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An Improved Error Analysis for the Secant Method Under the
Gamma Condition

Toannis K. Argyros
Cameron University
Department of Mathematical Sciences
Lawton, OK 73505, USA
e-mail: largyros@cameron.edu.

Abstract. We provide sufficient convergence conditions for the
Secant method for approximating a locally unique solution of an
operator equation in a Banach space. The main hypothesis is a
type of gamma condition first introduced in [9] for the study of
Newton’s method. Our sufficient convergence condition reduces to
the one obtained in [12] for Newton’s method although in general
it can be weaker. A numerical example is also provided.

AMS (MOS) Subject Classification Codes: 65H10, 65G99, 47TH17, 49M15.
Key Words: Banach space, Secant method, Newton’s method, Gamma condi-
tion, majorizing sequence, semilocal convergence, radius of convergence, Newton—
Kantorovich theorem.

1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution z* of the equation

F(z) =0, (1. 1)
where F is a Fréchet-differentiable operator mapping a convex subset D of a Banach
space X into a Banach space Y.

The most popular methods for generating sequences approximating z* are un-
doubtedly Newton’s method

Ynt1=Yn — F'(yn) "'Fys) (n>0), (yo € D), (1. 2)
and the Secant method
Tnt1 = Tn — [zn—l,zn]—lF(zn) (n > O)a (Z‘_l,l‘o S D) (1' 3)

The advantages and disadvantages of using the Secant method over Newton’s
method are well known [1]-[14]. _
Here, F'(z), [z,y] € L(X,Y") the space of bounded linear operators, by [z,y] we
mean [z,y; F|, and the divided difference of order one at (z,y) satisfying

[z, 9)(z —y) = F(z) - F(y) (1. 4)
for all x,y € D with = # y [4], [6], [9].
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There is an extensive literature on methods (1.2) and (1.3). A survey of such
results can be found in [1]-{9], [14], and the references there.

It turns out that so far there are two ways of studying method (1.2): Newton-
Kantorovich-type local and semilocal convergence results depending on a domain
containing the initial guess 2o and Lipschitz conditions on F’(z) [4], [6], [9]; Smale-
type theorems that require information only at zg and the analyticity of F [11]-[14].

Moreover, Wang [12] introducéd the weaker than Smale’s gamma ~y-condition
and successfully applied it to Newton and Newton-type methods. Yakoubson [14]
extended Smale’s work for the Secant method using a strong analyticity assumption
on operator F.

The results mentioned above are based on the assumption that the sequence

F'(z0) "1 F™(x0)
n!

22, (1. 5)

is bounded above by

_1_
n—1

F/(.’Do)_lF(n)(l‘o)
n!

Y¥(F,zo) = sup (1. 6)

However, this kind of assumption may not be reasonable. Particularly, for some
concrete and special operators appearing in connection with the Durand-Kerner
method, it is really so [8].

Here we provide a convergence analysis for the Secant method using an even
weaker version of Wang’s gamma condition (see (2.1)). It turns out that even in the
special case when method (1.3) reduces to (1.2) our error bounds on the distances
|Zn+1 — Zall, |Zn — =*]| are finer than the ones in [12] and the information on the
location of the solution x* at least as precise. Note also that these advantages
are obtained under the same computational cost. Numerical examples are also
provided. )

2. SEMILOCAL CONVERGENCE ANALYSIS OF METHOD (1.3)

Let g € X and r > 0. We denote by U(zg,r) = {z € X: ||z — zo|| < r}.
We introduce the (yo,7) condition:

Definition 2.1. Suppose:
0<y <. (2. 1)
We say F satisfies the gamma (v9,7) condition at zo € D in U(ze,r) C D if

operator F is Fréchet-differentiable at z = zg, F'(zo) ™! € L(Y, X) such that for all

r<(1- ‘/75)710—, z,y,w € U(xo,)

[ F' (z0)~* (2, 9] — [y, w])|
o 2tz — yll + (1 = lly — wi[]dsds
= /0 /0 [L—lisCtz+ (1 - t)y) + (1 - s)(ty + (1 —t)w) — zof|]*’
. 2)
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and

I1F" (z0) ™ ([, y] — F'(zo))
/1 /1 270||zo — tz — (1 — t)y||dsdt
o Jo 1

1 — syollzo — tz — (1 - t)yll]?

IA

/0 L = ollzo -ty — (1 — )zl — L. 2 3)

Example 2.2. Let us provide a class of operators that satisfies both (2.2) and

(2.3). For simplicity, we set 79 = <y, and assume F is twice Fréchet-differentiable
on U(zg,r) satisfying:

’ —1p(, 2y
IF(0) ™ @)l < s . 4)

Note that condition (2.4) used in [12] requires the existence of the second Fréchet-
derivative, whereas we only require the existence of the first derivative. It is known
that y(F,z¢) < 7 [11], [13], [14], which is the v-motivation for our study. Moreover,
assume divided difference [z, y] is given by

o] = /0 F'ly +t(z — y))dt @. 5)

for all z,y € U(zo,r) C D, which holds in many interesting cases (7], [8]. Then
using (2.4), we can have in turn:

1P (20)~ (23] — [, w)(w — )|

/1 /1 Flls(tz+ (1 - t)y) + (1 — s)(ty + (1 — t)w]ds
o Jo

e - ) + (1 )y — w)ldt(y w)H

v 2v(thz — yll + (0 = Yy — wiDlly — wl|dsdt
< /0 /0 [1—ls(tz + (1 -t)y) + A - s)(ty + (1 — t)w) — zo|[]>’
@. 6)

which justifies condition (2.2). Moreover using again (2.4) we can obtain

1F(20) " (le, ] — F" (o)) = [ o)™ [ [P+ (- 1) - F'(zondtH

- H /0 ' /0 " o) F((1  8)ao
| |

+ stz + (1 — t)y))][2o — ty — (1 — t)z]dsdt
bt 2y||lzo — tz — (1 — t)y|/dsdt
F W e @7

which justifies condition (2.3).
It is convenient for us to define scalar function f, and scalar sequences {r,}, {s.},
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{tn}, for some & >0,a > 0,5 >0 by

_«a 2 1
f(t) - :Y_—t+1'—’)’t’ t#;, (28)
ro1 = —a, r9=0, r1 =0,
T4l = Tn—
/1 /1 2y[t(rn=1 — rn—2) + (1 — t)(rn — Tpn—1))dsdt
o Jo 1~—s(trn_a+ (1 —t)rp_1) — (1 = s)(trp—1+ (1~ t))ra)3
X (1 =t)rn) 2} g(rn-1,7n)(rn — Ta_1)dt (n > 1), (2. 9)
$_1 = -—a, 8=0, s1=b, :
Sntl = Sp — f(sn)g(sn—la sn) (TL > 0), (2 10)
and
t.1 = —a, tg=0, v
tn+1 = tn_ 'j;tn—_l——f(tn)a | (2' 11)
f(tn) - f(tn-l)

where, function g is given by:
(1 —or)(1 = 70s) [ ( \/'2') 1 )
T,8) = forallr,s e (0,{1—— |—|]. 2. 12
9(r:¢) 2(1 = yor)(1 —v0s) — 1 2 /v ( )
We need the following lemma on majorizing sequence {t,}.

Lemma 2.3. Assume: 149
_ + 2ary
a=by 14+ ay

Then sequence {t,} generated by (2.11) is monotonically increasing and converges

to the smallest root
_ ./ 2 _
t*=1+a VvV(I1+a)?-8a 2. 14)
4y
of equation f(t) = 0, with the largest root being

2 _
o= LHat V(1 +e)? - 8a (2. 15)
4y

Moreover, the following estimate holds for
1—yt* t* t*—b
T e e
and p, be the Fibonacci sequence:
en(t*™ —t*), a<3-2V2

<3-2v2. (2. 13)

/\t"—"’ q1 =¢1t“—_5,

tr—t, = (n>0), (2. 16)
h;17 a=3- 2\/5’
where,
q.gn—2qfn—l
€p = —5———, 2. 17
n q-— qgn—Zq{’n—l ( )
and

TYPn—1 Pn—1 Pn—2
= = . 2.1
1l—~t* t*—-b + t* ( 8)

n
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Proof. We shall show estimates:
tr <itiq1, (2. 19)
and
b < t* (2. 20)

hold true for all k£ > 0. Estimates (2.19) and (2.20) hold true by the initial condi-
tions for k = 0. Let us assume that they hold true for k =0,1,...,n—1forn>1
a fixed natural number.

In view of the induction hypotheses and (2.11), we can obtain in turn for [s,t] =

[s’t; f]
t*—tn = 1" —tn1+ [tnoitac1, F]7H(f(Eam1) — F())
[tn—27tn—ll_l([tn—%tn—l] - [t‘n—l’t*])(t* - tn—l)
= ~[tn_2,tn-1) (" = tae1)(t* — tn-2)[tn-1,tn—2,t"], (2. 21)
where by [s,t,u] we mean [s,t,u; f] the divided difference of order two of scalar

function f at the points s, t and u.
It follows that there exist Gg € (tn—2,tn—1), and 8 € (t,—_2,t*)

[tn-2,tn-1] = f'(Bo) <O (2. 22)
and .
[taet, tn_z,t*] = fﬁ >0, (2. 23)
since
-1< f'(t) <0, (2. 24)
and
£t = a—f—’}m—a >0, 2. 25)

fort e [0,(1— %—5)-};), which together with (2.21) imply (2.20) for n = k.
Using (2.11) we can write
tot1 —tn = (t* = tp)[tn-1,ta) [t ta] > 0, (2. 26)

which implies (2.19) for n = k. That completes the induction for estimates (2.19)
and (2.20). Tt follows that sequence {t,} converges to ¢*.
In view of (2.14), (2.15) and (2.21), we can easily see that

t* —tny1 _ t*—t, t*—tp_1
qtu —tny1 - e — tnqt**, —tn_1
= @¢"'g" (n20). (2. 27)

Clearly, if @ < 3 — 2v/2, then t* # t**. Tt then follows from (2.28) that the first
part of estimate (2.16) holds true. Otherwise, set A, = v(t* —t,) and gn = V2Ap.
It then follows from (2.21) that

Yt = ta)(t* = 1)

£~y = n>0), 2. 28
el T Ry s pray ey S GER) @ 28)
from which it follows that

: AnAn—

Anss = Anct (n>0), (2. 29)

/\n—l + /\n + \/i/\n—l/\n' -
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and Yot
= nin- n>0), 2. 30
Hntt Bn—1+ tin + fn-1fin (n20) ( )
or 1
— =2  Prol 51 (n>0), (2. 31)

Hn Ho H1
by the definition of the Fibonacci sequence (p_2 =1, p_1 =0, pnt1 = Pn + Pr
(n > —1)). It then follows by the definition of \, that the second part of estimate
(2.16) also holds true.
That completes the proof of Lemma. 2.3.

