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Abstract:

In this paper we determine the number of orbits of Q*(,/p) under the.action
of the modular group G =< z,y : z* = y® = 1 >, where p is a prime and
p =3 (mod 4). :

1. INTRODUCTION

Throughout this paper for any two rational integers a and b, (a,b) denotes
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the greatest common divisor of a and b and n denotes a non square positive
rational integer. Let

— 2 _
Q*(vVn) = {a+\/ﬁ o’ . n is a rational integer and (a, 2 . n,c) = 1}

For a = M’ € @*(\/n); its conjugate & = “—3@ may or may not have the
same sign as that of @. If @ and & have dlfferent signs, then « is called an
ambiguous number [5].

Ha= ﬁ—ﬁ then N(a) = aa = —r is called the norm of a.

Clearly an a € Q*(\/n is an. amblguous number if N(a) = ~1. In such a case
n=a2+c%. Alsoif a = 252 then we write —a = 2R 56 that —a = ~20/2,

A coset diagram is just a graphlcal representatlon of a permutation action of
a finitely generated group on a non empty set.

In this paper we study the cost diagrams of the modular group

G =<1z,y : 22 =% =1 > under its action on Q*(/n). Thus in our case the
diagram consists of a set of small triangles representing the action of C3 =<
y:y® =1> and a set of edges representing the action of Cy =< z: 22 =1 >.

In our diagrams, there are only two géheratofs namely z and y. In the case of
y, which has order 3, there is a need to distinguish y from y~!. The 3-cycles
of y are therefore represented by small triangles, with the convention that y

permutes their vertices counter - clockw1se while the fixed points of y are
denoted by heavy dots.

Also to make the dlagram slightly’l‘ess complicated, we omit the loops corre-
sponding to fixed points of z, because then the geometry of the figure makes
the distinction between z-edges and y-edges obvious.

Let C' = C U {00} be the extended complex field. Mushtaq [5] has proved
“that Q*(y/n) is invariant under the action of G =< z,y : 22 = y® = 1 > where
z:C"— " and y: C' — C' are the Mobius transformations defined by:

-1 z—1
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He has also shown that @Q*(y/n) contains only a finite number ambiguous
numbers and those occurring in a particular orbit of @*(1/n) form a unique
closed path in the coset diagram under the action of G on Q*(1/n).

The actual number of ambiguous numbers in Q*(y/n) has been determined in
[2] as a function of n. ' ‘

In 3], the integers, units and primes of Q*(/n) have been investigated. The
exact number of ambiguous integers, ambiguous units and ambiguous primes
in Q*(v/n) have also been determined there.

The actual number of orbits of @*(,/p),p a rational prime, under the action
of the modular group G =< z,y:z?=y*=1>inthecasesp=2andp=1
(mod 4) have been determined in [4].

The number of ambiguous numbers in the orbit

o = {a? = g(a) : g € G},a € Q*(y/n), is called the ambiguous length of &
with respect to G. _

In this paper we determine the number of distinct closed paths formed by the

ambiguous numbers of Q*(,/p), where p = 3 (mod 4) is a rational prime, under
the modular group action on it. '

The notation is standard and we follow [1], [2], [3], [4] and [5]. For a real
number z, [z} denotes the largest rational integer not greater than z.

2. PRELIMINARIES | ,

The results that follow will be used later in this paper.

Lemma 2.1 [1]

Let p be a rational prime and p = 3 (mod 4). Then p can not be written as a
sum of two squares. ’ '

Theorem 2.2 [5] -

The ambiguous numbers in the orbit a® of a €* (v/n) form a single closed
path in the coset diagram for the orbit aC. ‘
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Note: Closed path in the coset diagram for the orbit o is unique except for
the triangles.

The following simple remark is useful to determine the number of orbits of
Q*(\/n) under the action of G. .

Remark 2.3

The number of disjoint orbits a®, a € Q*(y/n), is equal to the number of
closed paths in the coset diagram under the action of G on Q*(y/n).

The next lemma shows that image of conjugate' of element of @*(1/n) under
‘an element of GG is the conjugate of image.

Lemma 2.4 [4]

Let o € Q*(v/n). Then g(@) = g(a),Vg € G.
Corollary 2.5 [4]

For a real quadratic irrational number 8 in ¢, a € Q*(y/n) we have:

z(-B) =x(-p ) ( B = (_)

i) zy’(=B) = zy*(-P) = ~ly (/3)] —[yx(ﬁ)]

i) yz(=p) = yz(=p) = ~[zy*(B)] = —[ay*(B)]

v) yzx(—_ﬁ) = y2z(—pB) = —[zy(B)] = —[zy(B)] and
vi)  zy(=P) = zy(=B) = —[y*z(B)] = -[y*z(B)]

Remark 2.6 [4]

i) Using lemma 2.4, it is easy to see that
for o € Q*(v/n), if @ € o then, for all B € of,Beal.
ii) Similarly__fdf a € Q*(v/n), if —a € o then, for all 8 € af ~ﬁ € o

iii) It then follows, by corollary 2.5 that
for all B € a%,—B € af.
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Lemma 2.7 {4]

For each a € Q*(y/n) the ambiguous length of o and & is the same.

Lemma 2.8

‘Let G be the modular group. Then for each a € Q*(1/n) we have:
z(a) # ta, yla)# xa, ¥*(a) # xa, yz(a)# o, Pz(a) # £a

z(@) # —a, yla) #xa, y*(e)# xa, yz(e) #& y'z(a) #£6

and
~ a’—n 2, .2
(o) =a e N(a) = = =-l&n=a+c

Lemma 2.9 [4]
For a € Q*(y/n) let N(a) = a& = -1, then o = (&)°

The converse of lemma, 2.9 is false. That is, if o = (&)¢, then N(«) may or
may not be -1. For example (v/2)¢ = (=v/2)¢, but N(v/2) = -2 # —1.

However, the following theorem gives a necessary and sufficient condition for
the orbits a® and (&)€ to be identical or disjoint.

Lemma 2.10

Let € @*(v/n). Then o€ = (&)€ if and only if there exists an element § in
a® such that 88 = —1. :

Proof

Let 8 € of such that 88 = ~1. Then 3 = —’ﬂ—l = z(= beta) and z(B) = B.

So B € (B)°and B € B°. As B € a® so o€ and BC are not disjoint. Also
B¢ = (B)€ and hence, by lemma 2.4, af = (a)C.

Conversely suppose that o = (&)°. We have to prove that there exists f in
aC such that 33 = —1. That is, z(beta) = ‘71 =f

As a% = (@)C so a® contains the conjugate of each of its element. Hence, by
lemma 2.4 and theorem 2.2, there exists 3 in o such that at least one of the
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numbers

=(8),y(B), v*(B),yz(B) and  y’z(f)
is equal to j
But we know that none of

y(B),v*(B),yz(B) and  y’z(B)

is equal to 3 for all 8 € Q*(/n).
Hence z(B) = . That is, 8 = —1.
Note: For any a € Q*(y/n), the following statements are obviously equivalent.

1. af and (@)¢ are disjoint orbits of Q*(v/n), if and only if there does not
exist an element 8 in o€ such that 88 = —1. |

2. o = (@) if and only if there exists an element 8 in o€ such that 83 = ~1.

3. of and (&)€ are disjoint orbits of Q*(y/n) if and only if 33 # —1 for all

4. of = (&) if and only if 53 = —1 for some B € af.

Lemma 2.11

Let p be an odd rational prime and a = ﬂ—c‘/ﬁ be an ambiguous number in

Q*(y/p)- Then:

l. Y’zlo)=-a<a= 1—’:@, or 1—1}?@, where p = 1+ 2c.
| - 14 —14

2. yr(la)=—-aea= #, or ———24@.

Proof

1. Leta= a—’:‘/j € Q*(\/p)- Then ¢ is an ambiguous number < a? < p. Now

—_ 2 __
\ (a)=a¢>a+b+‘/ﬁ— a+\/1_), po © D

2a+b+c c T
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Sa+b=-a, 2a+b+c=c

- ©b=-2 ; (1)

We 1|(Zm2w that “—Jf-cﬁ € Q"(’\/ﬁ) & a—z@ € Q*(\/p). But this is possible only if
—2al(a* — p).

i.e. if (a® — p) is even and a|(a® - p).

As p is odd a must be odd and so alp(because a|(a? - p), ala?).

This is a = +1 (because a? < pand pisa rational prime)

“ Hence by equation (1) b= F2

Nowl—;-ﬁ=:1:2®p=1:i:2c

a’?—n=bc <0 (because o is ambiguous number) < b and c have opposite
signs <> a and c¢ have same signs (because a,b have opposite signs, by
equation (1)). ‘ '
So c is positive or negative according as a =1 6r - 1

Moreover c is even or odd according as p =1 or 3 (mod 4). Hence

1+ -1+
a=————ﬁ~ or ————cﬁ

- where p=1+ 2

This completes the first part of the lemma.

2. Proof is analogous to the proof of 1 of lemma 2:11.

Remark 2.12

Let , ‘
a= a+c‘/ﬁ € Q*(vA).

Then '

Q= -

_®a+\/ﬁ_—a+\/ﬁ‘
C c
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&S o= —
c

Obviously such numbers of Q*(\/n) are all ambiguous. Moreover the number
of such ambiguous numbers is 27(n). In particular, if n = p, then the elements

:i:\/g_a, Lof Q* (\/P) are the only such numbers.

Also there is no a in Q*(y/n) such that a = @ or o = —a. In part1cular there
is no a in Q*(y/p) such that o = & or a = —a.

3. THE ORBITS OF ¢*(,/p), P = 3 (mod 4) UNDER THE ACTION
OF THE MODULAR GROUP G=<z,y:2?=¢*=1>

This section is concerned with the determination of number of orbits of Q*(,/p),p =

3 (mod 4), under the action of G. In contrast with the action of Gon Q*(v/2)
we prove that G does not act transitively on Q*(y/p),p = 3 (mod 4).

Theorem 3.1

Let p = 3 (mod 4) be a rational prime. Then Q*(,/p) splits into exactly two
disjoint orbits under the action of G. These are precisely (,/p)¢ and (—/p)°.
Proof |

Since p= 3 (mod 4), s0 p # a® + ¢?, a,c € Z, by theorem 2.1. This implies

that £52 # —1, Va,c € Z. Hence if § = VP ¢ Q*(,/P) then BB # 1. Thls
shows that B # 5 Lz(B) for all B € Q*(/P). Therefore by lemma 2.10, o€ and
ac are disjoint OI‘bltS of Q*(,/p) under the action of G.

We prove that there are exactly two distinct closed paths of ambiguous num-
bers of Q*(,/p) in the coset diagram under the action of G.

By the remark 2.12, if v is one of the numbers +,/p and —i then —% = v

and no other element of Q*(,/p) satisfies this condition. Also there is no o in
Q*(/P) such that « is equal to @ or —a.

As

c -2 —c 2

m(ﬁﬁ):ﬂj_[g’ x<i1+\/ﬁ)=:{:1+\/§
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and
-1+ 1+./D
2 )
are conjugates of one another, similarly
1+./p
C.
and
-1+ /p
—C

are conjugate of one another, so exactly one of the sets

{iljc\/ﬁ,ﬂzl—;\/ﬁ}

and

{il-:\/f), iljz\/f)}

is contained in (,/p)® and the other is contained in (—-./p)°.

Hence (/p)¢ and (—./p)¢ have unique closed paths of ambiguous numbers.
These paths are shown in figure 3.1 and 3.2.

Furthermore if o = a—+—c\—/—£ is an ambiguous number of Q*(,/p) then we apply

ya(e) = (iic—)ciﬁ
or :
i (a)=a—-1= w

according as (a +c) or (a — ¢) is < [/p).

As we have exactly four elements of Q*(,/p) satisfying —& = «, exactly two
elements of Q*(/p) satisfy yz(a) = —& and exactly two elements of Q*(,/p)
satisfy y?z(a) = —a for o € Q*(\/p)- So there are exactly two distinct closed
paths in the coset diagram under the action of G on @*(,/p) and hence, by
remark 2.3, Q*(,/p) splits into exactly two disjoint orbits under the action of

G. They are precisely (,/p)¢ and (—,/p)¢. the figures 3.1 and 3.2 show the
paths of these disjoint orbits.
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Figure 3.1:  Closed path in the coset diagram for the orbit (\[p )¢
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Figure 32:  Closed path in the coset diagram for the orbit (- JE )¢
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Remarks 3.2

1. It was proved in [2] that the number of ambiguous numbers in Q*(,/p) is
7*(p) so, by theorem 3.1, for p = 3 (mod 4), (/)¢ and (—/p)¢ both have

ambiguous length 7% = 7(p) + Zg‘fl] 7(p — a?)
2. In [3] we showed that number of ambiguous integers of Q*(/p) is 2 +4[,/p].

So by theorem 3.1, for p = 3 (mod 4), (,/p)¢ have exactly 1-+2[,/p] ambiguous
integers.

3. The action of G on Q*(v/2) is transitive, whereas it is not so on Q*(vP),p
an odd rational prime.

4. @ (/P), p = 1 (mod 4), splits into exactly two disjoint orbits namely

(/3 = (=/)° and
=4 -1

2

where Q*(y/P):p = 3 (mod 4), splits into exactly two disjoint orbits namely

(vP)¢ and (-/p)°.
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Abstract

Total Variance of the sample mean for simple random sample based on the
model for coder’s effects has been worked out.

1. INTRODUCTION

A commonly used method for obtaining data, to be used for statistical pur-
poses, is a sample survey. It is, however, true that all surveys are subjected to
some kind of error and some are quite misleading. The: errors present in sur-
veys can be divided into two main groups: sampling errors and non-sampling
errors. Sampling errors decrease as the sample size increases. On the other
hand, non-sampling errors are likely to increase as the sample size increases. In
some surveys non-sampling errors are very large and interpretation of the re-
sults without taking these errors into account may be dangerously mlsleadlng
A list of errors in surveys is given by Deming[1].
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Although statisticians had realized, very early in the development of sampling
theory, the importance of non-sampling errors, not enough efforts were made,
untill recently, to try to find out the extent to which these errors may impair
the result of a survey based on a good sample or even the result of some com-
plete enumerations. Hansen and Waksberg [2] have pointed out this problem.
Martin Collins and Graham Kalton [3] pointed out that the coder’s reliaility
is affected by their work load. Martin Collin and Gill Courtenay {4] have sug-
gested that field coding has some advantage over office coding. Durbin and
Stuart [5] compared the reliabilities of different coders. Crittenden and Hill
[6] studied the effect open question on coding. Martin Collins (7] found that
the coder’s reliability is affected by the type of question.

2. MODEL FOR CODERS EFFECTS

One of the sources of errors, apart from the respondent, is coder’s effects. We
shall consider the model for coder’s effects only i.e. it is assumed that there are
no interviewer’s effects. Examples are mail surveys in which the respondent
is himself an enumerator or a survey in which only one interviewer is used
to interview all the respondents. In mail survey there are no interviewer’s
effects but in the case of one interviewer, the interviewer’s effects cannot be
estimated. The model for coder’s effects only is given as

Yiie =Y+ Br + Thar (2.1)

(h=1,2,--,t i=1,2,---n; r=12--R)

where Y}, denotes the value coded for the i-th form for a hypothetical response
variable, by the h-th coder on r-th occasion. Further let the reported response
Y; for the i-th unit be the true response (i.e. no response error), 8y, is the h-th

coder’s effect; and 7;, is a purely random component which shows the effects
of unexplained factors.

3. VARIANCE OF THE SAMPLE MEAN

The variance of the estimator depends on the sample design and the coder’s
allocation. The sampling scheme considered here is simple random sampling.

Assume that n units are drawn, with equal probability, from a population of N
units and the values recorded for the selected units are true values. Further let
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t coders be randomly selected from an infinitly large population of coders and
each selected coder codes n/(= n/t) randomly assigned forms. Denoting by

V'4r, and Y, the mean of coded forms coded by the h-th coder on r-th occasion

and the overall mean of the coded forms on the r-th occasmn respectlvely, we
have, :

!

