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BEST APPROXIMATION IN CONVEX METRIC SPACES !

Asia Naz
Department of Mathematics
Government College for Women
Murree Road, Rawalpindi - Pakistan

Abstract

Some results regarding common fixed points and best approximation in convex met-
ric spaces are obtained.

Let X be a metric space with metric d I = [0,1]. The X is called a convex
metric space if there exists a mapping W : X x X x I — X satisfying

d(z, W(y,q,2)) < Ad(z,y) + (1 — N)d(z, q)

for all z,y,q,€ X and all A € I. Every normed space X is a convex metric
space with W defined by W(z,q,A) = Az + (1 — A)q for all z,q € X and all
A € I. However, the converse is not true, in general (see€, e.g., Takahashi [7]).
A subset D of a convex metric space X is called (1) convex if W(z,q,A) € D
for all z,q € D and all A € I; (2) g-starshaped if there exists ¢ € D such that
W (z,q,)) € D for all z € D and all A € I. A convex metric space X is said
to satisfy the property (I) if

d(W(z,q,)),W(y,q,\) < Ad(z,y)

for all z,y € X and all A € I. We observe that the property (/) holds in every
normed space X. Throughout this paper, X denotes a convex metric space
satisfying the property (I). For more details, we refer to Beg and Shahzad [3]
and Guay, Singh and Whitfield [4].

1Key words and phrases: Best approximation, common fixed point, convex metric space.
1991 Mathematics Subject Classification: 41A50, 47H10.
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Let D be a subset of X -and S,7: X — X two mappings. Then T is called
(3) S-nonexpansive on D if d(Tz, Ty) < d(Sz,Sy) for every z,y € D; (4)
S-contraction on D if d(Tz,Ty) < kd(Sz,Sy) for every z,y € D and some
k € [0,1). The mappings S and T commute on D if STx = TSz for all
z € D for‘all z € D. We:denote by F(S) (resp. F(T)) the set of fixed
points of S (resp. T'). Let C be a subset of X and # € X. Then the set
Pe(z) = {z € C : d(z,%) = d(2,C)} is the set of best C-approximants to £,
where d(z,C) = inf{d(z,y) :y € C}.

In 1992, Beg and Shahzad [3] obtained the following results in the setting of
convex metric spaces.

Theorem 1:

Let D be a closed and ¢-starshaped subset of X and T : D — D a nonexpansive
mapping. If ¢/(T(D)) is compact, then F(T) # ¢.

Theorem 2:

Let T,S : X — X be two mapings, C a subset of X such that T(9C) C C,
and Z € F(T)N F(S), where 9C denotes the boundary of C. Suppose S is
continuous and affine on Px(Z), S and T are commuting on Pc(%), and T is S-
nonexpansive on Po(z2)U{z}. If Po(£) is nonempty, compact, and g-starshaped
with g € F(S), and if S(Pc(2)) = Po(#), then Po(2) N F(T)N F(S) # ¢

In this paper, we prove a common fixed point theorem for commuting mappings
in convex metric spaces. We use this result to generalize Theorem 2 (above)
and Theorem 3 of Sahab, Khan and Sessa [6].

We shall make use of the following result due to Al-Thagafi [1], which we state
here as a lemma.

Lemma 3:

Let D be a closed subset of a metric space and S,T : D — D two mappings
such that T(D) C S(D). Suppose cl(T(D)) is complete, S is continuous, S
and T are commuting and T is S-contraction. Then F(S)N F(T) is singleton.
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Theorein 4:

Let D be a closed subset of X and S,7 : D — D two mappings such that
T(D) c S(D). Suppose D is g-starshaped with ¢ € F(S), c¢l(T(D)) is com-
pact. S is continuous and affine, S and T are commuting, and T are commut-
ing, and T is S-nonexpansive. Then F(S) N F(T) # ¢.

Proof:

Let {3,} be a fixed sequence of positive numbers less than 1 and converging
to 1. For each natural number n, define a sequence of maps T,, by

Tpr = W(Tx,q.5,).

Clearly, each T, maps D into itself because T : D — D and D is g-starshaped.
Since T(D) C S(D), D is g-starshaped and S is affine, it follows that S(D) is
g-starshaped and so T,,(D) C S(D). Since S is affine and commutes with T,
we have

T,Sr = W(TSz,q,f,)
= W(TSz,Sq,B)
W(STz, Sq, 8r)
S(W(Tx,q,6n))
= ST,z
forall z € D.
Furthermore,

d(Tnxa Tuy)

) d(W(T"E7 q, ﬁn)a W(Tya q, ﬁn))
Bnd(Tz, Ty)
Brnd(Sz, Sy)

IA A

for all z,y € D. Since ¢l(T(D)) is compact, each cl(T,(D)) is compact. By
Lemma 3, F(S)N F(T,) = {z,} for some z,, € D, that is, z,, = Sz, = Tz, =
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W(Tx,,q.8,). Since ¢l(T(D)) is compact. {Tz,} has a subsequence {Tx,,, }
(say) converging to y. It further implies that {x,,.} = {W (T2, .q.5..,)}
converges to y because 3, — 1 asm — oo. So, from y = lim, oo Tn,, =
iMoo T2n, = liMpooo Sy, and the continuity of S, we have y = Ty = Sy.
Hence F(S)N F(T) # ¢.

Remark 5:

Theorem 4 generalizes Theorem 2.2 of Al-Thagafi [1] and Theorem 4 of Habiniak
[5]. It also contains Theorem 1 (above).

Theorem 6:

Let S,T : X — X be two mappings, C a subset of X such that T(0CNC) C C,
and £ € F(S)N F(T). Suppose S is continuous and affine on P(z),S and T
are commuting on Pc(z), and T is S-nonexpansive on Pg(z)U{z}. If Po(2) is
nonempty, closed and g-starshaped with ¢ € F(S), /(T (Pc(z))) is compact,

and S(Pc(z)) = Po(2), then Pe(2) N F(T)N F(S) # ¢.
Proof:

Let y € Po(2). Then, as in Lemma 3.2 [2], y € C N C and so Ty € C
because T(0C N C) C C. Since T is S-nonexpansive on Pc(i) U {2} and
S(Pc(z)) = Pe(z), it follows that

d(Ty,2) = d(TyT3)
d(Sy, S2)
d(Sy, %)

d(z,C)

0IA

Thus Ty € Pc(z) and so T(Pc(2)) C Pe(2) = S(Pe(2)). Hence the conclusion
follows from Theorem 4 with D = Pg(%).

Remark:

Theorem 6 contains Theorem 2 (above) and Theorem 3 of Sahab, Khan and
Sessa [6] as special cases.
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Abstract

This pa‘pe.l' is concerned with the differential operators which were first introduced
by Hanmimond [3] and were extensively employed in the work of Macmahon [5]. Our
aim is to generalised some results proved by Macdonald in [4]. By doing this we
obtain a new proof of Marnaghan- Nakayama type formula.

1. Introductioh

The operators D(a,,), D{h,) corresponding to elementary symmetric function

njs \ . b ; J
‘ar,” and homogeneous symmetric function s, were introduced by Hanunond
[3]. The D(S,) corresponding to Schur function Sy by Foulk [1], also see Foulk
[2]. Moreover in [4] Macdonald considered the operator D(P,) corresponding
to the power sum symmetric function Py. Our aim is to generalised the Mac-
p y A :
donald results by considering the differential operator over the ring symmetric
polynomials Aft]

1.1 Basic Definitions

This section contains the basic definitions and results which will be used later.
We follow closely the notations used in {4].

Let XA = {A1, A3, - -+, A\n) be a partition of n i.e. Ay + A3+ A,y = n, where

A1 2 Ao > .- A, > 0 we some time write partition in the form

A= (1. 1™ .. 4™) where m; = m;()\) is the number of parts of A which
are equal to i. If A = (A, -+, Ap), then A — n means ) is a partition of n.
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Moreover
IA| = Aq, - -+, Am is called weight of the partition A.

. . N . n
Let 1,9, - - - be infinite set of indeterminates then p, =}, 7,
ar = Y. &1,T2---T, summed over all selections of r suffixes, repetition of
suffixes being allowed are powersum symmetric functions, elementry function
and homogeneous symmetric functions respectively.

If x; denote the value of irreducible linear character x* of S, (symmetric
group) corresponding to the elements of S, of type p. Then Schur function
corresponding to the partition A of n, is defined by

1 -1
S)‘——'IT/!'EZP XpPp
p

where P, is power symmetric function corresponding to the partition p, and

Zp = H 7 m;!

i

where m; is the number of parts of p equal to 7. If A denotes the ring of
symmetric polynomials. Then Macdonald [4] have shown that S form an
orthonormal basis of A. Therefore any symmetric function fe A is uniquely
determined by its scalar product with S, namely

F=Y (f5)8
A

Now for any partitions A and x we define skew S-functions S/, by the relations

< Sy Sv >=< 83,8, S, > (1.1)

for all partitions v. Equivalently, if g,’)v are the integers defined by
SuSu =Y ghS»
A

Then we have
Sau= Y GuuSh
Iy
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In particular, it is clear that Sy = S) where 0 denotes the zero partition.
Also gﬁv = 0 unless |A| = |u| + |v], so that S/, is homogeneous of degree
[A| = |u| and is zero if |A| < |u].

2. Differential Operators Acting on Ring of Symmetric Function A.

Differential operator D(S)) acting on Schur function Sy denoted by D defined
as

b8 e
- my tmo ... Op7™0py?---

Using equations (1.1) we have

< D,Sy, Sy >=< 85,585,585, >

It follows that

DuSx = Sxju

Also Macdonald [4] was proved that

D(Pn)hn = hn-n

And therefore

D(P,) = Zhri—— (2.1)

r>0 ahn-’-r

3. The Ring of Symmetric Polynomials A [t].

Let t be an independent indeterminates of the variables 1,z = (x1, x4,

~,xpn) and Let A = (A1, Aa, -+, A\p). Also suppose that Py = Py(zq, - -,
rnit) and @y = Qa(zy1, -+, zpn;t) be the Hall-Littlewood P and @Q-functions
respectively given by Macdonald [4]. Now if by(t) = [[,, ¢mi(t), where

¢r(f)=(1—t);(1_t)...(1_f)2,,_(1_tr)
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Then
Qa(z;t) = ba(t) Palz; t)

And for r > 1 we defined another function
gr(z;t) = Qr(z;t)

Then we have
a{z;t) = (1 —t)Pr(z;t) = (1 — 1)

Moreover {Py(z;t)|]A n} form Z [t]-basis of A [t] and the sets

{Qx(z;t) X —> n} and V{q,\(x;t) : A —n}

from Q [t] basis of A &, Q[t], where Q is ring of rational integers.

We may defined a scalar product on A[t] with values in Qt] by requiring that
bases ¢,(z;t) and m(z) be dual to each other by

<qx my >= 5,\;,,

where 6y, is Kronecher delta.
3.1 Lemma

Let A be a partition of n, define Z)(t) = Zx [[,5,(1 - )71 then qx(z;t)
=Y Z)(t)"'Py(z) is power sum symmetric function.

Proof
See [6].
3.2 Skew HL-Functions

Let Py and @, be HL P and Q-functions. Then for each pair of partitions A
and p of n we define skew HL-function @/, by

< Q/\/Ll.* P, >=< Q/\? Pp,Pv >= f;:\u(f) (32)
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or equivalently

Q=D (1)

where fﬁu(f) are polynomials defined by
P#PU = Zflz\u(f)P/\
A

It was proved by Macdonald [4] that

pa(z, z;t) = Z Pyju(z; t)Py(z;t) (3.3) |

v

where Z = (21, 22, -+, 2,) is another set of independent variables.
3. Differential Operator on A [t]

Suppose that fe A [t], the ring of symmetric polynomial. Then we define

D(f) : A[t] — A[t] be the adjoint of multiplication by f, thatis < D(f)u, v >=<
u, fv >, for all u,ve A [t]. Then clearly D : A[t] — End A [t] is a ring homo-
morphism.

We now investigate the operator for
(1) f=Qu=zt), (i) [f=aqlz;t) (i) f=pn
Case I:
When f = Qu(x;t) = @, for any partition p, let D, denotes D(Q,). Then

according to definition we have

<D;I,P/\7 Q‘U> = <P/\)Q#Q’U>
= <P/\//.I,,Q’U>

Therefore we have
DyPy = Pyj,.

Also from equation (3.3) for any fe A [t] we have
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F(z,z;t) = ZDy,f(:c;t)Py,(z;f).

Case II
Now consider D(qy). From equation (3.1) we obtain

< D((])‘)’mu, Qu > = <My qrqy >
= <My G >

which is zero unless ¢ = A U v. Hence it follows that

0, unless p= AUw
D{gx)mu = { My, if u=AUv }

and in particular

D(gy)m, = 0 if nisnotapartof p
NI = if nis apart of p

where v is a partition obtained by removing a part n from u. It follows that
for every f(zo,z1, - ,zn) € A[t], (D(gn)f) (z1,29, -+, Tm) is the coeflicient
of 27 in f.

Case III

Let A be a partition of N. Consider D(p,) if N > n we have < D(p,), qnpr >=
< qN,PaPr >

From Lemma (3.1) we have

n = Z Zx(t)'pa

II

where

Z\(t) = ZJa-27 za=imomy!

i>1

it follows that
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1
qNGM = /\z}; m qrUv

Now consider
< D(pn), ananr, Po >=< qNGM, PrDv >

where v — N 4+ M — n. We wish to prove that

D(pn)anNqm = QN-nGM + ANQIM—n

For this purpose we will prove that the coefficient of p,p, in qnga and the
coefficient of p, in qy_nqrp + qngar—n are the same. Now suppose that

A= (19292 .. pon.l)

and
n = (lbl 2b27 "')nbna”')7 then

)\U[L — (1a1+b1 2a2+b2 L. nan+bn .. )

and

1001190202 (g 4 po)1 -+ o tbn (g, + b))

Z’\U“(t) = (1- t)b1+a1(1 — t2)b2+a2 (1= tn)bn+an
(ai + bl)'
N+M
(ai -+ b-,;)! (an + bn)!
= 2020 | 11 a;'b;! anlby!
i=1y4n - 07 n-Un

Therefore the coefficient of p, p,, where v - N + M — n is

N+M

1 (ai + bl)' (an + bn)'
11

Z/\Uv(t) ai!bi! an!bn!

izli;én
A

Similarly the coefficient of p, in qn_pn qm + qNGM—n 1S

13
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N+M

(ai + [L,)' (CL,»,_ -1+ bn)' (an —+ bn - 1)'
I = { (an — D)l anl(bn = 1!

1=lin

If we put a,, + b, = A,, then

(A, —1)! (A —1)1 A
(A~ b = D5l T (An = )1 — 1) (As = bn)b!

Hence we have

D(prn)anam = qN-nqr + INGM-n

Now, by induction we can prove that

D(pn)qa,ag- Zq’\l’\2 AL =T A

That is, D(pn) qua acting on symmetric polynomials expressed as
polynomials in g’s. Further since

< D(pn)P)\»p/t >=< P)npnp/t >

We obtain

_ [0, if X# uU(n)
< D(pn)Px,pp >= { Zx(t), if A= pU(n)

It follows that
0, ' if nis not a part of A

< D(pn)Pr= < Zx(t)Z,(t)", if wis partition obtained from
: A after removing one part n

We have
Z,\(t)Z#(t)_l =nmu(A)(1 — 1&”)_1

(1=tMZ\(t)Z,(t) ™ = nma()
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Furthermore, we have

8 8 .. .
n——PA = n— 1pm2._'pmn_._]
apn apn [pl 2 n
n,m,n[pTlngQ ... p:ln'"—l . .]
= nmpp,

and so we have

0
(1= ")D(pa)Pr = n7—Ps
or

(1= ")D(pn) = -

In particular each D(p,) is a derivation of A[t]. We have already proved that

D(pn)qN = 4dN-n
Hence it follows that.

n—aqn = (1 —1")qn-n
dpn

which is Marnaghan Nakayama type formula.
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Abstract

In this paper we investigate a finite groups G having a subgroup isomorphic to the
smaller centraliser of an involution in F4(2).

1. Introduction

Let F4(2) denote the Chevalley group of type F4 over the field
T ={0,1}. |F4(2)| = 2% .3%.5%2.72.13-17. :

The Center of a Sylow, - subgroup S of Fy is a four group. The elements of
order two in this subgroup of S lie in three distinct conjugacy classes in Fy(2).
Let t,,t3 and t3 = #1t5 be these involutions in the center of S. Now in Fy4(2):

Q

=

D

Q Q

=

g2

R IR

Q Q

RS
o
=
[oN

The Chevalley group F4(2") of type Fy over the field of 2" elements have
been characterized by Guterman [3] in terms of the centralisers of 2-central
involutions and this characterization is given by the following theorem.
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Theorem 1

Let. G be a finite group. Suppose the center of a Sylows - subgroup of G
contains elements y;, y2 and y3 = y1ys of order two such that CG(yi) =~ C(f.l)q', =
1,2,3 Then G = F4(27)

In [5] Thomas has given an improved characterization of the Chevalley group
F4(2™) in terms of only the centraliser C(t;) for all n» > 2. Later Husnine [4]
treated the case for n = 1.

We propose a further improvement on the above result by assuming the smaller
centralier. In fact, we make the following conjecture whch is more general.

Conjecture

Let G be a finite simple group with an involution y3 lying in the center of a
Sylows-subgroup. Suppose C = Cg(ys) is isomorphic to C(t3), the centraliser
of t3 in F4(2). Then G is isomorphic to F4(2).

We identify C' with C3. We shall refer tables 3 and 4 of [6].

For necessary details about the group Fy(2), we refer the reader to [5].
it is easily observed that Z(S) = S91504.

SEC I: Description of Fy(2)

1.1

The root system ) of type (F4) consists of 48 roots; £¢; £ &; £ &5, %(:I:{,—, +
£ £&m L&), whered,j,m,n =1,2,3,4 and 7, j, m,n are all distinct. We take
Ty =&, 12 =E3— &4, 15 =& — €3, and rip = 1/2(§) = £ — €3 — &4) as a system
of fundamental roots. If we denote the root ar; + bro + crs + dryg by (abed),
then the positive roots are:
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r1 = 1000, 79 =0100, r3=1100, r4= 2100,
rs = 0100, rg= 0110, r;= 1110, rg= 2110,
rg = 2210, 710 =0001, 7y; = 1001, rip = 1101,
ri3 = 2101, ryq = 1111, ri5 = 2111, rig = 2211,
T17 — 3211 718 = 2102, Ti9 = 2].].2 T20 = 2212,
121 = 3212, 732 — 4212 793 = 4312, 724 = 4322.

Let A be the additive group generated by ) . We define an inner product <, >
on V = R® A, the vector space over the real numbers R, by < £,&; >= 0
and < &;,&; >=1fori,j =1,2,3,4;, i#j. Forr,se ) let A(r)=<r,7>
and s(r) =2 < s,r > / < r,r >. The values A(r;) and r;(r;) for i = 1,2,5,10
and 1 < j < 24 are given in table - 1.

For each 4,1 < i < 24 and each s € }_ let wi(s) = s — s(r;)r;. Then ; is a
permutation of > . The pemutation group W generated by {w, |l <7 < 24}
is the Weyl group of > _.

1.2 W is of order 2732 and is generated by w1, we, ws and wio. If ay; = |ww;],
then generators wi,wy and wy and wy together with the relations

(wan;)% = 1,{i,5} € {1,2,5, 10}, form a presentation of W .

