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Abstract

In this note we study rings with ascending and descending chain conditions
on small right ideals. We:-show that these classes are closed under finite direct
sum and quotients for every non-zero small ideal, but they are not closed under
extensions or taking ideals, however if I is a small ideal in a commutative ring
R and if I and R/I satisfies the a. c. ¢. (resp. d.c.d.) on small ideals, then
R satisfies the a. c. c. (resp. d. c. c.) on small ideals. Finally we show that
Camillo’s theorem need not be true in non-commutative rings. Then we prove
that a ring is Noetherian if and only if every quotient satisfies the a. ¢. c. on
complement and small ideals.

- PRELIMINARIES

Let R be a ring with identity. An ideal A of R is said to be small right ideal in
R (see [1, p.72]) if for all right ideals B of R the equation A + B = R implies
B = R. The right socle of R soc, (R) is the sum of all the minimal right ideals
of R. The radical rad(R) is the intersection of all maximal right ideals in R,
and it is the sum of all small right ideals in R. We say that R satisfies the
ascending chain condition (a. ¢. ¢.) on small right ideals if every ascending
chain of small right ideals I; C I, C --- terminates after a finite number of
steps. This is equivalent to the fact that every non-empty set of small right
ideals has a maximal element. The descending chain condition (d. c. ¢.) on
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small right ideals is defined similarly. We say that R is Goldie if R satisfies
the a. c¢. c¢. on annihilator ideals and the a. c¢. ¢. on complement ideals.

Remark 1.1

(a) If R satisfies the a. c¢. c¢. on small ideals, then R need not to satisfy the
d. c. c. on small ideals as the following example shows:

Let R = (F[z],+,.), F is a field. Then R satisfies the a. c. c. on small ideals,
but does not satisfy the d. c. c. on small ideals since < x >D< x* >D --- is
an infinite descending chain of small ideals in R.

(b) If R satisfies the d. c. c. on small ideals, then R need not to satisfy the
a. ¢. ¢. on small ideals as the following example shows:

Let R = Z(p™) = {1%’ € Q|0 < o < 1}, where p be a prime number. Then
R is a ring without 1dentity and satisfies the d. c. c¢. on small ideals, but does
not satisfy the a. c. c¢. on small ideals since each small ideal is of the form

1 2 p*—1
PRERE LI

where k is some positive integer and, A; C Ay C --- is an infinite properly
ascending chain of small ideals in R.

Lemma 1.2
Let R be a ring and 0 # B < R.

(a) If A is a small right ideal in R such that A D B, then A/B is a small
right ideal in R/B. :

(b) If B is a small right ideal in R,7: R — R/B be the natural homomor-
phism and A/B is a small right ideal in R/B, then 771(A/B) = A is a small
right ideal in R. ‘

Proof

(a) Suppose that A/B+L/B = R/B, where L/B <, R/B, then A+ L+ B =
A+ L = R, but A is a small right ideal in R, hence A C R = L. Therefore
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A/BCL/Band L/B = R/B. Hence A/B is a small right ideal in R/B.

(b) Suppose that A+ L = R, where L <, R then A/B+ L/B = R/B, but
A/B is a small right ideal in R/ B, hence L/B = R/B. Therefore L+ B = R,
but B is a small right ideal in R so that L = R. Hence A is a small right ideal
in R. '

Remark 1.3

If R is aring, A<, R and I be a small right ideal in R such that A C I, then
A need not be small right ideal in I as the following example shows:

Let
and

then [ is the small ideal in R. If

o= {(82) ).

then A <R and A C I, but A not small ideal in [I.
However we have the following:
Lemma 1.4

Let R be a commutative ring. A and [ are ideals in R such that A C I and I
is a small ideal in R, then A is a small ideal in I.

Proof

Since [ is a small ideal in R, then I C rad(R) and so A C rad(R). Therefore
A=ANICrad(R)NI=rad(l). Hence A C rad(I) and A is a small ideal

in 1.
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Lemma 1.5

(a) Let R be aring, I and J are small right ideals in R, then I + J is a small
right ideal in R.

(b) Let R = Ry ® Ry, where R, and R, are right ideals in R. If I) «, R;,
then I & I is a small right ideal in R if and only if I, is a small right ideal in
Ri(1=1,2).

Proof

(a) Suppose that I +J + L = R, where L <, R. But I is a small right ideal
in R, hence J + L = R, but J is a small right ideal in R. Hence L = R and
I + J is a small right ideal in R.

(b) Let I; @ I, be a small right ideal in R and if p; : R — R; be projection of
Ron R; along R;(i # j) then by Lemma 1.2 (a), p;(I +I,) = I; is & small right
ideal in R;(i = 1,2). Conversely, let I; be a small right ideal in R;(j = 1,2)
so that if 4 : R; — R be the inclusion and then by Lemma 1.2 (a), i(1;) = I;
is a small right ideal in R;(j = 1,2). Therefore by (a) 1 @Iz =L + I, is a
small right ideal in R.

2. RESULTS
Theorem 2.1

If R satisfies the a. c. c¢. (resp. d. c¢. ¢. ) on small right ideals and I is a
non-zero small ideal in R, then R/ satisfies the a.c.c. (resp. d. ¢. ¢.) on
small right ideals. '

Proof

Let I, C I, C --- be an ascending chain of small right ideals in R = R/I. Now
if 7 : R — R/I is the natural homomorphism, then I; = 7~1(I;) is a small
right ideal in R for all ¢, by Lemma 1.2 (b). Therefore Iy C I, C --- is an
ascending chain of small right ideals in R. But R satisfies the a.c.c. on small
right ideals, hence there exists n € N such that I, = I,,Vm > n. Therefore
I, = I;n,Vm > n and R satisfies the a. c¢. c. on small right ideals.
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The proof for d. c¢. c. is similar.
Remark 2.2

If R/I satisfies the a. ¢. c¢. on small right ideals for every non-zero ideal I in
R, then R need not to satisfy the a.c.c. on small right ideals as the following

example shows:
_ Ty
R-({(O a>|x,y€Q,a€Z},+,.>

and I < R. Then every R/I satisfies the a. ¢. ¢. on small right ideals, but R
does not satisfy the a. c. ¢. on small right ideals since for each positive integer

_J( 0 %
k,Ak—{(O 0 )]mEZ}

is an infinite ascending chain, A; C Ay C - -+ of small right ideals in R.

Let

However we have the following:
Properties 2.3

If R/I satisfies the a. ¢. ¢. on small ideals for every non-zero small ideal I in
R, then R satisfies the a. c. ¢. on small ideals.

Proof

Let I C I, C --- be an ascending chain of small ideals in R, then by Lemma
1.2 (a), I|I; C I3|I; C -+ is an ascending chain of small ideals in R/I;. But
R/I, satisfies the a. ¢. ¢. on small ideals, then there exists n € N such that
I, = I,,Ym > n. Hence R satisfies the a. ¢. ¢. on small ideals.

Remark 2.4

(a) If R/I satisfies the d. ¢. ¢. on small ideals for every non-zero ideal I in
R, then R need not to satisfy the d. ¢. c¢. on small ideals as the following
example shows: ‘

Let R = (F[z],+,), F is a field and T < R. Then every R/I satisfies the d. c.
‘c. on small ideals, but R does not satisfy the d. c. c. on small ideals.
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(b) If R satisfies the a. ¢. ¢. (resp. d. ¢. ¢.) on small right ideals and I < R,
then I need not to satisfy the a. c¢. ¢. (resp. d. c. ¢.) on small right ideals as
the following example shows: ‘

w=({(5 0 )mneca). v ).

then R satisfies the a. c. c¢. (resp. d. c. ¢.) on small right ideals,

(5 §)eaee

is an ideal in R, but I does not satisfy the a. c. c¢. (resp. d. ¢. ¢.) on small
right ideals since for each positive integer k,

(e

is an infinite ascending chain, A; C Ay C --- of small right ideals in J. While
for each positive integer 7,

{85 mer

is an infinite descending chain, A; D Ay D - - of small right ideals in 1.

Let

(¢) If R/I and I satisfies the a. c. c. (resp. d. c. c¢.) on small right ideals,
then R need not to satisfy the a. ¢. ¢. (resp. d. c. c.) on small right ideals as
the following example shows: '

R:<{<g i)|a,b€Z,x€Q},+,.)
f:{<8 z>|:c€Q,a€Z}

then I satisfies the a. ¢. ¢. (resp. d. ¢. ¢.) on small right ideals and

oy e

Let

and
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satisfies the a. ¢. ¢. (resp. d. c¢. ¢.) on small right ideals, but R does not
satisfy the a. c. ¢. on small right ideals since for each positive integer K,

{0 3wt

is an infinite ascending chain, A; C Ay C - - of small right ideals of R. While
for each positive integer r,

0 2'm
({277 e
is an infinite descending chain, A) D Ay D --- of small right ideals of R.
However we have the following

Theorem 2.5

Let R be a commutative ring and I be a small ideal in R. If I and R/I satisfy
the a. c. ¢. (resp. d. ¢. ¢.) on small ideals, then R satisfies the a. c. c. (resp.
d. ¢. ¢.) on small ideals.

Proof

Let A} C Ay C --- be ascending chain of small ideals of R, then by Lemma
1.2 (a), ‘
, A +1 - Ay +1 C‘
I - I -
is an ascending chain of small ideals in R/I. But R/I satisfies the a. ¢. ¢. on
small ideals, hence there exists a positive integer r such that

Ar+1  Ap+1
, I I
therefore A, +1 = A, +1,Vm > r.

Ym>r

Now by Lemma 1.4, Ay NI C Ay,NI C --- is an ascending chain of small
ideals in I. But I satisfies the a. ¢. c¢. on small ideals, hence there exists a
positive integer s such that A,NI = A,,NI, Ym > s. Let t = max{r, s} then
Ai+I1=A,+1and A,NI = A, NI Ym >t. Now by modular law we have:
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Hence R satisfies the a. c. ¢. on small ideals.
The proof for d. c. c. is similar.
Theorem 2.6

If R; satisfy the a. c. ¢. (resp. d. c. ¢.) onsmall right ideals foralli =1,---,n
then their direct sum R; & --- @ R, satisfies the a. ¢. ¢. (resp. d. ¢. ¢.) on
small right ideals.

Proof

By induction on n we need only consider the case n = 2. Let R = Ry & Ra.
Let I be a small right ideal in R and suppose that I; and I, be the projection
of I in Ry and Ry respectively. Since [ = I @ I, then by Lemma 1.5 (b) we
have I, is a small right ideal in R;. :

Now let I; € I, C --- be an ascending chain of small right ideals in R and
let A; = {a;|(a;,0) € I;}, then each A; is a small right ideal in R;. Moreover,
A € Ay C --- and so by a. ¢. c¢. on small right ideals in R;. Moreover,
A; € Ay C --- and so by a. ¢. c. on small right ideals in R; there exists an
integer n such that A, = A, =---

Now for i > n, let B; = {b;|(0,b;) € I;}, then each B; is a small right ideal
in Ry. Moreover, By C B, C --- and so by a. c¢. c. on small right ideals
in Rs, there exists an integer, m such that B, = Bn4+1 = --+ We claim that
Im = dm41 = "

To show this, let (@m41,bma1) € Imy1. Since A, = Ap41 there exists.

(@m+1sCma1) € Iy C Ipy1. Therefore (amqi1,Cme1) € Img1 which implies that
(0,b41 — Cms1) € Ly But (a1, ¢me1) € I, hence (apy1,bmy1) € I, and
I.+1 C I,,,. Therefore I, = I,,;1 and R satisfies the a. ¢. c¢. on small right
ideals.

The proof for d. c¢. c. is similar.

Remark 2.7

Camillo [2] shows that a commutative ring is Noetherian if and only if every
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quotient is Goldie. However if R is not commutative this result need not be
true as the following example shows:

Let V be a vector space of finite dimension d, where d is a limit cardinal. For
example well-order the cardinal as A/, for ordinal a and let d = N,,.

Let R = L(V,V) be the ring of all linear maps V' — V. Then R is a non-
commutative ring with identity and R has a unique ascending chain of ideals,
Iyc @ C - where I, = {f : f € L(V,V)/rank(f) < N,}. Hence R is
not Noetherian, but in each quotient R/I, also I,/I, and R/I, are the only
annihilator ideals of R/I,, also I,/I, and R/I, are the only complement ideals
of R/1,, hence R/I, is Goldie.

However we have the following;
Theorem 2.8

A ring R is Noetherian if and only if R/I satisfies a. c. c. on complement and
small ideals for all non-zero ideals I of R.

Proof

If R is Noetherian, then R/I is Noetherian for every non-zero ideals I of R.
Therefore R/I satisfies a. c¢. c. on complement and small ideals for every
non-zero ideal I of R. To prove the converse suppose that R/I satisfies the a.
c. ¢. on complement and small ideals for every non-zero ideal [ of R. Since
the sum of two small ideals is small by Lemma 1.5 (a), it follows from the a.
c. ¢. on small ideals in R/I that rad(R/I) is small for all ideal I of R. Since
R/I satisfies the a. ¢. ¢. on complement, it follows that soc(R/I) is finitely
generated. Hence by [4, Theorem 3.8, P. 232], R is Noetherian.
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Abstract

A propagation of pulse generated by an electric dipole is studied. A general
formula for the electric field, which is uniformly valid for large distance and
time, is presented. Fourier transform, stationary phase and simple contour
integration methods are applied.

1. CURRENT PULSE AND FOURIER TRANSFORM

Electric dipole is excited by a current

I(t)=1f(?)
where f(t) is a pulse. The Fourier transform of this pulse is defined as

T(w) = /_ Z G (t)dt

and inverse Fourier transform is defined as

1

T om

=5 [ °:O T (1) dw

2. THE ELECTRIC FIELD

The electric field of an electrically short dipole with its axis along the x-axis

and an electric moment 2h.Jy is well known [1] with time dependence e ™ it
is
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— 2hel (w)iwpg k? 3z%\ ik 3i?\ ik
Blor) =—rqz 13«2 T e U e
| | (1)

where r is the distance from the center of the dipole, h, is the effective length
of the dipole and k is the complex wave number of the sea water given by

[2,9]
el )

where ¢ is the conductivity of sea region. When a pulse applied to horizontal
electric dipole on the surface of the sea an electromagnetic pulse is generated
upward into air, downward into the sea and horizontal along the boundary in
a surface. Related studies are in [3]-[11] if one is interested to find the field
vertically downward along the positive z-axis then one can put
z=0,y=0=r=zin Eq. (1).

gggfi(::ntal\A ¥ AIR Region
dipole ///////////////////////// >

SEA Region

By taking inverse Fourier transform of Eq. (1), we can write

heiuo 1'2 Il 31‘2 IQ 321‘2 213

where

I :/ wI(w)e* = tdy

—0o0

o] 1= i X
I, = z/ wEI(w)elkr_““tdw

IS — _/oo kzl( ) zkr—iw%dw
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Here I; = —42 and [, = 4&
Therefore to find the electric field we have to find only I3. By substituting the

value of k

dw

L=—[" T(w)eielaler )} oot
T e po(ew + io)

The integral I3 can be evaluated in the complex w-plane with a branch cut
along the imaginary axis. Therefore,

Li=0L+1,

Iy = — dw

[ T(w)e{mlere)} st

~o00 po(ew + io)

For ¢ < 0, the path of integration may be closed by a large semicircle in the
upper half plane. It follows that

I3 = Ip
If T(w) has no singularities in the upper half plane, then
I3 = 0, t<0

Re.w

N NI XN

|

v

AN N7\

For t > 0, the path of integration may be closed in the lower half plane, as
shown in the figure, in which contour encloses both sides of the branch cut in

13
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the lower half plane. Therefore on the branch cut put
w = —1€

when w in the 4th quadrant

= % is in Ist. quadrant. = ’g— is in 2nd. quadrant.

= € + ' increases real part which pulls *> to the right.
Hence ¢ + is either in Ist. or in 2nd. quadrant therefore

M0<€+%)= M0<€—%); if%<€

3 g ; ig €
:l\uo(g—ﬁ)y f§>

similarly when w in the 3rd quadrant then e + % is either in 3rd or in 4th
quadrant, so

O
1f= <e€

£

)
SN———

Mo(é-i—%j): Mo( Tt ;

z—i\uo g—cs); if%>e

j3=—/% ( 26)65 {r 10 €—E)d§ / HO Zg)ef ZE”/#O(__e)df

o M0(€€ -~ 0) € — 0')
_ ( Z€)€ £t —zf'r 10 % —Zf)@ &t §r’/uo(e E)d
/0 Mo(fﬁ—g) d§ / tof §€~0) ¢

Ist and last integral will cancel out each other and we are left with

i3=—/0 I(—ig)e zgr o (g —e) o — / @ge et fzgf\/mdg

Mo(fﬁ—(f) iy §e—a
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Thus by stationary Phase method, which is valid for large value of r

o TMI(R)erE am \F <o- I 7r>
= sin | —4/—r — —
s o0 €4/ HoET 2V e 4

I5 converges to zero for large value of time or distance.
It is interesting to note that if I(w) has singularities on the negative imaginary
axis; and we choose branch cut on negative imaginary axis, then

Igzlp ,t<0

=13 it >0

where I, is the contribution of the poles due to I(w) which lies in upper half
plane.

Achnowledgement

An intellectual guidance of my very respectable supervisor DR. FAIZ AHMAD
to solve this problem is gratefully acknowledged.

References

[1] Ronald W.P. King, Life Fellow, IEEE, The Propagation of Gaussian Pulse
In Sea Water And Its Application To Remote Sensing, IEEE Trans. G.
Remote Sensing, Vol.31, May 1993.

[2] R.W.P. King, Lateral Electromagnetic Pulses Generated On A Plane .
Boundary Between Dielectrics By Vertical And Horizontal Dipole Sources
With Gaussian Pulse Excitation, J. Electromagnet. Waves & Applic.,
Vol.3,pp. 589-597, 1989.

[3] R.W.P. King, Lateral Electromagnetic Waves From A Horizontal Antenna
For Remoter Sensing In The Ocean, IEEE Trans. Antennas Propagate,
Vol.AP-37,pp 1250-1255,0ct 1989.

[4] R.W.P. King and H.S Tuan, Radiation From A Scattering Antenna Em-
‘ bedded In A Dissipate Half-Space, Radio Sci, Vol.3,pp.577-584,June 1968.



16 Aftab Khan

[5] R.W.P. King, Scattering Of Lateral Waves By Buried Or Submerged Ob-
ject, 1. The Incident Lateral Wave Field, J. App. Phys., Vol.57 pp.1553-
1459,March 1985.

[6] R.W.P. King, Scattering Of Lateral Waves By Buried Or Submerged
Object. The Fields On The Surface Above A Buried Insulated Wire, J.
App. Phys., Vol.57 pp.1460-1472,March 1985.

[7] K.R. Oughston, Pulse Propagation In A Linear Causally Discursive
Medium, Proc. IEEE, Vol.79,pp. 1379-1390,0ctober 1991.

[8] J.A. Stratton, Electromagnetic Theory, New York: Mc Grew-Hill, 1941,p.304.

[9] Dionisios Margatis, Pulse Propagation In Sea Water, J. Appl. Phys.
77(7) April, 1995.

[10] D. Margetis and R.W.P. King, Comments On Propagation Of EM Pulse
Ezcited By An Electric Dipole In A Conducting Medium, IEEE Trans-
action On Antennas And Propagation, Vol.43 No. 1,Jan. 1995.

[11] Jiming Song and Kun-Mu, Chen, Propagation Of EM Pulses FEzxcited
By An Electric Dipole In A Conducting Medium, IEEE Transaction On
Antennas And Propagation, Vol.41 No. 10,0ctober 1993.

[12] R.W.P. King, Propagation Of A Low Frequency Rectangular Pulse In Sea
Water, Radio Science, Vol.28 No. 3,May ,June 1993.



Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol. 37(2005) pp. 17-30

CONVECTION IN A HORIZONTAL VISCOUS
FLUID LAYER SANDWICHED BETWEEN TWO
POROUS LAYERS

Abdul-fattah A.K. Bukhari
Department of Mathematical Sciences,
Faculty of Applied Sciences
Umm Al-Quara University, Sauida Arabia.

Abstract

A linear stability analysis is applied to a system consisting of three horizontal
layers, a viscous fluid layer sandwiched between two porous medium permeated
by the fluid that the lower layer is heated uniformlly from below. Flow in the
porous medium is assumed to be governed by Darcy’s law. The Beavers-Joseph
condition is applied at the interface between any two different layers.Spectral
method of Chebysheve polynomials are used to obtain numerical solution for
stationary convection and overstability cases.

1. INTRODUCTION

Let £;,£5 and £3 be three horizontal layers that the bottom of three layer £
touches the top of the layer £, and the bottom of the layer £, touches the top
of the layer £5. A right handed system of cartesian coordinates (z;,7 = 1,2, 3)
is chosen so that interface are the plains z3 = 0 and x5 = 1, the top bound-
ary of £; is 3 = d,,; and the lower boundary of £3 is z3 = —d,,2.Suppose
that the upper layer .£; and the bottom layer £, are occupied by a porous
medium permeated by the fluid whereas the middle layer £, is filled with
an incompressible viscous fluid.Dravity acts in the negative x5 direction and
the porous medium in the third layer is heated at its lower boundary. Con-
vection take place in which temperature driven buoyancy effects are damped
by viscous effects. A stationary fluid with a thermal gradient in the x5 di-
rection (the so called ”conduction solution”) is one possible solution to this
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problem and so it is natural to investigate its stability. The question has re-
cently been addressed by Chen[2] who derived the appropriate equations in
two layers problem.Briefly, the fluid flow in the porous layers £; and £33, with
thickness d,,, is governed by Darcy’s, wheres the fluid flow in the middle layer
Ly, with thickness dy, is governed by the Navier-stokes equations. Convec-
tion is driven by the temperature dependence of the fluid density. Typically,
the Oberbeck-Boussinesq approximation is made in which concepts like local
thermal equilibrium, heating from viscous dissipation, radiative effects etc:
are ignored as are variations in fluid density expect where they occur in the
momentum equation. Let T denote the Kelvin temperature of the fluid and
Ty be a constant reference Kelvin temperature. Then for the purpose of this
work, the fluid density py is related to T by

ps = po[l — T — Tp)] (1.1)

where py is the density of the fluid at 7y and a(supposed constant) is the cof-
ficient of volume expansion of the fluid.In many situations(1.1) is inadequate.
For example, the description of water! around 4°K.