= 1- X
YVir==> Y
LT

and o

~ 1 1 n
‘ Y, ,=— thir

n't h=11=1
Substituting from 2.1, we have
R 1 t

- n 1 ¢
Y ., ; ZZ Y, + — : Z B + Z Znhlr-[hz (31)
h=17=1 Y h-1

=11i=1

nl

where I;(Iy; = 1 if the i-th unit is coded by h-th coder, for a given sample of
n forms; otherwise it is zero) indicates that which forms are assigned to the
h-th coder, for a given sample of n forms.

En(In) = Var(Ihz) g— (1— E) ; |

n’,

COV(IM) = (1 - a) (ni 1) |

Let E5 and V, denote the expectation and varianCé respectively over repeated
coding of the i-th form by the h-th coder; F and V, denote the expectation and
variance respectively over coders (it includes both the selection and assignment
of the coders); E,, and V,, denote the expectation and variance respectively over
all possible partitions of a given sample of size n into random sub-samples;
Ey and Vy denote the expectation and variance réspectively over all possible

sarnples which can be drawn from a population of N units; and E, denote the
overall expectation. Then,
n ‘ 1 ‘ t n

t
z Yilpi + - 2 Bn t 7 S5 B (i)

h:l i=1 h=11i=1

and

1

~<»

Ey(
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Thus Ep(}:"_r) =

=;f,—ti"z i+ 3 B e

h=11i=1

nl

| -

22

t
=11i=1
!

:\

E&&A=E(

Yilp, + - Z ,Bh)

1 t n

==Y Yilu (3.3)

M k=14=1

) . n N
=1

~

Y

Let Var (}7,) denote the variance of the sample mean, then

Var( ) =

VNELE\Ey(Y ) +EnV, EIEZ;(?_,)+ENEnVIEz(}°/_,)+ENEHE1V;'Z‘?,_,)

Using 3 1 and 3.2-4 we have

Var(}:’,,,)

(2 zw) e (2 Svin

h=1i=1 N pZii=1

~

n

ENEnVI( ZEYIM+ Zﬂh)

=11i=1

EnE, E1V2( ZE ilhi + = Z,Bh+ EZ%JM)

h=11=1 h 1i=1 )
1 N—n 2 1/n-— o2 2
E( N.n ?(_ )EN S¢) + EnE, <t>+ENE E; (-;)
1/N g
z("fv‘.n—)sv Tt

3| 3
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Assuming that N is large relative to n, we have

+

o l'&qm
3|

Var(V ) = %5,% +

This is the total variance of the sample mean, based on the model for the
coder’s effects, when a simple random sample of size n is drawn from a large
population of size N.
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ABSTRACT

In this paper, we will discuss the Bézier like quartic curves, which are an
extension of Bézier like cubic curves. These curves will be used to generate
swept and swung surfaces. A desirable feature of the Bézier like quartic curves

is the extra shape parameter that will be useful in designing these type of
surfaces.

1. INTRODUCTION

In curve design it is desirable to have curves where the mathematical and ge-
ometrical properties can be easily understood. Normally, for a simple CAD
system curves are in polynomial forms and perhaps the cubic is the most pop-
ular. However for more shape design cubic curve is not enough. To add more
shape parameters we extend the representation by blending two cubic curves.
The blending of two cubic curves in order to add shape parameters is discussed
in Jamaludin et al (1995). There are also others means of curve representation
for example in the rational form to create more shape parameters for designing
purposes as discussed by Sarfraz (1993, 1994, 1995, 2003). Our paper will only
deal with non-rational curves and we feel that it is sufficient to generate the re-
quired surfaces. That is we will apply these curves to create swept and swung
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surfaces. The method of swept surfaces have been discussed quite extensively
by a number of researchers to state a few such as Choi (1991), Bloomenthal
M et. al (1991), Coquillart S (1987), Wang (1999) and Wang (2001).

2. BEZIER LIKE QUARTIC CURVES

~Given four control points Py, Py, P2 and P3 a segment of Bézier cubic curve
" is given by

r(t) = (1-t)°Po+3(1 - )P +3(1 - )?P, + Py, 0<t<1 (1)

With this definition we can modify the shape of the curve by adjusting the
control points. If the end points are to be interpolated then only the inner
control points P; and P, can be adjusted to obtain a required shape. This
may not be easy if the end directions are fixed. If the end points and end
tangents are given then a cubic curve in the Hermite form is given by

r(t) = (1—=)2(1+20)Po+t(1 —t)2mo+t2(t — 1)m; +2(3-2t)P3; 0<t <1

| 2)
where my and m, are the end tangents, Py and P, are the end points. We
found out that a cubic curve in the Hermite form is not suitable for our purpose

of designing swept and swung surfaces. Thus a modification in defining a cubic

curve is made to cater our needs. If we let the end tangents be written in the
form of ‘

my = ,B(Pl—Po)
m; = B(P3—Py)

and substitute back into the Hermit form and rearranged as a combination of
Py, Py, P, and P3 we obtain

r(t) = Fo(t)Po + F(t)P1 + F2(H)P2 + F3(t)P3;  0<t <1 (3)

where
@) = 1-1)*1+t2-a))
Fi(t) = a(l-1t)%
F(t) = (-1
Fy(t) = *1+(1-1)(2-5)
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with a and 3 are real numbers.

With this representation, we can modify the shape of the curve by adjusting
the values of o and 8. We can show that if & = 3 and § = 3 the cubic curve
is in the Bézier form. Suppose we have constructed a cubic Bézier curve and
need to modify its shape by keeping its end directions then it is much easier
to adjust the values of o and J instead of the control points. The following
figures illustrate the cubic curves using different values of a and S without
changing the control points.

’ a=p=2 ‘ a=p=4 1 .} [x:-l.b=3|

o=4,p=

Figure 1

However with the cubic representation the availability of shape is not wide
enough. For example, a single segment of a cubic curve cannot generate a flat
curve such as the cross section of a car roof. With this limitation, we consider
of blending two cubic curves to get extra shape parameters. The blending is
discussed in Jamaludin et at (1995) and Lawrence (1997). Jamaludin linear -
functions and Lawrence use trigonometric functions to blend the cubic curves.
In this paper we use the method proposed by Jamaludin, because it is simpler.

3. BLENDING TWO CUBIC CURVES

Suppose r(t) and ry(t) are two cubic curves given by

r1(t) = Fio(t)Po + Fi 1 (O)Py + Fia(t)P2 + Fi3(t)P3; 05t <1 (4)
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where
Fo(t) = 1-1(1+12-0a1))
Fu(t) = a(1-1t)%
Fo(t) = Bi(l—1t)t?
Fis(t) = 1+ (1-1)(2-4))
and

ry(t) = Foo(t)Po + Fu (1) Qu +LIF22(t)Q2 + F(t)P3; 0<t<1 (8)

where
Fyo(t) (1-)*(1+t(2 - a))
le(t) = a2(1 - t)zt
Fyt) = B(1-t)t?
F(t) = ’t2(1+(1—t)(2“52))-

Then we define a blending curve r(t) as

r(t) = (1—t)ry(t) +trat); 0<t<1 (6)

The curve defined by equation (6) is a quartic curve. We will call this'curve
a Bézier like quartic curve. To make it easier for designing purposes, we let
o = o, By = f and By = oy = . With this assumption, we call o and 8
the tension parameters while v is called the shape parameter of the curve. In
Figure 2, the dashed curves are the cubic curves with their respective control
polygons and the solid curve is a Bézier like quartic curve. We can see that the
initial tangent direction of the quartic curve depends on the first cubic curve
and its end tangent direction depends on the second cubic curve. In Figure
3, we illustrate the effect of the parameters on the shape of the curve.. In this
illustration we fixed the values of & and (8 equal to 4, but with different values
of v. Thet top dashed curve has a value of v = 2, and the bottom one vy = —1.
Solid curves from bottom to top have the values of v from zero to one.



Figure 2: Two cubic curves and their blend Figure 3: Different Bezier quartic like cuves

However the number of control points given are redundant. We require only
five control points, which can be illustrated in the following proposition.

Proposition

Suppose r(t) is being defined by Pg, Py, P, P35 and Py, Q1, Q2, P3 and r(t) by
Py, P, P*, P;and Py, P*, Q,, P3 with the same tension and shape parameters,
r*(t) and r(t) are the same curve if and only if P* is the midpoint of P, and

Q.
Proof

Considering r(t) and r*(¢), and we take the difference then we have

v(1 —¢)%3(Py + Q1) = (1 — t)%t?(2P*). Hence the two curves are the same
if and only if (P + Q1) = 2P* or P* is the mid point of P; and Q,.

From the proposition we only require five control points Pg, P, P*, Qy, P3
to generate a Bézier like quartic curve. We can also note that if P* is the
midpoint of P; and @3, the curve reduces to the one proposed by Jamaludin.
It can be shown that the curve reduces to a Bézier quartic curve if a = =4
and v = 3. Figure 3 illustrates different Bézier like quartic curves with five
control points.
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a=Pp=4,yfrom-1103 : aandﬁfr_om2to8,'y=0

Figure 3: Different shapes of curves with different parameters

4. SWEPT AND SWUNG SURFACES

From the above examples of curve design, we propose a simple surface design
similar to swept and swung techniques where the cross sectional and the spline
curve are the Bézier like quartic curves given by equation (6). Surface design by
swept and swung techniques are quite common in the die and mould industry.

A swept surface is given by

S(u,v) = r(v) + Cy(u,v)B + Co(u,v)N (7M) |

where r is the spine or the trajectory of the surface, C; and C, are the planar
contours. Vectors N and B are unit vectors that form the moving frame
perpendicular to the spine. We are not using equation (7) for the swept surface.
Our approach is easier. What we do is to place the control points of the Bézier
like quartic curves on curves that we refer as control curves. Let us assume
that the control curves are in parameter u. That is the control points vary in

the u-direction. With a particular u, we construct Bézier like quartic curves
with parameter v.

If the control curves are assigned by go(u), ¢1(u), g2(u), gs(u) and g4(u), then
the surface S(u,v) is given by

S(u,v) = (1 - v)8;(u,v) + vSa(u,v), 0<u, v<1 (8)
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where

S1(u, v) = Fio(v)qo(u) + Fi(v)qi(uw) + F12(U)42(U). + F13(U)CI4(U)

and

Sa(u, v) = Fao(v)qo(u) + Fa1(v)qr (u) + Fao(v)gs(u) + Fas(v)gs(u)

The blending functions Fj;(v),j = 1,2 and ¢ = 0, 1,2, 3 are given by equation
(4) and (5). The shape parameters are o, 8 and  which can vary with respect
to u. '

Figure 4 illustrates the idea. In this illustration go(u), ¢:1(u),g2(u) are the
same Curves.

q, ()= q, (u)= q, (u)

qo(u

q,(u)

Figure 4: The control curves and cross sectional curve.

We give some examples of the proposed surface. Let fix @ and 8 to be 4,
we will illustrate how a surfaces can be designed with variable 4. Figure 5
illustrates the examples of swept surfaces. In Figure 5a, the value of v is a
constant zero. In Figure 5b, the value of 7y is -2. In Figure 5c¢  varies lineraly
with respect to u from 0 to -2, that is y(u) = —2u. In Figure 5d, we have

v(u) = —2u? +2u(l — u). In fact we can use 7 as any function with respect
to u.
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Figure 5¢. g varies linearly

Figure 5c. y varies quadratically

Figure 5. swept surfaces with different value of y.

In the case of the swung surface we rotates the control points and then con-
struct the Bézier like quartic curves. For the swung surface we kept the end
points fixed but the middle point revolved with respect to the axis made by
the end points, for simplicity we let the axis be the z-axis, then the swung
surface S(u,v) is given by equation (8) with ¢ (u), g2(u), g3(v) given by

q1(u) = g2(u) = g3(u) = (a Cos (2mu), a Sin(27u),b)
a and b are positive real numbers.

Figure 6 illustrates examples of swung surfaces obtained with different values
of ~.
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Figure 6 a: y is —1 Figure 6b: : v is 1

Figure 6¢: y varies but have same end values Figure 6d: end y of different values

Figure 6: swung surfaces with different values of y

5. CONCLUSION

Using blending technique, we have derived an alternative quartic curve defini-
tion to the Bézier. The new quartic curve representation has additional shape
parameters that may be desirable in CAD environment. The additional shape
parameters will be useful in curve and surface design because the Bézier like
quartic curve is easy to control as compared to the Bézier quartic curve. By
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assigning the parameter 7 as a function we can generate interesting swept and
swung surfaces which may be useful for surface design needed in the die and
mould making. Eventhough the proposed method of curve and surface design
easy to comprehend, other techniques of curve design such as rational cubics,
b-splines or even NURBS are worth to be investigated for their suitability for
swept and swung surfaces. These curves are mathematically more sophisti-
cated but offer a lot of flexibility that may be desirable to curve and surface
design.
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Abstract

Let S(1 —b) (b # 0,complex), denotes the class of functions
f(2) =2+ ap2* +azz* + -+ in D={z||z| <1}
which satisfies for z = re?® € D, and
1( 1) )}
Re 1—{-—(7: ~1}]1>0, z€eD
Rep (5

Then f(z) is said to be starlike functions of complex order b. The author gives
the new distortion theorem for the class of starlike functions of complex order.

This result is used to obtain the Koebe domain for the same class under the
 conditions. )

Re (%) ~ |z|Re (%) - 2|z)?
b < :
2|z| [Re} + (2 — Rel) 2P

1
Re (5 - 1>\> 0, Viz| <1

1. INTRODUCTION
Let A denote the class of functions normalized by
f2)=z+ a2+

which are analytic in' D. We will let S(1 — b) represent the class of functions
contained in A which are starlike function of complex order i.e.
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f(2) € S(1 - b) if f(2) = 2z + azz® + azz® + - - - is analytic and satisfying

Re(l+%<z%§—l)>>0, (z € D)

Also, let P denote the class of analytic functions normalized by

p(2) =l4+pz+p2®+---
such

- Rep(z) >0, p(0)=1
Function in P are often called caratheodory functions.

A function f(z) € A is said to be convex function of complex order b(b # 0 is
complex), that is, f(z) € C(b) if and only if

Re (1 + %z?ll((j))) >0, (z2€D)

It follows from the definition of starlike functions of complex order that f(z) €
S(1 - b) if and only if there exists a function p(z) € P such that

S
f(z)

=b(p(z)-1)+1, z€ D (1.1)

DEFINITION 1

Let A be a set of functions f(z) each regular in D. The Koebe domain for a
set A is denoted by K(A) and is the collection of points w such that w is in
f(D) for every function f(z) in A. In symbols. *

K(A)= () f(D)
fea

Supposing that the set A is invariant under the rotation, so e~1®f(e71°z) is in
A whenever f(z) in A. Then the Koebe domain will be either the single point
w = 0 or an open disk |w| < R. In the second case R is often easy to find.
Indeed supposing that we have a sharp lower bound M(r) for f(re!?) for all
functions in A, and A contains only univalent functions then

R = lim M(r)

r—1-1!
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gives the disc |w| < R as the Koebe domain for the set A.
II. KOEBE DOMAIN FOR THE CLASS 5(1-b)

In this section we shall give the new ditortion theorem and Koebe domam for
the class of starlike functions of complex order.

It should be noticed that the Koebe domain is obtained under the conditions

e TR 2

) --1 0, lz 1
~ 202| [Re} + (2 - Re}) [2]2] ) >0, ol <

b

LEMMA 2.1

A sufficient condition for the univalence of f(z) in S(1 - b) is

e D)) 2P

2|z| [Re +(2—Re )‘zl] “‘1> > 0, | forall |z] <1 (2.1)

b

PROOF

Let f(2) € S(1—b). If we take the logarithmic derivative from (1.1) we obtain

KONV /(2)
T T b(p(2) - 1) + P +i-1 ze€D | (22)

where p(z) € P. On the other hand Duren, Shapiro and Shields proved the
univalence criterion (see [2]page 171). Let g(z) be analytic in D and ¢'(0) # 0.