It will be convenient to think of the elements w € W as permutations of
{%:]|1 <1 < 24} defined as follows:

(i) = { Jif @(ry) =r; w(—1) = —w()

—j if ’(f)(’f’i) =Ty

The values w;(j) for i = 1,2,5,10 and 1 <4 < 24 are also included in Table-1
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20

Tew

10
11

18
.12

13

19
20
22

23

14
15
24

16
17
21

7i(T10)

7i(75)

r:(12)

Table - 1

ri(r1)

w1o(7)

11

12

18

14
19
20
- 10

13

15
16
21

17
22

23
24

10
11

14
15
12
13
16
17
19
18
20
21

22
24

23

10
12
11

13
14
16
15
17
18
20

19
21

23
22

24

11

10
13
12
15
14
17
16
18
19
22
21

20
23
24

10
11

12
13
14
115

16
17
18
19
20
21

22
23
24




On Characterization of the Chevalley Group by the Smaller Centraliser 21

1.3 W acts transitively on {r € S |A(r) =4}, i=1,2.

Let I' be a field with two elements and let F be the Chevalley group of type
(F4) over I Then F has the following properties.

1.4 F issimple.
1.5 F has non trivial center.
1.6 For each 4,1 < i < 24, there exists a homomorphism ¢ : SL(2,2) — F.

For each a € T, we define.

w=o( 4 V) ma@=a(g ) w=u(ls)

Note that w? = z;(a)? = (w;zi(1))? =1

1.7 Foreachi, 1 <i< 24, let S; = {zy(a)la € T'}. Then each S; is a group
of order 2. The elements of S; multiply according to the rule z;(a)z;(8) =
zi(a+ B8),a,B €T.

1.8 Let S =< S;|1 <4< 24>. Then S is a Sylow,- subgroup of F.

Any element z € S can be expressed uniquely in the form z = [ z;(a;)
Which we shall abbreviate as z = Ilz;(o;). Hence S has order 224, The
product of any two elements of S may be obtained by use of the commutators
[z:(1),2;(1)],1 <4 < 24. The nontrivial commutators are listed in Table-2.

2 In this section we cbllect the definitions and known results which are to be
used in this sequel. We define the conjugate of y under z to be z 'yz for the
elements z,y of the group G. We also write y* for z 'yz and H® for z7'Hzx
for the elements z and y and the subset H of G. The set of all conjugates of
an element of y in G is denoted by cclg(y).

2.1 [4]. Let Wy =< w),wp, ws > and C; = {sws'|s € S,s" € Sy, w € W1}
Then Cl = CF(.’EQl(l)) (11) Z(Cl) = 521

2.2 [4]. Let Wy =< w1, we, wip > and Cy = {sws'|s € S,w € Wa, s’ € Sy}
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Table-2
Values (7, j : m) for which [z;(1),z;(1)] = zm(1)
(1, 10 : 11) (1, 12 : 13) (1, 14 : 15) (1, 16 : 17)
(1,5 6) (2,8 : 9) (2,19 : 20) (2, 22 : 23)
(3,10 : 12) (3, 11: 13) (3, 14 : 16) (3, 15 : 17)
(4,5 8) (4,6 9) (4,29 : 22) 4,20 : 23)
(5,18 : 19) (5, 23 : 24) (6, 18 : 20) (6, 22-: 24)
(7,10 : 14) (7,11 : 15) (7,12 : 16) (7,13 : 17)
(8,18 : 22) (8, 20 : 24) 9, 18 : 23) (9,19 : 24)
(10, 17 : 21) | (11, 16 : 21) (12,15 : 21) | (13,14 : 21)
Values (ij : m,n) for which [z,(1), z;(1)] = zm(1)za(1)

1,2: 3, 4) (1,67, 8) (1, 20 : 21, 22)

(3,5:7,9) (3,19 : 21,23) | (7,18 : 21, 24)

(2. 11: 12, 18) | (2, 15: 16,24) | (4. 10 : 13, 18)
(4.14:17,24) | (5.12: 14, 20) | (5. 13 : 15, 22)

(6,11 : 14,19) | (6, 13 : 16, 23) | (8, 10 : 15, 19)

(8,12 : 17, 23) | (9, 10 : 16, 20) | (9, 11 : 17, 22)

Then Cy = Cp(x24(1)); Z(C3) = Sa4
2.3 [4]. Let W3 =< wj,ws > and C3 = {sws'|s € S,w € W3,s' € Sy}
Then C3 = Cp(z21(1)z24(1))-

From now onwards, since the only involution in any root subgroup S; of F4(2)
is z;(1), we will write z; for z;(1) except where there is ambiguity.

2.4 ([3];.4.1). Let v be an automorphism of S. Then

{v(S21),v(S24)} = {Sa1, S24}

2.5 'Foreach j=1,2,5,10, let D; = I1S;(i # 7).

Then Dyg = C{x17) and D5 = Cs(z23). We write M for Dyo. Then M and Ds
and subgroups S of order 223 with centers of order 23. For our convenience we
write D fpr Ds.
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2.6 For any three elements z,y, z of a group G, we have,

[z, y2] = [2,y]*[z, 2]

2.7 Let z be an involution of S. Then z is conjugate in S to an involution
of one of the forms Il;c; z; or ¢ (n;e12;) where I is one of the sets listed in
Table 3.

The integers c(1) listed in Table 3 satisfy ccls¢ (Tlie1;) 2e(D),

2.8 Let x € S be an involution. Then there is an involution y os one of the
forms listed Table 4, such that z is conjugate in C3, the centralizer of zo91z94 in
F4(2), to y or to ¢(y), where ¢ is the graph automorphism of Fy(2) defined in
(2.14). The sets F3(y), listed in Table 4 are complete sets of respresentatives
of distinct ¢ conjugacy classes of involutions in S, which are fused in C3 to
give CN cllg,(y). The integers d(y) i Table 4 satisfy d(y) = |S N cele, (y)]-
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Table 3
I (1 (11 (N1 cnlr (1)
24 0 9,17 |4 7,18 7 4,18,21 7 5,7,17 9
21,24 0 9,17,21 |4 7.18,21 7 4,16 8 57172119
23 1 9,16 5 7,18,16 7 4,16,18 8 5,7,16 10
2,23 1 9,16,21 |5 7,18,16,21 | 7 4,15 9 5,7,1621 | 10
17,23 2 9,15 5 7,18,14 9 4,15,18 9 5,11 11
22 2 9,14 7 6 6 4,12 10 5,10 12
21,22 2 9,13 7 16,21 6 4,11 11 2 7
17,22 3 18 8 6,17 7 4,7 10 2,24 7
16,22 4 18,21 5 6,16 6 3,4 8 2,21 7
20 3 17,18 5 6,16,21 6 3,421 8 22124 |7
20,21 3 16,18 6 6,16,17 7 34,2124 |8 2,18 8
17,20 4 15,18 7 6,15 9 3,4,7 10 2,1824 |8
16,20 4 14,18 8 6,14 7 5 7 2,17 8
16,17,20 4 13,18 9 6,14,21 7 5,21 7 2,1724 |8
15,20. 6 13,18,24 | 6 6,14,17 8 517 8 2,1718 |9
19 4 13,18,20 | 6 6,14,15 9 5,16 9 2,14 10
19,21 4 13,18,19 | 7 6,12 10 |5,15 7 2,14,18 | 10
17,19 5 8 8 6,7 8 5,15,21 7 2,13 10
16,19 6 8,21 5 6,7,21 8 5,15,17 8 2,13.18 |10
15,19 5 8,17 5 6,7,17 8 5,15.16 9 2.10 12
15,17,19 5 8,1721 |5 6,7,1721 |8 5,14 8 2.7 11
15,19,20 5 8,16 5 6,7,15 10 | 5,14,21 8 2.3 9
14,19 6 8,15 7 4 6 5,14,17 9 22324 |9
14,19,22 6 8,1521 |6 4,24 6 5,14,16 9 2,3,21 9
14,15,19,20 | 6 815,16 [6 [4,21 6 5,14,15,16 | 9 23,2124 |9
9 4 8,14 7 4,21,24 6 5,7 9 2,3,18 11
9,21 4 8,13 9 4,18 7 5,7,21 9 2,3,7 11
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Table 4
K Fy () )

21 {xa1}

21224 {$21,$24}

x93 {z;]i = 19, 20, 22,23} 2(24 - 1)

T21723 {za1ufu € F3(wa3)} 2(2* - 1)

T17T93 {I1; € Iz = {17,23)} 22(22 — 1)(21 = 1)
{17,22},{16, 23}, {16, 20}, {15, 22},

{15, 19}, {14, 20}, {14, 19}

T16TL22 24(22 - 1)(24 - 1)
{17,19}, {16, 22}, {16,119}, {16, 17, 20},
{15,20}.{15,23},{15,17,19}, {15, 22,23},
{15,19,20}. {14, 22}, {14, 23}, {14, 16, 19},
{14,15,20}, {14. 20, 23}, {14, 19. 22},

{14.15,19.20}

zg {2|] =5,6,8,9} 2124 - 1)

ToIo) {uzniu € Fs(xg)} 2424 - 1)

9x17 {I1; € Ix;|I ={9,17},{9, 16} 212 —~ 1)(24 - 1)
{8,17}, {8,15}, {6.16}, {6, 14}, {5, 15},

{5,14})

ToT17x9; | {uzor|u € F3(zgay7}

T921s {Il; € Iz;)I = {9,15}, {9, 14} 27(22 — 1)(2* - 1)
{8.16}, {8.14}, {8,15,16}, {6, 17}, {6, 15},
{6,14,17},{6.16,17}, {6, 16,17}, {6, 14, 15}

{5,17}

{15,16}, {5,14,17},{5,15, 16}
{5,14,15,16}. {5,15,17}
{5,14,16}

X9r13 {II, € Ix;|I = {9,13}.{9.12}, 28(22 — 1)(24 - 1)
{8,11}, {8,13}, {6,10}

{6,12}, {5,10}, {5, 11}

T18 {z18} 25

T18T21 {z18, 201} 2°

L1418 {z;z181| = 14,15, 16,17} 26(24 ~ 1)

T13T1g {z,718]10,11, 12,13} 26(24 ~ 1)

T13718%24 | {uza4qlu € F3(z13718)} 26(24 - 1)

213T20718 {(I_L € Ixi)x13|1 = {13, 20} . 27(22 - 1)(24 - 1)
{13,19}, {12,22},{12,19}, {12, 23, 24},
{11,23},{11,20}, {11,23,24}, {11, 23,24}, {10,23}

{10,22}, {10, 23,24}, {10,22, 24},
T4 {z;]i = 2,4} 26(22 1)
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Table 4 (Continued)

y F(y) d(y)

R {wary|u € Fy(ay)} 20022 — 1)

Xydoy {uaaglu € Fy(aq)} 20(22 — 1)

4292024 {uagiraq|u € Fy(ag)} 20022 — 1)

T4 {((TN; € Ix))xig|I = {4, 16}, {4.15} 28(2% — 1)2
{2.17}.{2.14},{2,17, 24} }

4T {uxq|u € Fa(xq)} 210022 — 1)

FRar {uriglu € Fs(xyq)} 27(22 — 1)

L4T18291 {uzigza|u € F3(x4)} 27(22 - 1)

L4162 18 {(TN; € Ix))xig|l = {4,16},{4,15},{2,17}, | 28(2% - 1)?
{2,14) |

T4T 1y {(IL; € Ix))zs]I = {4,12},{4.11},{2,13}, | 2'0(2% - 1)?
{2,10}, {2,13,18}

32y {(TI; € Ix;)xi|T = {3,4},{3,2}.{1,4} 28(2 — 1)2(1 +2.2)

324004 {urggn € Fa(xsayg)} 28(2 — 1)%(1 +2.2)

L3Lqlo1129 {l‘l;lfg1l‘24F3(l‘3I4)} 28(2 — 1)2(1 + 22)

V34T 18 {uxig|n € Fa(xsny)) 21002 — 1)2(1 4 2.2)

2.9 Burnside’s theorem: Let S be an Sylow-p-subgroup of G. If elements
of Z(S) are conjugate in G, then they are conjugate in Ng(S).

We investigate the action of Ng(D) on Z3(D) = S16S20Z2(D) in the next
section. For this we denote by Z;(D) the center of D and by Z;(D) the inverse
imageof the center of D/Z;, (D) in D for 7 > 1. It is easy to calculate Z;(D)
from the table 2.

3. Action of Ng(D) on Z3(D)

In this section we prove the following theorem.

Theorem A:

There exists an involution ue Ng(D) which acts upon Z3(D) = S16520Z2(D)
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such that z3, = x93 and u centralises x16, 217, 20. Z21, T22.
The proof is completed in the sequence of Lemmas.

3.1 Lemma:

Z1(D) = S2350185x
Zy(D) = S517827Z1(D)
Z3(D) = S16S2022(D)
Proof:
It is easy to verify from tbale 2.

3.2 Lemma

[t is directly verified from the structure of C3 and from tables 1 & 2.
3.3 Lemma
Ng(S) = S. Thus no two elements of Z(S) are conjugate in G.
Proof
| Let zeNg(S)
Then z induces an inner automorphism of S. Thus by 2.4.
[S31, 534] = [S21, Sad]
Hence T91T24 is centralised by z. So z € C3. Thus z € N, (S).

Now, due to lemma 3.2, z € S. Hence Ng(S) = S.

Finally, by Burnside’s theorem, it is obvious that no two elements of Z(S) are
conjugate in G.
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Lemma 3.4

Ng(D) =S, Hence Ng(D)NC3=S

Proof

From structure of C3 and table 1, we find that normaliser of D in C3 is S.
3.5 Lemma

S is not normal in Ng(D).

Proof

If S is normal in Ng(D), then according to [8, sec3], G has a normal com-
plement to C3 of odd order. We get a contratiction as G is a simple group
according to hypothesis of theorem C'.

3.6 Lemma

Proof

Due to Lemma 3.4, there is no element in Ng(D) — S which belong to C3
where C5 is the centraliser of z91z94.

According to Lemma 3.3, no two elements of Z(S) are conjugate in G. As
Z(D) — Z(S) has four involutions. So in Ng(D), 91794 can be conjugate to
itself and four involutions in Z(D) - Z(S).

Hence [Ng(D) : S] is less than or equal to 5.

If 5/Ng(D), then there will be an element of order 5 in Ng(D). Thus z91724
is conjugate in N¢(D) to every involution in Z(D) — Z(S).

Now Z(S) C Z(D), za1z24 € Z(S) and

(201224)V¢P) N Z(D) = {91294} U £23Z(S). This according to { 9, Prop. 2}
implies that z9,x24 is centralized by Ng(D). This is contradiction to Lemma
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3.4.

Hence [Ng(D) : S| is not exactly 5.

Also [Ng(D) : S] # 2 or 4. Since S is Sylow.’2. Subgroup.
So, we are left with [Ng(D) : S| =3 or 1.

But [Ng(D) : S] = 1 contradicts lemma 3.5.

So we are left with [Ng(D) : S] = 3 As S is not normal in Ng(D), therefore,
N¢g(D)/ D is non-abelain.

And, we know that a non-abelian group of order 6 is isomorphic to S3
SO., ]V'G(D)/D = 53

Due to above theorem 3.6, we can choose g; € P; and go € P,, where g3 =
g1 T5g, and Py, Py are distinct Sylow 2-subgroup of Ng(D) other than S and
g1 is an involution in P; — D. Then both g; and g, normalize Z;(D) for all
1=1,2,3,4,5,6,7.

Where Z7(D) = D. Also gag192 € S and gywyg1, gawags € C3
3.7 Lemma

There is an involution u in Ng(D) such z7j, = za3 and centralizes 17, z9;, Z22.
Hence we can assume r3; = zo3 and g, centralizes x,7, zo;, Too.

Proof

First of all we examine the action of g; on Zg(D). Since g, ¢ C3, and we know
that no two elements of Z(S) are conjugate in G, therefore

23 € Z(D)- Z(S)
gy € Z(D)-2Z(S)

Now
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= {1‘23«,12113?24,55231?217?6231'24,1’21-1’24,1’231’2113241}
Z(S) = S91524

= {$211 T4, T21X24, l}

Due to Lemma 3.2, and commutator relations in .S we are left with the follow-
ing possibilities.

(i)

mg}l = Z93z91%94 this shows that [zo4(z23, 221, 224)] is fixed by g1.

x93 = x5, = (z3701724)" = (293291)% = T3z
==> 79,793T2
23] € {zo3, zaa}; 3} € {z23%24, 724}
(ii)
Ty =293 5 Ty =25y = 2537 = (223204)7 = T23% 4
Thus l‘gi = I23T94
x5 € {ZosTyaq, Toa}

g2
r5] € {z3w21, T

(iii)
g1 - __
Toq4 = T23721 _
g1 __ g1T501 __ T _ _
rhy = xhy 0 = (293121) ™ = (293221%24)% = T3z

therefore x93 = z93T21T24
and

z3 € {23724, 704}

x%"i € {zo3,z2}
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(iv)

xfy = TuTu = T3} = 193
4= g
= (w3124)""
= 233 =13
therefore 23] = x93
and
3] € {93791, T2}

g2
r5] € {ro3ToiTo4, Tos}

since role of g; and g5 can be interchanged.

g __ g1

(a) Toyq4 = T23T21T24 ; Ty = IT23
(b) 3y = zo3T94 ;T3 = ToaTom
(¢) 23 = zaz: , 19 = T
(d) x5y = o3 ; TH = To

Next, we examine the action of g; on Zyo(D) = §17592Z1(D) since

S1782 C Z(S) where S = S/Z(D) and 5'_is self-normalizing in Ng(D)/Z (D).
we have due to Burnside’s theorem that S;7 and Syo are centralized by g;.

S17 = 17523521524

Possibilities
(i) = = zi
(7',7:) :E‘(ll-17 = I17X93 => zgé = I3
(777) .'L“‘IJ-17 = Zi17T91 = .'L‘gi = T2
(iv) =iy = 7T = z9, = Zo4
(v) =y = zyzaze = (z21z93)% = 21723
(vi) z{i = zi7x93T = (zo3z94)% = To3Tyy
(vii) =7y = T1TnTHn = (221T24)" = T91Ty
(viii) z(y = T1rTnTnTy = (TnTosTe)? = ToTToy
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Now Case a: Contradicts with (ii)-(viii) and we are left with the possibility
g

but
91 g1
T3 = Ty = [3?10,3?17]

from table no.2.

= [zfb, 2" = 28

) g1 __
91
Tio _

This shows that z17 is conjugate to zo3z17 in S, which is contradiction to table
no. 3. So all possibilities are eliminated by case a.
Case b:
(i) 2y = z17203
and from table 2.

g1 g11 _ ,.91
[IIO’IN = T9y

g1 —
[3?10, $17I23] = T23T21

Igl
T
= (z17223)"10 = z1729;

= T17X23 ~ T17T21
Put
#(z17) = z23

¢(z23)

#(z21) = z24

Z17
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We get 17293 ~ XT3TL4 ~ T3

= T17X923 ~ I3

but table 3 shows that 27293 is not conjugate to xa3
This gives contradiction to the structure of S.
Next

N
T = 217721724
.g1 g1 _ .91
(275, 2% = 23;  From table no 2
g1 -
[»’Em; $17$21$24] = T23T21
= T17X21T24 ™~ T17023T24
= T17221T24 ~ T17T23L24 ~ T17723
= T17T21T24 ~ L17724 ~ T17T23
= ZT17Z24 ™~ T17T23

But under graph automorphism ¢. from table no. 1.

P(z17) = 293
P(zo4) = 29

¢(z23) = 217
Hence we get.

T23T21 ~ T23
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From table no. 4. we see that x3r91 and xy7:093 belong to two different conju-
gacy classes, so in this case we get. contradiction.

Case ¢
o
Tq = L2321
and
g1 __
To1 = T2
gives us
(21724)%" = wog
Now,
-1 g
[z5, 223)% = 13}
g-—l
[z5' , Toza4] = zo32
-1
Igl
= (r21724)™ = zo3%4
Hence

T21T24 ~ T23T24 ~ T3
= T21T24 ™~ I23

This is contradiction from table 3.

