {by proposition 2.1 part
(ii)}. Since n > 4, we have |Aut(H)| > 3. By proposition 2.3 part (iii) we
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have |NZH): H| = 2, which forces |NAH)| = 2p. Also H € C(H) S
N{H) = 2, |[C4H)| = por2p].

If | C{H)| = pthen | N{H):C{H)| =2.But |Aut(H)| =p-1>
3, which shows that Aut(H) is not isomorphic to NH)/CHH).

If |CH)| = 2p then N{H)/CAH) = E and again N{H)/CAH) #
Aut(H). Thus, in both the cases, G is a Q'-group.’

4. SOME SIMPLE ZASSENHAUS Q’-GROUP

Theorem 4.1

Let G be a simple Zassenhaus group of degree n + 1 and type (H,K) in
which H is cycle, H is inverted by an involution of G and H has order n — 1 if
n is even and order 4(n — 1) if n is odd. Then G is a Q'-Group.

Proof

By proposition 2.5 such Zassenhaus groups are isomorphic to L,(n),
where n = p” > 3 for some prime p. We discuss the rationality of these groups
by considering following two cases.

Casec-1: n is odd

Since n > 3 and n is odd, we have n = 5. Forn = 5, G = L)(5). By
[4] and [5] we have L(5) = A,. But by [3] A; is not a Q-group. Thus G is a (Q'-
Group forn = 5.

For n = 7 we have | K| = 7 {by proposition 2.3 part (i)}, so that K is
cyclic. Also forn =7, |H| = % (7—1) = 3 (by assumption). By proposition
2.3 part (ii) we have NK) = N and N, being Frobenius group, is semi-direct
product of H and X, so that | NH)| = |N| = |H| | K| = 21.

Now C4y) € Kforally e K = C{K) S K. But K is cyclic, therefore
K S CAK), s0 C{K) = Kand | C{K)| = 7. Thus | NXK):C{H)| = 3. But
| Aut(K)| = 6 {by proposition 2.1 part (ii)}. Therefore NAK)/CAK) # Aut(K)
and G is a Q'-group for n = 7.

Forn = 9 G # L,(9) and by [4] we have L,(9) ¢ A,. But by [3] 4, is not
a Q-group. So G is a Q'-group forn = 9.

Next we take n > 11. In this case |H| = %(n — 1) = 5, so that
| Aut(H)| > 2 {by proposition 2.1 part (iii)}. Since | H| is cyclic, therefore,
H < C4{H) & N{H). By proposition 2.3 part (iii) and by proportion 2.3 part
(iii), | NAH):H| = 2, therefore | N{H):CAH)| = 1or 2. But |Aw(H)| >
2. Hence Ny(H)/C/H) # Aut(H). So G is a Q'-group forn = 11. Thus G is a
Q'-group for odd n.
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Case-II: n is even

Since n > 3, we first consider n = 4. In this case G = L,(4) and, by
[4], L,(4) = As. But A is not a Q-group by [3]. Therefore G is a Q'-group for
n = 4. Next we consider n > 6. In this case |H| =n — 1 = 5 and Aut(H)
> 2. {by proposition 2.1}.

Since H is cyclic, therefore, H S C{H) S N H). By proposition 2.3
part (iii) | NAH):H| = 2, therefore | NAH):CAH)| = 1or 2. But | Aut(H) |
> 2. Hence N(H)/CA{H) # Aut(H). Thus G is a Q'-group. Hence (because | H |
> 3 and H is cyclic of odd order). Hence N{(H)/C/H) + Aut(H). So Gisa Q'-

group for n = 6. That is G is a Q'-group for all n.

Theorem 4.2

Let G be a simple Zassenhaus group of degree n + 1 and type (H,K) in
which |H| = k > 3 is odd. Then G is a Q'-group.

Proof

Since | H| is odd, by proposition 2.4, H is cyclic. Thus H € C(H) <
N(H) and by proportion 2.3 part (iii), | NH):H| = 2, so that | Ny(H):C«H) |
= 1or2. But |Aut(H)| > 2 (because |H| > 3 and H is cyclic of odd order).
Hence N{H)/C/H) # Aut(H). Thus G is a Q'-group.
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ABSTRACT: The number of independent non-vanishing constants required
to describe the six known physical properties, involving a polar vector, has been
determined by the character method of Bhagavantam and Hamermesh for each
one of the 58 bicoloured magnetic point groups.

1. INTRODUCTION

Group theory has been successfully applied by [1,2] and then by [3] to
enumerate the constants needed to describe various physical or magnetic
properties in crystals. More recently a physical significance was given by [4] to
the number of constants, relating to magnetic properties, appearing against the
alternating representations of the 32 single coloured crystallographic point
groups. Following this, the number of second-, third- and the fourth-order elastic
coefficients for each of the 58 bicoloured magnetic point groups has been enlisted
by [4]. In this paper, the number of constants needed to describe some of the
known physical properties is enumerated for the 58 magnetic variants of the 32
srystallographic point groups on the basis of physical significance [4]. The results
given here are new and were not considered by [5,6].

2. PHYSICAL PROPERTIES OF THE MAGNETIC POINT GROUPS

Only those physical properties with serial numbers 2, 3, 5, 8, 11 and 13
in Table 7a of [1] are considered here, and those properties which have no
known physical significance are omitted. It is known that ferromagnetism is
possible only in those crystal classes in which pyromagnetism is also possible;
there are 31 ferromagnetic classes. These 31 classes consist of 12 conventional
point groups and 19 bicoloured magnetic point groups. That is to say, a magnetic
property such as pyromagnetism is exhibited by 12 conventional crystal classes.
Whether or not the converse is true and whether the 58 bicoloured crystal classes
exhibit non-magnetic properties are investigated in this paper for the six physical
properties. The numbers obtained in respect of these properties by means of the
character method of [1] are given in Table 1 for the 58 bicoloured crystal classes.
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[1] implies that a symmetry operation and its complement will have the same
effect on physical properties such as elasticity, photoelasticity, etc. and gives the
impression that there is no distinction between a point group and its magnetic
variants so far as the physical properties are concerned: for instance, according
to [1] and [6], in the case of photoelasticity the crystal class 2mm and its variants
2mm and 2mm requires the same 12 constants, where as, in the light of this
paper, the above three classes require 12, 8 & 8 constants respectively (Table 1),
which are different in nature. '

TABLE 1. THE PHYSICAL PROPERTY NUMBERS OF THE 58
BICOLOURED CRYSTAL CLASSES

S.No. | Magnetic Physical Properties S.No. Magnetic. Physical Properties

Point Point

Growps | 2 [ 3| 5|8 |11]13 Groups | 2 [ 3] 5|8 [11]13
1 1 31 -118)-163] -1 30 3 t|-te6f-121]-
2 m 1|2{8[16|29(58( 31. 3m | -}1-]2]4])8]/ti6
3. 2 2{2(10]16]|34]|58[ 32. 73 1{-]4|4]13]16
4. 2m |2 -|10] -134] -] 33 3m -l -1-14]- 16
5. 2m |t} -)18]-1]2900-1 34 3m 1] -141-113]-
6. | 2m | -{2]-|16]- s8] 3. 3m | -|-]21]-]|8]/-
7. 2om | 1)1 ] s [8|17{29] 3. 6 1|-|4)4(11]18
8 | 2mm | - | 1[3]8])12]|29] 37. 6 -l -]2]4]10]8
9. | 222 ttlilsts{17]2] 38 om |tf-fal-{u]-
10. { mmm [ 1] -|5]-17|-] 3. 6/m -2 -]w0f-
1, |mmm|{-]|-|3]|-]12}-1] 40 6/m -l -1-141- 18
2. | mmm | - [ 1| -]8)-|2] 4. | 6m2 |-|-]1]2|5]7
13. 4 -2 4f10[14]34 42. | 6m2 [1[-13]|2]8]9
4. | '3 1|24 fj10]15(34] 43. | 6m2 | -] -]1]2]3]9
15 am | -|-|4|-|a)-| 4 | 6mm |-|-[1]2]3(7
6. | 4/m (1| -]4]-]15]-]45 | 6mm |-]-]1]2]|5]9
17.  am | - 2] -|10]-|34] 4 | 622 |1]-)3|2]8}7
18. | d4mm | - -1 1]3[|5112] 47. 622 -l -11}2(5]9
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S.No. Magnetic Physical Properties S.No. | Magnetic Physical Properties
Point Point

Groups | 2 {3 | 5|8 ]11]13 Groups | 2 {3 | 5|8 |11]13
19. 4mm - 112151 7])17] 48. 6mmm | 1} -|3)-]18]-
2. | 2m | -1t }s]sl17] 49 |6emmm]| -1 -|-]2]-1{7
21 | 42m |t )1 |3}s5]10]17] 50 |6/mmm]|-]-|1]-]|3]-
2. | 2m |- -]2|3|7])12] 51. |6/mmm{-|-|1}-]5]-
23. | 422 | 1| -[3|3|w0|12] 52 {¢/mmm]| -|-|-]2]-1]9
2. | a2 | -]1)2]s5)7]17] s3 m3 N I T IV
25. |#mmm | -] - 2] -17]|-]5}| 33m |-]-]-]1]1]4
26. |4mmm | 1| -]3]-f10f-] ss 432 | -1 -f1]1(3]4
27. |4mmm| -] - -{3]- 12. 56. m3m -b -1 -1 -111-
28 |[4mmm| - | -1 ]-]5]-157. | m3m | -|-]-{1]-1]4
29 {4mmm | -] 1|-{5]-117] 58 | m3m | - |-]1]-]|3]-

These physical properties are in general exhibited by crystals in the

magnetic state. However, in the magnetic state the number of constants required

differs

from that required in the ordinary state. This work suggests that

experimental determination of the physical constants of crystals in the magnetic
state is advisable.
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TABLES OF THE KOSTKA FOULKES POLYNOMIALS

N. Sultana
CASPAM, B-Z University, Multan.

ABSTRACT: In thispaper we obtain the transition matrices K(t) for n =
7,8,9 and x(t) for n = 8 which are useful to calculate the character tables for
Symmetric groups and general linear groups respectively.