If ")
s 2| g ‘Z

then g(z) is univalend in D, and the following inequalities are proved by
Bernardi and Robertson, respectively [5], [4].

<1, zeD (2.3)

zp'(2) | 2)z|
p(2)+%—1‘ ST+ s+a = B)l) 24
lp(z) - 1] < 2e] (2.5)

(1-lz))
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where

/B:Re(%—1>>0, p(z) € P

If we apply inequalities (2,4) and (2,5) to the inequality (2,3) we obtain (2,1).
LEMMA 2.2

Let f(z) be regular in unit circle and normalized so that
fO)=f(0)-1=0

A necessary and sufficient condition for f(z) € C(b), is that for each member
5(z) € S(1 — b) the equation

5(z) =z(f—(—z—2—___£i)-) , 2,N€D, z#m7 (2.6)

must be satisfied.

PROOF

Let f(z) convex function of complex order in D, then the function s(z) which
is defined by the relation (2.6) is analytic, regular and continuous in the unit

disc. Therefore by using continuity the equation (2.6) can be written in the
form

s(2) =2(f'(2)" (2.7)
If we take the logarithmic derivative from (2.7) and simple calculations shows
- ) 0
1 [ §'(z 1 f"(z
— - 1| = 1+ - 2.
Re [Qb (zs(z) 1>’+ } Re[ + bzf’(z)} (2.8)

Considering the relation (2.8) and the definition of convex functions complex
order, the definition of starlike function of complex order together we conclude
the function s(z) is starlike functions of complex order.

CONVERSELY

Let s(z) is starlike functions of complex order in D, then simple calculations
from (2.6) we obtain that

1 Zs’(z)_ _1 22f'(z) _z+m|  b-1
()= e e
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If we write

_ 1 22f(z) z4m) b1
F(z’n)_b{f(z)—f(n) z—n}+ b

the relation (2.9) can be written in the form

Flz,n) = % <zsl(z) - 1) +1 (2.10)

Considering the relation (2.10) and the definition of starlike function of com-
plex order together we obtain

ReF (z,m) >0 (2.11)
F(z,n)=1+—l1;(?(ln—)—-%>z+— (2.12)
lim F(z,n) = 1+ %z’}l,’((j)) (2.13)

Therefore by using continuity the claim is proved. Hence it follows that f(z)
is convex function of complex order.

THEOREM 2.1
Let f(z) € S(1 —b). Then

2r o
arpna e <P < arEa e (214)

The limits are attained by the function

T+ oD +2)2

f*(z) =

PROOF

Let h(z) € C(b), then from lemma (2.2), the function

N[ o) _sa)bm1 L 1( 2 2y
F(z’n)—b{h(z)—h(n) z—n}+ b —1+b< ) +




38 Yasar Polatoglu and Arzu Sen

belongs the class P. Therefore from the charatheodory inequality we can write

3 (7t 5] <

The last inequality can be written in the form

1+ b h(z) 1
Re ( 5 >3 (2.15)
Therefore the function
1+ |b] . h(z)
2 z
is subordinate to the function .
(=)
1-2/’
using the subordination principle we can write
1+ (b z :
h(z) = 2.1

where ¢(z) is analitic in D and satisfies the conditions ¢(0) = 0, |¢(z)| < 1.
If we take differentiating from (2.8) we obtain

Ly - Lt 2 = 6)

(2.17)

2. (1 - ¢(2))?
If we use Jack’s Lemma [3] in (2.17) we find that
1+1b) ., z
zh'(z2) = e 2.18
R Ok 219
It is clear that the relation between the class S(1 — b) and C(b) is
h(z) € C(b) & zh'(2) = f(2) € S(1 = b) (2.19)
Therefore the equality (2.18) can be written in the form
1+ b z :
fz) = : 2.20
2 1= Ty (220
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where f(z) € S(1 — b) (2.20) shows that the function,

1+ f(2)
2 z )’
is subordinate to the Keobe function

(=)

Finally using the subordination principle we obtain (2.14). This is a new
distortion theorem for the class S(1 — b).

COROLLARY 2.1

The following special eases are obtained by giving special values to b.
T T
_— < < e

This result is well known, which is distortion theorem of starlike functions [1].

(7) b=1

2r 2r

(1) b=1-0 s < WO < Grayg . ©Se<)

This is a new distortion for the class of starlike functions of order a, 0<ax<l
| 2r
<
1+ (1-a)cosAl(l+r)2~ 17(z)]
< 2r
Tl+(1-a)cosA](1-7)?
This result is a new distontion for the class of spirallike functions of order «

(i9) b= (1—a)e ™ cos ),

0<acx<l, l)\§<%

(iv) ifb=e"" Cos X then (2.14) reduces to

2r < < 2r
(14 CosA)(1 +72) — (=)l < (1 - CosA)(1 - r?)

This result is a new distortion for the class of spirallike functions.
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COROLLARY 2.2

If we take the limit from r — 1 and using the definition (1.3) we obtain the
Keobe domain for the class S(1 — b), which is

1

h= 2(1 + [B))

If we give special values to b we obtain the following results.

(i) b=1, R =1/4is a well known result. This is the Keobe domain for the
class of Starlike functions. ‘ ‘

(i) b=1-a
1
2(2 - a)
This result is Keobe domain for the class of starlike functions of order
a(0<ax<l) |

Re=

i) b=(1—a)ePcosA0<a<l, |A<m/2)

1
2[1 + (1 — @) cos )

This is the Keobe domain for the class of spirallike functions of order «.
(iv) b=e"*cos A(|A]) < /2

1

k= 2(1 + cos’A)

This is the Keobe domain for starlike functions of spirallike functions
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REMARK

Robertson ([1]) proved the Keobe domain of starlike functions of order a to
be

and we find that the Keobe domain for the same class is

1

R =550

If we compare the result of R; and R, we can clearly see the numarical differ-
ence between them.

Ry

4l-a
a = 1/2 R, = 0.500000000 o = 1/14 R, = 0.276022378
a = 1/3 R, = 0.369850263 o = 1/15 R, = 0.274206244
a = 1/4 Ry = 0353553390 a =la= 1/13 R; = 0.278813286
a = 1/5 Ry = 0329876977 o = 1/17 R; = 0.271240978
a = 1/6 R; = 0.314980262 « = 1/18 R, = 0.270014934
a = 1/7 Ry = 0304753413 o = 1/19 R; = 0.268922646
a = 1/8 Ry = 0297301778 o = 1/20 Ry = 0.267933365
a = 1/9 R, = 0291632259 a = 1/21 Ry = 0.267060422
a = 1/10 Ry = 0.287174588 a = 1/22 R, = 0.266260272
a = 1/11 R; = 028357813 a = 1/23 Ry = 0.265531749
a = 1/12 Ry = 0.280615512 a = 1/24 R, = 0.264865773
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a = 1/2 R, = 0333333333 o = 1/14 R, = 0.276022378
a = 1/3 R, = 0.300000000 o = 1/15 R, = 0.258620689
o = 1/4 R, = 0.285714285 a = 1/16 R, = 0.258064516
a = 1/5 R, = 0277777777 o = 1/17 R, = 0.257575757
a = 1/6 R, = 0272727272 o = 1/18 R, = 0.257142857
a = 1)7 R, = 0269230769 o = 1/19 R, = 0.256756756
a = 1/8 R, = 0.266666666 o = 1/20 R, = 0.256410256
a = 1/9 R, = 0264705882 o = 1/21 R, = 0.256097561
a = 1/10 R, = 0.263157894 o = 1/22 R, = 0.255813953
a = 1/11 R, = 0.261904761 o = 1/23 R, = 0.255555555
a = 1/12 R, = 0.260869565 o = 1/24 R, = 0.255319148
a = 1/13 R, = 0.226000000 o = 1/25 R, = 0.255100204
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Abstract:

In this paper we obtain a characterization of the Chevalley group F;(2) in
terms of the smaller centraliser of a central involution in Fy(2).

1. INTRODUCTION:

Let Fy(2) denote the Chevalley group of type Fy over the field T = {0,1}. The
centre of a Sylow subgroup S of Fj is a four group. The elements of order two
in this subgroup of S lie in three distinct conpigacy classes in Fy(2). Let ¢y, to
~and t3 = tt5 be these involutions in the centre of S. Now in Fy(2)

and
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For necessary details about the group Fy(2), we refer the reader to [8].

We shall refer tables 1, 2, & 3 of [8].

Table 5
y Fo(y)
T () {z21(a)}
T4(1) {z;(a;)|i = 18,23, 24}
To1(@)x24(1) {uai(@)|u € Fi(z24(1))}
1‘17(1) {xi(al)ll = 13, 17}
.’1317(1)”"24(1) {Hlelxz(a,)ll = {17, 24}, {17, 23}, {13, 18}, {13, 23}
r16(1)x22(1) {Mie12:(c)

| = {16,22}, {13,24}, {13, 20}, {17,18}, {13, 18, 24}
{13,23, 24}, {13, 18, 20}

zg(1) {zi(a;)| 1 =4,9}

z9(1)z21 () {uza(a)|u € Fi(ze(1))}

z9(1)z17() {Iierzi(os)|I = {9,17}, {4, 18}, {4,24}}

$9(1)$15(1) {Hielxl(al)lj = {9’ 15}’ {97 13}7 {47 12}7 {41 16}1 {4a 16, 18}}
z7(1) {z:(ey)1 = 3,7}

z7(1)T24 | {zs(es)za (@)z7(ar)T24(@) }

x7(1)x23(1) {Hielxi(al)ll = {75 23}7 {3a 18}a {3’ 22}’ {3’ 24}{3’ 21? 24}}
x7(1)xg(1) {Mie17i(a9)z2 (@)

{z7(ar)rg(an) o1 (@), T3(0s)Ts(ag)zo1 (@), T3(a)x7 (a7 )Tos () }

z7(1)xe(1)z15(1) | {Tierzi(oy)
|7 ={7,9,15},{3,4,18},{3,17,22},{3,4, 24}, {3,4,21, 24} }

LI4(1)337(1) | {Hielxi(ai)u = {4’7}’{3’8}7{3a4:7}}

Let Do = C(z,7) and Ds = Cs(z23). We write M for Dyy. Then M and
D5 are the only subgroups of S of order 223 with centres of order 2%. For our
convenience we write D for Ds. We identify C with Cs.

It is easily observed that Z(S) = S1524. The Chevalley group F;(2") of type
Fy over the field of 2" elements have been characterized by Guterman [3] in-
terms of the centralisers of 2-central involutions and this characterization is
given by the following theorem.
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Theorem 1

Let G be a finite group. Suppose the centre of a Sylow, subgroup of G contains
elements y;, y2 and y3 = y,y2 of order two such that

CG(yi) = C(tl)’ i = 1) 27 3a

Then
G = Fy(2™)

In [10] Thomas has given an improved characterization of the Chevalley group
- Fy(27) in terms of only the centraliser C(¢,) for all n > 2.

Later Husnine [4] treated the case for n = 1.

We began our improved characterization of F4(2) in [8] and in [9]. The follow-
ing result have been proved.

Theorem B
There is an involution u in Ny(D) so that
u u u
To3 = T24, Ty = T12, Ty5=T13

Tls = ZT19Ta(€), Iy =1I4

and u centralizes S9S5;0516.5;7521 522
In Section 2, we complete the proof of the following theorem.

Theorem C

Let G be a finite simple group with an involution ys lying in the centre of a

Sylows - subgroup. Suppose C = Cg(y3) is isomorphic to C(t3), the centraliser
of t3 in Fy(2). Then G is isomorphic to Fy(2).

2. ACTION OF Ng(D) ON Z;(D)

In this section we prove the following results.
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Lemma 2.1

There is an involution u in Ng(D) so that u takes ¢ to zox16(¢)xs to x4, 719
to £329; (¢) and permutes all other S;(i # 5) as ws does in Fy(2)

Proof

Let g; be the involution satisfying in [2] since

ZS(D) = 53, 577 Sllv Z5(‘D)

and
Z7(D) = 518,56 510216(D)

Since z¥' = x325(D)

Let z4 appear in z3

(29, m20] = {24, T20] = T4
= [, 20| =723
= |z7,7%) = 72
This shows that z; is conjugate to z7, Zo4. But under graph automorphism ¢.

Put

¢(z7) = 718
¢($24) =T

we found z,5 ~ z,372;. This is contradiction from structure of S.
Let zg appear in z9'.
g1 _ _ '
[-’137 ,1'20] = [11’8,7320] = T4

(7', 290]%" = 203

g1 9 __
= Tag, 7Ty = T7X23

This shows that z7 and z7z,3 are conjugate in S but this is a contradiction
from table 3 of [1].
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Let z1, appear in z3!

[mglamliw] = [$12,$15] = I
= [$7’ .T?é] =TI

ZT7 ~ T7T9; but under graph automorphism

4

T1g ~ T18T24 ~ T18T21
T1g ~ T18T9; but this contradicts the table 3 of (1]

4

Let x4 appear in z3' thus

[$31,$13] = [$14,$13] = T2

[z2,2%3) = =1

Z7 ~ T7Z2; but under graph automorphism
T18 ~ T18T24 ~ T18%21

therefore x5 ~ x13x9; this is contradiction

By the use of similar arguments, it can be shown that zg, x5, 217, 18, T2 are
not involved in Z.

Let x4, appear in 19’

23, z6]) = [-’1;2271:6] =Ty
(2%, 28] = 23} = 723
= T7 ~ T7T23

=> I3 ~ T13T9 Which is a contradiction

Let

g1
T7° = T3T24

then
.’L‘gl = T7XT93
= (2327)% = T3T7T23T24

Therefore g, = g1759; belong to C’l as g, centralizes ;.
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By considering

($7$23)92 — ($7$23)911591
: — (1.3)1591
= (z32729)%
= Z3T7T9T23T24
So
T7X23 ™~ T3T7T9T23To4 ~ T3T23
but

w
(@3293)"® = X724
= ZT3To3 ~ T7T24

this is a contradiction to table no. 5. next,

Let
15 = T3T9
then
(T7221)" = 33
Therefore
927591 € Cs
taking
(1.71.21)92 — (1.71.21)911591
— (1-3)2591
= (z3T729)""
= X3T7Xy
Therefore
I7T1 ~ T3T7X9 ~ I3
but in C;

($7$21)w5 = I3Ty

This shows that z3z9; ~ 3
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But from table no. 5, we see z3 is conjugate to z; and z3z,; is conJugate to
Z7Z24. Which provides contradiction. Hence we found that

13 = 13

next, since

il =zxnz, 2z €z

Let x4 appear in 9], then from commutator relations in S,

[x£1711,$20] = [174, 1720] = Z93
= [3751]11,3720] = ZTo3
[3711,37'36] = T4

= I~ InTy
but under graph automorphisrﬁ ¢.
put
¢(zn) = e
¢(z24) = z21
So, we got, g ~ Zo1 in S but this is contradiction from table no. 3.

Let zg appear in zi}. Thus structure of S implies.
(z11, 3'320]«:‘[158» 3320] = Ty

=> I); is conjugate to 1113323 under the action of z35. Under graph automor-
phism ¢, we have z4 ~ zgzi7 in S. but this contrad1cts table 3. .

On same pattern, one finds that zq, z12, Z14, T15, Z16, 18 CANNOL appear in Z.
Let x99 appear in zj then
a — —
(211, 78] = [T20, T5] = Zo4

= [z}, 78] = Tos

= [afu,x?] = Ta3
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—1 . . .
Hence z§'  takes x,; to z;1T93 which is not true according to commutator

relations in S and graph automorphism next, Let z25 occur in z{}. Then from
table 2.