Case d
a __
To1 = I21

and
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Ty = Tay
leaves us with the possibility
x ?7 = T177T21
Thus
=y = Ty
Next, by considering

So2 = 92593521524

Possibilities
(7) x%y = Ty
(i)  xly = znry = al = 3
(i1) a3 = Tpra = 13 = Z2
(iv) 235 = zpzy = 3} = Iun
(v) 2% = zaprary = (z21223)% = 21723
(vi) 23 = zaTayra = (TTa)? = TaaT:
(Vi) 13y = TaaTnT = (z21724)% = T2
(vidi) 235 = Tprprazy = (TnTpTu)? = Tl

Now Case a: Contradicts with (ii) - (viii) and we are left with the possibility.

a1 __
Tog = Z22
But
D41

g1 g1l _
[172 y Lga] = To3

[xglv $22] = xgll

= Tgp ™~ T22T21
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This is contradiction in S as x99 and xg9297 belong to different conjugacy
classes in S.

Cases (b), (¢) and (d) = gy carries 217 to 27 or xyrrgiand w9y to w9y O

2272324
g1. g2 are involutions belonging to N (D)
Also

N(D)/D = SL(2.2)

Let

lg191] = 3.2"  for some r

Writing g = (g192)%", we have [g| = 3

We have eliminated that part of g;¢o which belongs to D, that is which fixes
T93, T21, To4. So the action of g on D can be determined by that of g;gs.

Now,
|S17S24] = 4
S178n = [x17, 221, 217, 291, 1]
Since g7, g2 both centralize w1, the remaining two elements a7, & 729, of S~|7S.ﬁ

must be centralized by g¢y¢2 and ¢g will move on all points of S35:4 except
identity.

Without loss of generality, we can assume

g _ . 9 _ NI —
Tog = T24, Thy = T23T 24, (r23194)7 = 23

therefore ¢° =1

SRR
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1

Let w; = g'za*;)g =g r59 = nrg then

9 asg

PO — (a5 9
Xy = Xy = (293294)" = 293 = TU
w97 wsg
Ty7 = T3 = I17
-1
uy __ 97 %59 _
To1 = T =21

Therefore u; takes x93 to x94 and centralizes z17 and z9;.

Let,
u
To] = T2T23T4
Then
u — U1 TrU)
Ty = T
. Trsu
= (woowo3waq)™™™
u
= (xz3)™
= T22723
As before
Let
|1qug| = 3.2°
and write

h = (upug)?
so that |h| =3

and h centralizes 17 and zy;.

without loss, we can again assume.
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h

h h _
Tog = T24, Tyz = T23X24, ($23$24) = T23
h h h
Loy = T22T23, ($22$23) = T22223%24, ($22$23$24) =TI
Let u = h2zszgh

3.8 Lemma

Let u be an involution asin (1.1) in N (D) which act upon Z3(D) = S1652022(D)
and takes x94 to x93 and centralizes xy¢, 217, T20, T21.

Proof
Since S16S90 C Z(S) where S = S/Z3(D), we have S1Z2(D) and SoZ2(D)

are normal in Ng(D) due to Burniside’s theorem. Now the action of g; on
Zy(D) as in Lemma (3.6) and structure of S yield 235 = z152, 2 € Z2(D).

Let 299 appear in zi

215, v6] = [22, z6] = w24
= [z16,28'] = 2%
= [z16, 27¢) = 223
= z16 is conjugate to z1T93 under the action of z3;.
But under graph automorphism ¢ we see that from table no. 1.

Put
P(z16) = T20
¢(z23) = 217
= I ~ T17T22

This is contradiction according to table no. 3.
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Hence oy cannot appear in .
. g
Let a3 appear in afj

(216, z5] = (223, 25] = 224

= (216, 28] = 29}

= |26, 28] = 703
= T16 ~ T16%23
Under group automorphism ¢.
¢($i6) = T
¢(z23) = 17

= 29y IS conjugate to ez 17 in S but this gives contradiction to the structure
of S.

Hence z23 cannot appear in z{j
now the possibilities are:
9 _
Ti6 = L1617, L1621, T16T17721
or

a _
-Tul; = T16

. . g _ —

(@) if 275 = 16717 We take g = g114

ar
T16

(z16217)™

= T16

g
16
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(11) .’13“1% = T1gT21 W€ take g = 1711

i.e.

g — g1T11
Tie = Ti6
= (x1221)™"
= Ti16
(111) If .’13'(1](15 = T1T17T2] W€ take g = 312211
ie.
g1T1T11 r1ri11
Z16 = (z16217221) )
T
= (z16z17021)™"

= 16

This g does not effect those elements which satisfy lemma 1.1. Hénce we find
that g takes z94 to o3 and centralizes z16, 17221%22

‘next, by considering:

a:gb = 902, z € Z9(D)
let z,7 appear in x3j.
= (235, z10] = [217, Z10] = 221
= [z}, T10] = 721
= [220, 270] = 221
= oihzo0(2fy) ™! = zo0za

This implies that z9¢ is conjugate to z9gze; in S. But according to table (3),
these two elements belong to different conjugacy classes in S.
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Thus 717 cannot appear in z3;

Hence the possibilities are

1.e.

<
=
=

T20T22721

T20T22T21T24

L20723%24

= 20

If 23} = 20w00ma1 We take g = g1z

g _
Toy =

L9121
T

(xopxa0221)™

20

(i) . if 23) = To0To3Te4 We write g = g1T59175917591 that is

and

1.911591 591591
24

g
T2

T23)

(
(
(
(
(
(

1 I1T59125912591
20

T20T23T24
20723
To0T24
T20T24
T20T24

T205L'231'24)

T20

4)15913359

)91I591 — (

)911591

)1591

a1

T591T531T591

)gl 5912531

T24

)'Isgll‘sglivsyl
)91'13591:6591

)15911‘591

)29t = (

Toq)" = x93
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Hence we found that g takes x99 to z9g, 724 to x23 and acts on all elements of
Z5(D) as g; in lemma 3.7.

Applying the technique as in lemma (3.7) we get an involution w in Ng(D)
which takes zo3 to a4 and centralizes xyg, 16, 217, 2;. Hence lemma is proved.
We take ¢ to be the involution satisfying this lemma.

This completes the proof of lemma 3. and there by theorem A is established.
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Abstract

Periodic solutions of certain one dimensional non-autonomous differential equations '
(1.6) are investigated, the independent variable is complex. The motivation which is
explained in section one is the conuection with certain polynomials two-dimensional .
systems. Several classes of coefficients are considered; in -each case the aim is to
estimate the maximum number of periodic solutions into which a given solution can
bifurcate under pertubation of the coefficients. '

1. Introduction

In this paper, we consider systems of the form
T =Ax+y+paz,y)
y=-z+ Ay +qa(z,y) (1.1)

where p, and ¢, are homogeneous polynomials of degree n. In polar form,
(L.1) is _ ' 7

F=Xr+ f(0)r", O=—1+g(6)™" (1.2)
where f and g are homogeneous polynomials of degree n + 1 in cos # and sin 6.
Now let

p=r""1 1= r"g(8)) 7! (1.3)

Then p satisfies the first order-non-autonomous equation

L = a(0)® ~ B(0)7* ~ A~ 1)p (1.4)
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where
a(f) = —(n — 1)g(8)(f(8) + rg(8))
and

B(8) = (n = 1)f(8) — 2X(n — 1)g(8) — g'()

Thus a(#) and §(#) are homogeneous polynomials in cos # and sin # of degree
2(n + 1) and (n + 1) respectively. The transformation (1.3) is defined in

D = {(r,8);r""'g(8) < 1} (1.5)

which is an open set containing the origin. It is clear that the limit cycles (an
isolated closed orbits) of (1.1) correspond to positive 27 - periodic solutions of
(1.4). Considerable interest has been shown in systems of the form (1.1), and
much of it has been stimulated by this relationship (see[5],[6],[13]).

In the case n = 2, transformation (1.3) was introduced by Lins Neto [11] and
[7]. The connection between (1.1) and (1.4) for n > 2 was explained in [12].

In order to be able to keep the track of the number of periodic solutions of
almost any class of differential equations it is useful, if not essential, to work
with the appropriate complexified form. This is because the number of .zeros
of the homomorphic function in a bounded region of the complex plane cannot
be changed by small perturbations of the function.

:=a(t)2d + B(t)2* ++(t)z (1.6)

where z is complex but ¢ remains real, and the coefficients a, 3,~ are real
valued functions. We specify weR and seek information about the number of
solutions which satisfy the periodic boundary condition.

We say that such solutions are ‘periodic’ whether or not the coefficients in
(1.6) are themselves periodic.

Quadratic systems have been investigated by means of equation (1.4) by Coll,
Gasull & Llibre[6]. Also Lins Neto [11] has given examples which demonstrate
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that there is no upper bound for the number of periodic solutions of (1.6);
unless, the coeflicients are suitably restricted. The real questions therefore,
is the maximum possible number of periodic solutions for various classes of
coeflicients.

In this paper, we concentrate on the number of periodic solutions for various
classes of coeficients of equation (1.6) which bifurcate out of the origin - a
problem which directly parallels the investigation of small amplitude limit
cycles of (1.1). Following [1] and Lins Neto [11], we consider two types of
coefficients: (i) polynomials in ¢, and (ii) polynomials in cos ¢ and sin t.

In doing so, we will answer some questions asked in [1]. The idea is to consider
various classes C' of equations of the form (1.6), and for each to claculate the
maximum possible multiplicity of the origin, which we denote by g (C).

The multiplicity of z = 0 as a solution of (1.6) is the multiplicity of z = 0 as
a zero of the displacement function ¢ : ¢ — z(w,0,¢) — ¢, as usually defined in
complex function theory. To compute the multiplicity (which we call p), w
write z(£;0.¢) = > an(t)c” where 0 < t+ < w and ¢ in a neighbourhood of 0
and substitute directly into the equation. This gives a recursive set, of linear
differential equations for a,(t); the initial conditions are a;(0) = 1, a(0) = 0
for j > 1. It can be seen that

ar(t) = aq(t)y(t)

ar(t) = exp [ /0 wv(s)ds]

p> 1 iff [Awy(s)ds =0 (1.7)

where

Thus

Since we are interested in the case when z = 0 is a multiple solution, we shall
assume that (1.7) holds. Under the transformation

£ =zexp [— /Ow ’y(s)ds]
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(1.6) becomes '
¢ =a(g +5(1)e* (1.8)

where

and

We note that, if the function «, 8 and ~ are periodic, then so are & and ,H
Also if the multiplicity of z = 0 as a periodic solution of (1.6) is x > 1, then
the multiplicity of z = 0 as a periodic solution of (1.8) is . We therefore
suppose that v(#) = 0 that is A = 0 in (1.6) and so we consider equations of
the form

i =a(t) +8(t)% (1.9)

For this a;(t) = 1 and for n > 1, the functions a,(t) are determined by the

relation.
anp = Z ayajar + 3 Z a;a; (1.10)

i+j+k=n; j k>1 i+j:ni,j21

These equations can be solved recursively, but their calculation is tedious,
involving integration by parts. Let n; = a;(w); then p = k if gy = 1, 0o =
-o- =ng_1 = 0 but ng # 0. These 7, are called focal values. The formulae for
ar(t) and ni for k < 8 are given in [1]. Using the procedure we have calculated
ag(t) and ng to answer the questions raised by Alwash in [1].

We will present ar(t) and ng for k < 9 in the next section. For the calculation
of these focal values for each class we have used “REDUCE” a symbolic ma-
nipulating system. These focal values involve the definite integral of the type
[ a(t)B(t)dt where a(t) and B(t) are polynomials in + with unknown coeffi-
cients and B(t) = [ B(t)dt. To be able to calculate the maximum multiplicity
of the origin, certain criteria are required which ensure that the origin is a
centre, which we will present in section 3. In section 4, we consider equation
(1.6) when the coefficients o and g are (i) polynomials in ¢ and (ii) polynomials
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in cos t and sin t. We have proved that p,.© is given by the table below,
when the coefficients «, 3 are polynomial in ¢.

a/B|1 2 3 45

and if we denote 23 the class of equation (1.6) in which « is trignometric
polynomial of degree 6 and 3 is of degree 3, then g, (Q23) = 7.

2. Calculation of 79 and method of perturbation

In the following theorem we give a,(t) for n < 9. We use a bar over a function
to denote its indefinite integral, that is £(¢) = _fowﬁ(s)ds. To calculate ng we
used the relation (1.10) with n = 9.

Theorem (2.1)

For equation (1.9), the functions ag; - - - ; ag are given by the following formulae.
ay = B
a3 = BZ +
ay = B°+2Ba+ fBa
- = = -~ = 3
as = B*+38%a+ BPa+28 fa+ 2&2

a6 = B°+4B% + Ba + 353Ba + 2852 + gﬁd2 +3Baa — %ﬁaﬂ

a7 = B°+53% + Bla+43°Ba + 23%B + 12—752a2 +38%a
+2(Ba)? + 2B%aa + 8Bafa — B2 + ga3 |

as = B7+6B% + PP+ 53'Ba + 254af + 45°F2a + 3F%a
+38%f3% + 3@3aa + 22—7335[2 — 3/28%Ba2 + 153°Boa

+45%aaf + f2aBo + 125% fa +8F% Ba + 58(Ba)? - %W
—3/2Ba2a + 103a°
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ag = B3+ 78% + B8 + 68°3a + 26508 + 5512 + 35%aa
+38%aB% + 5f%aa + 39/25%a% ~ 233642 + 243°Faa
+6B83%aaf — 103%fa + 128a B + 48a 3% + 43333«

43 o0 —— o = S _
+§&3ﬂ2 + 4B86a3 + 48%a % — 108Ba3%x + 15/2a*32a

+28%62% — 23'a + 8% + 285%afa + 268 2f
+682aaa — 682aad + 126%8aa + 1632a8a8 — 1653%afa
+98%(Ba)? + 9(Ba)a —‘WB +35/8a* — 6aBBal + 68afal
33623 (Fa) - 248%00a + 67%Gaa ~ 45G5a

From these we can now deduce the following result which enables us to calcu-
late the multiplicity of the origin.

Theorem 2.2

The solution z = 0 of (1.9) has multiplicity £ where 2 < k < 9 if and only if
m =0for2 <i<k-—1and n # 0 where

?72=/5
0
wo [
0
n4=/a5
0
775=/C¥B2
0

/Ow(aﬁ?’ — 1/2a%8)

N6

Ny = / a,@4+2015452

0

ng = / afB® + 3aaf® + a,ézE; - 1/2&3,8
: 0

"~ and
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Ny = / af% - 5aaB! — 268° Ba + 208a2 + 2B8a Ba’
0

Having determined the multiplicity g, the aim will be to construct equations
with the maximum possible number of distinct real periodic solutions. The
idea is to make a sequence of perturbations of tlie coefficients, each of which
causes one periodic solution to bifurcate out of the origin.

We start with an equation of the form (1.9) for which g = k say. Let U’ be
a neighbourhood of the origin in the complex plane containing no periodic
solutions other than z = 0. Then by theorem (2.4) in [1], the total number of
periodic solutions with initial points in U is unchanged by sufficiently small
perturbation of the coefficients. If possible, we perturb the coefficients a, 8
and vy so that 9y = n3 = --- = ng_g = 0 but ng_y # 0. There is then a
non-trivial periodic solution ¢(t), say, with ¥(0) € U’, and the only periodic
solutions in U’ are « and the zero solution. Since complex solutions occur in
conjugate pairs, it follows that ¢ is real. Now let W; be a nieghbourhood of
#* and Uy, be a neighbourhood of 0 such that U, UW, c U’ and U; "W, = ¢.
The number of periodic solutions with initial points in each of U; and W is
preserved under sufficiently small perturbations of the coefficients. We then
seek to perturb the coefficients further such that ny = 53 = -+ = n_3 = 0,
but ng_5 # 0. In this case ¢ = k — 2. Now a second real non-trivial periodic
solution has initial point in U;; there remains a real periodic solution with
initial point in W;. Thus we have two non-trivial real periodic solutions and
the zero solution is of multiplicity £ — 2. Continuing in this way we end up
with an equationof the form (1.9) with © = 2 and k ~ 2 distinct non-trivial
real periodic solutions. ' ‘

3. Conditions for a centre

To find maximum possible value of p (the multiplicity of z = 0) for various
classes of equations, we evaluate the quantities n, = ax(w) which are given
in section two, until a value K of k is found with the property that ny = 0
for all k if 5y = n3 = -+ =41 = 0. Then pmax is the smallest such K. In
association with the method which we have described for calculating the 7y,
we need conditions which are sufficient for z = 0 to be a centre. Only then we
know that we need to calculate no more of the nx. Now we will state here the
conditions for z = 0 to be a centre (see [1]), because we will need them in the
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next sectiol.
Theorem (3.1)

Suppose that there is a differentiable function o(w) = ¢(0) and continuous
function f and g defined on I = ([0, w]|) such that

i=a(t)? + 8(1)23 (3.1)

Corollary (3.2)

Suppose that in cquation (3.1) « is a constant multiple of § and that [0“) F(t)dt =
0. Then the origin is a ceutre.

Corollary (3.3)

Suppose that « or 7 is identically zero and the other has mean value zero.
Then the origin is a centre.

Corollary (3.4)

Suppose that a and £ contain only odd powers of sin(¢) or cost. Then the
origin is a centre.

4. Polynomial Coefficients and Periodic Coefficients

In this section we consider equation (1.9) in which o and 3 are (i) polynomials
in ¢ (ii) trignometric function of + (polynomials in cos t and sin(t)). Let (by, ba)
denote the class of equations of the form (1.9) in which « is degrec b; and 3
of degree by. The question was raised in [11] whether an equation of the form
(1.9) can have more than b/2 + 3 periodic solutions where b = max(by. by). We
shall see later that there may indeed be more, even when by = 1. We take
w = 1 for convenience when coefficients are polynomials in # and w = 27 when
the coefficients are polynomials in cos ¢ and sin ¢. First we will consider the
class C} x in which « is of degree one and 3 is of degree k.




Bifurcating Periodic Solutions of Polvnomial Systems

Theorem (4.1)

Let Cq 4 be the class of equations of the form 7 = a(#)z% + 3(+)2? in which
a(t) is of degree 1 and #(t) is of degree b, &k = 1.2.3.4. Then we have the
following results ppa(Che) = 3.4.4.8 for k = 1.2, 3. 4 respectively.

Proof

We need only consider the case in which degree «(#) is four; the cases in which
degree of a(t) is less than four are then special cases.

(i) Let a(t) =a + bt

B(t) = c+ dt +et* + ft* + gt*
Then by Theorem (3.1), we have

b

f
y Ny = a+ —
1 ' 2

LN
m=c+-—+-+=
R=CTyT 3Ty

i

Thus multiplicity of z = 0is g =2 1if 53 # 0 and pg = 3 if n3 # 0 but ny = 0.
If ny = n3 =0, we take

b d e f g
| = — = d = -4+ -4+ =4 = 4.1
a 5 an c <2+3+4+5> (4.1)

Then «(t) and S(t) are of the form

alt) = b(t —1/2), B(t) = d(t — 1/2) + e(t2 — 1/3) + f(#3 — 1/4) + g(t* — 1/5),
and 74 becomes

~b(14e + 21 F + 24q)
5040

N4 =

Now n4 = 0, then either b = 0 or

(21f + 24q)

e = 7 (4.2)

If b = 0 then «(t) = 0 and 7y = 0 gives that the meanvalue of 3(t) is zero,
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hence by Corollary (3.3) the origin is a centre, so we suppose that b # 0. Now
if (4.2) holds then we have

ns = bg(=77d + 49f + 764)/13582800

If now ns =0 then either g=20or

(49f + 764)
7

d =

because b # 0. If g = 0, then «(#) and B(t) are of the form

olt) = b(t—%>
- ferle--3)-3

Let o(t) = t? — t, then 6(t) = 2t — 1

If

Also o(0) = o(1) and we can write o(t) and 3(t) as

o = dfose-).

