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By using the coset diagrams for the action of H =< y,t: y* =t = 1> on
Q(+/n), we show that if o is of the form ﬁiﬁ then every element in the orbit

aH is also of form 2 +‘/_ and oH C Q* (\/_ ). We also show that the action of
the group H on Q(\/_ ) is intransitive. I : '

1. INTRODUCTION

Let M be a group generated by the linear-fractional transformati'ons z,y sat-
isfying the relations 2> = y™ =1. fy: z — ‘”“’ is to act on real quadratic
fields then a,b, c,d must be rational numbers and can be considered as inte-
gers. Thus %*—'_‘13; — 2 = w+w™!, where w a primitive m-th root of unity, is
rational, only if m = 1,2,3,4 or 6. The group M is trivial, D, (an infinite
dihedral group), or PSL (2,Z) if m = 1,2 or 3. The case m = 3 has been
discussed in detail in {1} and {3]. o Co
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An element a = ‘—’3@ € Q‘(\/T_L) where

Q(\/—)_{a+\/—ac€Z c;éOb— (abc)—l}

and its conjugate\ a = ‘—’QCC may have different signs for a fixed non-square
“positive integer n, such « is called an ambiguous number. If o and & are
both positive (negatlve) then a is called a totally positive (negative) number.
Amblguous ‘numbers play ‘an important role in the study of actions of the
groups M =<z, y:z2=y"=1>, form=1,2,3,4 or 6, on Q(/n). In the
~action of M on Q(y/n), Stab,(M ) are the only non-trivial stabilizers and in
the orbit @M, there is only one (up to isomorphism) non-trivial stablizer.

In this note we are interested in the ‘subgroup of G =<,y : P?=yt=1>,
acting on the real quadratic irrational numbers, where (z)y = = 24T +1) are linear-
fractional transformations. An action of G on real quadratic irrational numbers
has been considered ‘in [2]. It has been shown that the set of ambiguous
numbers is finite and that part of the coset diagram containing these numbers
form a single closed path and it is the only closed path in the orbit of a.

If we let t = zyz then t is the linear-fractional transformation defined by
(z)t =1— 5, and t* = 1. The group H =< t,y > is thus a subgroup of G.
* Some number-theoretic properties of the ambiguous numbers belonging to the
orbit of G when acting on Q*(,/n) have been discussed in [2]. In this paper
we show that if a is of the form 93@ then every element in the orbit aH is

also of the form m@ and aH C Q‘(\/_ ). We also show that the action of
the group H on Q(\/m is intransitive.

2. COSET DIAGRAMS

We use coset diagrams for the group H and study its action on the projective
line over real quadratic fields. The coset diagrams for the group H are defined
as follows. The four cycles of the transformation y are denoted by four edges
(unbroken) of a square permuted anti-clockwise by y and the four cycles of the
transformation t are denoted by four edges (broken) of a square permuted anti-
clockwise by t. Fixed points of y and ¢, if they exist, are denoted by heavy dots.
This graph can be interpreted as a coset diagram, with the vertices identified
with the cosets of Stab,(H), the stablizer of some vertex v of the graph, or as
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1-skeleton of the cover of the fundamental complex of the presentatlon which
corresponds to the subgroup Stab, (H).

A general fragrnenta of the coset diagram of the actlon of H on Q(\/ﬁ) will
" look as follows. ' ,

Fagsth
O

In [2], it has been observed that if k& # 0, :21, — 1 or oo is one of the four

vertices of a square in the coset diagram, then

(7)) z<-1 implies that  (2)y > 0
(i) 2>0 implies that = < (
(i11) 5 <z<0 implies that —1

(w) -1<z< 3 impliesthat (2)y< —

Also if k # 0,00,1 or l is one of the four vertlces of a square in the coset

dlagram then

() z2<0 implies that (z)t > 1

(it) z>1 implies that 7 < (2)t <1

(14i) 3 <z <1 impliesthat 0<(2)t<, and
(v) 0<z<j; implies that (z)t<0
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3. MAIN RESULTS
Theorem 3.1 |

fa= M € Q*(v/n ) then every element in the orbit aH is of the form 2 ‘/E
and aH C Q*(Vn).

Proof
Since (2)y = 5(717)’ therefore
-1 ;a—2c+\/1—1 ’a1+\/ﬁ
(a)y = 2a+1) 202a+b+20)
where a; = —a ~ 2¢,¢; = 2(2a +b+2c) and b, = —2L—"- = ¢. Similarly, we can

find new values of a, b, ¢ for (a)y’ where j =1,2, 3 as follows.

a a b . 2 A

(a)y —a-2c c. 2(2a + b+ 2c)
(@)y* —3a—2b—2c 2a+2b+2c 2(2a+2b+c)
(@)y® —a-2b 2a+2b+c 2b

(e}t —a+2b —2a+2b+c 2b

(a)t? —3a+2b+2c —2a+b+2c 2(—2a+2b+c)
(@)t} —a+2c c 2(—2a+b+ 2c)

Since every word in H is of the form té1ym¢e2ym ... tony™ where ¢; = 0,1,2
or 3, €2,€3," -+, €n = 1,2 0r 3,11, M, -+, a1 = 1, 2or3and n, =0,1,2 or 3,
therefore, every element in aH is of the form “—'{cﬁ Also the new value of b
for any element of aH is an integer, therefore, aH C Q*(\/n).

Theorem 3.2

If

L a=

€ Q*(v/n)

vs{here ¢ is an odd integer, then the elements in the orbit aH of the form
“—;—c}@ do not belong to Q*(y/n) but the elements of the form . ~“—+ﬁ belong to

Q*(v/m). o

a++n
c
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Proof

We can easily tabulate the following information.

a a b c

(a)y —-a-c s . 4a +2b+ 2c
(@)y? —-3a—2b-c 2a+b+c 4da+4db+c
(a)y® —a—2b fatbic 2b

(@)t —at2p ~ clabte gy

()2 -3a+2b+c —2a+b+c —da+4db+c
(@)t* —a+c 5 —4a+2b+2c

AS we see from the above informat»ion that in the orbit aH elements is either
of the form 2EY® or £Eva - Clearly, in the orbit aH all the elements of the

2¢ 241"
form “2;,:/1'7 are in Q*(y/n) and the elements of the form 1Y% do not belong
to Q*(v/n). :
Theorem 3.3

The action of H on Q(+/n) is intransitive. -

Proof
Since n is a positive integer, so it may be even or odd.

(i) Let n be an even positive integer, that is, n = 2m. If we take a = 3@, so
2

here a = 0,c = 2 and b = =" = —m. Hence a € Q*(y/n). Also if we take

B = y/n then B € Q*(y/n). Since the numbers of the form 2% and "22/1’_‘ lie

in two different orbits, as shown in theorem 3.1, 3.2, therefore, \/n and 3@ lie
in two different orbits. Thus there are at least two orbits of @Q(/n). Hence
the action of H on Q(/n) is intransitive.

(ii) Let n be an odd positive integer, that is, n = 2m+1. If we take o = 132@,

soherea =1 c=2and b= 9—2;—" = —m. Hence a € Q*(y/n). Also if we
take S = y/n then 8 € Q*(\/n). Thus, there are at least two orbits of Q(/n),

one containing 132@ and some other containing ﬁ Hence the action of H

on Q(+/n) is intransitive.
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ABSTRACT

An important problem in Q — group theory is to classify particular classes of
those groups which are not Q — groups. In this paper we completely classify
~ abelian Q ~ groups and also establish some relation between Q-groups, and
its faithful irreducible representation. We also discuss rationality of some

~ transitive groups.’ . : o
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1. INTRODUCTION

A @Q — group is a finite group all of whose ordinary complex representatlons '
have rationally valued characters, otherwise it is called Q - - group.

The interplay between thestructure of a finite group and representation has
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had, and continues to have, deep consequence for both theories. By imposing
certain conditions on the group, such as being abelian or nilpotent, one is able
to draw conclusions about its representations. Conversely, restrictions on the
representations can lead to specific structures. It is in this context that we
approach the study of @ — groups. It is quite interesting to note that the order
of a non-trivial @ - group must be d1v1s1ble by 2 thus ensuring the existence
of an involution.

A transitive permutation group G of degree n > 2 which has minimal degree

- n—11ie. no non-identity element fixes more than one letter and a subgroup

" H of G fixing a letter in non trivial, is called a Frobenius Group.

A subgroup K of G fixing no letter is called Frobenius Kernal and H is termed
as Frobenius Subgroup (also called complement). It is known that G is the
semi-direct product of H and K.

Among the transitive permutatibn groups, an improvement is obtained through

the concept of fractional transitivity. A group G is said to be %- transitive if all

orbits of G have the same length > 1. Similarly G is (k + l) - fold transitive
(k=1,2,---,n—1) if G is transitive on X (ground set) and G, is (k - -) -
fold transitive on X~ {z}

 2. _ DEFINITIONS AND SOME KNOWN RESULTS
"Deﬁnitioh 2.1[2] '

-For any represéntation p of G, we say that the group G acts on V via p. If
V contains no nontrivial G-mvarlant subspace, then p is called an 1rreduc1ble
representation. Otherwise, p is said to be reducible.

Definition 2.2[2]

Let m be an integer greater than 1. The set {[n]} of residue classes modulo
m, where [ < n < m and n is coprime to m, is a group and is denoted by Gp,.
A routine proof using the Euclidean Algorithm, shows that G, is an abelian
‘group, under the usual multiplication of residue classes More over |Gm| > 2
for m > 2.



On rationality of certain groups 9

Proposition 2.1{2]

Let G be a cyclic group of order m, then we have
a. If G contains an element of order greater than 2, then |Aut(G)| > 2.
b. If m is an odd prime, say p, then Aut(G) is cyclic of order p — 1.

c. Aut(G) = Gp.
d Im= p for some prnne p then Aut(G) is cyclic group of order
7(p — 1).

Proposition 2.2[1] & [3]
Suppose G is a Frobenius group having kernel K and Frobenius subgroup H.
Then:- . |
a). The slow p-subgroups of H are cyclic for odd p and are cyclic or
generalized quaternion for-p = 2. | ;
b). Let = be non-identity element of H. Ifz¥ ¢ Htheny € Hie. His
‘without fusion in G.
c). If |H|is even, then:-

(i)  H contains only one involution which is necessarily contained
in Z(H) |

(i) K is-abelian. _

(i) Let i€ H be involuiton .of H, then for k € K, ki = k1.

Proposition 2.3[6]

Let G be a finite group. Then G is a Q — group if and only if, for every cyclic
subgroup H of G, we have

From proposition 2.3 it follows that a finite group G is a @' — group if and
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ouly'if there-exists a cyclic subgroup H of G such that =
No(H)/Ce(H) FAut(H)

Proposition 2.4[6]

: VLet G be a Q — group. Then G contains an irreducible involution if and only
if a sylow 2-subgreup of G is either Z, or @s. '

3. ABELIAN Q-GROUPS

Following beautiful result about abelian Q-groups has already been proved [6].
-The proof contains some complicated number theoratical properties. However
we give here altogether a new and simple proof.

Theorem 3 1

A ﬁmte abehan group Gis Q- group 1f and only if it is- elementa.ry abehan -
- 2- group

' Proof

- Let G be an abelian Q-group. If:G’ is not an elementary abelian 2-group, then
there exists an element g € G such that | <'g > | > 2, then |Aut(< g >)| > 2.

Since G is abelian, therefore for each g € G we have
IN(< g >)| = [Cs(< g >)| = |G|

Thus [Ng(< g >)/CG(< g >)| =1, so that

Ng(< g >)/Cs(< g >) FAut(< g >) which is contradlctron to. proposition
2.3 proving that for non-identity g € G,| <.g.> | = 2. Hence G must be an
elementary abelian 2-group. :

Conversaly let G be an elementary abelian 2- -group. Then for each non-identity
g€G, < 9> =(,, so that Aut(< g>)=FE.

Now Ny(< 9>)/Ce(< g>) = E = NG(< g>) = Aut(< g >)Vg € G.

Thus G is a Q-group.
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Corollary 3.1

Let Gbe a finite Q-group. Then Z(G) is an elementary abelian 2-group.

. Proof

Follows immediately from theorem -3:1.
4. IRREDUCIBILITY AND Q- GROUPS
Theorem 4. 1

If the finite group G possesses a faithful irreducible representation and if order
of its centre is greater than 2, then G is a Q’'-group. :

Proof

Let p be a faithful irreducible representation of G on a vector space V. Let
Z be the centre of G, then p(Z) C Hompg(V,V). Since Hompg(V,V) is a
division algebra, p(Z) generates a field contained in Hompe(V, V). But we
know that finite multiplicative subgroups of fields are cyclic, therefore p(2)is
cyclic. Since p is faithful Zis cychc

Let : . S

| Z=<a>, thern |_<a>|>2%>]Aut(<a>)|>1

Bu£ Ng(<a>) 2 Ce(<a>)=G (Because < a > is in the.eehtfe of G).
= Né(< a >)/Cq(< a->) = E which is not isomorph’ic to Aut(< ; >)

1 Hence by proposition 2.3 G .is a Q- greup

5. RATIONALITY OF TRANSITIVE GROUPS

Theorem 5 1

Let G be a Q -group. If G is a transmve permutatlonal group on a finite set .
A, (JA| = n > 2) such that G, is ] -transitive on A — {z} for any z € A, then
G = E3Z, where Ej is elementa.ry abelian 3-group and Z, inverts all elements
of Ej.
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Proof

We take A = {1,2,3---n} so that G; = H is - transitive on A — {1}. Let
length of each orbit of G; be m > 1, then G is impritive and has non-trivial
blocks, say, of length k£ with 1 < k < n.Then the elements of A may be
arranged in a matrix (z;;) in such a way that every row R; is a block of G of
length k and say z,; = 1.

Now, R is fixed by G, therefore k = 1lmod(m) = (k,m) = L.
We define (R;)? = {(z:)a; @ € H,z; € R;}

Then for i > 1, R¥ is fixed by H and does not contain 1. Therefore |Rf| is
divisible by km (as (k,m) = 1).