1. INTRODUCTION

Littlewood [3] has given an elegant expression for the Hall-Littlewood
functions Q,(x;t) in terms of the raising operator R; acting on the S-function
S,(x;t). For any partition A = (A}, A,,...., A\) of n we have

Qx) = I (141 Ry + 2R} +..)

l<i<j<m

S(hs Agrnchy) (530 | (1.1)

where R; is the raising operator defined as

This expression may be used to calculate the Kostka-Foulkes-polynomials K, (t)
(see [4]). Morries in [5] has used this expression as a basis for a recursive
method to calculate the Kostka-Foulkes-polynomials.

Our intension in this paper is to give a similar recursvie formula by using
the horizontal strips as in [6] for the calculation of Kostka-Folkes-polynomial.
We shall produce Kostka Foulkes matrices for n = 7,8,9. These matrices have
been given for n < 6 in {4]. :

Moreover the transition matrix X(t) between the power sum product
function and the Hall-Littlewood symmetric function lead to the so-called Green’s
polynomial defined in [2]. In this last section we shall produce x(t) for n = 8.

We shall first briefly review some of the basic definitions. For this
purpose we closely follow Macdonald [4].
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2. BASIC DEFINITIONS

A partition A of an integer n is a sequence of positive integers \; =
Az,... = A, such that A, + A, + .... X\, = n. The number of parts m in A is
called length of the partition and is denoted by i(A). If A is a partition of n, then
we shall use the notation A +— n. The (Young) diagram of a partition A is given

by
N={HEZ:1<jsN1=<i=<W}

Let A and p be two partitions such that p C A, that is g, < A
(i = 1,2,...) then the skew diagram My is the set theoretic difference 6 = N —
p. A horizontal r-strip is a skew diagram with r-squares which has atmost one

square in each column.

Let X;, X,,.... be independent variables then a polynomial in these
independent set of variable is said to be symmetric polynomial if it is invariant
under the action of the symmetric group.

Let A =+ A be the ring of symmetric polynomials in the variables x,
k2o
Xz,... where A is the ring of homogeneous symmetric polynomials of degree k.

Then the rth power sum symmetric function is definedas p, = Y x/ and {A:A
i=1

+ n} form a Q-basis of A* where Q is the field of rational numbers.

Furthemore the Schur function e, are defined by

det(x,-‘ """’)

1<i, j<m
det(x;"")

e,(x) =

form a Z-hasis for AX. Note that in contrast to Macdonald [4], we used e, rather
than S, to denote Schur functions for a reason which will become apparent later.
Let t be an indeterminate independent of the x,, x,.... and P, (x;t) = P,

X1y Xgeeeeen ;0 and Q,(x;t) = Qu\(X,, X,,...,; t) are Hall-Littlewood P- and Q-
functions as defined in [2]. Now if b,(®) = II ¢m‘m(t) where ¢(t) =
izl
(1-t)(1—t¥....(1-t°) and my(\) is the multiplicity of i in A. Then’
Qu(x;t) = by(t) Py(x;t), and

fort = 0.
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P,(x;0) = Q\(x;0) = e,(x), the Schur function in the variables x,, x,,..... Then
we have that {P\(x;t) : A + n} form Z[t] basis for A(t). The transition matrix
which connect these Z[t]-bases is the matrix of Kostka-folkes polynomials.

K@ = (K,‘p(t)). That is

6@ = K0 P,

where K, p(t) € Z[1.

Now if Q, (x;t) = q, (x;t). Then we define another symmetric function S, (x;t)
= det (ql‘_,ﬂ.(x;t)), and we have that {Q, (x;t) : N + n} and {S, (x;t) : A +~ n}
are Q(t)-bases of A Q(t).

3. RECURSIVE METHOD TO CALCULATE THE KOSTKA
POLYNOMIALS

Butler in [1] has shown that for a = (a, a,,...., a,) € Z™ we may find
a partition such that

Sy (x;t) = £ S, (x;1)
We define the raising operator R; (i<j) acting on the S, (x;t) as:

R.S )(x;t) = S(a,,...,a,+1,...,al—l,...)(x;t)

if (a, ,,,,, .

The expressionn (1.1) may be used to calculate K,,, (t). Furthermore we shall use -
this expression as a basis for a recursive method to calculate the Kostka Foulkes
polynomials as Morris has done in [5].

Theorem

Let u is a partition of n, and p, = pu, then

Q(po,p,,...p.‘)(x;t) = E:O trp)_:jnKm(t) p);-i S(po"’w)(x;t). G.D
Rorl-r-ntrip
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Proof See [6]

Example

For convenience we will write Q, and S, for Q, (x;t) S, (X;t)
respectively.

Qo = S

‘when u = (2), for 1 = 0,1,2 we have

plw: = yiew=0Q) | B  w=O, B v =
plw: = piw: =

therefore  Qpyy = Spapy+t S+t S(S)

similarly

Q) = Sy {Ssny Sz} * {Sssy S} * Sy
t{s(“) +t(S(42) +S(43 l)) +t 2(S(53) +S(52 l)) +t 3(S @) +S(6 1?) +4S (."))} +

£ (S a5y * 1516+ S 53y * S 52+ S o1y 'S gy}

Now using properties of S-functions we have
Qi) = SpzayHt+1))S a1y Sy 1Sy HE? +1+1%) 5 55 +

(P2 +)8 530 +(1+1441) S gy +14S 2y + (P +1)S 1y +7S g

Now by using the recursive relation given by equation (3.1) we will give
the expansion of HL-Q, function in terms of S-functions, for A, + A\,
+,.....+ N, = Sand N\, +.....+ N, = 6. These relations are then use to
calculate the matrices K(t) = [K, ]. '

The relation for A, +.....+ A, < 4 have already be given in [5]. For

sake of simplicity we are not including those results here.
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Q)

Q(A,Al)

Q(A,,sz)

Q(A,,Sl’) =

Q(A,,zzl)

S0y 10 8,0

£S5 525,41 S, 05)

S(A,,u) +ts(x,s)+(t2 +f )S(x,+1,4) +ts(x,+1,31)+
(t2+t3)s(;a+z,3)+t2 S(A,+2,21)+(t3 +t4)s(x,;3,2)+t35(zo;3,1’)+
(t4+t’)S(ko+4‘l)+;6S(A’+5)

Soes2) S, * 0S5 S, m*

(15 IS P18,

( +t2)S( - ,21)+(t3 +t4 *‘S)S(x»s 2) +t4S(A,+s,12)+
(t5+t6)S(A’,'4,1)+t7S(A’+5).
S(x,,slz)+‘S(x,,32)+(‘+‘2)S(x,,41)+tss(z,+s)+
tS(A,u,zl’)*tz S(x,q,z’)*(‘*2‘2“’3)5(;,:,1,31)*

(t? +t3+‘4)s(z,+1,4) +t2S(A’ ) +2+2 +t")S(,‘a“2 a1t
(263414 +‘5)S(x,+2,3) +t? +‘4+‘5)S(z,+3,12) H2t4+15 +t6)S(,La+3 2*
(t5+t6+t7)S(Aa +4,l)+t8S(l,*5)'

S ,,221)“’5(1,,312)*(‘*’2)5(1 ,,32)“(’2*‘3)5(1,,41)*

145(,\ ”5)'*(‘*‘2)5(,\;1,212)*(‘*’2 £ )S(x,+1,2’)+

(2624260468, | 3y HE+EE)S ), 0450 000
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(t2.+2t3+2t4+55)S(,1°+2,21)+(t3+t4+t5+td)s(zo+2.3)+
(1445 +¢6+55)s(1°+3’1,)+(t4+2z5 +t°+t7)5(1.+3 2)*
(t“+t7+t8)S(An+4.1)+t95(lo+5).
Qo) = S(z,.zl’)’“(t*tz_ )‘5'(1,,2’1)’“("’“‘2 +f )S(JL.,,:M’)+
(P+242%)S,, ”32).+(t3+t4+t5)8(% vty S0 114"
(t+262+26+1%) S, 1217) {24263 +14 +t’)S(,L.+1 Y
( +2t3+3t‘ 20495, . a8, gt
(t2+t3+t4+55)S(1°+2’13)+(2t3 +3¢4+364 200405 0y *
(44265 +265+17+1%) S 0,02 '3)+(t4 +£3+2¢5+¢7 +t8)S(A°+3.1z) +
(65 +2154267 +£8+19) S(A,+3.2) Y +t§ +t9+t1°)S(%+4'1)+t“ S(z,;sy
Q15 = S(A,,l’)’“(‘*‘z*t’*t‘)S(;,ms)*(tz*‘S*t‘+t5+t6)5(;,g=1)+
(PP +14+26° +t‘+t7)S(,Lo_3lz)+(t‘+t’+t°+t7+t‘)s(lo_32)'+
((4tT48348) 5, oy 1195 gy A NS gy
(124263 +3¢4+31% +3£5+2¢7 +18) S(M+1 any*
(34244265 +26542¢7 448 +t"“)S(,L'+1 2)*
(t‘+215+3t°+3t7+3t‘+2t9+t‘°)S(h+,_,1)+