Then by Theorem (3.1), the origin is a centre with f(c) = b1 and

g(o) = %[d-{-f (0 — %)] We therefore suppose that g # 0. With (4.3)
holding we compute ng, which we found is a constant multiple of £, where

¢ = bg(—2882679800b — 6247512 — 2499001 g — 2455444%)

If in addition ng = 0 then we have either bg = 0 or

2882679800b + 62475f% — 249900f g + 2455449° = 0 (4.4)

We _have already considered the possibility that bg = 0, so we suppose that
(4.4) holds. Further computation gives
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n7 = bg(f + 2¢)(11613f% + 46452 f g + 459684?)

Recalling that bg = 0 has been considered, now, if in addition n; = 0 then
either f = —2¢ or

116132 + 46452 g + 45968¢% = 0 (4.5)

If f = —2¢g then we find that

B —3583¢7
~ 13649807305205205397165840000000

that is 7g is a constant multiple of g7. If bg # 0, f + 2g # 0 but (4.5) holds
then

18

f=kyg, =12

where

kq = —1.7958495, ko = —2.2041505, and in each case ng is constant multiple
g’. Then ng = 0 iff ¢ = 0. But if ¢ = 0, then the origin is a centre, hence
,LLmax(Cl.4) = 8.

(ii) If degree of 3(t) = 1, then e = f = g = 0 in the above calculation and if
no = 13 = 0 then

1
B(t) = d (t - 5) , that is a(t) is constant multiple of 3(t) and

fol B(t)dt = 0. Hence by Corollary (3.2), the origin is a center.
Thus ,Ufma.x(Cl,l) = 3.

(iii) If degree of B(t) = 2. We have f = g = 0. In this case 7o = c + g + 2
and 73 = a + % If ng = n3 = 0 then ny = —14be/5040. Now n4 = 0 iff either
b=0ore=0. If b =0 then the origin is a center as proved above. Thus
we suppose b # 0. If e = 0 then we have class Cy; and we know by (ii), that
/Lmax(cl.Z) =4.
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(iv) If degree of 3(t) = 3, we have g = 0 and

a(t) = a+bt
B(t) = c+dt+et’+ ft°

Then if ny = n3 = 0, we have

(1de + 121f)

= 5040

Now if n4 = 0 then either b=0or lde + 21f = 0. If b, = 0 then the origin is
centre by the same argument as given f or Cy 4 or if 14e + 21f = 0 then

1 1 1
() =b(t——2—), B(t) = [d+f<t2—t§} (f— 5)

Defining o (t) = t? — t we have ¢(¢) = 2t — 1
Also ¢(0) = o(1) and o (t) = 3b5

B(t) = %[d + f(o — 1/2]6. Then the origin is a center by Theorem (3.1) with
flo)=1b/2,and g(o) = 1/2(d + f(o — 1/2)). Hence pmax(Ci3) = 4.

" Now we use the technique described at the end of section 2 to construct a class
of equation in C) 4 with six non-trival real periodic solutions.

Theorem (4.2)
In the equation 2 = a(t)2® + B{t)2?

Let o(t) = {(—=b/2+ €5) + bt}g>

1 3e1 €3 ¢4 2 Te
B(t) = St . s - = t
A {( 77 44 2 3+€6)+< 7 11+€3)

with bg # 0 and
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—2882679800h, = (62475 €, —4356+ €24)g¢>

If €,. 1 <i <6 are chosen to he non-zero and in that order such tliat each
€, 1s sufficiently small compared with €;_y, then (1.9) has six non-trivial real
periodic solution.

Proof

The coeflicients are chosen so that the multiplicity of the origin. p is 8 if
€,=0for 1 </ < 6. Choose €,= 0 for 2 < i < 6 then it can be checked
that 5y = 13 = .-+ = ng = 0 but n; = 0; thus the multiplicity of the origin is
reduced by once: hence o = 7. Therefore one real periodic solution bifurcates
out of the origin. Next with €,% 0 but €3=€,= --- =€4= 0 we have that
o = 3 = --- =15 = 0 but 1 is a constant multiple of €,; so = 6. If €, is
small enough there are two real non-trivial periodic solutions. Continuing in
this way, we have six non-trivial real periodic solutions.

Corollary (4.2)
With a(t) and 3(#) as given in Theorem (4.1), the equation

=)+ 812 +y+6 (4.4)

has eight real periodic solutions if v and § are small enough.
Proof

Ify=0and § =0. p = 2 then (4.4) has six real periodic solution. If v is
non-zero but small enough. then ¢ = 1 and by the argument used in the above
theorem there arc seven distinct real periodic solution; z = 0 is another such
solution.

In the next theorem we consider the class of equation C1 5.
Theorem (4.3)
Let C,5 denote the class of equations of the form

= a(t)2® + B(1)2* (4.5)

[}
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where

alt) = a+bt

B(t) = c+dt+et®+ ftd + gt* + ht°
Then pimax(Cr5) = 8 when f = 0.
Proof

Initially we start with f # 0 then by using Theorem (2.2), we have

clpe lol
= c+—4 -4+ -4+ =4 —
7 2 3 4 5 6
~ a4l

a—
13 5

The multiplicity z =0is p =2 if 9y # 0 and o = 0 if 5o = 3 but 3 # 0. If
ne = n3 = 0 then we substitute for ‘a’ from 3 = 0 and ‘¢’ from 79 = 0. Then
b(—14e — 21f — 24g — 25h)

5040

N4

Now 14 = 0 if either b = 0 or

,_ —(21f +24g +25h) (46)

14

If b = 0 then 73 = 0 gives a = 0 hence a(t) = 0, 72 = 0 then implies that the
mean value of 3(t) is zero. Therefore by Corollary (3.3) the origin is a centre,
thus we take b # 0. If (4.6) holds then we compute

ns = b(2g + 5h)(—1001d + 637f + 988g + 1175h)

Now if in addition 75 = 0 then either

2g + 5h =0 or (4.7)

(637f + 988g + 1175h)

d= -
1001
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because b # 0. If (4.7) holds then

(2t — 1)
2
a(t) = (2t—1)

alt) = b

{2d + f(27 =2t — 1) + h(2t" — 4® — 202 + 4+ + 2)}
4

Define o(t) = +2 — # then &(t) = 2f — 1.

a(0) = a(1) and (). 3(f) can be written as

at) = 1”;“)
d(f) — (T(f) {2({ + f(2(7 — 1) + ]7,(”.'2 —dg 4 2)}

4

The the origin is a centre by Theorem (3.1) with

_{2d+ f(20 = 1) + h(20% — 40 + 2)}
N 4

flo)y=5 and  glo)

Thus we suppose that 2g + 5h #£ 0. If (4.8) holds then by Theorem (2.2) g is
coustant multiple of —b(2g + 5h)w where

w = 71201910600b + 154313252 + 61725300 f g + 89376000 f h
+6064936892 + 173372340gh + 122308350h>

Now ng = 0 only if w = 0 because we have already discussed the possibility of
b(2g + 5h) = 0, in each case the origin is a centre. From w = 0 we substitute
for b and obtain
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nr = —b(2g + 5h) (homogeneous cubic in f, g and h)
ns = b(2g + 5h)(homogeneous quartic inf. g and h)

We cannot draw any conclusion looking at the 17 and 7g therefore for simpli-
fication we take f = 0. Then 77 and ng becomes.

N, = —b(2g + 5h){89338808004° + 378103799292k
+53243188960gh2 + 24945855605°}

and

ns = b(2¢ + 5h){3753259501749882232512¢" + 21178026263462080052804°h
+4477014569382653595192092h% + 42026506748097112570600gh°
+14780811504363697337500h*}

To have the multiplicity of the origin greater than six, we need to prove that
the cubic in 17 and quartic in ng have no common zeros. To prove this we start
by supposing that both have common zero. Then we we get a linear relation
in g and h; say g + kh = 0 and for this value of g, ng is constant multiple of
bh® £ 0. Hence fimax(C15) = 8 with f = 0.

Theorem (4.4)

Let ¢ = a be a real root of equation

8933880800¢° + 378103799292 + 532431889609 + 2494585560 = 0

Choose
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g = o+ €
98861
d = 1175/1001
(988 + 1175/ +1001+63
12
e = —@@wamﬂ4—f?+e4
€3 €4 1222
s = —(1222 1585)/1001 — — — — — —_—
c (1222« + 1585)/ 5~ 3 10010+ €
b

= ——+¢€
a 2+ 5
b = —{60649368(a+ €)%+ 173372340(a+ €,) + 1223083507}

/71202191600+ €

such that | €¢ | << | €5 | << | €g| << | €3] << | €| << | €|

Then the equation (1.9) has six distinct non-trivial real periodic solutions
where

a + bt
B(t) = c+dt+et® + ft3+ gt + ht®

2
’5
{

with f =0, h=1.
Theorem (4.5)

Let Cy 3 denote the class of equations of the form (1.9) in which « is of degree
2 and 3 of degree 3 respectively. Then pimax(Ca3) = 8

Proof
Let
alt) = Ay + Ag(2t — 1)+ Az(2t — 1)?

59
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= (A1 + Ay + As) + 24, — 443)t + 4Ast?

B(t) = Bi+ Ba(2t — 1) + B3(2t — 1)% + B,4(2t — 1)3
= (By— Ba+ B3 — By) + (2B — 4B3 + 6By)t + (4B3 — 12B4)t* + 8 B4t®

Then by Theorem (2.2) 9y = (B3 + 3B1)/3. Then p =2 if gy # 0. If ny = 0,
we take B = —Bs/3 and n3 = (A3 + 34:)/3. The multiplicity of the origin,
pw=3if ng = 0 but n3 # 0. If n3 = 0 we substitute A; = —A3/3. Then ny
becomes ny = (3B4A3 + TBoAs — TB3A5)/315.

To have origin of multiplicity greater than four we set n4 = 0; supposing that
B3 # 0. Let Ay = {A3(7Bs + 3B4)}/(7Bs). Then we compute

N5 = 4B4A3(5B4 + 1132)/72765

If n5 = 0, we have either By = 0 or A3 =0 or

5B4+11By =0 (4.9)

If By = 0 then we are left with class Cyo for which pn.(Ca2) = 4. Thus we
take By # 0. If A3 = 0, then we have class (Cy3) for which pmax = 4 again,
therefore we take A3 # 0. If (4.9) holds we take

By = —5By4/11 (4.10)
Then
ne = —{4A3B4(1694B3 — 126 B3B3 + 4719A3B,)}/(240364624583)

Now ng = 0 iff
1694 B3 — 126 B3 B2 + 4719A3B, = 0 (4.11)

because we have considered A3B4 = 0 before. From (4.11) we substitute for
B3 then 77 is constant multiple of

— A3B3(3009391B2 A5 — 2016 B3B3 4 5204A43B2)/ B
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From n; = 0, we substituted

B3Bj = (3009391B3 A5 + 5204A3B2)/2016

Then 7g = —2B4A3(850563329B2 + 1410471B32)/11249713411086158% which
is non-zero. Hence piy,ax(C23) = 8.

(b) Trignometric Coefficients

In [1] Alwash studied the class Q3 of equation (1.9) in which o is of degree six
and 3 of degree three. Let p,ux(€23) = v3. Since he did not calculate ng, the
best estimate he could give was v3 > 7. To check the multiplicity of the origin
greater than 7, we computed till ng. We will give here, the results obtained by
using a computer program different from Alwash. This program is written in
REDUCE. The «(t) and 3(t) were given by

a(t) = (c+d)cos’tsint + (e + d)sin®t cost)(cos? t + sin’t)
B(t) = (acost+ bsint)(cos®t+sin?t)

Here w = 27 in Theorem (2.2). Then by Theorem (2.2), we have

n=n3=mn=0 but gn5= —%ab(c—l—?d—}—e)

jois 5 if 95 # 0. To have multiplicity at the origin greater than 5, we set n5; = 0
either

a = 0 or b=20 or
e = —(c+2d) (4.12)

If a# 0, b=0then a(t) and 3(t) becomes

a(t) = (c+d)cos’tsint + (e +d)costsin®t
B(t) = acost
Let o(t) = a sint, then 0(0) = o(27) and also o differentiable. Hence by

Theorem (3.1) origin is a centre with g(¢) = 1 and f(0) = H[o?(c +d)o +
(e~ c)a?)]



62 Nusrat Yasmin

If b # 0 but a = 0 then a(t) is the same but 8(¢) =b sint. Let o(t) = —bcos
then o(0) = o(27) = —b. Hence origin is a centre by Theorem (3.1) with
glc)=1and f(r7) = -514—[(6 —¢)o® - b?(e +d)o]. Now if ab # 0 but (4.12) holds
then ng = 0 but n7 = Fab(a + b)(a — b)(c + d)

ng =0
Mo = gzab(a +b)(a = b)(e + d){6(LLE> + ) + (c + )}

i.e.

ne = %{6(11b2 + a2 + (c+d)}ns

Thus ng = 0 whenever n; = 0. To prove that py.(23) = 7 we need to prove
that if 77 = 0 then the origin is a center. Now n; = 0 if either

a+b=0 or a—-b=0 or c+d=0

Ifa—b=0buta+b#0, c+d+#0 then a(t) and 5(t) becomes

a(t) = (c+d)cos®tsint — (¢ + d) costsin’t
B(t) = a(cost +sint)

Let o(t) = sint — cost. Then o(0) = o(27). Also if we define

fla) = (¢ + d) (”22‘1> o and g(¢) = a then origin is a centre by Theorem

(31). Thusa—5b # 0. Nowif a+b = 0 but c+d # 0 then a(t) is the
same but 3(t) = a(cost+sint). Then origin is a center by Theorem (3.1) with

g(o) =aand f(o) = (C+d)~(1_2”2>0. Hence a +b # 0. Nowifc+d =0 as

a+b#0, a—b#0. Then a(t) = 0 and meanvalue of 3(t) is zero, therefore
by Corollary (3.3) the origin is a center. Thus we have the following result.

Theorem

Let Nmax(QS) = V3. Then V3 = 7.




Bifurcating Periodic Solutions of Polynomial Systems 63

References

[1] M. A. M. Al-wash & N. G. Lloyd Non-autonomous equation related to
polynomial two-dimensional systems, Proc. Roy. Soc. Edinbury Sect. A 105
(1987). 129-152.

[2] R. Boman, Quadratic vector field in plane have a finite number of limit
cycles, Inst. Hautes. Etutes. Sci. Publ. Math. 64 (1987), 111-142.

[3] N. N. Bautin, On the number of limit cycles which appear with a varia-
tion of coefficients from an equilibrium position of focus or centre type, Amer.
Math. Soc. Transl. No. 100 (1954).

[4] T. R. Blows & J. Llibre, The number of limit cycles of certain polynomial
differential equation, Proc. Roy. Soc. Edinburg Sect. A 98 (1984), 215-239.

[6] M. Carbonell & J. Llibre, Limit cycles of a class of polynomial systems,
Preprint, Universital autonoma de Barcelona 1987.

6] B. Coll, A. Gasull & J. Llibre, Some theorems on the existence unique-
ness and non-existence of limit cycles for quadratic systems, J. Differential
Equations 67 (1987), 372-399. '

[7] W. A. Coppel, A simple class of quadratic systems, J. Differential Equa-
tions 64 (1986), 275-282.

[8] H. Dulac, Sur less cycles limites, Bull. Soc. Math. France 51 (1923),
45-188.

[9] A. Gasull, J. Llibre & J. Sotomayer, Limit cycles of vector field of the form
X (v) = Av + f(v)Bw. J. Differential Equation 67 (1987), 90-110.

[10] D. Hilbert, Mathematical Problems, Bull. Amer. math. Soc. 8 (1902),
437-479.

[11] A. Lins Neto, On the number of solutions of the equations % = Y i—ai(t)t 0<
t < 1 for which z(0) = z(1). Invent. Math. 59 (1980), 67-76.

[12] N. G. Lloyd, Small amplitude limit cycles of polynomial differential equa-



64 Nusrat Yasmin

tions, Ordinary differential equations and operators, eds, W. N. Everitt & R.
T. Lewis, Lecture Notes in Mathematics, No. 1032, Springer-Verlag (1982),
346-357.

[13] N. G. Lloyd, Limit cycles of certain polynomial systems, Non-lincar Func-
tional Analysis and its applications, ed. S. P. Singh, NATO ASI Series C, Vol.
173 (1986), 317-326.

RN AT SIS 2



Punjab University :
Journal of Mathematics (ISSN 1016-2526)
 Vol. xxxiv (2001) 65-76

CONSTRAINED INTERPOLATION

Sohail Butt
Department of Computer Science,
University of Engineering & Technology,
Lahore-Pakistan.

Malik Zawwar Hussain
Department of Mathematics, University of the Punjab,
o ‘ Lahore-Pakistan. N
Email: malikzawwar@hotmail.com

. Muhammad Sarfraz
Department of Information and Computer Science,
King Fahd University of Petroleum and Minerals, P.O. Box 1510,
" Dhahran 31261, Saudi Arabia.
Email: sarfraz@ccse.kfupm.edu.sa

Abstract

The problem of the Constrained Interpolation is considered in this paper.
The problem assumes data on the same side (above or below) of a function of
independent variable and looks for an interpolant that also lies on the same side
of the function. To tackle this problem, a rational cubic spline involving three
free parameters in its description is used. Necessary and sufficient conditions
have been determined so that when these conditions are satisfied, the rational
cubic spline lies on the same side of a linear function. o

keywords: Interpolation, Constrained interpolation, Rationa_l cubic spline.
; 1. Introduction

The classical problem of interpolation - to determine a function that matches"
the given discrete values - is extened to Constrained Interpolation as below:
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Given data points {(f,. f;) 1+ =0.1... .. n} such that
s.fi>s.g(t;) forall i=0.1..... n (1.1)
wlere s = { -1
N

coustruct an interpolant S(t) such that

S(t,)=f; forall i =0.1..... n

and s.5(t) > s.g(t) for all € [to.t,]

The interpolant S(#) may also be required to have a certaiu degree of continu-
ity. For visual purpose, S(t) € C'[tg. t,] gives a reasonable pleasing effect. The
function ¢(#) may be any continuous function. However, this paper considers
tlie case where g(#) is a straight line. that is,

g(t) =mt + ¢

where m is the slope of the straight line and ¢ is the y-intercept.

We use a rational cubic spline. Sarfraz(1994) to construct S(+). This spline
involves three free parameters in each interval. A particular case of this ra-
tional cubic spline when one parameter is taken equal to 2 is considered in
Gregory ot al(1994). To counstruct a constrained interpolant, we impose re-
strictions upon these parameters. Wlhen these parameters are assigned the
restricted values. a desired interpolant is constructed.

The rest of the paper is organized as follows: In Scction 2 of this paper,
a rational cubic spline is described. In Section 3 we develop necessary and
sufficient conditions which ensure the (tonstru(ttibn of a constrained interpolant.
Nunerical exainples have beent included in Section 4 for illustration.