2. THE GOVERNING EQUATION OF NATURAL
CONVECTION
The field equations for this problem are written seoeratly for the fluid layer

between two porous layers.The governing equations for porous medium are
represented by ‘

oV,
%W = _va_%Vm"f’pfga
(pc)ma—;n + (pcp)fvm- AV = knm V2 T

(2.2)

where T, is the kelvin temperature of the porous medium, V,, is the solenoidal
seepage velocity, P,,is the hydrostatic pressure, p is the dynamic viscosity of
the fluid, K is the permeability of the porous substrate, ¢ is its porosity,k,, is

'George et.al. [3] describes convection in lakes in which the bottom and the top can
be represented by a porous layers which are under-pinned by an impermeable permafrost
boundary
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the overall Thermal Conductivity of the porous medium (spc)y is the heat ca-
pacity per unit volume of the fluid at constant pressure and (pc),, is the overall
heat capacity per unit volume of the porous medium at constant pressure In
fact,

(pC)m = ¢(pcp) s + (1 = &) (pep)m

where (pc,)m is the heat capacity per unit volume of thr porous substrate.
The governing equations for the fluid layer are

I51%
pOatf = —VPf+NV2Vf+Pf9a
oT ;
“(pep)s atf = ky Ty

(23)

where T is the Kelvin temperature of the fluid layer, V5 is the solenoidal fluid

velocity, Py is the hydrostatic pressure and ky is the thermal conductivity of
the fluid. ,

3. BOUNDARY CONDITIONS

The convection problem is completed by the specification of boundary condi-
tions at the upper surface of porous medium layer, at the first interface between:
the porous medium and fluid layers and at the second interface between the
fluid and the porous medium layers and at the lower boundary of the porous
medium layer. Many combination of boundary conditions are possible but for
comparison with Chen[2], z3 = d,,1is assumed to be impenetrable and held
at constant temperature T, at upper layer, whereas x3 = —d;;2 is assumed to
be impenetrable and at constant temperature T; at lower layer. In terms of
W, Wy and w,,, the axial velocity components of the fluid in £; and £, and
£'s respectively, these requirements lead to the two conditions:

Tm<dm1) = Tu; wm<dm1) =0 ; . (34)
on the top boundary £; and the two conditions
Tm(—dmg) = Ti, ’wm<—dm2) =0 (35)

on the lower boundary of £4. Strictly speaking, the boundary condition on
T3 = dpm is vy, = 0; the format(3.4) specifically uses the fact that v, is
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solenoidal (incompressibility constraint). The porous-medium/fluid and the
fluid/porous-medium interfaces 3 = 1 and z3 = 0 boundary conditions are
based on the assumption that temperature, heat flux, normal fluid velocity
and normal stress are continuous so that

To(d) = Ty(d), kmm(;";id) _ kf(??;(ad),
wm(d) = wy(d), ‘Pf(d)+2ﬂ“———8g; (3‘1) = —P,(d)

(3.6)

respectively. This leaves one final condition to be specified on the interface.
Several possible forms? have been proposed for the missing condition but the
most popular of these is undoubtedly due to Beavers and Joseph [1] who
suggest that ‘

_ Ovr _ By,
O3 - \/_I—(_(Uf Unm), O3 = \/‘I?('Uf Um) (3.7)

where uy, vy are the limiting tangential components of the fluid velocity as the
interface is approached from the fluid layer £,, whereas u,,, v,, are the same
limiting components of tangential fluid velocity as the interface approached
from the porous layer £; and £4. Clearly, discontinuities in shear velocity
across the interface are inherent in this specification of the last boundary con-
dition. Equation (2.2), (2.3) together with boundary condition (3.4), (3.5),
(3.6), (3.7) possess a static (equilibrium) solution in which the fluid is station-
ary everywhere and heat is conducted across the layers in accordance with the
thermal boundary conditions. Specifically,

V=0, Vn,=0
and the static temperature and hydrostatic pressure fields satisfy the equations
—V Pn+pig=0, =V P+pg=0, V'T,=vTy=0  (3.8)
together with the exterior boundary conditions

Tou(dm1) = Tuy  Ton(—dme) =T} (3.9)

2 Jones [4] proposes continuity of shear stress at the interface. In truth, the nature of this
boundary condition has little impact on results under most circumstances.
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and the interfacial conditions

1@ =1@. k2D =k P p=p) )

In conclusion, it follows almost immediately that the equilibrium temperature
fields in the fluid and porous medium are respectively

T, = Tl—(Tl—Tu)f;—f‘, 1< 25 < do,

Ty = TO~(TO—T1)%, 0< 23 <1, | (3.11)
f

T = To—(ﬂ—To)g—s, —d < 23 < d

where d,,, is the depth of the porous Iayer, dy is the depth of the fluid layer
and Ty and Tj is the temperature on £ and is determined by the continuity of
heat flux across r3 = 1 and x3 = 0 respectively.

4. PERTURBED EQUATIONS

Suppose that the static equilibrium solution is now perturbed so that the
velocity, pressure and temperature fields in the fluid and porous layers are
respectively

x B
vs, Pr4ps, To—(To— Tu)d—j + 0y (4.12)

and
Um, Pm +pm7 TO - (Tl TO)— + 0 (4'13)

Taking account of the properties of the equilibrium solution, it follows from
the general field equations (2.3) and (2.2) that vs, ps and 6; satisfy

O0vy 5
(8t tvp. Vvp) = —Vpr+tuV vy — poabsg,

00, To— Ty, :
(e 2 1 up 0y - BT~k G20
ot ds
(4.14)
where vy is solenoidal whereas vy, pp, and 6, satisfy
OV,
’20 ot ==VPm+ %’Um - p0a0mga

00, T — T
(pcp)w + (pcp)fvm(vem - (—16—[—0263)] = km vQ Hm
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with v, solenoidal. The modified boundary conditions on the upper boundary
of the porous layer (z3 = d,;1), the porous/fluid and fluid/porous interfaces

(z3 = 0,) and the lower boundary of the porous layer (23 = —dp2) are respec-
tively -
On(dpmy) = 0, wp(dm) =0, N
) = onl), 1y ZHD = g, Ll
@+ 2 @ @ =@, (4.16)
Ouy(d)  apy ovg(d)  apy

0xs \/F(uf (d) - un(d), O3 \/[—((vf (@) — vm(d)),
em(_d”ﬂ) = 0, wm(_de) =0

5. NON-DIMENSSIONLISATION

The non-dimensionlisation of (4.14), (4.15) and the boundary conditions (4.16)
is technical but routine. Nield[5] presents a detailed description of the pro-
cedure. Most importantly, each layer has a different length and time scale.
Using the scaling suggested by Chen and Chen[2], non dimensional coordi-
nate Iy, time ff, perturbed velocity 0, perturbed velocity ¥, pressure py and
temperature 0 7 in the upper (fluid) layer are introduced by the definitions

dz . A
~ f I -
r = dfﬂ?f, tf = —tf, ’Uf = —’Uf
A dy
HAf

(5.17)

here A; is the thermal diffusivity of the fluid phase and is defined by Ay =
k/(pcy)r. With this change of variables, the equation(4.14) describing the
motion of the fluid layer now assume the non-dimensional form

0 R . . R -

afj + 0. 75 05 = Pog[—= 75 Py + V305 + Rag0yes)
80, . : ' A
81?; + 0. (705 — sign(Ty — T, )es) = vfﬁf

(5.18)



Convection in a horizontal viscous fluid layer ........ 23

where Prp and Ra; denote respectively the Prandtl number and Rayleigh
number of the fluid layer and are defined by

U R — gad}|Ty — T,

af

Pry = ,
g Pocxf pAs

(5.19)
A similar procedure is applied to a porous medium in which non-dimensional

spatial coordinates Z,,, time t,,, pressure p,, and temperature 8, are introduce
by the definitions

A t dg”i Am

T = QmTm, m=75 tmy, Um= 7 Unm

v A d,
MAmA a

p 7 D Ty — To|

(5.20)

Here A, is the thermal diffusivity of the porous medium and is defined by
Am = km/(pcy) p. With this change of variables, the equations (4.15) governing
the motion of the fluid in the porous layer now become

%g%: = —Pr,,0, + PrmRamémeg,
8ém L A . 2 4
Gm‘aT' + U (Vb — sign(T; — Ty)es) = VouOm

(5.21)

where G, = (0¢p)m/(pcp)s and Pry,, D,, and Ra,, denote respectively the
Prandtl number, Darcy number and Rayleigh number of the porous layer and
are defined by

Pm: 7. 9
T oA &, T o

(5.22)

The scaling (5.17) and (5.20) are now used to non-dimensionalise the boundary
conditions (4.16). The procedure is straightforward and yields

0n(2) = 0, wWn(2) =0,

) R 00:(d)  96,,(d
Qf(d) = 6T9m(d), 8J;,'(3) — 81;(3 )’
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6fw)
0x3

erdDy(py — 2 = Py epp(d) = Wp(d), (5.23)

aqu ABJ an QRBJ

T d\/—(Tuf — Am), T e d\/—(GT’Uf—Um)
b(=1) = 0, ti(—1)=0.

where the parameters e, d and k are defined by

. d )
=t
dy ky

€ =

| Qo

6. LINEARISATION OF PROBLEM

Until this point, no approximations have been made in the derivation of the
perturbation equations. All subsequent analyses in this chapter are based on
the linearised version of equation(5.18) and (5.21), obtained from them by
ignoring all ”product terms”. For the Fluid layer, w; and 6 satisfy

ov
Ef = Poyl= vy Pr+ V3ur + Ragbges],
26y
- H = 20 6.24

and for the porous layer, w,, and 6, satisfy

%a—gd::;n - _PTmUm + PTmRGm9m€3,
O
Gmng Hu, = V%4, (6.25)

Where H = sign(T,—T,) = sign(Ty—T;) = sign(T;—Tp) and the "hat” super-
script has been dropped although all variables are non-dimensional. Since the
boundary conditions (5.23) are already linear, no further action is required here
except to remove superscripts. By taking the double curl of the momentum
equation in each layer, the hydrostatic pressure are suppressed. The speci-
fication of the final problem is completed by taking the third component of
the reworked momentum equation in each layer together with the appropriate
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energy equation, In the fluid layer

ﬁﬁ&v wy = YV ws+ Ray Ay 0y,
6
%—f - Huy = vy, (6.26)
and in the porous layer

1 Dad _, 4

m?& V Wn = YVwn+ Rag Do b,
06,
Gnge = Huom = 7°0m, (6.27)

The Beaver-Joseph and normal stress interfacial boundary conditions must be
reworked to eliminate pressure and horizontal component of velocity. Hydro-
static pressure term are removed by computing the two-dimensional Lapla-
cian of the boundary condition and by using the divergence of the respective
momentum equation to eliminate the Laplacian of pressure. Similarly, both
Beaver-Joseph conditions can be combined together by constructing the two-
dimensional divergence of the tangential components of the fluid velocity. The
upshot of these considerations is that these boundary conditions are trans-
formed to

5 0 1 ow Da 0 ow
BepDa——(Pws — —— 21 - — Z ™ (6.
er a(?:vg(v wy Pr; o1 + 2 Ag wy) (PTm¢ T + 1) 87 , (6.28)
- 0 dv/Da dwy OWn,
d— — —) = . 6.2
€T Bzs (w T D2 (6.29)

7. LINEARISATION OF EQUATIONS

The linearisation of the equation (6.27)and(6.26) and the related boundary
conditions is the resultant vector obtained by applying combining the rela-
tionships:

) = wp(zs)expli(pmz + gmy) + omt),
0,, ) = On(z3)expi(pm® + gny) + omt],
) = wp(z3)expli(pm® + gmy) + omtl, (7.30)
)

(t, X
(t, X
(t, X
(t,X) = 0s(xs)expli(przr + qry) + o5t
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The governing equation of two layers can be represented as a system of equa-
tions, called the basic equation. Linearisation quantities are applied (7.30) to
all z3-components of the basic equations, (6.27) and (6.26), to obtain

i
P—Tf(ch —aj)wy = (D} —a%)%e; — Raga}by,
afo = Wy + (D;Zc - afc)ﬁf, (731)
Da oy,
—7; ;Tm (D2 — a2)wy, = (D2 — a2)wn + Rama O,

GmOmbm = Wy + (D2, — a2,)0.
Where a2, = pZ +¢2,, a7 = p}+q7 are non-dimensionalised wave numbers in the
porous medium and fluid respectively. For a given set of physical parameters
and a,,, Ra,, is determined by the condition that the real part of oy and o,
are zero. However, in this particular problem it is non-trivial fact that oy
and o, are always real; in fact, there is a principle of exchange of stabilities.
Hence for a.given a,,, Ra,, is computed when o7 = 0, = 0. The eigenvalue
problem for o, and o is completed by specification of boundary conditions
at r3 = 2,13 = 1,23 = 0 and x3 = —1. Pressures are computed from the two-
dimensional divergence of the momentum equations whereas non-axial velocity
component are eliminated by judicious use of the incompressibility constraints.
Using these ideas, it can be verified from (5.23), (6.28) and (6.29) that the final
boundary conditions are:- Upper boundary x5 = 2

W =0, O,=0, (7.32)

Middle boundaries 3 = 1 and 3 =0

Gf = 6T9m, Dfo = Dmém, Wm — 6T9m
i dvD .
erd(Dpw; — Y="D3w;) = Dy, o (7.33)
OpJ o
d GTDCL(Df’U)f — 3afowf — Pdrfo’wf) = —(—QS—P—T; + I)mem,

3As a working rule, stationary convection is usually the only destabilising mechanism
when two effects are competing (viscosity and thermal here) but once another stabilising
effects such as magnetic field come into play, overstability now becomes possible, that is
stationary eigenvalue are fully complex
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Lower boundary z3 = —1
dy )
Dpp = %(—1 < x3 < 0)and(l < z3 < 2), a; = dap,
3
d’l/} (jz .
Dy = d—wg(o <z3 < 1),; of = ZOm (7.35)

where Dy = Dp,, since the two layers have the same width from 0 to 1.
8. RESULTS AND REMARKS

The marginal stability curves are computed for a thermally-driven convection
of a viscous fluid layer sandwiched symmetrically between two porous lay-
ers heated from below for isothermal rigid boundaries, with reciprocal thermal
conductivity ratio k=1 = 0.7, Darcy number § = 4 x 107, Beavers-Joseph con-
- stant aps = 0.1 and for a variety of reciprocal depth ratios ranging from 0.01
to 0.2. The results are illustrated in figures which show the relation between
Rayleigh number Ra,, and wave number a,, for different values of depth ratio.
To draw the figures showing separated curves, we used two different range:
for Rayleigh number as shown in figure 2 and 1. The table express the value
of Rayleigh number Ra,, versus wave number a,, for different value of depth
ratios as mentioned before. The three layers problem, the case of a porous
medium layer sandwiched symmetrically
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Wave No. a Critical Rayleigh No. R,
/ d=| 0.01 0.03 | 0.05 | 0.07 |0.09| 0.1 |0.12|0.14 | 0.2
1.0 11.24 | 10.51
2.0 0.57 9.84 | 9.26
3.0 14.34 13.78 | 12.88
4.0 20.93 | 20.10 | 18.50
5.0 29.63 | 28.43 | 25.53
6.0 40.36 | 38.62 | 33.47
7.0 53.08 | 50.62 | 41.64
8.0 71.65 | 64.36 | 49.24 | 0.06
9.0 79.75 | 55.56 | 1.06
10.0 103.01 | 96.68 | 60.32 | 2.07
11.0 123.56 | 115.01 | 63.63 | 2.97
12.0 146.05 | 134.58 | 65.78 | 3.81
13.0 170.48 | 155.16 | 67.11 | 3.81
14.0 196.84 | 176.53 | 67.88 | 5.36
15.0 225.11 | 198.39 | 68.31 | 6.11
16.0 255.29 | 220.46 | 68.53 | 6.85
17.0 287.37 | 242.49 | 68.66 | 7.59
18.0 321.34 | 264.21 | 68.75 | 8.33
19.0 357.18 | 285.38 | 68.85 | 9.09
20.0 394.88 | 305.82 | 69.00 | 9.85 | 0.21
21.0 434.42 | 325.35 | 69.22 | 10.63 | 0.92
22.0 475.79 | 343.83 | 69.51 | 11.43 | 1.62 | 0.21
23.0 518.96 | 361.22 | 69.88 | 12.25 | 2.32 | 0.84 | 0.00
24.0 963.92 | 377.45 | 70.35 | 13.09 | 3.02 | 1.46 | 0.22 | 0.00
25.0 610.64 | 392.51 | 70.90 | 13.95 | 3.74 | 2.10 | 0.73 | 0.28 | 0.02
26.0 659.10 | 406.43 | 71.55 | 14.84 | 4.46 | 2.74 | 1.26 | 0.73 | 0.38
27.0 709.28 | 419.25 | 72.29 | 15.76 | 5.19 | 3.39 | 1.79 | 1.19 | 0.74
28.0 761.15 | 431.02 | 73.13 | 16.71 | 5.94 | 4.05 | 2.33 | 1.66 | 1.10
29.0 814.687Z | 441.83 | 74.05 | 17.69 | 6.70 | 4.73 | 2.88 | 2.13 | 1.47
30.0 869.85 | 451.75 | 75.07 | 18.70 | 7.49 | 543 | 3.46 | 2.62 | 1.85
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Abstract

It is well-known that PSL(2, Z) is the group generated by the linear-fractional
transformations =z : 2 — —% and y : z — %, which satisfy the relations
2 = y3 = 1. We denote this modular group by G = (z,y : 2? = 1y = 1),
Let n = k%m, where m is a square-free positive integer and k is any non zero
integer. Then Q*(y/n) = {@ ta,cand b= “ZT_” are integers and (a, b, c) =

1} is a G-subset of the real quadratic field Q(y/m) for all k [8].
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In this paper we show that for each non-square positive integer n > 2, the
action of the group G on Q*(\/n) is intransitive.

1. INTRODUCTION

Let PSL(2,Z) be the modular group, that is, the group of linear-fractional
transformations z — Zjis’ where a, b, c,d are in Z and ad — bc = 1.

It is well-known that PSL(2, Z) is the group generated by the linear-fractional
transformations z : 2 — —% and y: z — Zzl, which satisfy the relations 2% =
y® = 1. For brevity we denote this modular group by G = (z,y : 22 = 3® = 1).
Note that G is the free product of two cyclic groups.

Let Q(v/m) = {a+by/m : a,b € Q}. An element a+by/m, b# 0, of Q(/m) is
called a real quadratic irrational number. It has been shown in [8] that every
real quadratic irrational number can be unlquely represented as “+‘/— where n

is a non-square positive integer and
Let n = k*m, where m is a Square—free positive integer and k is any non zero
integer. Then

Q*(vn) = {a+‘/— a,c and b = =2 are integers and (a,b,c) = 1} is a subset
of the real quadratic field Q(\/_ ) for all k.

For a = % € Q*(y/n); a and its conjugate & = a_cﬁ may or may not have
the same sign. If a and & have different signs, then « is called an ambiguous
number [8].

A set Q2 with an action of some group G on it, is said to be a G-set. In our case
the set Q(y/m) will be a G-set for G = (z,y : 2° = y®> = 1). Let O be a G-set.
Then we say that (2 is a transitive G-set or that G acts on 2 transitively if 2
is non empty and for any p, g in Q2 there exists a ¢ in G such that p = gq.

A subset ' of a G-set is called a G-subset if g € G = w? € Q' for each w € (V.
An action of G on Q(y/m) has been considered in [8]. It has been shown there
that the ambiguous numbers in @Q*(/n) are finite in number and that part of
the coset diagram containing these numbers forms a single closed path. It has
also been shown that the set Q*(y/n) is invariant under the action of G.

The exact number of ambiguous numbers in @Q*(y/n) has been determined in
[3], as a function of n. In [4], [5] it has been proved, with the aid of coset
diagrams, that for each prime p > 2, the action of the group G on the subset
Q*(y/P) of the real quadratic field Q(,/p) is intransitive whereas the action of
the group G on Q*(v/2) is transitive.

In this paper we generalize these results and prove that for each non-square
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positive integer n > 2, the action of the group G on a subset Q*(y/n) of the
real quadratic field Q(y/m) is intransitive.

In Section 3, we describe the classification of the elements of @*(y/n) for each
non-square positive integer n by using the notion of congruence. With tlie help
of this classification, we explore the G-subsets of Q*(y/n) in Section 4. These
G-subsets of Q*(y/n) are used to determine disjoint G-orbits of Q*(y/n). In
particular, we deduce that for each non-square positive integer n > 2. The
action of the group G on a subset Q*(y/n) of the real quadratic field Q(v/m)

is intransitive.
2. COSET DIAGRAMS

We use coset diagrams to study the action of the group G on the real quadratic
fields Q(y/m). In this case a coset diagram is just a graphical representation
of a permutation action of the group G. In the case of y, there is a need to
distinguish y from y 1. Since y is of order 3, the 3-cycles of y are represented
by small triangles, with the convention that y permutes their vertices counter-
clockwise. Fixed points of z and g, if they exist, are denoted by heavy dots.
Then the geometry of the figure obviously makes distinction between z-edges
and y-edges. ' o
Thus in the case of G the diagram consists of a set of small triangles repre-
senting the action of C3 = (y : y* = 1) and a set of edges representing the
action of Cy = (z : 22 = 1). '
This graph can be interpreted as a coset diagram, with the vertices identified
with the cosets of Stab,(G), the stabilizer of some vertex a of the graph, or as
L-skeleton of the cover of the fundamental complex of the presentation which
corresponds to the subgroup Stab,(G). A general fragment of the coset dia-
gram for the action of G on Q(y/m), where o € Q(y/m), will look as shown
in the following figure: ‘ H :
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3. A CLASSIFICATION OF THE ELEMENTS OF Q*(y/n)

a+c‘/’_7,b = T? of @*(\/p), p an odd prime,
with respect to odd-even nature of a, b, ¢ has been given in [2]. These results
have been generalized in [6], [7] by using the notion of congruence.

Before we proceed further, we have the following basic definition.

Let s be a fixed positive integer. An element o = @ € Q*(y/n) is said
to be of the form [u,v,w], where u,v,w are the integers if u = a(mod s),
v = b(mod s), and w = ¢(mod s)

Two elements o = “2/ = €°=n apd o at,‘/ﬁ,b’ = )2_ in Q*(\/n) are
said to be of the same form fa=a '(mod s), b= (mod s) = /(mod s). 1

a, o in Q*(y/n) are of the same form then we write a ~ o'

It is easy to see that the relation a ~ o, where a,a’ € Q*(y/n) is an equiva-
lence relation. For each value of s > 1, we get different equivalence classes of
elements of Q*(y/n) so we discuss these cases separately. It is interesting to
note that the classification obtained for s = 2 is actually the classification of
the elements of Q*(/n) with respect to odd-even character of a, b, c. Moreover,
the equivalence classes of elements of Q*(1/n) obtained for s = 2 do not give
any useful information except that if n = 1(mod 4) then the set consisting of
all elements of Q*(\/n) of the form [1,0,0] is invariant under the action of the
group G.

In [7] we have classified the elements of Q*(y/n) with respect to congruence
modulo s = 4,8. These classes of the elements of Q*(1/n) are very useful for
the study of the action of this modular group G = (z,y : 2> = ¢* = 1) on
Q" (V/n).

We here enlist these classifications for use in the sequel.

1. If n = 0(mod 4) then the equivalence classes of elements of Q*(y/n) are
[07071]7 [0707.3]7 [0,170]’ [0)350]’ [171)1]7 [17373]7 [2’071]’ [2’073], [271?0]7 [2’3’0]7
13,3,3] and [3,1,1].

2. If n = 1(mod 4) then the equivalence classes of elements of Q*(y/n) are
0,3,1], 10,1,3], [1,0,1], [1,1,0], [1,0,3], [1,3,0], [2,3,1], [2,1,3], [3,0,3], [3,3,0],
3,0,1], [3,1,0], [1,2,2] and [3,2,2].

These are the only equivalence classes of elements of Q*(y/n) if
n = 5(mod 8). If n = 1(mod 8) then the equivalence classes of elements

of Q*(y/n) are [1,2,0], [1,0,2], [3,2,0}, [3,0,2], [3,0,0], [1,0,0], [0,3,1], [0,1,3],
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[1,0,1], [1,1,0], [1,0,3], [1,3,0], [2,3.,1], [2,1,3], [3,0,3], [3,3,0], [3,0,1], [3,1,0]
and there are no further classes. .

3. If n = 2(mod 4) then the equivalence classes of elements of Q*(y/n) are
[07271]7 [051:2]7 [0>2’3]7 [0>3>2]7 [171a3]a [1’3?1]7 [2?2?1]7 [27273]7 [2’172]7 [27372]?
[3,1,3] and [3,3,1]

4. If n = 3(mod 4) then the equivalence classes of elements of Q*(\/n) are
0,1,1], [0.3,3], [1.2,1], [1,1,2], [1,23], [1.3.2], [2,1,1], [2,3,3], [3,2,3], [3,3,2],
[3,2,1] and [3,1,2].

4. G-SUBSETS OF Q*(/n)

In this section we determine the G-subsets of @*(y/n) with the help of the
classification of the elements of Q*(y/n) with respect to congruence modulo 4.