(7 +18 +1%+110 +t“)5'0 gy



Tables of the Kostka Foulkes Polynomials

133

(B +t2+25+215+2¢" +t8+t9)S(l.‘2‘ls)+
(t4+2t5+3t6+4t7+4t8+3t9+t“)S(lo+2m)+
(¢5+27+2684267 424104411 +t12)S(,w+2.3)+
(t8+17+218424° 42410411 +t12)S(Ao+3’12) +
(67 +£8420942110.42¢1 4112 +t13)s().,t3.2)

10 11,12 413 414 15
10+t 42244t )S(AOMJ)ﬂ Sas)

A, o+, = 6

Q6

Q(A,.sl)

Q(A°,42)

8,68, 1.5 *" S(A,+z,4)+tas(zo+3,3)+

t4s(x,+4,2)+tss(x,+s,1)+tﬁs(x,+ﬁ)

S(;.,.Sl) +tS(A,,6) *ts(;.,n,u) +e+t? )S(A,+l;5) *

£ Séz,a,sl)+(t2+t3)s(z,+2.4)+tas(z,+3,21)+
(42 4)S(;.,+3,3) + 4S(A, w1)*
T ,2)+(t5 +t6)S(ln+5’l)+t7S(lo+6)

S(*.- ) +tS(A° 1) +t2S(A,.6)+tS(A,+1,32)+

(e+1* )S(z,u,u)*(tz +t3)s(zo+1,5)*tzs(z,+2,2’)+

s +t3)s(z,+2,31)+(t2 +t3+t4)s(;.,+2,4)+
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Q(;.,.«u’)

)

o

Q(L,,SZI)

(P+24+8)S

(t3+t4)S(x,+3,z1)+(t3+t4+t5)s(x,+3,3)+tss(z,+4.1’)+
(t4+f5+tﬁ)s(z,+4,z) *(’6+t7)s(z,+s,1)+tss(z,+s)-

S0,41%) 850, 02) e+t Z)S(A »1)*F 35().,.6) *

+tS(;.‘,+1,31’) + 2S(;.,+1,3z) He+28+t 3)S(;.‘,n,‘u) *

(e *’4)5(1,4,5)*’2 S(;.,+2,21’) +t-3s(h+2'22)

(27 +t4)S(;.,+3,21)"(2t3 ot )S(;.,+z,4) +t35(;.,+3,1’)+
(3 ,21)+(2t‘+t5 +£9) S(A,,+3. 3)+
(K428, RO,

(e5+27+¢ s)s(z° 451 )+t9S(A,+-5) .

S(;.,,s’)"ts(x,,u)*tz S(A°,51)+t3S(A.,6)+

(e+22 )S(;.,n,az)*(tz +t3)S(A°+1_41)+(t3+t4)S(,'°+1’5)+
t33(x,+2,2’)+(t2 488, oy E 46050, 04
(t4+‘5)s(z,+3.21)+(‘3 *‘4’“‘5*‘6)5(1,@ ,3)*‘65(1, wty?*
R R N

S a1 +tS(A,,3’) +t +t2)s(x,,42) e +t3)S(x,,51) +

ES0,0)* 50,9 S, 12"
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Q(x,,n’)

(t+t2)s(1,+1,31’) +e+? +t3)S(;.,+1,32)

(2124264898, 1 oy HE+14608, 15 O+ oo
(248, ap)He et )80, 2yt

(B+2et+° +t6)S(;. ;+2,4) +t4S(A,+5,13) +

(B+t'+6 +t“)S(,'»+3 21y +(264+283 +15 +t7)S(l.,+3-3)+

(5 +¢5 +t7)S(A, 1) £ +2t6+t7+t8)S(,'a gt

(F7+8 +t9)S(A,+5,1) i IOS(;.,+6)

31 +e+t? )S(;.,,zzl)”ss(z,,s’) +e+t? “‘t3)S(;.,,41’)+

(2423 +t4)S(A.,, ) +r +t4+t5)S(A 1) +t6S(A.,,6)+
tS(A°+1,213)+(t2 +t3)S(;.,+1,2’1)

(t+2t2 28 *‘4)5(1,4,31’) +(t2 +263+21* +t5)S(A°+1 )t
(£2+263+3¢4+215 +15)S (3, +141) +{t4+£5 +16 +t7)S(A‘,~,1 5
t2S(,',+2,14)(t2 +23+2¢* +t5)S(A°+2.212) +

(e*+26+265+¢7 )8 g4t +t‘)S(,"+3,la) +

(264 +385+3¢5+2¢7 +t‘*)S(,L»+3 m)+(t5+3t6 +2¢7 +£8 +t9)S(A,+3.3) +
(E+5+2¢7+48 )84, o1 He5+2¢7+2£8 419+ ‘°)S(A° gyt

(B +12+£10 +tu)s(z,+s,1) +tns(;.,+6)-
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Qo) = Sy Oy S 5 Sy
(4955 405 #1555
(t+t2’;t3)s(z,+1311)+(t2+t3+t4)s(x,+1,311)+
(t2+2t3+2t4+t5)S(Ap+l.32)+(t3+2t4+2t5+t6)S(A’+l,4l)+
(41548718, 1y 5y + )85 20y

(P22 818, 23O 2005 gy

1,422
(t4+t5+2t6+t7+t8)S(A’+2,4)+t6S(A’+3'19)+
(4267 +26 +2t7+t3)S(l’+_3 m)+(t5 +206+2¢7+18 +t9)S(ln+3,3) +
(t7+t8+t9)S(A°+4,lz)+(t6+t7+2t8+t9+t1°)S(lp_+4’2)+
(0 +¢1° +t“)s(x,+5.1) +t'23(;,+s)-

Qu, 1) = S(A,,.:’l’)+ts(z,,2’)*ts(;.,,31’)+(t+2t2 +ts)s(u,,szl)’“
(t2+t4)S(lo,3z)+(t2+t3+t4)S(Av4lz)+(2t3+t4+t5)S(,',‘42)+
(415419831178, g MO
(02624264808, 1 1)+ QU 430+2048)8, 13y +
(43634314426 419)8, y 3y (643644364 26%427)S 10+
(t’+t‘+2t"+t8)s(lp+l’5)+t3s(lom4)+

(t2+2t3 +3r4+2¢° -&ts)s(‘1 2217 +(2t3 +214+36° '+-t6+t7)S(A +2'22)+



Tables of the Kostka Foulkes Polynomials 137

Q(z,,zl‘)

(t’ +4 +415 +415+2¢7 +18 +t9)S(,.’+2’31)+(2t5 +2£6+2¢7 +¢8 +t9)s(;.,+2,4)+
(¢4 +15+¢5 +t7)s(1°+3,l,) HeA+385 +415+3¢7 +2¢7+2¢8 +t9)s(,t“+3 any*
(ts +215+3¢7 4218449 +t‘°)5(z,+3,3) +(t6 +7 428 +t9+tl°) S(;.,+4.1’) .
(2t +28+219+£10441 l)S(;,»»,.;,z) +(t.9 +¢10+¢114¢ lz)s(z,»,s,l) *

t lss(xow)

S yzﬂ)+(t+t2+t3)S(l 0.2112)+(t2 +f")s(;, 2

(t+t2+1? +t‘)S(ly313) He2+263 4264428 +t6)S(lw321)+
(4824618, gy H{E 42426 +541)S, o+
(t4+t5+2t6+t7+t8)S(lw42)+(t6+t7+ts+t9)S(l sy

50,6 +5(5, .19 He+282 428 +2t4+t5)S(,.n+l ar)*
(£2+363+3¢%+3¢° +2t‘5+t").5‘(,.”,,l 21y*