- On the other hand |zf{| = m (because each zf] is an orbit of x;;). Therefore
|RH| < km. Thus, it follows that |Rf| = m and therefore zfl N z# = ¢ for
i # j. Thus means that, for i > l,foI- N R; = xi;. :

Now it follows that:-

If z € Ri(i > 1), then

H:v: = Glz - GRi . (1)
Since @ € H we have : '
Ty = (:z:g N R;)*
= :cg N Ry

Since 1 and z may be interchanged, therefore from (1) we have
G1; C Gp (2)

Also since Gy, C Gri C Gy, and |Gyz| = |Giay,], therefore, |25 | = m, and
GI:I: = Glzlz == G»l:!:lk'

= Giz,, = E, the identity subgroup, as z is arbitrary except that z ¢ R,.

| But then
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G = E for any ¢ # 1, even if z € R; and if z ¢ R, then, G, = E by (2).
This means that minimal degree of G > n — 1.

Since G can not be regular (because G, # E and z > 2), therefore minimal
degree of G = n — 1 i.e. no element of G fixes more than one letter of A.

Thus, G is a Frobenius Group with G, = H as Frobenius Subgroup. Then
H is without fusion in G, therefore H is also a Q-group and has even order.
Then, by proposition 2.2, H contains only one involution, say, iy, so that
sylow 2-subgroup of H is isomorphic either to Z; (cyclic group of order 2) or
to the Generalized Quaternion group [proposition 2.4]. Now H contains an
irreducible involution, therefore by proposition 2.4 sylow 2-subgroup of H is
either Z, or Qs. '

Let K be the bFrobenius kernel of G. Then K has no involution and order of
K is odd [6]. Since G is semi-direct product of H and K, therefore H contains
sylow 2- subgroup of G. Thus sylow 2- subgroup of G is either Z; or Qs.

Now if sylow 2-subgroup of G is Z, then G is of the form E3Zz [6]

If sylow 2-subgroup of G is Qg then, by Glauberman Z* Theorem [7], Z(G) is
non trivial. Hence involutions of H can not invert elements of K which is a
contradiction to the fact that involutions of H invert elements of K [proposi-
tion 2.2].

Hence G is of the form E3Z,.
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ABSTRACT

In this paper some mathematical models for growth and decay of tumour are
reviewed and a simple model is developed. This model uses an exponential
distribution as a model for the growth of the tumour and instantaneous kill
of the tumour cells after irradiation. To avoid non repairable damage to the
connective tissue, the upper limit of the dose is described using both the
cumulative radiation effect system and the linear quadratic formula.

Key Words: Tumour, Growth, Exponential distribution, Logistic equation,
Gompertz curve, Irradiation, Fractionation, Decay, Cumulatlve radiation ef-
fect system, Linear quadratm formula.

1. INTRODUCTION

Previously the temporal variation. in incidence rates of cancer of the larynx
[1][2] and factors influencing the five-year local control rates and disease free
times of patients with cancer of the larynx were studied [3}{4][5]. Generalized
linear models and proportional hazard models were used in each case to esti-
mate the effect of the explanatory variables on the response rates and times.
. Such models were extremely useful and allowed the conclusion that the increase
in incidence rates was largely birth cohort based. The local control rates were
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heavily affected by the initial state of the tumour at the begining of the treat-
ment and less so by the treatment variables [6]{7][8]. The survival analysis
showed that the survival time after treatment is, also, mainly -dependent on
the tumour characteristics and the effect of dose is not linear [9].

In this paper, detailed mathematical models of the behaviour of the tumour
are considered. The previous models mentioned above are purely descriptive
analytic tools. Here an attempt has been made to bring the cell kinetics to
the fire to try and establish the effects of treatment. Radiotherapy is the main.
treatment of cancer of the larynx [10]. Also, an attempt has been made to look
in detail at the way the tumours grow and decay through radiotherapy using
some mathematical models. The aim is to see if optimal schedules can be found "
by such study so as to improve the treatment. The important restrictions on
the dose are discussed in the form of the cumulative radiation effect system .
and the linear quadratic formula. Finally models are described which~could
devise optimal treatment schedules.

The problem of treatment of cancer by radiation involves two aspects.
1) Growth of the tumour
2) The killing of the cells by radiation

These aspects are independent of each other. The overall pattern of the treat-
ment of the tumour is set on a biological basis. The total dose of radiation,
say, Dr is decided. It has been further approved hat this dose should be given
in fractions i.e. a part of the total be given on a number of occasions. The
‘nuimber of fractions, say, F ‘is based on the understanding of the possible be-
haviour of the tumour growth and the capacity of the patient to bear a certain
amount of radiation on one occasion. F is usually taken as between 4 to 60
for any treatment schedule [11]. The total time for the treatment, say, T days
should be calculated such that there exists sufficient evidence to believe that
'no tumour cell could survive after the final dose. Figure 1 gives a picture of
the growth and decay of the tumour cells. P, P,,-- -, Pr denote the properties
of cells immediately prior to the administration of dose fractions. Clearly P,
is equal to one. P[, P;,- - -, Pr denote the the cell properties immediately after
the administration of each dose fraction. The properties are relative to the
initial size Ny. After the first dose fraction, the proportion of cell, P, falls



Some mathematical models and survival ........ 17

down to P|. During the time of the first fraction and the second fraction, the
tumour grows to P,. After the second fraction the cell proportion falls down
to P,. The other values of the proportions can be interpreted in the same
fashion.

Mathematics has to play its own role in predicting the behaviour of the growth
and decay of tumour, both individually and thereafter combined. Apparently
it may took improper to express the biological aspects into rigid mathematical
terms, but fine similarities may be revealed and an attempt could be made
to frame the biological phenomenon into a pre-controlled mathematical term.
The problem thus arises to establish a model which justifies statistically the
claim that one treatment is better than another.

The next Section 2 describes the development of an exponential distribution
for tumour growth. With further practical assumption the logistic equation
is stated in Section 3. Some other basis models which could represent the
growth of a tumour are described in Section 4. The important aspect of the
decay of a tumour is the cell survival. Survival curves from statistical models
are described in Section 5. The cell survival after fractionated irradiation is
described in Section 6. This survival takes into account both growth between
fractions and instantaneous kill by radiation.

The biological effect of the dose on the human body is an important factor for
both biologists and mathematicians. This effect is to be calculated keeping in
view the connective tissue tolerance and the removal of the tumour in minimum
time. The connective tissue tolerance is the upper limit of a dose which could
damage the connective tissues up to a limit such that these tissues could be
believed to repair themselves before the next fractionation. If a dose greater
than the connective tissue tolerance is administered then the non cancerous
cells surrounding the tumour would not be able to repair themselves before the
next dose. Sections 7 and 8 take into account of this matter and describe the
concept of the cumulative radiation effect and the linear quadratic formula.
Section 9 describes the development of simple growth-decay models using the
cumulative radiation effect system and the linear quadratic formula. These
models are deterministic. The stochastic aspects of a simple growth and decay
model can be simulated to devise optimal treatment schedules.
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2. EXPONENTIAL €ROWTH MODEL

If a constant rate of change is working on some population then the size of that
population can be determined by an exponential model. The analogy of various
mathematical parameters of the exponential distribution with biological terms
is described in this Section.

The exponential model assumes that,

i)  All cancer cells are alike.

ii)  There is no cell death.

iii) Essential nutrients (such as oxygen or necessary substrates i.e. surfaces
of plantation of tumour) remain available to the cells.

iv)  The cancer cells have sufficient space to exist.

Let N; be the number of cells in the i geﬁeration. Let the initial number of
cells, Ny (say) be 1. After the ith doubling we have

N,' = 2Ni_1 = 2(2 X2X---1—1 terms),
= 2 =0,1,2 o (2)
4
The time t for occurrence of i mitoses can be written as
t =1ty (2.2)

where t4 denotes the tumour doubling time [12]. The tumour doubling time
t4 is equal to the constant intermitotic time ¢, say. Using equation (2.2) we

can also write (2.1) as
Ni — 2t/td — e(LnZ)t/td (23)

The variable t can safely be assumed to be continuous. Hence the above
equation indicates that N; can be interpreted as geometric growth or in terms
of a type of exponential growth i.e.

1dN  Ln(2)

SN T e

= constant, (2.4)

where u can be defined as the specific growth rate of tumour. If it is assumed
that at some time ¢ the tumour is identified to have a population of cancer
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cells as Ny, then at some later time t the cell population, N, will be
N, = Ngelt—to)u : (2.5)

If the assumptions stated at the beginning of this Section continue to hold the
exponential growth model indicates that the population of the cells will ever
increase with a constant rate u. Figure 2 gives a picture of the growth of cell
population by exponential growth starting from an initial value of Ny. There
exists no finite limit on the final size of the population. Surely this assumption
is difficult to hold over more than a limited period of time [13]. A mathematical
distribution which takes into account the ever changing circumstances affecting
the rate of change is described in the next Section.

3. LOGISTIC EQUATION

The exponential distribution described in the last Section assumes that the
_specific rate of change is not disturbed throughout some process. This is pos-
sible for a short term process. The human body has its own limitations. The
tumour can grow exponentially for a short period. Thereafter some constraints
must apply. A model which can take account of this limitation is described
below.

If by the passage of time the supply of essential nutrients (such as oxygen or
necessary substrates) reduces, the cell population experiences an inhibitory
effect on its further growth as the rate of growth of the cells is reduced. The
population of cells at a particular time has a smallar rate of growth as com-
pared to some population at an earlier time. Thus the rate of increase of the
population of cancer cells slows down gradually. The rate of slowing down can
be materialized with the assumption that the cell population will ultimately
reach a limit beyond which it will not be possible for the cells to proliferate
[13]. Figure 3 gives a picture of growth of cells population starting from an
initial size Ny up to maximum of size Ny. The rate of change will now take
the form

& = F(N) (3.1)

where f(N) is a decreasing function of the cell population at some time t. A
linear expression can possibly be the simplest way to represent f(N), i.e.

F(N)=a+bN
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where a and b are constants such that b < 0 and (a +bN) > 0

Assuming that the specific rate of growth of tumour in the beginning is u, an
expression which can reduce the value of u to zero can be written as

Ny, -N

TN =y, =N,

(3.2)

where Ny, is the conceived asymptotic size of the cell population. Using equa-
tion (3.2), equation (3.1) can be written as

ldv _ N - N (3.3)

A solution of the above equation can be written as

-1
N - -t _ﬂ___
N=N, [7\7—2 + {1 + %Z—} e{ TR }} (3.4)

This equation is called logistic equation and the curve of population sketched
against time t is called logistic curve. Verhulst first used the logistic curve
as a population model [14]. By definition other suitable expressions for f(IN)
various other forms of the logistic curve can be deduced for different situations
with suitable interpretations of the parameters [13].

In the above Section the rigidity of the exponential distribution has been
moulded gradually to get the logistic equation. In the next Section some more
models are described which could possibly represent the growth of tumour
when the exponential distribution or logistic equation is not sufficient.

4. SOME OTHER GROWTH MODELS

In practice it has been experimentally found that some times the tumour’s
growth cannot often be adequately described by exponential model or by lo-
gistic equation [15]. Another curve, which can possibly represent the tumour’s
growth pattern, is the Gompertz curve. This curve is governed by the differ-
ential equation.

& [Fm] = 7w
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where F(N) is a function of N depending upon t, and h is a constant of pro-
portionality [16]. Let us assume that h = u. Defining F(N) as

7] = e[

1dN N]

—_—— = -— l .
N dt ulog [NL (4.1)

[15]. From the growth characteristics of the tumour the parameters u and Ny,
(greater than 0) can be determined. One possible solution of equation (4.1) is

N = N, [l°g( £)u-e] (4.2)

The Gompertz curve can be called a growth curve since it portrays a process
of cumulative expansion to a maximum value. The expansion starts from
decreasing relative amounts from the begining stage, but continues to the end
without receding. This curve has a value as an empirical representation of
certain trend movements [17)].

Usher (1980) has developed a general model, where the exponential, logistic
and Gompertzian curves can be shown to be special cases [18]. The differential
equation for tumour growth can be written as

w2 49

where ¢ (greater than 0), u and N (greater than 0) are determined from the
growth characteristics of the tumour on which the models are being applied.

When c tends to 0 equation (4.3) represents Gompertzian growth rate. When
¢ tends to 1 equation (4.3) represents Verlulst logistic growth rate. When c
tends to 1 and Ny, tends to infinity, equation (4.3) represents the exponential
growth rate.

One of the possible solutions of the equation (4.3) can be written as follows.

N =N, [(%)c + e_(—ut) { - (%)H e (4.4)
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Sections 2, 3 and 4 described some models which could be used for modelling
growth of tumour. The decay of a tumour is not a straight forward process
as the growth can be. The decay involves killing of cell by treatment and
thereafter the survival of the cell. The survival behaviour of the cell after a
radiation insult is considered in the following Section.

5. SURVIVAL CURVES FROM STATISTICAL MODELS

In previous Sections some mathematical models have been described which
may represent the growth of the tumour. The determination of the amount
of the dose, number of fractions and overall treatment time for a particular
cancer patient with the intention to eliminate the tumour is called the treat-
ment scheduling [10]. To ascertain the utility of some particular treatment
schedule it is essential to study the behaviour of the survival of the cell after
an irradiation insult. In this Section the survival curves are described which
may fit the survival of cell after a radiation insult.

Before considering the survival of a cell after an irradiation insult the terms
linear energy transfer and relative biological effect are explained. Two of the
components of light are short wave length ultraviolet radiation and radiation
which is composed of particles. X-rays and gamma rays are examples of parti-
cle radiation. The particle radiation can produce ionization in some organisms
and can break chemical bonds, which can result in the killing of the target or-
ganism: Linear energy transfer can be defined as the rate of energy loss along
a track. Various rays have different tracks of linear energy transfer. In this
context the relative biological effect can be described as the ratio of radiation
dose used by different particles. For example, if a dose of 1 Gray from beta
particles is capable of destroying an organism and a dose of 2 Grays of X-rays
can destroy the same organism then the beta rays will have twice the relative
-biological effect as compared to X-rays [11].

The chance of injuring an organism by a radiation insult is proportional tothe
volume of the organism and has two multiplicative components: The proba-
bility that the target gets the hit and the probability that ionization occurs in
the organism. The first probability is propo;tional to the cross sectional area
of the organism and the second probability is proportional to the thickness of
the organism [11]. In the following Section, two survival models are presented.
Section 5.1 describes the model when the cell is considered to be inactivated
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by a single hit. Section 5.2 takes into account the possibility of more than one
nucleus in the cell.