2. Rational Cubic Spline

lecewise tational cubic spline S € Clty. t,]. is defined for t € [t;.t,4].7 =

Ay
0.1.20....n— 1. by

S(f) = Si(f.ais.Bia’Yi) = ZIE:; (21)

I
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where

pi(t) = o, fi(1 = 0)> + ViB(1 — 0)* + Wib*(1 — 0) + 3, f,4.,6°

a(t) = ai(1 — 8)? + 1,0(1 — 8) + B,6*
V«,j = (’)’«,’, + a,;)f,; + Qf-il7-idi and LV,', = (’)’,ﬁ + ﬂ«,;)f,;+1 e ‘[3,,;]7.,1(1.,1_,_1

where f; and d; are respectively, the data values and the first derivative values
at the knots #;,4 = 0,1,2,...,n with tg < #1 < ... < tn, hy = iy —1;,0 = &0
and a;, B;,v; are free parameters. The spline S(#) has the Hermite interpolati(‘)n
properties, that is, A

S(f,,;)zfi, 7:=0,1,...,7’I,

The derivative values d; (if not given) may be estimated by using the standard
three points difference formula. A comperhensive survey of estimating d,’s is
given in Boehm et al(1984). Since the Hermite conditions are satisfied for the
arbitrary values of «;, 3;, and ~; so S(t) produces infinite number of interpolant
(by varying the values a;, §;, and 7; a new interpolant is constructed) through
the same data. For example, when we take a; = 3; = 1 and v; = 2, for all
i=0,1,...,n — 1 the rational cubic spline S(#) reduces to the standard cubic
Hermite spline and the restrictions

«; Z 0) Bi Z 0) Yi > 0 (22)

ensure a positive denominator in (2.1). This encourges us to look for the values
of a;, B;, and ~; that also satisfy the conditions of constrained interpolation.

3. Constrained Interpolation

A particular case of constrained interpolation (1.1) may be defined as below:
Given data points {(#;, f;) : « = 0,1,...,n} above a straight line L,(t) =
mat + ¢y, that iS,

fi>myt;+c forall i=0,1,...,n (31)
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determine a function S(t) such that

S(ti)=fivi=0,1,...,n (3.2)
S(t) > Ly(t) (3.3)
and S(t) € C[tg, tn] (3.4)

The rational cubic spline (2.1) satisfies the conditions (3.2) and (3.4). We,
therefore. require (3.3) to be satisfied.

In each interval [t;.t;41]. we have ¢;(#) > 0 when a;, 8;, and v; satisfy the
counditions (2.2). Therefore, (3.3) is reduced to

Ur(t) = pi(t) — Ly(t)g:i(t) 2 0

Since, in each interval [t;, t;+1], the Bezier form of the line L (t) is given by:

Li(#) = Ai(1 — 8) + B,#

where A; = L1(t;) and B; = L1(tiy1)

Therefore, the cubic polynomial U;(#) can be expressed as:

Us(t) = ai(fi — A)(1 = 0)° + ¢i0(1 = )% + 0,0%(1 — 0) + Bl fir — Bi)0® (3.5)

¢, = Vi —oB; — ’71A1 and Qi = W, — vB; — B A;
Since Uq(t;) = ai(fi — A;) > 0 and Ui(t;41) = Bi(fix1 — Bi) > 0 so we may
look for Uy(t) satisfying the following condition:
Ui(t) 2 0Vt € [ty tiy1] (3.6)

In case Ui(t;) = 0 = Uy(t;41), we have

fi=miti+ 1

fixi =mitii+

Then the assignment
(i,j =m,, dH—l =mi
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gives S(t) = mqt; + ¢; and so U;(t) = 0 satisfies the condition (3.6). However,

if Uy(t;) = 0 but Uy(tiyq) # 0, then f; = myt; 4+ ¢1 and the assignment d; = m;

guarantees ’
S(t) = mit +c;

and U](t) = S(f) —mqt;+c¢1 >0

Similarly, if U;(ti41) = 0 but U;(t;) # 0 then d;;; = m1 guarantees Ul(rt) > 0.

For rest of the discussion we assume that both U;(t;) and Uj(tiy1), are
non-zero that is, Uy (t;) # 0 and U;(t;41) # 0. Then,

fi >mat +

fix1 > mitip + ¢

In (3.5), au(fi — A;) > 0 and B;(fiy1 — Bi) > 0 therefore Ui(t) > 0if ¢, > 0
and ¢; > 0 that leads to the following sufficient conditions:

Theorem 3.1

Let {(t;, fi) : i = 0,1,...,n} be given data satisfying condition (3.1). Then
the rational cubic spline (2.1) also lies above the straight line L;(¢) provided
the following conditions are satisfied:

a; >0 if fi — (mitip1+c1) +hidi >0
—vi{fi = (miti 4+ c1)} ]
fi — (mitip1 +c1) + hid;

a; € [0, otherwise (3.7)

Bi >0 if fiy1 — (miti+c1) — hidiy >0
B0 —yil fir1 — (mati1 + 01)}]
' " fir1 — (mati +c1) = hidigy

otherwise (3.8)

The above theorem only gives sufficient condition. However, using the nec-
essary and sufficient conditions for cubic polynomials given in Schmidt and
Hess(1988), the following necessary and suffficient conditions can easily be
developed:
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Theorem 3.2

The rational cubic spline (2.1) lies above a straight line if and only if the free
parameters present in the description of the spline satisfy either the conditions
(3.7), (3.8) or the condition given by:

36 fifira[X3 + x5 + x1x2 — 3Q:(x1 + x2) + 3AZ] + 3(fir1x1 — fix2)
(2hix1x2 — 3fivix1 + 3fix2) + 4hi(fir1x> — fixd) = P332 >0 (3.9)

where x; = Ui(t:) and x2 = Ui(ti+1)

Similarly, if the data {(¢;,f;) : 7 = 0,1,...,n} lies below the straight line
Lo(t) = mat + co then the following theorem gives the conditions which ensure
that the rational cubic spline (2.1) also lies below the straight line:

Theorem 3.3

The rational cubic spline (2.1) lies below a straight line if and only if the free
parameters present in the description of the spline satisfy either the conditions:

a; > 0 if fi — (maotiy1 +co) + hid; <0
—vi{fi — (mati + c2)} ]

T (gt £ 2) & hudl otherwise (3.10)

o; € [0,

Bi >0 if fiy1 — (mati+cg) — hidiy1 <0
B € [0 ~vi{ firr — (matip) +c2)} ]
' " fir1 = (mat; + c2) — hidiny

otherwise (3.11)

36f: finr[X3 + X5+ xax2 — 3Q:(x1 + x2) + 32 + 3(Ffisixa — fixa)
(2hix1x2 = 3fiz1x1 + 3fixe) + 4hi(fir1xS — fix3) — h2x3x5 <0 (3.12)

4. Numérical EXample

In this section we consider a data that lies above the line y = 1 + z/2. We
first use cubic osculatory method which produces a curve shown in Figure 1.
A portion of this curve in the intervals {3, 7| and [9, 13] lies below the line and
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s0 is not in accordance with the shape of the data. We then use the rational
cubic spline (2.1) and assign values to free parameters developed in Section
3. Two curve in Figure 2 and Figure 3 are generated for different values of
free parameters. Both curves lie above the given straight line and preserve the
inherant shape of the data.

Table

This example shows that the use of rational cubic spline (2.1) is two fold: it
generates a desired curve and allows user to modify the shape of the curve
simply by changing the values of free parameters.

5. Conclusions and Suggestions

This paper has given a simple method to construct curves through data that
lie above/below a line. The method described here is local and allows user to
refine the first draft of the constrained curve to a desired shape.

The future work will investigate for the generalization of tliese methods
to 2D case where the requirement is to produce a surface through constrained
data, that is, the data which lies above/below a plane. The work related to the
situations where such a data is arranged over a rectangular grid is currently
under preparation and will be presented in a subsequent paper.

The present study is only for the single valued curves. The problem can
also be extended to parametric case where even stronger conditions could be
imposed. For example, one may require an interpolant which simultancouly
lies above, below and between various lines.
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Abstract

Linear, twelfth-order boundary-value problems (special case) are solved, using poly-
nomial splines of degree twelve.

The spline function values at the midknots of the interpolation interval, and the
corresponding values of the even-order derivatives are related through consistency
_relations. The algorithm developed approximates the solutions, and their higher-
order derivatives, of differential equations. :

Two numerical illustrations are given to show the practical usefulness of the »
algorithm developed. It is'observed that this algorithm is second-order convergent.

Keywords:

Two-point boundary-value problems; finite-difference methods; twelfth-degree
splines.

AMS Classification: 65L10
1. Introduction

When an infinite horizontal layer of fluid is heated from below and is subject to
the action of rotation, instability sets in. When this instability is as ordinary
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convection the ordinary differential equation is sixth order; when the instability
sets in as overstability, it is modelled by an eighth-order ordinary differential
equation.

Suppose, now, that a uniform magnetic field is also applied across the fluid
in the same direction as gravity. When instability sets in now as ordinary
convection, it is modelled by a tenth-order boundary-value problem; when
instability sets in as overstability, it is modelled by a twelfth-order boundary-
value problem (for details, see Chandrasekhar [4]). Finite difference methods
of solution for such problems were developed by Boutayeb and Twizell [1,2,3],
Djidjeli et al. [5], Twizell [10], Twizell and Boutayeb [11], and Twizell et al.
[12].

Usmani [13], solved fourth-order boundary-value problem using quartic splines.

In the present paper twelfth-order boundary-value problems are solved using
twelfth-degree splines, introducing new consistancy relations.
These problems have the form

y) 1+ o(z)y = Y(z), -oo<a<z<b<oo, (L1)
y(2k)(a) = A2k 3 y(Zk)(b) = B2k ) k = 0, 1, 2, e ,5 '

where y = y(z), and ¢(z) and ¢(z) are continuous functions defined in the’
interval z € [a, b]. A; and B;, i =0,2,4,6,8, 10, are finite real constants.

2. The Twelfth-degree spline
2.1 Consistency relations

The interval [a, b] is divided into n > 22 equal parts, thus introducing n + 1
grid points z; so that

z; = a+ith, 1=0,12,...,n,

b—a
n

Tg = a, T, = b and h =

The exact solution of the problem (1.1) at z .= z; is y(z;). Let s; be the

S

approximation to y at z; determined by the twelfth-degree spline defined on
the sub-interval [z;, ;4] by
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Qix) = aifz-— )2+ bi(z — 2\ + iz — )0 + di(z — z;)°
+ ei(z — x;)% + filz — )" + gi(z — 2;)°
+ li(x — T1)5 +ri(z — .10,;)4 + ui(r — x,;)3
+ vi(x — 2)i)* + wi(z — z) + 2,
i=0.1....,n—1 (2.1)

The twelfth-degree spline s(x) € C''[a, b] can, thus, be defined as

s(z) = Qilz), z € lzi zig1], 1=0,1,...,n -1 (2.2)

The coefficients of (2.1) are determined, (see[9999]), as

1 .
T 1?9—()161‘6_(%55?32 (2.3)
" 3—9@3@ (2. 4)
G = wsgﬁ/z - mhsgzi) - ———-—290310400 128511732 (2.5)
= 36288087(‘11) 1 (2.6)
oo 4_(J%S’('lﬁ/)2 - soem"™ ~ Tmasen” et Gt
+ Soesrh o (2.7)
1 Vit
i = MSS" ! (2.8)
+ Baage" S T 172%)6’75351’:)
- %@5 Ssiin)s (2.9)
T
L= e (2.10)
ro= sl el - o ok 4 S
thg(j’z) _ 61 6 (x) _11__}’78(_::1)

_ 5, 0 8 ,
5760 %t 1105920 "2 1 967680
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277 '
b p8s) 2. 11
T 19545216 12 ( )
1 1"t ( 2 12 )
'Uvi —57 .
6 /
14 1 " 1 2 (w) 1 3 (v) 5 4 (’Uz)
. Lh5s(v77) . 61 6 (vnz) 17 h7 (n)
480 92160 “#1/2 7 80640
2778 () 81 o 5@
T d128768 " *+1/2 T 1451520
50521 10 (zid)
- h s 2. 13
7431782400 +1/2 ( )
w; = s, (2.14)
and .
1 / 1 2 " 1 3 5 4 (”))
Zi = Siy1/2 — 5}787 ’— 8h 1+1/2 24h S, @'h i+1/2
1 61 ; 17
IR RON o500 o T 7 )
240 °* T 46080 “#1/2 T 20320
277 g (vii) 31 g (i)
= p8! _ B9t
T 2064384 “i+1/2 7 75760 o
50521 " 691 zi
_ 0 () o 11 ()
3715891200 Sit1/2 159667200 ¢
540553 12 (zii) -
—_— e 4 g1 2. 15
T 392398110720 i+l ( )
The odd-order derivatives of the splines are calculated, (see[9]), as .
@) _ @ @ y_ Lo @) _ )
hs; = (s Sit1/2 7 S 1/2) ,gh (Si+1/2 - 31—1/2) 3 (2.16)
(i) _ glviii) _ (vidd) 1 B2 (@
hsg = (83419 = Si_ 1/2) Y (Sz+1/2 Si— 1/2)
1 47 (zii) V (zid) .
+ '351}7 (s} Si+1/2 = Si112) (2.17)
(vis) _ , (vi) (vi) L o, (uis) (viid)
hs; = (31+1/2 — S 1/2) - _h' (31:+1/2 - 31‘—1/2)
4( . (m) ) 6( (zit) :E’I‘I) )
5760 1+1/2 S -1/2 15360 1+1/2 S 1/2/ >
(2.18)
O BN ) B ) S o VN OO BN O
hsi” = (Si+1/2 - 3¢—1/2) ﬁﬂ* (y i+1/2 ~ Sie1/2)
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4, (viid) (vidd) 31 (z) (r)
+ 5700]7 ( 1+]/2 S.17—1/2) - 967()80 ( 7+1/2 S 1/2)
17 8, (xii) (i)
+ To391020" (%) 10 = 50 00) (2.19)
" " " 1 . v i
hsi = (S — 51‘—1/2) - ﬁhz(. fll)/,_, -5 5 ])/))
| 7 1, {uvi) (vi) 31 6, (viir) (viai)
T osren” e T S2) T gamego” S T Sea)
127 s ) (r) 31 10, (i)
LR, O I D L S TS
I5a828800) iz T Simie) T mmpmesnh (e
— s (2.20) (2.20)
and
’ . ]. 2 1" 4
hs; = (81+1/~2 - 81'—1/2) - ﬂh (371+1/2 - 51'—1/2)
T a0 ) 31 6, (o) (vi)
+ 5—7_6—6]7 (81+1/2 S 1/2) 967680]7 (S'i+‘1/'2 - 81'—]/2)
127 8, (viid) (vidd) 73 10, (x)
bl sl ey 19 pioql
Tas28800 " i1z T Simv2) T geiapeameg (S
(x) 691 12, (xii) (xid)
= s+ Gaaosessizog” e T S (221)
The cven-order derivatives of the splines are defined, (see[9]), as
/7'10*‘>'§i)1/2 = (5‘,’-]1/2 — ].OS,j_g/g + 4531’,—7/2 - 1205’7'-5/2 + 2108,'_3/2
- 252&‘/,-“1/2 + 2105,‘+1/2 - 12081j+3/2 + 45_S1j+5/2 - 1081j+7/2
1
Sirar) — B! ( ) 53143057
+s972) ~ Togiooosssenn” \-ire Yi-o/2
+ 2382048295"), + 111849694165.7),
+ 143515424210s.7,), + 5076176242285\,
(wid) (zit)
+ 1435154242107, + 1118496941657,
+2382048295'7%), + 5314305 7%), + 5\75), )
=6, 7,...... .n—>5 (2.22Y)

(si—13/2 — 48i-11/2 — 148,-9/2 + 140s;_7/2 — 4655,_5/»
+ 88881_3/2 - 109281‘_1/2 + 8885‘,‘_‘_1/2 - 4655,‘,4_3/2 + 14081'_‘_5/2

— l4s,47/2 — 485492 + 5i+11/2)
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1 10 (z)
sigmataaee " (50ha + 53142857, + 23723197057, ,
+ 107089111885\, + 1213837802075, ,, + 4770205644245-."'? /2
+ 74328801016451”1 e 4770203644245(11 15+ 1213837802075, )
+107089111885) , + 2372319707, , + 53142857
) .
+ 91+11/z) ~ (2.23)
U 1 3 . vy —
h8s S ]/)) 3 (—S,j,,l'l/g + 133,'_9/2 - 695,;7/-_3 + 20—181_5/-,_) — 31’8(5‘“,;),/._)
+ 4625,;_1/2 - 3783‘-,’4_]/2 + 204(S;+,;3//~3 - 69514_5/-2 + 135,;4_7;/2
1 [ (o) . (i)
— siq0/) + 58809/166080017 (57 5 + 531427574,
+ 2367005335 /, + 1046689634051"'5' 7
+ 1085259641065, "), + 2683873748665,
+ 1085259641067 ), + 1046689634055,
+ 2367005335 7% ), + 531427075, + 5700, )
r=6, 7,....... n—75, (2.24)
(85_13/2 + 6881'__11/2 - 350.8‘73_9/2 + 30887'_7/2 + 1647»5'i_.5/2
- 54963,’_3/2 + 764487j__1/2 — 549681;+1/2 + 16478,'_4_3/2 + 308.8‘,,j+5/2
- 3508,;_*_7/2 + 688,14_9/9 + 51’+11/2)
1 8 f (vid) (vidi) (vrid)
ossaia" (1702 + 53142857, + 2372310705,
+ 107089111885"), + 191383/802079“””/ ) + 4770205644245 "),
+ 743288515164, “;’/)2 + 4770205644245 i’;’/z + 121383780207, i’;’/’)
+10708911188s 1’;’/2 + 237231970 i’;’/’z + 531428 ,i’;’/)z
+ 351’;”3/2) , o _ (2.25)
U . 1
hes = 520 (13510112 = 190592 + 1305si_7/2 — 4680552

+ 96908,‘,_3/2 — 1227681'_1/2 + 9690814.]/2 - 4680.6‘1'+3/2
+ 1305si45/2 — 190s;47/2 + 135,1.9/2)
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!
" 087773286 1000
+ 30659470975;7%), + 1311706850485,

+12236122468105."3), + 2695333801005, ),

+1223612246810s.5)), + 1311706850485+,

+ 30650470975,%), + 6908530s(37), + 135(75), )

i=6.7 .. .....n—5, (2.26)
(3.i_13/2 + 7165,1_11/2 + 62265,1_9/2 - 289005i_7/2 + 129755,1_5/2
+ 90648s;_3/2 — 1633325, 12 + 90648512 + 129755;,3/
- 289()05,+5/2 + 62268«,’4_7/2 + 716314.9/2 + 3i+11/2)
1 G (ve) - (e1) o ()
- s (5170 + 53142851, + 2372319705."7,

+ 107089111885'"") o+ 1213837802075, (o) t 4770205644245'") /2
+ 7432885151645 , + 4770205644245 %), + 1213837802075,

+107089111885," , + 2372319705 , + 5314285'")

2 (135", + 69085305, ),

i4+7/2 i49/2
V1)
+ 1+11/z) ; (2.27)
4 () _ 1
hes, = 1—51—26(—8251;_11/2+12613,1_9/2~97385,;_7/2+52428511_5/2

— 140196s,_3/2 + 192654s,_1 /5 — 1401965,,1,2

+ 5242851372 — 97385152 + 12618472 — 825,19/2)
1

* 39665297170432000

+ 19300816986311’32 + 8129499485003if’g>2

+ 7222638646292, + 1521657319512257),
+ 72226386462925 71, + 8120499485005

12 (zid) (1)
hi? (82575, + 4357681057,

i+1/2 1+3/2
(zi3) (zi4) (zi7)
+ 193058169865."), + 43576810575, + 82535), )
i=6, 7, ...... n—=2>5, (2.28)

(si—13/2 + 65485;_11/2 + 305410s;_g/2 + 11981485, _7/5
— 3302673s;_5/2 — 26229365;_3/2 + 8831004s;_12
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-2 "
h2si_1y2

~ 25200

96229365412 — 3302673s:13/2 + 11981485,,5
+ 30541057‘4_7/2 + 65488,+g/) + Sit11 /2)

L1 "
190080 (5102 + 5314285, , + 2372310705,

10(0891118855”7/2 + 121383780207s, ’j,/z + 4770205644245, ") ,

+ 743288515164s.") , + 4770205644245.,"] , + 1213837802075,

+107089111885. 3, + 237231970s'"") , + 531428sL,

+ 55121/2) ’ (2.29)
1

(SS,j_ll/Q — 12551‘,_9/2 + 100057:_7/2 - 60005,;5/2
+ 420008,j_3/-2 - 73766.91'_]/2 + 42000<97‘_+1/2
— 60005432 + 100081572 — 1255172 + 8sisg)2)

1 .
— . hlZ <8 (x14) 4951395 (2i4)
49442161950720000 i—11y2 T 42013998, 4,

+ 188244447257, + 88574586085, ", ),

+ 6804832582405, + 1432258134554 "1,

+ 6894832582405

[, + 7885745860857

i+3/2

(1) (is) (id)
+ 1882444472s,; o) + 4251395, ir772 T 88 ,+9/2) ;

i=6,7,...... n-5, (2. 30)
(si—13/2 + 590365,_11/2 + 89980665, _9/2 + 1601276603, _7/2
+ 5594376155, 572 — 1084531925, 375 — 12403383725, 1/
— 1084531925412 + 5594376155, 43/2 + 1601276605, 45,2
+ 89980668,‘,+7/2 + 590368,‘,4_9/2 + 8,;+11/2)
1

52
+ 10708911188s; -, + 121383780207s,_; , + 4770205644245, s,

=’ ( 13y + 5314285, 5 + 2372319705, _g

4 743288515164, j2 + 4770205644245, 1, + 1213837802075, 4.,

+107089111885; 55 + 2372319705, 7/, + 5314285, 4/

+ Si+11/2) (2.31)
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aund
(.S‘,‘__lg/g — 125‘.,-_]1/2 +.668i‘_g/g - 2208.,‘_7/2 + 4958,—__5/2 — 7928,;%3/2
+ 924.9,1_1/2 - 7925,’+1/2 + 495.91;+3/2 — 22081j+5/2 °
+ 66si47/2 — 125;09/2 + 31’+11/2)
1
- B2 ( T+ 53142857 4 2372319705
[o6Tao0553600" (i + 5 -2t 5072

+ 107089111885."7), + 1213837802075 "), + 4770205644245, "),

+ 7432885151645"), + 47702056442457), + 1213837802077,

+107089111885¢77), + 2372319705 75, + 53142857,

+olls) =T 80— (2.32)

Following Siddiqi and Twizell [9], the new consistancy relations are defined,
to determine the even-order derivatives of the splines.