(2 +2.t3 +4t4 +413 +4¢5+2¢7 +t8)S( 3,138

(P+363+3¢4+3%+2¢5 +t7)S(,.n+l 2y*

(+2e4+4r° +4t6+3t7+2t8+t9)S(ln+1’32)+

(4207 +3¢5+417 438 +2t9+t‘°)s(;,+1,41)+

2,43 6
(}.,+l,5)+(t + +t4+t5+t )s(1,+2,1‘)+

(2t3+3t‘+5t’+4t“+4t7+2t“+t9)s(JL a2yt
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(214 +283+415+3¢7 + 38 +17+¢ w)S(A‘,f2 2)*
(t4+36 +5¢5+617+5¢%+415+2¢10+¢! ‘)_S(wa
(t6+27+3¢8+2£%+2¢10 4211 +t12)S(A°+2’4)+
(t4+e° +2t6+2t7+2t8+t9+t1°)S(A‘+3,la)+
(5 +365+4f" +3tf+3t9+3t‘° +2¢11 78, 3 a1y *
(267 +2£8+31%+3¢1042411 +t12+t‘3)s(%+3 3*
(t7+t8+2t9+2t1°+2t”+t12+t13)S e
(48436102261 1426 2421346198, o0+
(tu+,t12+t13+t14+t15)3(),°+5,1)+tIGS(A°+6)'

Q1) = Spet eI,
(té+t3+2t4+t5+2t6+t7+ts)S(l )
(423 +18+¢7 +t9)S(l ) HeP+244207 42054247 448 *‘9)5(;, a0yt
(¢4+265+2£6+3¢7+3¢% +2t8+.2t9 +2¢10+¢1 ‘)S(lo syt
(tS+e8 +t9+tm+t12)1().5'().’.3,)4+(.t6 +17 428420242410 4¢11 +t12)S(A‘+ a)*
(7 +£8+2¢5 4110 +2tll;l~t12 +t”)5(;,+4z)+
(£10+£1 1 4p124g13 +t“)S(A°+51) +tlsS(A,.6)

g+ 4341448 +t°)S(l gt
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(£ +263+3¢% +485 +415+4¢7 + 318 +2t9+t1°)S(Ao+l ar)*

(£ +2¢4 4367 +4¢5 4517 +5¢8+41°+3¢1042¢11 +t‘2)S(,ta+l 2yt
(44265 +41%4517 466°+61+5¢ 10 +ar 426120 D)8, gy
(£ +265+3¢7 +4t8+5t9+5t1°+4t“+3t12+2t13+t14)S(lo+l‘32)+
(7 +268+3¢°+4£ 104+ 4¢1! +4t‘2+3t‘3+2t“+t‘5)S(Ao+,‘41)'+
(t“+t12+t13+t“+t15+t16)S(lD+L5)+
(B+et+20° +2t6+3t7+2t8+2t9+tl°+tll)S(Ao+2’l4)+

(t*+2¢° +4t6+5t7+7t8+7t9+7t1°+5t”+4t12+2t13+t14)S(10+2 a)*
(ts+t6+3t7+3t8+5t9+4tl°+5t”+312+3t13+t“+t15)S(10+2 2)*
(£6+267 +4£3 450+ 7104 Te 4 71124 5113441442415 +t16)S(;,,+2,31) .
(£9+£1042¢1 +211243413,0414,0,15 16 +t17)S(%+2’4) .
(t6+t7+2t8+3t9+3tl°+3t”+3t12+3t13+t“+t15)S(lo+3’la>+

(7 +2¢8+3¢%+5¢10+6¢ 11 +6¢12 +6213 +5¢14 43413 +2t16+t17)S(10+3 a1y*
(tl‘+t‘2+2t13+2t“+3t‘5+2t16+2t17+t'8+t19)S(lD+4,2)+

(t15+t‘6+t17+t‘8+t19+t2°)S(l s 1)*‘215(1,.6)-

The above relations give us the transition matrices K(t) for n = 7,8,9.
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4. THE TRANSITION MATRIX X(t)

The transition matrix which connecting P,(x;t) or Q,(x;t) with power-sum
bases

{pp(x) = pf’p;z....p:",p = (lp‘....np')}

is given by p(x) = X X:(t) P,(x:0)
A
and Q0 = Z,) X, p,(x)
p

where z,@® = IM{1-")"i"p,1 and Xp*@®) € Z11.

izl

The X:(t) are the Green polynomials which one of fundamental interst

in the complex character theory of general linear group G-L(n,q). In that case
t = q'. We have the polynomials

Q@) = " X)g™).

Green [2] has calculated a complete set of polynomials Q:(q) forn = 2,34,5

and table for n = 6,7 are in [S5]. We note the following errors in the table for
n=7.

4

Q1@ = (1+@)(1+g+g* +q*)(1+g+g*+g%+q" -5¢° +3¢%)
4

Qi1 @ = (1-g)(1+q+q*-4")
4

Qip(@ = (1-9)(1+¢*-24°-q"+q")

321 : 2,9,3, 4.4
Qs @ = (1-9)(1+g +3¢*+29° +4¢* -¢F)

0@ = A-9)(1-g*+g’+q*-4)
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we have also constructed the matrix X(t) forn = '8,9. We include the table only

forn = 8.
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ABSTRACT: Linear, tenth-order boundary-value problems
(special case) are solved, using polynomial splines of degree ten.
The spline function values at the midknots of the interpolation
interval, and the corresponding values of the even-order derivatives
are related through consistency relations. The algorithm developed
approximates the solutions, and their higher-order derivatives, of
differential equations.

Two numerical illustrations are given to show the practical useful-
ness of the algorithm developed. It is observed that this algorithm

is second-order convergent.

KEYWORDS: Tenth-order,Two-point boundary-value prob-

lems; finite-difference methods; Ten-degree splines.

1 INTRODUCTION

When an infinite horizontal layer of fluid is heated from below
and is subject to the action of rotation, instability sets in. When
this instability is as ordinary convection the ordinary differential
equation is sixth order; when the instability sets in as overstability,
it is modelled by an eighth-order ordinary differential equation.
Suppose, now, that a uniform magnetic field is also applied
across the fluid in the same direction as gravity. When instability
sets in now as ordinary convection, it is modelled by a tenth-order



154 Shahid S. Siddiqi

boundary-value problem; when instability sets in as overstability,
it is modelléd by a twelfth-order boundary-value problem (for de-
tails, see Chandrasekhar [4]). Finite difference methods of solution
for such problems were developed by Boutayeb and Twizell [1,2,3],
Djidjeli et al. [5], Twizell [11],Twizell and Boutayeb [12], and Twiz-
ell et al. [13]. Siddiqi and Twizell developed spline solutions for
sixth, eighth, tenth and twelfth order problems in [7,8,9,10], re-
spectively. :

Usmani {14], solved fourth-order boundary-value problem using
quartic splines. : v

In the present paper tenth-order boundary-value problems are
solved using tenth-degree splines, introducing some new consis-
tency relations.
These problems have the form

yt ’w(l)y = #(z), -~w<a<z<b<oo,

y(a) = Ao , 3 (a) = A y@)= Ay Y0 = de L
ytie (a) As » y(b) = Bo , y)(b) = By, y()(b) = B, '
O0b) = By . yb) = B |

where y = y(z), and ¢(z) and ¥(z) are continuous functions defined
in the interval z € [a, b]. A; and B;, i = 0,2,4,6,8, are finite real
constants.

2 THE TENTH-DEGREE SPLINES

2.1 Consistency Relations
The interval [a, b] is divided into n > 18 equal parts, thus introduc-
ing n + 1 grid points z; so that

z; = a+h, 1=0,1,2,...,n
b—-a

n

o = @, z, = b and h =

The exact solution of the problem (1.1) at z = z; is y(z,). Let
s; be the approximation to y at z; determined by the tenth-degree
spline defined on the sub-interval [z;, z,4;] by

Ql(.T) = a,‘(ili — Ii)lo -+ bl(:l: - :Iti)g + Ci(IIJ — 1121')8 -+ di(z — :L“z')7
+oei(r —2:)° + fi(z — 2:)° + gi(z — 2;)*



Defining New Consistency Relations For BVPs 155

+ ui(z — 2)° + v(z — 25)* + wilz — 20) + 2,
i=0,1,....n—1. (2.1)

The tenth-degree spline s(z) € C%[a, b] can, thus, be defined as
s(z) = Qi(z), z€lz;, zip1), 1=0,1,...,n—1. (2.2)

The coefficients of (2.1) are determined, (see [9]), as

S L (@
%= 3628800 i+1/2 (2.3)
L @)
by = —— 7 .
362880 (2.4)
1 (viir) 1 (ix) 1 (z)
Co= g Ge) 2l .
¢ 10320°+1/2 ~ 306405~ 322560 Si1/z (2:5)
L (vi)
d: = — g
1 304051 ’ (2.6)
R (uz) 1 (uzz) 1 (uzzz) 3 (iz)
¢ 720 Sy T e sree” St Tiasg 17280 s
1 4 _(z)
* S5a06" i1z (2.7)
I )
fi = ._12_031' 5 ( 2 8 )
N S Iy 1 2 (vi) 3 ,(vid) 4 y(viid)
= gt T M T gt s T 5 576 ST 9216h 4172
15 (iz) 61 6 ( )
3760h ST 1705920 ° +1/2 (2.9)
1 1t
no= s (2.10)
R S Loow 15 () 3(0) L O pa (vi
v = 567-4_1/2 - Z s, — E 8i+1/2 + Zgh + ﬁh45i+1)/2
1 . (vii) 61 ;
— B vt h6 (vitz) 7 (iz)
480" % 92160 " “t1/2t 80640h %
4128768 = Ci+1/2 (2.11)
w, = 8, (2.12)
and
1 1 i 5 ,
z, = S _ 2 3. Y 14 (iv)
5&1/2 2h Sh z+1/2 + h s + 384h Sit1/2
R S 61 17 y
_ —hn;(-L) _ hSs (vi) 7 (vi1)
240" %" " Z6080" 12T Jo300" %
+ 277 8 (viit) 31 hgs(zr)