5.1 Single-Hit-to-Kill Model
Let us assume that after each dose a fixed proportion k (say) of the cancerous
population is killed. We can write
1dN
Ndd ~
where N is the size of the tumour and d is the dose per fraction. Integrating
both sides of equation (5.1) gives the solution log,(N) = —kd + I

—k (5.1)

where I is the constant of integration. Exponentiating the above expression

we have
N = el~kd+D) (5.2)

At d =0, N = Ny = exp(/). Dividing left hand side and right hand side of
the equation (5.2) by Ny and exp(I), respectively, we can define S as a survival
fraction as N .
_ 2 _(~kd)

S= N, = e (5.3)
The above equation can represent survival from exponential distribution with
mean 1/k. Denoting the mean lethal dose by dy we can write dy = 1/k, so
that

S = el~d/do) (5.4)
Of course there is no flexibility in the constancy of the survival rate i.e. there
exist no change in the experimental condition before or after the treatment.

In this Section it is assumed that the cell is a single target for irradiation. This
means that if a cell is irradiated at least once the cell can be inactivated. In
the following Section the situation is considered when the cell is considered to
comprise more than one target one of which is required to be hit at least once
to inactivate the cell.

5.2  Multi-Target, Single-Hit Survival

The cell may contain more that one nucleus. To inactivate the cell it is nec-
essary to hit each at least one target at least one time. If we assume that
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a single hit is sufficient to inactivate a target and the probability of a target
being hit is independent of the other targets, then the surviving fraction exp
(-kd) defined in Section 5.1 can be identically regarded as the probability of
a target not being hit. Let us assume that there are n nuclei in the cell. The
probability that all targets are hit is, therefore,

[1-ea]” (5.5)
The survival S depending upon the parameters k, n, and d can be written as
S(k,n,d) =1- [1 - e*]" (5.6)

Because of its historical importance the above formula is most widely used.
For n = 2 and k = 1/96 (per rad). Puck and Marcus (1956) found that above
equation (5.6) fitted well to their data [19]. For small radiation fractions or
continuous irradiation at low dose rates in mammals or in clinical radiation
therapy this formula is inadequate [11].

In previous Section 5.1 and 5.2 the survival fractions after radiation insult.are
considered. The growth of the tumour has already been discussed in Sections
2, 3 and 4. The growth models and survival fraction models can be combined
to study the cell survival after repeated fractionated dose. The next Section
presents this combination.

6. CELL SURVIVAL AFTER FRACTIONATED IRRADIATION

~ The growth behaviour of tumour cells and the survival fraction of a cell pop-
ulation after a single radiation hit and multiple hits has been modelled in
Sections 4 and 5. To assess the outcomes of fractionated dose it is necessary
to make use of both aspects of the cell population. In its s1mp1est form the
idea is presented in this Section.

It is a pleasant fact that normal cells have a superior and rapid capability to
repair sublethal (i.e. less than connective tissue tolerance) damage as com-
pared to the tumour cells. The time between successive dose fractions helps
the recovery of normal cells. Of course the tumour cells which are not dam-
aged enough to be completely inactivated take benefit of the time between
fractions. The study of the growth of cancer cells is an important part of the
cell survival after a radiation insult. Some important assumptions involving
the process of growth and radiation insult are given in the following.
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Let us assume that the dose is irradiated at times 0, t, 2t, and so on. Here t
is the number of days between successive fractions. It is further assumed that
there is an instantaneous decrease in the level of the tumour cells as result
of the radiation dose. How much of the tumour is reduced at the times 0, t,
2t, 3t ... depends upon the dose irradiated. The cancer cells will grow during
the open intervals (0,t), (t, 2t), etc. The t is usually one day. As the overall
treatment times are not long enough to have to considering limiting tumour
size (t is, usually one day), so logistic and Gompertz and other curves are
not needed to explain the growth of the tumour and the exponential model
would be sufficient for the purpose (Sections 2 and 3) [6]. It can, therefore,
be assumed that the growth rate would remain the same in the times between
fractionated doses. It means that the growth of tumour can be presented by
exponential model and there would no need of assumed that the growth is
presented by Logistic equation or Gompertz curve. Of course, another impor-
tant assumption is that the normal cells recover during the time interval to
the next fraction of the dose. With these assumptions the-cell survival cure
can be conceived as a continuous process of fall and rise. Of course, the rise
after a fall should be small enough such that the cell population at the next
fraction of dose is considerably less than the previous population. In this way
the survival curves for tumour cells have a downward trend. After the last
fraction of dose the survival curve is expected to lie on the horizontal axis for
a successful treatment.

With the general idea about the survival curve explained in the previous para-
graph exponential growth is considered below. The assumptions described are
integral part of cell survival study.

Let us assume that the dose is dispensed by equal fractions and equal times
between the various fractions of dose. As explained earlier in this Section
the first fraction can be assumed to be given on day 0, the second on day t,
the third fraction on day 2t and so on. The last fraction F (say) is, clearly,
given on day (F - 1)t from the begining of treatment. Let the level of the
cell population be Ny, N, - -+, Np immediately prior to the administration of
the first fraction, second fraction and so on the last fraction. Similarly we
can define Ni, N;,---, N to be the levels of the cell population immediately
after the first fraction, second fraction and so on the last fraction. Assuming
the same dose per fraction hence the survival fraction S to be same after each
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;réctign', we can write
N, =8N, i=12,---,F. (6.1)
Here i is the number of the fraction. After the first fraction
N} = SN, (6.2)

Assuming that after the first fraction the tumour grows exponentially, from
equation (5.2.5), without applying the initial conditions, we have

N, = N;_ e, (6.3)
Hence the cell population immediate prior to second fraction is
N, = Nje®, (6.4)
After the second fraction the cell population is
N, = SN, = S2Nyevt), (6.5)
Proceeding the same way we have

N} = SN;= SN = 3N, eu)
N, = SN, =SNje = g4N,e(u)

Np = SNp=SNp_et = SFN,elF-1)uil (6.6)

Dividing both sides of the above equation by N; and denoting Ny by N (for
simplicity) the final proportion of survived cell population after F fractions is
Nr — oF (F-1)ut

I—V;'—S [1—'6 ] (67)
Practically the above model will never give a value lying on the horizontal line.
This would tend to zero when F would tend to infinity (as S is a fraction) and
t tends to zero. From equation (5.3), S = exp (- kd). Hence assuming F tends
to infinity is equivalent to assuming D, the total dose, tends to infinity. This
means that, for practical purposes, he fraction Np/N; could be minimized
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reduced if the total dose per fraction or the number of fractions is increased
and the time between fraction doses is minimized.

In the above Section the cell survival after successive radiation is considered.
The growth rate during the intermittent time is assumed to be constant relative
to the cell population. It is also mentioned that the normal tissues are to be
given a fair chance of recovery before the next fraction. Hence there should be
some limit on the dose irradiated. The dose should be chosen such that the
biological effect produced should not damage the normal tissues to the extent
that they could not sufficiently recover before the next fraction or after the
completion of treatment schedule. Such restrictions on the amount of dose are
discussed in the following two Sections. Section 7 describes a historical system
called the cumulative radiation effect. A comparatively modern approach is
to define the dose limit by the linear quadratic formula. This is explained in
Section 8.

7. CUMULATIVE RADIATION EFFECT

A historical measure to restrict the dose to some upper limit is discussed in
this Section. The cancer therapy is used with the intention of removing all the
cancer cells. However, the dose of radiation, used as a treatment for removing
the cancer cells, also causes damage to the normal cells. These normal cells,
which surround the tumour, cannot bear a heavy dose. This can cause serious
effects to the patient such as oedema, radiation necrosis or deterioration in the
quality of voice [6]. So the dose used has, surely, some upper limit keeping in
view that the normal cells should recover with the help of homeostatic repair
mechanisms before the next fraction of dose is dispensed. The homoeostasis is
a state of physiological equilibrium produced by a balance of functions and of
chemical composition within an organism. Thus the treatment schedule is to
be selected which should result in maximum damage to the cancer cells and
minimum damage to the normal tissue. It is, therefore, necessary to have some
idea of the normal tissue tolerance. A way to measure the damage suffered by
the normal tissues described below.

Ellis and coworkers (1969) gave the concept of normal connective tissue toler-
ance as a practical upper limit of any radiation schedules and defined a term
nominal standard dose (NIS) as
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NSD = (Total dose) F~0247-0-11

Where, T is the overall treatment time [20). The constants, -0.24 and -
0.11 have been derived by Ellis using the results of Strandqvist (1944) [21].
Strandqvist had derived a slope value of 0.22 for both skin reactions and for
the cure of squamous cell carcinomas [22]. Ellis used the value of Strandqvist
as representative of tumours to derive his formula for total dose as

Total dose = (constant) F0-247011

Although the results of Ellis are based on radiation effects on skin, Kirk, Gray
and Watson (1978) suggested that these results can also be used to calculate
radiation effect on normal tissues [23]. Kirk (1978) and McKenzie (1979)
introduced the idea of cumulative radiation effect using the results of Ellis for
this purpose [24][25]. Equivalent to the nominal standard dose, the cumulative
radiation effect (Rr) is empirically related to total dose D, fractions F and
number of treatment days T as

RF — DF—0.24T—0.11 (71)
The cumulative radiation effect can also be written as
Rp = dF~065;-011 | (7.2)

where d (= D/F) is the dose per fraction and t (=T/F) is the time between
the fractions. The unit of cumulative radiation effect is rad.day ~%!! and can
be called reu (radiation equivalent unit). '

With the same value of the cumulative radiation effect various treatment sched-
ules can be devised which have the same biological effect. Keeping in view the
deterioration of the patient the schedule can be changed to have an equiva-
lent biological effect which is regarded as a target before administration of the
treatment schedule. A treatment schedule for total dose of 6000 rads, 30 frac-
tions and total treatment days of 34 (six fractions per week, starting on first
working day and no dose on weekend) could produce a value of 1800 reus for
the cumulative radiation effect. Various treatment schedules which produce a
. cumulative radiation effect reus of 1800 can be devised using equation (7.2).
For example, a dose of 4750 rads, 4950 rads and 5850 rads dispensed daily for
"16 days, 18 days, respectively, will have the same cumulative radiation effect
of 1800 reus.
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The cumulative radiation effect can be used to compare and assess various
treatment schedules. If used for devising optimal treatment schedules, it may
suggest some schedules with long overall treatment time. The clinical experi-
ence does not favour long treatment times [8]. It mean$ that the cumulative
radiation effect can be validated for short term schedules only. Fowler (1989),
in his review article criticized the cumulative radiation effect as follows

7.1 The Fraction Number

a) F 92 does not predict the severe late damage that occurs for larger
fraction sizes. For large change in the value of F, the change in F%?* will not
be large because of the fractional power. The factor F%?* contains only one
parameter which predict only acute or early damage. There is no provision for
predicting late damages. '

b) The graph of total dose against number of fractions is curved, not
straight (log-log). This means that if we take logarithm of the formula for
total dose, then keeping time as fixed, we get a linear relationship between the
logarithm of total dose and logarithm of number of fractions but experimen-
tally it is not true. '

¢) Fraction sizes, not number, is the important parameter. This means
that the dose per fraction is more important than the number of fractions.
But the formula for total dose does not take into account the dose per fraction
and only considers the number of fraction, F.

7.2 The Time Factor

a) TO%M predicts a large increase of isoeffect dose (dose having the same
effect) at first, then increasing more slowly. The biological fact is just the
opposite: it shows no increase at first and then a rapid rise of isoeffect dose as
proliferation accelerates. The time factor T %! involves the fractional power.
A range of value can be decreased remarkably by taking fractional power of
the vlaues in range. The increase in the values of T ®!! is much slower than
the actual increase in the values of T. Hence the values of the total dose are
predicted relatively higher by the smaller values of T than are predicted by
greater values of T.
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b) The time factor is underestimated for tumours and acutely reacting
tissues. This means that the tumours-and acutely reacting tissues have more
weight than is calculated by the time factor T %1

c) The time factor is overestimated for late-reacting tissues. This means
that late-reacting tissues given more weight by the time factor T %!! than the
experiments show.

7.3 General

Time dose and fractionation tables (i.e. the treatment schedules determin-
ing the total dose, number of fractions and overall treatment time) are too
easy to use without thinking about late/early reactions or proliferation rates

[26].

Another formula which can take the place of the cumulative radiation effect is
the linear quadratic formula. This is described in the next Section.

8. LINEAR QUADRATIC FORMULA

As explained in Section 7, the cumulative radiation effect does not take into
account properly the late and early reaction or proliferation rates. The linear
quadratic formula takes into account these damages incurred by the radiation
insult and is described below.

In conventional radiotherapy the schedules for treatment include dose, fraction
and time. The dose per fraction can be defined as dose divided by number
of fractions. After the fractioned dose, the tumdur cells absorb the energy
administered by the dose. The tumour cells are killed at the stage of mitosisi.e.
splitting themselves into two daughter cells. The damage by irradiation can
be acute i.e. early and or late. These effects are relatively independent of each
other. As stated earlier the repair of the normal tissues is an important aspect
of the study of tumour decay. The acute or early effects can be reduced, by
prolenging treatment. The late effects depend on the total dose administered.

Thames et al. (1982) presented a linear quadratic formula for measuring the
biological effect of a treatment schedule. Biological effect (Bg) can be written
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as
Bg = F(ad + fd°) (8.1)

[27] Here d is the dose per fraction and F is the total number of fractions for
the treatment schedule. The a and § are parameters depending on proper-
ties of the tissues being irradiated. This formula is an empirical relationship
based on animal studies when radiation is fired at normal tissues and damage
measured. Various sets of values of fraction F and d can be found which can
give the same biological effect. Conversely with the same biological effect,
various values of number of fractions and dose per fraction can be calculated.
Equation (8.1) can be written as

Bg ,

—_— = d .

o ke + 4 (8.2)
For treatment schedules with fixed Bg and F the plot of 1/d against d yields
a straight line. Writing equation (8.1) as

1 a I}
—_— = — 4+ —d )
Fd_ By  Bp (8:3)

the fitting allows % ratio to be calculated as the ratio of the intercept and slope
of the equation (8.3). If Bg is known, a and f can, precisely, be estimated.
If total doses D;.and D, give equal biological effect from two schedules with
number of fractions as F} and F3, we have

BE = Fl(adl + ﬂdf) = Fz(adz + ﬂdg)
or
Aifzea]=nf3ea]

so that we have

g _ Dzdg — Dldl
B D, - D,
[28]. Here d; ( —l) and d, (: %) are the doses per fraction for the total

doses D; and D, respectively.