Corollary 2.4. If:
(a) a <3—2v72, then for alln >0

& Ot ) ()

0<t*—t, < ™ ~t*) < 2. 32
< P qp,.( t) < — 2 (% (2. 32)
(b) a=3-2V2, thenforalln> 1
n-1

0<t —tn<t <ft*—b( ) : 2. 33
— (t* —b) 7 (2. 33)

Proof. The result follows immediately from estimate (2.16) and the fact that
pn > ‘sf(”f) (n>0). (2. 34)

Remark 2.5. (a) For F= f, D = (—oo, )s¥ =, and X =Y =R, 2, becomes
t, and z* is t*. That is estimate (2.16) is sha.rp Note also that f satisfies (2.5).
(b) In the special case when z_; = zo condition (2.13) reduces to Wang’s {12]
sufficient convergence condition for Newton’s method
a=by<3-2V2 (2. 35)

(c) If we set X = Y = R, then it can easily be seen that condition (2.5) is
satisfied. Other examples which satisfy (2.5) can be found in [7], [8].

Using induction on n it follows immediately from the definitions of sequences
{rn}, {sn}, {tn} that the following relationship holds between them:

Lemma 2.6. If yo <7, and (2.13) holds true, then

Tn < 8p <tp (n>1), (2. 36)
0 < Tpt1 —Thn <Snp1—Sn <tpt1—t, (n>1) (2. 37)
0 £ r*—rp<s*—-s, <t"—t, (n>-1), (2. 38)
and
™ < st <t¥, (2. 39)
where, r* = lim r,, and s* = lim s,.
n—oo n—oo

Note that if yo = v (2.37)—(2.40) hold true as equalities.
Remark 2.6. In view of (2.37)—(2.40), one hopes that sequences {r,} and {s,}
may converge under conditions weaker than (2.14). Such conditions already exist

in the literature. We refer the reader to [5, 4, 6] where we provided sufficient
convergence conditions for sequences more general than {r,} and {s,}.
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However, we do not pursue this here. Instead we provide the main semilocal
convergence theorem for the Secant method (1.3), under the (vg,7) condition:

Theorem 2.7. Let operator F satisfy the (79,7) condition at xg € D in

oz (1-2) 1) <

let x_1,20 € D with ||zg —z-1|| < a, and

ll[z—1,20] " F(zo)|| < b. (2. 40)

Furthere, assume condition (2.13) holds true.

Then, sequence {z,} generated by Secant method (1.3) is well defined, remains in
Uz, r*) for alln > 0, and converges to a unique solution z* of equation F(z) =0
in U(zo,*).

Moreover, the following estimates hold for alln > —1

”xn+1 - xn" < Tn+l — rn, (2 41)
and
[[n —z*|| < 7% = 7p. (2. 42)

Furthermore, if there ezists R € (r*, (1 - %':-’);10—] satisfying

/ 1[1 —Y(tR+ (1 —t)r*)]2dt = 2, (2. 43)
0

then the solution =* is unique in U(zg, R).
Proof. We shall show:
Zet1 — zill < Thyr — 1, (2. 44)

and

U(zpt1,r* — rrt1) C U(zp, ™ —15) (2. 45)
hold for all k > -1

For every z € U(z1,7* — 1)
iz — 2ol < llz — 21l + [l£1 ~ ol S 7* —r14+11=0"—10

implies z € U(xo, ™ — ro). We also have that (2.41) holds, and

ll£r — zoll = lllzx-1, zo] " F(xo)|| = b.

Therefore (2.45) and (2.46) hold for k = —1,0. Let us assume z;,zz,...,Zx are
well defined and (2.45), (2.46) hold true for n = 0,1,...,k— 1, where k > 1 is a
fixed natural number.

We shall establish the existence of [xx—1, k]! which will also imply that zx.4
is well defined. Using condition (2.3) for £ = z4_-1 and y = zi, and the induction
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hypotheses we obtain

IF" (o) ™ (F'(z0) — [zk—1, 2]

< /’1/1 2v0llzo — tTn—1 — (1 — t)z4||dsdt
~ Jo Jo [1—sv0llzo — tzk—1 — (1 - t)zifl]?

1
= / [1-llzo — tzs_1 — (1 — t)zx|[]"2dt — 1
0

IA

1
/ 1 —yo(ry + t(re—1 — 7)) 2dt — 1
0
1 1
= -1< 2~
(1 = orx~1)(1 = 707%) (1 —77*)
It follows from (2.46) and the Banach Lemma on invertible operators [5], (9] that

[Th—1,7k] ! exists, and
1 —1
1- -1
[ ((1 — York—1)(1 — 7oT%) ):l

(1 = 0re-1)(1 — vorg)
2(1 - ’)‘o’r‘k_l)(l - ’)‘Q’rk) -1

1<1. (2. 46)

l[zk—1, z&] ™ F' (o) |

IA

= g(rk-1,7)-
(. 47)
in view of (1.3), condition (2.2) for z = z4_o, ¥y = 2x_1, and w = z, gives:
1F'(zo) "  F(ai)ll = I F' (z0) ~ ([zk-2, 1] — [2h-1, Zk])(@h-1 — 24)]

< /1 /1 2 thzr—2 — zr—1fl + (1 — t)l|zk—1 — zill]llZk — Tk—1(/dsdt

= Jo Jo [1—ls(tzi—z + (1 — t)zi—1) + (1 = s)(tzk—1 + (1 — $)zx) — Zol|]®
< /1 /1 2’)‘[t(’!‘k_1 —trg)+ (1 —t)(rx — rk_l)](rk — Tk—1)dsdt

= Jo Jo [L—ys(tri—z + (1 — t)rk—1) — ¥(1 — s)(trie—1 + (1 — t)re?

= h(rk-1,7k)- (2. 48)

By (1.3), (2.10), (2.47) and (2.48) we get:
lzker — zell < Nzk—1, ze) " F' (@o) | |F' (zo) " F(zi)|
< g(rr—1,me)h(ri—1, k) = Trq1 — Ty (2. 49)

which shows (2.45) for all £k > —1.
We also have that for every z € U(zg41,T* — Tks1) We get

llz — zkll < llz = Zhsrll + |Zhg1 — el S 75— Thg1 + g1 — T =77 — 1.
That is, .
z€ _U-(zka - rk)’ (2 50)

which implies (2.46). The induction for (2.45) and (2.46) is now complete.

Lemma 2.6 imply that sequence {x,} is Cauchy (since {r,} is Cauchy (since
{ra} is a Cauchy sequeﬂce) in a Banach space X and as such it converges to some
z* € U(zg,r*) (since U(zo,7*) is a closed set). By letting n — oo in (1.3) (or
k — o0 in (2.48)) we obtain F(z*) = 0.

We shall show uniqueness of the solution z* first in Ul(xo,r*). Let y* be a
solution of equation F(z) = 0 in U(zq,r*). Set L = [z*,y*]. In view of (2.3), we
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get
| F" (o) ™ (F"(z0) — L)

< / L= o(tlzo — #*l + (1 — Dlls* —zol)]2dt —1 (2. 51)
0

IA

/ " = ot + (1 )] 2dt - 1
1]
(l=—mr)?-1<1. (2. 52)

It follows from (2.52) and the Banach Lemma on invertible operators that L~!
exists. Thus from the identity

F") - Fy") =z

]

Lyt - ), (2. 53)
we deduce z* = y*.

IfRe (r,(1- 32@) L] satisfies (2.44) and y* is a solution of equation F(z) = 0
in U(zo, R), then as in (2.51) we get

1F" (20) " [F" (o) — L][ < /0 [L-yotR+ (1— ] 2dt—1=1.. (2 54)

Hence, again we deduce z* = y*.
That completes the proof of the theorem.

Remark 2.8. In view of Lemma 2.6 {s,}, s* or {t,}, t* can replace {r,}, r*
respectively in Theorem 2.7. Note that we could have used easier {tn}, t* in The-
orem 2.7 but we wanted to leave the results as uncluttered as possible using the
finer possible majorizing sequence {r,}.

We now complete this study with numerical examples.

Example 2.9. Let X =Y =R, yo=7=a>0,D = [0, %), and define function

f on D by
fO)=1—t+ T (2. 55)
1—~t
We shall use the Secant method (1.3) to find the smallest positive zero of equation
f(@) = 0. Let t_; = —.000001, and tg = 0. Using (2.17) we can have for a =
33— 2/2) = .0857864 = ap and o = 3(3 - 2\/—) = .1286797 = a; the followmg
table:
Table 1: Numerical Values for t* —t,
n (8] 1
01119 1.232
1(1.188 x 107! |2.322 x 10!
211.522 x 1072 | 5.891 x 10~2
32618 x107* |4.362x 1073
45937 %1077 |9.145x 107°
5| 2.324 x 10711 { 1.463 x 10~7

Example 2.10. Let X = C[0,1], the space of all functions v, continuous on the

interval [0, 1], with norm

lfvll =

Jnax |v(s)|, D=U(0,1), xeR, K(s, t)
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a continuous function of two variables s,t € [0,1], and k(s) a continuous function
on [0,1]. Consider nonlinear integral equation

v(s) = )\v(s)/o K(s, t)u(t)dt + h(s). (2. 56)

Equations like (2.56) appear in connection with radiative transfer, neutron trans-
port, and in the kinetic theory of gasses [2], [3], [10].
In order for us to solve equation (2.56), we define operator T' on D by

T(v(s)) = Mo(s) /0 K(s, t)o(t)dt + h(s) — z(s). @. 57)

Let us consider some special cases of interest:

Case 1 (Chandrasekhar’s equation [2], [3], [10]). Set A = 1, K(s,t) = P
s+t #0, and k(s) = 1. Choose vg(s) = 1, and v_;(s) = 1.0000001. Let us also
denote by § an upper bound on ||T'(v(s))~!||. That is,

IT' (vo ()M < 6. (2. 58)
We can have: .
_ 17" (wo(3)) " T(vo(s))ll < SIIT(wo ()l < O|A|In2 = b, (2. 59)
and .
1" S
—_— < .
1T (w(s))Il S2|)\l0123§1/0 s+tdtl < 2(A|In2, (2. 60)
since,
1os
max / —dtl =In2 (2. 61)
0<s<1|jy 841 _
Condition (2.4) certainly holds if
28|\ In2 < 2.

Hence, we can set v = §|A\|In2. Using the choices above we get
' b=~ = .265197108.

Hypothesis (2.13) is satisfied, since
@ = 070329508 < 3.2v2 = .17157287.

Hence, the conclusions of Theorem 2.7 can apply, since any solution v*(s) of equa-
tion F(v(s)) =0, satisfies (2.56).

Case 2. Let D = U(0,1 ~ ¢) for some ¢ € [0,1), set h(s) = v3(s) —c+ 1, and
vp(s) = 1. As above it can easily be seen that we can set for

1
d = max / K(s,t)dtl < oo:
0<s<1) Jo
b=[l—-c+dA]d v=[2-c+d)N]d, (2. 62)
and 1
Yo = 5[3 —c+2d|M|)é. (2. 63)

In view of (2.62), and (2.63) we have: .
Y <7 foralld,6,A € Randce [0,1). (2. 64)
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It also follows from the above choices of b and v that for v_, ¢ close enough to vy,
1 respectively, and A sufficiently small condition (2.13) holds true. That is as in
Case 1, the conclusions of Theorem 2.7 apply. Note however that in this case finer
sequence {s,} than {t,} can be used as a majorizing sequence for Secant method
(1.3) (see also Lemma 2.6).