Theorem 4.1

Let n =0 or 3(mod 4), be a non-square positive integer. Let

A= {" ¢ Q*(/n) with ¢ = 1(mod 4)},

B = {# € Q*(v/n) with ¢ = 3(mod 4)}. Then AU{Z* : &« € A} and
BU{=' : @ € B} are both G-subsets of Q*(v/n).

Proof

Keeping in view the classification of the elements of Q*(1/n) with respect to
congruence modulo 4, we consider the following two cases.

Case I  If n = 0(mod 4) then the set A = {# € Q*(y/n) with
¢ = 1(mod 4)} consists of elements of the form [0,0,1], [1,1,1], [2,0,1] and
[3,1,1] only. Also if o = “+C\/E,b = "‘zc_", then z(a) = “atﬁ = aljl\/ﬁ with
ay = —a,61 =C,C =b.
Thus = maps elements of the form [0,0,1], [1,1,1], [2,0,1] and [3,1,1] onto the
elements of the form [0,1,0], [3,1,1], [2,1,0] and [1,1,1] respectively.
Hence AU{=! : @ € A} consists of elements of Q*(y/n) which are of the form
[0,0,1), [0,1,0], [1,1,1], [2,0,1], [2,1,0] and [3,1,1] only.
Next, since y(a) = _a+ll’)+\/ﬁ = “”CL‘/E with ay = —a+b,by = —2a+b+c,co = b.
So y maps elements of the form [0?0,1], [0,1,0], [1,1,1], [2,0,1], [2,1,0] and [3,1,1]
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in Q*(y/n) onto the elements of Q*(y/n) of the form [0,1,0],{1,1,1], [0,0,1],
[2,1,0], [3,1,1] and [2,0,1] respectively.

Since G = (x,y : > = y* = 1) is generated by z(z) = =}, y(z) = =1 each
g € Gis aword in z,y or y?. So it is enough to show that if & € Q*(\/n) is
from any one of the forms [0,0,1], [0,1,0], [1,1,1], [2,0,1], [2,1,0] and [3,1,1] then
z(a) and y(«) are also from these forms.

This shows that the set AU{=! : o € A} is a G-subset of Q*(y/n).

Similarly we can prove that the set BU{=! : & € B}, where

B = {@ € Q*(yv/n) with ¢ = 3(mod 4)}, consisting of all elements of the
forms [0,0,3], [0,3,0], [1,3,3], [2,0,3], [2,3,0] and [3,3,3] is also a G-subset of
Q" (V).

Case II  Let n = 3(mod 4). Then it is easy to prove that the set AU{=}:
« € A} consisting of all elements of the forms [0,1,1], [1,2,1], [1,1,2], [2,1,1],
[3,2,1] and [3,1,2] is a G-subset of @Q*(y/n). Similarly the set

BU{=! : a € B} consisting of all elements of the forms [0,3,3], [1,2,3], [1,3,2],
[2,3,3], [3,2,3] and [3,3,2] is also a G-subset of Q*(y/n). Hence the proof is
completed. '

Theorem 4.2

Let n = 1(mod 4). Then the set of elements of @*(y/n) of the form [0,3,1],
0,1,3], [1,0,1], [1,1,0], [1,0,3], [1,3,0], [2,3,1], [2,1,3], [3,0,3], [3,3,0], [3,0,1] and
[3,1,0] is a G-subset of Q*(y/n). Similarly the set of elements of Q*(y/n),
where n = 5(mod 8), of the forms [1,2,2], [3,2,2] is a G-subset of Q*(y/n).
However, if n = 1(mod 8), then the set of elements of Q*(y/n) of the forms
[3,2,0], [3,0,2],[3,0,0], [1,0,0], [1,2,0] and [1,0,2] is also a G-subset of Q*(\/n).

Proof

Proof is analogous to the proof of Theorem 4.1.
Finally, we conclude this paper with the following remarks.
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Remarks 4.3

1. @(/n)= {@ : % € Q*(v/n),a is odd ,‘127_” and
c are both even integers } and Q*(v/n)\Q'(v/n),
where n = 1(mod 4), are both proper G-subsets of a G-set Q*(\/n).

2. If a € Q'(y/n), then o C Q'(\/n).

3. If a € (Q*(v/n)\Q'(/n)), then the orbit a® C (Q*(v/n)\Q' (V/n)).

4. (/n)¢ and (—/n)¢ are disjoint orbits of Q*(y/n) for all non square
positive integers n = 0 or 3(mod 4), where if n = 1(mod 4), then (y/n)¢
and (#)G are disjoint orbits of Q*(y/n).

5. In the case n = 2(mod 4),n # 2, we have:
For ¢ = 1(mod 8) and ¢ = 5(mod 8), (%\/ﬁ)a and ('IJ“C—,‘/T_L)G are two of
the disjoint orbits of Q@*(y/n).

6. In [4], it was proved that the action of the group G on Q*(v/2) is tran-
sitive. The intransitivity of the action of G on Q*(1/n), n # 2, follows
from Theorems 4.1, 4.2 and Remark 4.3(5).
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~Abstract

We establish a common fixed point theorem for two pairs of compatible map-
pings under a new contractive condition, which is independent of the known
contractive definitions. This theorem improves various known results.
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1. INTRODUCTION

The study of common fixed point of mappings satisfying contractive type
conditions has been a very active field of research activity during the last two
decades. The most general of the common fixed point theorems pertain to
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four mappings, say A, B, S and T of a metric space (X,d), and use either a
Banach type contractive condition of the form,

d(Az, By) < hm(z,y), 0<h <1, (1)

where

m(x,y) = max{d(Sz, Ty), d(Az, Sx), d(By, Ty), [d(Sz, By) 4+ d(Az,Ty)]/2},

or, a Meir-Keeler type (€,0)-contractive condition of the form, given ¢ > 0
there exists a ¢ > 0 such that

e <mz,y) <e+d=d(Az,By) <e (2)
or, a ¢-contractive condition of the form

d(Az, By) < ¢(m(z,y)), (3)

involving a contractive gauge function ¢ : Ry — R, is such that ¢(t) < ¢ for
each £ > 0.

Clearly, condition (1) is a special case of both conditions (2) and (3). A ¢-
contractive condition (3) does not guarantee the existence of a fixed point
unless some additional condition is assumed. Therefore, to ensure the exis-
tence of common fixed point under the contractive condition (3), the following
conditions on the function ¢ have been introduced and used by various authors.

(I)’ ¢(t) is non decreasing aﬁd t/(t — f(t)) is non increasing ([2]),

(IT) ¢(t) is non decreasing and lim ¢"(t) =0 for each t > 0([3], [8]),

(III) ¢ is upper semi continuous ([1],[3], [9], [13],[14]), or equivalently,

(IV) ¢ is non decreasing and continuous from right ([23]).

It is now known that (e.g. [3],[16])if any of the conditions (1), (I1), (III) or
(IV) is assumed on ¢, then a ¢-contractive condition (3) implies an analogous
(€, §)-contractive condition (2) and both the contractive conditions hold simul-
taneously. Similarly, a Meir-Keeler type (e, §)-contractive condition does not
ensure the existence of a fixed point. The following example illustrates that
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an (€,9)-contractive condition of type (2) neither ensures the existence of a
fixed point nor implies an analogous ¢-contractive condition (3).

Example 1

([16]): Let X = [0,2] and d be the Euclidean metric on X. Define f: X — X
by fe =(1+z)/2if z < 1; fx = 0if z > 1. Then, it satisfies the contractive
condition :

e < max{d(z,y),d(z, fz),d(y, fy), [d(z, fy) + d(fz,y)]/2} < e+ 5

= d(fz, fy) <e, with §(¢) =1 fore > 1 and d(¢) =1 —e€ for e < 1 but f does
not have a fixed point . Also, f does not satisfy the contractive condition

d(fz, fy) < ¢(max{d(z, y)‘»yd(w? fx),d(y, fy), [d(z, fy) + d(fz,y)]/2}),

since the desired function ¢(t) cannot be defined at ¢t = 1.

Hence, the two type of contractive conditions (2) and (3) are independent
of each other. Thus, to ensure the existence of common fixed point under the
contractive condition (2), the following conditions on the function ¢ have been
introduced and used by various authors. ‘

(V) 4 is non decreasing ([12], [13]),

(VI) 4 is lower semi-continuous ([7], [8]).

Jachymski [3] has shown that the (e, §)-contractive condition (2) with a non-
decreasing § implies a ¢-contractive condition (3). Also, Pant et al.[16] have
shown that the (e, §)-contractive condition (2) with a lower semi continuous
9, implies a ¢-contractive condition (3). Thus, we see that if additional con-
ditions are assumed on ¢ then the (e, d)— contractive condition (2) implies
an analogous ¢-contractive condition (3) and both the contractive conditions
hold simultaneously.

It is thus clear that contractive conditions (2) and (3 ) hold simultaneously
whenever (2) or (3) is assumed with additional condition on  or ¢ respec-
tively. It follows, therefore, that the known common fixed point theorems can
be extended and generalized if instead of assuming one of the contractive con-
dition (2) or (3) with additional conditions on § and ¢, we assume contractive
condition (2) together with the following condition of the form.



42 K. Jha, R.P. Pant & S.L. Singh

d(Az, By) < max{k,[d(Sz,Ty) + d(Az, Sz) + d(By, Ty)],
kold(Sz, By) + d(Azx,Ty)]/2} for 0 < k1 <1, 1<k <2.

We prove a common fixed point theorem for four mappings adopting this ap-
proach in this paper. This gives a new approach of ensuring the existence
of fixed points under an (e, §)-contractive condition consists of assuming addi-
tional conditions which are independent of the ¢-contractive condition implied
by (V) and (V).

Two self-mappings A and S of a metric space (X, d) are said to be compatible
( see Jungcek [7]) if, lim,d(ASz,, SAz,) = 0, whenever z,, is a sequence in X
such that lim,Ax, = lim, Sz, = t for some ¢ in X. It is easy to see that
compatible mappings commute at their coincidence points.

To prove our theorem, we shall use the following lemma of Jachymski [3]:

Lemma (2.2 of [3]):

Let A, B, S and T be self mappings of a metric space (X, d) such that
AX c TX, BX C SX. Assume further that given ¢ > 0 there exists 6 > 0
such that for all z, y in X

€<Mv(1',y)<€+(5:>d(A£B,By)S€ (4)

and ‘ :
d(Az, By) < M(z,y), whenever M(z,y) > 0, (5)

where M(z,y) = max{d(Sz, Ty), d(Az, Sz), d(By, Ty), [d(Sz, By)+d(Az, Ty)]/2}
Then for each zy in X, the sequence yn in X defined by the rule <

Yon = Azop = TTont1; Yon+1 = Bl‘2n+1 = Sl‘zn+2

is a Cauchy sequence.
Theorem 1

Let (A, S) and (B, T) be compatible pairs of self mappmgs of a complete metrlc
space (X, d) such that
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(i) AX CTX, BX C SX,

(ii) given € > 0 there exists 6 > 0 such that for all z, y in X
e < M(z,y) <e+ 6= d(Az, By) <,

(iii) d(Az, By) < max{k,[d(Sz,Ty) + d(Az, S:E) + d(By, Ty)],
kold(Sz, By) + d(Az, Ty)]/2},for 0 < ky <1, 1 < kg < 2.

If one of the mappings A, B, S and T is continuous then A, B, S and T have
unique common fixed point.

Proof

Let g be any point in X. Define sequences z, and vy, in X given by the rule
Yo = AT = TTon11; Yont1 = Bony1 = STonya. (6)

This can be done by virtue of (7). Since the contractive condition (i) of this
theorem implies the contractive conditions (4) and (5) of above lemma (2.2 of
Jachymski), so using this Lemma, we conclude that y,, is a Cauchy sequence
in X. But X is complete, so there exists a point z in X such that y, — 2.
Also, using (6), we have

Yo = AZon = TToni1 — 2;Y2ns1 = BTony1 = SToniz — 2. (7)

Suppose that S is continuous. Then SSxs, — Sz, SAxe, — Sz and compat-
ibility of A and S implies that ASz,, — Sz. Also, since AX C TX, corre-
sponding to each value of n, there exists 2o, in X such that ASzq, = Tzo,.
Thus we have ASxzq, = Tz, — Sz and SSxz,, — Sz. We show that
limpBza, = Sz. If not, then there exists a subsequence {Bzy,} of {Bza,}, a
number r > 0 and a positive integer N such that for each m > N, we have
d(ASTam, Bzoy,) > 1, d(Sz, Bzam) > r and in view of (4i7), we get

d(ASTam, Bzom) < max{ki[d(SSTom, T 2om ) +d(ASTam, 589y )+d(Bzom, Tzom)],

kold(SSTom, Baom) + d(ASTom, T'22m)]/2},

which, on letting m — oo, yields d(Sz, Bzam) < d(Sz, Bzom), a contradiction.
Hence, we get lim,, B2y, = Sz. Also, we claim that Az = Sz. ;
If Az # Sz, then by virtue of (ii3), for sufficiently large values of n, we get

d(Az, Bzy,) < max{k,[d(Sz,Tza,) + d(Az,Sz) + d(Bzop, T z2,)],
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ko[d(Sz, Bza,) + d(Az, T22,)]/2},

which, on letting n — oo, yields d(Az, Sz) < d(Az,Sz), a contradiction.
Hence, we have Az = Sz. Again, since AX C TX, there exists a point w in
X such that Az = Tw. If Bw # Tw, then applying the condition (iii), we get

d(Az, Bw) < max{ki[d(Sz,Tw) + d(Az, Sz) + d(Bw, Tw)],
kold(Sz, Bw) 4+ d(Az, Tw)]/2},

which yields, d(Az, Bw) < d(Az, Bw), a contradiction. Hence, we have
Az = Bw and so, Sz = Az = Tw = Buw.

Since compatible maps commute at their coincidence points, we get

ASz = SAz and BTw = TBw. Moreover, AAz = ASz = SAz = S5z and
BBw = BTw = TBw = TTw. If Az # AAz, then using condition (ii), we
.obtain

d(Az, AAz) = d(AAz, Bw) < max{d(SAz,Tw),d(AAz, SAz),d(Bw, Tw),

[d(SAz, Bw) + d(AAz, Tw)]/2},

which yields d(Az, AAz) < d(AAz, Bw), a contradiction. Hence, we have
Az = AAz = SAz and so Az is a common fixed point of A and S. Similarly,
Bw(= Az) is a common fixed point of B and T The uniqueness of the com-
mon fixed point follows from (ii). The proof is similar when 7T is assumed to
be continuous in place of S. Moreover, since AX C TX and BX C §X, the
proof follows on the similar lines when A or B is assumed to be continuous.
This establishes the theorem.

We now give an example to illustrate the above theorem.

Example 2

Let X = [2,20] and d be the Euclidean metric on X. Define A, B, S and
T:X — X as follows:

Az = 2 for each z,

Br=2if z<4 or 25 Br=3+z if 4<x<5;

Sex=xz if <8, Sx=8 if z>8;
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Te=2 if <4 or >5, Te=94+2x if 4<x<5.

Then A, B, S and T satisfy all the conditions of the above theorem and have a
unique common fixed point z = 2. It can be seen in this example that A, B, S
and T satisfy the condition (ii) when d(¢) = 1if e > 6 and d(¢) = 6—¢€ if ¢ < 6.
Thus, d(€) is neither non decreasing nor lower semi continuous. It can also be
verified that the mappings A, B, S and T do satisfy the contractive condition
(iii) with k&) = 1/2 and k; = 1. However, A, B, S and T do not satisfy the ¢-
contractive condition (3) since the required function ¢(¢) can not be defined at
t = 6. Hence we see that the present example does not satisfy the conditions
of any previously known common fixed point theorem for contractive type
mappings, since neither the mappings satisfy a ¢-contractive condition nor 4
is lower semi continuous or non decreasing.

Remarks

Pant [21] has shown that condition (iii) of the above theorem 1 is independent
of ¢-contractive conditions. The result of Pant is a particular case of this
Theorem 1 when k; = 0. So our result extends the result of Pant [21] and
gives a generalization of Meir-Keeler type common fixed point theorem. Also,
as various assumptions either on ¢ or on § have been considered to ensure the
existence of common fixed points under contractive conditions, so our Theorem
1 improves various results wviz, [5, 6, 18, 20] and all other similar results for
fixed points. :
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Abstract

The method of quasilinearization coupled with the method of lower and up-
per solutions is applied to systems of nonlinear differential equations with a
singular matrix. It generates sequences of approximate solutions which are
convergent to the solution and the convergence is quadratic or semiquadratic.

1. INTRODUCTION

Let yo, 20 € C1(J, R™) with yo(t) < 20(t), wya(t) < 24(t) on J and define the
following set

0= {(t w,v) 0 Yol(t) Su<2(t), yt) Sv<z@), ted uve ]Rm}

In this paper, the vectorial 1nequahtles mean that the same inequalities hold
between their corresponding components. We consider the system of differen-
tial equations

AZ'(t) = f(t,z(t),2'(t)), t€ J=][0,b] (1.1)

with the initial condition
z(0) = zo € R™ (1.2)

assuming that A is a singular square matrix of order m and f € C(Q, R™). .-
The method of quasilinearization is described by Bellman [1}, Bellman and
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Kalaba [2], and has recently been generalized in recent years by Lakshmikan-
tham and various coauthors to apply to a wide variety of problems, (see, for
example, [5]-[9] and [3]). In this paper we apply this method to problems of
type (1.1-1.2). If we replace f by the sum of convex and concave functions
then corresponding iterations converge to the solution of problem (1.1-1.2)
and this convergence is quadratic or semiquadratic. This paper generalizes
the results of [4]. Note that if f does not depend on the third variable with a
unit matrix in the place of A, then problem (1.1-1.2) is considered in [7].

2. ASSUMPTIONS

Consider the system of differential equations of the form:

Az'(t) = [(t,z(t), ' (1) +g(t, 2(t),2'(t)) = F(t,z,2), t € J = [0, 8],
.’E(O) = zo € R™,

(2.1)

where f,g € C(J x IR™ x IR™, IR™). Note that problem (2.1) is identical with

the following

{ 7'(t) = (A+ B) Y [F(t,z,2') + B'(t)], t € J,
z(0) = zo

provided that B is an m x m matrix such that (4 + B)~! exists. A function
v € CY(J,IR™) is said to be a lower solution of problem (2.1) if

V(1) < (A+ B)UF(t,v(t),v'(£)) + BU ()], ted, v(0)<

and an upper solution of (2.1) if the inequalities are reversed.

Let us introduce the following assumptions:

H,. There exists a square matrix B of order m such that the matrix A+ B is
nonsingular and (A+ B)~!B > 0; moreover F : ) — IR™ satisfies the Lipschitz
condition with respect to the last variable, so for u, a,& € IR™ the condition

I(A+ B)'[F(t,u,a) — F(t,u,&)] < (A+ B)"'Bla — @

holds for yo(t) < u < 20(t), Yh(t) < o, & < zj(t) on J, where |a| = [Jas],- -+, |awn|]”
for « € R™.

Hs. fi, 92, foe, Goe exist, are continuous, (A + B)~!f, is non increasing in
the third variable, (A + B) lg, is nondecreasing in/"the third variable, and

/
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(A+B) ' fpr >0, (A+ B) g, <0.
Hs. (A+ B) Y fu(t, 90, 25) + 92(¢, 20,y5)] > 0 for t € J.
H,. There exist m x m matrices C' > 0 and D > 0 such that

A+ B) Llu o)~ Lltu o] < O3 o—u
(44 B) M au(t ) - aultw )l < DYl

for yo(t) < u < 2(t), yh(t) < v, v < 2)(t), t € J with v=[vy, -+, 0,7,
77:[1717"’77)771] .

3. MAIN RESULTS

The next lemma is a special case of Theorem 1.1.4 [7].
Lemma 1

Assume that s;;(t) > 0, t € J fori # j, where S = [s;;] is a continuous square
matrix of order m. Let

pt) < SHp(t), tel
p(0) < 0=1[0,---,0]T

Then p(t) < 0 on J.

Now we are in a position to prove the following result:

Theorem 1

Assume that f,g € C(2, R™), and

(1) o, 20 € C*(J, IR™) are lower and upper solutions of problem (2.1) and
moreover yo(t) < zo(t) and y,(t) < z4(¢) on J,

(2) the assumptions H;-H, hold,

(3) problem (2.1) has at most one solution.
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Then, there exist monotone sequences {y,}, {z,} which converge uniformly to
the unique solution z of problem (2.1). Moreover, the convergence is quadratic
with respect to u and it is semiquadratic with respect to v’ for u = y, and
U= 2,.

Proof. Let u,v,a, 3 € IR™, and yo(t) < v < u < 2(t), y(t) < B < «
z5(t), t € J.

Using the integral mean value theorem we obtain

(A+B)7'[F(t,u,a) — F(t,v, )]

IN

= (A+B) YF(t,u,a) — F(t,v,a) + F(t,v,a) — F(t,v, 8)]

= (A+B)"H{[[3 Falt, su+(1=s)v,)ds| (u = v)+ F(t,v,a) = F(t,v,8)} .
Hence

(A +B)7'F(t,u,a) — F(t,v, )]
> (A + B)—l {[fm(tvvva) + gm(taua a)] (u - U) - B(O./ - ﬁ)}?

by conditions H; and Hj.
Let ypnt1, 2n41 be the solutions of linear IVP’s:

{yim(t) = (A+B)" H{F(t,yn, ¥p) + Byp () +V (¢t Yn, 20) [Yn1(t) — v ()]},
yn+1(0) = Zo

(3.1)

and

{ Z’;lﬂf-l((t; = (A+B)_l {F(ta Zny Z;z) + BZ;L(t)‘}’V(ta Yn, Zn).[zn+1(t) - Zn(t)]}7
zne1(0) = xg

for n = 07 1> T where V(t7y7 Z) = f:ﬂ(t7ya Z/) + gw(t7 Z;y/)'
First of all, we shall prove that

Yo(t) < yi(t) < z1(t) < z(t), te€J, (32)
Yo(t) <an(t) < 21(t) < z(t), teJ :

Put p = yo — 31, so p(0) < 0. Then we see that

P(t) < (A+B)"Y{F(t,y0,50) + Byp(t) — F(t,v0,4) — Byo(t)
- V(t,yo,zo)[yl( ) — o (t)]}
= (A+ B) 'falt yo, 20) + ga(t, 20, yo)Ip(t), t € J.
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Assumption Hz and Lemma 1 yield p(t) < 0 on J proving that yo(t) < yy(¢)
on J. Since (A + B) 7! [f.(t, vo, 20) + 92(t, 20,75)] = 0, and p(t) < 0 on J; then
p'(t) < 0,80 y5(t) < yi(t) on J. By the same way we can show that z1(t) < z(t)
and 21(t) < zy(t), te€ J

Put p = y; — z1. Then, by (3.1) and Assumption Hs, we have

P'(t) = (A+B)"{F(t vo,y0) — F(t, 20, 2) + Blyy(t) — 2(t)]
+V (t, 90, 20)[11(t) — yo(t) — 21(t) + 20(2)]
< (A+ B) " ~[fa(t, 10, 20) + 92(t, 20, 20)][20(t) — o ()]
+B[zy(t) = yo(t)] + V(t, %o, 20)[y1(t) — yo(t) — Zl(t) + 20(t)]
+Blyo(t) — 2 (1))}
= (A + B) " M{[fa(t, 90, 2) + 94 (2, 20, ¥5)|0(t)
+[92(t, 20, %0) — 92(t, 26, 20)][20(t) — vo ()]}
< (A+ B)"'[fo(t,v0, 2) + 92(t, 20, %0)]p(t), p(0) = 0.

Hence, we have p(t) < 0, and then p/(¢) < 0 on J showing that y;(¢) <
2(t), yi(t) < 21(t), t € J. It means that (3.2) holds.