2064384 “i+1/2 T 725760 i
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50521 .10 (o)
_ 9008 o - (2.13)
3715891200 i1/2

The odd-order derivatives of the splines are calcutated, (see

[9]), as

iz vt viiL T (1:)
hsl( = (31(-+1/)2 - 51(‘_1/)2) - %h2(51('+)1/2 i 1/2) ’ (2.14)
vii) ., (vi vi (viti) (viii)
hsg ) = (3£+1)/2 5(1( )1)/2) _(2La;h2(3141/2 - Si-l/z) (2.15)
+ g (s i+1/2 S¢+1/2) '
v v (tv) (v1) (v1)
h“"z(' )= (31(+1)/2 Si— 1/2) - 2(%1_}%_2(31‘“/2 8 1{2)) @ (2.16)
+ 57600 (8 1111”/2 Siiyin/)z) b G +1/2 3{—1/2) ,
i " (w (w)
hs; = (31+1/2 z( 1/2) 1’;2( ir1/2 7 Si- 1/%) o
+ sah(s ::1/2 ")) — (sl — s (27)
(z)
+ 10321920h8(51+1/2 81’—1/2)
and
hs; = (Siy12 — Sz 1/2) sih? (31+1/2 5 1/2)
(w) (Ui) (vr)
+ ”60h4( z+1/2 Si—1/2() )967680h6( i+1/2 Si—l/z) "
(vi21) i1t z
+ 154é§gsooh8( Sit1/2 Si—1/2) - 74317824Oh10(81+1/2 Si—1/2) :
(2.18)
The even-order derivatives of the splines are defined as, see [9]
h®s fml”/)z = (8i—9/2 — 88i_7/2 + 28s;_5/2 — 568,_3/2 + 708;_1 /2 — 565,412
;. _ 8. L 1 10 ( (=)
+ Wsivspy = Bsisg + Siarja) — grmaaonah ( i-9/2
+ 590405\, + 9234220807 ) + 19671030457,
(z) (=) (=)
+ 82662327057, + 1967103045 , + 9234220507,
() (=)
+ 59040507, , + 57, ,) (2.19)
1=295, 6,...... ,m—4

(sic11/2 = 28i—0/2 — 198;_7/2 + 104s; 5/ — 238s;_3/5 + 3085,y 5
— 238si11/ + 10484379 — 1985452 — 28472 + Siye)2)
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_ 1 8 (vzzz) (viiz) (mu)
e (s + 59038 o OO,
+ 1783009045 "3, +9069232825(") + 15270924685"},

(viur) viit)

(wiii) (
+ 9069232825}, + 1783009045}, + 9116141515,

+ 59038507070, + U5 ) (2.20)

vi 1
s = 1 (—si—oy2 + 128;_7/2 — 528;_5/3 + 1168;_3/5

1~1/2
— ’15081'_1/2 + 1165i+1/2 - 5231‘_{_3/2 + 1251'_{_5/2 - 3i+7/2)

L (s, + 59036517, + 899805257,

* 1486356800 \"i-o/2 772

+ 15930109257 , + 46839339857 , + 15930109257 ,

+ 899805257 , + 5903657 /o K +)7/2) : (2.21)
i=5 6,......n—4,

(Si—11/2 + 7OS.L'_9/2 — 21131'__7/2 — 18431'__5/2 + 149051'_3/2
- 233281’_1/2 + 14903i+1/2 - 18481'_4_3/2 - 2118“.5/2 + 7031'_{_7/2

+ sit9/2)
_ 1 16 (v1) (wr) (v1)
= gareane™ (S0 + 590385, +on61415)

(vi) (vi) (vi)
+ 17830000457, + 9069232825, +15270924685,")

(vi) (vt) (vi)
+ 9069232825}, +1783009045%)  + 91161415

(i) (o)
+ 59038517, +550,) (2.22)
1
h*s f 1)/2 = 240 ((S2 9/2 — 9681'_7/2 + 67681'_5/2 — 19528{_3/2
+ 273031'_1/2 — 19523“.1/2 + 676Si+3/2 g 96Si+5/2
1
'y L B I £ €| (2)
+Tsu4712) ~ o iR TasaR00G" (7622 + 13200405,

() (z) 77 (z
+ 6227810057}, + 101705056857) , + 26770720705 ,
(z) (z)
+ 10170505683 i+1/2 + 622781005i+3/2

(=) (= o
+ 41324087, + 755 ) (2.23)
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(‘Si—ll/Z + 7188{_9/2 + 76618{_7/2 - 1429651:_5/2 — 2327851'_3/2

+ 5838851'_1/2 - 232785i+1/2 — 1429651+3/2 + 76615i+5/2

+ 71831'+7/2 + Si+9/2)

1 iv
= oot (s, + 590385(°) 4 91161415

80640
v)

+ 1783009045}, +9069232825("*) , + 15270024685"")
2) )

(2v) (d (v
+ 90()’923282314_1/2 + 178300904s;" 3j2 T 9116141s; i+5/2

+ 500385, +509,) (2.24)

i . 1
hls;_1yy = 0710 (—9si—9/2 + 1285;_7/5 — 1008s;_35 /5 + 8064s,_ 3/2
— 1435081_1/2 + 806481‘4_1/2 _ 10083i+3/2 + 128Si+5/2

1
_gs, 10 (g4(@) (=)
*4712) ¥ {§735591648000" (95252 + 53130157,

(=) s s
+ 7980204857, + 127145720857, + 324184478257

(z) ()
+ 12714572085, , + 798020483 ,
(z) (z) |
+ 53130457, + 95| +7/2) , (2.25)

1=25, 6,...... ,—4

(81'_11/2 + 655051‘_9/2 + 31850981'__7/2 + 18286165{_5/2 + 3605081'_3/2
~ 43794525,y /3 + 36050si41/2 + 18286165;,3/5 + 318509s;5 2
+ 65505, 17/5 + Si49/2)
1 2 1" = " "
= sh (7117 + 590385, + 9116141s,_,,
+ 17830090455, + 9069232825, + 15270924685, _, /2
+ 9069232825, 1, + 17830090457, 5, + 91161415, /2

+ 590385775 + 5140 (2.26)

and

($i-11/2— 10s;-9/2 + 458,73 — 1205;_55 + 2105;_3/,
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— 2525;_1 9 + 210,412 — 120833375 + 455:45/3

— 1084772 + Sizoy2)

L (@ () ()
= 3‘10891200/510 ( ()12 + 5003857y, + 911614157

+ 1783009045\"), , + 90692328257, + 152709246857 ,

(=)

+ 90692328257 , + 17830090457, , + 9116141517,

+ 59038507, + 5 ) (2. 27)

Following Siddiqi and Twizell [9], the new consistency relations
are defined, to determine the even-order derivatives of the splines.
Corresponding to equation (2.21), the following new consis-

tency relation is defined as

iy fm])/z — 836 (577s;_9/2 — 3780s;_7/2 + 11140s,_5/5 — 19772s;_3.,
+ 236703{_1/2 — 1977251'_'_1/2 + 1114031'4_3/2 e 37805i+5/2
|
5778, 1~ e 8 77s (i) 4 (mu)
+ 5TT8u4772) = ggmemh (5 o + 340623005,
+ 5104996420s";), + 799353887083("1,

+ 194937414390s.""), + 7993538870851,

- (vidt) ; . (vitr) (viti
+ 51049964205 257, + 340623005757, + 5775025 /2> (2.28)

Corresponding to equation (2.23), the following new consistency
relations are defined as

4 1’17) . l
Rl = 1008 (—33535i_9/2 + 201365;_7/5 — 13628s;_5/7 — 730645;_3/,
+ 1398185{_1/2 - 730648i+1/2 — 136288{4,3/2 + 2013681'4.5/2

1
— 3353s; L8 (‘uzu)
3538:47/2) + Te3R010959900 (3353 i-9/2

+ 1979409845("") + 2077350090851, + 4783926706645,

~7/2
(wvit) (vizr)
+ 10843293699425 ~1/2 + 4783926706645, i41/2

(viii) (viid) vine o .
+ 297735009085 30, + 1979409845(7), + 335350770, ) (2. 29 )
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and

4 () _ 1 _ . _ . N
hs Sim1/ 35500056 ( 118501s;_9/2 755047231_7/2 + 705819085s;_5 /2
— 2124773685;_3/5 + 299128866s;_1/, — 2124773685, 1/2
+ 70581908s;43/9 — 755047231-%/2 — 1185013”7/2)

|
+ rS (118501(") , + 6995317440s")

221686353100800 o/2 7 T
+ 1036318791580 ") , + 14726918959744s(") ,

i) (1)
+ 13749899372670s.") , + 14726918959744s,}]

(vi) (vi) (i)
+ 1036318791580s;3 , + 69953174405} 7 ), + 1185015 +7/2)