[l'slhla $6] = [3322,%] =Ty

[z1, CCG] = To4

= 1) s conjugate to Z11T23 by z{' but under graph automorphism, xg is
conjugate to xgxy7 which is contradiction from table 2. Hence z45 cannot
appear in zi].

Let
g1
I = 11721

If 291 occur in z{}. We write g = g,g;¢ that is

g
I

sty
= (Z11221)""

In

g takes x4 to x93, 15, tO T13,T14 tO Z12,2g tO Z4,27 to 3 and centralizes
T22, T21, T20, T17, T16, T11, 10, Tg-

now, we are left

n o __
T11 = T11Z17724

In order to go further and determine the involvement from Zs in the conjugate
of T1o i.e.

i = z102, 2 € Zg
One finds that z3, x4, 27, Tg, T11, T13, T15, T19, Tog cannot appear in Z.

So we have z{) = 1,05,7521 524

If 25, appear in z{j, we write ¢ = g,9;7 and g acts on elements of S in the
same manner as g in above lemma. ‘

Let

9 __
Ti0 = T10T17




On characterization of the Chevally Group

Since, gywi1g1 € C3, 80

{5 = (z10T17)
= (21:217)"
= T11%24

Thus z10 is conjugate to 11224 in Cs but under graph automorphism ¢,

(z10) = s
d(r11) = g
$(z24) = zn

= T5 is conjugate to T¢zs in Cs, but (zg,121)%! = z5T9;

Hence in Cs, 75 is conjugate to 25z, which is not true as z5 and 515, belong
to different conjugacy classes in Cj, this is again contradiction.

next, Let
9 _ ‘
T19 = T10T24: .

since gywy g1 € Cs as gyw, g, centralizes z9, and 4.

g1wi191 — w H

1o = (T10224)"%
= (T11224)"

= X11T17T24%23

So
T10 ~ T1T17X23%Loq4 ~ T10T17%23
= Z19 ~ T11T17%23

but under graph automorpism ¢, it will be of form

Ty ~ TeL17T23
Since

Ty ~ TeT17T23 ~ TeT16T17

51
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but in C3, we see that x5 and z¢x16717 belong to different conjugacy classes, a
contradiction. Finally, we found that 27§ = 1.

next,

' =212, 2€ Zs

and we found that z3,z9, Z11,Z12,Z15, %16, Z17, 18, L19, L20, T23 CaNNot appear
in Z.

Now
Next, Let
R CL‘(g;l =TI
Therefore
qwig € Cs

as giw g centralizes ry; and z4.

xglwlgl — (17211721)“"91 = (1;41;21)91 = IgT9

= zg is conjugate to zgxo; in C3 but we found zgz,; is conjugate to z9x,; and

Zg is conjugate to zg in C3. This is contradiction. Hence z2; cannot occur in
g1 .

‘ .'L'ﬁ .

Next, suppose that
R I8 = ToTa
Therefore |

gwig1 € Cs

x_glwlgl (1.21:24)10191
= (17451324)91

= (ZgZa3) but TgZoz ~ TsTi7

Hence z is conjugate to zgz7 in C3 but Table No. 4 shows that zgzy; is
conjugate to z4x,7 and x4 is conjugate to zg, again a contradiction.

Hence z94 cannot occur in zg'.
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Hence from structure of S, we found

=z,

As we have seen that z{} = 21,2774

Let
{1 =Inltyr
Therefore
qwi g1 € Cs
and
1wigr __ g1wig1 ___
z} = 19, &z} = To4

i} = (z11217)M = (Z10Z16)" = T10Z16

= 1, is conjugate to z10z16 in C3. Under graph automorphism ¢,

Put
¢(z11) = z¢
¢($1o) =I5
¢($16) = I

= T¢ is conjugate to z5z9; in C3. We found, z5, 29, is conjugate to z5z;5 by
z13. Hence zg is conjugate to z5z;5 but in table 4 we see that z¢ is conjugate
to zg9 and z57;5 is conjugate to zgx,7. Hence there is contradiction.

Next, Suppose that
i} = T2
Therefore :
gwig: € C3

Igﬂwlgl = (T11T94)""9 = (210724)"" = T10Z23
= x1; is conjugate to z19z23 in C3 and graph automorphism implies that z¢ is
conjugate to zsz17 but in Cj according to table 4, we see that ¢ is conjugate

to 9 and z57,7 is conjugate to rgx;5. Hence we got contradiction, so a4
cannot appear in z3}.
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now, we are left
oo
71 = ZTn

This completes the proof of Lemma 2.1.

Lemma 2.2

There is an involution u in Ng(D) which permutes the S;(i # 5) exactly in
- the way ws does in Fy(2) and (uzs)® =1

Proof

: 1721716(6), 9(154) = 1134.’11'17(6), 6(1’18) = .’E18$21(6), @ = 1 on all other 51,9(101) =
wy, 0(w) = wowey for all € € T. Thus by reblabeling the elements of Cj if nec-

essary we can assume that an u, satisfying (2.1) acts upon D exactly as ws
does in Fy(2).

According to [5 (4.6)], C3 admits an automorphism @ such that 6(z;) =

now, (u1xs)? centralise all S;(i # 2,5,6)

Thus (u;zs)® € Z(D) and |(u;zs)®] < 2. Since u; and zs centralise (ujzs)?,
we have (u;15)% = z5(6). Write u = 2,791(8). Then u acts upon D exactly
as ws in Fy(2) and (uzs)® = 1.

IDENTIFICATION OF G

From now we write Z for #,(z) for all z € (3,0, being the isomorphism men-
tioned in theorem C. '

3.1 Lemma

Let u be an involution satisfying (2.2), then (u2)? = (uw;)® = 1. Hence there
exists a homomorphism ¢ from Wi onto (W, wWq, u) which takes ws to u and
91 on I/Vg

Proof

(ywl)Q centralises TIS;(i # 2, 5)
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i.e.

i.e.
3‘:23(0)5321 (0)524 (ﬂ)u = a‘:lu')luuilxl = wlflwlflu.’ilwlfl
Since (Z;w)3 =1

This implies

centralizes _
I1S; (i # 2,5, 6)

Thus the structure of Cs ’implies
(uid)? € Saa, Sa3, Sa1, Saa
and since v and W, centralise (uw,)®, we have

(u2)® = Za2(€)Z23(€)T24(€) (4)

ie.
(uou) W (uwu) = Ugg(€)T23(€)T2 (6)u
Now
(Z2102)° = 1
Thus
[(Z2@a)*™*)° =1
ie.

This implies € = § = 0. Thus (uw§)3 =1
Proof of Theorem C
According to 4.2 of Husinine [4] K =< @y, @2,u,5) C Cg(Zx) and & C).

Thus G satisfies the hypothesis of Theorem B of [1.1] and is thus ismorphic to
Fy(2).
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This completes the proof of Theorem C.
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11/12 G.Narutowicz Str., 80-952 Gdarisk, POLAND

1. INTRODUCTION

Let C(J, R?) denote the set of all continuous functions z : J — RP with
J =10,0], b > 0. Similarly, by C!(J, R?), we mean the family of all functions
x : J — RP having continuous first derivative. Let p X p matrix functions A,
and A, be continuous on J, g € C(J, R?) and « € C(J, J).

Under the above assumptions, we consider the linear system of ordinary dif-
ferential equations with deviated arguments of the form

y'(t) = A)y(t) + A2 (Dy(a(®)) + 9(t), teJ, (1a)

subject to the linear boundary condition
Byy(0) + Byy(b) = D € RP. (1b)

Here By and B, are constant square matrices of order p. By a solutionk of (1)
we mean a function y* € C!(J, RP) which satisfies (1). One of our tasks is to
establish conditions by which problem (1) has a unique solution.

To prove the existence of a solution of problem (1) it is convenient to transform
problem (1) into an integral equation. For initial value problems, which are
special cases of (1), an integral equation of Volterra type can be obtained from
(1) by using the substitution y'(t) = z(t). If anyone assumes only that o 1s
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continuous, then this integral equation has a unique solution if a corresponding

condition holds. It is worth noticing that this condition is superfluous if a(t) <
t (see Theorem 1).

As we see in part 3, the previous substitution y'(¢) = 2(¢) is not so useful for
boundary value problems of type (1). In this case, much better is to represent
any solution of problem (1) in a similar form as for linear boundary value
problems without the retardations, i.e. by using the notion of a fundameuntal
solution. By a such approach, we transform now problem (1) into an integral
equation of Fredholm type. Solving such equations and proving the existence
of solutions is usually a much more complicated problem than in the case of
Volterra type equations.

A knowledge of how perturbations of g and D affect the solution y of (1) is
obviously important when solving problem (1) numerically. It is characterised
by a stability constant (see, for example [1]). The aim of part 4 is to examine
the role playved by this stability constant. In part 5, we present the extension
of the above problems to multistep boundary value problems.

There are some papers available which deal with the problems of integral
representation of linear boundary value problems without retardations and the
role of stability constants for them. The book by Ascher et al. [1] contains such
considerations and the list of selected references which provide an orientation

to the field. For functional differential problems see, for example, [3], [6] and
the references therein. '

My paper is an extension to linear problems with deviated arguments of some
results obtained for linear boundary problems without retardations.

2. INITIAL VALUE PROBLEMS

In this paragraph, we consider problem (1) when B; equals the zero matrix. It
means that problem (1) is now a linear initial value problem. In addition, we
assume that B) is nonsingular.To establish existence conditions it is convenient
to transform problem (1) into the integral equation of Volterra tvpe by the

substitution y'(t) = z(t), t € J. Hence, we have the integral equation for z of
the form

2(t) = (L2)(t) + ;1 (1), t€J, (2)
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where the operator L is defined by

t

(L2)(t) = A4x(t) [

2\ 17 7 ‘, 2T )47 I
2 ( ) ) E v.],

and
91(t) = g(t) H14:1(t) + A ()] (B1)™'D, te J

Notice that, if z is a continuous solution of (2), then the corresponding solution
y € C1(J, RP) of problem (1) is given by the following formula

t
y(t)= (B)'D+ [ 2(r)dr, te
0
It is known that problem (2) has a unique continuous solution if the condition
max [[|A: @) |t + [ A2(t)]le()} < 1

holds. This condition can be weakened if a(t) < t, t € J. In this case, we
apply Bielecki’s norm, l.e.

[[ulls = max [[u(t)[[ezp(=pt), u € C(J, B).

We can formulate

THEOREM 1

Let p x p matriz functions Ay, Ay be continuous on J and ¢, € C(J, RP).

Let o € C(J,J) and a(t) < t. Then problem (2) has the unique continuous
solution on J. *

Proof

Let p > maxgey [||A1(t)]| + | A2(t)]]] . It is simple to prove that the operator T
defined by the right-hand side of equation (2) is a contraction

HTU - Tw“* < [‘1 - exp(—pb)] Hu - w”*a u,w € C(‘]v Rp)f

By the well-known Banach fixed point theorem, equation (2) has the unique
solution. :

5¢
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3. BOUNDARY VALUE PROBLEMS

Let us use the same substitution y'(t) = 2(t), t € J to boundary value
problem (1). Then, (1a) leads to

z(t) = (Lz )+ [A(t +A2 Ny(0) +g(t), ted (3)

To define y(0) we apply condition (10). Then, under the assumption that
B, + B, is nonsingular, we have

b
y(0) = (B; + By) ™" [D ~ Bz/o z(r)dr} .

Substituting it into (3), we obtain the following Volterra-Fredholm type equa-
tion

2(1) = (L2)(t) + [Ai(t) + Ao(0)) (By + By) ™! [D -5 [ zde] +9() (@)

for t € J. Problem (1) is now replaced by (4). The matrix B, + B, must
be nonsingular. This assumption is very restrictive. For example, already
in the case p = 2, it is not satisfied for such simple boundary conditions as
11(0) = ¢1, y1(b) = ¢o, i.e. when

10 0 0
B‘z[o o]’ 322[1‘0]

It results from the above, that the substitution y'(t) = 2(t), t € J, which
is very popular and useful for initial value problems, it is not so useful to
boundary value problems. Due to this fact, to characterize a solution of (1)

we apply the notion of a fundamental solution. Let Y be any fundamental
solution connected with A, so

Y!(t) = A()Y (2). (5)

It will be convenient to call a fundamental solution any solution Y satisfying
equation (5) and having linearly independent columns, but not necessarily this
solution for which Y (0) = I,x,. Sometimes, it is useful to require the condition

BY(0)+ B,Y(h) = I (6)
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to be satisfied. We seek a solution of (1) in the form
t
y(t) = Y(t) [k +/0 Y"I(T)Z(T)dT] ,  where z¢€ C(J,RP). (7)
Hence,
y(t) = Y'(t [k+/y ]+z(t), ted (8)
and substituting it into condition (1a), we obtain
. b
k=Q~ [D - B2Y(b)/o Y"I(T)z(T)dT]
provided that the matrix Q = B,Y(0) + B,Y(b) is nonsingular. Now, for
t € J, problem (1) takes the form
. b
y()=Y(#)Q" [D + BY / Y~U7)z(1)dr = B,Y (b)/ Y_I(T)Z(T)dT] Jted
t

Combining the integrals, it has a simple form, namely

b
y(t) = ®(t)D + /0 Gi(t,8)z(s)ds, te€J, 9)
where G is the p x p Green’s function, defined by

L ®(t)B,2(0)01(s) if s<t,
G‘(t’s)‘{ - CD(t)Bgd)(b)(I)‘l(z) if ss>t,

and ®(t) = Y(t)Q"i, t € J. Now, we need to define the corresponding
equation for z. Substituting (7) and (8) into equation (1a), we get

2(t) =AY (at)Q [D+ BiY(0) 5 Y1 (r)2(r)dr
= BaY (0)f3 Y~ ()()dT],+g<)._

Hence, we have
/GQts (s)ds + Qh(t), teJ (10)

~ where G, is the p x p Green s fithction, defined by

Gt s) = Az (t)2(a(t))B12(0)27(s) if s < aft),
b= L 4(0)@(a)B2(0)2 (s) if s > aft),

61
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and
Qi (t) = A ()¥(e(t))D + g(t), teJ

Summing up the discussion conducted above, we conclude:

THEOREM 2

Let p x p matriz functions Ay, Ay be continuous on J, g € C(J, RP) and o€
C(J,J). Let det @ # 0. If problem (10) has a unique solution z € C(J, RP),
then problem (1) has the unigue solution y € C*(J, RP) given by formula (9).

4. EXISTENCE, UNIQUENESS RESULTS

In this section, we will give results concerning existence and uniqueness of
solutions of problem (10). Notice that the Green’s function G, is continuous
with respect to ¢ for fixed s and it has a first kind discontinuity along the line

s = a(t). It is known that problem (10) has the unique continuous solution if
the condition

. |
K, = TE%X/O 1Ga(t, 8)llds < 1 (11)

holds. This result is obtained by the Banach fixed point theorem (use the
norm ||ulle = maxey |ju(t)])).

Remark 1
Assume that the matrix Ay(t) = Opxp, t € J, and @ is nonsingular. Then
Gs(t,s) = Opxp, t,s € J. In this case, K1 = 0, so z(t) = g(t), t € J is the

unique solution of equation(10). Problem (1) has the unique solution y given
by formula (9) with z as above, i.e.

y(t) = ®(t)D + /Ob G, (t,s)g(s)ds, te J;

This linear case, without the retardatiohs, was considered by many authors,
see for example [1], p.94.

Remark 2

Sometimes condition (11) may be weakened too. It will be possible when there
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exists a constant p > 0 for which the following condition
7 (exple) ~ 1) g (expl=rt)sup G, ) ) < 3

holds. The last condition will appear when one uses the Banach fixed point
theorem with Bielecki’s norm. It is worth noticing that problem (10) has a
unique continuous solution also in the case when the condition

sup [[Ga(t, )| < K (exp(pt) — 1) [exp(pb) - 17!

is satisfied. Then, apply Bielecki’s norm with p > K. Now we need to estimate
y appearing in (9). Indeed, we see that

I/l = max ly(6)] < N2lecllD + max [ G2, 5)2s)lds. (12)

Nutice that the expression

max/ |G1(t, s)z(s)||ds (13)

may be estimated on different ways. One of them is the following:

max/ llGlts |lds<[|z||oomax/ 1G1 (¢, 5)||ds.