In the next step we need to show that y; and z; are lower and upper solutions
of problem (2.1), respectively. Then, by (3.1) and assumption Hs, we obtain

y1(t) = (A+ B)"{F(t,v0,y0) + Bup(t) + V(t, 50, 20)[11 () — yo(t)]}
< (A+ B)"YF(t,y1,91) + Byi ()
—[fa(t, 90, 91) + 92 (&, v, YD1 () — o (t)] + V (£, 90, 20) 11 (1) — yo(t)]}
= (A+ B) " MF(t,y1,51) + Byi(t) + [fo(t, %0, 25) — fa(t, 50, 41)
+93(t, 20, ¥4) — 92(& v, ¥ (B) — wo(8)]} '
<(A+ B) '[F(t,y1,41) + Byi(t)],

/\

and

21(t) = (A+ B)"{F(t, 20, 20) + Bzo(t) + V (T, 40, 20) [21(t) — 20(8)]}
Z (A+B)_1{F(tazl7zi)+Bzi(t) - )
et 21, 20) + 92(t, 20, 20)][20(2) — 21(1)] + V(£, o, 20) [21 (1) — 20(2)]}
= (A + B)_l{F(t’ 21y Zi) + Bzi(t) + [fx(t’ 215 z(l)) - fw(t> Yo, Z(l))
+9x(t, 20, 20) = 9o (t, 20, 45)][20(2) — 21(2)]}
> (A+ B)T[F(t, 21, 21) + BA (1))

showing that ¥, 21 are lower and upper solutions of problem (2.1), respectively.
Let us assume that

1(t), teJ,

Z(t)f Rl—
(t) < % (1), teJ,
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and let yx, 2, be lower and upper solutions of problem (2.1) for some k > 1.
We shall prove that:

{ k() < ey () < zpa(t)
Yi(t) < yl/€+1<t) < zllc+1 (t)

Put p = yx — yxr1. Then

pt) < (A+ B)"{F({ yeui) + Bup(t) — F(t,ye, 4i) — Byi(t)
=V, vk, 20) e () — ve (0]} = (A + B)"'V (£, ye, 26)p(t)

with p(0) = 0. Note that
(A + B)—l‘/(t: Yk, zk)

(t), teJ,

2k
21, te .

(3.3)

IAIA

= (A+ B) 7 [fo(t Y 24) + 9 (t, 20, Y1)
> <A+ B);l[fa?(t:yowzé)) +gm<t7207y6)] Z 07 t e J7

by assumptions H, and Hs. Hence, by Lemma 1, p(t) < 0, p'(t) <0, t € J
showing that yx(t) < yk+1(t) and v, () < yiy1(t), t € J. Using the same
argument we can prove that z,,1(t) < zi(t), 2,,1(t) < 2,(1), t € J.

Let p = yry1 — 2k41. Then p(0) = 0. Using relation (3.1) and Assumption I,
we get

Pt) = (A+ B)"H{F(t,yr, uk) + Byi(t) + V(t, yr, 26) [Wrr1 (t) — yr(t)]
—F(t, 21, 2,) — Bz (t) — V(t, Y, 21) [ze41 (t) — 26(2)]}
< (A+ B) N =[falt, yr 21) + go(t, 21, 2)][26(t) — yr(t))]
V(Y 21) k1 () — Y () — 2641 (8) + 21(8)]}
= (A+ B) " H[g2(t, 2k, Uz) — 9(t, 2k, 2)][2(t) — Y (1)]
+V (¢, yr, 2e)p(t) }
< (A+ B)"'W(t,yk, 2z)p(t), t € J

It proves that yxi1(t) < zp41(t), and yp,,(¢) < 2., (t), t € J, so relation (3.3)
holds.

Hence, by induction, we have
Yo(t) S ya(t) <o Syn(t) S zuft) < --- < z(t) S %(t), €
yo(t) S uh(t) < - < yp(t) S z,(8) < --- < 24(8) < %), teJ

for all n.
Employing standard techniques, it can be shown that y, — y, v, — v/, 2, —
z, 2, — 2/, y,z € CY(J,IR™). Lebesgue theorem yields that ‘

y(t) =axo+ (A+ B [F(s,9(5), 4 (s)) + By'(s)] ds%, ted,
2(t) =axo+ (A+ B) [ [F (s, 2(s),2/(s) + B2 (s)] ds |, teJ
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showing that y and z are solutions of problem (2.1). Hence, by Assumption
(2.1), we have y = z = = on J is the unique solution of (2.1).
The order of convergence of sequences {y,}, {z.}, {¥.}, {#.} is considered in
the next part of our considerations. For this purpose, we put

Pn1 == Yn41 20, Gry1 =21 —220 on J,

and note that p,.1(0) = ¢,1(0) = 0 for n > 0. Using the integral mean value
theorem and Assumptions H,, H,, H,, we get

phyi(t) = (A+ By H{F(t,z,2') + Bz'(t) — F(t,yn,2') + F(t,yn, ')
—F(t, YY) = V(s 20) [Wns1 (8) — 2(t) + 2(t) — yn(t)] — Bylp(t)}
< (A+B) 7 {[fi Falt, 52+ (1= s)yn,@')ds] pa(t) + 2BIp,(¢)]
AV (Y, 20) s (8) = Pa()] }
< (A+ B) HIfolt, 2, 2') = folt, Yn, ')+ folt, Yn, &) — fult, yn, 27,)
+92(t, Uny ') — Gu(t, 20, ') + G (t, 205 2") = gu(t, 20, U5, )|Pn(2)
+V (b, Y, 20)Pn 11 (£) +2B[p), (1)}
< (A+B)"H{pT () [£5 fealts 52+ (1= 8)yn, 2')ds| pa(t)
~[pa(t) + @] |5 geo(t, 59n + (1 = 8)20, 2')ds| pa(t)

HV (t, Y, 20)Prs1 (2) + 2BIp, ()] }

301 (O1Con(0) + 32 P (0 Do),

=1 =1
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This implies
Praa(t) < (Lo + La)pi(t) + 5 La[ph(t) + qa(8)] + (K1 + Ka)pan(t)
+2CPE(t) + SCW|g, (t)|* + ZDp2(t) + s DW[pl, (t)?
+2(A+ B)"'Blp,,(t)|
= Kppa1(t) + Lsp2(t) + 3 L2g2 (t) + s DWpl, (1) + 3CW g, (1)
+2(A+ B)™'Blp,,(t)]
(3.4)

2 2
L s Pmm

[(A+B) Y| fal < Lis [(A+B)7 D 1ghl < Lo,

i=1 =1

with p2 = |, and

Ly=1Iy+3L,+2(C+ D), (A+B)f, <K,

(A""B)ilngKQ, W:[U}ij]: U}ij:l, K=K, + K,

where Ly, Ly, K1, Ky and W are m x m matrices, and Iy, Ly, K > 0. There
is no loss of generality assuming that K ' exists such that k;; > 0, where k;;
repsesents the components of this matrix.

Hence

posi(t) < 5 R0 [Lapd(s) + L Lagi(s) + s DW b, (s)[2 + 5CW g, (s) )

+2(A + B)_lB’p;(‘s)l } ds, t € J.
This implies

oo @l < A @1+ Azl O+ As a7, O
+Aemae |4, O]+ Asma I 1)
(3.5)
]T

where [Jw||* = [Jw1)?, -+, Jwnl?]" , w € IR™, and

1 1
Ag =K A, = AgLs;, A :EAOL% Az = §A0DW»
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Ay = %AOOW, As = 2A0(A+ B)'B.
Combining (3.4) and (3.5) we obtain
maxiey ||pr 1 ()] < (KA1 + La) max lpn (1)1
+ (K Az + 5 L2) max g ()]
+ (K As + ; DW ) max||g}, (1)
+ (K Ay + 5CW) max|iq, (¢)]?
+(K As + 2(A + B)“lB) max [|py, (£)]]-

Using the similar argument we get

g (t) = (A+ BY Y F(t,z,2)) — F(t,z,2)) + F(t,x,2)) — F(t,z,7')
: +B[z,(t) — z'(t )] + V(t,Yn, 2 n)[zn+1( ) — 2t )]}
< (A+B)H{|fo Falt,szn+

(1 8), 2,)ds| gu(t) + 2B|4,(t)]
+V (1, Yy 20) a1 (1) = aal®)] |
< (A+ B) H{folt, 20, 20) = folt yn, 20) + 95(8, 2, 2) — Ga(t, 20, 27)
+95(t, 2n, 20) = 9a(t, 20, Yp)lan (8) + 2Bl @ (8)] + V(£ Un, 20)gnaa (8)}
< (A+ B) " {[aa(t) + puO) [fy faxlt, sznt (1 = 8)yn, 24)ds] au(t)
L o 9as(t, sm + (1= 8)2n, 2)ds| 4a(t) + 2B|d, (1) }
+D Z 1€ (t) + D (D)l (t) + K ()

< an+1( ) + 5 Lupa(t) + [3L1 + Ly + mD} @ (t) + 3 DW P, (1)

+1DW]g,(t )|2 +2(A+ B)"'Bld,(t)].

a7
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Hence

max g1 (1) < By max |[pa(t)]|* + B2 max |lgn(t)||* + Bs max |[p}, (t)]|*

I”

’ ’
+B3 Htlea}(an(t) + A5 TE%XHQTL(t)“a

where
1 3 1
By = §A0L1, By = A §L1 + Le+mD|, B3= EAODW

Combining this with the last relation for ¢, ; we get

max ¢y ()] < Bamalpa(t)]? li I

teJ + B5 I?EE?IJX an(t)

/
+ By max |, (1)

’ 2 !
+Bsg Htlez?IJX an(t)” + B I?EE?IJX ”qn(t)Ha

where
By =KBi+ 3L, Bs=KBy+ 3L+ Ly +mD,
B6:KB3+%DW, B7:KA5+2(A+B)_1B

It ends the proof.

Remark 1. Tf (A + B)™!' and B are positive, then we can omit the ma- -
trix (A + B)~! in the assumptions of Theorem 1; for example, the Lipschitz
condition in Assumption H; takes now the form

|\F(t,u,v) — F(t,u,?)| < Blv —1|.
Under such modified Assumptions H; — Hy, the assertion of Theorem 1 holds.
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Abstract

In this paper we introduce the notions of fuzzy subalgebras and d-ideals in
d-algebras, and investigate some of their results.

1. INTRODUCTION

Y. Imai and K. Iseki [1, 2] introduced two classes of abstract algebras: BCK-
algebras and B(C'I-algebras. It is known that the notion of BCT-algebras is
a generalization of BC K-algebras. J. Neggers and H. S. Kim [8] introduced
the class of d-algebras which is another generalization of BCK-algebras, and
investigated relations between d-algebras and BCK-algebras.

L. A. Zadeh [6] introduced the notion of fuzzy sets, and A. Rosenfeld [11]
introduced the notion of fuzzy group. Following the idea of fuzzy groups, O.
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G. Xi [5] introduced the notion of fuzzy BCK-algebras. After that, Y. B.
Jun and J. Meng [12] studied fuzzy BC K-algebras. B. Ahmad [10] fuzzified
B(C'I-algebras. In this paper we fuzzify d-algebras.

2. PRELIMINARIES

In this section we cite the fundamental definitions that will be used in the
sequel:

Definition 2.1

An algebra (X;*,0) of type (2,0) is called a BCK-algebra if it satisfies the
following conditions:

for all z,y,2z € X.
Definition 2.2

Let X be a BCK-algebra and I be a subset of X, then [ is called an ideal of
X if :

(I1) 0 €I,

(I12) yandzxyel =z €l
for all z,y € X.

Definition 2.3[§]

A nonempty set X with a constant 0 and a binary operation x is called a
d-algebra , if it satisfies the following axioms: :
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(dl) zxz =0,

(d3) zxy=0andyxz=0=>z=y

forall z, y € X.
Definition 2.4[9]

Let S be a non-empty subset of a d-algebra X, then §' is called subalgebra of
Xifzxye S forall z,y € S.

Definition 2.5[9]

Let X be a d-algebra and I be a subset of X then [ is called d-ideal of X if
it satisfies following conditions:

(1d1) 0 € I,
(Id2) z+yelandyel =z €1,

(Id3) x€landye X =>zxyel ie, I x X CI.

Definition 2.6

A mapping f: X — Y of d-algebras is called a homomorphism if f(z xy) =
f(z) * f(y), forall z, y € X.

Note that if f : X — Y is homomorphism of d-algebras, then f(0)=
Definition 2.7 |

Let X be a non-empty set. A fuzzy (sub)set u of the set X is a mapping
p:X —[0,1].

Definition 2.8

Let p be the fuzzy set of a set X. For a fixed s € [0,1], the set ps = {zx € X :
u(z) > s} is called an upper level of p.
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3. FUZZY SUBALGEBRAS
Definition 3.1

A fuzzy set u in d-algebra X is called a fuzzy subalgebra of X if it satisfies
p(z*y) > min {u(z),u(y)}, for all z, y € X.

Example 3.2[8]

Let X :={0,1,2} be a set given by the following Cayley table:

Then (X;*,0) is a d-algebra, but not a BC K-algebra, since (2% (2% 2)) %2 =
(2%0)%2=1%2=2+#0. We define a fuzzy set u : X — [0,1] by u(0) = 0.7,
p(z) = 0.02, where for all z # 0 . It is easy to see that p is a fuzzy subalgebra
of X.

Example 3.3

Let X ={0,1,2,---} be a set and the operation * be defined as follows:

0 ifx<y

. r—y ify<x

Then (X *,0) is an infinite d-algebra. If we define a fuzzy set p: X — [0,1] by
w(0) = t1, p(x) =ty for all z # 0, where t; > t5. Then p is a fuzzy subalgebra
of X.

THxY =

Example 3.4

Let X ={0,1,2,---} be a set and the operation * be defined as follows:

0 ifx<y

1 otherwise

Then (X;*,0) is an infinite d-algebra, but not BC K-algebras, since (2 * (2 *
0)*0=(2%x1)x0=1%x0=1+#0.

THxY =

—
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Example 3.5

Let X = [0,a] C [0, 1], @ being a fixed number, and the operation * be defined
as follows:

z *y = min(z, maz(z,y) — min(z,y)), Vz,ye€ X.

Then (X;*,0) is an infinite d-algebra.
Proposition 3.6

A fuzzy set p of a d-algebra X is a fuzzy subalgebra if and only if for every
t € [0,1] the upper level y; is either empty or a subalgebra of X.

Proof

Suppose that p is a fuzzy subalgebra of a d-algebra X and p; # 0, then for any
T,y € p, we have p(z * y) > min {p(x), u(y)} > ¢ which implies z xy € pq,
and hence p; is a subalgebra of X.

Conversely, take t= min {u(x), u(y)}, for any z, y € X. Then by assumption,
¢ is a subalgebra of X, which implies = * y&€ p;, so that u(z *y) > t— mln
{u(z), u(y)}. Hence p is a fuzzy subalgebra of X. "

Proposition 3.7

Any subalgebra of a d-algebra X can be realized as a level subalgebra of some
fuzzy subalgebra of X.

Proof

Let A be a subalgebra of a d-algebra X and p be a fuzzy set in X defined by

)t ifx e A;
plz):= { 0, otherwise.
where t € (0,1). It is clear that py; = A. Let 2, y € X. If z, y € A, then
rxy € A Sop(z) = puly) = plz*y) =t, and p(r * y) >min {x(z), u(y)}-
Iz, y ¢ A then p(z) = p(y) = 0. Thus p(z *y) > min {u(z), p(y)} = 0.
If at most one of z, y € A, then at least one of u(z) and u(y) is equal to 0.
Therefore, min{u(z), u(y)}= 0 and u(z * y) > 0 which completes the proof.
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Corollary 3.8

Let A be a subset of X. Then the characteristic function y 4 is a fuzzy subal-
gebra of X if and only if A is a subalgebra of X.

‘Lemma 3.9

Let p be a fuzzy subalgebra with finite image. If u; = p;, for some s, t
€ Im(u), then s=t.

Lemma 3.10

Let 1 and A be two fuzzy subalgebras of X with identical family of level
subalgebras. If Im(p) = {t1,t2,--, ¢} and Im(A)= {s1, 82, -+, Sm}, Where
t1 >ty >---t,and sy > s9 > -+ 5,,. Then

(1) m=n.
(2) M, = )‘sw for i= 1, 2; Ty IL

(3) If p(z) = s;, then A\(z) = s; , for all z € X and i=1, 2, ---, n.

Proposition 3.11

Let u and A be two fuzzy subalgebras of X with identical family of level
subalgebras. Then u = A = Im(u) = Im(A).

Proof

Let Im(u) = Im(A) = {s1,...,5,} and s; > ... > s,. By lemma 3.10, for any
x € X, there exists s; such that u(z) = s; = A(z). Thus u(z) = A(z),Vz € X.
This completes the proof. ‘

Proposition 3.12

Two level subalgebras ug and p, (s < t) of a fuzzy subalgebra are equal if and
only if there is no € X such that s < u(x) < t.
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Proof

Suppose that us = u, for some s < t. If there exists x € X such that
s < u(x) < t, then p; is a proper subset of u,, which is contradicting the
hypothesis.

Conversely, suppose that there is no € X such that s < p(x) < t. If x € p,
then u(z) > s and so u(x) > t, since u(z) does not lie between s and ¢. Thus
T € iy, which gives us C ;. The converse inclusion is obvious since s < t.
Therefore, ps = ;.

4. FUZZY d - IDEALS
Definition 4.1

A fuzzy set p in X is called fuzzy BCK-ideal of X if it satisfies the following
inequalities:

(1) u(0) = plz),

(2) p(x) > min{u(z *y), u(y)} , for all z, y € X.

Definition 4.2

A fuzzy set p in X is called fuzzy d-ideal of X if it satisfies the following
inequalities:

(Fd1) u(0) > (=),
(Fd2) u(z) > min{u(z *y), u(y)},

(Fd3) sz * ) > min{u(x), u(y)}

forall z, y € X.
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Example 4.3[11] |

Let X :={0,1,2,3} be a d-algebra with the following Cayley table:

101 23
0/0 0 0O
111 0 0 1
212 200
313 3 30

Then (X;*,0) is not BCK-algebra since {(1%3) x (1% 2)} * (2x3) =1 # 0.
We define fuzzy set p in X by p(0) = 0.8 and p(z) = 0.01, for all z # 0 in X.
Then it is easy to show that u is a d-ideal of X.

We can easily observe the following propositions:

e In a d-algebra every fuzzy d-ideal is a fuzzy BC K-ideal, and every fuzzy
BCK-ideal is a fuzzy d-subalgebra.

e Every fuzzy d-ideal of a d-algebra is a fuzzy d-subalgebra.

Theorem 4.4

If each non-empty level subset U(u;t) of p is a fuzzy ideal of X then p is a
fuzzy d-ideal of X, where ¢ € [0, 1].

Proof

Assume that each non-empty level subset U(u; s) of p is a d-ideal. Then it is
easy to show that u satisfies (F'dy)and (F'dy). Assume that pu(z * y) < min
{u(z), u(y)}, for some z, y € X. Take to := L{p(z *y) + min (u(z), u(y))},
then z, y € U(u;to). Since p is a d-ideal of X, xz xy € U(u;tp), therefore,
pu(z *y) > to , a contradiction. Hence assumption is wrong. This completes
the proof.

Definition 4.5[4]

Let A and u be the fuzzy sets in a set X. The cartesian product AX o
X x X — [0,1] is defined by (A x p)(z,y)= min{A(z), u(z)}, Y z, y € X.
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Theorem 4.6

If A and p are fuzzy d-ideals of a d-algebra X. Then A x p is a fuzzy d-ideal
of X x X.

Proof

For any (z,y) € X x X, we have

(0 x 1)(0,0)= min {A(0), 1(0)} > min {A@), 6(®)} = (A x 1)(,)
Let (x1,x9) and (y1,y2) € X x X. Then

(A x p)((z1, 22))= min {A(z1), p(z2)}

> min { min {A(z1 * y1), A(y1)}, min {p(z2 * y2), w(y2) }}

= min { min {A(z1 * y1), p(z2 * y2)}, min {My1), p(ye)}}

= min {(A x p)((z1 * y1, 2 % 32)), (A x p)((1,92))}

= min {(A x p)((z1,22) * (Y1,%2)), (A X L) ((y1,92))}

and (A X p){((z1,22) * (y1,¥2))= (A x p)((21 * y1, T2 * y2))
= min {A(z1 * 1), u(z2 * yo)}

> min { min {A(z1), My1)}, min {u(z2), u(y2)}}
= min { min {A(z1), u(z2)}, min {Ay1), w(y2)}}
= min {(A x p)((z1, 22)), (A X 1) ((y1,92))}-
Hence A x p is a fuzzy d—ideal of X x X.

Theorem 4.7

Let A and p be fuzzy sets in a d-algebra X such that A x p is a fuzzy d-ideal
of X x X. Then

(i) either A(0) > A(z) or u(0) > u(z), Vz € X.
(ii) If M(0) > A(z), Yz € X, then either u(0) > \(z) or pu(0) > u(z).
(iif) If u(0) > p(z), Yz € X, then either A(0) > A(z) or A(0) > u(z).
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Proof

(i) We prove it using reductio ad absurdum.
Assume A(z) > A(0) and p(y) > p(0), for some x, y € X. Then
(A x p)(z,y) = min {A\(z), u(y)} > min {A(0), u(0)} = (A x 1)(0,0)
S Ox (@) > A x p)(0,0),V 7, y €X.
which is a contradiction. Hence (i) is proved.
(ii) Again, we use reduction to absurdity.
Assume p(0) < A(z) and p(0) < p(y), ¥V z, y € X. Then,
" (A 2)(0,0)= min {A(0), 1(0)} = (0)
and (A x p)(z, y) = min {A(z), u(y)} > p(0) = (A x p)(0, 0)
= (O @)@ 1) > (A x w0, 0).

which is a contradiction. Hence (ii) is proved.

(ili) The proof is similar to (ii).

The partial converse of the Theorem 4.6 is the following.

[ N

Theorem 4.8

If A x pis a fuzzy d-ideal of X x X, then X or pu is a fuzzy d-ideal of X.

Proof
By Theorem 4.7(i), without loss of generality we assume that p(0) > u(x), vV
reX. :

It follows from Théorem 4.7(iii) that either A(0) > A(z) or A(0) > u(z). If
A0) > p(z), Vo € X. Then (A x p)(0,z)= min {\0), u(z)} = u(x) — — (A)

Since A x p is a fuzzy d-ideal of X x X, therefore,

(A (@1, 22) 2 min {(A X p)((21, 22) * (1, 2)), (A x p) (01, 42)}

and (A X p)((1, %2) * (y1,92)) = min {(A x p)((z1, @2), (A % p)((y1,92)}

It implies that (A X p) (@1, z2) 2 min {(AX p)((21*y1, T2%42)), (A X ) (Y1, 52)}-
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and (A x p)((@1 * Y1, T2 * y2)) > min {(A x p)((z1,22), (A X 1) ((y1,%2)}-
Putting z;=y;=0, we have

(A x 1)(0,22) > min {(A x ©)((0, 25 *2)), (A X 1)(0, 32)}

and (A x )((0, 22 * y2)) = min {(A x p)((0,22), (A x 1)((0,72)}

using equation(A), we have

p1(x2) = min{u(z2 * y2), 1(y2)}

and p(z2 * y2) > min{u(z2), u(y2)}- :

This proves that u is a fuzzy d-ideal of X. The second part is similar. This
completes the proof.

Definition 4.9[4]

Let A be a fuzzy set in a set S, the strongest fuzzy relation on S that is fuzzy
relation on A is u4 given by pa(z,y)= min{A(z), A(y)}, for all z, y € S.

Theorem 4.10

Let A be a fuzzy set in a d-algebra X and p4 be the strohgest fuzzy relation
on X. Then A is a fuzzy d-ideal of X if and only if u4 is a fuzzy d-ideal of
X x X.