(2.30)

Corresponding to equation (2.25), the following new consistency
relations are defined as
g 1
hzﬁ[—l/? = m (9795731‘_9/2 - 56964031'_7/2 - 146,42031'_5/2
+ 234065685;_3/7 — 45576930s;_y /5 + 234065685, /2
— 146420s;43/3 — 5696405, 5/, + 97957s,1.7/2)
— h8 (W”) 7 (‘Ul“)
ssaceraasiiieoagt (97957 ), + 57828116405("%),
+ 8709267556605(1”:/)2 + 14115998901448s(""}),

(viir) vitt
+ 31490485944990s." "), + 14115998901448s! I /)2

(vitd) (viii)

(widz)
+ 8709267556605 (%), + 5782811640870, + 9795750757,
(2.31)

1"

h 5’{_1/2 = M (453297731'_9/2 + 28891068031_7/2
— 27863039725, 5/, + 2001865630s,_3/2 — 35051592090s;_, /5
+ 20018656305, /2 — 2786303972543/ + 288910680s;15/2

; 1
4532977s; - 6 (vi)
¥ Sit1/2) 111729921962803200h (45329773 -9/2

(vi)
+2675804984165,"7 , + 39646871472652s ") |

+ 55868781210241651")  + 7080004303153983(“’1) P
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| 5586878121024165") | 4 306468714726525!;)

i+1/2
+ 2675804984165 , + 45329775(,) /2> (2.32)
and
7 1 .
2. — 4 4 2 . .
hs,_ypy = 3761910379530 (5505416771s;_g/o + 3817691026680s;_7/2

— 518998724423808;_5/5 + 9519140942405845;_3/,
— 1807674836483310s;_1 /9 + 9519140942405845,11 /2
— 51899872442380s,,.3/, + 3817691026680s, 5/,

1
62799360453004492800

B4 (55054167715@3 2 324893 5971114005 ,

+ 55054167718;47/2) —

+ 42209318785024340s\"") | + 741043040230402965.") ,
(i)

. : [(2v)
- 296724525878494()770@_1/2 + 7410430402304029651+1/2
(i)

+ 42209318785024340s ) , + 324893597111400s(;) ,

+ 5505416771507 ,) (2.33)

Sine the system of.equations (2.27) provides n — 10 equations in n
unknowns (s,_1/2, t = 1, 2, 3, /ldots , n), ten more equations are
needed. These are defined in the next susection in the form of end

conditions, see [9].

2.2 End Conditions

( 60—46291/1+33093/1— 16655/2+5557/2— 1159/2+511/2)
7T v H&3 14597 1094863 iy
_ _h,z. 299 14 (iv) AN T (vi) 8 (wiit)
5% g % Taag™ S0 T Ssgame” 0
} 10

(6201691863( 2) 1+ 7986223785%%) 4 169184763507

" 3715891200 /2 3/2 5/2
+ 905710357} + 5903757, + 57, ) (2.34)

(= 16850 + 3305y /3 — 297535 + 220555 — 121573 + 45842
— W0spyy + 5’13/2)



162

Shahid S. Siddiqi

and

27 1479 538419 o (viis
2 (v) 229 wi) | D900 g8 (vidd)
= 2178 + h t 5760h 0 1290240 © °0

10
72862237857, + 151797632757, + 90686424457

+ 3715891200 (
(=) Ot sian) s (2.35)

+ 178300903507 + 91161417} + 5903857, + 5.3,

(7280 - 16581/2 + 22033/2 - 25335/2 + 21037/2 et 12039/2

+ 45511/2 — 1081372 + 515/2)
o M 4 (w) _ 419 6 (vi) _ 16253 h8 (mzz)
S50 + 48h 152" %0~ 258048

h10

e
3715891200

+ 152709246757, + 90692328257} + 178300904507) + 9116141507,

O ~
+ 5003855, + 517, ) (2.36)

() (2)
16918476357, + 906864244537}

(1850 + 55513 — 12153 + 210853 — 252875 + 21095
— 120511/ + 45813/ — 108152 + $17/2)

1, 719 5 6551
L e () js (vi) L8 (viir)
192" %0 T 33040" %0 T 5160960

905710357 + 178300903s.")

1 2 "
Zh 30 -
10

" 3715891200 (
(=) (=) (= (=)
+ 9069232825, + 152709246857, + 906923282s7) + 17830090457,

(=) ) 4 @)
+ 91614157, + 59038s(2), + 517, ) (2.37)

(250 — 11815 + 458375 — 120855 + 21087/, — 252595
+ 210311/2 - 120813/2 + 45315/2 - 10317/2 + 519/2)
1 o 1 1 4 () 1 hSS(m') 1 p8 (vm)

— S
47707 792" %0 T 53040 %0 5160960

10
+ 775891300 (59037s§7; +91161415(7) + 178300904%7;,

+ 90692328257) + 152709246857) + 90692328257,

+ 178300904s(3), + 911614157, + 5903ss§$}2 +s),)
(2.38)
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The remaining last five end conditions can be determined similarly.

3 THE SPLINE SOLUTION

For the spline solution, the following system of equations can be

written, see [9]

(i) MY=C+T,
(i) MS=C, (3.1)
(ii) ME =T . _
where Y = (yi_l/z) , T=(t), E= (éi—1/2) , t=1,2...,n,
M = Mg+ ——— AIOBF (3.2)°
7 3715891200 ’ | '
S = (Si—1/2) , 1= 1, 2, ...... , (33)
and
C = (&), i=1,2,...... .1 (3.4)

Also, My and B are eleven-band symmetric matrices, with
My = [M; My, (3.5)

where

[ —462 330 —165 55 —11 1
330 —297 220 —121 - 45 —10
—-165 220 —253 210 -—120 45
55 —121° 210 —-252 210 —-120
-11 45 —120 210 -252 210
1 =10 45 —120 210 —252

M, =

1 -10 45 —-120 210
1 -10 45 —-120

1 10 45
1 -10
1
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and
[ 0 0 0 0 0 0]
1
-10 1
45 —10 1
—-120 45 =10 1
210 -—120 45 ~10 1
M, =
—252 210 -120 45 =10 1
210 —252 210 -120 45 =11
—-120 210 -252 210 -121 55
45 —-120 210 -253 220 —-165
-10 45 =121 220 -297 330
i 1 =11 55 —165 330 —462_
while
_B = [Bl B, B3] ’ ) (3-6)
where

( 620169186 728622378 169184763 9057103
728622378 1517976327 = 906864244 178300903
169184763 906864244 1527092467 906923282
9057103 178300903 906923282 1527092468
59037 9116141 178300904 906923282

1 59038 9116141 178300904

59038 9116141

—_

1 59038

1

0 0 0 0
0 0 0 0
0 0 0 0

Jd
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”2 =

and

59037
9116141
178300904
906923282
1527092468
906923282

178300904
9116141

* 59038

1

0

0

0
0
0
1

59038

9116141

178300904
906923282
1527092468
906923282
178300903
9057103

1

59038
9116141
178300904
906923282
1527092468

906923282
178300904
9116141
59038

1

0

o

59038

9116141
178300904
906923282

1527092467
906864244
169184763

The matrix F is defined as

0
1
59038
9116141
178300904
906923282

1527092468
906923282
178300904

9116141
59038
1

(el

59038
9116141
178300903

0

0

1

59038
9116141
178300904

906923282
1527092468
906923282
178300904
9116141
59037

o

1
59037
9057103

906864244 169184763
1517976327 728622378

728622378 620169186 |

P‘ = d]a,g (¢i—1/2)7 ‘l: 1,2,...,n y
and the vector C = (¢;) ,2=1,2,... ,n can be defined as
77 583 14597 1094863
o= —25240 + —h2A, — 2 p4 7 p6 A, —
“ 2Ao+ G h Ay = g At s h i Ae — it

(3.7)

h8 Ag
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(s

and

&

.+

10
3715391200 (620169186t /2 + 7286223783/

+ 169184763155 + 9057103¢7 /3 + 5903719/ + $11/2) »

(3.8)
27 1479 538419
iy ,2 . iy X 6 ———-—hsA
16849 — 210"y + 1oh* Ag + =5 h®As — oo nho Ag
10

R , .
+ 371539100 (12862237891 /2 + 151797632743,
+ 90686424455/, + 17830090347/, + 911614 13hg)5

+ 590384112 + ¢13/2) ; (3.9)
419 o 16253 o

2 4 h
2o+ 5h74; hA" 1152 “° " 258048~ “®

10
+§f§239—1366 (169184763, /; + 9068642444)3/

+ 1527092467155 + 90692328297 /3 + 17830090445,
+ 91161411/11,/2 + 59038%13/2 + ¥15/2) (3.10)
7o, _ 19 6551 4
192" 7* 7 23040 7~ 5160960
10
+m (9057103’(/)1/2 + 178300903’(/)3/2

+ 90692328245/ + 152709246817/, + 9069232824 /2
+ 17830090441/, + 911614145/, + 590384152 + Y17/2)

1840 + h2A2 8

(3.11)
=240 - —h2A2 - —l—h‘*A _ -l—hGA 1 WA
1927 7% 23040 “° " 5160060 °

th
+371ERo100 (2908741 /2 + 911614143,
+ 178300904%)s/, + 90692328247, + 152709246845,
+ 90692328241/ + 17830090445/ + 91161413,5.,
+ 59038¢17/2 + Y19/2) (3.12)

th
3715801300 (Vi-11/2 + 590384/,

+ 91161411/}1'_7/2 + 1783009041/),'_5/2 + 9069232821/),‘_3/2

+ 1527092468?/){_1/2 + 9069232821/)14.1/2 + 1783009041/),’_,_3/2

+ 91161414572 + 59038%i7/2 + Yitosa) (3.13)
1=6,7,...... =25
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€na. €n_3, €n_2, én_q and ¢, are defined similar to és, ¢4, é3, ¢; and
¢é1, respectively, except that the boundary values By, B;, B4, Be,
and Bs will replace Ay, A,, A4, Ag, and Ag at the other end.