To complete the above estlmate we need to add the correspondlng estimate
for z from (10). It is simple to note that (10) yields

zllos < @1lloo + maxies 5 |Galt, s)1| [|2(5){|ds

< @1 loo + K1l 2] o

Hence

77 1@ulee

oo < ==

and

max/ |G1(t, 8)2(s)||ds <

lloos
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where the constant K, is defined by

b
I, = max /0 G (2, s)||ds.

Adding this to (12) we obtain

vl < 190l Dl + T2 @1l < 1 (101 + 1 @1le), (14

where

K
£1 = max (”(I)”om _]__:LI{;) .

The expression (13) can also be estimated in another way, namely

max/ IG, (1, 5)z(s)||ds < maxl[G (t,s ||/ z(s)llds = {|G1lsoll2]l1,

where A
1Gllee = max Gt ), lzlh = [ lz(s)llds.

Moreover, using the norm || - ||, for equation (10), we obtain

Izl < f5 Jo IGa(t, )l ll2(s)lldsdt + || Qi1
< maxyey fg |Galt, 8)|ldt]|z |y + [|Q1]h.

If condition (11) is satisfied, then

Izl < 7= ||Q1||1,
SO
vllo < 11®lleoll DIl + L2214 4 (15)
< p (1D +11@ullh), |
where
po = a9, 121

The constant p; (or pp) is called in the literature as a stability constant or
the conditioning constant. If the conditioning constant of problem (1) is a
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constant of moderate size, then problem (1) is well-conditioned. Problem (1)
is well-conditioned if a small change in the data should produce only a small
change in the solution y of problem (1). Notice that knowing p; (or p,),
we may say what is the resulting perturbation of y when the data D and g
are perturbed (see (14) or (15)). It is important in problems of stability in
numerical methods (see, for example [2], [4], [5]).

Remark 3

Consider the case from Remark 1, i.e. when z(t) = g(t),t € J is the unique
solution of equation (10). Then, by using Holder’s inequality, we have
1

S+>=1
q

max/ 1G1(t, s)g(s)[lds < cqliglls, +

1
q b
where

;r?e%" (e l"dsya Hgllq=(/0"ug<s)néds)%

It yields the following result
lvlleo < 3 (1D} + llgll)
with p3 = max(||®||e, ¢,) (see, for example [1]).
Consider the perturbed problem of the form

wlt) = A (w() + A(u(aln) +6(0), € .
Byw(0) + Byw(b) = D* € RP, :

where g* € C(J, RP). Define the error by e(t) = w(t) — y(t), t € J, where y
denotes the solution of problem (1). Indeed, e satisfies the following problem:

¢(t) = Ai(t)e(t) + Ax(t)e(a(t)) + g*(t) — g(t), teJ, (A17)
Bie(0) + Bae(b) = D* — D. ‘

3y (9)-(12) and (14)-(15), we obtain

llello < o1 (10" = DIl + 1@ loo) »
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ot el < 2 (1D* = DY+ @A)

Q*(t) = Ax(t)®(a(t)) (D* — D) + g*(t) — g(t), te J

il

5. MULTIPOINT BOUNDARY PROBLEMS

Let us extend the previous discussion to multipoint boundary problems of
the form

y'(8) = Ao(t)y(t) + Tiy Aiy(ea(t)) + 9(1), 1€, -
: 18
1 1 1y(€1) D € Rp’ m 2 2)

where By, -+, By, are constant square matrices of order p; Ao, - - -, A, are con-
- tinuous matrices of order p x p and g € C(J, RP), o; € C(J, J),i =1,2,---,r
Here, & € Ji = 1,2,---,mand a = § < & < -++ < &, = b. The points

61,&, -+, &n are called sw1tch1ng pomts Let now Y be any fundamental so-
lution connected with the matrix “Ag; ie.

Y'(t) = A)Y (1), ted

Repeatmg the discussion of the prev1ous sections we can express any solution
oy of problem (18) in the form B

(1) = B()D + f(,bG’{(t,s)z(s)dS, tes )

if the p x p matrix
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appearing in @, is nonsingular. The Green’s function G7. is, now defined for
te [gla 52} by

HOBOOO ) i sst,
Gilt) =~ BOTLBIEI) i t<s<é |
— )L Bi®(E) P (s) i< s &y, k=2, ,m 1
and if t € (§;,&41] for §=2,---,m =1, then
(BT, BdE)(s) i G <5< k=11
o(1) Zgzll B;®(&)0 7 (s) if & <s<t,

G*(t, 5)= | |
i - (I)(t) "]+1B q)(éz) ( ) if t<s< £j+17

- q)(t) ,~n+qu>(§z) ( ) if§n<s < §n+11 n=‘j+1,'--,m~1

The function z appearing in (19') is considered as a solution of the equation

/G*ts s)ds + Q}(t), ted, (20)

where

Q1(t) = T Ait)®(eu()D +9(t), ted,
Gilt,s) = Tio Hlt,9), tise .
The Green’s functions Hj, for j = 1,2,---,r, are defined by:
( A; ()P (e (2)) B12(0)P " (s) if s < ayt),

Hj(t,s) = — A (080 (8) TRy BRE)Ds) i ay(t) <5 < 6o,

- Aj(t)q)(aj(t)) S Bi®(&)D(s) if kfk <8 < &y,
9 o ; k=2 m-1
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provided that «;(t) < &, and by
(A1) ®(as(t)) B1®(0) D1 () if <&,

Aj()@(0;(1) iy Bi®(&)27H(s) i & < 5 < e,
k=2,---,n-1,

H;(t, ) = 4 A;(0)(a;(t) Tiy Bi®(&) 271 (s)  if & <'s < (1),

= Aj(1)2(e;(t) Epn Bi®(&) 27 (s) if (t) < 5 < &n,s

— Aj(t)®(a; (1) TR Bi®(&) 27N (s) if & <5< Egp,
{ | k=n+1,---,m-1

if & < a;(t) < &uyr, n=2,3,---,m—1. Notice that equations (19) and (20)
have the same construction as equations (9) and (10), respectively. Hence,

indeed, we can obtain immediately results which are similar to those from
sections 3 and 4.

At the end of this paper, we are going to mention about some benefits when
differential equations of type (18) are replaced by their integral representation
of type (19)-(20). If one wants to solve problem (18) by numerical techniques
operating on the differential equation then may meet numerical instabilities.
Such problems may be avoided when wé replace the differential form by the
equivalent integral one. Notice that finite difference methods or shooting and
multiple shooting methods applied to differential problems require the solution
of large systems of linear or nonlinear equations. Such aspects are considered

in paper [7] for two-point boundary value problems of differential equations
of second order.
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Abstract:

Studying groups through their actions on different sets and algebraic struc-
tures has become a useful technique to know about the structure of the groups.
In this paper we examine the action of the infinite group M =< z,y : 2* =

y®=1>wherez: 2 Sandy:z = ) +1) on real quadratic field Q(v/n)
and find invariant subsets of Q(y/n) under the action of the group M. More-

over we discuss the properties of real quadratic irrational numbers under the
action of the group M.

1. INTRODUCTION

Throughout this paper, for any two integers a and b, (a, b) denotes the greatest

common divisor of a and b and n denotes a non square positive integer. We
take:

c

Q*(vn) = {a+‘/_k 4=B s an integer and (a, = 1}
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Q"(va)={2:ae Q‘(\/ﬁ),t =1,3}
Q*(J/7) = {a_tcﬁ : Eirz@ € Q*(v/n) and 3|c}
Q" (/F) = {a_bc@ L 88 ¢ O*(\/n) and 2|c} and
Q'(V7) = {9_1“_6@ . @ € Q*(y/n),a odd and b, ¢ both even integers }

An element a + by/n, where b # 0, of Q(\/n) = {a+ b\/n: a,b € Q} is called
a real quadratic irrational number.

Let @ = &2, If g, “2;" and ¢ are relatively prime integers, we say that
a is in canonical form. Also if & = 2£Y2 then we write & = 9—"—3@ so that

. [

—@ = —"—‘—‘i;-@« For o = “—“LZ@ € @*(y/n); «a and its conjugate @& may or may not
have the same sign. If a and &, as real numbers, have different signs then «
is called an ambiguous number [3]. If ¢ = 9—%@, then N(@) = ad = £5" is
called the norm of a.

Let R = RU {£oo} be the extended real line. The action of the modular
group PSL(2,Z) on the real quadratic fields, subsets of R’, has been studied

in [2]. In this paper we study the action of M on such fields. We have used
coset diagrams to study this action.

In our case a coset diagram is just a graphical representation of a permutation
action of the group M: the 6-cycles of the transformation y are denoted by
six vertices of a hexagon permuted anti-clockwise by y and the two vertices
which are interchanged by z are joined by an edge. Fixed points of z and y,
if they exist, are denoted by heavy dots. '

Coset diagrams for the orbit of the group M acting on real quadratic fields
give some interesting information. By using these coset diagrams, Mushtaq
and Aslam [4] have shown that, in the orbit o, the non square positive integer
n does not change its value and the ambiguous numbers in canonical form are
finite in number and that part of the coset diagram containing such numbers
forms a single closed path. It is important to bear in mind that closed path
in the orbit of « is unique except for the hexagons.
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Now it becomes interesting to investigate the invariant subsets of Q(,/n) under
the action of M on one hand and to discuss the properties of real quadratic
irrational numbers under the action of the group M on the other.

We start our discussion with the following lemma which gives a necessary and
sufficient for both a and § to be in Q*(1/n).

LEMMA 1.1
Let & = Y% ¢ Q*(y/n) and b= =2, Then:
1. § belongs to Q*(y/n) if and only if 3|b.

2. § belongs to Q*(+/9n) if and only if 3 fb.

PROOF
1. Let o = “+ = \/_ ) be such that 3]b. Then % is an integer, and
(a,b,c) =1 4: ( 3c) = 1. Hence § = % belongs to Q*(\/n).

Conversely suppose that § M belongs to @*(y/n). Then clearly
€1 — b is an iteger and hence 3|b.

2. Let a = “—J'C‘f—‘ € Q'(v/n) and 3. Obviously (a,*
2_n _ 3a)2-9n _ a __ atvn _ 3a+VOn
(3a’ac ,9c)—(3a,£—%c——,90)_1_ SO 3= a3c = a-;c
Q" (V9n).
Conversely let & s ﬂ‘ﬁ € Q*(v9n). Then & = 3atyon oo g (3a) —9n _

3¢ 9¢ 9¢

belongs to

2_ 2_
2 = & g gp 1nteger

Moreover ( ) = 1 which is possible only if 3 /b.
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REMARKS 1.2

1. Since A = {“—?C@ : ﬁg/—ﬁ € Q*(Vn), a-z—c‘ﬂ is not divisble by 3} is a subset
of Q*(v/9n), by lemma 1.1, we have Q*(/n) and A are disjoint and
Q"(vn) = Q*(Vn)U A.

Hence {Q*(1/n), A} is a partition of Q"'(\/n).
It is important to note that Q" (\/n) C Q*(v/n) U Q*(v/9n).

2. If n and m are two distinct non-square positive integers then Q*(\/n)
and Q*(y/m) are disjoint sets, whereas Q"' (y/n) and Q"' (\/m) are not

necessarily disjoint.

In particular, Q*(\/9n) and Q*(y/n) are disjoint whereas Q"' (\/n) and
Q" (v/9n) are overlapping (i.e. not disjoint).

3. In the light of lemma 1.1 we may write Q" (v/n) = {$ : a € Q*(/n),t =
1,3}

2. PROPERTIES OF REAL QUADRATIC IRRATIONAL NUM-
BERS UNDER THE ACTION OF THE GROUP M

Let o = 9—+C—‘/ﬁ € Q*(v/n) with b = “2—;1‘- We list the actions on a of
z,y, 2y, vy?, vy°, y*, y° and various other combinations of z,y in the fol-
lowing table 1. These will be used in the sequel.

The following lemma establishes a relationship between :t:(‘a) and y(a),a €

Q"(vVn).

LEMMA 2.1

Let o be a fixed element of Q"(,/n). Then we have

y¥(a) = -1+ z(a),zy*(a) = 1 + y(a) and y'z(a) = -1 - y(—a)
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PROOF

Proof is straightforwara and follows from table 1.

Note that these are fundamental relations between z(a) and y(a) and we can
derive more relations from these fundamental relations.

TABLE 1
o a b c
z(a) = = —a 3 3b
yla) = 3(;31) —a-c 3 32a+b+c)
y2a) =328 | —5a-3b—2c| 2a+b+c 12a + 9b + 4c
P(a) = ool | —7a—6b—2c| Retfile | 3(40+4b+o)
yﬂa)zf%fl—lz —5a —6b—c | 4a+4b+c 6a + 9 + ¢
P (a) = “CetD o3 @30T 30
zy(a) =a+1 a+c 2a+b+c. c
zy?(a) = i“xﬁ) 5a + 3b + 2c Q@g_lﬂic) 32a+b+c)
zy’(a) = 28 Ta+6b+2c | da+4b+c | 12a+9b+4c
ryt(a) = 5(3—2"‘(#;)- 5a + 6b+c Gatdbtd 1" 3(4a + 4b + c)
ry°(a) = 725 a—+ 3b b 6a + 9b+ ¢
yz(o) = 5% a—3b b —-6a +9b+c
yir{a) = 5-(—1—;%;;—) 5a — 6b~c (—_—Gaisgiﬂ 3(—4a+ 4b+¢)
v’z(a) = —12-3;1 Ta—6b—2c | —da+4b+c| —12a+ 9b+ 4c
yiz(a) = 3(2—_1?01) 5a — 3b — 2c ﬁllz—a%’ﬂ—cl 3(-2a+b+c)
vz(a) = a -1 a—c —2a+b+c c

For z,y € M, we have 7! = z,y7 ! =% (y*)" ! =4, (4¥)"! = 3, (xy)—l =
yoz, (2y®) 7' = y'z, (29®) ! = oz, (2y?) ! = vz and (zy°) ! = yz.

As each g € Mis a word in x,y,1%,4°,y*,4° so z,y,v% v%, v*, v°, 2y, 2%,
zy3, zy* and zy® are important elements of M. Hence we discuss the elements
z(a),y(a), v*(a), ¥ (a), zy(a),zy?(),zy3(a);zy*(a) and 23°(a), o € Q" (V7

Properties of elements of Q"(y/n) under the action of M, covered in this
section, are expressed in terms of following results. Most of these properties
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can be viewed as a bridge by which ambiguous numbers in a particular orbit

oM, where a € Q"(,/n), are connected to form a unique closed path in the
coset diagram.

Before a discussion of these elements of Q" (\/n)we prove the following lemma
which shows that the orbit o™ of a = iiciﬁ- contains all o' = ﬁf—ksc)-“ﬂ, keZ.

LEMMA 2.2

Let o = Y% ¢ Q*(/n) and c fixed. Then elements of the form ¥EY2 of
Q*(v/n),d = a+ ke, k € Z, belong to o™,

PROOF

Proof is straightforward.

‘Before we come to the properties of elements of Q"' (1/n) under the action of
M, we need to establish the following theorem, which gives us a superset of
Q@*(y/n) invariant under the action of M.

THEOREM 2.3

Let M =<z,y:2°=3°=1>and Q"(vn) = {$: 0 € Q*(v/n),t=1,3}
Then Q"'(\/n) is invariant under the action of M.