Proof

Suppose that A is a fuzzy d-ideal of X. Then

#4(0,0)= min{A(0), A(0)} > min {A(z), A(y)}= pa(z,y),V (z,y) € X X X.
For any x = (21, x2) and y = (y1,92)€ X x X, we have

pa(x) = pa(zy, 72)= min {A(z1), A(z2)}

2 min { min {A(z1 *y1), A(y1)}, min {A(z2 *32), A(y2) }}

= min { min {A(z1 * 1), A(z2 * y2)}, min {A(y1), A(y2) }}

=min {pa(21 * Y1, T2 * y2), a(y1, ¥2) }

= min {pa((z1,22) * (Y1 * ¥2)), na(y1,42)}

= min {ua(z *y), pa(y)}
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and pa(z *y) = pa((z1, 72) * (Y1,92))

= pra((z1 * Y1, T2 * Y2))

= min {A(z1 *y1), A(xe x y2)}

> min {min {A(z1), A(y1)}, min {A(z2), A(y2) }}

= min { min {A(z1), A(z2)}, min {A(y1), A(12)}}

= min {pa((z1, z2), pa(yr, v2)}

= min {pa(z), pa(y)}-

Hence 114 is a fuzzy d-ideal of X x X.

Conversely, suppose that p4 is a fuzzy d-ideal of X x X. Then
min{A(0), A(0)} = 4(0,0)= pa(z, y)= min {A(z), A(y)}, V (z,y) € X x X.
It follows that A(z) < A(0), Vo € X

For any = = (x1, x2), y = (y1,92)€ X x X, we have
min{A(x,), A(z2)}= pa(xy, x2)

> min {pa((z1,22) * (y1,92)); Ha(yy, y2)}

= min {pa(zr * Y1, T2 * y2), ka(yr, y2)}

= min {min{A(z; *x y1), A(xe * )}, min{ A(y1), A(y2)}}
= min {min{A(z; * y1), A(y1)}, min {A(z2 *y2), Aly2)}}-
Putting xo=1,=0, we have

pa(zr) = min {palz* ), palyn)}-

Likewise, pa(z1 % y1) > min {pa(@1), paly)}-

Hence A is fuzzy d-ideal of X.

Definition 4.11.

Let f: X — Y be a mapping of d-algebras and p be a fuzzy set of Y. The
map uf is the pre-image of p under f, if pf(z) = p(f(z)),Vz € X.

Theorem 4.12

Let f: X — Y be a homomorphism of d-algebras. If y is a fuzzy d-ideal of
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Y, then p/ is a fuzzy d-ideal of X.
Proof

For any z € X, we have

pl (@) = p(f(2)) < p(©0) = u(f(0)) = 1 (0)

Let z, y € X. Then

min {1/ (z * ), 1’ (4)}

=min {u(f(z *y)), u(f(y)}

=min {u(f(2) * f()), u(f ()}

< p(f(z)) = pf (x)

and min {p/(z), u'(y)}

= min {u(f(z)), u(f ()}

=min {u(f(z)), n(f(¥))}

<ulf(@)* f(y) = p(f(z xy)) = P (z *y).
Hence uf is a fuzzy d- ideal of X.

Theorem 4.13

Let f: X — Y be an epimorphism of d-algebras. If u/ is a fuzzy d-ideal of
X, then p is a fuzzy d-ideal of V.

Proof

Let y € Y, there exists © € X such that f(z) =y. Then

u(y) = p(f(2)) = pf (z) < pf(0) = p(f(0)) = u(0)
Let z, y € Y. Then there exist a, b € X such that f(a) =z and f(b) =y. It
follows that u(x) = p(f(a)) = uf(a)

> min {p/(a * b), uf(b)}

= min {u(f(a b)), u(f(b))}

= min {u(f(a)* f(b)), u(f (b))}
= min {u(z*y), u(y)}
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and p(x *y) = p(f(a) * f(b)) = p/ (a % b)
> min {pf(a), uf (b)}

= min {u(f(a)), n(f(b))}

= min {u(2), u(y)}-
Hence p is a fuzzy d- ideal of Y.
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Abstract

The stream function, Airy-stress function formulation of the classical Stokes
problem in the plane has not been exhaustively studied as an elliptic boundary
value problem. Bitsadze appears to have been the first to question the well-
posedness of this formulation subject to certain boundary conditions. The
div-curl formulation [Tahir, 1999b] has enabled us to present existence and
uniqueness results for the solution of Stoke-Bitsadze Problem. Stoke-Bitsadze

Problem-I corresponds to the boundary conditions prescribed by Vanmaele et
al [1994]. ‘

1. INTRODUCTION

The classical Stokes problem has played a key role in the computer solution of
incompressible viscous flows for over three decades. In this paper we shall be
concerned with the two-dimensional Stokes problem as an elliptic boundary
value problem in the plane. There are numerous formulations of the Stokes
equations in two-dimensions, each deriving from the equations governing creep-
ing incompressible flows ’

divo = 0 (conservation of momentum), (1.1)
div u = 0 (incompressibility condition). (1.2)°

We have assumed that there are no body forces present; u = (u,v) is the
velocity of the fluid, while o denotes the Cauchy stress tensor. It is possible
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to split the stress ¢ into an isotropic part and an anisotropic part
o=—-pIl+T (1.3)

where, after assuming a scaling with respect to density, p is the kinematic
pressure and T is the extra-stress tensor. Both o and T are symmetric (con-
servation of angular momentum). For a Newtonian fluid, T is related to the
velocity gradient and is given by

T = n{Vu+ (Vu)*}, , (1.4)

where 7 is the (constant) kinematic viscosity. The first formulation of the
Stokes equation is therefore the first-order system in the variables (u,p, T):

—Vp+ divT = 0,
T —nVu+ (Vu)T = 0, (1.5)
div u = 0.

In cartesians, equations (1.5) constitute an elliptic system of six equations in
the six unknown variables (u, v, p, T**, T T).

The most common formulation of the Stokes equations is in terms of the
primitive variables (u, p):

-Vp+nAu = 0,

div u = 0 (1.6)

Y

where (1.6a) is obtained from the substitution of (1.5b) into (1.5a). In cartesian
coordinates, equation (1.6) constitute an elliptic system of three equations
in the three unknowns (u,v,p), equations (1.6a) being a second-order in the
velocity.

Introducing the stream-function % such that

U= '(/)y V==, (17)

the incompressibility condition (1.2) is automatically satisfied given continuity
of the second-order derivatives of ¢). Moreover the pressure may be eliminated
from the two equations (1.6a) to obtain

A2 =0, (1.8)
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where A? is the biharmonic operator. This is a single fourth-order equation
in the single variable 1. Alternatively, in terms of vorticity

w= curl u= v, —uy, (1.9)

the equations (1.6) may be written in stream-function vorticity formulation:

Aw = 0,
AYp = —w. (1.10)
There is also the velocity-vorticity-pressure formulation
ncurlw — Vp = 0,
curlu—w = 0, (1.11)

div u = 0.

with curl w = (—wy, w,).

The researchers have also been interested in the stream function/stress
function formulation, see for example [Coleman, 1981], [Davis & Devlin, 1993],
[Owen & Phillips, 1994], [Cassidy, 1996] and [Thatcher, 1997].

Let the components of the velocity be given in terms of stream-function
Y(z,y) by (1.7) and the components of extra stress T be given, in terms of
the Airy stress function ¢(x,y) and pressure p, by

ot = —p+ T — ¢yya
oW = TW =g, (1.12)
o¥ = —p + TV = ¢zz>

where upper indices denote stress components while the lower indices denote
the second derivatives. Then the momentum and mass balance equations (1.1)
and (1.2) are satisfied by continuity. The tensor T can thus be expressed as

il Rt 019

Using the equation (1.13) the following equations are obtained from (1.4) and
(1.7)

p+ ¢yy = 2777/)301;7

~bzy = NPy — as), (1.14)

, {
Pt Gop = _2777/)901;,
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The pressure p can then be eliminated between (1.14a) and (1.14c) giving
the following second order elliptic system in ¢ and v

¢zz - ¢yy = —477%@,,

—Quy = N(ey — Yz ), (1'15)

or the stream function/stress function formulation of the Stokes equations.

The closure of each system (1.5), (1.6), (1.8), (1.10), (1.11) and (1.15) by
suitable boundary conditions to guarantee the well-posedness of the resulting
elliptic boundary value problem has not been exhaustively studied, except for
the primitive variable system (1.6) and the biharmonic equation (1.8). For
the system (1.6) we refer to [Girault & Raviart, 1986] and [Temam, 1977].
For a polygon domain this problem has been discussed by [Kellog & Osborn,
1976] and [Grisvard, 1985]. The biharmonic operator (1.8) has been studied
in [Tikhonov & Samarskii, 1963], [Kondrat'ev & Oleinik, 1983], [Kolodorkina,
1972), [Girault & Raviart, 1986] and [Grisvard, 1985]. The smoothness of the
solution of the first boundary value problem for the biharmonic equation in a
rectangle has been discussed in [Koval’chuk, 1969]. The well-posedness of the
boundary value problems involving the Stokes operator in velocity-vorticity-
pressure form has been investigated by Bochev [1977].

In the stream function stress function formulation (1.15), the researchers
have been suffering a difficulty concerning the appropriate boundary condi-
tions, see for example [Cassidy, 1996]. Owen and Phillips, [1994] embed the
system (1.15) in biharmonic equations and determine the appropriate bound-
ary conditions for the higher order system.

2. THE CAUCHY-RIEMANN SYSTEM

The Cauchey-Riemann system (or the div-curl system) is of special interest
to us. The double div-curl formulation [Tahir, 1999b], of the stream function
stress function formulation plays a key role for the study of boundary value
problems for the Stokes flow.

The Cauchey-Riemann system ¢y, = —¢,, ¢, = 1), is the simplest first order el-
liptic system of partial differential equations. Every pair of sufficiently smooth
functions ¢ and v satisfying this system also satisfies the Laplace equation.
The inhomogeneous Cauchey-Riemann system which, in planar cartesians ap-
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pear as below
div(¢, ¥) = fi,
curl(¢, ) = fa,
has been of interest for the researchers in the last two decades, see for example
[Tahir, 1999a}, [Borzi et al. 1997], [Chang & Gunzburger, 1990}, [Ghil & Balgo-
vind, 1979], [Hafez & Phillips, 1985], [Lomax & Martin, 1974], [Neittaanmdki
& Saranen, 1981], [Nicolaides, 1992][Rose, 1981], and [Vanmaele et al 1994].

(2.1)

Collectively the Cauchey-Riemann system (2.1) is elliptic while individu-
ally both the partial differential equations are hyperbolic. If ¢ and v are twice
continuously differentiable and f; = fo = 0 then ¢ and ¢ are harmonic. For
the ellipsity of the system we refer to [Wendlend, 1979]. The following result
for the Cauchy-Riemann system is of great importance.

Theorem 2.1 [Vanmaele et al 1994]
Let f1, faeLo(€2). In a square domain © = (0,1) x (0, 1) with boundary T,
the Cauchy-Riemann system (2.1) with the boundary conditions

¢peHz(T) is knownon Ty = 0x (0,1),

; 2.2
WeHz(Ty) is known on Ty = T\Ty, 2

possesses a unique solution (¢, )eH'(Q) x HY(Q).

It is remarked that the result is valid for any rectangular domain.
3. THE STOKES-BITSADZE SYSTEM

We re-scale the dependent variable in (1.15) as follows; 2n¢ — ¥, ¢ — ¢ and
the system then reduces to

¢xm - Qbyy + 2¢zy = 07
¢zz — wyy - 2¢xy =0.
The system (3.1) is the second order elliptical system; the Bitsadze system
[Nakhushev, 1988] and identified as Stokes-Bitsadze System [Tahir, 1999b].

The ellipticity of Stokes-Bitsadze System' (SBS), in the sense of Petrovskii
[1946], is proved by Thatcher {1997].

Bitsadze [1964] shows that Dirichlet problem for the SBS (3.1) has the infi-
nite set of linearly independent solutions. He also concludes that the Dirichlet

(3.1)
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problem for the SBS (3.1) is neither Fredholmian nor Noetherian®. For the
details on Fredholm and Noether problems we refer to [Bitsadze, 1968 & 1988
and [Mikhlin, 1970]. Bitsadze [1988] shows that the Fredholmian character
of the Neumann problem is also violated for the SBS®. Wendland [1979] con-
siders the Dirichlet problem for the system (3.1) and proves the violation of
Lopatinski condition to show the problem to be non-Fredholm. For the details
on Lopatinski condition we refer to {Wendland, 1979].

3.1 The Div-Curl Formulation of Stokes-Bitsadze System [Tahir,
1999b]

The Stokes-Bitsadze system (3.1) can be written as

az(djy + ¢m) + ay(d}z + ¢y) =0,

3.2
81(77/11 + ¢y) - ay(d}y + 97595) = 0. ( )
We introduce ®(x,y) and ¥(z,y) which are defined as
(I)(ZL', y) = dw(qﬁ,z/)) = 1/}?; + ¢mv (3 3)
\P(w,y) = Curl(¢> dj) - 'Q[}z - ¢y' ‘
It follows immediately that (3.1) has the double div-curl formulation
div(®,¥) = 0,
curl(®, ) — 0. (34)
where -
\If(ill',,,y)j = Curl(¢7¢)' .
3.2 Remark

It is easy to see that SBS (3.1) remains unchanged either (¢,) is replaced by
(—, @) or (®, ) is replaced by (—¥, ®). We will see that this is an important

“The situation contrasts greatly with a system of a single elliptic equation, see for details
(Kuz’'min, 1967] and [Bitsadze, 1968]. '

SSimilar facts can also be observed when a number of independent variables is more than
two. For some multidimensional analogs of Bitsadze systems we refer to [Yanushauskas,
1995], [Treneva, 1985] and [Kuz'min, 1967].
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property which is useful in prescribing the appropriate boundary conditions
to the Stokes-Bitsadze problem.

3.3 Boundary Value Problem of Poincaré
The Stokes-Bitsadze system (3.1) can also be expressed as
BN = AN, +2BR,, + ORyy =0, (3.6)

where = (¢, 1)7 is the required real vector and

R R e e B

An extensive class of problems for second order elliptic equations is covered
by the linear boundary value problem of Poincaré. In the domain 0 C R* with
boundary I' the Poincaré problem for SBS is formulated as follows: to seek a
solution = (¢, )7 for the system (3.6) subject to the boundary conditions

PR + PRy + g = (2, y), (z,y)el (3.8)

where p', p* and q are real 2 x 2 matrices given on the boundary I' and &
a real vector given on I'. For a detailed study on the Poincaré problem, for
second order elliptic systems in the plane, we refer to [Bitsadze, 1968].

4. THE STOKES-BI’I_‘SADZE PROBLEM

We, in the Stokes-Bitsadze problem, prescribe the boundary conditions of
Poincare for the SBS in the double div-curl formulation and prove the unique-
ness and existence of a solution. We are concerned with various kinds of
Stokes-Bitsadze problem but in this paper we are going to discuss only the
Stokes-Bitsadze problem-I which prescribes the boundary conditions like in
[Vanmaele et al, 1994]. The other problems will be discussed somewhere else.

4.1 Stokes-Bitsadze problem-I
Let us recall the Stokes-Bitsadze system (SBS) in the div-curl formulation

div(®, T) =0,

eurl(®, V) =0, (1)
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where ® and ¥ are defined by

(I) div(¢, ) = wy + Px,
= curl(¢, ¥) = ¥x — dy.

We consider the SBS in the square domain Q = (0, 1) x (0,1) with boundary

I" and prescribe the following boundary conditions of Poincaré®.

(4.2)

;{; Z Q } on T = {0} x (0,1), (4.3)
v = f2 _‘
5 = o } on I, = \I';. (4.4)

4.2 Theorem

For f;, g; eH?(T';) wherei = 1,2, there exists a unique solution (¢, 7,[1) e H' (Q)x
H'(Q) to the Stokes- Bltsadze problem (4.1)-(4.4). -

Proof

For f; e Hz(I;) the div-curl system (4.1) considered with (4.3a), (4.4a) pos-
sesses a unique solution (®,¥) e H'(Q) x H'(Q), see Theorem 2.1, which
obviously implies that ®, ¥ eLy(2). Knowing @, ¥ uniquely in 2 we have

zyf‘zz - q)} in Q. (4.5)
z y

I
8

Now for g; ¢ Hz(T;), the Cauchy-Riemann system (4.5) considered with the
boundary conditions (4.3b}, (4.4b) possesses a unique solution (¢, ¢) in H(2)x
H'(£)), see Theorem 2.1, and the proof is complete.

An obvious corollary, which is indeed the modified form of the boundary con-
ditions of the Theorem 4.2, can be stated as follows.

1.0 01 0 0
6 : 1 2
The matrices on the boundary I'; are p* = [ 0 0 ] , PP = { 0 0 } » 4= [ 10 }
1 0.1 -1 0 00
: pl 2
and the matrices on the boundary I'y arep™ = { 0 0 } , pf = [ 0 0 } ,g= [ 0 1 }
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4.3 Corollary

For f;, gie H? (T';) where : = 1, ..., 4, there exists a unique solution (¢, ¥)e H* () x
H(Q) for the SBS with the following boundary conditions of Poincaré

¢ = fl} on I'y = {0} x (0,1),

¢ = ¢

i’ = 52} on Ty = {1} x (0, 1),
zn - 2} on I's = (0,1) x {0},
Zn - gi} on Ty = (0,1) x {1}.

where the subscript n denotes the derivative with respect to the outward nor-
mal on the boundary.

As a consequence of Remark 2.3 we interchange the boundary conditions
for ® with ¥, and ¢ with 1 which gives the following corollary to the Theorem
4.2.

4.4 Corollary

For f, g; ¢ H3 (T';) there exists a unique solution (¢, ¢) e H'(Q) x H}(Q) for
the SBS with the following Poincaré conditions on the boundary ' = U2, T;

vo= fl} on I'1 = {0} x (0,1),

Y = @
i _ 52} | on 'y = T\I'y.

We can further modify Corollary 4.4 to obtain the following result.

4.5 Corollary

For f;, gi € H2(T;) there exists a unique solution (¢,v) e H' () x H(Q) for
the SBS with the following Poincaré conditions on the boundary U} ;T

Lo an-mxon,
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fa _

7 } on Ty = {1} x (0,1),
52 } on I's = (0,1) x {0},
]93 } on Ty = 0.0 % {1}

For the domain Q = (0,1) x (0,1) the following theorem can be proved on the
same lines as in Theorem 4.2.

4.6 Corollary

For f, gi ¢ H2(T;) there exists a unique solution (¢, ) ¢ H(Q) x H(Q) for
the SBS with the following Poincaré conditions on the boundary I' = U2 T

T a e o

4.7 Corollary

on 'y = {0} x (0,1),

S }
q
fo }
92

on FQ = F\Fl

For f;, g; e H2(T;) there exists a unique solution (¢, 9) € H(Q) x H(Q) for
the SBS with the following Poincaré conditions on the boundary U_T;

Pn
(4
Vn

b

S O

S } onT; = {0} x (0,1),
9

fa }
g2 )
f3 }
gs
Jfa
44

on I'y = {1} x (0, 1),
on I's=(0,1) x {0},

on Ty = (0,1) x {1}.

The interchange of ® with- ¥, and ¢ with ¢ ‘allows us to state the following

corollary to Theorem 4.6.
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4.8 Corollary

For f, g; ¢ H%(Fi) there exists a unique solution (¢,v) ¢ H'(Q) x H'(Q) for
the SBS with the following Poincaré conditions on the boundary I' = U2_|T;

vo= fl} on I't = {0} x (0,1),

¢ = ¢
f; _ gz} on Iy =\T'}.

We can further modify Corollary 4.8 to obtain the following result.
4.9 Corollary

For f, g; e H2(T;) there exists a unique solution (¢,) e H'(Q) x H'() for
the SBS with the following Poincaré conditions on the boundary UL ,T;

iﬂ - gi} on T, = {0} x (0,1),
zn - g} on Ty = {1} x (0, 1),
z = gi} on Ty = (0,1) x {0},
i - §;‘ } on Ty = (0,1) x {1}.

5. CONCLUSION

The double div-curl formulation of the Stokes-Bitsadze System has enabled us
to present existence and uniqueness results for the solution of Stokes-Bitsadze
Problem-I.

References
[1] Bochev, P.B. (1997): Analysis of least-squares finite element methods

for the Navier-Stokes equations , Siam J. Numer. Anal., 34, No. 5,
1817-1844.



88 Muhammad Tahir & A. R. Davies

[2] Bitsadze, A.V., (1988): Some classes of partial differential equations
Gordon & Breach Science Publishers London.

[3] Bitsadze, A.V., (1968): Boundary value problem for second order elliptic
equations , North-Holland Publishing Company Amsterdam.

[4] Bitsadze, A.V., (1964): Fquations of the mized type , Pergamon Press
Ltd., London.

[5] Bitsadze, A.V., (1957): Elliptic systems of second order partial differential
equations , [in Russian|, Dokl. Akad. Nauk SSSR, 112(6), 983-986.

[6] Borzi, A., Morton, K.W., Suli, E., and Vanmaele, M.,(1997) : Mul-
tilevel solutions of cell vertrex Cauchey-Riemann FEquations , STAM J.
Sci. Comput., 18(2), 441-459.

[7] Cassidy, M.,(1996):A spectral element method for viscoelastic extrudate
swell , Ph.D. thesis, University of Wales, Abrystwyth.

[8] Chang, C-L. and Gunzburger, M.D., (1990): A subdomain-Galerkin/least
squares method for first-order elliptic systems in the plane, Siam Journal
on Numerical Analysis, 27(5), 1197-1211.

[91~ Colemah, C.J., (1981):A contour integral formulation of plane creeping
Newtonian flow, Q.J. Mech. appl. Math., XXXIV, 453-464.

[10] Davies, A.R. and Devlin, J., (1993) :  On corner flows of Oldroyd-B
fluids , J. Non-Newtonian Fluid Mech., 50, 173-191.

[11] Ghil, M. and Balgovind, R., (1979): A fast Cauchy - Riemann solver,
Mathematics of Computation, 33, 585-635.

[12] Girault, V. and Raviart, P-A., (1986): Finite element methods for Navier-
Stokes equations, Springer-Verlag Berlin Heidelberg.

[13] Grisvard, P., (1985):Elliptic problems in non-smooth domains, Pitman
Publishing Inc. Massachusetts.

[14] Hafez, M.A. and Phillips, T.N. (1985): A modified least square formulation
for a system of first-order equations, Applied Numerical mathematics, 1,
339-347.




Stokes-bitsadze problem-I 89

[15] Kellogg, R.B. and Osborn, J.E.,(1976):A regularity result for the Stokes
problem in a convezx polygon, J. Functional Analysis, 21(4), 397-431.

[16] Koldorkina, V.A., (1972):Solutions of the equation AAu = f in a piecewise-
smooth region, Differential Equations, 8, 285-287.

[17] Kondrat’ev, V.A., and Oleinik, O.A.,(1983): Boundary-value problems for
partial differential equations in non-smooth domain, Russian Math. Sur-
veys, 38, 1-86.

[18] Koval’chuk, V.E.,(1969): On the behaviour of the solution of the first
fundamental problem of the theory of elasticity for a long rectangular
plate , Journal of Applied Mathematics and Mechanics, 33, 495-503.

[19] Kuz’'min, E.N.,(1967): On the Dirichlet problem for elliptic systems in
space, Differentsial'nye Uraneniya, 3(1), 155-157.(English version pp 78-
79).

[20] Lomax, H. and Martin, E.D.,(1974): Fast direct numerical solution
of the non homogeneous Cauchy-Riemann equations, J. Computational
Physics, 15, 55-80.