10.

11.

12.

13.

14.
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1. INTRODUCTION

The concept of fuzzy subset was introduced by Zadeh [15]. Fuzzy set theory is a
useful tool to describe situations in which the data are imprecise or vague. Fuzzy
sets handle such situation by attributing a degree to which a certain object belongs
to a set. The concept of fuzzy subgroup was introduced by Rosenfeld [11] and
was further studied by several authors [9, 6]. Liu [8] studied fuzzy ideals in rings.
Subsequently, many authors [10, 12, 14] fuzzified certain concepts on rings and
ideals. The theory of semirings has been studied by many authors [1, 3]. The fuzzy
ideal of semiring is a good tool for us to study the fuzzy algebraic structure. Dutta
and Biswas [4] studied different kinds of fuzzy ideals such as fuzzy k-ideals and fuzzy
prime k-ideals of semirings and characterized fuzzy prime k-ideals of semirings of
non-negative integers and determined all its prime k-ideals. Baik et al. [2] studied
further results on fuzzy k-ideals of semirings. Further, Zhan et al. [19] fuzzified the
concept of left. k-ideals of semirings over ¢-norm and studied their related results.
Then, Jun et al. [13] extended the concept of L-fuzzy ideal of a ring to a semiring.
Moreover, Zhan et al. [17] fuzzified the concept h-ideals of hemirings and studied
several results. Zhan [16] extended the concept of fuzzy left h-ideals of hemirings
to fuzzy left h-ideals of hemirings over t-norm and studied many properties. Also,
Zhan [18] introduced intuitionistic M-fuzzy h-ideals in M-hemirings. Kog¢ and
Balkanay [5] introduced the concept of 6-Euclidean L-fuzzy ideals of rings.  Latha
and Williams [7] introduced a notion of -Euclidean fuzzy k-ideals of semirings. In

13
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this paper, we study the factorization theorem on homomorphism for a 8-Euclidean
fuzzy k-ideals in semirings.

2. PRELIMINARIES

In this section, we cite the fundamental definitions that are used in the sequel:
Definition 1. [1] An algebraic system (R;+,.) is said to be a semiring if it
satisfies the following conditions:

(1): (R;+) and (R;.) are semigroups,
(2): a.(b+c)y=ab+acand (b+c).a=ba+caforall ab,ceR.

A semiring R may have an identity 1, defined by 1.a = @ = a.1 and a zero 0,
defined by 0+a=a=a+0and a.0 =0=0.a for alla € R.

In what follows,we denote z.y = zy, for all =,y € R.

Definition 2. [9] A non-empty subset I of R is said to be a left ideal(resp., right
ideal) if z,y € I and r € R imply that z +y € I and rx € I (resp., zr € I).

If I is both left and right ideal of R, we say I is a two-sided ideal, or simply ideal,
of R.
Definition 3. [4] An ideal I of a semiring R is said to be a k-ideal if a € I and
ze€R andifr+acl ora+zx€lthenzel.
Definition 4. [10] A fuzzy subset p : R — [0, 1] of a semiring R is said to be a
fuzzy left (resp., right) ideal of R if

(F1): p(z+y) > min{u(z),n(y)}

(F2): p(zy) > pu(y) (resp.right,u(zy) > p(z)) for all z,y € R.
Definition 5. [4] A fuzzy ideal of a semiring R is said to be a fuzzy k-ideal of R
if

p(z) > min {max {p(z +y),py+ )}, L)},
for all z,y € R.

If R is an additively commutative semiring then the condition reduces to

p(z) > min {p(z +y), 0¥}

for all z,y € R.
Definition 6. [7] Let R be a semiring and let 8 : R — [0, 1] be a non-constant
fuzzy subset of R. A fuzzy ideal p : R — [0, 1] is called a 8-Euclidean k-fuzzy ideal
if p satisfies the following axioms:
(F8): p(z) 2 min{max{n(z+y),u(y+2)},u )} foral z,y € R;
(F4): For any ¢,y € R with y # 0, there exist elements ¢,7 € R such that
x = yq+r, where either r = 0 or else max {1 (r),0 (v)} > max {u (v),0 (¥)}
for all z,y € R.

Example
Let R be the set of Natural Numbers including zero and ¢ : R — [0, 1] be a fuzzy
subset defined by

1 if a=0,
¢(a) = % if a is non — zero even,
0 if a isodd.
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Let § : R — [0,1] be a fuzzy subset defined by

0 if a=0,
(a) = { % if a=357,.,
Tal otherwise.
Clearly ¢ is a fuzzy k-ideal of R, also ¢ is a 6-Euclidean fuzzy k-ideal of R.
Example
Let R be the set of Natural Numbers including zero and ¢ : R — [0,1] be a fuzzy
subset defined by

1 if a=0,

pla)=< 3 if a is non — zero even,
0 if a isodd.

Let 6, : R — [0,1] be a fuzzy subset defined by

01(a)={ 0 if a=0

|le| otherwise.

So ¢ is a fuzzy k-ideal but 8, is not a #-Euclidean fuzzy k-ideal of R.

3. Fuzzy QUOTIENT SEMIRING

In this section, we introduce the notion of fuzzy quotient semiring and study the
factorization theorem of homomorphism on §-Euclidean fuzzy k-ideal of semiring

R.
Definition 7. Let u be a fuzzy ideal of R. For all ¢ € R , let  + p be the fuzzy
subset of R defined by
@+p)(y)=ply—z)
for all y € R. The fuzzy subset = + u is called a fuzzy coset of the fuzzy ideal R.
The set of all such fuzzy cosets will be denoted by %. Two binary operations
(denoted by + and .) on % are defined as follows:

@E+p+y+tp)=(+y) +p
and
(+p).y+p)=(zy) +p
for all z,y € R. The above two operations are well defined and makes —IE into a
semiring, called the fuzzy quotient semiring of R by u [5].

Theorem 8. Let R be a semiring and p : R — [0,1] be a §—Fuclidean k-fuzzy

ideal, n : R — Ri be the natural homomorphism. Also suppose that 6 (a) = 6 (b)

"

when a —b € kern, foralla,be R . Let ¢ : RA; — [0,1] be defined by

¢(a+Ru) =p(a).
Then there ezists a unique 8* (= n (8)) — Euclidean k-fuzzy ideal ¢ : R% — [0,1]
with the property that p=¢on .
Proof: First we shall show that the function ¢ is well defined. For alla+R,,,b+

R, € % and a + R, = b+ R, , then there exists + € R, such that a —b =z .
Using the definition of R,, we obtain
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p(z) = p(0)
p{0) = p(z)
©(0) = p(a—b)
0=p(a)— p(b)
p(a) = p(b)

¢(a+R,)=¢(b+R,)
Hence ¢ is well defined.
(i) For any a + R,,b+ R, € %,for all a,b € R,then
¢la+Ry)+ (b+ Ru)] = d[(a+b) + Ry
=pla+d)
> min [u1(a) , 1 ()], by(FL)
Thus

¢lla+Ru)+ (b+ R, >min[é(a+ Ru) +¢(b+ Ry
Also,we have
9la+Ry). (b+ Ry)] = 6 [(ab) + Byl = u(ab) = p(b), by(F2)
Thus
¢l(a+R,). b+ R >¢(b+R,).
(ii) For any a + R,,,b+ R, € R—}i, for all a,b € R, then

¢lla+Ry)] = pla)
> min{max{p(a+b),u(0+a)},u®d)},

since p is a 86— Euclidean k-fuzzy ideal

= min{max{¢(a+b+R.),é(0+a+ R}, é(b+ Ry
min {max {¢[(a + Ry) + (b+ B,)],6[(b+ Ru) + (a+ R}, 6 (b + R,))

Thus, ¢ is a k-fuzzy ideal.
(iti) For any a+ R,,, b+ R, € RA; such that R, # b+ R,, for all a,b € R, then

=b¢ R, = p(b) #p(0)
=b#0.

So 0 # b € R. Since u is a §—Euclidean fuzzy k-ideal of R, then there exist
elements ¢,r € R such that a = bg + r where r = 0 or else max {x(r),6(r)} >

max {p (b),6 (b) }.

Il

a=bg+r
a+R,=bg+r+R,
a+R,=(bg+R,)+(r+R,)
a+R,=0b+R.)(g+R,)+(r+Ry)-

Ifr = 0then r4-R, = 04+ R, thusr+R, = R, Forallr,qg € R,then r+R,,q+R, €

R

R,
Let 74+ R, = r If n(z) = r and n(r) = r’ then n(z—r) = 0. This means
z—1 € kern. we get 6 (z) =0 (r). Thus

n (6) (1‘/) = U {9 (z)|z en? (r')} =0(r).
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T max {1 (r), 0 ()} > max {4 (b),6 (5)} , then
max {¢ (r + Ru),n(6) (')} 2 max {¢ (b+ R,),n (9) ().}
Thus
max{¢(r+R,),0" (r + R,)} > max{¢(b+ R,),0" b+ R,)}.

Hence, y is §*~Euclidean fuzzy k-ideal from £ 7, 0 [0,1] .

Also for all @ € pp(a) = ¢(a+R,) = ¢(n(a)) = (¢on)(a). It means that
= ¢on. Now, we need to show that this factorization is unique Suppose ¢’on = p,
for some other 8* (= n (8)) —Euclidean fuzzy k-ideal ¢ : 7 —10,1].

Ifa+Ru€ R, , then

¢(a+Ry)=p(a)=(¢'on)(a) =¢'(a+R,),

for all a € R. Thus ¢ = ¢'. Hence,¢ is unique 6* (= n(0)) — Euclidean fuzzy
k-ideal from Ri into [0,1] with the property that u = ¢ o n.
i

Corollary 9. Let p be a 8—Euclidean fuzzy k-idealn : R — —éi be the natural

homomorphism.. Suppose that 0 (a) = 0 (b) when a — b € kern . Then there exists
a 0*—Euclidean fuzzy k-ideal from % — [0,1].

Proof: Since p : R — [0,1] is a 6—Euclidean fuzzy k-ideal from Theorem 8§,

¢: % — [0,1] is a 8*—Euclidean fuzzy k-ideal . Also, the semirings % and 1% are

isomorphic. So there exists a §*—~Euclidean fuzzy k-ideal from % to {0,1].