In addition to the (-onsistan(y relations (2.24), (2.26), (2.28), (2.30) to de-
ﬁne even-order derivaties s; 7;72 51“1)/,, 51( Ll)/z and 51”)1/2 i=6,7......,n—

. thie corresponding n n new consn’rdnq relations are defined as under:

1
8 (viid) ‘ s 2Q . = .
WS = reres (181669,11/ — 11705385, g/ + 4755889572
—117080245,_52 + 194659785375 — 229499485, _1 /2
+ 194659786,+1/2 - 1170802481'_,_3/2

+ 47558895,,5/2 — 11705385;47/2 + 131669s,.19/2)

3084360;123718400 ( 1316695, , — 6997194947057, ,
— 308039339868015") , ~ 1259425317190504s'") ,
~ 10029740769032890s ") ,, — 21509275265234932s'%) ,
~ 10029740769032890s(7) ,, — 125942531719050453 ,
~ 30893933986801s 7 ,, — 699719494705 %), — 1316695519/2) ,

1=6,7,......,n—05, (2. 33)
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1
6 (vi) — YUCOEART
s 5p = Ticoote (—130407s;_11/2 + 10117665, g2 — 2360667s;_7/2

+ 449032s,_55 + 65217945;_3/» — 1098303651/

+ 652179487—+1/2 + 44903281‘+3/2

— 23606675152 + 1011766.s7~+7/~) — 130407s49,2)

1
286748843389747200

+ 30676238680039s 7/2 + 12814234206()79285

10 (13040757, + 6930144105857},
i
+ 11099628319731134s'7), , + 22690797221056908s'",

()
+ 110996283197311345.7

1/2
()
+ 12814234206679285. 1,

+ 30676238680539s 7, + 693014410585\, , + 130407501y /))

i1=6,7........n—5, (2-34]I

Ris™) o (1235997, 11/ — 82677145, g/ — 502503s;_
i—1/2 140305920( 5997s; 11/2 8267714s; 9/2 J S$i-7/2

+ 2468753685575 — 8815954465, 375 + 1284508596s,_12
~ 8815954465, 12 + 246875368s13/9 — 5025035452
—8267714s,,7/5 + 12359975,,9/2)

1
" 34409861206769664000
— 291451685669913s "), , — 124495515556288725.") ,

- 1152903318396105703. A 2336771475907421163(. )

10 (~12359975.7%, , - 6368400899905, ,

/ 1/2
— 115290331839610570s'" +1/2 — 124495 515&"')()6288723(_3;3/2
(z) (x)
- 291451685669913s, i+5/2 — 656840089990s,.7 5 — 123099751+g/)) ,
=6, 7,...... ,n =5 - (2. 35)

and

1" ]. ;
s = ————— (—11044753s;_ 83557545,_o/2 + 1016247075,
%12 = 33571301560 | 3si-11/2 + 6835575455972 + Si-1/2

— 33889085525, + 35394833166;_3/2 — 643297206445,_1/
+ 353948331665:11/2 — 3388908552s:13/2 + 101624707515/
+683557545,, 779 — 110447535, /)
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1 10 ( (x)

+ 110447535\ |, + 5869466820542

5780856652737303552000 %2 T 2425
+ 2607320271000701s ", , + 1125185580354831125," ,
+ 10720854635915609465.", , + 2169470806548219572s.") ,
+ 10720854635915609465', , + 1125185.580354831123(.1;’.5 /2
+ 2607320271000701s 7, + 58694668205425.") , + 110447535y /,) .
1=6.7.......n—5 : (2. 36)

Since the system of equations (2.32) provides n — 12 equations in n un-
knowns (s;_y/2. i = 1,2, ... ,n). twelve more equations are needed. These
are defined in the next subsection in the form of end conditions, see[9]

2.2 End conditions

The following relations define the first six end conditions
(—9245() + 17165172 — 1287532 + 71085/ — 286579 + 785912
- B3spp+ 313/))

273 5, » N 657/ 4 (7,) 4537 pog , 105131 105131 1,8, (V)

S I T 280" %0 T Toggg0” %0
14760933 h12 (i)
S ) 266267950740
= 14236800 st 1961990553600 ( R Ve

+ 355636781217557) + 1106786901955’ + 1047167921851,

+ 2367005425073 + 531427517 + s{57)) (2.37)
(6609 — 1287512 + 1144s3/) — 85855/ + 507575 — 221592

+ 6651]/3 — 12813/2 + 515/2)
171 S 279 1 (i) 499 /(; (eF) 99587 /g (vidd)

= s gyl T+ gl pgerag %
4497669 4 K1z
_ 2R a0 e (3 6367842175
11768300 T 1961990553600 \ 00008 172

+ 73207960397&37;) + 47678333245455,;’2’) + 12138324877957727

+ 1070891118755, + 23723197057 )

+ 531428550+ s(r)) (2. 38)
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and

(—330s0 + 7155172 — 858532 + 9365572 — 793s7/2 + 495592
- 220511/2 + 668]3/2 - 12515/2 + 817/2)

123 5 0 94 ooy T319, 6w SU3369 ¢

_ 2 gl Ol S
1 64 7630 1720320
18798307 1) (s h?

o SR o (11()()/48()9()19 (e
206438100 *° " 1961990553600 "1/2

+ 1767833324545}, + 74328/983736s )+ 4770205644235 _;’2’
+ 1213837802075, + 1()70891118651'1'/'._,

+ 237231970535 + 531428577 + »(7)) (2.39)

(110sg — 2865172 + 507s3/2 — 7935572 + 924s57/2 — 792593
+ 4955]1/2 - 2205]3/2 + 665’15/2 - 125’17/2 + 519/2)
—n bO + —h,4s(0' ) J 3 50 v —_il—hgsg )
4 192 23040 5160960
9057103 . p12 3
_ TR 0 (@) (10471679218. (e7i)
1857945600 Y T 19619905 53600 “1/2

+ 12138324877933’/727 + 4770205644235 1/7)' + (—13288)101645(71/',7)

+ 4770205644245, + 1213837802075\

+ 1070891118855 ) + 237231970s\7) + 5314285'7)

+ slen) (2. 40)

(—2250 + 78s1/2 — 221s3/9 + 495859 — 79257/2 + 924592

— 79251172 + 4955132 — 2208152 + 6651772 — 1251072 + $21/2)

% "0 - Ei”“ 0" - 7263890 sy 17221083320}"8581)“0

L LS TN h (23670054%,‘”‘”
619315200 1961990553600 172

+ 1070891118757, + 1213837802075}, + 4770205644245 "3

7/2
+ 7432885151645y + 4702056442457

+ 121383780207s\3 + 10708911188s\5 ) + 2372319705

(zii)

+ 5314288 + s} (2.41)
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(25‘() — 13.\‘1("-_) + ()'(')'.\‘3:/-,_) — 22()5‘5/-_) + 495.\‘7/3 — 7925‘9;2
+ 9245, 12 7925’]3/3 -+ 4958‘5/2 — 220.5’]7/‘-_) -+ ().65'[9‘/2

— sy + -*‘-3:5/-_))

1 o o 1 1 (ir 1 7 1 Ui
= — —/?‘/-S‘O - —‘/)4.%'(() ) bt —/ G ‘((] ) - )8.5’(() )
1 102 23040 5160960

1 .- hiz
—— ] ll)’;(l) + ( 314 (ri1)
1857045600 " T 1961990553600 \” T

~ 23723197057} + 1070891188517 + 1213837802075,

()

+ 4770205642450 + 7432885151645 ")

[

+ 4770205064424 ‘.';,.';_ﬁ + 1'21.'58137802()7»"'/') + 107089111885 ‘7”;

23723107050 + 5314285417 + 5517 ) (2. 42)

The remaining last six cud conditions can be determined similarly.

3. Spline solution

For the spline solution, the following system of equations can be determined
as, see [9]
(i) MY =C+T,
(i) MS=C . (3.1)
(iti)y ME=T.

where Y = (y,;,]/g) . T=(). E= (é,;]/g). P=1.2....n.

1 A

M = Mo+ oeesnrrgao” BF (3.2)

S = (sici2), i=12.......n (3.3)
and

C = (&), i=12,......, n . (3. 4)

Also, My and B are thirteen-band symmetric matrices, with

Mo = [M; My (3.5)
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where

[ 1716 —1287 715 —286 78  —13 1]
—-1287 1144 -858 507 —221 66 12
715 —858 936 —793 495 —220 G6
—286 507 —793 924 —792 495 —220
78 —221 495 —792 924 —792 495
-13 66 —220 © 495 —792 924 —792

1 —12 66 —220 495 —792 924
1\11 =
1 -12 66 —220 495 —792
1 —-12 66 —220 495
1 —-12 66 —220
1 =12 66
1 —12
1
i 0 0 0 0 0 0 0
and
[ 0 0 0 0 0 0 0]
1 _
-12 1
66 —12 1
—220 66 —12 1
495 —220 66 —12 1
~792 495 -220 66 —12 1
M, = . . . . .
924 —792 495 —220 66 —12 1
—792 924 -792 495 —220 66 —~13
495 —792 924 -792 495 221 . 78
~220 495 —792 924 —793 507 —286
66 —220 495 —T793 936 —858 715
—12 66 —221 507 —858 1144 —1287
I 1 -13 78 286 715 —1287 1716 |
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while

B = [B, B, By By ],

where

[ 266267950740 355636784217 110674869019 10471679218
355636784217 732579603976 476783332454 121383248779
110674869019 476783332454 743287983736 477020564423
10471679218 121383248779 477020564423 743288515164
236700542 10708911187 121383780207 477020564424
531427 237231970 10708911188 121383780207
1 531428 237231970 10708911188

B, =
1 531428 237231970
1 531428
1
0 0 0 0
0 0 0 0
0 0 0 0
i 0 0 0 0
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B, =

236700542
10708911187
121383780207
477020564424
743288515164
477020564424
121383780207

10708911188
237231970
531428

1

531427
237231970
10708911188
121383780207
477020564424
743288515164
477020564424

121383780207
10708911188
237231970
531428

1

0
0
1
531428

237231970

1
531428
237231970
10708911188
121383780207
477020564424
743288515164

477020564424
121383780207
10708911188
237231970
531428

1

0

o

1
031428

0

1

531428
237231970
10708911188
121383780207
477020564424

743288515164
477020564424
121383780207
10708911188
237231970
531428

1

1

10708911188
121383780207

477020564424
743288515164
477020564424
121383780207
10708911188
237231970
031427

237231970
10708911188

121383780207
477020564424
743288515164
477020564424
121383780207
10708911187
236700542

031428
237231970

10708911188
121383780207
477020564424
743288515164
477020564423
121383248779

10471679218

-
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and

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

531428 1
By =

237231970 531428 1

10708911188 237231970 531427

121383780207 10708911187 236700542

477020564423 121383248779 10471679218

743287983736 476783332454 110674869019

476783332454 732579603976 355636784217
110674869019 355636784217 266267950740 |

The matrix F is defined as
F = diag (¢i-12). i =1,2,...,n, (3.7)

and the vector C = (¢;) ,4 = 1,2,... ,n can be defined as

273 . 637 4537 105131
fl o= 92440 — —SRh2Ay+ —htA - - h8As + hdA
“ 0T A ! 67 122880

32 1280
14765933 hi2
— 26626795074061/2 -
442368000~ '° " 1961990553600 ( 9172
+ 35563678421 7432 + 1106748690195 5 + 104716792184+
+ 236700542t/ + 531427411/ + Y13s2) (3.8)
171 279 499 ¢ 99587 4

Gy = — 66049+ —h2Ay—~ —hlTA, + —nbA4 ,
“2 0+ 5t Ar = e At g™ At SgeTa0

4497669 h1?

- , : 355636784217
11468800 10" 1961990553600 ( Y12
+ 73257960397613/2 + 47678333245415/2 + 1213832487797

+ 10708911187wg/2 + 237231970¢1; /2
+ 5314284132 + Y1s/2) : (3.9)

8

8
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and

123, 9, 7319 503369
Ap— ~22p24, — g, 2064 J
33040 — ==h Ay = S Au cee i As — Tra03a0”

18798307 : h!2
- LSTIIO7 s n0 0y : (110674869019¢ /5
206438400 1961990553600

+ 4767833324541/, + 7432879837361/, + 4770205644237/

+ 1213837802074/ + 10708911188111/2

+ 237231970013/ + 531428152 + t17/2) (3.10)
17 281 6943 311959

— 11040+ —hAy + —=n%A4, — —— B84 —
o+ A2t 1gah Ad — oanae™ 1% T 5160960

9057103 h12

— R A : 10471679218
1857945600 10+ 1961990553600 ( 172
+ 121383248779¢3/3 + 477020564423452 + 743288515164¢7 /5

+ 4770205644 2449/2 + 1213837802071 /2
+ 107089111881)13/2 + 2372319701152 + 5314281772
+ Yi92) , (3.11)

3 23 239 2183
22 “hAg — hMA - R84, — 8
Ao+ 7h" Az 4 46 = 1750320

_ 64 761§0 ’
19679 h ,
619315200 o+ 1961990553600 (236700542412
+ 107089111874/35 + 1213837802075/ + 4770205644247 5
+ 743288515164¢9/2 + 4770205644241 /o
+ 121383780207¢)13/3 + 10708911188415/5 + 237231970172
+ 531428192 + ¥212) (3.12)
1 1

1
— 240 — ~h%Ay — —hi44 — ——n8A REA
07 4" P27 199" T 93040 6 8

5160960
L1044 h (531427y
1857945600 ' 1961990553600 1/2
+ 2372319704035 + 107089111881s5/5 + 12138378020717/5
+ 4770205644241p9 5 + T43288515164¢11
+ 477020564424413)5 + 121383780207¢15/2 + 1070891118817,

+ 237231970419/ + 531428431 /2 + tha3/2) (3.13)

A8

8

8

1
h'? (- 314284; 13 /2 + 237231970
1961990553600 (Yim13/2+5 Yi_11/2 + 2372319701;_9/2

+ 10708911188¢;_7/9 + 121383780207;_5/2
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+ 4770205644246 3,5 + 7432885151641 /2

+ 4770205644244 12 + 121383780207 w432
+10708911188u15/2 + 237231970¢ 1 17/9 + 531428 49/2
+ Lv.‘f,'+11/;>) .

L=T080 n—=06. (3.14)
Coese Cnos. ... . Cp are defined similar to ¢g. ¢5. -+« . ¢y respectively, except that
the boundary values By, Ba. ... Byp will teplace Ag. As. ..., Ay respectively.

at the other end.
After determining s;_q/p. ¢ = 1.2..... n .sy and s, can be determined using

the differential equation (1.1).

Also. 57 "17'/2 i=1.2...,n. ng) and s can be determined using (1.1). The

derivatives lsii) ,. 1 =1,2,...,n, can be determined using (2.22) and (2.23).

1/2
The derivatives s(.”]“‘/)_z, 7 = 1,2....,n, can be determined using (2.33) and
(2.25). The derivatives s, 1)/ i =1.2,....n, can be determined using (2.34)
and (2.27). The derivatives SS:—1)/2- = 1,2..... n, can be determined using

(2.35) and (2.29) and s',.'_l/.z, 1 = 1.2....,n, can be determined using (2.36)
and (2.31).

Now it is possible to determine the odd-order derivatives of the spline.

P s,,(-v), . ,57(17‘). i = 1,2, ... ,n—1are determined using (2.21), (2.20).
.. (2.16) respectively while slo, s;, sgl, S0y s(()'m), () through the fol-

lowing relations which were obtained during determining (2.16) ----- (2.21)

h(s;=si) = h%s_qp+ ih'431(~11!1)/2 + lglmh%gl)ﬂ

i 322560 i 928917280 pE=r

* Tosvasoan” i (3.15)
hs = siy) = % fww * 214}’4 ('“1)/2 - 1920}’6 7“{7/)’ * 3221560}’8‘5 )1/2
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1
R — L P 3. 16
02807280 i-1/2 ( )
(v) (v) _ 2 (v1) i 4 (L711) ()
h(s;” —s;24) = his; 2+ 24/ Si 19 1920/7 $i 17
* 32256()178'S7(i117,)/2 : (3.17)
1 i
)(UU) (1111) . 2 (1117) 4 ( (, (xir) . o
/7.(61- 7 ]) = h ’ 1/2+24/ .l 1/)+T9—26/ i ]/)._ (3 lb)
nr nr p xr 1 i) .
(s = s = h2s L+ 24h1 5 (3.19)
and
(s = sy = 3, (3.20)

4. Numerical results and conclusions

In this section, two problems are discussed to compare the maximum absolute
errors with the analytical solutions, see[9]. Numerical results relating to the
solution of twelfth order BVPs are rare in the liturature. The value of n used
in Tables 1 and 2 is that which gives the smallest maximum error moduli for
problems 4.1 and 4.2 . Some unexpected results were also obtained near the
boundary of the given interval. These results were due to (2.23), (2.25). (2.27).
(2.29) and (2.31) .