[21] Mikhlin, S.G., (1970): Mathematical Physics, An advance course, North-
Holland Publishing Company, Amsterdam London.

[22] Nakhushev, A.M., (198R): Bitsadze equation in: Hazewinkel, M.,(Mang.
Ed.), Encyclopedia of Mathematics, 1, 403, Kluwer Academic Publishers
Holland.

[23] Neittaanmaki, P. and Saranen, J.,(1981a): Finite element approzimation
of vector fields given by curl and divergence, Math. Meth. Appl. Sci.,3,
328-335.

[24] Neittaanméki, P. and Saranen, J.,(1981b): On finite element approwi-
mation of gradient for solution of Poission equation, Numer, Math.37,
333-337.

[25] Nicolaides, R.A., (1992): Direct discretization of planar div-éurl prob-
lems, Siam Journal on Numerical Analysis, 29, 32-56.



90 Muhammad Tahir & A. R. Davies

[26] Owens. R.G., and Phillips, T.N., (1994): Mass and momentum con-
serving spectral methods for Stokes flow, Journal of Computational and
Applied Mathematics,53, 185-206.

[27] Petrovskii, I.G., (1946): On some problems of the theory of partial differ-
ential equations, Usp. Matem. Nauk.,1(3-4), 44-70 (in Russian); Amer.
Math. Soc. Translation No. 12, 373-414.

[28] Rose, M.E., (1981):A unified numerical treatment of the wave equation
and the Cauchy-Riemann equations, Siam J. Numer. Anal., 18, 372-376.

[29] Tahir, M.,(1999a): Boundary Value Problems for the Cauchy-Riemann
System, Punjab University Journal of Mathematics, XXXII, 79-88.

[30] Tahir, M.,(1999b): The Stokes-Bitsadze system, Punjab University Jour-
nal of Mathematics, XXXI1, 173-180.

[31] Temam, R.,(1977): Navier-Stokes Equations, North-Holland Publishing
Company Amsterdam.

[32] Thetcher, R.W.,(1977): A least squares method for Stokes flow based on
stress and stream functions, Report No. 97-8, Department of Mathemat-
ics, UMIST.

[33] Tikhonov, A.N. and Samarskii, A.A., (1963): Equations of Mathematical
Physics, Pargamon Press Ltd., Oxford.

[34] Teneva, T V., (1985): Multidimensional analogs of a Bitsadze system, Dif-
ferential Equations, 21, No. 1, 114-117.

[35] Venmaele, M., Morton, K.W., Siili, E., and Borzi, A., (1994): Anal-
ysis of the cell vertrex finite volume method for the Cauchey-Riemann
Equations, Oxford University Computing Laboratory, Oxford.

[36] Wendland, W.L., (1979): Elliptic systems in a plane, Pitman London.

[37] Yanushauskas, A. (1995): A class of systems homotropic to a multidimen-
sional analog of A.V. Bitsadze system, Differential Equations, 31, No.
1, 131-136.




Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol. 37(2005) pp.91-114

ON CERTAIN SUBCLASS OF P-VALENT
FUNCTIONS DEFINED BY RUSCHEWEYH
DERIVATIVE

M. K. Aouf
Mathematics Department
Girls College of Education Sciencesections
Jeddah
Saudi Arabia

A. A. Al-Dohiman
P. O. Box 762
Al-Jouf, Saudi Arabia

Key words and phrases Analytic, p-valent, Ruscheweyh derivative
1991 Mathematics Subject Classification 30C45 .

Abstract

The main object of this paper is to obtain a number of sharp results involving
a sufficient condition in terms of coefficients, coefficient bounds, maximization
theorem concerning coefficients, distortion theorem and closure theorem for
certain subclass R, ,(b, B)(b # 0, complex, 0 < 8 < 1,pe N = (1,2,---),n >
—p) of analytic and p-valent functions defined by the (n + p — 1)-th order
Ruscheweyh derivative. We shall also prove that a subclass of p-valent analytic
functions is closed order convolution.

1. INTRODUCTION

Let S(p) denote the class of functions of the form

f) =2+ Y apa ™ (e N = {12, (1)
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which are analytic and p-valent in the unit disc U = {2z : |2| < 1}. We use
Q2 to denote the class of bounded analytic functions w(z) in U satisfies the
conditions w(0) = 0 and |w(z)| < |z| for z € U.

We denote by (f * g)(2) the Hadamard product (convolution) of two functions
f(z) and g(z) is given by

g(2) =27 + 3 by (p € N) (1.2)
k=1
Thus -
(f*9)(z) =2"+ Z ap+kbp-l—kzp+k (1-3)
k=1

The (n+p—1)-th order Ruscheweyth derivative D"P~1 f(z) of a function f(z)
in S(p) is defined by

2 ()7

DrE) = =

(1.4)

where n is any integer such that n > —p. It is easy to see from (1.3) and (1.4)
that

D) = s 1 (1.5)
=2P+ i §(n, k)ay, 2P T* | (1.6)
= ,
where (and throughéut the paper)
5@,@:(”2%511) (k € N) (1.7)

Particularly, the symbol D" f(z) was named the n-th order Ruscheweyh deriva-
tive of f(z) by Al-Amiri [3].

1
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Let Rnp(b, 3)(b# 0, complex, 0 < < 1,p € N and n > —p) denote the class
of functions f(z) € S(p) satisfy the condition.

(DY

pr !

28 <gDn+P iGN b) _ ((Dn;:{(z»' _ 1)

<lLzelU (1.8)

It is easily seen that for f(z) € R, ,(b, 3), the values

(DML f(2))
p*

lie inside the circle in the right half-plane with center at

1— (28 —1)(28 — 1 — 203b)r?

1— (28— 1)%r?
and radius
2[3|b|r
1—(28—1)%r?

Further, it follows from Schwarz’s Lemma [9] that if f(z) € R, (b, 3), then

(D™ f(z)) 1+ (28— 1 - 26b)u(z)
= 1+ (20— Du(?)

w(z) € Q (1.9)

We note that

L Ri_pp((1—a)cosre™ 3) = Ry, )(]A < 5,0<a<1,0<B<1,pe
N) (Mogra [8]),

2. Ry ((1 — a)cosde™™,8) = RMa,B)(|N < 20<a<1,0<pB<1)
(Ahuja [2]),

3. Ry <2ﬁliﬁa cos \e— m)@) = RN < 20<a<1,0<B<1)

(Makowka 7,

4. Ry, (251(}:;), %) =R,p5(0 <a<1,0< g <1) (Juneja and Morga [5]),
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5. Roa (%, %ﬁ) = R(3(0 < # < 1) (Padmanabhan [10] and Caplinger and
Causey [4]),

6. Roa (1, %) = R(MacGregor[6]),
7. Rypp (1,20578) = S,(M)(M > 1/2) (Sohi [11]),
8. Rou(b,1) = R(b) (Halim [1]),

We further, observe that for special choice of the parameters b,3,n and p

our class R, (b, ) give rise the following new subclasses of p-valent analytic
functions,

1. R,, ((1 — %) cos he 1) = R;\l’p(a)

= {f(z) € S(p): Re e“('lt;:—p_—_lw

pEN,zeU}

T
> acos A, A < 5,0§a<p,

2. R,,p(b,1)=R,,(b)

z{ﬂ@es@:}k&+%gﬁggkl—m}>&'

b=+0, complex, n>-p,p€ N,z€U}

o 2M —1
3. Rn’P ((15 %) COS )‘e—l/\a oM ) = R:L:\P,M(a)

eiALQ'“;”_p‘_llf(_Z)l — acos A — ipsin \ Y
(p—a)cos A

= {/(z) € S(n): <M

1
|M<gﬁ§a<pm>—ﬁp€MM>§J€U}
| oM — 1
4, mw@,QM )=RWM@
Gy 16

pzP~1 - M
b

={f(z) € 5(p): <M,

1
b+#0, complex, n>-ppe N,M > é,ze U},
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—

o 2 —Ccos A
5. Rup (cos Ae™™ —§O§—> = R;‘L,*p

. n+p—1 !
e“g1;;§92141+mmAﬂ<L

= {f(z) € S(p) :

A < g,n> —-p,p€ N,z U}

6. Rnp ((1 = g) cos de ™ 1 — p) = R:L:\p(p)

p
~[f(2) € S(p) ei’\ﬁwg;i_llf(iy—acos/\—ipsin/\__i <i
b (p— a)cos A 2p| " 2p’

\M<gﬁ§a<nn>—np€Nﬁ§p<Lz€U}

o1
7. Rnp ((1 — %) o cos e, 5) = [R) (a)]°

() € Sty : | — acos A — ipsin )

zp—1 -1

(p— a)cos A

<o,

|/\|<g,0§a<p,n>—p,peN,O<a§l,zEU}

286 1+
8. Rup (m, —2”-) = R, »(5)

(DrHelf(z)) D

zp—1

(Dn+p~1f(zz)l + D

zp—1

={f(2) € 5(p):

n>—-p,p€ N,ze U},

286(1-2) 1
9. Ryp ( 1<+ ﬁp>’ ‘55) = Rn,p(a7 A)

(DMHP1f(z))
zp_l p

={f(2) € 5(0) : | mrmticy
Iy ()

0<pB<1,n>~-pp€eN,ze U},

<B,0<p<1,

<B,0< a<p,
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26 (1 — %) cose™™ 1
10, Rn,,( (1:>ﬁ ,;5>:R¢L,p<a,@>

Dn+p—1 2)Y
Cciakiast ()

(Drte—1f(z)y D+ 2(p _ (1) cos Ae—iA

zp—1

={f(2) € S(p) :

}

<@,(A|<g,oga<p,0<5g1,n>—p,peN,zeU},

11.  R,, <<1 — %) oS /\e_i’\ﬂ) =R, 5(c)

(D71 f(2)) —p
— f(z - S(p : " : Zp—1 ‘ _ ,
v ) 20 ((Lz—p—lfﬁ —-p+(p— ) COS/\e_Z/\) - (D_JZZTi{_(Z& —p)

1.<1,|/\|<—g,oga<p,0<ﬁ§1,n>—p,peN,zeU},

12.  Ra, (1 —a—d, 21—T2“d—+d—> = R,(a,d)

(D1 f (=)

zp—1

={f(2) € S(p) :

n>-p,p€eN,zeU},

13. R,,(1—a—4d) (1 — 3) cos de ™, 1——2@#> = R;\L’p(a, d,a)

—a|<d,a+d>1,d<a<d+1,

p

N ()

=1 — @Ccos A —ipsin A

={/(2) e 5(p):

—al <d,

(p— a)cos A

a+d_>_1',d§a§d+1,l/\|<g,0§a<p,n>—p,p€N,z€U},

14. R, ((1 —m— M) (1 - 9) cos he™, lﬂ)) — R} (m, M, a)

D 2M
ei/\w — @ COS )\ — ipsin/\
= : E - 1
{f(2) € S(p) (p — a)cos A <M,

1
\A|<g—,0§a<p,|m~1\<M§m,m>§,z€U}
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As noticed above the class R, ,(b,3) includes the various subclasses of p-
valent analytic functions, a study of its properties will lead to a unified study
of these classes. In the present paper, we determine a sufficient condition,
coefficient esstimates, maximization of |a,4o — ,uaz 41| over the class R, ,(b, 3),
and distortion theorem for f(z) € R, (b, 5). We shall further prove that the
subclass Ry, 5(b) of S(p) is closed under convalution.

2. A SUFFICIENT CONDITION
Theorem 1

Let the function f(z) defined by (1.1) be analytic in /. Then f(z) € Ry (b, 3)
if, for some b,n and p(b # 0, complex, n > —p,p € N).

SO s Rl < 0 @D

whenever 0 < 3 < 1, and

Xa: §(n, k)|apsx| <b (2.2)

=1

x

Whenever 2 <3< 1
Proof

Suppose that (2.1) holds for 0 < 8 < 1 and that f(2) = 2P + 332, ape2? ™,
then for z € U.

(D71 £(2)) — P2 — RA[(D™ f(2)) — p2P= + pher 1]

[(Dn—f—p—lf(z))/ o pzp—lll

Z pHE)S(n, k) ay 2?1 = |20pb2P =7 (1-26) (p+k)3(n, k) ap . 2774
k=1

Z p+k)S(n, k)| apx|r? 1 —28p|blrP~ 1+Z (1~ 26 (p+k)o (n,k)lap+k|rp+’“‘1
k=1 k=1 :
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<2 {Z(l = B)(p + k)o(n, k)lapx| — 5P|bl} rr!
k=1
The last inequality is nonpositive by (2.1), so that f(z) € R, ,(b, 5).

For the second part, we assume that (2.2) holds true for % < B < 1. In this
case, we observe that

\(Dnﬁ-p—lf(z))/ _ pzp—ll _ ‘25[(Dn+p—1f(z))/ _ pzp—l +prp~1]
—[(D" P (@)Y = e

=| i(P + k)d(n, k)apr” Y — [28pb" 7 + i(l —26)(p + k)o(n, k)ap 2

k=1 —~
< Qﬂ i(p+k)5(n,k)[ap+k\ _p‘bl}rp—l

k=1
<0, by (22)

This proves that f(z) € R, (b, 5). Hence the theorem.

We note that

ﬂb Zp-l—k
R 5(n, k)(1 - B)

DVl f(2) = 2P —

is an external function with respect to the first part of the theorem and

Zp-l—k

D) = 2 -

(p+k)5(n, k)

P

is an external function with respect to the second part of the theorem since

(P
Qﬁ[wjl]_[wﬁl] =1

paP~L p2p—1
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for z=1, b# 0, complex, 0 < <1, n>-p,pe N,and k=1,2,---

We also observe that the converse of the above theorem may not be true. For
example, consider the function f(z) given by

(D1 (2)) 1= (28 —1-2p8b)z
Zp—1 o 1-(28-1)z

It is easily seen that f(z) € R, (b, 3) but
= PO, k) (1 - 5)

P T

00 (p+k d(n, k)1 —B) 263|b| k-1
- Z EUBN AT

Z B)(26— 1)t >1

for b # 0, complex, O<ﬁ<— n > —pand p € N, and also

o (p;k)§<n7 k:)

R < P } ,
= lb| ‘ p-‘rk’
< 25, k) 280
— Z P T l ‘ (2@) o 1)k‘—-1
k=1 0] T(S(n: k)
= Y 2828 -1 >1
k=1

for b # 0, complex, % <pg<1l,n>-ppeN,and z € U.
Corollary 1

Let the function f(z) defined by (1.1) be analytic in U. If for b # 0, complex,

00 / 1
3 (P55 b0 Kayea] < (201 = b, whenever § <M <1
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and - L
3 (&) d(n, k)|ap+k] < |b], whenever M > 1,
_ p

then f(z) € Ry pm(b).
Corollary 2

Let the function f(z) defined by (1.1) be analytic in U. If for some a, A(0 <
a<p|A<%),

> 1
Z p+k)o(n, k)|apk] < (2M — 1)(p — @) cos A, whenever 5 < M<1,

and -
Z p+k)o(n,k)|apsx] < (p — @)cos A, whenever M > 1,

then f(z) € Ry}, (e).

n,p,M

Corollary 3

Let the function f(z) defined by (1.1) be analytic in U. If for some «, 3, \(0 <
a<p0< @<L N <E),

26(p — a) cos A

Z<p+k oK) lapes] < S

then f(z) belongs to R} (a, §).
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Corollary 4

Let the function f(z) defined by (1.1) be analytic in U. If for some «, 5, A(0 <
a<p0<B<LIN<D).

(p+k)o(n, k)lapyr| < M, whenever 0 < 3 < —,
k=1 1-p 2
and
o 1
> (p+k)d(n, k)lapek] < (p— a)cos ), whenever 3 <p <1,

k=1

then f(z) belongs to R}, s(c).
Remark 1

1. Puttingn=1-p,pe Nand b= (1 -a)cosre™ [N\ <Z,0<a<1, we
get the corresponding sufficient condition obtained by Mogra [8]

2. Puttingn =0, p=1and b= (1—-a)cosre™ X\ <Z,0< <1, in
Theorem 1, we get the corresponding sufficient condition by Ahuja [2].

3. COEFFICIENT ESTIMATES

Theorem 2

Let the function f(z) defined (1.1) be in the class R, (b, 5)(b # 0, complex,
0<p<1,n>-—pandp€ N), then

20p|b|

|ap+k| < m(k =1,2,-) (3.1)

The result is sharp.
Proof

Since f(z) € R, (b, 3), we have

(D™= f(2)) _ 14126 1) — 28bjw(z)
pzP-1 1+ (20 - DHw(z)

(3.2)
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where w(z) = Y 0° 2™ € 2. From (3.2), we have

{26bpz”_1 + (26— 1) i (p+ m)é(n,m)a,ﬁmz”m‘l} { i bmzm}

m=1 m=1

k
- Z (p + m)é(n, m)ap+7nzp+m_1 (33) |

m=1

Equating corresponding coefficients on both sides of (3.3) we observe that the
coeflicient a, 4 on the right of (3.3) depends only on apy1,ap42, -+, @ppr—1 On
the left of (3.3) for £ > 1. Hence for k > 1, it follows from (3.3) that

k-1
{Qprzp "+ (28 -1 (p+m)d(n m,)ap+mzp+m_1} w(z)
m=1

o0 >
= (p+m)d(n,m)ap 2Pt = Y CpPtm!
m=1 m=k-+1

where C! s being complex numbers. Then, since |w(z)| < 1, we get -

\Qprzpl + (26— 1) z_: (p 4 m)8(n, m)aypmz? ™!

m=1

k o)
Z (p+ m)d(n, m)ay 2" + Z C,,zPtm=1
m=1 m=k+1

> (3.4)

Squaring both sides of (3.4) and integrating round |z| = r,0 < r < 1, we
obtain

Z(p+m)2((5( )) Iap m|2 2(pt+m— 1)+ Z ’C |2 2(p+m—1)

m=1 m=k-+1
k—1
< AFPPBPPETY 4 (28 = 1)2 4 3 (p 4 m)P(3(n,m))ap 2@ Y
m=1

If we take limit as r approaches 1, then

k k
(ptm)*(6(n, m))?|apeml” < AB°* B+ (20-1)* D (p+m)*(8(n,m))?|apym|”

m=1 m=1



On certain subclass of p-valent functions defined ... 103

or

k-1
(p+k)*(0(n, £))*|apil® < 4B7P*B* — 4B(1 = B) 3_ (p+ m)*(8(n, m))?|apin?
m=1

Since 0 < 8 < 1, we have
(p+ k)2 (8(n, k))?|apsrl® < 48°p°|b)?

Whence follows that
2p|b|
< . oermt
apa] < (p + k)d(n, k)’

Consider the function

1-[(28 - 1) — 260tk
1- (28— 1)tk

D'n,—i—p~1f(z) _ /zptp—l dt, zZ € U,
0

where b # 0, complex, 0 < 3 < 1,n > —p,p € N and k£ > 1. Then it is easy to
check that f(z2) € R, ,(b, 3) and the function D"P~! f(2) has the expansion

_ 26pb !
D’rH—p 1 2) = 2P + zp+k + ...

for all n > —p,p,p € N,k > 1 and 2z € U showing that the estimates are
sharp.

Remark 2

Taking appropriate values of b and 3 in Theorem 2, we may get the correspond—
ing coefficient estimates for functions in the classes Ry, 5 (b), Ri, m(0), By (a, 5)
and R} 5(c).

4. MAXIMIZATION OF |a3 — pa?|

We shall require the following lemma in our investigation:



Lemma 1

Let w(z) = Y52, cp2® € Q. Then

ez — pci] < max {1, |ul},

(4.1)

for any complex number p. Equality in (4.1) may be attained with the func-

tions w(z) = 2% and w(z) = z for |u| < 1 and |u| > 1, respectively.

Theorem 3

Let the function f(z) defined by (1.1) be in the class R, ,(b,/3), then for

complex number u, we obtain

20plb
opsa = ] < 7 L ax {1,]d]},

p+ 2)5(n’ 2)

where

=1 =28)(p+1)*(6(n,1))* + 2uBpb(p + 2)4(n, 2)

d=
(p+ 1)*(8(n, 1))
The result is sharp
Proof

Since Mz2) € R, ,(b, 5), we have
(D™l f(2)) 1+ (28— 1 —26bw(z)
pzrt 14+ (20 - Duw(z)

w(z) € Q

From (4.4), we have
Gl (G

p— - pzp_l
2 8b— (1 —26) (L5540 ) —1)
B Sita(p+ k)o(n, k)apsrz”
26pb — (1= 28) S22, (p + K)o (n, k)ay x2*
1 -
N _W(P +1)0(n, Vap1z + (p+ 2)d(n, k)ap2”
(1 —20)
23pb

w(z) =

+ (p+1)%(6(n,1))%a0 2 + -]

(4.2)

(4.3)

(4.5)
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and then comparing the coefficients of z and 22 on both sides of (4.5), we have

5(n,1)(p+1)

T gy P
and
1 (1-26)
r == | 0+ 20300 D + T2 4 12500 1)
Thus
o —26b
P (p+1)d(n, 1)
and
L (280w,
o (p+15m2)? (p+2)3(n,2)"
Hence
Apio — an — _____g@__l dc I
” P (p+2)8(n,2) '
where ) )
de - (1 —28)(p 4 1)*(8(n,1))* + 2uBpb(p + 2)é(n, 2)
(p+1)%(6(n, 1))?
Therefore 2Byl
. D
|apre — pag, ;| = ml@ — dcf| (4.6)
Applying Lemma 1 in (4.6), we get
20p|b|
|ap s — pad,,| < 202 max{1,|d[},

which is (4.2). Since Lemma 1 is sharp, so that the equation (4.2) must also
be sharp.



5. DISTORTION THEOREM

Theorem 4

Ly

If a function f(z) defined by (1.1) is in the class Rn,(b,8), 8 # 3, then for

|z) =7 <1,

R, { (D"“)*lf(Z))'} > 1= 28)blr + (26 — 1)[28Re{b} — (28 — 1)]r*

pzP!

1— (20 —1)%r2

and

R, {(D”“)‘lf(Z))'} o L+ 20blr + (28 — 1)[2pRe{b} — (26 — 1)]r*

pzPl

= 1— (26 - 1)%2

For 4 = %, the above estimates reduce to

and

The bounds are sharp.

Proof

(5.1)

(5.2)

(5.4)

Since f(z) € R, (b, 3), we observe that the condition (1.9) coupled with an

application of Schwarz’s Lemma [9] implies

(D1 f(z))

par —-n <R

where
B 1- (Zﬁ — 1)(2ﬁ —1- 2ﬁb)7‘2
= 1— (26— 1)2?

(5.5)
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and

Hence we have

(D™ 1f(2))' | o 1= 26]blr + (258 — 1)[28Re{b} — (26 — 1)]r*
Re { pazp~t } = 1-(26—1)%?2

and

(D21 f(2))) _ L+ 28blr + (26 — 1)[28Re{b} — (28 — 1)}
R { pzp—1 } = 1— (20 —1)%r?

By considering the function f(z) defined by

(D™P1f(2)Y 28 —1—28b 23b 1
pzp~1 o 28-1 * (28 - 1)(L+ (28 — 1)zeir)’ b7 2 (5:8)
where b — (26— 1)b 1
ir _ _ z -
b= (28 - 1))bl2’ b#5 (5.9

we find that the bounds in (5.1) and (5.2) are sharp at z = +£r, respectively.

Remark 3

The corresponding distortion theorems for functions belonging to the classes
Rupar(b), R (@), Ry (o, B) and R, 5(c) can be obtained from Theorem
4 by taking appropriate values of b and f3.

Remark 4

Putting (i) n = 0,p =1 and 8 = 1 and (ii) 8 = 22=1(M > J) in Theorem 4,
we get:
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Corollary 5

If a function f(z) defined by (1.1) is in the class R(b), then for |z| = r < 1,

we have
1 —2Jb|r + (2Re{b} — 1)r?