Acknowledgement: The author is very grateful to the referees for their valu-
able comments and suggestions on this work.
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1. INTRODUCTION

The theory of almost periodic functions was developed in its main features by
Bohr [5] in three rather long papers in the Acta Mathematica (Volumes 45, 46 and
47) under the common title “Zur theorie der Fast Periodische Funktionen” in 1923;
the first of these deals with the almost periodic functions of a real variable, while
the third takes up the case of a complex variable. Afterwards theory was continu-
ously getting established by several mathematicians like Besicovitch [3], Bochner [4],
Amerio and Prouse (1], Levitan [8], Levitan and Zhikov [9], Corduneaue [6], Fink [7]
and Zaidman [11] etc. In 1933, Bochner defined and studied the almost periodic
functions with values in Banach spaces. He showed that these functions include cer-
tain earlier generalizations of the notion of almost periodic functions. The theory
of almost periodic functions was further developed by replacing Banach spaces by
complete Hausdroff locally convex spaces and Fréchet spaces by N’Guérékata [10].
The theory of almost periodicity as known in Banach spaces, is studied in fuzzy
setting that is based on the work of Bede and Gal [2]. The theory of almost peri-
odic functions defined on R™ with values in Banach spaces is given in monograph
of Zaidman [11]. However the theory of almost periodic functions defined on R”
with values in fuzzy-number-type spaces was not yet developed. It is the main goal
of this present paper to develop this theory in section 3.

To this end we first recall the following:

19
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2. PRELIMINARIES

Definition 1. Let us denote by Rp the class of fuzzy subsets of real axis R ( i.e.
u: R — [0, 1]), satisfying the following properties:
(i) Yu € R, u is normal i.e.with u(z) = 1.
(ii) Yu € Rr, u is convex fuzzy set i.e.
u(tz + (1 —t)y) > min {u(z),u(y)},vt € [0,1].
(iii) Y u € RF, u is upper semi-continuous on R.
(iv) {z € R: u(z) > 0} is compact.

The set Ry is called the space of fuzzy real numbers.

Remark 2. Tt is clear that R C Rp, because any real number 24 € R, can be
described as the fuzzy number whose value is 1 for x = 29 and zero otherwise.

We will collect some other definitions and notations needed in the sequel. For
0 <r<1and u€ Rp, we define

W ={zeR:u(z)>r}

[u’ ={z €R:u(z) > 0}

Now it is well known that for each r € [0, 1], [u]", is bounded closed interval. For
u,v € Rp and X € R, we have the sum u & v and the product A ® u are defined
by [udv]" =[u]" + ], Aou" =A[]", ¥r €[0,1], where [u]” + [v]” means the
usual addition of two intervals as subsets of R and X [u] means the usual product
between a scalar and a subset of R.

Now we define D : Rp x Rp — RU {0} by

D(w,v) = sup (max {|u” —oZ|, [u] +ui[})
r€(0,1

where [u]” = [u",u}], [v]" = [v",v%] then (D,Rp) is a metric space and it
possesses the following properties:

(i) D(u @ w,v & w) = D(u,v), Yu,v,w € Rp.
(ii) DG u, A®v) = AD(u,v),Vu,v € Rp, VA € R.

(iii) D(u@v,wde) < D(u,w) + D(v,e), Yu,v,w,e € Rp and (Rp, D) is a

complete metric space.
" Also we have the following theorem.

Theorem 3. (i) If we denote 0= X0y then 0 € Ry is neutral element with respect to
@, i.e. u®0=00 u, for all u € Rp.
(i) With respect to 0 none of u € R F\R has opposite in Ry with respect to ®.
(iii) For anya,b € R witha,b> 0 ora,b <0, anyu € Ry, we have (a+b)Ou =
a@udbo uVa,b e R the above property does not hold.
(iv) For any A € Rand any u,v € Rp, we have A\Q (u @ v) = AQud AQw.
(v) For any A, p € R and any u € R, we have A\@ (A O v) = (A.u) Ov.
(vi) If we denote|lul|p = D(u,0), Vu € Rp then I.ll ¢ has the properties of a
usual norm on Rp, i.e. |u|p = 0 if and only if u =0,
INOullp=Al.llulp and lu@ vlp < [lullp+ vl lullp + lv]pl < D(u,v).

Remark 4. The propositions (ii) and (iii) in theorem show us that (Rr,®,®) is
not a linear space over R and consequently (Rp, ||.||z) cannot be a normed space.
However, the properties of D and those in theorem (iv)-(vi), have as an effect that
most of the metric properties of a functions defined on R with values in a Banach
space, can be extended to functions f : R — Rp, called fuzzy functions.
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We now recall the following definitions and theorems

Definition 5. A function f: R — Rp is said to be continuous at z¢ € R if for
every € > 0 we can find § > 0 such that D(f(z), f (x0)) < &, whenever |z — x¢| < 6.
f is said to be continuous on R if it is continuous at every z € R.

Definition 6. Let f : R — Rp be continuous on R. We say that f is B-almost
periodic if Ve > 0,3 1 > 0 such that any interval [a,a + [] of length ! contains at
least one point 7 with

D(f(t+71),f (t)) <e,VteR.

Definition 7. We say that f is normal if for any sequence F,, : R — R of the
form

F.(z) = f (x+ hpn),n € N, where (hy),, is a sequence of real numbers, one can
extract a subsequence of (F}),,, converging uniformly on R i.e. for every sequence
(hn),, of real numbers there exists a subsequence (hn,),, , and F : R — Rp which
may depend on (h,),,, such that

D(F,,(x), F(x)) — 0 as k — oo , uniformly with respect to = .

Theorem 8. If f : R — Rp is B-almost periodic then f is bounded i.e.3, M > 0
with
D(f(z), f (y)) < M,Vz,y €R.

Theorem 9. If f : R — Rp is B-almost-periodic then f is uniformly continuous
on R.

Theorem 10. If f,:R — Rp, n € N are B-almost periodic and f,, — f as
n — oo uniformly on R, then f is B-almost periodic.

Theorem 11. If f:R — Rp is B-almost periodic, then the set of values of f
is relatively compact in the complete metric space (Rp, D).

Theorem 12. If f:R — Rp is B-almost periodic, then A® f,A € R,
Fp(z) = f (z+h), and G(z) = || f(z)l| p, = € R are B-almost periodic functions.

Theorem 13. The sum ® of two B-almost periodic functions is B-almost periodic.

Remark 14. Let us denote AP(Rp) = {f : R — Rp : f is B-almost periodic},
and for f € AP(Rr), let us define|| f|| = sup {||f(z)|  : £ € R}. By theorem 8 we
get || f]] < +oo. Also by theorems 3, 12 and 13 AP(RF, ®, ®), is not a linear space,
and consequently AP(RF, ||.|| ) is not a normed space. However, endowed with the
metric

D*: AP(Rp) x AP(Rr) — Ry U {0} defined by

D*(fag) = SI“EIED(f(ng(z)), f,g € AP(RF)

becomes a complete metric space. Indeed if we denote

Cy(Rp) ={f :R— Rp: f is continuous and bounded on R}, then because

(RF, D) is a complete metric space, it follows that (Cy( Rp), D*) is a complete
metric space. Then theorems 8 and 11 show that AP(Rp) is a closed subset of
Cy(RF), i.e. (AP( RF), D*) is a complete metric space. For all of the above C.f [5].

3. ALMOST PERIODIC FUNCTIONS DEFINED ON R™ WITH VALUES IN
Fuzzy-NUMBER-TYPE SPACE

Now we recall the following facts about the Euclidean n-dimensional space R™
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Let R™ the usual Euclidean n-dimensional space. The elements z of R™ are the
n~-tuples = (z,,%2,...,Z,) and a norm of z € R™ is given by ||z| = (z1 + z2 +
..+ 5)%. A closed ball B(zo;7) in R™ with center z and radius r > 0 is defined by
the set B(zo;r) = {z € R : ||z — mo]] < 7}. A set P is said to be relatively dense
in R™ if there exists a number r > 0 such that P N B(xo;r) # @, for all z € R™.
We also have the following two important theorems for our further discussion.

Theorem 15. A subset P of R" is relatively dense in R™ if and only if, for some
r > 0, we have the relation R™ = gPB(p; 7).
p

Theorem 16. A subset P of R™ is relatively dense if and only if there exists a
compact set K in such that K + P = R"™ (vector sum of K and P ). Now we define
almost periodic functions defined on R™ and taking values in Rp but before that
we define continuity and uniform continuity of functions defined on R™ and taking
values in Rp then we define the almost periodicity of functions defined on R™ with
values in the fuzzy-number-type spaces.

Definition 17. A function f : R® — Ry is said to be continuous at zo € R"
if for every ¢ > 0 we can find § > 0 such that D(f(z), f (z0)) < &, whenever
|z — zol| < 4. f is said to be continuous on R™ if it is continuous at every z € R™.

Definition 18. A function f: R® — Rp is said to be uniformly continuous on -
R™ if such that
D(f(z1), f (22)) < €, whenever ||z1 — 22| < §,Vz1,22 € R™

Definition 19. A continuous function f : R® — Rz , is said to be B-almost
periodic, if for every € > 0, we can find a relatively dense set which we denote by
T(f;¢) in R™ such that

D(f(t+1),f (t)) <&, vt € R", 7 € T(f; ). Hence to any ¢ > 0, we may associate
a number, 7 = r(¢) > 0, in such manner that in any closed ball B(z;r) there exists
at least one element of the set T(f;¢).

Theorem 20. If f : R™ — Ry is B-almost periodic function then given any any
€ > 0, there are two positive numbers r1 = 1\ (€) and ry = ra(€) such that any ball
B(z;r1) in R™ contains a ball of radius ro which is contained in T(f;¢).

Proof. Consider the set T(f; §) which is relatively dense in R™ ( f : R® — Rp
is assumed to be almost periodic) and the associated number R = R() such that
B(a; ) NT(f; £) # @, Ya € R". Using now the uniform continuity of f over R
we find a number 6, = 4;(§) such that if y € R™ and ||y < 4, it follows that
D(f(zx+y),f (z)) < §,V 2 € R" we say that r1 = R+ 26 and r; = §; form
required numbers. In fact, given = € R", take 2 € R™ such that ||z|| = r1. Then 3
y € B(zo+ z; R)NT(f;§). Hence {ly — zol| < R + & < ry so that y € B(zo;71).
Furthermore Vy € R™, |jy| < 41,

”:c' + y— zo|l < R+6;+6; = R+26, =r,. Hence z’ + y € B(xo;71). Therefore

the whole ball € B(z';6;) is contained in € B(zg;r,). Finally any vector in this
ball belong toT'(f; ), this is because z + y with ||y|] < &1 is such a vector, we have
VyeR"® )

DU +y+a),f ()

= D(fe+1) @ fa+y+2), f(z) @ f@+1))

=D(fz+y)@® flz+y+z),f(z+y) ® f(z))
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< D(f(z+y), fle+y+2))+D(flz+v), f(2) < §+5.

Here we have used the fact that z € T(f; £), llyll < 61 and uniform continuity
of f over R™ is proved. The following result shows the boundedness of B-almost
periodic. 0

Theorem 21. If a continuous function f : R® — Rp, is B-almost periodic, then
f is bounded i.e. AM > 0 with D(f(x), f (y)) < M,Vz,y € R.