The absolute errors in the function values. were liowever. very small. The
absolute errors in the function values and all derivatives were seen to be small
at points remote from the boundaries as observed in [9].
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Problemn 4.1

Consider
g 4oy = —(1204+ 23z +2%)e*, 0<z <1, )
)(0) =0 = y(l)(‘,.)y”(o) =0,y'(1) = ~de.
y0) = -8, y"(1) = —16e ,
;(”’)E ; ~24 fl./u‘”"')((l)) = —36e , ( .
y(0) = —48 ,y(1) = —6de,
y<$>(0) = —80,y@(1) = —100e )

The analytical solution of the above differential system is

y(z) = 2(1-a)e” (42)
The maximum errors (in absolute value) in y1 .k =0,1,2, ... 11, are
shown in the Table 1 .
Problem 4.2
Consider
y ) 4y = 12)2zsin(z) - llcos(z)], —-1<z<1,)
y,(,_l) =0 = y(1),
y (=1) = 4sin(—1) + 2cos(—1) ,
y"(l) = —4sin(1) + 2cos(1) ,
y(w)(—-l) = —8sin(— 1) - ]_2COS(—1),
y(1) = 8sin(1) — 12cos(1) , \ (4.3)
y@)(~1) = 12sin(—1) + 30cos(—1) , |
y)(1) = —~12sin(1) + 30cos(1) ,
y(viii (-1) = —16sin(—-1) - 56 cos(—1) ,
y (1) = 16sin(1) — 56 cos(1) ,
y(=1) = 20sin(=1) + 90cos(—1) .
y(z)(l) = —-20sin(1) + 90cos(1) . 7
The analytical solution of the above differential system is
y(x) = (23'2 — ].) COS(.’E) . (44)
The maximum errors (in absolute value) in yl(-k), k=20,1,2, ... ,11, are

shown in the Table 2 .
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Table 1:

Maximum absolute errors for Problem 4.1 with n =

yzgk) |z €ze, Tne| |z & [z6, Tns]
k = 0 | 04269 x 10T | 0.7442 x 10%
k=1 0.1390 0.4645 x 10°°
k = 2 | 0.1947 x 10® | 0.2070 x 10°*
k = 3] 01357 x 10 0.2412 x 10°*
k= 4] 07795 x 10% | 0.2016 x 10°®
k= 5| 0.2929 x 107 | 0.8863 x 10%
k = 6 | 04679 x 10 | 0.1975 x 10%
k = 7 | 0.1542 x 102 | 0.1966 x 10*
k = 8 | 0.6821 x 10" | 0..8637 x 10%
k= 9 | 0.3001 x 10% | 0.1267 x 10*
k = 10| 0.5527 x 10° | 0.8791 x 10%
k = 11 ] 0.6169 x 10° | 0.1289 x 10%

22 .
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Table 2:

101

Maximum absolute errors for Problem 4.2 with n = 22 .

yfk) T € [z¢, Tng| | T €& [z6, Tp_g]
k=0 0.2822 0.1401 x 10%
k=1 0.4270 0.1211 x 10%1
k = 2 | 0.3248 x 10° | 0.1580 x 10°*
k = 3| 01131 x 10* | 0.1841 x 10*
k = 4 | 03249 x 10° | 0.1441 x 10%®
k =5 | 06104 x 10° | 0.1874 x 10%
k = 6 | 0.4876 x 10° | 0.2058 x 10%
k = 7 | 0.8035x 10" | 0.1025 x 10%
k =8 | 0.1777 x 102 | 0.7500 x 10%
k = 9 | 03910 x 10" | 0.1650 x 10%
k = 10 0.1542 0.1908 x 103
k= 11 0.1455 0.4199 x 10%%
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A NOTE ON LINEAR ASSOCIATIVE ALGEBRA OF
RECTANGULAR MATRICES

M. Iftikhar Ahmed
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Abstract

Chawla [1] constructed n basic algebras over the vector space S, , of all m xn
matrices. where m > n. over a field F' and thereby generated linear systems
of matrix algebras of mn x n matrices. Here in this note we are concerned
with one of Chawla’s basic algebra, namely, Ay, n = [Sma+. *| in which the
multiplication * in S, , is defined hy

X mn ¥ Ymn = ‘an I nmymn
where X Yin € S aud I, is the rectangular matrix of n rows and m
columns formed by the n unit vectors each of dimension m.

In this note, we prove that the algebra A,,,, m > n, contains a subalgebra
isomorphic to the total matrix algebra of all n x n matrices of F', which in
fact, is itself a particular case of A,,,, where m = n.

For the sake of definiteness and reference, we reproduce the algebra A,,, =
[Sy.ny +. *] in the form of
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Theorem 1
The system A, = [Sman. +, *] is a linear associative algebra.
Proof

*

It is evident that S, is closed under the multiplication *, since for any

Xmn: Youn € Sy . the matrix
Xmn * Yin = XmndnmYnm 1S an m x n matrix and belongs to Sy, 5.

Further

(X mn ¥ Ymn) * Zn = (X mnd nmynm) InmZon
‘ - (X‘mn-[n‘m)(ymn-[‘nmzm'n)

by the rule of multiplication of conformal matrices. Thus

(Xm,n * Y‘mn) * Zmn - ‘X‘mn * (Y‘mn * Zmn)

Hence the multiplication * is associative.
For the left distributive law, consider

)(mn * (Y‘mn + Zmn) = anlnm(ymn + Zmn)
= X mn-[ n,mymn +X mn-[ nm,Z mn

by the rule of multiplication of conformal matrices.

Hence Xopmn * (Yon + Zmn = Xon * Youn + Xmn * Zmn, which proves that the
left. multiplication holds in A, ,.

Similarly one may prove that the right distribution holds in A, ,. This proves
that A, , is a ring.

For any scalar a € F', we have

« - (an * Ymn) = - (an-[nmymn)
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= (a : an)(Ianmn)
= (anInm)(O‘ ) Ymn)

Hence

a - (‘an * Ymn) = (a ' an) * Ymn
= Xmn * (a : Ymn)

This completes the proof of Theorem [.
Corollary

The total matrix algebra A,,, of n X n matrices is a particular case of the
algebra A, ,.

This follows by taking m = n and then I,,, = I,,,, and hence the corollary.
Definition

Let, Sm,, denote the subset of all elements of S;,, ,, m > n, in each of which the
last m — n rows ar ezero-rows. Then any element X,,, € Smn can be written

as
v ‘Xn,'n,
‘Xm.n. = li 0 ]

where X, is the n x n matrix formed by the first n rows in X,,, and 0 is the
(m — n) X n matrix of zero-rows.

Theorem 11

The system Am,n = [S'm,n, +, *] is a subalgebra of the algebra A, , = [Sm.n, +, *]
and it is isomorphic to the total matrix algebra A, of all n x n matrices.

Proof

We first note that if Xn, Ymn € Smn, then each of the matrices X, —
Yons @ Xomn + BYmn, &, 8 € F, Xmn * Ymn = Xmn, has its last m — n rows as
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zero-rows and thus each of them € S,,,. This proves that Amn is a subalgebra
of App. :

- To prove that Am,n is isomorphic to the total matrix algebra A, ,, consider

the mapping p : Ayn — Ann defined by p(Xmn) = p [ g( nn ]

Then p is evidently one-one and onto mapping, since for each X, Xnn is
uniquely determnined and conversely corresponding to each X,, there is a
unqiue X,,,. Further

ity [[3°)- [

_ | Xant+Ynn

= Xoan + Yan
= p(Xmn) + p(Yrmn), by definition of p

Also :
< v, X'n,'n. Y'n,'n,

(51

= XpnYnn
= p(Xmn)p(Ymn), by definition of p
This completes the proof of the Theorem.
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ON s-CONTINUOUS, s-OPEN AND s-CLOSED FUNCTIONS

M. Khan
Department of Mathematics
Govt. College, Multan-Pakistan

B. Ahmad
Center for Advanced Studies in Pure & Applied Mathematics
Bahauddin Zakariya University
Multan 60800, Pakistan

Abstract

In this paper, we further explore the characterizations and properties of s-continuous
and s-open functions. Moreover, we define s-closed functions and study its charac-
terizations and properties.

Introduction

Recently, Cameron and Woods (3], and Abd.El.Monsef et al[2] have independently
defined the notion of s-continuous functions (also called strongly semi- continuous
211 and investigated several characterizations and properties of s-continuous and s-
open functions. We define s-closed functions and explore the characterizations and
properties of s-continuous, s-open and s-closed functions.

Preliminaries

A subset U of X is said to be semi-open [11], if there exists an open set 0 in X such
that 0 C U C ¢1 0. The complement of a semi-open set is called semi-closed. Scl (U)-
and slut (U) denote the semi-closure and semi-interior of U. SC(X) (respect SO(X))
denotes the class of semi-closed (respect semi-open) subsets of X [4]. sBd A denotes
the semi -boundary [1] of a set A and is defined by sBdA = sclAN scl(X — A). For
the properties of a semi-boundary of A, we refer to [1]. :
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Definition 1

A function f : X — Y is said to be a s-continuous [3] (also called strongly semi-
continuous [2]), if the inverse image of every semi-open set is open.

It is known [3] that an s-continuous function is irresolute, semi-continuous and
continuous. For the characterization of s-continuous functions, we refer to [2].

Definition 2

A space X is said to be p-regular [10] (respect. semi-regular {6]) if for each semi-
closed set F and » € X — F, there exist disjoint open (respect. semi-open) sets U
and V such that » € U and F C V.

Clearly every p-regular space is senti-regular as well as regular, but the converse is
not true in general. In Example 3.2 [8], X is a regular space but it is not semi-regular
and, cousequently, it is not p-regular.

Example

Let X = {a.b,c¢} and 7 = {¢, {a}, {b}. {a,b}, X }. Then X is semi-regular but not
p-regular,

Theorem 1

The image of a regular space under a clopen and s-continuous surjection is p-regular
space.

Proof

Let v SC{Yyand y =¥V — £ Let o e [7Hy). Sinee [ is s-continous. therefore
by theorem 2.2(iii){2]. f Ny is closed in X oand o ¢ X~ £ N (F). Sinee X is regular,
therefore thiere exist open sets U and V in X such that » € U. [~ (F7) € V and
UNV =g¢. Since [ is closed. therefore by theorem 11.2 (i) [9], there exists an open
set W of ¥ such that 7 ¢ W and f~'(W) c V. Therefore / N f =YW ) = ¢ and
hence f(U)NW = ¢. Since [ is open, therefore f(U/) is open aud y € f(U/). This
proves that Y is p-regular. This completes the proof.

Theorem 2

Let f : X — Y be s-continuous and semi-closed surjection with compact point
inverses and X a regular space. Then Y is semii- regular.
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Proof

Let ¢ € SC(X) and y € Y — C. Since f is s-continuous, therefore by theorem
2.2(iii)[2], f~1(C) is closed in X. Moreover, the compact sets f~1(Y) and f~1(C)
are disjoint in a regular space. Thus there exist disjoint open sets F' and G in X
such that f~1(Y) ¢ F and f~1(C) C G. Since f is semi-closed, then by theorem
5[14], there exist semi-open sets V and W containing Y and C respectively such that
fTYV)c Fand f7Y(W) C G. Since F NG = ¢, it follows that f~H(V NW) = ¢
implies V N W = ¢. This proves that Y is semi-regular. This completes the proof.
Corollary

Let f : X — Y be s-continuous and closed surjection with compact point inverses.
Then Y is p-regular if X is regular.

Definition 3

A function f: X — Y is said to be s-open [3] if the image of every semi-open set is
open.

It is known [3] that every s-open function is open, semi-open and presemi-open.
Now we give the characterizations of s-open functions as:

Theorem 3

For a function f : X — Y, the following are equivalent:

(1) fiss-open

(2) f(slntA) C Intf(A), for each 4 C X.

(3) slnt/ "By c f71 (IntB). for each B C Y.

(4) f~Y(clB) C self"1(B), for each B C Y.

(5) f~N(BdB) C sBd(f~1(B)), for each B C Y.

Proof

(1) — (2). Obviously f(slntA) C f(A). f is s-open gives f(slntA) is open in Y. But

Intf(A) is the largest open set contained in f(A). Therefore f(slntA) C Intf(A). This
gives (2).
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(2) — (3). Forany B C Y, put f~Y(B) = A C X. Then by (2), f(slnt f~1(B)) C
Intf(f~1(B)) C IntB or f(slnt f~1(B)) C IntB or slnt f~1(B) C ff~! (slnt (B))
C 71 (IntB) or slnt f~1(B) C f~! (IntB). This gives (3).

(3) — (4). By (3), slnt f7Y(B) c f~! (IntB) implies X — f~! (IntB) C X -
slnt f~1(B) =scl (X — f~YB) or f~YY) — f~! (IntB) C scl(f 1Y) — f~YB)) or
FTUY —IntB) C scl 7YY = B) or f~lel(Y — B) C scl f7HclC) C self 1),
where C =Y — B. This gives (4).

(4) — (5). For B C Y,Bd B = ¢IBNc{(Y — B) is a closed set in Y. Now

FYBAB) = fYelB)N f7el(Y — B) = f~HeIB)Y N f7lel(Y — B) or
fYBe ) = f- ( )ﬂf‘l(I(Y — B) gives f~1(BdB) C self 1(B) N scl(B) N
scl(X — f~YB)) = sBdf ~Y(B) or f"Y(BdB) C sBdf ~*(B). This gives (5).

(5) — (1). Let U be an arbitrary semi-open set in X. Put ¥ — f(U) = B. Now
we show that B is closed in Y. By (5), U N f~Y(BdB) C U N sBdf ~1(B) or
fUN f~YBdB)) C f(U NsBdf "Y(B)). since f(U)N BdB = f(U N f~1BdB) C
U N sBdf~Y(B) or f(U N f~Y(BdB)) C f(U N sBdf ~}(B)). Since f(U) N BdB =
f(U N f~1BdB), therefore we have

f(UYNBAB c f(UNsBdf "}B)) (1)

B=Y - f(U)gives fY(B)=fW (y —fU)=fHY)—fH(U)C X ~-Uor
JHUBYC X - U gives slf"YUBY Cosel(X ~ 1) =X —slntll = X =17 implies

self 7Y B)NU = ¢ (

o
~—

Now

U NsBdf~Y(B) U N (self 7Y(B) Nsel(X — F7H13)))

= Unscf7{(B))Nscl(X - [71(B)) = 6(hy(2))

fl

Using U N sBdf "Y(B) = ¢, (1) becomes f(U)NBdB =¢ or BB CY — f(U) =D
or BdB C B gives B is closed. Hence f(U) is open. This proves that f is s-open.
This completes the proof.

The following theorem establishes the presemi-openness and s-openness of the com-
position of functions, the proof of which follows easily:
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Theorem 4

For any functions: f: X — Y and g:Y — Z, we have
(1) gof is s-open if { is s-open and g is open.

(2) gof is s-open if f is presemi, open and g is s-open.
(3) gof is open if f is semi-open and g is s-open.

(4) gof is presemi-open if f is s-open and g is semi-open.
Definition 4

A function f : X — Y is said to be s-closed if the image of every semi-closed set is
closed.

Now, we characterize s-closed functions as:

Theorem 5

A function f : X — Y is s-closed iff clf (A) C f(sclA), for each A C X.
Proof

Necessity. Obviously f(A) C f(sclA). f(sclA) is closed, since f is s-closed. But
clf(A) is the smallest closed set containing f(A). Therefore clf(A) C f(scl(4)).

Sufficiency. Let A € SC(X). We show that f(A) is closed. By hypothesis, clf(A4) C
f(sclA) = f(A)orclf(A) C f(A). This prooves that f(A) is closed. This completes
the proof.

Theorem 6

A surjective function f : X — Y is s-closed if and only if for each subset B in Y
and each semi-open set I/ in X containing f~!(B), there exists an open set V in Y
containing B such that f~Y(V) c U.

Proof

Necessity. Let U be an arbitrary semi-open set in X containing f~!(B), where
B CY. Clearly Y — f(X —~U) = V (say) is open in Y. Since f~1(B) ¢ U and
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. -1
f is onto, then simple calculations give B C V. Moreover, we have f~ (V) C
X — f"Yf(X —=U))cUor f7Y{V) Cc U. This proves necessity.

Sufficiency. Let F be an arbitrary semi-closed set in X and y € Y — f(F). T.hen
f7H) € fTHY = f(F) € X = fTH(F) € X — For f7H(y) € X — F. Since
X — F is semi-open, therefore, there exists an open set V, containing y such that
f~YV,) € X — F. This implies y € V,, C Y — f(F). Thus Y — f{F) =U{V, vy €
Y - f(F)} is open in Y or f(F') is closed in Y. This proves that f is s-closed. This
completes the proof.

Remark 1

If f: X — Y is s-continuous and closed (or irresolute [5] and s-closed) surjection,
then using theorem 2.2(iii) [2], one can easily see that the classes SC(X) and C(X)
(closed sets of X) coincide.

Remark 2

In general, an s-open function need not be s-closed as is evident from the following:

Example

Let X — {a.,b, e}, 12 = {¢, {a}, {b}, {a,b}, X} and Y = {a,b,c,d}, 7, = {8, {a}, {b}, {n, b}, {a,b,c}Y}.
Let i : X — Y be an identity function. Then 4 is s-open but not s-closed.

Remark 3

However, for bijections, it is easily seen that the notations of s-opell aud s-closed

coincide. Moreover, f is s-open iff f~! is s-cantinuous. The proof follows from
theorem 3(4) and theorem 2.2(iv) [2].

Definition 5

A space X is said to be s-closed [12] (respect semi-compact [7], almost compact
[13]), if for every semi-open (respect semi - open, open) cover of X, there exists a

finite subfamily such that union of their semi-closures (respect their union, union of
their closures ) cover X.

Note that every compact space is almost compact as well as semi-compact. Moreover

every semi-compact space is s-closed. Finally, we state the following from theorem
which follows from theorem 5 and remark 3.
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Theorem 7

The inverse image of an almost compact space under s-open bijection is s-closed.
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Abstract

In this paper, we define and study fuzzy H-relations and fuzzy H-algebras of
BCl-algebras.
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Introduction

The notion of fuzzy set was formulated by Zadeh [11] in 1965. Since then there
have been wide-ranging applications of the theory of fuzzy sets. There have
been also attempts to fuzzify the various mathematical structures like topo-
logical spaces [4] and groups [10] and also concepts like measure, probability
and automata. The concept of a fuzzy relation on a set was defined by Zadeh.
In 1991, X. Ougen [9] applied the concept of fuzzy set to BCK-algebras and
discussed their properties. In 1993, B. Ahmad [1] and Y. B. Jun [6] applied it
to BCI-algebras and studied several properties. Following [3], Jun and Meng
[7] defined and studied fuzzy relations in a BCI-algebra. In [8] B. Ahmad and
H. M. Khalid studied fuzzy relations and fuzzy subalgebras of BCI-algebras.
In this paper, we define and study fuzzy H-relations and fuzzy H-algebras of
BCl-algebras.

!Permanent Address: Department of Mathematics, Azad Jammu and Kashmir Uni-
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(1) (*9)"(x*2) < 2" |

(2) *(s*y) <y

(3) z< =

(4) r<yandy<zimplyz=y

(5) z <0impliesz =0

where » < y means z*y =0

(6) z*0 = z[5]

First we review some definitions and results. A fuzzy set ([1], [6]) in a BCI-algebra
X is'a mapping s from X into [0, 1]. For any fuzzy set 4 in X and ¢t € [0, 1], the set
pr = {z € X | p(x) >t} is called a level subset of p.