 To estimate £ from an animal experiment an early effect can be estimated
from a dose in the range of 6 to 26 Grays. To estimate late effect the range of
dose is 2 to 5 Grays (1 Gray = 100 rads). ' :
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The important restrictions over some treatment schedules have emerged in
the form of the cumulative radiation effect and the linear quadratic formula.
These have been described in the above Sections. The two formulae can be
incorporated in to survival models described in Section 5 to develop optimiza-
tion models. Of course the consideration of the growth of the tumour is an
integral part of a fractionated schedule. Some growth models have already
been discussed in bection 2. Following Section describes the development of
optimal models.

9. OPTIMIZATION OF THE MODEL

The dose cannot be bombarded with a dose of radiation without any limita-
tion. The limitations were discussed in the form of the cumulative radiation
effect and the linear quadratic formula in Sections 7 and 8 respectively. The
fractionation has proved its own advantage over dispensing the dose as a whole.
However fractionation does permit the growth of the tumour in the intermit-
tent time. The growth models have been discussed in Sections 2, 3 and 4. All
these aspects can be combined to reach some optimal model for fractionated
treatment. This Section takes into account of such models. Section 9.1 con-
siders an optimization model consisting of the cumulative radiation effect and
Section 9.2 uses the linear quadratic formula.

9.1 Optimization Model Using the Cumulative Radiation Effect

Wheldon and Kirk (1976) have used the cumulative radiation effect system
" to develop an optimal mathematical model [29]. This model can be used
to deduce the treatment schedules which take into account connective tissue
tolerance so that the normal tissues get the maximum chance to revive. The
details of the Wheldon and Kirk formula are as follows.

In Section 5.2 the survival function after single hit multitarget tumour cells
was found to be -

S(k,n,d) =1- [1—e*]" (9.1)

k can be replaced by 1/d, where dj is mean lethal dose. The d is the dose per
fraction and n is the number of nuclei in the cell. These are the targets each of
which is to be hit at least once to inactivate the cell. Let F be the number of
fraction for the uniform optimal schedule. From equation (6.7) the proportion
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of cells remaining after F fractions is

Ne _ sretr-vu - (9.2)

where N is the final size of the cell population after F fractions, Ny is the
initial size of the cell population, S is the survival function described above
in equation (9.1), u is the constant rate of growth per day or regeneration
parameter and t is the intermittent time between fractions. In Section 7 the
cumulative radiation effect is defined as

Rp = dF°t | - (9.3)

The optimization problem is to minimize the proportion of cells defined in
equation (9.2) subject to the condition defined by cumulative radiation effect
in equation (9.3). This can be accomplished by, putting the value of F in (9.2),
after calculating from (9.3) and putting the value of S from (9.1). Denoting
the proportion of cells survived after F fractions by Y, the model can take the
form, after the value of S is incorporated, as

Y = 7]\% =[1- {1 et-/r }]F eF—ut: (9.4)

Putting the value of F from equation (7.2), the optimal model is

Yere(d, t) = [1 - {1 _ e(—d/do)"}] (Ef)l/aib/“ x e[{(fﬂ Uatf/n_t}"] (9.5)

The above equation involves two basic treatment variables d and t. The sur-
viving fraction Y is a function of these two parameters. The parameters Rg, a,
and b concern with the radiation damage to normal tissues. The parameters
dy and n refer to radiobiological characteristics of the tumour. u is the specific
exponential growth rate of the tumour. '

The standard value of the cumulative radiation effect is 1800 reus. As stated
earlier, Kirk suggested the values of a and b as 0.65 and 0.11, respectively. The
n is usually taken as one or 2. u can be estimated from tumour characteristics.
The tumour doubling time could be from 10 to 130 days [11].

The model presented by equation (9.5) is deterministic. This will never become
zero. As the value of d i.e. Dose per Fraction tends to infinity the model will
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represent an asymptote to the horizontal axis. As t i.e. tends to infinity the
value of the function tends to infinity. Under certain conditions, however, this
function can become asymptotically zero. Keeping t as fixed and increasing
the value of d from zero, the derivative of the function Ycrg with respect to d
passes through zero. Similar behaviour can be observed keeping d fixed. This
means that the pair of values (d, t) can provide minima which would be global
one. Some details can be found in [11].

An optimal model is developed in the above Section using the cumulative
radiation effect suggested by Wheldon and Kirk (1976) [29]. The cumulative
radiation effect system has a place in the history of radiotherapy. The criticism -
over the system made a way to consider the linear quadratic formula for the
purpose of derivation of a mathematical model to get optimum treatment
schedules.. Such a model is discussed in the next Section.

9.2 Optimization Model Using the Linear Quadratic Formula

In Section 7 the dependency of the lesion was described by the linear quadratic
formula proposed by Thames et al (1982)[27]. From equation(8.1) the biolog-
ical effect can be written as

Bg = F(ad + Bd?) | (9.6)

Using the above equation for the relative biological effect another optimal
model can be derived parallel to the model represented by equation (9.5) using
which used the cumulative radiation effect as the relative biological effect.

From equation (5.6), the survival function after single hit to multitarget tu-

mour cells is " - L
S(k,n,d) =1-[1— 4] . (9.7)

where k = 1/dy, do is mean lethal dose, d is dose per fraction and n is
the extrapolation number representing the number of nuclei in the cell. From
equation (6.7) the proportion of cells remaining after F fraction is

Ng

= GF o(P-1)ut | - (9.8)

Here Np and N are the final and initial sizes of the cell population, u is the
constant rate of growth per day and t is the time between fractions. The
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optimal model representing the proportion of cells after F fractions can be
had by putting the value of F from equation (9.6) in equation (9.8). From
equation (9.6), F can be calculated as

Bg

= ad+ p (8:9)

Putting this value of F in equation (9.8) and denotmg the proportlon of cells
survived after F fractions by Y, we have

_ s(=%a) |75

Yig e ut (9.10)
Inserting the value of S from (9.7) the optimal model using linear quadratic
formula for the relative biological effect is

B B
a4+ﬁd5] [ad+ﬁd§ _1] ut

Yigldt)=[1-{1- e(‘kd)}ﬂ][ e (9.11)
Like equation (9.5) the above equation (9.11) represents the surviving fraction
Y as a function of these two basic treatment variables d and t. The parameters
Bg, a, and b are parameters concerning radiation damage to normal tissues.
The dy is mean lethal dose and n is the number of nuclei in the cell. These
parameters refer to radiobiological characteristics of the tumour. The u is
the specific exponential growth rate of the tumour and t is the time between
fractions. Keeping the value of d fixed and increasing the value of ¢,Y;q
would increase. If we keep t fixed and increase the value of d the function

would decrease accordingly. This means that we cannot attain a minimum.
~10. SUMMARY AND CONCLUSIONS

The information from some previous studies is utilized to develop a model,
which could devise optimum treatment schedules. Some mathematical models
for growth of tumour have been reviewed in Sections 2, 3 and 4. Survival
curves from statistical models are discussed in Section 5.

Combining the growth and survival curves the cell survival after fractionated
irradiation is discussed in Section 6. The model described suggests that the
fraction of cells remaining after F fractions, Ng/Np will tend to zero if the dose
per fraction is infinitely large or the number of fractions is infinite. Another
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condition for the model to tend to zero is that the time between fractions tends
to zero. In any case the survival curve will be asymptotic to the horizontal
axis and will never touch it. It can be concluded that we cannot get a value
of zero for the fraction Ng/Np with deterministic models.

Incorporating the cumulative radiation effect system as a connective tissue tol-
erance, which is the upper limit for any treatment schedules, an optimal model
for the cell survival is described in Section 9.1. The cumulative radiation effect
system has certain limitations. These are described in Section 7. An alterna-
tive method of estimating the biological effect is the linear quadratic formula.
The formula is described in Section 8. An optimal model incorporating linear
quadratic formula is described in Section 9.2. For both models, the increase
in the dose would decrease the value of the survival function and any increase
in the time t would increase the survival function. :

The main conclusion from this study are that long treatment times and very
low doses are bad for cure and models allow investigation of optimum sched-
ules. ‘

11. CRITICISM OF WORK AND SUGGESTIONS FOR
FUTURE RESEARCH '

The models for growth and decay of tumours reviewed in this paper are de-
terministic. They are asymptotic to the horizontal line. Practically the dose
cannot be too large at one instance or as a whole. The minimization of overall
treatment time implies the increase of dose per fraction or overall dose. The
number of fractions can only be very limited as they cause the increase in
the overall time of treatment.. Simulation can be used to examine for their
stochastic equivalents. This needs unique estimates (or at least a range of
estimated values) of parameters of the model.

The optimal values of the § and t for the model represented by equation 9.5 can
be found with the help of numerical analysis follwoing the lines of Swan, 1981.
Swan has given two equations in two parameters. The method of Newton and
Raphson for two variables, for example, can be used for this purpose. The
growth rate indicated by various types of cancer can be studies and combined
together to get some closer estimate. Some estimate or workable guess of the
rate of cell kill can be found by an extensive study of both biological and
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mathematical literature and analysis of clinical data. It would be possible,
then, to discriminate rigorously among various schedules for their optimality.

The concept of hyperfractionation (smaller doses with overall treatment time
not reduced) and accelerated fractionation (smaller doses with overall treat-
ment time reduced) can be incorporated by the use of multiple fraction per day
to suggest more extensions of the growth and deacay model. In this way the
prolongation of treatment can be avoided and the rapidly proliferating tumour
cells would not be able to escape the treatment. Previously the proliferation
between dose fractions has been considered on per day as the dose fraction is
dispensed on daily basis. In the context of hyper-fractionation and accelerated
fractionation, the time between the dose fraction would be in hours and hence
the proliferation rate can be considered as continuous. It is further suggested
that suitable biological basis should be found or sound mathematical reason-
ing should be developed to justify the assumptions involved in the extensions
of the growth and decay model. To be sure of the validity of the models a
sensitivity analysis should be accomplished.
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ABSTRACT

For certain types of boundary conditions the Stokes-Bitsadze system (stream
function Airy stress function formulation of two dimensional Stokes flow), is
a well known ill-posed problem. Appropriate boundary conditions of Poincare
and prescribed for the Stokes-Bitsadze system and well-posedness is proved.

Key Words: Boundary Conditions of Poincare, Cauchy-Riemann System,
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1. INTRODUCTION

In this paper we shall be concerned with the following two-dimensional Stokes
flow based on stream function v¥(z,y) and Airy stress functions ¢(z,y) [Cole-
man, 1981]

¢zz - ¢yy + 2¢zy = 0~

Yaz — "»byy - 2¢zy = 0 ‘ . (1)
which is the second order elliptic system. The ellipticity of the system in
the sense of Petrovskii, {1946] is proved by Thatcher [1997]. Tahir [1999a]

identifies it as Stokes-Bitsadze system (SBS). By introducing the notations
w=¢@+1iYp, z==zx+1iyand Z=z - iy, the SBS may be written in the form

Wg =0 ‘ (2)
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where 20; = 8, + i0y. From (2) the regular solutlon SBS can be represented
in the form

w = 2f(2) + g(2) - (3)

where f(z) and g(z) are arbitrary analytic functions of the complex variable
z. On the grounds of (3) Bitsadze [1964] shows that in the circular domain
|2— 20| < € the homogeneous Dirichlet problem for the SBS (1) has the infinite
set of linearly independent solutions given by

w={& ~ |z~ 2"} o(2) (4)

where g(z) is a function which is arbitrary and analytic in the domain |z — 25| <
€ Bitsadze [1964] concludes that the Dirichlet problem for the SBS is neither
Fredholmian nor Neotherian. ! For the Fredholm and Noether theory we
refer to [Bitsadze, 1968], [Bitsadze, 1988] and [Mikhlin, 1970]. Bitsadze [1988]
shows that Fredholmian character of the Neumann problem is also violated 2
for the SBS Wendland [1979] considers the Dirichlet problem for the system
(1) and proves the violation of Lopatinski condition to show the problem to be
non-Fredholm. For the detalls on Lopatinski condition we refer to Wendland
[1979]. :

' . The researchers have been interested in the SBS but suffering a difﬁcul_ty con-

cerning the appropriate boundary conditions, see for example {Cassidy, 1996]
and [Thatcher, 1997]. Owen and Phillips, [1994] embed the system in bihar-
monic equations and determine the appropriate boundary conditions for the
higher order system. The ill-posedness of Dirichlet and Neumann problem for
the SBS (1) has motivated us to further investigate the situation. In the paper
[Tahir & Davies, 2000] we have proved the existence of a unique solution for
the SBS with velocity boundary conditions 1, ¥, along with additional single
point conditions. Existence of a unique solution for the periodic boundary
conditions is proved in [Tahir, 2001].

1The situation contrasts greatly with a system of a smgle elhptlc equation, see for the
details [Kuz’'min, 1967] and [Bitsadze, 1968].

2Similar facts can also be observed when the number of independent variables is more
than two. For some multidimensional analogs of Bitsadze systems we refer to [Yanushaukas,
1995), [Treneva, 1985) and [Kuz'min, 1967).
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1.1 Boundary-Value Problem of Poincare

The Stokes-Bitsadze system (1) can also be expressed as
AXpz +2BX; + CXyy =0 (5)

where X = (¢,9)7 is the required real vector and

(1) 2=(20) (3 ) e

In the domain Q@ C R? with boundary I' the Poincare problem for the SBS
is formulated as follows, to seek a solution X = (¢, )7 for the system (5)
subject to the boundary conditions

PX+p X +qX =J(z,y), (z,y)€T (7)

where p!, p? and ¢ are real 2 x 2 matrices given on the boundary I' and J a
real vector given on I'. For a detailed study on the Pioncare problem, for the
second order elliptic systems in the plane, we refer to Bitsadze [1968].