After determining s;_1/3, i = 1,2,...,n ,59 and s, can be deter-
mined using the differential equation (1.1).

Also, .q(,"")l/z, i=1,2,...,n, s((f) and s{”) can be determined using

(1.1). The derivatives sfml“/;, t=1,2,...,n, can be determined using
(v1)

(2.19) and (2.20). The derivatives 5 100 ¢ = 1,2,...,m, can be
determined using ((2.21 or (2.28)) and (2.22). The derivatives
sfivl)/w i =1,2,...,n, can be determined using ((2.23) or (2.29) or
(2.30)) and (2. 24) and s ~1y2 t=12,...,n,can be determined using
((2.25) or (2.31) or (2. 32) or (2.33)) and (2.26).

Now it is possible to determine the odd-order derivatives of the
spline. )

Sy 8; sg”), sf“ii) and sfim) ,fori=1,2,...,n—1 are determined us-
s,(fii), s(()iz) and s are determined through the following relations
which were obtained while determining (2.14)—(2.18)

! ! " 1 iy vt vttt
h(s; —si_y) = hs Si_ 1/2+ h4( )/2+ hs( ) + hs( )

92897280 i~1/2

-ﬁ(s;u - 5:'11) = h’s (W)/2 +t57 24 h4 z(m1)/2 t 1—92_0h6 z(mli?2
+322156 Ohssf”l /- (3.15)
A(sM =5y = 2+ —h“ e+ %hﬁsff’l /- (3.16)
A(sC = sy = 2 4 —h“ P (3.17)
M) = ) (3 18)

4 NUMERICAL RESULTS

In this section, two problems are discussed to compare the maxi-
mum absolute errors with the analytical solutions, see {8]. Numer-
ical results relating to the solution of tenth-order BVPs are rare

ing (2.18), (2.17), ... ,(2.14) respectively, while sy, s, 5, S, , s((;’), ssf),

1920 %i-1/2 322560 Si-1/2
1 z
+ ~—-——hws(. ) | (3.14)

(vit)
0 )



168 Shahid S. Siddigi

in the literature. The value of n used in Tables 1 and 2 is that
which gives the smallest maximum error moduli for Problems 4.1
and 4.2 . Some unexpected results for the higher derivatives were
obtained near the boundaries of the given interval. These results
were due to equations (2.20), (2.22), (2.24) and (2.26). The abso-
lute errors in the function values were, however, very small. The
absolute errors in the function values and all derivatives were seen
to be small at points remote from the boundaries, as observed in
[9].

Problem 4.1

Consider
y&) —zy = —(89+420z+ 22— 23)e*, -1<z<1,
7/(—1) =0= y(l) 3 y”(_l) = gay”(l) = _661
yW(=1) = 3 ylv(1) = 20, (4.1)
y('ui)(_l) = _% 3 y(m)(l) = _426’
y(uiz’i)(_l) — __46_0 , y(uiii)(l) = —7%

The analytical solution of the above differential system is

y(z) = (1-2%)e (4.2)

The maximum errors (in absolute value) in yi(k), k=012 ...,9
are shown in the Table 1 .
Problem 4.2

7

Consider
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y @ 4y = —10[2zsin(z) —9cos(z)], -1<z<1,)
y(—=1) = 0 = y(1),
y"(=1) = 4sin(—1)+ 2cos(—1) ,
y'(1) = —4sin(1)+ 2cos(1),
y()(—1) = —8sin(—1) — 12cos(—-1) , (4.3)
y)(1) = 8sin(1) — 12cos(1) , '
yI(=1) = 12sin(—1)+ 30 cos(-1) ,
y)(1) = —12sin(1) + 30 cos(1) ,
y()(~1) = —16sin(-1) — 56 cos(—1) ,
y(1) = 16sin(1) — 56 cos(1) . J
The analytical solution of the above differential system is
ylz) = (z2 — 1) cos(z) . (4.4)
The maximum errors (in absolute value) in ygk), k=0,1,2,...,9,
are shown in the Table 2 .
Table 1: Maximum absolute errors for Problem 4.1 with n = 18.
0 | o €las, wnos] |2 & [as, wnss]
k = 0] 02069 x10°% | 0.1056 x 10'*
kE = 1 0.2090x10-2 | 0.1552 x 101¢
k = 2] 0.5104 x 102 | 0.2406 x 10'7
k = 3 0.5163x 10~2 | 0.1806 x 10%®
k = 4] 0.1257x 10~ | 0.7300 x 10™®
k = 5 0.1276 x 10~ | 0.4380 x 10*°
k = 6] 03082x10"1 | 0.3835 x 101°
k = 7] 03108x 107" | 0.1523 x 1017
k = 8] 0.7805x 10~t | 0.3171 x 108
k = 9] 0.1936 x 10 0.1902 x 10*°
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Table 2: Maximum absolute errors for Problem 4.2 with o = 32.
y | €l zass] | o £ los nns]
k = 0] 0.2655x 103 | 0.4159 x 104
k = 1] 03578 x 10~® | 0.1007 x 10'®
k = 2| 0.6552x 1073 | 0.2485 x 1017
k= 3] 09090 x10=° | 0.2471 x 10'®
k = 4] 0.1618 x 1072 | 0.5749 x 1018
k = 5| 02254 x 1072 | 0.6132 x 10%°
k = 6| 04048 x 1072 | 0.1654 x 107
k= 71 0.5719x 10-2 | 0.1183 x 10%°
k = 8] 0.1107x 10-T | 0.3204 x 10%°
k = 9] 0.1200x 10" | 0.3418 x 10%!
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THE STOKES-BITSADZE SYSTEM

Muhammad Tahir
Department of Mathematics, Government College, Satellite Town,
Gujranwala (Pakistan)

ABSTRACT: The stream function/Airy stress function formulation of the
classical Stokes equations in the plane is shown to be mathematically equivalent
to the Bitsadze’s canonical system of equations and is identified as Stokes-
Bitsadze System (SBS). The new formulations, the div-curl formulations, of the
Stokes-Bitsadze System are presented.

L INTRODUCTION

The classical Stokes problem has played a fundamental role in the
computer solution of incompressible viscous flows for over three decades. Not
only do the Stokes equations govern completely the slow viscous flow of
incompressible fluids, but also their solution is a key feature in algorithms for
stationary and time-dependent flows governed by the nonlinear Navier-Stokes

equations.

2. DIFFERENT FORMULATIONS OF STOKES EQUATIONS

In this paper we are concerned with the two-dimensional Stokes problem
as an elliptic boundary value problem in the plane. There are numerous
formulations of the Stokes equations in two dimensions, each deriving from the
equations governing creeping incompressible flows

div o = 0 (conservation of momentum), (1.1)
divu = 0 (incompressibility condition). (1.2)

We have assumed that there are no body forces present; u = (u,v) is the
velocity of the fluid, while o denotes the Cauchy stress tensor. It is possible to
split the stress ¢ into an isotropic part and an anisotropic part

o=~pl+T, 1.3)

where, after assuming a scaling with respect to density, p is the kinematic
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pressure and T is the extra-ctress tensor. Both ¢ and T are symmetric
(conservation of angular momentum). For a Newtonian fluid, T is related to the
velocity gradient and is given by

= ) e

where 7 is the (constant) kinematic viscosity. The first formulation of the Stokes
equations is therefore the first-order system in the variables (u,p,T):

-Vp+divT =0,
T-9{Vu + (Vu)" = 0, (1.5)
divu = 0.

In cartesians, equations (1.5) constitute an elliptic system of six equations

in the six unknown variables (,v,p, %, T7, 7). ,
The most common formulation of the Stokes equations is in terms of the

primitive variables (u,p):
-Vp + nlAu.= 0,
(1.6)
divu = 0,

where (1.6a) is obtained from the substitution of (1.5b) into (1.5a). In cartesians,

equations (1.6) constitute an elliptic system' of three equations in the three

unknowns (&,v,p), equations (1.6a) being second-order in the velocity.
Introducing the stream-function ¢ such that

u=y, v=y, (1.7

the incompressibility condition (1.2) is automatically satisfied given continuity of
the second-order derivatives of . Moreover the pressure may be eliminated from
the two equations (1.6a) to obtain

A’y =0, (1.8)

where A? is the biharmonic operator. This is a single fourth-order equation in the
single variable . Alternatively, in terms of the vorticity

w=curlu=vy —u, 1.9
the equations (1.6) may be written in stream-function vorticity formulation:

Aw =0,
AY = —w | (1.10)
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There is also the velocity-vorticity-pressure formulation:

neurl w — Vp =0,
curlu —w =0, (1.11)
divue =0,

with curl w = (—w,,w,).