Re{f'(2)} > T3 (5.10)
and 14 2)b 2Re{d 1)r?
Re{f/()} <~ 20 +1(_ ;{ b= Ur (5.11)
By considering the function f(z) defined by
2% i
flz)=(1-2b)z+ g log(1 + ze*) (5.12)
where o -
; — bz
2 — .1

we find that the bounds in (5.10) and (5.11) are sharp at z = %, respectively.
Corollary 6

If a function f(z) defined by (1.1) is in the class R, , (b), then for |2] =r < 1,
we have

R, { (Dn;pz;l.{(z))/} > 1= (1 +m)blr —:n_z[frlﬂJTer)Re{b} - (5.14)
and ‘
N { (Dn+p—1—f(z))’} e (1 +m)jblr + m[(1 + m)Re{b} — m]r? (5.15)
pzP~! L= m?r2

where m = 1 — ﬁ(M > %) By considering the function f(z) defined by

(D) _me (Lemb (14 m)b
pzP~! - m m(1l + mze?)

(5.16)
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where
ol =mz

 b—m|b|2’

we find that the bounds in (5.14) and (5.15) are sharp at z = +r, respectively.

oy (5.17)

6. CONVEX SET OF FUNCTIONS

Theorem 5

If f(2) and g(z) belong to the class Ry, (), then vf(2z) + (1 — v)g(2)(0 <
v < 1), belongs to the class R, , a(b).

Proof

Since f(z) and g(z) belong to the class R, a(b), we have

(Dn+p-1]1c(z))/ _ 1 + b
it —-1|<1 6.1
A (6.1)
and
(D"+p—1€(z))’ _ 1 + b
P2 —1] <1 6.2
0 (6.2)

for some M, b satisfying M > 3 and b # 0, complex. Using (6.1) and (6.2),
it follows that

) n+p—1 P ’ —p n+p—1 2))
D IO )y gy
Mb
(DG g (AL C)
< pzp‘l o 1 1 . pzp—l B

<v+(1l-v)=1

for all 2 € U. This proves that vf(z) + (1 — v)g(z) belongs to Ry p a(b).
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7. CONVOLUTION OF FUNCTIONS
Theorem 6

If

f(2) = 22+ apppa?t?
h=1

and

g(z) = 22+ byt th
k=1

belong to R, a(b), then

had +k :
F(Z) =P+ Z (%‘) ap+kbp+kzp+h

k=1

is also a member of R, , (b),0 < |b] < 1.
Proof

Since f(z) and g(z) belong to R, (b), we have

(D7) )
—piflﬂ’——M <M, M>_feU
and
(Drer=tg()) )
—p—zp—f—lib——M < M, M>—2—zeU

It is well known [9] that if h(z) = Y0, C,,2" is regular in U and |h(z)| < D,

then -
> |G, < D?

n=0

Applying the estimate (7.1) to the function.

(Dn+j71—1g(z))/
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Z (p+k> n, k))?|apes)* < (2M — 1)[b|, M > 1

Similarly, applying the estimate (7.1) to the function

(1 gta))
_p b At we obtain

b

> (p+k 2 1

Z(—) (6, K)Plbpenl? < (2M — 1)Jbl, (M > )

k=1 p 2
Since )

P =43 (P ity
k=1

we have

(D21 F(z)) :

P14
% - M

2

lE& (p+k 2 |
= (1 - M) + E Z (-p—> ((S(Tl, k))2&p+kbp+k2p+k

< (1-M)>*+ 2(

00 +k
Z (p > (n, k))2|ap+k| |bp+l~C|7JC +

e (f: (]ik> (50, )l |bp+k|rk) (1 =7

p
2(1 -

< -0 2D S (2R Pl +

# (i (fi’“) (5(n, k>>2|ap+k||bp+k!)

p

- AL [f: (p““) (n k))?\aﬁﬂ

p

1
2

IA
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o p+k2 q1/2 e p+k2
5 (2E5) k| + otz |3 (2R 6l
k=1t \ P b2 |z \ P
[ oo P4k 2
> (225) 6ty
_k:l p .
< (1= M)*+2(1— M)2M — 1)[b| + (2M — 1)?|p)?
Consequently
(D™P-LF(z)) 2
pzi’*lb—lﬁ—b - Ml < M2
if
(1= M)??+2(1 - M)(2M — 1)|b] + (2M — 1)?|b|* < M?
that is, if

(2M — 1)(|o] = D[(2M - 1)|b| +1] <0

which is true for M and b # 0, complex satisfying M > % and 0 < [b] < 1.
Hence

F(Z) S RnypyM(b)
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Abstract

The necessary and sufficient conditions of optimality for the following n xn
elliptic system with Dirichlet conditions are given

{ Y =MY +F inR%®

Y =0 onr, P

where & is an n x n diagonal matrix of the following second order self-adjoint
operator with an infinite number of variables:
00 1 82
Ay(z) = = 3 — =\ (o) (w)y (@) + a()y(z) (1)

= /(o) () 97

M is a given n-square matrix coefficients and F = (f1, fa, ..., fn) is a given
vector function. Also, the problem with Neumann conditions is elaborate.
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1. INTRODUCTION

The necessary and sufficient conditions of optimality for systems governed by
different type of partial differential operators defined on spaces with finite
number of variables are discussed for example in [7 — 11]. The optimal control
problem of systems governed by different type of operators defined on spaces
with an infinite number of variables are initiated and proved by Gali et al in
[3,4]. These systems consists of one equation. The optimal control of 2 x 2
elliptic systems defined on RY are established for example in [5,6, 8,12, 13].
Here, we extend the discussion to n x n elliptic systems involving second
order self-adjoint elliptic operator with an infinite number of variables. In
section one, we introduce some function spaces defined on R™. Section two is
devoted to study the optimal control for n x n elliptic system with Dirichlet
conditions. We first prove the existence of solution for system (D); then we
give the necessary and sufficient conditions for the control to be an optimal for
the system. We also study the problem with Neumann conditions in section
three. In all our considered problems the control of distributed type.

(I)Some function spaces defined on R™.

In this section, we give the definition of some function spaces of infinitely
many variables [1, 2]. For this purpose, we introduce the infinite product R =
RY x R x ..., with elements (R® 3 z = (2,)%2,,%, € R'), and we denoted
by d,(z) the product of measures d,(z) = pi(z)dz; X pa(x)dzy x ..., where
(pr(1))2; is a fixed weight such that

0 < pi(l) € C¥(RY), /R pe(t)dt = 1.

With respect to this measure and on R* with sufficiently smooth boundary I',
we construct the space L?(R*,d,(x)) of function u(x) which are measurable
and such that

lull 2, apian = ([ lul?dy(@)? < oo. @)

We shall set
LR, dp(x)) = L2(R*)

It is a classified results that L?(R>) is a Hilbert space for the scaler product

(4, 0) oy = [ ul(z)u(e)dp(a)

O
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associated to the above norm (2). For function which are continuously differ-
entiable up to the boundary I' of R* and which vanish in a neighborhood of
00, we introduce the scalar product

(U,'U) = Z (Da(u)7 (Da(v)))Lz(Ro") (3)

al<1
we recall that a = (ag, ag, ..., ay) is a multi-index for differentiation,

N e . 6|a\
R T

and after the completion, we obtain the Sobolev space W' (R*). In short,Sobolev
space W1(R>) is defined by:

ou
8337;

This space form a Hilbert space endowed with the scalar product (3)(see[1, 2]).
The space W!(R™) form a positive space . We also construct the negative
space W~1(R*) with respect to the zero space L?(R>) and then we have the
following imbedding [1]:

WH(R®) € L*(R>) C WH(R™), (4)

WL(R™) = {ulu, = € L2(R™)}.

||U||W1(Ro<>) > ||U||L2(R°°) 2> ||U||W*1(R°°)

Analogous to the above chain, we have a chain 6f the form ‘
Wo (R®) € L*(R™) € Wi ' (R™), (5)

where W} (R™®) is the set of all function in W'(R*), which vanish on the
boundary of R, i.e

.
Wo (R) = {ulu € W'(R®), 5| =0},

where %:ﬂr is the derivative on I', oriented towards the exterior of R*, and

Wi ' (R®) its dual.
Then it is easy to construct the following Sobolev space (W1(R>))"by carte-
sian product as follow:

W B = TV (),

i=1
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with norm defined by ,

[ P—— z [

so from (4), (5), we have the following two chains:-

(WHER=)" S (LARE™)" € (W HR)", (6)
(W (R®)" € (LH(R™)" € (W ' (R)" (7)
where (W~1(R>))" and (W, '(R*))", are denoted the dual of the spaces

(WH(R*®))™ and (Wi (R>®))" respectlvely.

II-Distributed Control for n x n System Involving Operator with an
Infinite Number of Variables with Dirichlet Conditions.

In this section, we consider the optimal control of system (D). Our model is

defined on (Wy (R™))" by A(® = {1, d2, ..., 0n}) — A{d1, b2, ..., P}

= (= 202 Dy 4 q(z)dy + X5y aryds, — Spsy Do + q(@)da + X, az; 5,
;= i Do + q(@) b + 227 andy)

that is

ZD ¢i +q(x)i + > aidy,i=1,2,...,n (8)
j=1

where

Diglx) =

>
833k (\/pe(xe)p(x v > 0.

System (D) can be written as:

— Y252, DH(I) + q(z)y; + Xy ayy; = fi inR® ‘
Yilr = 0, ' foralll <i <mn,

1 ifizg
YT 1 afi<y
Now we define on (wj(R™))™ a continuous bilinear form

IT: (W (B%)" x (Wo(R*)" — R
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by:

=33 [ D@D o+ [

d@u@b@o+ Y [ aeds ©)

,5=1

Then we have
Lemma 1
The bilinear form (9) is coercive on(W; (R>))", that is

CI(Y,Y) 2 iyl reyyer 0 > 0 (10)

Proof

The bilinear form (9) can be written as |

I(Y, @) = 30 3321 Jreo Diyi(z) Di(x)dp + 327 [ree q(T)yi(z)di()dp

+ 201 Jree U5(2)@i(2)dp + T Jreo 43(2)0e(2)dp — 27 Jreo Y5 (2) i () dp,
then

o0

oy, Y)=3_ Z/ | Digi()dp + Z/ )|y (z)*dp + Z/ yi|*dp
k=1 i=1
Z Z | Dryi(z ”L2 (R=) T Z llys()]|32 (R=) T VZ ys(z ”LZ(Roo)
k:l =1 Z—]. Z—l

2 Z “yz le(Roo) + VZ ”yz ”Lz Roo),O <v<l1
2 62 llyi(z HW1 (R>®)»
—ﬂwmmm@w

which prove the coerciveness condition. By Lax-Milgramm theorem we
have,
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Lemma 2

If (10) holds. Then for F' = (fi, fo, ..., fu) € (L*(R™))", there exit a unique
solution Y = (y1, ¥, .-, Yn) € (W3 (R>))" of system (D).

Proof

Let ®{¢1, ¢, ..., pn} — L(P) be a continuous linear form defined on (W (R*))
by

L) =% /R .
i=1

Since (10) holds, there exits a unique element Y = (y1, ya, ..., yn) € (W (R®))"
satisfying
(Y, ®) = L(®) forall® € (W, (R™))"

which equivalent to; there exists a unique solution Y = (v1,y2,...,yn) €
(Wg(R>))" for system (D).

The Control Problem for system (D).

The space (L*(R*))"™ being the space of controls. For a control u = (uy, uz, ..., u,) €
(&2(R>))" the state Y = (y1, 42, .-, ¥n) € (Wy(R™))" of the system is given
by the solution of, ~

(= 3282 DAI) + q(@))yi(w) + 5y agyi(u) = fi +u; inR> )
yi(u)|r =0, foralll <1 <n.

The observation equation is given by :

Z(u) = {z1(u), 2o(w), ..., 2n(u)} = Y (u) = {tn(w), ya(w), -, yn ()}
ie zi(u) =yi(u). forall 1<e<mn.

For given Z; = {214, 22d; .-, Znaf, € (L*(R™))", the cost function is given
by

J(U) = il/Roo (yi(v) - Zid)de + é(NiUi, Ui)LQ(ROO) (12)
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where

N = {Ny, Ny, ..., No} € LL*(R®)", (L*(R™))")

is a diagonal matrix of Hermitian positive definite operators such that
(Nu, U)?H(Rw)) 2 C||U||%L2(Roo))n>f >0 (13)
The control problem then is to find

u € Upg  suchthat J(u)= inf J(v) (14)

veEUyq

where U, is a closed convex subset of (L*(R*))™. Since the cost function (12)
can be written as:

J(v) = av,v) = 2LW) + Y (v) = Zall {2 (rooy)n

where a(v,v) is a continuous coercive bilinear form and L(v) is a continuous
linear form on (L?*(R*))™. Then using the general theory of J.L.Lions [8] there
exit a unique optimal control satisfies (14). Moreover we have the following
theorem which gives the characterization of this optimal control.

Theorem 1

Assume that (10), (13) holds, the cost function is given by (12). A necessary
and sufficient conditions for v = (uy, us, ..., 4, )to be an optimal control is that
that the following equations and inequalities are satisfied

(=232 Di(I) + q(z))pi(u) + X5, aypj(u) = yi(u) — ziq iR

pi(u)|r =0, foralll <i<mn,
Z/ (pi(u) + Nyug)(vs — u)dp >0 forallv = (v1,v2, ..., v,) € Uy
i=17R%

together with (11), where aj; is the transpose of a;;,P(u) = (p1(u), p2(u), ..., pp(u))
is the adjoint state.
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Proof

Since J(v) is differential and U,y is bounded then the optimal control u =
(u1,uz, ..., uy) € (L*(R>))™ is characterized by

ZJZ/(U)(UZ — ;) > 0,Yv = (v1,v2,...,Un) € Upg
3=1

which is equivalent to:

n

> (Wiu) = 2ia, i (v) — (W) p2(roey + D (Nsthi, vy — ui)p2(roey 20 (15)
i=1

(P AY( )) L2(Reo)yn = Z Diy — Z Dkyl + q yl + Z aljy] L2(R>),

i=1 k=1 7=1

then using Green’s formula, we have

(P, AY (w)) w2meyyr = Z ZDsz (2)pi + 2 4y, yi) 12 reo)

i=1 j=1

= (A*P( )7Y( u)) (L2 (Roe))

where
A™(P(u) = {p1(w), p2(u), ..., pn(u) } = A{p1(w), p2(w), ..., pn(u)} —
- i_oz Dipr(w) + q(a)pr(u) + ‘; ajip; (), — i Dipa(u) + q(z)p2(u) + Zi: a;2p;(u)
oy = i_o: Dipn(u) + q(z)pa(u) + Zj: a;np;i (1))
Then the equation A*P(u) =Y (u) — Z, can be written as:

- Z Dipi(u) + )+ Zagng =y(u) — 2ziq forall 1<i<n.
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Now equation (15) is equivalent to:

(= 3 Do) + e (a0 + 3 a4 (0) = )2 +

Z(Niui,vi - Ui)LZ(ROO) > 0.

i=1
From Green’s formula and (11) we get

mn

Z(pz(u) + Niui,vi — ’UJZ')LZ(Roo) Z 0

=1

So, u = (uy,usg, ..., up) € Uyg such that:

Z/R (ps(u) + Nyug, v; — w)dp >0 forall v = (v1,vs,...,Un) € Usg
i=178%

{ which complete the proof.
Remark 1

When n = 2, the optimality system is given by:-

- i_o: Dy (u) + ¢(@)yi(w) + i (u) —ga(u) = fi+w inR”,

—g:D/%@h(U) b (@) + i (w) + ya(0) = fotup inE

y(u)r =0, ()l = 0,

—j;*Dipl(u)+q<m>p1<u>+p1<u>+p2<u> ) —my iR

—i Dps(w) + a(@)pa(u) — pr(u) + pa() = yolu)— 20 inR™

pi(w)lr =0, pa(u)lr = 0,

Y

Y

3

123

w="(u1,us) € U, /ROO (p1(u) + Niwy) (01 —ur) + (p2(u) + Noug) (vy —ug)dp > 0
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Yo = (u1,v3) € Usg, whereP(u) = (p1(u),p2(u)) s the adjoint state

(III) The System With Neumann Conditions.

We discuss here the following elliptic system with Neumann conditions

{ (= 32821 Dy (D) + al@))ys + i aiy; = fi in R®

N
soYilr = hi, ()

where Y = (Y1, 92, -, Yn) € (WHRP)N™ F = (fi, f2,., fn) € (L*(R>=))m
and h; € H2 ('), foralll <i < n.

We prove the following lemma which gives the existence and uniqueness of |
solution for this system.

Lemma 3

For given F' = (f1, fay.s fn) € (L*(R*®))" there exit a unique solutionY =
(Y1, Y2, -y Yn) € (WHR*®))™ of the system (N).

Proof

Since the bilinear form (9) is also continuous and coercive on (W*!(R*))™, then
there exit a unique element Y = (y1,¥s, ..., yn) € (WI(R>))", such that

(Y (u), @) = L(®) Y € (W' (R™))" - (16)
where ® — L(®) is a continuous linear form defined on (W!(R>))" by

L®) =3 | fitdo+ > | hignr (17)

for all ® = (¢1, g, ..., dn) € (WHR®)™, (b1, by, ... hn) = h € (H= (D))",
hence ‘

(=S D} (D) +q(x))ys + Y _ayy; = fi mR® V1<i<n.
k=1 =1

Multiplying both sides by ® = (¢1, da, ..., ¢,) € (WH(R®))" and integrating
over R*, we have

=33 [ DD+ a@insde + Py fr it =3 [ Ficp
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using Green’s formula, we obtain

ii/ Dyy; Dyidp — Z/ 0y: gbZdF+ Z / aijy;dsdp +

i=1 k=1 j=i=1
+ Z | a@igudp = Z | fiudp
using (9), we obtain
Iy Z /

from (16), we get

N

Oy

il =0

Z/h@dr Z/

hence

[ = 25908 = 0 = o =

2, ..M

The control problem for system (IN)

The space (L?(R™))™ being the space of controls, for a control u = (ur(u), ua(u)
(L2(R>))™ the state y(u) = (y1,%2, ..., Yn) € (WL(R*®))™ of the system is given
by the solution of

(= X% D (D) + q(@))yil) + 5552, @iy (w) = fi +wi in R
%yilr = hy onl', forl <i< n.

The cost function is again given by (12), then there exits a unique optimal
control u = (uy,ug, ..., u,) € (L2(R*®))™ such that :J(u) < J(v); Moreover it
is characterized by:

Theorem 2

The optimal control u = (uy,ug,...,u,) € (L*(R™))" in characterized by
(18)together with:

(= 22521 Dici (1) + q(@)pi(u) + 225y aijpj(w) = yi(u) + 24 in R

ey Un (1))

(18)

(19)
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u= (1, 0y tn) € Uty 35 [ (piluw) + Nows) (v — us)dp 2 0
=1

Yo = (v1, V2, .y Up) € Upg

Outline of the proof

Since J(u ) is differentiable and U, is bounded then the optlmal control y =
(g, ug, ..., un) € Uyq is characterized by

ZJZI(U)(UZ —u;) >0, Yv=(v,v9,...,0,) € Upa

therefore

n

{3 iu) — zia, i (v) = vi(w)) L2(roy + zn:(Nz'Ui, Vi — ui)remeey >0 (20)

=1 i=1

since the adjoint state is given as in theorem (1) by (19), then (20) is equivalent
to

i((_ i_o: Di(l) +qla Z ajip; (u — ¥i(w))r2(ree) +

> (Nyug, v — i) p2ereey > 0,

=1

using Green formula, we obtain :

il<pi<u>,<.—§Dz:1u>+q(z>)<y1;< _— +zaﬂ (o) = () () +

+ Zn:(pz(u)a a_i;(yz(v) — yi(u))Lz(F) — Xn:(é_a_

pi(u), yi(v) — yi(u))LQ(F) +
i=1 i=1 OVar

2 s

> (Niug, v — ;) p2(reey > 0,

=1

Then from (18), (19), we have

u = (U, Ug, .., Up) € Ung, /Roo(Pi(U) + Nyug)(vs — ug)dp > 0
im1 :

VU = (U1>1)27 "‘71)71,) € Uad
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which complete the proof.
Remark 2

Let n = 2, the optimality system is given by
=2 Diyi(w) + g(z)yr (uw) + yu(w) —y2(u) = fi+uw inR>,

- ij: Diya(u) + q(@)yo(u) + y1(u) + y2(u) = fo+us mRoo ,

0 0
5;@11(”)[1“:}% %yz(u)lr = hg,

- i_o: szl (u) + q(@)pr(u) + p1(uw) + po(u) = p(u) — 214 inR™,

- i Dipa(u) + q(z)p2(u) — pr(u) + po(u) = y2(uw) — 204 InR™,

0 0
8VA*p1(u)|F:0’E/—; pau)lr = 0,

u = (u1,us) € Uyg, /Roo(pl(u) + Nyug Y (v — wa) + (paw) + Noug ) (vo — ug)dp > 0

Yo = (v1,v3) € Upg, whereP(u) = (p1(u),pa(u)) is the adjoint state.
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Abstract

In this paper we consider the class T.(n, A, &) consisting of analytic and univa-
lent functions with negative coeflicients and fixed second coeflicient. The object
of the present paper is to show coefficient estimates, convex linear combina-
tions, some distortion theorems and radii of starlikeness and convexity for f(z)
in the class T,(n,A,a). The results are generalized to families with finitely
many fixed coefficients. -

1. INTRODUCTION

Let S denote the class of functions of the form:"

f(2) = z+§jdkz‘“, (1.1)
k=2

which are analytic and univalent in the unit disc U = {z : |2] < 1}. Given two
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functions f, g € S, where f(z) is given by (1.1) and g(z) is given by

9(z) =z + ibkz’“, (1.2)

k=2

Their Hadamard product (or convolution) f x g(z), is defined by

fxg(z)=2z+ i arbpz®, (2 € U) (1.3)

k=2

By using Hadamard product, Ruscheweyh [4] defined

z

DPf(z) = A=z * f(2)(B = -1) (1.4)

and observed that
2(2" 1 f(2))™

n!

D" f(z) =

(1.5)

where 3 =n € Ny = NU{o}; and N = {1,2,---}. This symbol D"f(z)(n €
Np) was called teh n-th order Ruscheweyh derivative of f(z) by Al-Amiri [1].
We note that D°f(z) = f(z) and D! f(2) = z2f'(2). It is easy to see that

D"f(z) =2+ i 5(n, k)ag 2", (1.6)
where
6(n,k):(n+7}z_1> (1.7)
Note that
2D f(2))' = (n+1)D" ' f(z) — nD"f(2) (1.8)

Let T denote the subclass of S consisting of functions of the form:

F) =2 = Y anH (o 2 0) 09
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Further, we say that a function f(z) belonging to 7T is in the class T{(n, A, @)
if and only if

Drilr(z)
Re { D7 f(z) } >a, (n€ Ny (1.10)
Dn+1f b
A an(z)) I“ (1 - A)

for some a(0 < a < 1),A(0 < A < 1), and for all z € U. The class T'(n, A, a)
was introduced by Aouf and Chen [3]. We note that by specializing the pa-
rameters n, A and «, we obtain the following subclasses studied by various
authors:

(1) T(0,\, ) = T(\, «) (Altintas and Owa [2]);

(2) T(0,0,) = T*(e) (Silverman [5]);

(3) T(n,0,a) represents the class of functions f(z) € T satisfying the con-
dition

(DY)
e {D”f()

—»—~} >a0<a<l; neN). (1.11)

For the class T'(n, A, ) Aouf and Chen [3] showed the following Lemma:

Lemma 1

Let the function f(z) be defined by (1.9). Then f(z) € T(n, A, &) if and only
if

i Cr(n, A\, a)d(n, k)ag < (1 —a)(n+1) (1.12)
where
Ce(n, A, o) =n+k—aMk—1)+n+1] (1.13)

The result is sharp.