1.2 Cauchy-Riemann System

The Cauchy-Riemann system (or div-curl system) is of*special interest to us.
The div-curl formulation of SBS plays a key role for the study of boundary
value problems for the stream function. Airy stress function formulation of the
Stokes flow. The inhomogeneous Cauchy-Riemann which, in planar cartesians,
appears as below

diV(¢, ’lp) = fl’
curl(¢, ¥) = fo, (8)

has been of interest for the researchers, see for example [Borzi et al, 1997].
[Chang & Gunzburger, 1990], [Neittaanmaki & Saranen, 1981] and [Tahir,
1999b]. Collectively the Cauchy-Riemann system (8) is elliptic while individu-
ally both the partial differential equations are hyperbolic. If ¢ and 1 are twice
continuously differentiable and f; = f; = 0 then ¢ and 9 are harmonic

Let fi, f2 € L2(). In a square domain @ = (0,1) x (0,1) with boundary T,
Chang & Gunzburger [1990], Neittaanmaki & Saranen [1981] and Vanmaele
et al [1994] discuss the div-curl system (8) with boundary conditions

(¢,9)xn=0 on T ' (9)
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where n is the outer unit normal and (¢,¢) x n = ¢ny + Yny. The well-
posedness of (8), (9) is proved in H'(Q) x H'(Q) subject to the compatibility

condition
[ fd2=0 (10)

Subject of the compability condition

/nfldﬂzo | (1)

the problem : - :
: (¢,9) ) n=0 on T (12)

considered with the system (8) is well-posed in H'(2) x H'(Q), see [Vanmaele
et al, [1994]. [Chang & Gunzburger, [1990] and {Wendland, 1979].

1.3 The Div-Curl Formulation of SBS [Tahir, 1999a)
The SBS (1) can be written’as | |

0z(¥y + 82) + 0, (¥ — ¢y) =0,

Oz(vz — ¢y) + Oy(y + 62) = 0, (13)
Introducing ®(z,y) and ¥(z,y) as folldws ' :

&(z,y) = div(¢, %) = ¥y + ¢s,

¥(z,9) = curl($, ¥) = ¥ — by, (14)

the div-curl formulation
div(®,¥) =0, _ ,
cﬁr1(<I>, ¥) =0, (15)

is then immediatély obtained. 1t is easy to verify that SBS remains unchanges
either (@, ) is replaced by (-1, ¢) or (¥, ¥) is replaced by (-¥, ®).

In this paper we' prescribe boundary conditions of Poincare for the Stokes-
Bitsadze system. The above results, for the Cauchy-Riemann system, are
used to prove the well-posedness of the Stokes Bitsadze problem.
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2. WELL-POSED PROBLEM FOR THE STOKES-BITSADZE
SYSTEM

We consider the SBS in a square domain Q = (0, 1) x (0, 1) with boundary I'
and prescribe the boundary conditions of Poincare (see figure 1).

Ej:j))x? ;} on T | (16)

where n is the outward unit normal.

Theorem 2.1

For f,g € H3(T), the Stokes-Bitsadze problem (1), (16) is a well-posed prob-
lem in H(R2) x H!(2) subject to the compatibility condition

/r fds=0 ' (17)

Proof

For f € H#(T") the-div-curl system (15) with the boundary (16a) is a well-
posed problem subject to the compatibility condition (17) which determines
(®,¥) € HY(N2) x H(NN) uniquely. It obviously implies that &, ¥ € L,(0).
Now for g € H2(T') the Cauchy-Riemann system

div(¢, ¥)
curl(¢, %)

with the boundary conditions (16b) is also a well-posed problem in H(2) x
H(Q) satisfying already the compability condition [ [, ®dz dy = [rg ds.
Hence the Stokes-Bitsadze problem (1), (16) is well-posed .in H!(2) x H'(f)
subject to compability condition (17) and the proof is complete.

g}inﬂ BN (18)

We can also prescribé the boundary conditions

Ezi’)):;‘ g } on T (19)

which after replacing (@, ¥) by (—¥,®) and (¢, %) by (=%, ), may be con-
sidered equivalent to (16). Therefore we present the Stokes-Bitsadze problem
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with boundary conditions (19) as a corollary which can be proved similarly as
in theorem 2.1.

Corollary 2.2

For f,g € H%(T'), the Stokes-Bitsadze problem (1) (19), see figure 2, is-
well- posed problem in H'(Q2) x H'(R) subJect to the compatlblhty condition -

I fds=
Corollary 2.3

For f,g e H z(I‘) the Stokes-Bitsadze problem for the Poincare conditions
(see also figure 3)

(®,¥) xn
(4,%)m

is a well-posed problem in H(Q2) x H! (Q) subject. to the compatibility condi-
tion [ f ds =0.

ol

; } on T (20)

Corollary 2 4

For f,g e H z(I‘) the Stokes-Bltsadze problem for the Poincare conditions
(see also figure 4).

(¢,9)-n
(4,9) xn

:;} on T | ‘ - (21)

is a well-posed problem in H! (Q) x H1 (Q) subject to the compatibility condi-
tion fr f ds =
3. CONCLUSION

Appropriate boundary conditions of Poincare are prescribed for the two-dimension:
Stokes flow based on stream function and stress function and the well-posedness
of the problem is proved.
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ABSTRACT

In the development of a-minimal sets discussion ([2], [3] and [4]) we want to
have a short view on bitransformation semigroups.

1991 AMS Subject Classification: 54H20

Key Words: a-minimal set, Bitransformation semigroup, Transformation
Semigroup.

PRELIMINARIES

By a right transformation semigroup (X, .S, p) (or simply (X,S)) we mean a
compact Hausdorff topological space X, a discrete topological semigroup S
with identity es and a continuous map p: X X § — X(n(z,s) = zs(Vz €
X,Vs € §)) such that: '

o Vz € X zes=nu, _
e VzeX VsiteS z(st) = (ws)t,

By a left transformation group (G, X, A) (or simply (G, X)) we mean a compact
Hausdorff topological space X, a discrete topological group G with identity e
and a continuous map A :.G x X — X((g,z) = gz(Vg € G, Vz € X)) such
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that:

e Vze X egz=rc,
e VzeX Vg, heG - (gh)z = glhz),

Ina right transformation semigroup (X, S) we have the following definitions:

1. For each s € S, define the continucus map 7*: X — X by zn* =zs (Vz €
X), then E(X,S) is the closure of {n°|s € S} in X* with point-wise conver-
gence, moreover it is called the enveloping semigroup (or Ellis semigroup) of
(X,S). E(X,S) has a semigroup structure [1, Chapter 3], a nonempty sub-
set K of E(X,S) is called a right ideal if KE(X,S) C K, and it is called a
minimal right ideal if none of the right ideals of E(X,S) be a proper subset
of K.

2. A nonempty subset Z of X is called invariant if ZS C Z, moreover it is
called minimal if it is closed and none of the closed invariant subsets of X be
a proper subset of Z. The element a € X is called almost periodic if aE(X, S)
be a minimal subset of X.

3. Let a € X, A be a nonempty subset of X and C be a nonempty subset of
E(X,S), then we introduce the following sets:

) {p € Clap = p},

) = {peClVbec A bp=np},
F(A,C) = {peClAp=p},

) = {peClp’=p}.

4. Let (Y, S) be a transformation semigroup, the continuous map

¥ (X,S) = (Y, S) is a homomorphism if ¥(zs) = ¥(z)s (Vz € X, Vs € S5).
Ify:(X,S)— (Y,S) is an onto homomorphism, then there exists an onto
homomorphism ¥ : (E(X,S),S) — (E(Y,S),S) (which is also a semigroup
homomorphism) such that for each z € X and p € E(X, S) we have ¥(zp) =
¥(z)(p) [1, Proposition 3.8].

5 Letac X, Abea nonempty subset of X and K be a closed right ideal of
E(X,S), then [2, Definition1]:
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e Ke M(x,s)(a) if :
—aK =aE(X,S),

—K does not have any proper subset like L, such that L be a closed right
ideal of E(X, S) such that aL = aFE(X,S),

e K¢ M(x,s)(A) if:
-Vbe A bK =bE(X,S),

—K does not have any proper subset like L, such that L be a closed right
ideal of E(X, S) such that bL = bE(X,S) for all b € A,

o K€ Mxs)(A) if:
~AK = AE(X, S),

—K does not have any proper subset like L, such that L be a closed right
ideal of E(X, S) such that AL = AE(X, S),

Mx s5)(A) and M(x,s)(a) are nonempty.

6. Define M(X,S) = {0 # A C X|VK € Mx,5(A) J(F(A K)) # 0} and
M(X,S)={0+#AC X|VK € M(x5(4) J(F(AK))+#0}.

7. Let a € X and A be a nonempty subset of X, then {2, Definition 13J:
e (X,S)is called a - distal if £(X,S) € M(x,s)(a),

e (X,S) is called A-distal if (X, S) be b-distal for each b € A,

e (X,5)is called A% distal if E(X, S) € M(x,5)(A),

o (X,S)is called A% distal if E(X, S) € M(x.5)(A).

8. Let A, B be nonempty subsets of X and R, Q € {M(xs), 117(;(,5)}, then (2,
Definition 13]:

e B is called A-almost periodic if:

Vae A VK € M(X,S)(a) Voe B 3dL € M(X,,g)(b) LCK,

e B is called A% almost periodic if:
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Va€ A VK € Mixs)(a) 3L € R(B) LCK,

e Bis called A= almost periodic if Q(A) # 0 and:

VK € Q(A) VbeB 3LeMxs() LCK

e Bis called A% almost periodic if Q(A) # @ and:

VK €Q(A) 3LeR(B) LCK.

9. Let A be a nonempty set of X, we introdﬁce the following sets:
P(X,5) = {(z.4) € X x X|3p € B(X,5) =p=up},
Pa(X,S) ={(z,y) € X x X|3a€ A3 € Mxs5)(a) Vpel zp=uyp},
Pi(X,8) ={(z,y) € X x X|3I € M(x,5y(A) Vpel zp=yp},
PA(X,8)={(z,y) € X x X|3I € M(x5)(A) Vpel zp=yp}.

10. Let A be a nonempty subset of X and Z be a closed invariant subset of
X, we introduce the following sets:

(ZeC2ZiC--CZ)A (Vi€ {0, --,n} Vi€ {0, ,n} —{i} Zi#Z)

AYi€ {0,---,n}, Z;is a closed invariant subset of Z))}

For each a¢ € A define:

° DimT(a) = Sup{h(E(x,s),s)(I)II € Mx,s) (a)},

¢ Dim"(4) = sup{Dim” (z)|z € A},

e Dim™™(4) = sup{hzx,5)5) (1)1 € Mx,5)(A4)},
o  Dim™™(4) = sup{h(s(x,5)5) (DIl € M(x.5(A)}.
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By a bitransformation semigroup (G, X, S) we mean (G, X) is a left transfor-
mation group and (X, S) is a right transformation semigroup such that.

g(zs) =(g9z)s (Vg€G, VzeX, Vseb).

CONVENTION 1

Let (G, X, S) be a bitransformation semigroup such that £ where R = {(z,y) €
X x X|3g € G gz = y}, is Hausdorff, then % is denoted by £ (the nat-
ural quotient map is denoted by 7¢ : X = Z(me(z) = [z]e Vz € X)).
Moreover let es be the identity of S and eg be the identity of G. Let

R = {((z,2), (%)) € (X x X) x (X x X)|([zg]e, [#']e) = ([v]e, [¥']}, then

XxX will be denoted by XxX.

Lemma 2
Let H, H' be nonempty subsets of G, g, ¢’ € G, A, A’ be nonempty subsets of
X, and z,z' € X, then we have:
(1) (a) F(HA,E(X,S)) = F(A,E(X, S)),
(b) F(gA,E(X,S)) = F(A, E(X, S5)),
(¢) Mix,5)(HA) = Mx,5(A),
(d) M(x.5)(9A) = M(x.5)(A).
(2) (a) (z,2') € P(X,S) & (92,92') € P(X, S),
(b) (z,2') € Pa(X, S) & (97, 97') € Pra(X, S),
(c) (z,2') € Pa(X,S) & (97, 92') € Pya(X,S),
(d) (z,z') € Pa(X,8S) & (97, 92") € Pya(X,S).

(3) In the right transformation semigroup (X, S) we have:
(a) Ais A’ --almost periodic if and only if HA is H’A’ - almost periodic,
(b) Ais A’ M) almost if and only if HA is H'A' &) almost periodic,
(c) Ais A’ &™) almost periodic if and only if H .A is g'A’ (—”—'—i—l_) almost

periodic,
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(d) Ais A’ (1.:2) almost periodic if and only if gA is H'A’ (2.2) almost
periodic,

(e) Ais A’ U1.) 3)most periodic if and only if gA is H'A’ (1.5) a3 lmost
periodic,

(f) A is A" W25 almost periodic if and only if gA is g’ A’ Y29 almost

periodic.

(4) (2) (X,S) is A - distal if and only if (X, S) is H A-distal,
(b) (X, S) is A %) distal if and only if (X, S) is HA P distal,
(©)(X, S) is A ¥ distal if and only if (X, S) is g4 ¥ distal.
(5) Dim(}'5)(A) = Dim{{'0)(HA) and Dim{x'5)(A) = Dim{x's (HA).
Proof:

In order to prove (1) let K be a closed right ideal of E(X,S) and use the
following facts: _

Vpe E(X,S) VYa€A VYheH (ap=a< (ha)p=ha),

Vpe E(X,S) (AP=A%& (gA)p = gA,

(Vhe H Va€ A haK =haE(X,S)) & (Va€ A) oK =aFE(X,S)),
gAK = gAE(X,S) & AK = AE(X, S). '

The other items are proved by (1).
Theorem 3: '.

Let ¢ : (F(X,S),S) — (E (%,S) ,S) be the homomorphism induced by
ng : (X,S) — (%,S), such that for each z € X and p € E(X,'S),[.’L’p]g =
[t]e®c(p). Let also A and B be nonempty subsets of X, then:

(D(a) My 5)([Ale) € Fo(Mix.5)(4)),
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(b) A€ M(X,S) if and only if [A]c € M (%, 5),
(c) if A€ M(X,S), then M(x o\([Ale) = #c(M(x,5)(4)).

(2)(a) (%,5) is distal if and only if (X, S) is distal,
(b) ( = ) is [A]¢ -distal if and only if (X, S) is A - distal,
(c) (5,5) is [Ale &) distal if and only if (X, S) is A Y1) distal.
(d) if (g—, S) is [A]c ) distal then (X, S) is A %) distal.