Proof. Because D(f(x), f (y)) < D(f(z),0) + DO, f (¥)) = If @)z + If @)l it
is sufficient to prove that M; with ||f(z)| z < M. Take any ¢ > 0 and associative

relatively set T'(f;€). Therefore, for some r = r(¢) > 0, R™ = Tlff )E(‘r;r) and
TE i€

consequently vt eR",3IT€E T(f;€) such that Ht' - y” <r. Then,if tist —y, we
have t' =t — y where 7 € T(f;¢). Therefore

[,

= D(f(t),0) N

=D(f(t)@ ft+7),ft)@0) _

< D(f(t), f(t+ 7))+ D(f(t) ®0)

<e+|[f@®lr

<e+ sup (If®r)
teB(0;r)

For instance, if we take e = 1, Hf(t’)HF <e+ sup (||f(t)|r) which gives us
il <r(1) .
an upper bound for f over R”. O

Next theorem shows that the range of B-almost periodic functions is relatively
compact.

Theorem 22. If f: R®™ — Rp is B-almost periodic, then the set of values of f
1s relatively compact in the complete metric space (Rp, D) .

Proof. In complete metric spaces, the relatively compact sets coincides with to-
tally bounded sets, it is sufficient to show that the values of the functions can be
embedded in a finite number of spheres of radius 2e. Take any £ > 0 and the
and the number r = r(¢) > 0 . The range of f when t runs over the compact
ball B(0;7) = {t € R™: ||t|| < r} is compact in Rp. Therefore, there are » points

f(t1), £(t2), . f(t) where [[t] < 7,1 < i < vand f() € O B(f(t:)ie), 8, Il < .

Take now any arbitrary ¢ € R”, it can be written as t = ¢ + 7 where ||t|| < r and
T € T(f;€), hence, there is an i € {1,2,3,...,v} such that D(f(t),f (t)) <e It
follows tlllat

D(f(t), f (t:))

=D(f(t+7),f (t:))

=D(f(t+7)Df (L), f(t:) @ f(2))

SD(f(t+7),f () + D(f(t:) @ f(t)) <e+e=2e.

Thus Ry C iQJF( £(t:); 2¢). O

Remark 23. Let f : R — Rp is B-almost periodic, and let us consider_the
sequence {f(tn)),of values. Denote A = {f(t,) : n € N} ,and take the closure A C
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F(R™) C Rp. It follows that A is compact, so is A sequentially compact too, which
by A C A implies that the sequence has a convergent subsequence in Rg.

Theorem 24. If f : R" — Rp is B-almost periodic, then it is uniformly contin-
uous over R™.

Proof. Let & > 0be given, we can find 7 = r(§) > 0 such that for any t' € R" can be
represented as t =t+7 where 7 € T(f;%)- Next we note the uniform continuity
of the function f on the closed ball B(0;2r) = {t € R™: |it]| < 2r}. Therefore,
there is a § > 0, (6 < r(§)) such that, if ([t < 2r,[[t2]| < 2r and [[t; — ta] < 6,

then we have D(f(t1),f (t2)) < §. Take now any pair t3,t; € R™, such that

'ltll - t;” < 4. We can write, for some 7 € T(f; §), the decomposition t, =t 47,

where {|t;]] < r. Then define t; as t, — 7. It follows that ||t; — ta|| = Ht’1 - t;” < 4.

Also [|t2]] = |It1 — tal| +It1]] < d+7 < 2r. From the above we derive that D(f(¢;), f
(t2)) < §, and accordingly, as 7 € T(f; §), we find that

D(f(ty), f (t1)

=D(f(ta+ 1), f (t1 +7))

=D(f(t)) ® f(t2+7),f (1 +7) @ f(t1))

=D(f(t) ® f(t1 +7),f (t1) ® f(ta + 7))

< D(f(t1), f(ts + 7)) + D(f (t1), f(t2 + 7))

=D(f(t1), ft1 + 7)) + D(f(t1) & f{tz2+7), f (t1) ® f(t2 + 7))
<D(f(t1) f(t1+ 7)) + D(f(t1), f(t1+T))+D(f (ta+7), ft2+ 7))
=£+£+5 ==

The next result shows that the set AP(Rp) is closed with respect to uniform
convergence.

Theorem 25. If fi : R®* — Rp, n € N are B-almost periodic and f , — f as
k — oo uniformly on R™, then is B-almost periodic.

Proof. Let € > 0. Since fx(t) — f(t) uniformly over R" as k — o0, so we can
find a natural number kg such thatVk > ko we have D(fi(t), f (t)) < §. Since f
g : R* — Rp is almost periodic for k = 1,2, 3, ... so for already chosen £ > 0, we
can find a relatively dense set T'(fx; £) such that

D(fe(t+7), f x(t)) < §, VT € T(fr;§), t e R™, k=1,2,3,.... Now

D(fult + 7)1 f x(8))

=D(f(t+7)0 filt+ 1), fit+T7)® f (1))

SD(f(t+7), fe(t+ 7))+ D(fe(t +7), f ()

=D(f(t+7), fi(t+ 7)) + D(fe(t + 7) @ fie(t), fic (t) ® f(2))

S D(f(t+7), fe(t + 7)) + D(fe(t + 1), fi(t)) + D(fi (t), £(t))

=£+5+5=6,VTE€T(fi;§), t€R™, k=1,2,3,....

which implies that 7 € T'(f; ), and hence T(f;¢) is a relatively dense set in R™
so f is proved to be almost periodic function. O

We now give the following simple theorem.

Theorem 26. If f:R™ — Ry is B-almost periodic, then A® f,A € R,
Fu(z) = f (z+h), and G(z) = || f(z)|| p , * € R™ are B-almost periodic functions.

Proof. Because D(A © f(t + 7),A © f(t)) = [N D(f( + 7), f()), for all, it fol-
lows that Af is almost periodic whenever f is B-almost periodic. And since
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NfE+DNe—If@OIel £ Df(E+ 7), f(£)), then it is immediate that G(z) =
|f(z)||z,z € R™, is B-almost periodic. Now at the last let A be fixed and for every
€ >0, let r =r(g) > 0 be attached to f in the definition of B-almost periodic.

By D(f(t+71),f (t)) <e, VT € T(f;€) and Vt € R™, we get ( by takingt =u+h

D(f(u+h+71),f (u+h)) <e Vr € T(f;¢) and Vi € R™.

D(Fn(u+71),F(u)) <e, V7 € T(f;¢) and vVt € R™. This implies that T(f;e) C
T(F}y;e), therefore F' is B-almost periodic. O

We now define normal functions and prove some results.

Definition 27. We say that f is normal if for any sequence Fy : R* — Rp of the
form

Fi(z) = f (z + hi), k € N, where (hy), is a sequence of real numbers, one can
extract a subsequence of (F}),, converging uniformly on R” i.e. for every sequence
{hi),, of real numbers there exists a subsequence (hkl)kl’ and F : R® — Ry which
may depend on (hg),, such that

D(F,, (z), F(z)) — 0 as | — oo, uniformly with respect to z.

We now apply this to prove the following theorem.
Theorem 28. The sum of two B-almost periodic functions are B-almost periodic.

Proof. Let f and g be two B-almost periodic functions, and let (k) . an arbi-
trary sequence in R™. From the sequence (f, ), of translates, we can choose a uni-
formly convergent subsequence on R" say (fi,), . From the sequence (g, ), ,we
choose a subsequence uniformly convergent on R”, say (gi,),. Then the sequence
(fix + 9k, )y» which is a subsequence of the sequence (f, + gn, )y, is uniformly con-
vergent on R™. O

To prove the equivalence between the normal functions and B-almost periodic
functions we need the following lemma.

Lemma 29. Let f : R® — Rp be ¢ B-almost periodic function and a sequence
(zk), C R™ be given then to any £ > 0 we may associate a subsequence (T, ), such
that the inequality

su]ép D(f(z + zx,), f(z + zx,)) <€,9Yp,q € N, is satisfied.

zeR”™
Proof. We know that any vector z € R™, can be written as zx = yx +2x, where
z € T(f;5) and ||yl < 7(§) = r > 0 (7 is independent of k ). Let y be the
limit point of the sequence (yx), then ||y|| < r. Since f : R — R be a B-almost
periodic function so it is uniformly continuous over R™ so we can find § > 0 such
that ||z; — z2|| <6 == [[f(z1) — f(z2)|| < §. Then in the ball {z € R™: ||z|| < &}
we find an infinite sequence of yi,s which we denote by (zki)ki. Take now two
vectors zy, and zx, then zx, = Yk, +2k,, Tk, = Yk, + 2k, We deduce that

sup D(f(a + 21,), /(@ + 71,) =

ZER™

sup D(f(z + yk, + 2zx,), (T + yx, + 2x,))

reR"
=e su]é) D(f(z + y, + 2k, — Yk, — 2k, ), f(2))
zeR™
= seunng(f(z+yk,, + 2k, ~ Yky — 2k, ) @ (@ +yr, — Uk, ) F(2) O flz+yk, — Yk, )
< sup D(f(T+Yk, + 2k, — Yk — 2k )s [ (T+ Yk, —Yk,)) + D(f(2), f(T+yr, —Yg,))

z€R™
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<f+f=e
The last inequality is a consequence of fact that
Uk, — Yk, €T(f;5) and [|ye, =y, || < lluw, — o] +]lv - v || <6+5=26. O

Theorem 30. Any B-almost periodic f : R® — Rp, is normal.

Proof. Let (zx), C R™ be a given sequence. Then by Lemma 29 we can find a
subsequence (x,,1),such that
supD(f(z +93k,,,1) flz+z,1)) <1,¥p,g €N,

D(f(z +z, 1), f(x+xx,,1)) <1,¥p,qg € N,Vz € R™.

Next we choose a subsequence (4,2}, C (:”k;,l),' with the property

D(f(x + xk, 2), f(x + 2k, 2)) < 3,Vp,g € N,Vz € R™.

We can choose a further subsequence (zy,3); C (&,2); with the property.
D(f(z + zx, 3), f(z + T, 3)) < 3, Vp,q € N,Vz € R™.

And so on. Consider now a diagonal sequence, (f(x + z,,;); of translated func-
tions. Now if p,q € N, with p < g, then we have

sup D(f(=z+ :L‘kp,p) f(z +Zk,,4)) < 3,Vp,q € N. This proves that the sequence
z€R
(flz+ zk”,))l is uniformly convergent over R™ this also proves the normality of

f. O
The converse of this theorem also holds true as proved in the following theorem.
Theorem 31. Any normal function f : R® — Ry is B-almost periodic.