In view of Lemma 1, we can see that the coefficient ay of the function f(z)
defined by (1.9) and belonging to the class 7'(n, A, a) satisfies the inequality:

£
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(1-o)
< - Ny, 0 < 1, 0<A«1 .
a2—02(n,>\,oz) meNp,0<a<l 0<A<1) (1.14)
Thus we let T,(n, A\, @) denote the class of functions f(z) in T'(n, A, @) which
are of the form:
c(l—a)

_,o =) ok >0; 0<c¢<1 1.
f(z)== 02(7%)\70[)2 éakz (ap, > 0; 0<ec<1) (1.15)

For the class T.(n, A, @) of analytic functions with negative coefficients and
fixed second coefficients, defined above, we shall derive a number of interesting
properties and characteristics (including, for example, coefficient estimates,
closure properties involving convex linear combinations, growth and distortion
theorems and radii of starlikeness and convexity). We also extend many of
these results to hold true for analogous classes of functions with finitely many
fixed coefficients.

2. COEFFICIENT ESTIMATES FOR THE CLASS T.(n, ), &)

Theorem 1

Let the function f(z) be defined by (1.15). Then f(z) € T.(n, A, ) if and only
it

i Cr(n, N\, a)d(n,k)ar, < (1 —c)(1 —a)(n+1) (2.1)

where Cy(n, A, «) is defined by (1.13) and §(n, k) is defined by (1.7). The result
is sharp.

Proof

Putting
(1—-a)

= Glnna) (0<e<) (2.2)

az

in Lemma 1 and simplifying the resulting inequality, we readily arrive at the
assertion (2.1) of Theorem 1. The result is sharp for the function f(z) given
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l-0) , (1-O1-a)ntD)
Ca(n, A\, a) Cr(n, \, @)d(n, k)

(k=3,4,5--) (2.3)

Corollary 1
Let the function f(z) defined by (1.15) be in the class T.(n, A, «). Then

0 < 1-0(1l—-a)(n+1)
= Cr(n, N a)d(n, k)

(k=3,4, ) (2.4)

The result is sharp for the function f(z) given by (2.3)

3. CLOSURE THEOREMS FOR THE CLASS T,(n, A, «)
Theorem 2

The class T,(n, A, ) is closed under convex linear combination.
Proof

Let the function f(z) be defined by (1.15). Define the function g(z) by

glz) =2 — C((ln_xaa)z _ Z bzt (be > 0) (3.1)

Assuming that f(z) and g(z) are in the class T.(n, A, ), it is sufficient to prove
that the function h(z) defined by

hz) =pf(z) +(1-—pg(z) (O<p<l) (3.2)
is also in the class T,(n, A, ). Since
h(z) =2z — Cc((ln )\ a)z — Z{,uak + (1 — p)by +25, (3.3)

we observe that
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ij: Cr(n, N, a)d(n, k) {pag + (1 — )b} < (1 = )(1 — a)(n + 1) (3.4)

with the aid of Theorem 1. Hence h(z) € T.(n, A, «). This completes the proof
of Theorem 2.

Theorem 3

Let the functions

c(l—a)

R LN VT BD

be in the class T.(n, A\, a) for every j = 1,---,m. Then the function F(z)
defined by

2= wifi(z) (4 =0) (3.6)
=1
is also in the class T,(n, A, ), where

domi=1 (3.7)
=1

Proof

Combining the definitions (3.5) and (3.6), we have
(1l —a) (&
F(Z) =z — —m g Zﬂﬂakﬂ Zk, (38)

where we have also used the relationship (3.7). Since f;(z) € T.(n, A, o) for
every 7 =1,2,---,m, Theorem 1 yields.

i Cr(n, N, a)o(n, k)ag,; < (1—c)(l-a)(n+1) (j=1,2,---,m) (3.9

Thus we obtain
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k=3 k=3

iCk(n,/\,a)(S(n, k) (i p]ak]) = M (:i Ck TL /\ a TL k)ak,j
<(1-o1- a) n+1 |

which (in view of Theorem 1) implies that F(2) € T.(n, A, &).

Theorem 4

Let . :

| fo(z) =2 — _C’%TL,TX%ZQ (3.10)
and
fol2) = 2 c(l-a) , (I-cdl-a)n+1) ; (k=3,4,5,-), (3.11)

CZ(”u /\7 a) ‘ Ck:(n7 /\7 a)é(’nﬂ k)

Then f(z) is in the class T.(n, A\, @) if and only if it can be expressed in the
form: ‘

=D ful2) S (312)
k=2
where oo
pe >0 and > =1 (3.13)
k=2 : '
Proof

We suppose that f(z) can be expressed in the form (3.12). Then we have |

1-0) , (1-ol-a)n+ D ,
I =2 G’ Crmnapmk) (8:14)
Since
(1-c)(l-a)(n+Du, Ci(n, A a)d(n k) - B
Z Cilm N, a)o(n k)  (1—a)(n+1) (1=c)(1 =)

<(l-¢), (3.15)
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it follows from (2.1) that f(2) is in the class T.(n, \, «).

Conversely, we suppose that f(z) defined by (1.15) is in the class Ti(n, A, a).
Then, by making use of (2.4), we get

(1-c)(l—a)(n+1)

WS a2 (3.16)
Setting
_ Cy(n, A, a)d(n, k) .
e = (1-o)(I—a)(n+1) o (k23) (3.17)
and .
Mo = 1-— z_:,uk, (318)

we have (3.12). This completés the proof of Theorem 4.
Corollary 2

"Rhe extreme points of the class T,(n, A, «) are the functions fi(z)(k € N/{1})
given by Theorem 4.

4. GROWTH AND DISTORTION THEOREMS FOR THE CLASS
TC(”? )\7 Oé)

Lemma 2, 3, and 4 below will be required in our investigation of the growth
and distortion properties of the general class T.(n, A, ).

Lemma 2

Let the function f5(z) be defined by

L di—a
fs(z) = = m+2-aAtn+t i)
2(1 — ¢)(1 - a) \

43 —a@ +n+1)](n+2) (4.1)
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Then, for 0 <r<land 0<c<1,

i C(l—a) )
| fs(re®)| > r— [n+2—a()\+n+1)]r
2(1 —¢)(1 — o) ;
Tt3—alrtnt Dn+2) (4.2)

with equality for 6 = 0. For either 0 < ¢ < cgand 0 <r <rg, or ¢g < c < 1,

i C(l—a) )
|fa(re®)| > r+ [n+2_a<>\+n+1)]r
2(1—0)(1_a) ;
Tht3—a@ tn+n+2) (4.3)

with quality for 6 = w. Furthermore, for 0 <c¢<c¢yand ro <r < 1.

) [ 0 -a)n+3—a@\+n+1)](n+2)
[fs(re)] ST{P* S1—o)n+2—ar+n+ 1) ]
{ 2(1 — a)? ., 41— )1 - a)
2n+2—aA+n+1D2  [n+3—al2X+n+1)|(n+2)
[ CA(L=0)*(1 = )?
[n+3—a@2X+n+1)2(n+1)?

]T2+

62(1 —e)(1 — a)3 | } 7ﬂ4}1/2
2n+2—aA+n+1DPn+3—alX+n+1)](n+2)
(4.4)

with equality for

a2 =) —a)r? —e(n+2)[n+3 —a2X +n 1))
0= cos ( 8(1—c)n+2—aA+n+1)r >’ (4.5)

co = - a[—{8[n+2—a()\+n+1)]+
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(n+2)n+3—alr+n+1)]-2(1-a)}+
{{8n+2—aX+n+1)]+ (n+2)[n+3—-a2A+n+1)]
~2(1 - a)}2 +64(1 —a)[n+2 — a(XA +n+ 1)}V

(4.6)
and
" a _cl)(1 {0 =0l 2= oA+ 1)
+{16(1 — ¢)*[n + 2 — a(A + n + 1)]?
+2c3(1 — ¢)(1 — a)(n+ 2)[n + 3 — a(2X +n + 1)]}V/2}.
(4.7)
Proof

We employ the same technique as used by Silverman and Silvia [6]. since

8\]03(7’67;(?)_\2 _ 2(1 — o)

06 n+2—aA+n+1)
8(1-c)n+2—a(A+n+1)
n+3—alrx+n+1)](n+2)

2¢(1-¢c)(1 — )

3 sin fc +

rcosf —

[n+3—al2A+n+1)](n+ 2)T2]’
(4.8)
we can see that O f(re? .
= 0 (4.9)
for 6; =0, 6 == and
R e e

Since 3 is a valid root only when —1 < cosf@; < 1, we have a third root if
and only if 7o <7 < 1 and 0 < ¢ < ¢g. Thus the results of Lemma 2 follow
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upon comparing the extremal values f3(re*)|(k = 1,2,3) on the appropriate
intervals.

Lemma 3

Let the function fy(z) be defined by (3.11) and £ > 4. Then

| fi(re®) < [fa(=)] (k > 4). (4.11)
Proof
N c(1 - a) 2
Jelz) = 2 n+2—aA+n+1)]"
R (B R N
{n+k—alAk—1)+n+1]}d(n, k)
and

(1-¢)(1—a)(n+1)r"
{n+k—alA(k—1)+n+1]}d(n,k)

is a decreasing function of k£, we have

(1l = a) 2
[n+2~a(A+n+1)]
N 6(1—c)(1—a) A
n+2)(n+3{n+4—a[3A+n+1]}
= —f4(—7°),

[fulre®)] < r+

which proves (4.11).
Theorem 5

Let the function f(z) defined by (1.15) belong to class T.(n, A, ). Then, for
0<r<l,

> C (1 - a) 2
|f(re®)| > T—[n+2_a()\+n+1)]r
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21 —o)(1 — «) 5
(n+2)[n+3—al2X+n+1)]

(4.12)
will equality for f3(z) at z = r, and
|/(re”)] < max{max| fa(re”)|, = fu(~r)}, (4.13)
where ‘
max | f3(re™)]

is given by Lemma 2. The proof of Theorem 5 is obtained by comparing the
bounds given by Lemma 2 and Lemma 3.

Remark 1

Putting ¢ = 1 and n = 0 in Theorem 5 we obtain the following result obtained
by Altintas and Owa [2].

Corollary 3 .
Let the function f(z) defined by (1.9) be in the class T1(0, A\, a) = T'(A, ).

Then for |z| = r < 1, we have

(1-0) 2
r—mr <|f(z)| <r+

(1-a) 2
mr : (4.14)

The result is sharp.
Lemma 4

Let the function f3(z) be defined by (4.1). Then, for 0 <r <land 0 <c¢ <1,

. 2¢(1 — a)
|[fa(re”)] = 1_[n+2—a()\+n+1)]r_

6(1 —o)(1 —«a) 2
[n+3 —a@X+n+1)|(n+2)

(4.15)
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with equality for 6 = 0. For either 0 <c<ciand 0 <r <rjorc¢ <c<1,

4 2¢(1 — «)
! 0 < —
Faret)l = At s T
6(1 —c)(1 —a) 2
n+3—aX+n+1)|(n+2)
(4.16)
with equality for # = 7. Furthermore, for 0 < c¢ < ¢y and ry <r <1,
2
TR Al—a)n+3—al@r+n+1)](n+2)
|f5(re”) < {[1+ 6(1—c)fn+2—aA+n+1)? ]
2¢%(1 — a)? 12(1 —¢)(1 — «) 12

[[n+2—a(z\+n+1)]2 (n+2)n+3—a2X+n+1)]
6c?(1 —c)(1 — a)? ]
n+2—aA+n+D2n+2)n+3—al2X+n+1)]
36(1 — ¢)*(1 — o)’ ]r4}1/2
(n+22n+3—al2X+n+1))?

+

(4.17)

with equality for
— — 2 _ —al?
1 <6c(1 )1 —a)r c(n+2)[n+3—aof /\+n+1)> (4.18)

= cos 12[n+2—ar+n+ D)1 —-o)r

where

¢ = 1—2(11_—04){—12[n+ 2—a(A+n+1)] -
(n+2)n+3—al@A+n+1)]+6(1—-a)+
{12[n+2—a(A+n+1)]+ (n+2)[n+ 3 — a(2X +n + 1)]
—6(1—a)}?+288(1 —a)[n+2—aX+n+ 1))V
(4.19)

and

r o= {-6(1—¢c)n+2—a(X+n+1)]+

6c<1/ c1)<1 —a)

i
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[36(1 —c)* [n+2—a(A+n+1)* +
6c*(1 —c)(1 —a)(n+2)[n + 3 — a(2X +n + 1)]]V/%}.
(4.20)

The proof of Lemma 4 is given in much the same way as Lemma 2.
Theorem 6

Let the function f(z) defined by (1.15) be in the class Ti(n, A, ). Then, for
0<r<l,

1o i 2¢(1 — @)
FreDl 2 1= [n+2—a(/\+n+1)]r_
6(1 —c)(1 — ) 9
n+2)n+3—alX+n+ 1)]r
(4.21)
with equality for fi(z) at z =r, and
|f'(re”)] < max{max|fs(re”)|, fi(-r)}, (4.22)

where
imax | (re)

is given by Lemma 4.
Remark 2

Putting ¢ = 1 and n = 0 in Theorem 6 we obtain the following result obtained
by Altintas and Owa [2].

Corollary 4

Let the function f(z) defined by (1.9) be in the class T1(0, A, o) = T(A, ).
Then, for |z| =r < 1,

1— 7. (4.23)
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The result is sharp.

5. RADII OF STARLIKENESS AND CONVEXITY

Theorem 7

Let the function f(z) defined by (1.15) be in the class T.(n, A, «). Then f(2)
is starlike of order p(0 < p < 1) in the disc |2| < ri(n,\, «,c¢,p), where
r1(n, A\, a, ¢, p) is the largest value for which the following inequality holds
true.

c(1-a)2—p)r
n+2—aX+n+1)]
(-l -a)n+1)(k—p) 4
{n+k—afAk—-1)+n+1]}d(n, k)
< 1—-p(k=3,4,--).
(5.1)
The result is sharp, the external function being given by
f(Z) = 4 C(l—a) 22
g [n+2-—a(n+A+1)]
(1-c)(l—a)(n+1) J
{n+k—alA(k—1)+n+1]}d(n, k)
(5.2)
for some k.
Proof

It suffices to show that

()
fz)
|z] < ri(n, A, a, ¢, p). We note that

c(l-a k—
zf'(2) . 1{ < [nt2- (a(A+)n+1) T+ Yhes(k — Dayr !
f(Z) - 1-— [n+- 5 CS(A(—}'—)TL-'—].) Zk 3 akT'k 1

— ozl <7)

<l-p (0<p<1)

IA

(5.3)
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if and only if

(1= )2 p)
n+2—aA+n+1)

r+ > (k= plaprt Tt <1—p. (5.4)
k=3

Since f(z) is in T.(n, A, @), from (2.1) we may take
(1= )(1—a)(n+ 1)

- E=3,45, |
% ik a1 Ly e R F o mEe (59)
where -
k=3

For each fixed r, we choose the positive integer kg = ko(r) for which

(ko - P) pRo=1
{n+ky—a[Mky— 1) +n+1]}(n, ko)

is maximal. Then it follows that

o k—1 (1 “—C)(l —a)(n+ 1)(k0 _p)
D T e (SR ey vy LN

Hence f(z) is starlike of order p in |z| < ri(n, A, a, ¢, p) provided that

(1= )2 = p)r
[n+2—aX+n+1)
(-0 -+ Vko=p) 4
{n+ko—aMko—1)+n+1]}(n, ko)
< 1—p.

(5.8)

We find the value 7o = 79(n, A, @, ¢, p) and the corresponding integer ko(m') SO
that

(1 —a)(2=p)ro
[n+2—aA+n+1)
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(1=c)(l —a)(n+1)(ko — p) ko—1

(n+ ko — (ko — 1) +n+1}6(n ko) °

(5.9)

Then this value 7y is the radius of starlikeness of order p for functions f(z)
belonging to the class Tp(n, A, ).

In a similar manner, we can prove the following theorem concerning the radius
of convexity of order p for functions in the class T.(n, A, a).

Theorem 8
Let the function f(z) defined by (1.15) be in the class T.(n, A, «).

Then f(z) is convex of p(0 < p < 1) in the disc |z| < r2(n, A, a, ¢, p), where
ro(n, A, a, ¢, p) is the largest value for which the following inequality holds true:

2c(1 —a)(2 - p)r
n+2—aA+n+1)
- —a)n+ Dk(k—p)
{n+k—a[Xk—1)+n-+1]}d(n, k)
< 1-p (k=34..)

(5.10)
The result is sharp for the function f(z) given by (5.2).

6. THE GENERAL CLASS T.x n(n, A, o)

Instead of fixing only the second coefficient, we can fix finitely many coefli-
cients. Let T,, y(n, A, @) denote the class of functions f(z) in T,(n, A, @) of the
form:

N ce(l— ) &

f(z) = Z—Z Z" —

= t+t2—a(X+n+1)

Z akzk<O§ch:c§1>.

k=N-+1 k=2

(6.1)
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Observe that Tex2(n, A, @) = Te(n, A, @).
Theorem 9

The extreme points of the class T.x n(n, A, @) are

N cr(l —a)(n+1) .
Z_Ig{n-l-k'—a[/\(k—1)+n+1]}5(n,k)z

e (1—a)(n+1)
al c(l—a)in+1 k
Z_,é{nJrk—a[)\(k—1)+n+1]}6(n,k)z
(1-od(I+a)in+1) K

Ttk k—1D) +n+ 1ok
(k=N+1, N+2, N+3,...).
The details of the proof of Theorem 9 ae omitted.

Remark 3

The characterization of the extreme points for the general class Tox y(n, A, @)
enables us to solve the standard extremal problems in the same manner as was
done for the special class T,(n, A, ). The details involved may be left as an
exercise for the interested reader.
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A CALENDAR FOR 19,999 YEARS

Sana Ullah Bhatti
31/107, Islampura,
Lahore, Pakistan.

The calendar proposed herein is an improved version of a previous proposal
of this author published in ASTROMATHICS (Vol III, No:1, Autumn 1959),
Journal of Dyal Singh College Mathematics society, Lahore.

The Gregorian rule followed all over the world is: all years divisible by 4
are leap years but all centuries are ordinary years except 400 and its multiples
which are considered to be leap years.

Now the mean length of the tropical year which is the basis of the Gregorian
calendar is 365.24219878 days. Also according to recent researches this length
is shrinking at a very low rate - so low that it is irrelevant for the proposed
calendar. So we ignore this shrinkage. This ignoration is in consonance with a
remark in the EXPLANATORY SUPPLEMENT TO THE ASTRONOMICAL
EPHEMERIS (1961 edn. 1977 impression). The remark is this:

“The length of the synodic month is 29.530589 days and of the
tropical year is 365.242199 days, for the epoch 1900. The very
“small, and some what uncertain, secular variations in the lengths
of these periods are unimportant for chronological purposes.’

(The supplement, p.407)
According to the Gregorian rule described above there are 97 intercalations
(on account of leap years) in 400 years so that
400 years = 400x365 + 97 = 146097 days.

Dividing this number by 400 we obtain 365.2425 as the mean length of a
Gregorian year. This value exceeds the value adopted by us by 0.00030122 d.
The error will accumulate to a whole day in about 3320 years.
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It is, therefore, proposed that the Gregorian rule may be modified by mak-
ing the year 4000 and its its multiples ordinary years in place of regarding
them as leap years. As a result of this modification the accumulated error will
not amount to more than a day in 20,000 years.

The attached calendar has been framed according to this formula.

The error in the calender will become far less if the year 3200 and its
multiples are treated as ordinary years in place of leap years. If this proposal
is accepted on the international, the calendar will serve for 88000 years.

The calender given herein will remain usable by making a slight change
in Table III. Only the phases shown on the top of the table will have to be
changed from 1 to 3999 to from 1 to 3199A.D. etc.

It is for the international authorities to choose either of the cycles - 3200
years or 4000 years.

. HOW TO USE THE CALENDAR

1. Divide the year, for which calender is desired, by 400 and take the
remainder.

R

Look up the remainder in Table I to find the category of the year (A, B
etc.). The figure in the hundred’s place of the remainder to be looked
up in the first column on the left of Table I and the remaining part from
the other columns. The letter occurring at the intersection of the row
through the hundred’s figure and the column through the remaining part
is the category letter. If the remainder is a complete century look up its
category letter at the bottom of Table 1.

3. In Table II, below every category letter and against each month there is
a number, the number for the month calendar.

4. Locate the number obtained from Table IT in the upper part of Table
ITT in the row appropriate for the year in question. Below this number
there is a permutation of the week days. This column of week days will
govern the dates of the month shown on the right.
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EXAMPLES

Example 1: Find the calendar for January 2003.
Sol: Dividing 2003 by 400 we get 03 as the remainder.

From Table I: Below 03 and against hundred 0 we find C, the category of
the year.

From Table II: Below C and against Jan. (Ord.) we find 3, the number of

the month calendar.

From Table III: Below 3 (first row) permutation of week days is W, Th etc.

which read with dates on the right gives the desired calendar.

Example 2: Find the calendar for February 1960.
Sol:Dividing 1960 by 400 the remainder is 360.

From Table I: Below 60 and against 3 (hundred) we find F, the category of

the given year.

From Table IT: Below F and against Februafy (Leap) we find 1, the number

of the month calendar.

From Table III: Below 1 (in the first row) the permutation of week days is
M, T etc. This permutation read with the dates on the right
is the required calendar. The month starts and ends with

Monday.

Example 3: Find the calendar for January, 2100.
Sol: On dividing 2100 by 400 the remainder is 100.
From Table I: Category of the year is E.

From Table II: Below E and against January (Ord.) we find 5 as the number

of the month cal.
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From Table III: Below 5 (in the first row) the permutation of week days is F,
Sa etc. which read with dates on the right gives desired

calendar.

THE CALENDAR
TABLE I

Categories of years

01 to 99
01 02 |03 04 105 | 06
07 08 |09 |10 | 11
12 (13 |14 [15 16 | 17
18 | 19 20 |21 |22 | 23
24 |25 |26 |27 28
29 |30 |31 32 |33 | 34
35 36 |37 | 38 | 39
HT40 [41 |42 |43 44 |45
Ulae (47 48 [49 |50 |51
N 52 |53 |54 |55 56
D 577758 |59 60 | 61 | 62
R 63 64 |65 | 66 | 67
g 68 |69 |70 |71 72 |73
g | 74175 76 |77 |78 | 79
D 80 | 81 | 82 | 83 84
85 |86 | 87 88 |89 | 90
91 92 |93 | 94 | 95
96 |97 |98 |99
0/A |B |C |D |E |F |G
1|F |G |A |B |C |D |E
2D |E |F |G |A |B |C
3B |C D |E |F |G |A
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CATEGORIES OF CENTURIES

Hereunder R, denotes the remainder when given year is divided by 400 and
C), denotes its category.

100 | 200 | 300 | nill

TABLE I1

Numbers for month calendars

ategories A B |C D |E |F. |G
f years

Months :
Jan. (Ordinary, 1 2 3 4 5 6 7
Oct. May) 2 3 4 5 6 7 1
Feb. (Leap yr) 3 4 5 6 7 1 2
August ,
Feb. (Ordinary) 4 5 6 7 1 2 3
March, Nov. JuneJ 5 6 7 1 2 3 4
Sep. Dec. 6 7 1~ 2 3 4 5
Jan. (Leap) Apr. 7 1 2 3 4 5 6
July ]
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TABLE III

Months Calendars

1t0 3999 A.D.
4000 to 7999 A.D.
8000 to 11999 A.D.

12000 to 15999 A.D.
16000 to 19999 A.D.
8 115122129
9 |16 23|30
10 |17 124 |31
11 |18 125 |x

12 119 126 |x
13 120 |27 | x
14 121 |28 | x
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