(3)(a) B is A-almost periodic if and only if [B]¢ is [A]¢ -almost periodic,

(b) Bis A M) almost periodic if and only if [Ble is [Ale &™) almost
periodic.

Proof:
(1)

(a) Let K € M(%’S)([A]G),, so for each a € A4, there exists u €

J(F([a]g, K)), and {p € E(X,S)|#c(p) = u} is nonempty, closed and has
a semigroup structure, thus there exists v € J(E(X, S)) such that #¢(v) = u,
moreover [al¢ = [a]eu and [algig(v) = [av]g, therefore there exists g € G
such that ga = av, since ga = av = av? = (av)v = (ga)v = g(av) =
g(ga) = g%a, so a = ga = av, thus aE(X,S) = avE(X,S), but v € 75! (K)
and vE(X,S) C nz'(K), so aE(X,S) = arz'(K)(Va € A), thus there exists
L € Mx,s)(A) such that L C n5'(K) [2, Corollary 3], as foreacha € A, aL =
aE(X,S) and [ae#tc(L) = [alcE (£,5), by #6(L) C #e(ng'(K)) = K and
K e M x s) ([Alg), we have K = #g(L) € #e(Mx,5)(A))-

(b) Let A€ M(X,S)andletK € M(é‘s)([A]G), by (a), there exists K €
M;x 5)(A) such that K = #ig(L), let u € J(F(A4, L)) so #g(u) € J(F([Ale, K))
and [A]g € M (%,S). On the other hand if [A]c € M (%,S); choose L €
M x,s5)(A) such that #g(L) € M(és)([A]G) (by (a) there exists such an L).

Let u € J(F([A]g,7c(L)), {p € L|ftg(p) = u} is a closed nonempty subset of
L and has a semigroup structure, so there exists v € J(L) such that #g(v) = u
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= [av]e so there exists

and for each a € A4, [d¢ = [aleu = [dleFe(v)
) and J(F(A, L)) # 0, therefore

g € G such that ga = av so v € J(F(A,L)
Ae M(X,S) [2, Corollary 9].

(c) Let A € M(X,S) and let L € Mx,s)(A), thus for each a € A
we have [a]gfig(L) = [aL]e = [aE(X,S)]c = [a]cE (—’GE,S), so -there exists
K e M(%,s)([A])G) such that K C #g(L) [2, Corollary 3], by (b) there ex-
ists u € J(F([A]g, K). Using a similar argument as-in (b) there exists v €
J(F(A, L)) such that #¢(v) = u, moreover K = uE(lG‘-, S) = frc(v)E(lG(—, S) =
#e(vE(X,S)) = #g(L), therefore #ig(L) € M(%_s)([A])G). By (a) we have

Te(Mx,s)(4)) € M 5)((Ale)-

(2) , |

(c) Let (X,S)be A¥ distal, then Mx 5y(4) = {E(X, S)}, by (1) we have
E(%,5) = #c(E(X,S)) € Mx 5)(I4]¢) and (£,5) is [Ale 1) distal. On the
other hand if ( ) is [A]g () distal, then E( S) belongs to M (% ,5)([«4]0)
and by (1) there exists L € Mx,s)(A) such that er(L) = E(—’é,S), using
- a similar argument as in (1), there exists v € J(L) such’that #e(v) = es,

therefore for each z € X we have [z]¢ = [z]ges = [r]eTe(v) = [zv]g, so there
exists g € G such that gz = zv now as it was verified in (1) z = zv (Vz € X),

and e =v € L thus L = E(X,S) and (X, 5) is A M) (M) distal.

(d) Let ( : ) is [A]g ) distal and let L be a closed right ideal of
E(X,S) such that AL = AE(X,S), thus [Ale = #e(L) = [AlcE(£,S),
since E(QG‘-,S) € M( )([A]G) so (L) = (’G{,S), using a similar method
described in (c) we have L = E(X S)), therefore E(X,S) € M x.5)(A4) and

(X S)is A (M) gistal.
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(3)

(b) Let B be A =M almost periodic, b € B and K € M x 5)(Ale), by
(1) there exists L € Mx,s)(A) such that #g(L) = K, choose N € Mix,s)(b)
such that N C L, using (1) (part (c) (note that {b} € M(X,S))) we have
7ig(N) € M(%,s)([b]c) moreover #g(N) C #ig(L) = K, thus [B]g is [A]g &)
almost periodic. Conversely let [B]g.be [A]g(—, M) almost periodic, b € B
and L € Mx,s)(A), then for each ¢ € A we have [algng(L) = [aL]¢ =
[eE(X,S))¢ = [a|cE (%,S) thus there exists K € M(%{.,S)([A]G) such that

K C #g(L) [2, Corollary 3], since [B]g is [Ale =2 almost periodic, [b]cK =
BlcE (%,5) [2, Lemma 15], so [bLlg = [bleite(L) = [l E (£, S) = BE(X, )¢
thus {p € L|[bp]c = [blc} is a nonempty closed subsemigroup of L, thus there
~ exists v € J(L) such that [bv]g = [b]g. By a similar method described in (1)
we have bu = b, so bE(X,S) = buE(X,S). Since vE(X,S) C L, we have
bE(X,S) =bL (Vb € B, VL € Mxs)(A)). Therefore B is A =) almost
periodic [2, Lemma 15]. : _

Theorem 4:
If A be a nonempty subset of X and z,y € X, then:

1. The following statements are equivalent:
() ([zlelv)e) € P(%.5),
(b) Jg€G (g9z,9) € P(X,S),
©) [z, ylexc € [P(X, S)|exe-
2. The following state;nents are equivalnet:
(@) (zle.[vlo) € P (£.5),
(b) 39€G (g2,4) € Pa(X,S),
(c) [z 9lexc € [Pa(X, S)lexc- |
3. If Ae M(X,S), then the followihg statements a,re; equivalent:
() (=l [vl6) € P (%.5),
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(b) 39€G (9z,y) € Pa(X,S),
(C) [xvy]GxG € [PA(Xy S)]GXG' .

Proof:(3)

(a) = (b):

I ([2le, [vl6) € Py, (%,S) , then there exists K € M(%,s)([A]G) such that

for each p € K, (z]gp = [y]cp. By Theorem 3 (1), there exists L € M(xs)(A)
such that #ig(L) = K. For p € L,{zplc = [z]ecfc(p) = [yl#c(p) = [ypls, so
there exists g € G such that gzu = yu, thus for each p € uE(X, S)(= L) we
have gzp = yp and (gz,y) € P4(X, S).

(c) = (a):

If [z,y]exc € [PA(X S)exe, then there exist g,¢' € G such that (gz,g'y) €
Ps(X,S), let L € M(x 5)(A) be such that gzp = g'yp (Vp € L) thus [z]ep =
[vlep (Vp € 7ig(L)), but there exists K € M(x 5)([A]g) such that K C #g(L),

so for each p € K we have [:c]gp [ylep. Thus ([z]e, [¥]c) € P[A]G(G,S)
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ABSTRACT

In this paper we obtain further results on the structure of a finite group G
having a subgroup isomorphic to the smaller centraliser of an involution in

Fy(2).
1. INTRODUCTION
Let Fy(2) denote the Chevalley group of type Fy over the field T' = {0,1}.

The center of a Sylows-subgroup S of Fy is a four group. The elements of
order two in this subgroup of S lie in three distinct conjugacy classes in Fy(2).
Let t,,t, and t3 = t;t, be these involutions in the center of S. Now in Fy(2):

C(tl) = C(tg) and
C(t))NC(tz) = C(ts)

The root system Y of type (Fy) consists of 48 roots: £&; & &; + &, %(ﬂ:&' +
€ £ €m £ &), where ¢, j,m,n = 1,2 3,4 and ¢, 7, m, n are all distinct.
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For each 1,1 < 4 < 24 and each s € ¥ let w;(s) = s — s(r;)r;. Then w; is a
permutation of 3. The pemutation group W generated by {w;]1 < i < 24} is
the Weyl group of 3.

W is of order 273% and is generated by i, s, Ws and wig. If a;; = | W,
then generators s, Wy, ws and wyo together w~ith the relations (w;w;)* =
1, {1,7} € {1,2,5,10}, form a presentation of W.

It will be convenient to think of the elements w € W as permutations of
{£i]1 < i < 24} defined as follows:

o )3 i w(r) = oy w(—i) = —0(h)
’LU(Z)—{ —j if ’LZ)(T,') = -Ty

The values w;(j) for i = 1,2,5,10 and 1 < ¢ < 24 are also included in Table-1.

For each 7,1 < i < 24, let S; = {z;(@) | @« € T'}. Then each S; is a group
of order 2. The elements of S; multiply according to the rule z;(a)z;(8) =
;L’,(Q-FB),G,BG . .

Let S =< Si|1 <7< 24 >. Then S is a Sylow,-subgroup of F.
An element z € S can be expressed uniquely in the form z = [I#, z;(;)

Which we shall abbreviate as ¢ = IIz;(a;). Hence S has order 22*. The
product of any two elements of S may be obtained by use of the commutators
[z:(1),z;(1)], 1 << 24. The nontrivial commutators are listed in Table-2.

Let W) =< w;, wq, ws > and C; = {sws'|s € S,s' € Sw,w € W,}

Then C); = Cp(z9(1)) (11) Z(Cy) = Sa

[4]. Let Wa =< wy, wq, wyg > and C; = {sws'|s € S,w € Wy, s' € S, }.

Then Cy = Cp(z24(1)); Z(C3) = Saq

Let W3 =< w;,wy > and C3 = {sws'|s € S,w € Wy, s' € S}

Then C3 = Cp(z9;(1)x24(1))

From now onwards, since the only involution in any root subgroup S; of Fy(2)
is z;(1), we will write z; for z;(1) except where there is ambiguity.
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Table - 1
i | Wi(d) | wo (i) | Ws(d) | D1o(d) | mi(ry) | 7ilra) ri(7s) ri(T10) A(r;) i
1 -1 3 1 11 2 -1 0 T -1 1| 2
2 4 -2 6 2 -2 2 -1 0 2|11
3 3 1 7 12 0 1 -1 -1 1) 4
4 2| 4 8 18 2 0 -1 -2 2| 3
) b 6 -5 ) 0 -1 2 0 2110
6 8 5 2 6 -2 1 1 0 2111
7 7 7 3 14 0 0 1 -1 1118
8 6 9 4 19 2 -1 1 -2 2112
9 9 8 9 20 0 1 0 -2 2113
10 11 10 10 -10 -1 0 0 2 1 5
11 10 12 11 1 1 -1 0 1 11 6
12 13 11 14 3 -1 1 -1 1 1 8
13 12 13 “15 13 1 0 -1 0 11 9
14 15 14 12 7 -1 0 1 1 1({19
15 14 16 13 15 1 -1 1 0 1120
16 17 15 16 16 -1 1 0 0 1122
17 16 17 17 21 1 0 0 -1 1123
18] 18 18 19 4 0 0 -1 2 21 7
19 19 20 18 8 0 -1 1 2 2114
20 22 19 20 9 -2 1 0 2 2115
21 21 21 21 17 0 0 0 1 1124
22 20 23 22 22 2 -1 0 0 2|16
23 23 22 . 24 23 0 1 -1 0 217
24 24 24 23 24 0 0 1 0 2121
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Table-2
Values (1,7 : m) for which [z;(1), a:]( )] = zm(1)
(1,10 : 11) 1, 12: 13) (1,14 : 15) 1,16 : 17)
(2,5 6) (2,8:9) (2,19 : 20) (2, 22 : 23)
(3,10 : 12) (3,11 : 13) (3,14 : 16) (3,15 : 17)
(4,5 : 8) (4,6: 9) (4,19: 22) | 4,20: 23)
(5, 18 : 19) (5,23 : 24) (6, 18 : 20) (6, 22 : 24)
(7,10 : 14) (7,11 : 15) (7,12 : 16) (7,13 : 17)
(8, 18 : 22) (8, 20 : 24) 9, 18 : 23) (9, 19 : 24)
(10,17:21) | (11,16:21) | (12,15:21) |(13,14: 21)
Values (7, 7 : m,n) for which [z;(1), z;(1)] = zm(1)z,(1)

T2:3.4 |0L6:78 |20 2175

(3,5:7,9) |(3,19:21,23) | (7,18: 21, 24)
(2.11:12,18) | (2,15 : 16,24 ) | (4, 10 : 13, 18)

(4,14 : 17, 24) | (5,12 : 14, 20) | (5, 13 : 15, 22)

(6,11 : 14,19) | (6,13 : 16, 23) | (8, 10 : 15, 19)

(8,12 : 17, 23) | (9, 10 : 16, 20) | (9, 11 : 17, 22)

Then Dm = C(l’u) and .D5 05(1’23) We write M fOI' Dm Then M and .D5
and subgroups S of order 2?* with centers of order 2*. For our convenience we
write D for Ds.

We identify C with C3. We shall refer tables 3 and 4 of [1].
For necessary details about the group Fy(2), we refer the reader to {9)].
It is easily observed that Z(S) = S3,52.

The Chevalley group Fy(2") of type Fy over the field of 2" elements have
been characterized by Guterman [3] in terms of the centralisers of 2-central
involutions and this characterization is given by the following theorem.

Theorem 1

Let G be a finite group. Suppose the center of a Sylow;-subgroup of G contains
elements y;,y, and y3 = y1y2 of order two such that Ce(y;) = C(t;) 1 =
1,2, 3. Then G = Fy(2")
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In [9] Thomas has given an improved characterization of the Chevalley group
F4(2") in terms of only the centraliser C(¢,) for all n > 2.

Later Husnine [5] treated the case for n = 1.

In [1] we proposed the following conjecture to improve the above results.

Conjecture

Let G be a finite simple group with an involution y; lying in the center of a

Sylow,-subgroup. Suppose C = Cg(y3) is isomorphic to C(t3), the centraliser
of t3 in F4(2). Then G is isomorphic to Fy(2).

However, we proved the following result in [1].

Theorem A

There exists an involution ueNg(D) which acts upon Z3(D) = S)652022(D)
such that z¥, = z.3 and u centralises zi¢, 17, T21, T22.