Proof. On contrary suppose that f is not B-almost periodic function then there
exists an € > 0 such that the set T'(f;¢) is not relatively dense in R™. This implies
that for all r(¢) = r > 0 there is a ball B(e;r) which contains no element of the
set T(f;e). Consider now an arbitrary element z; € R™ and take r; > |||,
hence there exists a ball B(xz;r2) which is disjoint with T(f;¢). Since zo ~ 2 €
B(zy;m2) => z2 — z1 ¢ T(f;¢). Next take r; > |jz1] + ||z2| and find a ball
B(z3;r3) which is disjoint of T'(f;£). Now both the vectors z; — z; and =5 — 73
belong to B(z3;r3) but z; — z; ¢ T(f;¢) and z, — 23 ¢ T(f;€). Continuing this
procedure, we can find an infinite sequence (z), C R™ such that Vk,l € N,k #
l =z, — z; ¢ T(f;€). It follows that, by replacing = by  — zx
D(f(z + zi), f(z + 21)) = D(f(z + 2 — m1), f(z)) > &, Vz ER™.

This shows that the sequence, (f(z + z&)),, £ € R™ contains no subsequence
which converges uniformly over R™. A contradiction to the fact that f is normal
function. So our assumption that f is not B-almost perlodlc function is wrong.
Therefore f is proved to be almost periodic. O

Remark 32. Let us denote

AP(Rf) = {f : R® — Rp : f is B-almost periodic}, and for f € AP(RF), let
us define [[f|| = sup {||f(«)llF:z € R*}. By theorem 20 we get [|f|| < +oo.
AP(RF), is a complete metric space with respect to the metric

D* : AP(Rr) x AP(RFp) — R4 U {0} defined by

D*(f,9) = S:nng(f(z),g(w)), f,g € AP(RF)

Let us denote
Co(Rp) ={f:R® — Rp: f is continuous and bounded on R"} Then because
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(Rp, D) is a complete metric space, it follows that (Cy( Rr), D*) is a complete

metric space.

Then theorems 20 and 23 show that AP(Rp) is a closed subset of Cy( Rp)

i.e. (AP( Rp), D*) is a complete metric space.

o waw

o N
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Abstract. A rotational effect on rayleigh wave speed in orthotropic
materials is studied. A formula for the wave speed is derived.
Rayleigh wave speed for some rotating and non-rotating orthotropic
materials is calculated.

1. INTRODUCTION

In 1885, Rayleigh[5] studied the surface waves (called the rayleigh after his name)
which propagate along the plane surface of elastic solid. After that a number of
researches [4, 3, 6, 10, 8, 11, 2] studied the Rayleigh wave speed by using different
techniques in different kind of materials. Recently Pham and Ogden [9] discussed
the Rayleigh wave speed in orthotropic elastic solids. In this article we have ex-
tended the work of Pham and Ogden [9] and derived the formula for Rayleigh wave
speed in rotating orthotropic materials with and without rotational effect is studied.

2. BOUNDARY VALUE PROBLEM & SECULAR EQUATION

< Consider the semi-infinite stress-free surface of orthotropic material. We choose
the rectangular co-ordinate system in such a way that z3 — azis is normal to the
boundary and the material occupies region z3 < 0. By following Pham and Ogden
[9] we consider the plane harmonic waves in x, — direction in z,23 — plane with
displacement components (u1,uz,us3) such that

Generalized Hook’s law gives

011 = C11U1,1 + C13U3,3
033 = C13U1,1 + C33U33 (2. 1)
013 = cs5(u1,3 + us 1)

29
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where the elastic constants ¢j1, ¢33, €13, cs5 satisfy the inequalities
cii > 0,i=1,3,4 ,c11¢33 — 33 > 0 (2. 2)

which are the necessary and sufficient conditions for the straign energy of the ma-
terial to be positive definite. If a homogeneous elastic body is rotating about an
axis, we may choose z3-axis, with a constant angular velocity € then equations of
motion for infinitesimal deformation may be written as follows [7]

Oijj = p{ul + qujQi — Q2’U,¢ + QEiijj’U:k} (2 3)
where 2 = 2(0,0,1)
The Eqgs. (2.3), for the problem may be written as
o111 + o133 = p(u1 — Q2uy) @. 4)
0311 +033,3 = pu3 )

In view of (2.1), Egs. (2.4) can be written as

. 2
c11U1,11 + c13u3,31 + cs5(u1,33 + us,13) = p(dy — P°wy) @. 5)
cs5(u1,31 + u3,11) + C13u1,13 + C33U3,33 = Pus

The boundary conditions of zero traction are
03, =0,i=1,3 on the plane x3 =0 (2. 6)

Usual requirements that the displacements and the stress components decay away
from the boundary implies

u —0, 0,5 =0 (3.j5=1,3) as z3 — (2. 1)

Considering the harmonic waves propagating in x-direction, by following Pham and
Ogden [9]we write;

uj = ¢;(kzs)exp(ik(z1—ct)) ; j=1,3 (2. 8)

where k is the wave number and c is the wave speed and ¢;, j = 1, 3 are the functions
to be determined. Substituting (2.8) into (2.5) gives

cssk®¢y + ik(css + c13)¢h + {k%(pc? — Cil) + pQ2%}¢1 =0,
caady + ik(css + c13)g) + (pe® — cs5)ps = 0. (2. 9)

In terms of ¢;;7 = 1,3 after taking into account (2.1) and (2.8) the boundary
conditions (2.6) give

ic13¢r + cazdy =0 (2. 10)
¢ +ids =0 on the plane z3 = 0.
while from (2.7) we have
¢j,¢5 — 0 as £3 — —o0 (2. 11)
Laplace transform of (2.9) by using (2.10) we have
{k?(cs55® + pc® — c11yp02 }b1(5) + k2 (c1s + c55)sPs(s) =
essk?{s61(0) + ¢1(0)} + ik (c13 + c55)B3(0)

i(c13 + cs5)5h1(8) + (cass® — cs5 + pc?)ds(s)
=i(c13 + ¢55)91(0) + c33{s¢3(0) + #5(0)} (2. 12)
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From (2.12) we have
055‘k2{3¢>1 (0) + #1(0)} + ik*(c1s + c55)¢3(0)  ik%(cra + cs5)s
5 = | t(c13 + ¢55)$1(0) + cs3{s¢3(0) + ¢5(0)} (c338% — 55 + pc?)
k2esgessst + [k2{(c13 + ¢55)2 + c3s(pe? — c11) + cs5(pc® — cs5)}
43300252 + (pc% — cs5){k%(pc? — c11) + pQ?} (2. 13)
Let 512, 522 be the roots of quadratic equation in s? (where s;, sy must have
positive real parts) of the denominator,
k2cssesss® + [K2{(c1s + ¢s5) + caz(pc® — c11) + cs5(pc® — 55)} + c33pQ%] s
+(pc® — cs5){k* (pc® — e11) + p2*} =0
2. 14)

By considering (2.11) the inverse Laplace transform of ¢;(s) gives

1 (y) = Arexp[s1y] + Azexplsay] (2. 15)
where y = kz3. By using (2.15), (2.9) and (2.11) we have

¢3(y) = a1 Arexp[s1y] + azAzexp[say] (2. 16)
where
s — i[k2{0555j2 =+ (p02 — cll)} =+ pQ2]
g k2 (013 =+ C55)Sj
As 512, 552 are the Toots of (2.14), therefore, we must have
_[K*{(c13 + c55)* + caa(pc® — en) + es5(pc” — css)} + 33007
k2cs3ess
2 _ 20,2 02
8,25, = (pc? — c55){k 2(PC cn) + p02%} 2. 17)
k%czscss

Substituting (2.15) and (2.16) into (2.10) we get

J=12

2
5124822 =

(ic13 + caza181) A1 + (ic13 + c330282) A2 =0
(81 + ial)Al + (.92 + iaz)Az =0 (2 18)
For non-trivial solution of (2.18), the determinant of the coefficients must vanish
ie
(zc13 + eaz81) (82 + dag) — (fe13 + c33282)(s1 +iar) =0 (2. 19)
Substituting the value of & and oy from (2.16) into (2.19) and simplifying we have
the following equation
(pc® — cs5)[k%cr3® + eas{k?(pc? — c11) + p°}]
—kpc?\/cascss v/ {k2(pc? — c11) + P2} (pc? — c55) =0 (2. 20)
The Eq. (2.20) may be written as )

e css

2 2 2 2
C33 c11 c11 [ C13 pc —14+ PQ ] _ pc =0 (2 21)
2 2 - .
C55 % -1+ 76”2?7 C11€33  C11 k2eq; c11

The Eq. (2.21) is the required Rayleigh wave speed formula for orthotropic mate-
rials.
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3. RAYLEIGH WAVE SPEED IN SOME ROTATING AND NON-ROTATING
ORTHOTROPIC MATERIALS

Value of Q2 may be chosen at random for convenience we take
Qz _ C11
k2 p

Therefore, the above equation becomes

_ s 2 2 )
C11 ci + _‘Dc_ — & =0 (3 1)
- = .
Css  EE& €11€33  C11 c11

and can be written as
3 6 , 2 2 4
p cas(css — cs5)c” + pesa(2e13% — casess)c

2, 2 2 4
+pc13“(c13” — 2ea3css)c” — cs5c13” =0

Now using the computer software Mathematica and the following Table [1]

‘We have

3. 2)

TABLE ‘1

Stiffness(10'°N/m?) Density

Materials (Kg/m?)
€11 €13 €33 Css 4
3.01]1.11|4.292.06 4.64

Todic acid HIO;
| Bariumsodium niobate BasNaNbsO1s

23.9]5.00)13.5)6.60 5.30

It is evident from (3.2) that there will be six values of ¢, but we have taken those

TABLE 2. For Rotating Materials

Materials Speed(Km/s)

Todic acid 82.41
Bariumsodium 120.97
Niobate

values which satisfy Eq. (3.1)
Similarly for other values of Q we can find Rayleigh wave speed in the given

materials.
If 2 = O(stationary case), then the Eq. (2.21) becomes

2
€33 5y oy C18® ﬁ_l]_ﬁzo (3. 3)

2
Cs55 %%—1 C11€33 €11 c11
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which may be written as

picaa(cas — es5)c® + pPeaz{2c13% — casess — c11(2caa — cs5) fet
+p(c13® — cr1eas)(c13® — cr1ca3 — 2e33¢s5)c — es5(cis” — cricss)> =0 (3. 4)

Again using the Table [1] and computer software Mathematica we have from (3.4)
that there are three waves which propagate in the non-rotating material with dis-
tinct velocities as shown in the following

Thus tremendous rotational effects on the Rayleigh wave speed can be seen from

TABLE 3. For Non-Rotating Materials

Materials Speed(Km/s)

Todic acid 53.44, 80.94, 125.37

Bariumsodium | 102.55, 213.59, 296.44
Niobate

the last two Tables.

N =

10.
11.
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Abstract. A particular linear estimate with four terms approxima-
tion called Cubic Coefficient Estimate (CCE) using ordered obser-
vations is derived by using general theory of linear coefficients with
polynomial coefficients Downton [3]. This estimate is applicable for
complete samples and is shown to yield highly efficient estimators
even in the case of small samples. The asymptotic properties of the
Cubic Coeflicients estimates are also described. The Cubic Coeffi-
cient Estimates also applicable to, and can even be simplified for,
one parameter distributions of the type F(z/)).