- PROOF

In [3] it has been proved that Q*(y/n) is invariant under the action of the
modular group PSL(2,Z) =< ',y : 2% = y3 = 1 > where 7'(a) = =

! a—1 - i—’
y(a) =5

o _ -1
If 4" = z'y'2’ then y"(a) = =5

and PSL(2,Z) =< z',y" : (@) = (¥ =1>.
Now it is clear that (z')? = 1,(y")* = 1, (¥")*(a) = — (&), (")%() = a.
So z'(), y"(a), (¥")*(c) belong to Q*(v/n)Va € Q*(v/n).

1,

Now z(e) = 32'(a), y(a) = 33"(@) both belong to Q" (/n), Ya € Q*(/n).
Asz(5) = =,y(5) = 3[%—i1] = ;'+1—3 = =} o' = a+ 3 belong to Q*(\/n),

al)
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so (%), y($) both belong to Q*(y/n), Va € Q*(\/ﬁ)

Since every element of the group M is a word in the generators z, y of the group

M and every element of Q" (y/n) is mapped onto an element of Q" (y/n) by z
and y, so @"'(y/n) is invariant under the action of M. :

In what follows, some properties of the elements of Q"(/n) are discussed
under the action of M. Most of these properties can be viewed as a bridge by
which ambiguous numbers in a particular orbit o™, where oo € Q"' (\/n), are
connected to form a unique closed path in the coset diagram.

The next lemma shows that image of a conjugate of element of Q"' (1/n) under
an element of M is the conjugate of the image.

LEMMA 2.4

Let a € Q"(\/n), then g(@) = g(a),Yg € M
PROOF

For any a € Q"'(y/n), the lemma follows from the equations

2@) =[5 = 5 = =(@),

¥(@ = 33 = lamamy) = y(e),
v (@) = y(y(e)) = y(y()) = y(y(@) = ¥*(@)
and

y*(0) = y(¥*(e)) = y(1*(e)) = y(¥’@) = v*(@)

because each g € M is a word in =z, y,y?, y%, y* and 15.

DEFINITION 2.5

Let a € Q" (/7). Then the number of ambiguous numbers in the orbit o™ is
called the ambiguous length of o with respect to M.

LEMMA 2.6

For a € Q" (y/n) and any 8 in oM

1 2(~f) = ~2(8)
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3. y*z(-B) = —[zy*(B)),

4, xy3("ﬁ) = —[y3$(ﬁ)]

5. yiz(—p) = —[zy?(B)],

6. y°x(-p) = —[zy(B)]
PROOF

1. Here, for @ € Q"(v/n) and B in o™, 2(f) = 33 = =35 = —x(-p)

Proofs of (2),(3),(4),(5) and (6) follow from table 1. The following corol-
lary is an immediate consequence of lemmas 2.4 and 2.6.

COROLLARY 2.7

~ Fora fina, aeQ"(yn).

1. z(-p) = z(-p) = —z(B) = —z(B)

2. zy*(=B) = zy*(-B) = ~[y*z(B)] = —[y*z(B)]

3. ya(~B) = yz(=B) = ~[zy*(B)] = ~[2y°(B)]

4. y*z(=B) = y*z(-P) = —[zy*(B)] = ~[zy*(B)]

5. y?x(—B) = ~[zy*(B)] = [y?z(-B)] = ~[zy*(B)] and
6. y°z(~P) = zy(-B) = ~[y°z(B)] = ~[zy(B)]

8

Following remark is a combination of results from lemmas 2.4,2.6, and corollary

2.7 and gives a connection between elements of Q"'(\/n) in the coset diagram
under the action of M.
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REMARK 2.8

1. Using lemma 2.4, it is easy to see that: For a € Q"(/n), if @ € o™
then, for all 3 € oM, € aM

2. Using lemma 2.6, we have: For a € Q" (y/n), if —a € o™ then, for all
BeaM —Be€aM

3. Corollary 2.7 gives: For a € Q" (y/n), if —@ € aM then, for all 8 €
aM —BeaM

REMARK 2.9

For any a € Q"' (1/n), since g(@) = g(a) for all g € M, [@]™ consists of just
conjugates of elements of o™ and vice versa. So, for each a € Q"'(1/n), the
ambiguous lengths of o and @ are the same.

_A necessary condition for the orbits & and [@]™ to be identical is given in
the lemma that follows.

LEMMA 2.10

For o € Q"(y/n) let N(a) = a@ = 3}, then o™ = (@)™.

PROOF

Here N(a ) = ab = Tl Sa=3= :c(a) and z(a) = aM. So a € (@)™, aM
and @ € oM. As o € oM, o™ and (@)™ are not diSJomt so oM = (@)M.

The converse of lemma 2,10 is false. That is if o™ = (@)™, then N(a) may or

may not be 3. For example (%) = (342 ‘/_)M but N(3=¥3 ‘/_) 244
LEMMA 2.11

For each ambiguous number o € Q" (y/n), we have:

z(0) # oyla) # ay¥(@) # ar’(a
zytle) # —e,zy°(a) # ta,19°(@) # ~a,2(e) #
23, 1(0) # <3, 2y(0) # % 717(0)
and z(o) =a & N(a) = 52 = 3L

c?

S ¥
L
8
=

"

Ql\H\

«|
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PROOF

The proof is straightforward and follows from table 1. Moreover proofs are
analogous to the proofs of following lernmas 2.12 and 2.14.

LEMMA 2.12
Let a € Q" (y/n). Then
— — xV3
1. z{a) = —a & a =52
— _ —3%V21
2. y(a) = —a & a= =4,
— — —1£Vi3
3. ¥ a) = —~a e a= =121
4. y3(a)=_a¢>a::i:_3_\/§
- — =v3
5. zy(a) =a e a= T2
- — V6
6. zyt(a) =ae a=F2.
PROOF
Let a € Q"(y/n). Then:
— -1 _ — 1 _ V3
Lzle)=-—a p=-acd’ =3 a=F2
2. ylo)=-asw iy =-aedi+la-1=0aa= =3Vl

Ca)=—ae ) = a3 +a— 1:0@01:______—”%\/1_3.

3adt2

o) = —a o =8l - 4 o o —1®a—i‘/-

) =ae

i) =ae

6a+3

Zotl - +v3
s =ae2a+1= 3a? +20 & a= 52

Ja+1
643

:a¢>02=l¢:>a:i—f3\/—.§

<23
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The following are the cosequences of lemma 2.12.-

REMARKS 2.13

. 2(0) # —a, Ya € Q" (y/n),n # 3.
2. y(a) # —a,Ya € Q"(v/n),n # 21.
s 1y%(a) # a,Ya € Q"(vn),n #3.
( V), # 6.
Jr),n # 13,
JA),n # 3.

e

4. zy*(a) # a,Va € Q"

o~

5. y%(a) # —a,Va € Q"

—~ o~

6. y*(a) # —o,Va € Q"

In particular for n = p, p a prime number, all the results of remarks 2.13 hold.

LEMMA 2.14

Let p be an odd prime and a = a—t—g/ﬁ be an ambigubus number of Q*(./p).
" Then zy(a) —@ e a = —12‘/5 or 1-52/5. Moreover if a = % with p > 10 is

an ambiguous number of Q"' (,/p), then zy(a) = ~a & a = i%—‘@ or 1+_——‘2/5 or
—34yB . 34D
6 6

PROOF -
The proof of this lemma is straightforward.
LEMMA 2.15 |
Let o = 9—%‘/—’_’ € Q"(y/n). Then :
1. 2(a) =a & 3(n - a?) = ¢
2. Y*la) =a < 3[n+ala+c) - c?
3. zy*(a) = —a & 3[(c+a)? —n] = ¢?

4. zy*(a) = —a & (c+ 2a)* = 3n + a?
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5. zy*(a) = —a & (¢ + 2a)% = 2[3n — a(c + a)]

6. zy’(a) = —a < (c+a)? =+ 3n — 202
PROOF

Let o = i"‘icﬁ € Q" (\/n). Then :

Lzle)=ade p=0saa=3eP=1a3n-a)=c

a+\/— -a+\/— ~7a—6b—2c+yn _  —at+/7
2. y( ) = S TT2atidhize & —c

—7a—6b—2c = —a,12a+12b+30 =+c& 3a+3b+c=0
< ¢ = —3(a+b) = —3[a+( “2“")] &P = —3ac+3a +3n = 3[n+a?+ad

Hence y3(a) = a & 3[n + qf atc)=c

‘ 2/ at+ym —a+f (5at+3b+2c)+vn _ _~atvn
3. Ty ( ‘¢ ) ‘ And 6a+3b+3c c '

<. 5a+3b+2c= —a, 6a+3b+3c=c < 6a+3b+2 =0

“~®c—7(6a+3b —-—[6a+3
& =3¢+ 3d? +6ac—3n©c 3[(a + ¢)* - n).

- Hence zy?(« ) =—a < 3[(c+a)? —n]—c

n)] & —6ac — 3a° + 3n = 2¢

a+\/_ —a+f Ta+6b+2c+vn _  —atym
4. :ry( ) < 12a+9b+4c C

®7a+6b+2c——a12a+9b+4c *c®4a+3b+c=0©c—
—(4a+3b) = —4a — 3(“2'")®c =-—4ac—3a +3n & 2 +4ac+4a? =
3n+a? & (c+2a)? =3n+a%

4( at+/n —a+y/n 5a+6b+ctyn . —aty7m
5. oy () = = @ e =

@6a+6b+c=0,12a+12b+3c=c@6a+6b'+c=0

2—n
& c=—-6(a+b)=-6[a+ (

)], & ¢ = —6(ac + a® — n)
& ¢ +6ac+ 6a® = 6n < ¢ + 4ac + 4a® = 6n — 2ac - 2a?
& (c+2a)* =2[3n — -a(c +a)).
Hence zy*(a) = —a & (c + 2a = 2[3n — a(c + a)]
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The proof of 6 is straughtforward and is similar to 5. "

Lemma 2.15 yields the following important results.

COROLLARIES 2.16

1. fn=2 (mod 4), a '€ Z, then (a2 +3n) is not a perfect square. Because
square of an integer is either =0 or 1 (mod 4) and 3n = 2 (mod 4), s

(a®+3n) is elther congruent to2or3 (mod 4) Thus zyd(a) # —a,Va ‘6
Q"(y/n),n = 2 (mod 4). :

2. If n = 3 (mod 4), d € Z, then 3[(c+ a)? —n} is not a perfect square.
- Because square of an integer a is-either = 0 or 1 (mod 4),

s0 3[(c + a)? ~ n] is either congruent to 2 or 3 (mod 4).
Thus, zy*(a) # ~a, Va € Q"'(\/_) n = 3 (mod 4).

3. f n =2 (mod 4), then 3(n — ) is not a perfect square Because square
of an integer is either = 0 or 1 (mod 4), so 3(n — a?) is either congruent

to 2 or 3 (mod 4). Thus, z(a) # &, Va € Q" (v/n),n =2 (mod 4).

REMARKS 2.17

‘The following are the consequences of Lemmas 2.14 and 2.15.

1. ay(a) # ~a, Yo € Q"(INQ" (VE).
2. 2y%(a) # ~6,Ya € Q" (VANQ™ (/).
3. oy(a) # —a,Ya € Q"(VINQ™ (V).
4. 3%(a) # —&,Ya € Q"(YA\Q™ (V).

In particular, for n = p, p a prime, all the results of remarks 2.17 hold.

3. INVARIANT SUBSETS OF Q(\/") UNDER THE ACTION OF
THE GROUP M |

Subsets of an M—set R(y/n) may or may not be M-subsets. Some important
subsets of M-sets which qualify to be the M-subsets of M-sets are of particular
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interest in this section. Recollect that a subset ' (say) of an M-set Q(\/n) is
an M-subset if and only if €' is-itself invariant under the action of the group
M. We have proved in the previous section that Q"' (\/n) is invariant under

the action of M. Hence @"(y/n) is an M-set within an M-set Q(y/n). Such
an M-set is called an M-subset of an M-set.

It may be mentioned that a subset Q' of an M-set Q" (y/n) may itself be
invariant under the action’ of a group different from that of a group M. In
this case ¢ need not be an ‘M-subset of an M-set Q" (\/n). For instance the

set Q*(y/n) is a subset of Q"(y/n) whereas Q*(,/n) is not an M-subset of
an M-set Q" (\/n), because Q*(\/n) is not invariant under the action of M.
However Q*(1/n) is invariant under the action of the modular group G.

Now we investigate some non trivial (or proper) M-subsets of an M-set Q"' (\/n).
LEMMA 3.1

Let n = 2 (mod 3) be a non square positive 1nteger

Then (a2 — n) # 0(mod 3) Ya € Z.

PROOF

Since square of an integer is congruent to either 0 or 1 (mod 3), so two cases
arise

Case I  If a> = 0(mod 3), then (a? —n) = (0 — 2) (mod 3)= 1 (mod 3).
Case II  If a®> = 1(mod 3), then (a®> — n) = (1 — 2) (mod 3)= 2 (mod 3).

So in no case (a? — n) = 0 (mod 3).

COROLLARY 3.2

Let n = 2 (mod 3)be a non Square positive integer. Then |
Q (Vi) = (521 S8 € Q' (V) and 3lc} = .
PROOF |

Here bc = (a*—n) = 1 (mod 3)<> either both b,¢ = 1 (mod 3) or both b, ¢ = 2

(mod 3) and bc = (a®> —n) = 2 (mod 3)& exactly one of b,¢ = 1 (mod 3) and
the other =2 (mod 3).
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Hence, by the above lemma 3.1, if ¢ = 0 (mod 3), then “QT‘" is'hot an integer.
Thus Q***(y/n) = ¢. :

In the following theorem we determine a proper subset of Q*(y/n) which is an
M-subset of Q"' (\/n).

THEOREM 3.3

If a non square positive integer n = 0 or 1 (mod 3), then
Q**(/n) = {‘i‘-%/—’_‘ : # € Q*(y/n) and 3|c} is an M-subset of Q" (y/n).
PROOF:

Let & € Q**(y/n) = {2 ; e8VA ¢ Q*(\/n) and 3|c}

Since every element of the group M is a word in the generators z,y of the
group M, to prove that Q***(/n) is invariant under the action of M, it is
enough to show that every element of Q***(\/n) is mapped onto an element of
Q***(y/n) by r and y.

Now z(a) = =25 = ‘”jlﬁ with a1 = —a,by = §,= ¢; = 3b and y(a) =
;(‘;a_i:j_/c'_)‘ = “2:’2@ with a3 = —a —¢,b; = §,¢2 = 3(2a + b+ c). Since'd and
§ are integers and (a, b,c) = 1,.50 by, by, & and % are integers. Also we know
that (a,b,¢) =1 & (ay,b1,¢;) =1 & (ag,by,¢3) = 1.

Hence z(a) and y(a) are elements of Q***(\/n), for all a € Q***( /n).

In y(@), 3|ca. So y*(a) and similarly y*(a) are in @***(v/n). This shows that
Q**(4/n) is invariant under the action of M and Q***(\/n) i1s a proper M-
subset of @"(y/n). '

Now we are in a position to find proper M-subsets of @***(\/n). If n = 1 (mod
4), then @'(v/n) = {# : ‘1+—c‘@ € Q*(yv/n),a odd and b, ¢ both even integers
} is a proper subset of Q*(y/n). It is important to note that Q'(y/n),n = 1
(mod 4) is invariant under the action of modular group G. But Q'(y/n) is

not invariant under the action of M. For if *Y® € @Q'(/n) then (YR =
—atvn __ a1+
3b - C]

where a; &= —a is odd ,¢; = 3b is even,whereas b, = § may
not necessarily be even integer. However if £ is an even integer, then we prove

that the set of all such elements of Q'(y/n) is invariant under the action of M.
We know that Q'(/n) is non empty if and only if n = 1 (mod 4) and Q***(\/n)
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is non empty if and only if n = 0 or 1 (mod 3).
We now determine conditions under which a subset of @Q***(,/n) is invariant
under the action of M.