In this paper we prove the following results:

Theorem B

There is an involution u in Ng(D) so that

u — u ___ u __ L7 I
Io3 = T24, T14 = T12, Ty5 = Ti3, Tig = 37191'21(6)
Ty = 24 and u centralizes SgS30S16517521

1.1 Lemma

Zy(D) = S451351551851923(5)
Z5(D) = S4SsS12514Z4(S)

Proof

This is verified by direct calculation from table No. 2.



70 Mrs. Rabhila Bokhari, Syed Mohd. Husnine

1.2 Lemma

There is an involution u in Ng(D) so that X§ = Xo, Xi5 = X19X21(€), Xi5 =
T13T21(a)z16(F)217(7y) and u acts upon Z3(D) as described in Theorem A in

[1].
Proof

Z4(.D) = SgSwaSwaZ;;(D) and 59519515 is the center of S and Z3(D),
where

S = S/Z3(D)
Structure of S gives 5%} = S15, 5% = Sy
and 5§} = 5,
We have 23y = 182, 2 € Z3(D) = T16T20T20TT2 T24
We discover the part of Z in (x19)9!, by the use of contradiction method.
Let xlg appear in z{3[z{%, £11] = [T16, T21] = z21

Then by the commutators relation.

l_l‘fsl;,-fu_l = [$16,$21] =T

= 1_33"1]51;,-7311_| =TI
= ]_-7«‘19, 33"1’1_] =Ty
= ]_3319,-73'(1]1] = T2

= ($19)z${i = T19%21

This shows that z,9 is conjugate to z,9x2; which provides contradiction to the
fact in S. Thus z,6 is not involved in Z.

By the use of similar arguments, it can be shown that z,y is not involved in
Z. ‘

Thus from structure of S, we have

U
z15 € 718521523524

(a) If z¥§ = 718793701704 We take u) = g7 then z]} = 115
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(b) If 27§ = T15T23T21 24 We Write u) = T5T791L591L72s

(c) If z{y = z15T25 We write uy = 259:259125 then 23 = ;5

(d) If 2§} = 213724 we write uy = g7 then z}} = 21572

(e) If z{§ = z18%03%04 We take uy = x527g12725 then z) = 1329
(f) Let ziy = 1572123 Writing u) = 2591259125 then 273 = T1529;

Then in above three cases (d), (e), (f)
ziy = T187T01

and u, takes T4 to zo3 and centralizes x4, Z17, To0, T21 and Too.

In order to go further and determine the involvement from Zj in the conjugate
of z;5 i.e.
zis =T132,2 € Z3

One finds that 3,22 and z,3 cannot appear in Z and there exist v; =
T14U1T14 such that
-’1311% = T19T71 and (.’Els)v1 = T13T16T17%24 and acts on Z3 as g1
If o) appear in z3}, we take vy = z14(6)u1714(0)
now ¥} = i
next zy' = z9z, 2z € Z3
And we found that
Ty = ToT23(1)T24(n)
In this case we write
LU= 11 Z19(n) T18(N)
Thus u is the involution in Ng(D) which has all the properties stated in the
lemma. '
1.3 ' Lemma

There is an involution u in Ng(D) so that

u — u u u __
Thy = Taq, Ty =Tia, I =215, Iy = T1972(€)
.’1338 = T4 and u centralizes 59520515517521 .
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Proof

Let the action of g; on Z4 is same as in 1.2. Since Z5(D) = S45551251454(D)
and Z(S) = SsS14 mod Z4. Structure of S implies that

Sfi = Sw
s = 5
Let z15 appear in z{} then

Lmﬁ,l‘zj = [3315,332] = T16T24

= I_CL‘{Z,CUzJ = T16T24

= |z2,23' | = z16%23

= 33%1331433551 = T14T16T23

] This shows that T14 ~ T14T16T23 but T14T16T23 ~ T14T23
= T14 ~ T14T23

but under graph automorphism

put ¢(z14) = 219

= ¢(T93) = 217

= I)9 iS conjugate to T19x17 but this contradicts table 3.
Hence z,9 is not conjugate 9,7

So z;5 will not appear in zi}

By the use of similar argument, it can be shown that g, 13, Z18, Z19, Z20, T22, Zo3
cannot appear in Z.

Hence from structure of S we found that
zi} € 212516517521 524

If 25, appear in z7}, we take g7** for g; and call it u;. This u; satisfies all the
properties stated in lemma 1.2.

Hence, we have seen that 1} € 712516517524 and u; acts on Z4 as g;.

next since zy! € 24z, 2 € Z4
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Let z9 appear in z; then from table 2.
lz§}, T19) = [T9, T19] = Z24
LZE“,me = T24

|z, 2715] = T23

This implies that zg ~ Zgro3 ~ Zgri7. = T8 ~ xgxy7. This contradicts
table 3.

Hence zg cannot appear in zg’

Next, to find the involvement from z, in the conjugate of zg i.e. z3 = z42:3,
where 713 € 24.

One finds that zg, 213, Z15, T16, T18, T22 Cannot appear in Z.

Finally, we found that there is an involution u; which takes zg to x4 and acts
on elements of Z, as in previous lemma.
uy takes 15 to z13716(8)z16(7) () and u; takes x4 to z12216(71)Z17(B)Z24()
Let ; : ,

|27, 71] = [212216(M1)217(B)724(), 71]

= [z12T16(m), 777 P2 ()

Therefore
213, 21" = 2T z12(m)
= |T14, 271 = T15T16(B)T17(Y)T2a( ) 217 ()
= a=0, B=7+m
Thus

114 = T12%16(71)217(8)
next, Since 17§ = 1572 (€) and 3’ € x4
|28, z10] = [24, T10) = T13218
[z, 210] = [T13, 718)" = T15T19T16(B) T17(Y) 21 (M) T24(72)
= r}zsry = TeT19Z15T16(8)T17(7)T21 (1) T24(72)
=f=y=0, and Y =72=o0

Thus u is the involution satisfying the lemma 1.3 and there by theorem B is
established.
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ABSTRACT

The designs considered are such that the design and its dual are symmetric
affine resolvable, with each parallel class consisting of three blocks and any
two non-parallel blocks meeting in p points. We call an un-ordered triple of
blocks a D-triple if all three blocks in the triple contain the same subset of p

points. Some geometric properties of these D-triples are then established for
combinatorial classification of the designs.

1. INTRODUCTION

Affine resolvable desings whose duals are also affine have been studies in many
equivalent forms: Hadamard systems (Rajkundlia [6]), symmetric nets (Jung-
nickel {3]) and Hadamard hypernets (McFeat and Neumaier {5]). They can
also be regarded as the semi-regular group divisible designs (SRGDD) with
Ay = 0 whose duals are also SRGDD with the same parameters. The designs
we consider here are those which have three blocks in each parallel class. We
adopt the notation of [5] and denote these designs by Hj(u) in this paper; p
being the number of points common to any two non-parallel blocks.

We establish that there cannot exist more than three blocks containing the
same pu-tuple of points in an Hj3(u) and call a subset of three non-parallel
blocks a D-triple if all three blocks in the triple contain the same p-tuple.
‘The number of such D-triples occurring in an H3(p) is a characteristic of the
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design and we call it the characteristic number of the H3(u). Two Hz(u)'s
are obviously non-isomorphic if they have different characteristic number. D-
triples can therefore be used for combinatorially classifying the desings. We
also establish some properties of D-triples in the article.

2. BACKGROUND

A t-design I with parameters t — (v, k,A) where v > k > 0 and ¢t < 1, is an
arrangement of v objects, called points, into subsets called blocks, so that each

block consists of k points and any subset of ¢ points is contained in exactly A
blocks.

Normally, the total number of blocks is denoted by b. A design II is said to
be symmetric if b = v.

Two designs with the same parameters are isomorphic if there exists a bijection
between their points, called isomorphism, which maps blocks onto blocks.

The dual design IT* of II has the blocks of II as its points and then a block of

IT* is defined for each point of I to consist of all the subset of blocks containing
that point.

Design II is resolvable if its blocks can be partitioned into subsets, called
parallel clases, such that each parallel class partitions its set of points. In this
case two blocks are said to be parallel if they are in the some parallel class and
non-parallel otherwise. We call two points to be parallel when they are so as
blocks in II*. If IT is resolvable so that any two of its non-parallel blocks meet
in a constant number of points, say u,II is said to be affine resolvable.

We call an affine 1 — (v, k,r) design a hypernet (m,r, u), where m = v/k is
the number of blocks in a parallel class and u = k/m is a constant such that
any two non-parallel blocks intersect in u points. Note that hypernets are
equivalent to the orthogonal arrays of strength two of Bose and Bush [1] and
that the dual of a hypernet (m,r, ) is a transversal design T'[r, u, m] in the
sense of Hanani [2]. If the dual of the latter is a 2-design. Hanani calls the
transversal design complete.
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Theorem 1[4]

Let IT be a hypernet (m,r, u) and suppose that I1* is resolvable then r < mu
with equality if and only if I1* is affine resolvable.

It follows from the above theorem that if a hypernet (m,r, u) is symmetric
then all its parameters are completely determined by the integers m and u.

Definition 2

A hypernet (m,r, u) is a Hadamard hypernet H,,(u) if its dual design is also
a hypernet with the same parameters.

It is clear from the above discussion that if IT is an H,,(u), then II has pm?
points (blocks), um points (blocks) on each block (point) and any two non-
parallel blocks (points) are together on exactly u points. Furthermore, there

are exactly m parallel classes of blocks (points) each consisting of exactly m
blocks (points).

3. D-TRIPLES

Lemma 3

If ¢ and d are non-parallel blocks of an Hp(p), with g > 1, then cNd is
contained in at most m blocks. ‘

Proof

Since a pair of non-parallel points is on exactly p blocks, the number, say 7
of blocks containing all the u points of ¢ N d is at most p. The number of
points not in ¢ N d but on some block containing ¢ N d is then n(um — p).
Also the number of points which are not parallel to any of the p point in ¢cNd
is um? — um. Tt follows that n(um — p) < um? — pm. Hence n < m, with
equality if and only if for any point P not parallel to a point in ¢ N d there
exists a unique block containing P and cNd.

Definition 4

We call an unordered triple (a,b,c) of non-parallel blocks of an Hj(u) a D-
triple if all the three blocks contain the same p-tuple of points. The number
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of these D-triples in an Hj(u)II is called the D-characteristic of II.

Definition 5

Let E = {cg, c1,¢2} and F = {fo, f1, f2} be two parallel classes of blocks of an
H3(p) I

. €9 €1 €2
foleNfoleiNfo| e fo
Hlenfilanfileanfi
foleenNfaleinfy|eanfo

The following six subsets, each consisting of 3u points of II, are called the
diagonals of E and F.

(eo N fo) U (er N fi) U (e2N fa),

(eo N fo) U (e1 N f2) U (e2 N f1),

(60 N f2) U (61 N fz) U (62 N fo)

If any of the diagonals is a block of II then it is called a D-block of II. The
D-number of a block d of II is then defined as the number of unordered pairs,
of distinct parallel classes in which d appears as a D-block.

The D-number of II is essentially the sum of the D-numbers of its blocks.

Lemma 6

Let {eo, €1, €2}, {fo,bfl, f2}, {90, 91, g2} be distinct parallel classes of blocks of
an Hs(u). If (eo, fo,90) and (ey, f1, go) are D-triples then so is (e, f2, go)-
Proof

If (eo, fo,g0) and (e1, f1, go) are D-triples then eo N fo C go and €; N f1 C go.

But then gy cannot contain any other point from the blocks eq, fo, €1, fi. Hence
go = (eo N fo)U (e1 N f1) U (ex N f2). It follows that (es, f2, go) is a D-triple.
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Lemma 7

Let {eq,e1,e2}, {fo, fi, f2}, {90, 91,92} be distinct parallel classes of blocks
of an Ha(u). If (e, fo, g0) and (ey, f1, 1) are D-triples then so is (c2, f2, 92).
Proof | |

Since (eg, fo, go) is a D-triple, go contains the u points of the set ey N f, and

no other points from the blocks ey and fo. The remaining 2u points of Jo are
then clearly from the set (e; N f1) U(e1 N fi) U (ea N fo).

. € 2 L
fol |
fr e1Nfi|eNf
fa e1Nfo e fo-

Also, since (e, f1,91) is a D-triples, (e; N f;) C g1, and as gy is parallel to
gi,goNer =e;Nfoand ggN fi = ex N fi. It follows that goNey = ez N fi.
Thus go = (eg N fo) U (e1 N f2) U (e2 N f1). We can similarly prove that
91 =(eo N f2) U (e1 N f1) U (e2N fo). It follows that g, = (e N f1) U (e1 N f3)
and (e, f2, g2) is a D-triple.
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ABSTRACT

A scheme for designing/reconstruction of 3D objects, using cross-sectional
lata, is discussed. Literature, discussing the schemes, managing the situa-
ions when the cross-sectional data is given in monotone order, is available. A
new scheme is introduced to manage the situations when the cross- sectional
lata is not given in monotone order. "

Keywords: Rational splines, C'-surface, Cross-sectional data.
1. INTRODUCTION

A Scheme is discussed by T.N.T. Goodman et al. [4] to construct a C! closed
surface from (horizontal) cross-sectional data. While the heights, where the
cross-sectional data is provided, must be monotonic. At each height a single
contour (closed curve) is constructed from the given information. However,
in this paper, it is assumed that at some heights, the horizontal plane may
intersect the given surface in more than one contours with the proviso that
a contour is labelled a height number and are rearranged in the form of a
sequence so that the surface can be traced out. The sequence of heights in
this case, may not be monotonic. This problem is resolved by modifying the
tangent scheme presented by T.N.T. Goodman et al. | 4].
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In section 2, the new tangent scheme is presented. In section 2.1, construction
of the base is discussed. In section 3, two examples are given. It is to be noted
that if three consecutive heights are in monotone order then the definition of
tangent at the middle of the three heights, coincides with that given by T.N.T.
Goodman et al. {4].