1. INTRODUCTION

A common statistical problem is to estimate the unknown location and scale
parameters from the distribution of the form F (:‘—;E) In general, 4 and A may
be mean and standard deviation and this is not always necessary and in certain
circumstances g may be the percentage point of the distribution and A may be
defined as the range of variation of the variate X.

Lloyd [9] using least squares method obtained the estimates of u and X using or-
dered observations Lloyd’s method gives the exact solution of the minimum variance
unbiased estimation of the location and scale parameters. This method becomes
impracticable for certain distribution as the ordered moments of certain distribu-
tions are not available for a sample of size more than 10. '
Moreover it involves the calculation of n(n — 1) double integrals and 2n single
integrals. Lloyds method can be used for singly or doubly censored data.

Various approximate methods have been devised to overcome this difficulty. Blom [1]
and Weiss [11] devised approximate method using ordered observations. Blom’s
nearly unbiased method is quite efficient for small samples but its standard error
may be poor.

The approximate methods suggest that the efficiency of the determination of
linear estimates does not seem particularly sensitive to the changes in the coeffi-
cients and may be chosen for convenience. Hirai [4] considered the estimation of the
parameters from the Rayleigh distribution by linear coefficient method and in [6]
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by the Quadratic Coefficients method as a particular case of Downtion’s General
Theory to estimate 1 and A from the Rayleigh distribution.

In this paper, therefore we discuss the properties of the moments of ordered random
variables and then derive the Cubic Coefficient Estimate (CCE) and apply Cubic
Coefficient Estimate to estimate the two parameters of the Rayleigh distribution
and also discuss its asympotic properties.

To this end we first recall the following:

2. PROPERTIES OF THE MOMENTS OF ORDERED RANDOM VARIABLES

If 2™ < 2™ < 2™ < ... 2™ are the available ordered observations from the
distribution F( I—;-‘f), where p and X are the unknown parameters to be estimated.

)
We make the transformation ™ = L= (i=1,2,---,n) such that y™ <yl <
y,(,, ") are the realizations of the set of random variables Yl(") < Yz("), .- ,Y,S").
We denote
Ey™)y=o® = [~ n! F(2)i"Y[1 — F(z)]*"dF 2.1
)=o) = [~ e @I - PP P @1

n'

BV =W = [ a e P @) L - Pl iR (@) (2.2

and
(®) y(n)y, _ (n) n! 9
E(Y'L an ) <j= / / (i—l)[(j_i__l)!(n_j)!
]1— ( ) _ F(I)]j—i—l x
[1— ()" 1dF (z)dF (y) 2. 3)
Also
Cov (Y™, ¥{™) = W — a{Ma{™ (2. 4)

We denote m(™ with m and r integers, as the rth factorial power of m i.e.

m) = (mm'r), =m(m—1)---(m—r+1) and introduce also the two identities
~{ m
(m) _ (r)p(m—r)
(a+b)™ = E(T )a’bm’ (2. 5)
r=0
m
@-d™ = 3 (-1)"(a—r)mp") (2. 6)
r=0
We note that
= 1
i —1)6) = (k+1) .
2 E-D)O = (27

i=1
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Property 1
> =1)Wa” = 37 (i~ 1P
=1 i=k+1
Wi — 1)('“)
= [Tt 3

1—k+1
[F(z)] 1 - F(z)]"~'dF (w)

= [ 35 (17471)

i=k+1
F@)]RL - F(z)" e

Setting s =i — k — 1 we get after simplification

(k+1)
. n k
Z(Z - 1)(k)a1(n) = (k+1) al(c-:il) . 2. 8)
Property 2
n nlk+1)
. k), (n) (k+1)
;(1_ 1)( ) u (k+l)Wk+1,k+l (2' 9) )
The result follows immediately from property 1
Property 3
n n n
Z Z(i 1)@ - 1)(")Wi(;l) - Z(i — 1)@ - 1)(q)wgt)
i=1 j=1 i=1
+ Z{(Z - 1)(17) G- 1)(q)
i<j
+(i - 1P - 1)@ (2. 10)
Property 4
- O Ow = k! w2 g
;(2_ P -1) FriT0n—k—I=D ek (2 11)

For the proofs of the last 3 and 4 properties we refer to Hirai [5], David [2] and
Hirai [8].

3. CORAVIANCE BETWEEN LINEAR FUNCTION

k+1 By (n)

Vi = e § ; - )Py" (3. 12)
s+1

¥s = o § :z~ 1@y ™ (3. 13)

By definition we have

E+1G+1
Cov(gi ¢5) = Qs = Vi = 7).y ¥
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r=1s=1

n n
E {Z > (r-1)9(s - 1)(J)Y(")Y(”)} ) (3. 14)

Now

n
EZZ(,._l )O(s — )WDYy My ™ = Z (r = 1)O(r —1)Dy

r=1 s=1 s=r=1
+ ZZ{(T 1)@ (s—1)@
+(s - 1)(’)(7' —1)Nw (3. 15)
Using the properties of ordered random variables we have

i .
_ 4 (i—t) (; n (j+t+1)
= Z( t ) 5¢ )(J+1)!(j+t+1 )WJ+t+1,J+t+1

t=0

i )
7 i—t) . n (G+t+2)
+Z(—1)t( : ) (n —t — )= 141 ( P )WHIJJr2
t=0
i .
_ 1\t 2 4+ 1\G=) n .(i+t'+2)
+§( 1) (t ) (n—t-1) J.t.(j+t+2 AN

= S51+85+5; (3. 16)

In S; we substitute v = j + ¢ + 1 and obtain

i+j+1

il51n(®) (v)
v§1(2+3+1—v)'(v—3—1)w (3-17)

Using the identity (2.5) we see that

n—t-1)0"% = (n—j—t—24541)¢D
i—t
= Z("t)(n J=t=20G+ D (3. 18)
r=0

and writing t = s — r we obtain

_ e d't! (+t+2) L) ) (54 1)6-9)
Sy = Z(t) = (j+t+2)W]+1’J+2 o\eot)" o

t=0
(3. 19)
Changing the order of summation and putting v = j 4+ s! + 2 we have
i+j4+2 u—j5—2 o 2o (v
So = JZ i (=1)t51(5 +1)( +i+2-v), (v) — -
u=j+2 t=0 (W—F—2-tMGE+5+2—-v)(G+t42) THLI+2

By symmetry we put ¢ = j in (3.20) then

il (n)(+e+2) e
53~ZZ s oG Gt Wk

s=0 t=0
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Writing the value of W/Z(fl't:é) and after little simplification we get

n(‘L s+2) i
Sa—Z(]_'s i [ alFerFwrEe) aFwe. m)

Now we have

/ / yIF ()] [F(y)]* dF (2)dF(y)

/ / y[F (@) [F(y)*dF (2)dF (y)

/ / s Fy)Pll - T= F@))

dF (z)dF(y)
z.ag_ﬁl) s!agfﬁl)

G+1)!  (s+1)

- yz[F(ztrl( (1)

[1 - F(y)|"dF(z)dF(y) (3. 22)
Putting (3.22) in (3.21) and writing v = i + s + 2.
itj+2 . i i+1) (v—i—1
_ T i) g ety | el (o-14)
. = G+it2=0)0 | GrD(w—i-1D) Z( VW o1 | -
v=i+2 J )
(3. 23)
This vanishes for i = 5, v =7+ 1
Adding (3.17), (3.20) and (3.23) we have fa.ctorlal series of the form i.e.
S1+8:+8; = ZZ(T ~1)¥s -~ 1)Owm
=1 s=1 7
i+j+2
— Z a(v) (v)
v=gt1
i+j+2
= Z a(t)n(t) (3. 24)

t=7+1

Hence we get
, . i+i+2 (1)
o @E+0G+ 1) t—:77+1 ij n(t) (1+1) (5+1) (3. 25)
ij = D nG+D ®ip1 Qi .
We can write
n® = nn-1)---n-Hn-j-1)--(n—-t+1)

nUtD(p — j — 1)(t—i-1) (3. 26)
Using again the identity (2.5)

i+1 .
) = (0=~ 14+ 1D = 3 ( Hs—l ) (n~j = 1)@ +1)6+1-9)
s=0

(3. 27)
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Putting (3.26) and (3.27) in (3.25) we get after simplification
G+1)@E+1) + .
=8 = YT I Z G -5 -1)@ x
(i+1) ,0+1) it1

: L i+l ; . 41— L
06+ 2 ( ) (=i =0 ] i

(i+ 1()91 )+ 1) Z b~ j - 1) (3. 28)

Using Downton’s notation we have

b = WY G = s) (s + 5+ (s + G — )(s + 5 + 1)ls!
s—1
Hil1(G + DSy WD G+ 1= )G+ 2+ ) (s — 1 -7
r=0

+ilj1( + 1)+1-9) Z( Y WEHTHMED 41— sl — )

—0
(s+7—i+1+n)+iljla V70 — oD/ +1 - 8)i(s + j —)!S!
(3. 29)
When s = 0, some of these terms vanish in bgg). These coefficients depend only upon
diagonal and next diagonal terms of relatively small variance matrices of ordered

observations and expected value of the largest observations. In the evaluation of
bz(»;) we note that

@) WD = (P
() W = 4wl —3(aP)? (3. 30)
() Wg3 =30ai"a? - 3(af")? + WY

(i) By definition we have

@ Y
W@ =2 [ [ aar@)rw)

put
[ @iz =gt
then
g =yfly)
thus
w =2 /_ 9)g' (W)dy = [9()}= = [ / zf(z)dz)? = M) (3. 31)

Similarly (i) and (ii) can be proved.
and hence bg_f) can further be simplified.
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4. CusiCc COEFFICIENTS ESTIMATES (CCE)

In Downton’s general theory if we take 4 terms approximation and call it Cubic
Coefficient Estimate (CCE). Suppose we have an ordered sample :vg") < :v,‘(,") - <

z{™ from the distribution F (’—;E) where p and A are unknown parameters. We
want to estimate a parametric function p = k1 + k2 using the available ordered
observation where k; and k2 are known constants.