THEOREM 3.4

For each non square positive integer n =1 or 9 (mod 12),
Q' (vn) = {%@ : “—J’C@- € Q'(v/n) and 6|c} is an M-subset of Q***(/n).
PROOF: |

The set Q*** (/) = {ﬂ—cﬂ : 5‘—‘%@ € @'(y/n) and 6|c} is non empty if and only
if n =1 or9 (mod 12) and is a subset of @***(y/n). By theorem 3.1,@***(\/n)

is invariant under the action of M. We prove that @***' (,/n) is invariant under
the action of M.

Let a — g-_‘*‘_cﬂ e Q***’(\/ﬁ)

Since every element of the group M is a word in its generators z,y to prove
- that @**' (y/n) is invariant under the action of M, it is enough to show that
~every element of @***'(1/n) is mapped onto an element of Q***' (\/n) by z and
Y. : ‘

Now z(a) = =52 = ﬂ:—’—lﬁ (say), gives a;

= —a,bp = 5,c0 = 3b and
y(a) = 3(‘303;/:) = “22/— (say), yields a; = —a —¢,by = §, 0y = 3(2a + b+ ¢).

Since a is odd while b, £ are both even integers and‘(a, b,c) =1, so a; and ay
are both odd integers, by, by, ¢ and % -are all even. Also

(aaba C) =l (alabhcl) = le (ag,bg,CQ) = 1.
So z(a) and y(a) are elements of Q*** (V/n). |

Hence Q*** (v/n) is invariant under the action of M and is a proper M-subset
of @***(v/n). This completes the proof.

THEOREM 3.5

Let n =1 (mod 4) be non square positive mtegel Then the set

QWA =1{F e Q)
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and t = 1,3} is invariant under the action of M.

PROOF

This theorem can be proved by the arguments similar to those used in theorem
2.3. - '

Now we put together theorems 2.3,3.3,3.4 and 3.5 to obtain the following
remarks.

REMARKS 3.6

. Let a € @**(v/n), then the orbit o™ C Q***(\/n).

N =

. Let a € Q***(y/n), then the orbit o™ C Q*** (1/n).

w

. Q" (Vn)\@Q*** (v/n) is invariant under the action of M and hence is a
proper M-subset of Q" (y/n).

>

. Q*(v/n)\Q*** (y/n) is invariant under the action of M and hence is a

- proper G-subset of Q***(y/n). Similarly Q"' (,/n)\Q** (v/n) is invariant
under the action of M and hence is a proper M-subset of Q" (\/n).

. Ifn=1o0r9 (mod 12) then Q”(v/n), Q™ (Vn),

H]

Q™ (W), Q™ (VANQ™ (VR),  QU(VANQ™ (VA),
Q"(VINQ™ (v/n), Q" (VA),Q" (VAINQ" (V7),
Q™ (VR UQ™(VA), Q"(VANQ™(VR)UQ"™(vVA) = Q" (Vi)

and Q"' (v/n)\Q"™***(\/n) are at least eleven proper M-subsets of an M-
set Q(v/n). If n = 0,3,4,6,7 or 10 (mod 12), then Q" (/n),Q***(v/n)
and Q"' (v/n)\@***(\/n) are at least three proper M-subsets of an M-set
Q(v/n). If n =5 (mod 12), then Q" (v/n), Q" (\/n),

Q" (v/n)\Q" (1/n) are at least three proper M-subsets of an M-set Q(1/n)

whereas if n = 2,8 or 11 (mod 12), then Q"'(\/n) is at least one proper
M-subset of an M-set Q(/n).

o
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Abstract. In this paper we consider the class V,(A, B) consisting of analytic
and univalent functions with varying arguments. The object of the present
paper is to show coeflicient estimates and some distortion theorems for the
function f(z) in the class V,,(A, B).

1. INTRODUCTION

Let S denote the class of functions f(z) of the form

f(z) =z+iakz" (1.1)
k=2

which are analytic and univalent in the unit disc U = {z : |z{ < 1} . Given two
functions f(z),g(z) € S, where f(z) is given by (1.1) and g(z) is given by

9(z) =z + Y bez* (1.2)
k=2
The Hadamard product or convolution f x g(z), is defined by

Frog) =2+ ahest  zeU (1.3)

k=2
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By using the Hadamard product, Ruscheweyh {7] defined
2
D7f(z) = A=t f(2) (y 2 -1). (1.4)
Ruscheweyh [7] observed that

‘ 2(2"1 f(2))™)
prf(z) = AT (15)

when n = v € Ny = N U {0}, where N = {1,2,...}. This symbol D"f(z)(n €
Ny) was called the n-th order Ruscheweyh derivative of f(z) by Al- Amiri [1].
We note that D°f(z) = f(z) and D'f(z) = zf (2) It is easy to see that

D'f(z)=z+ i 8(n, k) a2, (1.6)

k=2

where .
5(n,k)=(”+z”1>. - (1.7)

Let R, (A, B) denote the class of functions f(z) € S such that

(n+1) (G —1)

B(n + 1) 5575 - (Bn+ 4)

<1 (1.8)

for z€ U, where - 1< A< B<1,0<B<1landné€N,.
We note that

(i) Ra(—1,1) = R,(Singh and Singh [10] ).
(ii) Ro(2a—1,-1) = S(a) (0 < a < 1)(Robertson [6]).

(iil) Ro((2a—-1)8,8) = S(a, B) (0 < a < 1,0 < B < 1)(Juneja and Mogra
(3])- |

(iv) Owa and Aouf [5], Owa [4], Silverman [8] and Gupta and Jain [2]

studied the subclasses of R,(4, B), R,,S(a) and S(a, ) consisting of func-
tions with negative coefficients. |



On certain class of univalent...... 91

Definition 1

(Silverman [9]). A function f(z)defined by (1.1) is said to be in the class

V(6y) if f(2) € S and arg(a,) = 0, for all n > 2. If, furthermore, there exists
a real number [ such that

6, + (n —1)8 = mmod(27), (1.9)

then f(z) is said to be in the class V' (6,, 8). The union of V' (6,, 8) taken over
all possible sequences {6,} and all possible real numbers f is denoted by V.

Let V,(A, B) denote the subclass of V' consisting of functions f(z) in R,(A, B)

2. COEFFICIENT ESTIMATES

Theorem 1

Let the functionf(z) defined by (1.1) be in V . Then f(z) € V,(4, B) if and
only if

o0

Sl + B)k — (A+1)]6(n, k) |ax| < (B — A). (2.1)

k=2
The result is sharp.

Proof

Suppose f(z) € Vn(A, B). Then

(n+1)(%:—}—{$ﬂ—1)

B(n+1)557% — (Bn + Al

- § (k — 1)6(n, k)arz*!
g <1,  zeU (22
(B—A)+ k,z (Bk — A)d(n, k)axz*-1 ‘
=2

Since Re{w(z)} < |w(z)] < 1, we obtain on simplification

- § (k —1)é(n, k)agz*?

Re L <l. . (2.3)
(B—-A)+ kZ (Bk — A)8(n, k)agz*-1
=2
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Since f(z) € V, f(2) lies in V(8,, B). for some sequence {f;} and a real number
B such that

0 + (k — 1)8 = mmod(27)
Set z = re'? in (2.3), we get

S (k = 1)8(n, k)|ag|rk!
k=2

Re T <1. (2.4)
(B—A)— Y (Bk— A)d(n, k)|ag|rk-1
k=2
Hence,
Z 1+ B)k — (A+1))8(n, k) |ax| ¥~ < (B — A). (2.5)
Lettlng r — 1 in (2.5), we get (2.1).
Conversely, suppose that f(z) € V and satisfies ( 2.1) . In view of (2.5)
Zk—l nlcakzkl Z nklak|r
k=2 k=2

ZBk A)é(n, k) lag| rF1

oo

< (B ~ A) = Y (Bk — A)8(n, k)|ax|z*"1],

k=2
which gives (2.2) and hence follows that f(z) € V,,(A, B). The equality in the
result (2.1) holds for the function f(z) defined by

(B - A)

f(z)=z+ e (A+1)]6(n,k)ewkz (k> 2). (2.6)

Corollary 1

- Let the functionf(z) defined by (1.1) be in the class V,(A, B). Then

. (B-A4)
(1 + B)k — (A + 1)]é(n, k) (k > 2). (2.7)

lag| <

The result is sharp for the function f(z) define by (2.6).
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Theorem 2

Let the function f(z) defined by (1.1) be in the class V,,(A4, B), with argay =
6k, where [0, + (k — 1)) = mmod(27). Define

filz) ==
and

(B — A)
felz) = 2 + [T+ Bk - (A+1)d(n k)"

0 k

(k>2), zeU.

Then f(2) € V,(A4, B) if and only if f(z) can be expressed in the form
F(z) =3 mfe(2), (2.8)
k=1

where u > 0(k > 1) and § pr = 1.
k=1
Proof

If f(z) = 1?—51 px fr(z)with k';_f,l pr =1 and pg > 0, then

> : (B—A)u
gu + Bk — (A+ 1)]6(n,k:).[(1 Tk (A+’;)]5(n’ 7

= S (B~ A = (B - A)(1 = m) < (B - A).
k=2

Hence f(z) € V,,(A, B).

Conversely, let the function f(z) defined by (1.1) be in the class V,,(A, B),

define

[(1+ B)k ~— (A +1)}6(n, k)
(B-A4)

= jaul (k> 2)

and

o o]
pr= =)
k=2
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From Theoreml, § pe <1 and so py > 0. Since uy fe(2) = pez + ax2*,
k=2

S ufi(d) = 2+ 3wt = f(2).
k=1 k=2

This completes the proof of the theorem.
3. DISTORTION THEOREMS

Theorem 3

Let the function f(z)defined by (1.1) be in the class V,(4, B). Then
(B—-A4) 2 (B - A) 2
2B— A+ 1)|(n+1) 1z]” < (2] < =l + ZB— A+ D|(n+ 1) |zl . |
' 3.1

|2| -

The result is sharp.

Proof

We employ the same technique as used by Silverman [9]. In view of Theorem

1, since [(1 + B)k — (A + 1)]6(n, k) is an increasing function of k(k > 2), we
have

2B-A+1)](n+1) Zlak|<2[1+B Ve = (A + 1)J3(n, k) lax] < (B — A).

that is,
= (B - A)
2:‘ [zB A+1)(n+1) (8:2)
Thus
_ (B - A) 2
|f(2)] z+k§:2akz < lz| + |2* kz:zjak|<[z]+[23 A+1)](n+1)|z| :
(3.3)
Similarly, we get
z z—zz‘ooa z] — (B-4) z|?
@12l = 1o Y lerl 2 Jol - e @9



On certain class of univalent

...... 95

This completes the proof of Theorem 3. Finally the result is sharp for the
function

(B A) 162 2:2

f@) =24 o s e (3:9)

at z = & |z| 2.
Corollary 1

Under the hypotheses of Theorem 3, f(z) is included in a disc with its center
at the origin and radius r, given by

(B—-4)

nE B T AT D) (36)

Theorem 4

Let the function f(z) defined by (1.1) be in the class V,(A, B). Then

2B - A) | 2(B — A)

- ar s P SOl G e

(3.7)
The result is sharp.

' Proof

Since k[(1+ B)k — (A +1)]é(n, k) is an increasing function of k(k > 2), in view
of Theorem 1, we have

o0 o0

_[QB A+1))(n+1) Zk x| < Y[+ Bk = (A+1)]8(n, ) law] < (B~ 4),
that is, |

3 2B - A)

k-;klakl SRBE-A+ D+ 1) (3.8)
Thus '

e 2B - 4) ,
§1+|z1k2:j2kl k,|$1+[2B_A+1)](n+1)I |-

(3.9)

|f'(z)| = 11 + i arz" 1

k=2




96 A. K.Aouf, H M. Hossen and A. Y. Lashin

Similarly, we get

P21 S ke 21 - IS 0)

This completes the proof of Theorem 4. Finally thé result is sharp for the
function (3.5)

Corollary 2

Let the functions f(2) defined by (1.1)be in the class V, (A, B). Then f (z) is
include in a disc with its center at the origin and radius r, given by

2(B— A)
2B-A+1)](n+1)

7‘2‘:1+
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Abstract In this paper the notlon of fuzzy k- ideals in B- algebras is 1ntr0-
duced, and related results are investigated.

1. INTRODUCTION

Imai and Iséki introduced two classes of logical algebras: BC K-algebras and
BC1I-algebras ([7, 9]). It is known that the class of BC K-algebras is a proper
subclass of the class of BCI-algebras. In ([5, 6]), Hu and Li introduced a wide
class of logical algebras: BC H-algebras. They have shown that the class of
BCl-algebras is a proper subclass of the class of BC H-algebras. Neggers and
Kim ([14]) introduced the notion of d-algebras which is another generalization
of BCK-algebras, and they also introduced the notion of B-algebras ([13]),
which is equivalent in some sense to the groups.

Fuzzy set was introduced by Zadeh ([18]). Since then there have been wide-
ranging applications of the fuzzy set theory. Many research workers have

First author is supported by PUCIT.
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fuzzified the various mathematical structures : topological spaces, functional
analysis, loop, group, ring, near ring, vector spaces, automation. In 1991,
Xi ([17]) applied the concept of fuzzy set to BCK-algebras and studied their
properties. In 1993, Ahmad and Jun ([1, 12]) applied it to BCl-algebras and
discussed their properties. In ({10]), Jun, Roh and Kim studied the fuzzifi-
cation of (normal) B-subalgebras. In ([2]), Akram and Kim have shown that
the notions of a (fuzzy) subalgebra, a (fuzzy) normal subalgebra and a (fuzzy)
k-ideal are equivalent in 0-commutative B-algebras. In this paper we discuss
fuzzy k-ideals and obtaln some results in B-algebras.

2. PRELIMINARIES f

A groupoid (X x,0) with a special element 0 is called a B-algebra({13]) if , for
all 7, y, z € X, the followmg axioms hold: ‘

(By) *x =0,
(B) z+x0=1z |
(Bs). (w*y) =z * (2 (0xy)).

“Proposition’2.1.

In B-algebras (X, 0}, the following identities hold:

(B2) 0+ (0+2) = (13)
(B0 *(zxy)=yxz ((15])
(Bs) w4 lyx2)=(w+(0%2) +y (6]
(B (o5 + Orp) =3, ([ 13]), for iz, y, € X

A non- einp%v subset S of a B- algebra (X %,0) is called a subalgebra ([10]) of
X 1f1*y€5foranyx y€S.

‘ .A subset | Of a B-algebra (X *,0) is called a k-ideal (12]) of X if

(K1) 0€1,
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(K2) ifz €I, then0xx €I,

(K3) ifzxy,y*xz €I, thenzxz eI, forany z,y,z € I.

Example 2.2.([2])

Let X :={0,1,2,3,4,5} be a set with the following Cayley table:

(x]of1]2]3[4]5]

0012113 (4(5
14110121453
2121110151314
3314151021
4901415131102
5151314121140

Then (X;*,0) is a B-algebra ([13]). It is easy to show that I := {0,1,2} is a
k-ideal of X, but J := {0,1} is not a k-ideal of X, since 0¥2=1,2x1=1€ I,
but 0x1=2¢ J.

Let X be a non-empty set. A fuzzy (sub)set p.of X is a mapping
p: X —[0,1]. 1
Let u be the fuzzy set of a set X. For a fixed s € [0, 1], the set p, = {z € X :

p(z) > s} is called an upper level of . A mapping f : X — Y of B-algebras

is called a homomorphism if f(x*y) = f(x)*f(y), V x, y€ X. Note that if fis a
homomorphlsm then f(0)=0 : ‘ ~ .

3. FUZZY k-IDEALS

Definition 3.1.
Let X be a B-algebra and u be a fuzzy subset of X. Then pu 1s called a fuzzy
k-ideal of X if it satlsﬁes the following inequalities: ‘

(FKy) p(0) > p(x) , for all 7 € X,

(FKy) p(0xx) > p(x) , for all z € X,
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(FK3) p(z*2) > min{u(z +y), uly*2)} , forall 2, y, z € X.

- Definition 3.2.