Let X be a BCI-algebra. A mapping 12 : X — [0, 1] is called a fuzzy subalgebra [1]
of X,if forall z,y € X,

p(y) 2 p(z) A p(y) (1)

where A denotes the minimum. It is easily seen that x(0) > u(z), for all z € X.
Next, we define fuzzy H-algebra as:
Definition 1

Let X be a BCI-algebra. A mapping p : X — [0,1] is called a fuzzy H-algebra of
X,ifforall z,y € X, ‘

n(z*y) > p(x)p(y)

From (1) p(z*y) > p(z) A ply) 2 p(=)u(y) or p(z*y) > p(z)u(y) implies that every
fuzzy subalgebra of X is a fuzzy H-algebra of X. For fuzzy subalgebras, we refer to
[1]. Here we shall study some properties of a fuzzy H-algebra of X .

{

The following shows that fuzzy H-algebras do exist.
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Example

Let X = {0,a,b,c} in which * is defined as:

* l 0 a b ¢
010 a b ¢
aja 0 ¢ b
bib ¢ 0 a
cle b a O

Then (X, *,0) is a BCl-algebra.

Define p: X — [0,1] as : p(0) = 3/4, p(a) = 1/2 p(b) = u(c) = 1/4. Then routine
calculations show that p is a fuzzy H-algebra of X .

Following (3], Jun and Meng [7] defined:

Definition 2[7]

A fuzzy relation on X is a fuzzy subset p: X x X — [0, 1].
Now we define:

Definition 3

Let ;1 be a fuzzy relation on X and o a fuzzy subset of X. Then ;. is called a fuzzy
H-relation on o, if for any =,y € X,

p(z,y) > o(z)o(y)
Definition 4

Let u be a fuzzy relation on X and o a fuzzy subset of X. Then a fuzzy H-relation
on o, denoted u,, given by

po(z,y) = o(z)o(y)

is called the strongest fuzzy H-relation.
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Definition 5

Let 4 be a fuzzy relation on X. Then p is called a fuzzy H-algebra of X x X, if for
all (z1,y1), (v2,y2) € X x X, we have

p((x1,91)* (22, y2)) > p(21, y1)n(r2, y2)
Definition 6

Let i be a fuzzy relation on o and o a fuzzy subset of X. Then u, is called a fuzzy
H-algebra of X x X, if for all (x1,y1), (z2,92) € X x X,

po((x1,91)* (22, 92)) 2 polr1, y1)pe(2, y2)
Theorem 1

Let o be a fuzzy subset of a BCl-algebra X and p, the strongest fuzzy H-relation
on . Then ps is a fuzzy H-algebra of X x X, if o is a fuzzy H-algebra of X.

Proof

Suppose o is a fuzzy H-algebra of X. We prove that

po((z1,41)"(x2,y2)) > polz1, y1)po(z2, y1)

or
po (2122, ¥1y2) 2 po(z1, y1)po(r2, y2)
Since o is a fuzzy H-algebra of X, therefore for =1, z2,y1,y2 € X, we have
o(z1 * z2) 2 o(z1)o(z2) and o(yiy2) 2 o(y1)o(y2)
which give
o(x172)0 (y1y2) 2 (0(x1)o (v1)) (o (z2)o (2))

Hence
no(ziz2, Y1y2) 2 po(z1, y1)po(z2, y2)

This completes the proof.
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Definition 7

If & is & fuzzy subset of X and p is a fuzzy H-relation on o, then p is called left
(respt. right) fuzzy H-relation, if for all z,y € X,

p(z,y) = o(z)(respt o(y))
The following is the partial converse of theorem 1:
Theorem 2
Let o be a fuzzy subset of a BCl-algebra X and y a fuzzy H-relation on 0. Then o
is a fuzzy H-algebra of X, if the left or right fuzzy H-relation p is fuzzy H-algebra
of X x X. '

Proof

We prove that for z1,z9 € X,
o(zize) > a(z1)o(xg)

Since p is a fuzzy H-algebra of X x X, we have

p(zize, y1y2) = p((z1, y1)* (72, y2))

> p(z1, y1)p(z2, y2)

or
p(rize, yiy2) > p(z1, y1)p(z2, y2)

Since pu is left fuzzy H-relation, we have
o(ziz2) > o(z1)a(z2)
This proves that o is a fuzzy H-algebra of X. This completes the proof.

Definition 8

Let o be a fuzzy subset of a BCl-algebra X and p a fuzzy H-algebra of X x X
Then p is called perfect fuzzy H-algebra, if for all z,y € X,
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/1'(1'7 'l/) < /1'(05 'l/)

Given a fuzzy relation g on a ‘BCI-algebra X and an arbitrary element = € X, we
can define a fuzzy K-subset {2] o, on X by

oz(y) = p(z,y) (1)
for all y € X.

Next we prove that the fuzzy K-subset o, is a fuzzy H-algebra of X if i is a fuzzy
H-algebra of X x X:

Theorem 3

Let X be a BCI-algebra and p a perfect fuzzy H-algebra of X x X. Then for each
r € X, the fuzzy K-subset o, defined in (1) is a fuzzy H-algebra of X.

Proof

For z,y1,y2 € X, we have

T,y1 *y2)
z *0,y1 *y2)

(z
(
((z,y1) *(0,92))
(
(

oz(y1y2)

I

]

I
7
I
I

v

z,y1) (0, y2) 2 p(z, y1)p(z, y2)
z(y1)z(y2)

Thus oz(y1 *y2) = z(y1)z(y2).

This proves that o, is a fuzzy H-algebra of X. This completes the proof.
Definition 9

Let o be a fuzzy subset of a BCl-algebra X and u a fuzzy relation on o. Then the
fuzzy subset o, of X, defined by

0';1.(-7:) = innyX {F’(I, y)u(‘y, I)}

is called the weakest fuzzy H-subset of X .

G5 S o v
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Definition 10

A fuzzy H-algebra p of X x X is called normalized, if ;(x,0) = ;£(0,2) = 1, for all
r e X.

Finally, we prove the following:
Theorem 4

Let X be a BCl-algebra and i a normalized fuzzy H-algebra of X x X. Then the
weakest fuzzy H-subset o, of X is a fuzzy H-algebra of X.

Proof
Let x,y € X. We prove that

Uu(r 1/)>Uu( v)o y("/)

or

infuex{p(z *y,u)p(u,z *y)} > infyex{p(z, v)p(u, z)nfuex {p(y, v)p(u,y)}

" Since 4 i$ a fuzzy H-algebra of X, we have

plz *y,u) = plz* y,u0)
= p((z,u) *(y,0))
> p(zw)aly,0)
= pu(z,u) (since p is normalized)

or p(x *y,u) > p(z,u). Similarly, p(u,z *y) > p(u, z). Consequently, p(z *y,u)p(u,z *y) >
plz,u)p(u, z)

or

oty (e *y) > e, u)ule, o)
>

((z, w)p(u, 2)) (v, y)p(y, u))

infuex {n(z "y, u)p(u, = *y)] 2 infuex {n(z, v)p(v, z) Hnfuex {n(u, y)u(y, )}

or ou(z *y) > o,(z)ou(y). This proves the theorem.
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Abstract

The bias of the usual estimator of the variance of the sample mean for two stage
cluster sampling based on the model for interviewers and coders affects has been
worked out. It is argued that for small scale studies, the bias may not be ignorable.

Key Words: True value; Survey conditions; Response error. Expected re-
sponse;

1 Introduction

A commonly used method for obtaining data, to be used for statistical pur-
poses, is a sample survey. It is, however, true that all surveys are subjected to
some kind of error and some are quite misleading. The errors present in sur-
veys can be divided into two main groups: sampling errors and non-sampling
errors. Sampling errors decrease as the sample size increase. On the other
hand, non-sampling errors are likely to increase with an increase in the sample
size. In some surveys non-sampling errors are very large and interpretation
of the results with out taking these errors into account may be dangerously
misleading. A list of errors in surveys is given by Deming (1944).

Although statisticians had realized, very early in the development of the sam-
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Hansen and Waksberg (1970) have pointed out this problem. Kish and Lansing
(1954) measured the response errors in estimating the value of homes. They found
that the mean square difference between the measurements tend to increase with the
value of home. Hansen, Hurwitz and Bershad (1961) have calculated the response
variances as well as the sampling variances of a number of variables measured in
1950 census in U.S.A.

The table presented by them shows that the ratio of the response variance to the
sampling variance varies considerably for different variables. The minimum values,
0.1 and 0.2 are for groups of the age variable where as the highest values goes up
to 4.2 which is for people earning less than $2500 from the sources other than the
wage, salary and business. Fellegi (1964) used interpenetrating samples, proposed by
Mahalonobis (1946), and re-enumeration technique jointly to measure the response
error. '

Two of the sources of non-sampling errors are interviewers and coders. Martin
Collins and Graham Kalton (1980) pointed out that the coder’s reliability is affected
by their work load. Martin Collins and Gill Courtenay (1985) have suggested that
field coding has some advantage over office coding. Crittenden and Hill (1971)
studies the effect of open question on coding. Martin Collins (1974) found that
coder’s reliability is affected by the type of question. Mckenzie (1977) reports a
study where the interviewer’s load in each primary sampling unit is equally and
randomly divided among four interviewers. Collins (1979) used nested designs to
measure the interviewer’s effect. Kish (1962) studied the influence of interviewers
effects on the precision of survey estimates. Freeman and Butler (1976) suggested
that men and older interviewers have greater variability than women and younger
interviewers.

2. Model for Coder and Interviewer Effect

In practice, apart from the errors due to respondent, there are other factors as well
which contribute to distort the inferences drawn from the results of a survey. Two
common sources are interviewer and coder. In such a case, the value used finally in
obtaining the estimates may be written as

Yhijqrs = (Xiq + ajq + 6‘ijq) + ﬂhq + Nhijqrs (2‘1)

(i=112a"'n;) J:112aQa 7=172)Ra S=1,2,"'S)

where Y545 denotes the value coded by the h-th coder on the r-th occasions for the
g-th question in the i-th form, in a random sample of n units from N units, obtained
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by the j-th interviewer in s-th trial; where X4 is the true value for the i-th unit for
the g-th question; «j, is the j-th interviewer’s effect for the g-th question; fpq is
the h-th coder’s effect for the g-th question; and €;j4 and np;jqrs are purely random
components. It is assumed that coders and interviewers are randomly selected from
infinite population of interviewers and coders respectively. Further it is assumed
that interviewers and coders effects are independent of each other.

In practice, at analysis stage, each question is treated separately and the sources
available do not allow to carry out interview more than once; even if the sources
are available, the respondents may remember the answers they gave in the original
survey and thus the responses may not be independent. Thus the model which is
simple and practical, obtained, from 2.1, by dropping the subscript q and putting
s = 1, may be given as

Yhijr = (Xi + aj + €ij) + Bn + hijr (2.2)

3. Total Variance of the Estimator

The total variance of the estimator depends on sample design and interviewers and
coders allocation. The sampling scheme considered here is two-stage sampling. It
is assumed that one interviewer interviews the n respondents selected from the p-th
cluster and these responses are coded by only one coder. Practically it is reasonable
to assume that the interviewer work load is only one cluster i.e. each interviewer
interviews the respondents in one cluster only but the assumption that each coder
codes the responses obtained from one cluster only is made just for the sake of
simplicity. Actually in practice each coder codes the responses obtained from more
than one cluster but it will complicate the total variance. For two stage sampling
the model in 2.2 becomes as

Yphijr = (Xpi + api + €pij) + Bph + Nphijr (3.1)

Where Yphijr denotes the value coded by the h-th coder on the r-th occassions for
the i-th response obtained by the jth interviewer in a random sample of n units -
from N units in the p-th cluster; 8y, is the A-th coder’s effect in the p-th cluster; and
€pij and 7)phijr are purely random components. However for the sake of simplicity
we assume that ap; = o and Bpn = Bp i.e. no interaction between interviewers and
clusters and coders and clusters. It is also assumed that ep;; = €;; and nppijr = Npijr
but the subscript p has been retained because of the identification of #th unit in
the p-th cluster. Further for the time being, we shall assume that » = i. Thus the
model in 3.1 can be written as
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Yphij = (Xpi + ovj + €pij) + B + tiphij (3.2)

Now suppose that from a population of L clusters, ! clusters are drawn. For the
sake of simplicity, we shall assume simple random sampling at both stages. Further
it is assumed that N, = N and n, = n i.e. the clusters are of equal size and equal
number of units are drawn from each selected cluster. The sample mean for the p-th
cluster and the overall sample mean can be given as, '

n

); .= ;}-ZX,,,+0]+ pr,]+ﬁh+ ! Z'r/ph,;j (3.3)

i=1

1 n 1 1 n

1 1 1
T n IR I Z"J In O

p=11=1 =1 p=1i=1

[}

1 1 n

+][- Zﬁh + %ZZ";}M] : (34)

=1 p=1 i=1

Let EL be the expectation over first stage of selection; E, denotes the overall ex-
pectation over second stage of selection i.e. for the p-th cluster selected at the first
stage, it includes the expectation over repetition of interviews and coding; over se-
lection of interviewers and coders; and over all possible samples which can be drawn
from the N units in the given p-th cluster; and Eg denotes the overall expectation.
Similarly, V. Vp and Vg denote the variance over the first stage of selection, variane
of second stage of selection and overall variance respectively. Thus using 3.4, we
have

R 1 n 1 1 n
Var(Y..) = Vg %szpi + Vs %Zaj n ZZ‘mﬂ‘
p=1i=1 =1 p=1i=1
-Zﬁh+ ——ZanmJ
p=1 i=1
1 I = 1 1 1 I =
Var(Y lnzzxm +ELVp ’Tzaj“‘mzzfzﬁj'*'

p=1 i=1 ij= p=1i=1
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1 l I n

}Z ! ZZ”P’”J +EpVL %Zaj+%225mj+

h=1 p—l =1 j=1 p=11=1

l
%Zﬂh+l—iZanm;

Var():/_m) =Vs(X)+

1

v 1 n .
where X = =57 ;> ;"1 Xpi is the overall sample mean and

Vs(X) = 1— Zp, ( ) b2 + (LL——TI) SE_T is the variance of the sample mean under
two stage cluster sampling. Thus

L 2 o2 o2 a2
2 1 N —n 9 L -1 oy, 73
Var (Y ) = 52 62 4+ % % (7B Tn
ar (Y ) l*LI;<N~n> +(Ll> b_.,:+ +n ] +l (3.5)

This is the total variance of the sample mean in two stage cluster sampling when (1)
clusters are of equal size, (2) equal number of units are selected from the p-th selected
cluster, (3) at both stages simple random sampling is used, (4) one interviewer and
one coder is assigned to each cluster and (5) it is assumed that the model in 3.2
holds.

4. The Variance of the Sample Mean due to Sampling Errors Only And
Its Unbiased. Estimator

The variance of the sample mean, for the sampling scheme considered in section 3,
in the absence of non-sampling errors is given as

Var(¥) = ( — ") pry + < l) SE, (4.1)
p=

2 1 N v )2 . 2 1 L ¥ V2 . v = 1L 5L
where Spy = gy Yt (YY) 5 S5 =13 25 (Yo—Y)" 5 Vo= 5 200 Ve
is the mean of the p-th cluster and Y = 7 >N Zﬁ:l Ypi is the population mean.

An unbiased estimator of the Var(Y) given in 4.1, is

127
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4
~ = _ 1 N-—-—n 2 L -1 2
Var(Y) = L ( Non ) E ‘Sp + <~—E——[—> Sp (42)

=1

where s% = ﬁ S Yy — ):/p)2 is the variance of the sample drawn from the p-th

cluster and it is an unbiased estimator of the variance of the variance p-th cluster;

2 _ 1 1 > ZN2 . . o s
8y = -3 Zp___l(Yp —Y)*® is the variance between cluster sample means and it is an
unbiased estimator of the variance between cluster means;

p = %Z?:l Yy is the mean of the sample drawn from the p-th cluster and Y =

- "’<|>

e Z;,___l Yy is the overall sample mean.

B

5. The Expected Value of the Var (}:’) in the Presence of Non-Sampling
Errors ,

If the model in 3.2 holds, then the estimator given in 4.2 becomes as

l .
. e 1 N—n L—-1
Var(Y) = — 52 Z ) 1
ar(Y) l-L(N'7L>I;ng+<L-l>ng (5.1)
where
1 n
2
SpY=n_12(YPhij_YP )2 (5.2)
p=1
1 -,z .
9 a s

=1

By taking expectation on both sides of equation 5.1, we have,

l
Eg{Var(Y} = Tl‘i (7\;:) EL{Y Ep(sly) p + (%) Es(siy)
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Substituting from 3.2 and 3.3 into 5.2 we get

1 n . n 1 n
-y 2 ~ 2
Eplspy) = ;———IEP {Z("‘P" - Xp)" Z pig — 7 i)’
2 =1 i=1 i1
n 1 n
Z(’/Phrij —~ Z ’/pln’j)l}
1=1 1=1
R ) n o
. - )
- N—lZ(Xj—Xp) +,_,T'1_{ZEP(‘MJ—;Z@4J') +
i=1 i=1 p—
Tt 1 n
= A2
Z(’Iphm _” Z l}p}”]) }
i=1 1 |
But
1 n
2y 2
n—1 P{Z(‘m - ;‘m) } = ot
and
1 n 1 <& ) )
n — 1EP{Z(”1’U T Z"/Pij) } = Ty
Thus
L2 , 5 9
E’P(SPY) = Spx +o¢ + oy
Now substituting from 3.3 and 3.4 iuto 5.3 we get
1 ! 1 l
" 2 _ 2 . 1
Es(siy) = B | =7 D_(Xpi— X Z{ - Z"”
p=1 —
1 SN L
2
n Z P Z epif)” + (Bn — 7 Zﬁh) +
=1 =1 p=1 h=1

_IT Z HNphij — 7~ Z Z’Ipln) (56)

p-] =1
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1_1{2 ~X)? 1_1< —">Zs + SE, (5.7)
! ] ]
1 1 .
Es{) (aj - i Zﬂ'pj)2} = ELEp() (aj - n Y ap)?)
p=1 =1 p=1 " i=1
!
1
—-EL{ZEP ) — TEp( TZ )’} = (- 1) (5.8)
Similarly
!
Zﬁh——Zﬁh =(l-1)of (5.9)
p=1
l 1 n 1 n I l 1 n 1 n
2
ES{Z(TZ pi EI‘ZZ‘IM) } = EL{ZEP(;,_ : epij)” — EP(E :
p=1 1=1 i=]1 p=1 =1 i=1 i=1
l 2 2 2
](76 (Té €
3 i)} = EL< - 7) =(1-1)=* (5.10)
p=1
Similarly

2
Es{z Zl,ph,] ZZ,,,,,,,J) } = ( 1—1)—2 (5.11)

p=1 i=1 p]11

Therefore by substituting from 5.7 - §.11. into 5.6, we get
2

2
)prz+bhz+0’ +““+ ﬂ+_7) (512)

Es(s3y) = — (
And now substituting from 5.5 and 5.12 into 5.4, we get.

l ‘ 2
Eg{Var(Y E— S — S - = —
s ar( )} Ll ( N >p2_: pr + ( L.l ) be 7+ l 7ot n togt 7
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Usiug 3.5 we get,

~oe . s 1,45 o2 5 o
Es{Var(Y) = {Var(Y..) = (oo + 1+ + o5+ )

The above result shows that the bias in estimating the variance of the sample mean
outlined in 3.5 by using the estimator, given in 5.1 which takes into account the
sampling errors only, is a factor of L=! and N1 i.e. the text book estimator of
the variance of the sample mean provides a good approximation to the variance of
the sample mean when actually the sampling errors are present. However, if the:
results are required for the small area, for one cluster, say, the bias may not be
ignorable and in such case it becomes important to estimate the components of the
total variance which are due to both sampling and non-sampling errors if precise
inferences are to be drawn. In case of a census the sampling variance will be zero

and the total variance will be equal to %(ag + 0—1\; + 0[23 + (—f]é) On a national level it
will be trivial but often the results are also required for small areas. Further there
may be other small scale studies based on census data; in such cases the variance
may be quite important.
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