~ The researchers have also been interested in the stream function/stress
function formulation, see for example [Coleman, 1981], [Davies & Devlin,
1993], [Owens & Phillips, 1994], [Cassidy, 1996] and [Thatcher, 1997].

3. THE STREAM FUNCTION/STRESS FUNCTION FORMULATION
[Coleman, 1981] ‘

Let the components of the velocity be given in terms of siream function
¥(x,y) by (1.7) and the components of extra stress tensor T be given, in terms of
the Airy stress function' ¢(x,y) and pressure p by,

o~ = —p+Tn = ¢yy’
a° = ™ = -¢-xy, (1.12)
o7 = _p+7w = ¢n’

where upper indices denote stress components while the lower indices denote the
second derivatives. Then the momentum and mass balance equations (1.1) and
(1.2) are satisfied by continuity. The tensor ‘T can thus be expressed as

Py, by (L13)
~¢, p+d) '

Using the equation (1.13) the following equations are obtained from (1.4)
and (1.7)
p+ ¢, =20y,

~¢y = 10y — ¥ (1.14)

P+ éy = —2nY,,

' The Airy stress function was introduced by [Airy, 1863].
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The pressure p can then be eliminated between (1.14a) and (1.14c) giving
the following second order elliptic system in ¢ and ¢

by — b, = —4d Y,
(1.15)
= &y = 1Yy, — ¥,
or the stream function/stress function formulation of the Stokes system.

4. THE STOKES-BITSADZE SYSTEM

Let us re-scale the dependent variables in (1.15) as follows;
7y — w, ¢ — ¢. The equations (1.15) are then reduced to

d)n - ¢ng +2 ¢xy = Os

¢.rx - ¢_vy +2 d’;y =0,

(1.16)

The Stokes system (1.16) in ¢, ¢ formulation is of special interest to us.
Indeed it is the famous second order elliptic system known as the Bitsadze
system [Nakhushev, 1988]. Henceforth we will call the system (1.16) as
the Stokes-Bitsadze system (SBS). The ellipticity of SBS, in the sense of
Petrovskii [1946], ts proved by Thatcher [1997].

4.1  Related Background
By introducing the notations; w = ¢ + iy, z = x + iy

and 7 = x-iy, the SBS (1.16) may be written in the form
W = 0, (1.17)

1z

where 28; = 0 +id,. From (1.17) the regular solution of SBS (1.16) can

be represented in the form
w; =0, - (1.18)

where f{z) and g(z) are arbitrary analytic functions of the complex variable
z. On the grounds of (1.18) Bitsadze [1964] shows that in the circular
domain |z — z,| < & the homogeneous Dirichlet problem for the SBS
(1.16) has the infinite set of linearly independent solutions given by
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w = {e~jz-5f} 8@, | (1.19)

where g(z) is a function which is arbitrary and analytic in the domain
|z — z,| <e. Bitsadze [1964] concludes that the Dirichlet problem for the

SBS (1.16) is neither Fredholmian nor Noetherian®. For the Fredholm and
Noether theory we refer to [Bitsadze, 1968 & 1988] and [Mikhlin, 1970].
Bitsadze [1988] shows that the Fredholmian character of the Neumann
problem is also violated for the SBS®. Wendland [1979] considers the
Dirichlet problem for the SBS (1.16) and proves the violation of
Lopatinski condition to show the problem to be non-Fredholm. For the
details on Lopatinski condition we refer to [Wendland, 1979].

S. THE DIV-CURL FORMULATIONS OF THE STOKES-
BITSADZE SYSTEM

Below we present the Stokes-Bitsadze system in two different div-
curl formulations.

5.1  Formulation-I :
We can write the Stokes-Bitsadze System (1 16) as

A0, 4)+4(¥-4) = 0

- (1.20)
8(0.+ )44, +8) = 0
Let us introduce 9(x,y) and ¥(x,y) which are defined as
O(x.y) div = ($¥) =y, + ¢,
: (1.21)

Fxy) curl = ($,9) = Y, + ¢,

2 The situation contrasts greatly with a system of a single elliptic equation, see for
details [Kuz’min, 1967] and [Bitsadze, 1968].

3 Similar facts can also be observed when the number of independent variables is -
more than two. For some multidimensional analogs of Bitsadze systems we refer to
[Yanushauskas, 1995], [Treneva, 1985] and [Kuz’min, 1967].
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_ It follows immediately that the SBS (1.16) has the double div-cufl
formulation -

div (DW) = 0,
, ' (1.22)
curl (@) = 0,
where ' -
O(xy) = div (¢.¥)
(1.23)

- W(xy) = curl (6,¢)

52 Remark
' It is easy to see that SBS (1.16) remains unchanged either (¢,v) is

- replaced by (—¢,¢) or (®,¥) is replaced by (—¥,D).

5.3-  Formulation-1I _ o -
Let ¢ and ¥ be sufficiently continuously. differentiable functions.
The equation (1.16a) of the SBS can be written as :

Ab= -2, +29, (1.24)
which on differentiatihg with respect to x gives |
_ (AP =-32¥,-24,). | (1.25)
From equations (1.16b) and'(1.25) we‘i_rnmediately obtain
3(Ad) =-G(AY). o (1.26)
Similarly we can easi}y show that
3(A9) = 3(Ad). (127)

‘'Hence we have the following div-curl formulation

div (A¢, AY) =0,
(1.28)

curl (A¢, AY) = 0,

5.4  Remarks
The formulation (1.28) is the vorticity-pressure formulation for the

Stokes equations. It is one order higher than Formulation-I.
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6. CONCLUSION

The stream function/stress function formulation of the Stokes
equations is shown to be mathematically equivalent to the well-known
Bitsadze system and is identified as Stokes-Bitsadze System (SBS). New
formulations ’the div-curl formulations’ of the Stokes-Bitsadze System are

presented.
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DR. LAL MUHAMMAD CHAWLA
(1917-1998) '

Muhammad Amin

Dr. Lal Muhammad Chawla, an exceptionally brilliant mathematician of
international repute and an eminent scholar of the Holy Quran, died in Lahore
on November 5, 1998. He was gentle, kind-hearted, considerate and a valuable
friend and colleague.

Dr. Lal Muhammad Chawla was born on November 1, 1917 in village
Mahatpur (district Jallundar, India). He received his early education in his home
district and after passing his high school examination, he joined the Islamia
College, Lahore from where he graduated with Honours in 1937. He did his
M.A. in mathematics from University of the Punjab, Lahore in 1939. He
obtained his D.Phil in Pure Mathematics from the Oxford University in 1955.

Dr. Chawla’s career as a college and University teacher is spread over.
a period of 47 years from 1939 to 1986: Lecturer Islamia College, Lahore, 1939
to 1947; Lecturer/Senior Lecturer Government College, Lahore, 1947 to 1957,
Senior Professor and Head of Mathematics Department, Government College,
Lahore, 1957 to 1969; Principal Central Training College Lahore, April to
September 1969; Chairman, Board of Intermediate & Secondary Education,
Sargodha; 1969 to 1970. He was visiting professor, University of Illinois,
Urbana 1965 to 1966 and University of Florida, Gainsville, 1966 to 1967,
Tenured Professor of Mathematics, Kansas State University, Manhattan, 1970 to
1982; Professor. of Mathematics, King Abdul Aziz University, Jeddah, 1982 to
1986.

; Dr. Chawla was a keen research worker and published more than forty
research papers in the fields of Algebra and Number Theory. In 1968, he
discovered an arithmetic function which won international fame and was named
in his honour as Chawla Arithmetic Function. Quite- a few persons further
worked on the new function and were able to earn their Ph.D.’s for their work
based on Chawla Arithmetic Function.

In order to disseminate latest scientific and mathematical research, Dr.
Chawla and two other colleagues at Govt. College Lahore founded the Journal
of Natural Sciences and Mathematics in 1961. The journal proved its merit and
soon got international recognition and reputation. Dr. Chawla remained editor till
1986. Dr. Chawla was also one of the pioneers of introducing modern
mathematical disciplines at Postgraduate level at the Punjab University. His
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services in the cause of higher education in mathematics in the country and
abroad have made him a man of beloved memory.

Dr. Chawla was a devout and enlightened Muslim. In the later years of
his life he spent most of his time and energy on the study of Al-Quran-ul-Karim.
He started writing the book titled, A Study of Al-Quran-ul-Karim in 1975 and it
was completed in 1994 in four volumes. Seven more books on Al-Quran-ul-
Karim, Hadith and Prophet Muhammad (Allah’s blessing and peace be upon him)
followed by the time he breathed his last. All of his works have been published.
These books have been well received by religious scholars in Pakistan and

abroad. ‘
In the end, I pray to Allah to grant him eternal peace and Janat-ul-

Firdous (Aameen).

(Muhammad Amin)
30-11-1999
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