2. CONSTRUCTION OF A SURFACE

Define a surface S as follows
S ={S(t,u): i=0,1,2,...,n; 0 < t,u <1} (1)

The surface parts S°(t,u), S™(t, %) will be discussed in the next section, while
Si(t,u) fori=1,2,3,...,n — 1 are given by ~

Si(t,u) = Pi(t)Lo(u) + P() Ly(n) + |27 = 21|(GH(t) Ho(u) + G*T(t) Hy (u)),
where Lo(u), Li(u), Ho(u) and H,(u) are cubic Hermite polynomials, may be
written as ,
Lo(u) =1-3u? +2d?,
- Li(u) = 3u? - 243,
Hy(u) = u—2u? +42,
Hi(u) = —u? + 4,

Equation (1) determines the surface between the first and the last heights
using the provided data. To define Pi(t) and G(¢),i = 1,2,3,...,n in (2),
suppose {I} : 0 < j < N',N* € N} is the set of cross-sectional data at the
height 2*. From data I; obtain the contour r*, 0 <t < 1, using the scheme
discussed by T.N.T. Goodman [2] or T.N.T. Goodman and K. Unsworth [3].
Then using the techniques viz. normalization and matching parameters as
explained in T.N.T. Goodman et al. [4], r'(t) becomes R(t). Now denote
Pi(t) = (Ri(t), 2') and G*(t) = (gi(t), g'(t)) ,representing the tangent vector
at P*(t), where

[R*(t) — RI®)I(R() — RTHE)) + [Ri(t) — R |(R™(2) — RU(E

Bll) = TR - R o R - R D) A

2<i1<n-1
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i [R*1(t) = RI()|(#' — 271) + |[Ri(t) — R(1)|(z*+ - 2Y) | <
= RA1L(t) ~R()|[7 = 21|+ [RA(t) — REI(@)|]or =2 = =77

Ly - 2R ~ RIGIR! (1) = RY) + [RY(1) ~ ROU(RA(L) ~ R(1)
o 2[RE () ~ Rl = Bl + Ri(D) - B2 a1

1) = 2[R*(t) - RI(t)|(z' = B) + [R'(t) — R|(2* — 2)

? 2[R3(t) - RY(t)||2" — Bl + [RY(t) — R[> — 21|
While g(t), g7(t) are defined similarly.
The points P? = (R?, B) and P**! = (R"*!,T), are referred to as base and
crown points respectively, which can be provided by the user or determined
algorithmically as in T.N.T.Goodman et al. [4]. In case R"!(t) = Ri(t) =
R**1(¢), gh(t) is taken as (0,0) and gi(¢) is 1 if 2!, 2%, and 2**! are mono-
tonically increasing otherwise -1.
Obviously Gi(t) is a linear combination of vectors P¥(¢)—P*~1(¢) and P*+!(¢)—
P*(t), thus lies in the plane of vectors P~1(¢), P(t) and P**!(t). In partic-
ular if these three points lie in the vertical plane, then the vectors Ri(t) —
R-!(t) and R™!(t) — R(t) becomes parallel and hence can be written as

Ri(t) — RI7Ht) = Av(t),

R™(t) — R(t) = pv(t), for some unit vector v(t).

i | |l + | Alp
t) = : - - —| v(Z).
eh0) = | ) YO
Now two cases are possible either both Ri(t) ~ Ri7!(t) and R**!(t) — R*(t)
are in the same direction or both in the opposite direction.
When Ap > 0,

Hence

2t — 271+ M2+ — 2|

z‘z:_Azl—li lzﬁlg—-z’l
- A 2 v(t)

2 =zi-1] + PEa ey

ei() = | 2 v

It follows that
2X 24

l < 'Zi — zi—li’ lzi+1 - Zi.

g (t)
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While Ap < 0,

gr(t) = (0,0).

For gk(t), it can be written as
R'(t) — R® = Av(t),

R?(t) — R'(t) = puv(t), for some unit vector v(t).
It follows that if Ay > 0, then

1 SEriE
gr(t) = v(t),

A + 2
F-B] T [7-1]

which shows that 2 3
L) < .
IgR( )l —_ 2|21 _ Bla 122 _ le

Thus when the three points P*=1(t), Pi(t) and Pi*1(t) lie in a vertical plane
the gradient used in (1), satisfies the Fritsch and Carlson criteria [1]. Thi
shows that the curve (in scalar case for a fixed t), generated by (1) in th
direction of v(t), preserves monotonicity. ,

Finally the scheme produces a C! surface. It is to be noted that sharp turns o
even edges can occur at extreme heights in case numerators of gi(t) and gi(t
approach to zero.

3. CONSTRUCTION OF BASE

In this section the construction of base is discussed. The construction of th
crown can be followed similarly.

If one may desire to close the surface at one end, the aim is gained by con
structing the base part of the surface referred to as S°(t,u), otherwise it i
null (open). Depending on the object under reconstruction, two types of base
with C? or C* continuity at the base point can be constructed.

To obtain the base of C° type, G°(t) is taken to be same as G!(t) an
P? = (R?, B). S°(t,u) is obtained from the equation (1).

The base S(t,u) of C! type, is the same as given by T.N.T. Goodman et a
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4] i.e.,

50(t, u) = P°(t)Lo(u) + PY(t) L1(u) + F(£)GO(t) Ho(u) + 2|2* — B|G(t)Hy (u)),
where P = (R?, B) and

V2R(t) - RY|
Jl I~ Bllgh (1)
IRI(t)— R°|

However, to calculate G°(t), a procedure is given.

G'(t) = (g%(t),0). Clearly a(P!(t) — P%) + B(P%(t) —~ P!(t)) where a,f €
R, represents a point in the plane of P P(¢) and P2(¢t). Then the pairs
a1, P and oy, B, corresponding to the points (Ry;(t), B) and (Rp2(t), B) re-
spectively lying in this plane, can be calculated as follows:

Choosing arbitrary non-zero a;, then 8; and Ry,(t) can be determined from
the relation

f@t)=

ay(2' — B) + B (22 — ') = B.
R (t) = (RY(t) - R%) + B (R3(t) — R'(2)).

Now @, is replaced by its additive inverse and name it ap. f¢ and Rp,(t) are
determined as above with the new choice.

If 6 denotes the angle between R(t) — R® and Ry;(t) — Rpa(t). Define gh(t)
as follows:

( 1(\_RO .
_—U_—Igl(:)—g"l if 0 =0,m,

0 Ry (t)—Rpra(t) : T
gr(t) =1 RaoRo@ L0<0<3

Ryay—Rri(t)

| megmRn fz<d<m
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4. EXAMPLES
In order to demonstrate the algorithm, two examples are presented.
EXAMPLE 1

To reconstruct an apple, the following data is considered.

Height Cross-sectional data
3.5 Null _ Height

2.3 (0.2 0), (0 0.2), (-0.2 0), (0 -0.2)
0.7 (0.7 0), (0 0.7), (-0.7 0), (0-0.7)
0 (30), (0 3), (-30), (0-3)
2 (6 0), (0 6), (-6 0), (0 -6)
7 (7.5 0), (0 7.5), (-7.5 0), (0 -7.5)
9 (7 0), (07), (-70), (0-7)
11 (4 0), (0 4), (-4 0), (0-4)
105  (1.30), (0 1.3), (-1.30), (0 -1.3)
9.5 (0.7 0), (0 0.7), (-0.7.0), (0 -0.7)

7.3 Null - Height
Note:- Null_ Height indicates that the data is not provided at this height.

Figure 1 gives the top and bottom views of the apple.
Figure 2 gives the whole surface.
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EXAMPLE 2

To reconstruct a vase, the following data is considered.

Height Cross-sectional data
1.7 Null. Height

15 (10,001, (10) 01
075  (30),(03),(-30),(0-3)

0 (3.75 0), (0 3.

0.75 (3.5 0), (0 3.5), (-3.5 0), (0 -3.
1.5 (3.25 0), (0 3.25), (-3.25 0), (0 -3.25)
5 (6 0), (0 ) (-6 0), (0 -6)

8 (3.5 0), (03.5),

15 . (1.75 0), (0 1.

215 (30),(03),(-30),(0-3)

21 (40),(04),(-40), (0-4)

20 Null_Height

(0 -
75), (-3.75 0), (0 -3.75)
)

(-3.50), (0 -3.5)
75), (-1.75 0), (0 -1.75)
0

87

To obtain the required surface, the crown and the second last surface part

are ignored, as shown in figure 3.
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Figure 1.
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Figure 2.
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Figure 3.
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ABSTRACT

A fixed point theorem in convex metric spaces is proved. As an application, a
result in best approximation is also derived.

Let X be a metric space with metric d and T = [0, 1]. A continuous mapping
W: X x X x I — X is said to be a convex structure if for each (x, q, A} € X
x X x 1land u € X,

d(u, W (x,q,4) < Ad (u,x) + (1- 1) d (3, q)

The metric space X together with a convex structure W is called a convex
metric-space. A subset C of X is called (1) convex if W (x, q, A) € C for all
(x,q, A) € C x C x 1; (2) g-starshaped if there exists q € C such that W (x,
q, A) € Cfor all x € C and all A € I. A convex metric space X is said to satify
the property (I) ([2]) if

d (W (g M) W5 qA)<Ad (x )

forallx,y € Xand all A € 1.
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Obviously, all normed spaces are convex metric spaces satisfying the property

(I). However, there are many examples of convex metric spaces which are not
embedded in any normed space (ef. [6]).

Let T and S be selfmaps of X. Then T is called S nonexpansive on C C X
if d (Tx, Ty) < d (Sx, Sy) for all x, y € C. The maps T and S are said to
be commuting on C C X if STx = TSx for all x € C. Suppose x € X. Then
the set P.(%) = { x € C: d (x, %) = d (%, C) } is called the set of all best
approximants to %X, where d (x, C) = inf { d(y, x"): y € C }. A point x € X
is a fixed point of T (resp. S) if Tx = x (resp. Sx = x). The set of all fixed
points of T (resp. S) is denoted by F(T) (resp. F(S)). If T is a selfmap of X,
then Gr is the set of all selfmaps S of X such that ST = TS.

Recently, I.Beg, N. Shahzad and M. Igbal (2] proved the following result on
best approximation, which extends Theorem 3 of Sahab, Khan and Sessa [5].

Theorem 1

Let X be a convex metrix space satisfying condition (I}, T and S selfmaps of
X with % € F(T)N F(S), and C C X with T (0 C) C C, where § C denotes
the boundary of C. Suppose S is continuous and affine on P.(%). T and S
are commuting on P.(%) and T is S-nonexpansive on P.(Z) U {Z}. If P.(Z) is
non-empty compact, and g-starshaped with q € F(S), and if S (P.(%))= P.(%),
then P.(X)N F(T) N F(S) # ¢.

In this paper, we first establish a fixed point theorem in convex metric spaces
and then use it to obtain a generalization of Theorem 1.

The following fixed point theorem is an immediate consequence of Theorem
4.5 of 3].

Theorem 2

Let X be a compact metric spacé and T a continuous selfmap of X. Suppose
Tx # Ty implies d (Tx, Ty) < d(Sx, Ry) for some S, R € Gr. Then F(T)
NF(S) is singleton for all S € Gr. ,

Now, we prove our main theorem, which generalizes Theorem 3 of [4].
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Theorem 3

Let X be a convex metric space satisfying condition D, CcXa compact
set, and T a continuous selfmap of C. Suppose F C Gr is a family of affine

selfmaps S of C with q € F(S) and for each pair (x, y) € C2, there exists S =
S (x,y), R = R(x,y) € F such that

d(Tx, Ty) < d{Sx, Ry). (1)

If C is g-starshaped, then F(T) # ¢ and F(T) N F(S) # ¢ for all continuous
S eF.

Proof

Let {A.} be asequence of real iumbers such that 0 < ), < 1, which converges
to 1. For each n, define a sequence of maps T}, by T, X = W (Tx, q, A,) for all
x € C. Clearly, each T, is a continuous selfmap of C because C is g-starshaped,

W is continuous, and T is continuous selfmap. For any S € F and n € N, we
have

T.Sx = W(TSx,q,A\,)
= W(STx,Sq,A\,)
= S(W(Tx,q,))
= ST,x

for all x € C. Thus F C Gr,,

Let n be fixed. Then, for each pair (x, y) € C?, there exist S, R € F such that

d(Tyn, Thy)

d(W(Txa q, ’\n), W(Tya q, /\n))
And(Tx, Ty)

<
< Aad(Sx, Ry)

Therefore, for all x, y € C, we get

d(Tax, Tay) < d(Sx,Ry)
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whenever Tyx # T,y for some S,R €F. It follows, by Theorem 2, that there
exists =, € C such that

F(Tn) N F(S) = {Xn}

for all S € F. By the compactness of C, there exists a subsequence {xn,} of
{xn} with x, =y € C. Now,

d(Txm; xm) = d(Txm, W(Txma q, )‘n))
< (1-X2d(Txm,q)

for all m. The continuity of T further implies that y = Ty, that is, y € F(T).
Moreover, for all continuous S € F, we have y = Sy because x, = Sx, for all
m. Hence F(T) N F(S) # ¢ for all continuous S € F.

The follbwing Theorem is an extension of Theorem 1. It‘ also includes Theorem
4 of [4] as a special case.

Theorem 4

Let X be a convex metric space satisfying condition (I), T and S selfmaps
of X with x € F(T)NF(S), and C ¢ X with T (CNC) C C. Suppose T
is continuous, I affine on P.(%),T and S are commuting on P (%), and for
X,y € Pc(X) U {k}, there exist n = n (x, y), m = m(x, y) in N U {0} such that

d(Tx, Ty) < d(S"x, S™y). (2)

If P.(%) is nonempty, compact, and g-starshaped with q € F(S), and if S(P.(%) C
P.(), then P.(x) N F(T) # ¢. If, in addition, S is continuous, then P.(%X) N F(T) N F(S)

Proof
Let y € P.(x). Since S(P.(%)) C P.(%), we have S"y € P.(%) for n eN U {0}
and so S™ is a selfmap of P.(%). Also, as in Lemma 3.2 of [1], y € 8C N C. But
T(8C NC C C). Therefore, Ty € P.(%). It follows froi (2) that
d(Ty,%) = d(Ty, Tx)
< d(S%y,S™x)
= d(S"y,x) = d(x,s).
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This is possible since * € F(T) N F(S) and S"y € P(%). Thus Ty € P(%) and
so T is a selfmap of P.(%). Note that, for each n, S” is affine and q € F(S")
Set

F={S":neNU{0}}.
Then F C Gr because T and S are commuting on P¢(%). Further, (2) implies
(1). Hence the result follows from Theorem 3.
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