Let p be a fuzzy set of a B-algebra X. Then p is called a fuzzy subalgebra
([10]) of X if u(z * y) 2min {u(z), u(y)}, for all 7,y € X.

Example 3.3.

Let X := {0,1,2,3} be a B-algebra given by the following Cayley table:

Wl —] Ol *
o O W -
—] O] LN N
O o] ) W

We define a fuzzy set pin X by

©(0) = 0.651 and p(z) = 0.016, for all x # 0 in X. Then it is easy to show
that p is a fuzzy k-ideal of X. ’

Lemma 3.4.
Every fuzzy k-ideal of a B-algebra X is a fuzzy subalgebra‘ofAX,‘
Proof.

| Routine. O

Theorem 3.5.

If each non-empty level subset U(y;s) of u is a k-ideal of X, then u is a fuzzy
k-ideal of X, where s € [0, 1].
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Proof.

This is a consequence of ({2]). 0

Definition 3.6. ([3))

Let X and p be the fuzzy sets in a set X. The cartesian product A x u :

X x X — [0,1] is defined by (A x p)(z,y)= min{(AM(z), u(y)}, for all z, y
€ X.

Proposition 3.7.

If X and p are fuzzy k-ideals of a B-algebra X, then A x u is a fuzzy k-ideal of
X xX.

Proof.

For any (z,y) € X x X, we have
(A x 1)(0,0)= min {(0), u(0)} = min {A(z), p(y)} = (A x p)(z,y)

and (A x p)((0,0) * (z,9)) = (A x p)((0* 2,0 xy))
= min {0 * z), u(0 * y)}

> min {A(z), p(y)} = (A x p)(z,9).
Let (x1,27), (1,y2) and (21,22) € X x X. Then

(A % w)((x1, ) * (21, 22)) = (A % p}(z * 2, T2 % 27)
= min {A(z) * 21); p(z2 * 22)}

> min { min {M(z1 * 1), Ay * 21)}, min {p(z * y2), u(y2 * 22)}}
= min { min {AM(z; * y1), w(ze * y2)}, min { My * z1), u(yo * 20)}}
= min {(A x p)((21 * Y1, T2 * ¥2)), (A X ) (11 * 21,92 * 22)) }

= min {(A % p)((21, 22) * (v1,92)), (A x ) ((y1,92) * (21, 22)) }-
Hence A x p is a fuzzy k—ideal of X x X. D

Proposition 3.8.

Let A and p be fuzzy sets in a B-algebra X such that A x pisa fuzzy k-ideal
of X x X. Then
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(i) Either A(0) > A(z) or u(0) > pu(z), Vz € X.

(iii

)

(i) If A(0) > A(z), Yz € X, then either u(0) > A(z) or u(0) > u(z).
) If u(0) > p(z), Vz € X, then either A(0) > A(z) or A(0) > u(z).
)

(1v Morpisa fuzzy k-ideal of X.

~ Proof.

~ Straightforward. o

* Definition 3.9.([3))

Let A be d fuzzy set in a set S, the s’tfy*ongest fuzzy relation on S that is fuzzy
relation on A is p4 given by pa(z,y)= min{A(z), A(y)}, for all z, y € S.
Proposition 3.10. |

Let A be a fuzzy set in a B-algebra X and p4 be the strongest fuzzy relation

on X. Then A is a fuzzy k-ideal of X if and only if u4 is a fuzzy k-ideal of
X x X.

Proof.

Supposé that A is a fuzzy k-ideal of X. Then

14(0,0)= min{A(0), A(0)} > min {A(z), A(y)}= palz,y), and 14((0,0) *
(z,y)) = pa(0xz, 0xy)= min{ A(0*z), A(0*y)} > min {A( ), A(y)} = palz,y)
,V(z,y) € X x X.

Let £ = (z1,72), ¥y = (y1,2) and 2z = (21, 22) € X X X. Then

pa(z * z) = pal(z1, 22) * (21, 22))

= pa((zy * 21,22 * 22))

= min {A(z; * z1), A(z2 * 29) } :
> min {min {A(z; * y1), A(y1 * z1)}, min {A(z, * y2), A(y2 * 22)} }

= min {min {A(z) *y1), A(z2 * 92)}, min {Aly, * 21), A(yz * 22)})

= min {.UA(J?l * Y1, Tg * Y2), pa(y * 21, Y2 * zz)}
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= min {pa((z1, 22) * (y1,¥2)), wa((¥1, y2) * (21, 22)) }
= min {pa(z *y), naly * 2)}.
Hence p,4 is a fuzzy k-ideal of X x X.

The converse is straightforward. g

Definition 3.11.

Let f: X — Y be a mapping of B-algebras, and let u be a fuzzy set of Y.
The map p/ is called the pre-image of y under f, if u/(z) = u(f(z)),Vz € X.

Proposition 3.12.

Let f : X — Y be an onto homomorphism of B-algebras. If y is a fuzzy
k-ideal of V', then u/ is also a fuzzy k-ideal of X.

Proof.

If we let T:= min in Theorem 4.8 ([2]), then u/ is a fuzzy k-ideal of X. 0

Proposition 3.13.

Let f : X = Y be an onto homomorphism of B-algebras. If u/ is a fuzzy
k-ideal of Y, then p is also a fuzzy k-ideal of X.

Proof.

This is a consequence of Theorem 4.7 ([2}). O

Deﬁnifion 3.14.

A k-ideal A of B-algebra X is said to be characteristic if f(A) = A, for all

f € Aut(X), where Aut(X) is the set of all automorphisms of X.
Definition 3.15.

A fuzzy k-ideal p of B-algebra X is said to be fuzzy characteristic if u/(x) =
w(z), for all z € X and f €Aut(X).
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Lemma 3.16.

Let u be a fuzzy k-ideal of a B-algebra X and let z € X. Then p(z) =t if
and only if € yy and z ¢ p , foralls > ¢t .

Theorem 3.17.

For a fuzzy k-ideal p of a B-algebra X, the following are equivalent:

(i) p is fuzzy characteristic.

(ii) each level k-ideal of 4 is characteristic. par

Proof.

Sﬁppose that u is fuzzy characteristic and let t e Im(p), f €Aut(X) and
T € gy Then

W (z)=p(z) 2t

= p(f(z)) =t

= f(z) € p.

Thus f (1) C oo

Let z € uy and y € X such that f(y) = z. Then

w(y) = p!(y) = p(f(¥)) = plz) 2 t

= y € 1 so that z = f(y) € w.

Consequently, u; C f(u). Hence f(u:) = py, i.€., p is characteristic.

Conversely, suppose that each level k-ideal of 4 is characteristic and let z € X,
f € Aut(X) and p(z) =t. Then, by virtue of Lemma 3.16, z € p, and = € p,
, for all s > t. It follows from the assumption that f(z) € f(uy) = 4, so
that p/(z) = p(f(z))) > t. Let s = p/(z) and assume that s > t. Then
f(z) € us = f(us), which implies from the injectivity of f that z € u,, a

contradiction. Hence p/(z) = u(f(z)) = t = u(z) showing that p is fuzzy
characteristic. a

Acknowledgement. Authors are thankful to the referee for his valuable
suggestions.
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Abstract

In this paper, the existence of one class of alternating group As as a subgroup
of twisted Chevalley group of Ree type 2F;(2) is proved.

1 INTRODUCTION

F4(2) is a well-known simple Lie group of automorphisms of the special Lie
algebra f4(2).2Fy(2) is a twisted Chevalley group of Ree type within Fy(2), as
a subgroup.2Fy(2) is,however, non-simple of order 2!2.3%2.52.13 but it contains
a simple derived subgroup ?F;(2) known as Tits group of index 2. Maximal
subgroups of *F;(2) are studied in [6]. Fy(2) has been characterized by the
centralizer of an involution in the center of 2-Sylow subgroups of Fy(2). The
construction of Lie groups Fy(k) as automorphism groups of Lie algebras of
type fs(k), over the field k has been discussed in [1] and [2].
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Definition.1.1

~ Let G be a finite group. G is defined to be a (2,3,5) group if there exists an
element x of order 2, y of order 3, such that xy is of order 5.

FeG=<z,y>122=1=19y%=(zy)°
We prove our result in the following form.

Theorem 1.2.

Let G be a twisted Chevalley group of Ree type over Galois field of two el-

ements. Then there exists only one class of simple groups isomorphic to As

within 2F4(2)

" Proof. Let Gy be the subgroup of 2F,(2), which is isomorphic to As since

|Go| =22.3.5, therefore by Lagranges theorem As may be a candidate to exist

within 2F,(2), as a subgroup. In order to search for the possibility of existence

of As within ?F4(2), we use information known to exist about As and 2Fy(2)
both. The conjugate classes and character table of 2F4(2) are known in [6].

It is a well-known fact that As is the smallest non-Abelian simple group and

is a (2,3,5) triangular group which is generated by the elements x and y of
order 2 and 3 respectively, such that (zy)5 = 1.

Thus As = {< z,y >: 22 =1 = y* = (zy)°} [3]. In order to show exis-
tence of As within 2F;(2), we observe from [6] that there exist two conjugate
classes with representatives a;,a; of elements of order 2, one conjugate class
of elements of order 3 and one conjugate class of elements of order 5.Either
a; or oz or both classes may be involved in triangular relation (2, 3, 5), if As
exists within 2 F(2) .The existence of non-zero integral number of triangular
relations (2, 3, 5) shall ensure the existence of As withimr 2 Fy(2), where

e |G| (N v (N TTEY
#<23=5>= G0 > xi(2)xi(3)x:(5)[3]

Where |C(2)] stands for order of centralizer of an element of order2. |Cg(3)]
stands for order of centralizer of an element of order 3. x;(2), xi(3), xi(5)
stands for the characters of degree of the classes of order 2, 3 and complex
-conjugate of class of order 5 respectively.

xi(1) stands for degree of representation of the ith character of G. From char-
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acter table of 2F;(2), we observe that if z € a;, then

4<23=s> = A8, (F12)(=2)@Q)  14)(=3)E)

iy >+ (—32)(6)(2) *
(14)(=3)(3) . (=32)(6)(—2), _
+ 78 + 1248 ‘}‘0

If x € oy then

#<23=5> = w{l +1+ (4)(=2)(2) | (=2)(=3)(3)

210.3.28.08 ( )(52 | TR
(=2)(=3)(3) , (32)(6)(=2), _
+ 3 + 1548 } = 100.

Hence the class a; of 2F4(2) is not involved in the construction of (2,3,5)
relation but a2 does generate . Hence for each of the relation, # < 2.3 =
5 >= 100, there exists A5 = {< z,y >: 22 = 1 = y® = (zy)5}. We find that
# < 2.3=5>=100. We observe that |C¢(5)| = 100 and all the 100 relations
are conjugate by conjugating x and y both by the elements of the centralizer
Cg(5) of an element of order 5. Since each (2,3,5) relation generates an As
therefore 100 of such Ajs are generated within ?F;(2) by different conjugates x
and y. That is if x is 6f order 2 and y of order 3 in ?F}(2) within their specified
corresponding conjugacy classes then xy is of order 5. Let xy = t, and t* = 1.
If c € Cg(t), then,

c(zy)ct=ctct =t

= cxcleyc i =t
= (cxc H(cyc™) =t

. The same t is produced by conjugating x and y by ¢ € Cg(t). So the total
~number of pairs of x and y shall count to be equal in number to the order of the
~ centralizer of t. Thus all the 100 relations become conjugate by conjugating
x and y by the centralizer of t. This concludes that all copies of A5 stand
conjugate to each other, which shall form a single conjugate class within 2F}(2).
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Table

char xolxi [xe o Ixa [xs [xe [xz [xs [xs [xw0
classes | [x| Degree |1 |1 |52 [78 |78 |325 |325 | 351|351 |650 |650
Rank '

o 212.5 1 |1 [-12]14 |14 |5 5 31 131 [10 |10 |
o 210.3 1 |1 |4 —2|-2|-11|~-11}15 {15 {10 |10

4 28 1 [1 | -4 |-2]-2|5 5 -11-112 2

4, 28.5 1 |-1]0 6 |—-6]5 -5 |-9]9 |-10]10

" 2.3 1 |1 [-4 ]2 |2 |1 1 3 |3 |6 6

4. 27 1 [-1]0 —212 [-3 13 111 -2 |2

i 27 1 [1 |4 2 |2 |1 1 3 13 |-2 |-2
4w 26.3 1 [-1]0 2 | -2]1 -1 |3 |-3]-6 |6

La 26 1 {1 |0 2 |2 |1 1 -1|-1]2 2

84, 25 1 [-1]0 2 | -2]1 -1 [-1]1 |2 -2
8%, 24 1 |-1]0 0 |0 [-1 |1 1 |[-110 0

8%y 2 11 fo jo jo -1 |-111 |1 jo |0

1640 | 2¢ 1|1 o0 0 (0 |-1]|]-1{|-1|-1{0 O

164 |2 1 {-1]0 0 |0 |-1 {1 ~111 |0 0

3 23.33 11 | -2 |=3]-3|1 1 0 |0 |2 2

6 23.3 1|1 [=2 11 |1 |1 1 0 {0 |-2 |-2
12, (223 1|1 |2 -1]-1]1 1 0 |0 |0 0

12w 22.3 1 {-1]0 -1|{1 {1 |-1 {0 |0 O 0

5 22.5° 1 [1 |2 3 13 |0 1o 1 |1 |0 0

10 22.5 1 |1 [=2 [-1j-1]0 0 1 |1 |0 0

20, | 2%5 1 |-110 1 | -1]0 0 1 |-110 0

13 13 1|1 |0 0 |0 |0 0 0 {0 |0 0
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Cont.
> = char, cl = classes, R = Rank, D = Degree
. C X1 | Xi12 | X13 X14 X15 X16 X17 °| Xas X19 X20 | X21 X22
cl Ix| 675|675 | 1248 | 1404 | 2600 | 4096 | 54 | 54 | 600 | 702 | 702 | 3456 |
R D | 2 2 2 2 2 2
a; |2¥%5135 135 ] -32| 60 | 40 0 |-10]-10]—-40] -2 | =2 | —128
ay 21931 3 3 | 32 12 | =241 0 6 6 | -8 | -18{-18] 0
doa | 28 3 3 0 4 -8 0 -2 1 —21 8 6 6 0
1285 5 | -5 | 0 0 0 0 -2 | 2 0 10 | =10} O
48, 1273 [ 3 | 3 0 | =121 0 | 0 6 6 | -8 | 6 6 0
.1 2" 15 | =5] 0 0 0 0 [ -21] 2 0 | -6] 6 0
A 313 0 —4 0 0 21 -21 8 | -2 | =2 0
4w 1263131 3 0 0 0 0 6 | -6 0 | -6 6 0
e | 26 ] -1]-1] 0 0 0 0 21 =210 | -2 =2 0
8%, | 2 1 (-1] 0 0 0 0 2 | =21 0 [ -2] 2 0
g | 2 [ 1 | -1] 0 0 0 0 2 | -2 0 2 | -2 0
w2l -1]-11 0 0 0 0 | -2 -2] 0 | 2 | 2 0
(T6.. ] 2 |1 | 1] o 0 ol o |ol ol ool o 0
16 | 24 | -1 1 0 0 0 0 0 0 0 0 0 0
3 (28331 0 | O 6 0 8 -8 1 0 0 | 6 0 0 0
6 | 2531 01 0 2 0 0 0 0 0 | =21 0 0 0
12, 231010 0 0 0 0 0 0 | -2 0 0 0
120 12231 0 | O 0 0 0 0 0 0 0 0 0 0
5 122521 0 | 0 | —2 4 0 -4 | 4 4 0 2 2 6
|10 2251 0 0| -2 0 0 0 0 0 0 | -2 | -2 2
20 | 225 | Q- O 0 0 0 0 -2 | 2 0 0 0 0
131 13 | -1]-1] 0 0 0 1 2 2 2 0 0 -2
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