Let
m _a —p ‘
Y =’—A—i_—_1,2,---,n T (4. 32)
then y{™ < yz(,") .-+ < '™ are the realizations of the random variables
Y <y®. <y,
We define an estimate function Cubic Coefficient Estimate (CCE) for p as

U=at+bg+cs+de (4. 33)
where
n n n
t=Y (-1, g=3"(i-1)Dz{?, s =3"(i - 1)@V
i=1 i=1 i=1
n
e=Y (i-1)®g{™ (4. 34)
=1
Now using (2.9) we see that
O pp® G gn@®
an cn n
E{U) =
@) ( 1 + 2 * 3 + 4 )
(e} @ ® dn®
+( £ agl) + agz) +Z a:(f) +2 ag4) A (4. 35)
1 2 3 4
U will be unbiased estimator of p if the coefficients are so chosen such that
ay =k
where
k= [k1k2] (4. 36)
and )
n n® 2 n®
a=[abcd: ¢ = [ ol ay i@ 0@ .0fe ] (4. 37)
mra) tra? tPel nPald
We define

" = 3(-)OY%; 6 =Y (- )Oy™
i=1 i=1
n n
s = Y (-1)P7"™ E=Y (i -1)®y™ (4. 38)
i=1 i=1
as random variables.
Now we denote

Var(;)zﬂoo; Var(é):ﬂu
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QOI:COU(;W g),Cov(z, *E.)Zﬂzg

and thus covariance matrix is
Qoo Qo1 Doz Qos

Q= My Q2 Qs
22 Qo3
33
Hence we have
Var(U) = \?aQa (4. 39)
Thus we have to minimize the expression subject to restraint given in (4.36)
x = N2aQa’ + gy'd’ (4. 40)

Where ¢ = [¢1,¢2] and ¢1 and ¢y are the undetermined Lagrangian multipliers.
The minimization of x is obtained by solutions of the equations with @) = k yields.

@ = k[~ "1t (4. 41)
and .
Var(U) = NE[JQ-14) "' (4. 42)
If k = [1,0] we get p* as an estimate of i and similarly if & = [0, 1] we get A* as an
estimate of A\. We may some times be interested in other values of k; and ks.
5. ESTIMATES OF p AND A FROM THE RAYLEIGH DISTRIBUTION

The probability density function of the two parameters Rayleigh distribution is
2(x — ) 12702
f(z)=—(?—)e @22 <z <ooA>0 (5. 43)

The M.L.E. of A say A is given by

A= iw (5. 44)

where z§") = /i the smallest observation.

As the lower range depends upon u we can not calculate the large sample variances
of these estimates.

For the evaluation of the coefficients of u* and A* by Cubic Coefficient Estimate -
(CCE) we have

N
n n(2 n(3 n(4
[Zl Zz Za Z4 _ (5. 45)
1o %2 03 M 2L 34 44
n 2 n(3) n{4)
where
6 b 6 6 6 ' T 1
el = e e = Q7T | - | QTR (5. 486)
G b 4 £ & o
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and

' n @ 6

o =log7 a5, 0 ,a514)] and 1= (5. 47)

—

Using the moments of order statistics Hirai [7] from the Rayleigh distribution we
have the elements of {} from the Rayleigh distribution for n = 5,6, 7 in Table 1.
Table 1
The Elements of €2 in Cubic Coefficient Estimate (CCE) from the
Rayleigh Distribution forn = 5, 6, 7

n=235 0.049204 0.0509054 0.0545378 0.0567213
0.0681764 0.0777652 0.0841323

0.0926029 0.10322768

0.1180682

n==6 0357670 0.0424211 0.0454481 0.0472677
0.564425  0.0641847 0.0693179

0.0759378 0.0943095

0.0956505

n=7 0.0306574 0.0363610 0.0389555 0.0405152
0.0564423 0.0641847 0.0693179

0.0759378 0.0843095

0.0956505

Hence the coefficient of pu* of u and A* of A in Cubic Coefficient Estimate (CCE)
are respectively as

a11 = a1} @12 = a1 + ag; a13 = a1 +2a3 +2a3 -+ a1, = a1 + (n— L)ag

+(n—1)(n—~2)az+(n—1)(n—2)(n - 3as (5. 48)
Similarly
ag = bi; aga = by + by; and ag, = b1 + (n—1)by + (n —1)(n — 2)b3
+(n—1)(n - 2)(n — 3)by (5. 49)

These coefficients are given in Tables 2 and 3 and variance - covariances of these
estimates are given in Table 4 forn = 5, 6, 7.

Table 2

Coefficients of y* by Cubic Coefficients Estimate (CCE) from the
Rayleigh Distribution for 5 <n <7

n | ai @12 a13 a14 a1s5 a16 a1z
511.243 | 0.2607 | —0.058 | —0.119 | —0.325 '
4932 | 969 8164 6135 8612
6 | 1.086 | 0.3489 | 0.0183 | —0.078 | —0.1138 | —0.262
9110 | 273 732 3446 614 2495
7 10.096 | 0.3954 | 0.0901 | —0.039 | —0.0783 | —0.109 | —0.21
0048 | 130 670 7372 446 7002 78499
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Table 3

Coefficients of A\* by Cubic Coefficient Estimate (CCE) from the
Rayleigh Distribution for 5<n <7

njaz @22 a3 024 a25 Q26 a27
51 —1.097 | —0.116 | 0.2276 | 0.34 | 0.642 ‘
3312 28640 | 022 3886 | 1268

6 | —0.955 | —0.228 | —0.109 | 0.231 | 0.341 [ 0.5317
78813 | 8629 2469 7671 | 117 147

7 10.8446 | —0.228 | —0.014 | 0.156 | 0.220 | 0.2907 | 0.452
933 3629 704 7133 | 3651 | 3770 9087

Table 4

Variance and Covariances of y* and \* from the Rayleigh Distribution
for n = 5, 6, 7. Each value should be multiplied by A2

n | 5 [ 6 | 7
Var (u*) | 0.086745 .| 0.06734607 | 0.0548885
Var(\*) | 0.1300687 | 0.1024643 | 0.08451043
Cov(p*,A*) | —0.0826940 | —0.034785 | —0.051375

Hence we conclude that the Cubic Coeflicient Estimate (CCE) can replace the best
linear unbiased estimate (Lloyd’s) method from the efficiency point of view Cubic
Coefficient Estimate (CCE) is quite simple even for small samples and involves
less calculations. This method is applicable for complete samples and no viable
technique is as yet available to extend it to censored data.

6. AsyMPTOTIC PROPERTIES OF CUBIC COEFFICIENT EsTIMATE (CCE)
We have from (3.28)

_@E+1HE+L

Qij - n(i+1)

b9+ (n~ 35— DB + -+ (n— - 1)DT] (6. 50)

and this becomes

06D
n
Let

| ) ) ;
4y ebly  28p(y
92 12682
1665

L 1
B== (6. 51)

If | B| # 0 then asymptotic coefficients y * and X"* of x and X are given by

)
a1 ax az ag | “
bi by bz ba |

6 20, 30, 4
n n2) n3 n

Bl
[ ]
-
w
N
>
o

3
8
3
c
3
o
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where
o 6o 61 62 63 - 1 ' -
= =B_1[1:62] .- | BT1:a] (6. 52)
{ o &4 £ 6 &

and the variances of the estimates are calculated while calculating these coefficients.

Table 5

Asymptotic Coefficients of estimate n'* and )\'* from the Rayleigh
distribution for n = 5,6,7 are given in Tables 5 & 6

n| a11 @12 a13 a14 ais ai6 a17
5 1 1.3693 | 0.3479 | —0.2367 | —0.3846 | —0.0958
861 201 639 929 579
6 | 1.1411 | 0.4601 | —0.0024 | —0.2466 | —0.2724 | —0.272
550 837 056 129 382 4382
7 10.9784 | 0.4920 | 0.1303 —0.1064 | —0.2184 | —0.205 | —0.068
186 105 920 369 962 7259 1860
Table 6
n | a1 a12 @13 a4 ais ai6 a7

51 ~1.150 | —-0.23 | 0.340 | 0.575 | 0.468
2775 4223 9165 1389 | 4449
61 ~0958 —0.034)0.092 }0.362 | 0.461 | 0.390
5644 78609 | 4344 3215 | 8004 | 8711
710821 |0.385 | —0.046 [ —0194 | 0.338 | 0.385 | 0.334
6267 4099 5979 8093 | 8177 | 4093 | 6021

The asymptotic variance covariance of y’* and A'* from the Rayleigh distribution
for n = 5, 6, 7 are given in Table 7. Each value may be multiplied by 2.

Table 7
n | 5 | 6 | 7
Var (1/*) 0.0585286 0.0487738 0.0418061
Var(\'*) 0.0970063 0.0808386 0.0692902
Cov(p*, N*) | —0.0524101 | —0.0436751 | —0.0374358

Mostellet {10] has shown that linear combination of order statistics tends to nor-
mality for large samples and therefore it can be shown that these estimates also
tend to normality as the sample size becomes very large.
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Abstract. The ecological notion of system persistence in model-
ing the interaction of two competing predatory populations living
exclusively on a common prey, is investigated.

Freedom and Waltman [3], and El-Owaidy and Ammar [4] have
discussed the persistence of such models based upon the assump-
tion of nonexistence of limit cycles. In this paper, however ; the
nonexistence of limit cycles is proven, first, by global asymptotic
stability of equilibria through the constriction of a suitable Lya-
punov function, and second, persistence criteria of the system are
obtained.
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1. INTRODUCTION

One of the most interesting questions in ecological models concerns the survival
of all species of the model. This question of persistence becomes more important
when two or more species compete for a single prey species. The significant concepts
of permanence and persistence, both exclude extinction of species for all positive
initial conditions. In biological terms, persistence means that the density of each
population remains, asymptotically, above a positive bound independent of the
initial conditions, i.e. all species stay away from extinction.

Mathematically, this may be stated in terms of behaviour of solutions of the modal
which represents the biological phenomenon. An ecological differential system.

(ti = Xif(Xl,Xz, ...,Xn); for i = 1,2, e,

is said to be permanent or uniformly persistent if there exists a compact set k in
the interior of R® =z € R®: x; > 0 for 1 < ¢ > n such that all orbits end up in k.
This guarantees that the number of each population z;(¢) is bounded away from
zero if z;(0) > 0 for all 4.

By the term weak persistence, we mean that for all i, limsup z;(t) > 0 when-
ever £{0) > 0. Under this ”lim sup” definition of persistence, a population can
frequently approach extinction. By the term strong persistence, we mean that for
all i, ¢t — oo liminf z;(t) > 0 whenever z(0) > 0. = We have applied the latter
definition of persistence as used in Freedman and Waltman [3]. This definition of

a7
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persistence was reformulated in [3] as follows: ” A persistence with initial conditions
in the positive cone will persist if there are no w- limit point s of the solution on the
boundary of the positive cone”. This means if (0 (X) be the orbit through the point
X =(z,y,2) withz >0, y > 0, 2> 0, and if Q(X) be the.w — limit set of O (X),
then (X)) be interior to the positive cone. Since, the question of two predator pop-
ulations competing for a single prey population has occupied an important place in
ecological literature, so in this paper, we have considered a system modelling the
interactions of two competing predator populations living exclusively on a common
prey. For both the predator populations we have taken density - dependent death
rates and in this sense, we have extended the result of EL-Owaidy and Ammar [4]
with an alternative approach.

Freedman and Waltman [3] in theorem 4.1, obtained persistence criteria by an as-
sumption that for such a system, there are no limit cycles surrounding an interior
equilibrium in a co-ordinate plane. We have actually proved the non-existence of
limit cycles by constructing Lyapunov functions for the equilibria and have obtained
conditions under which the equilibria are globally asymptotically stable. This im-
plies that all the trajectories of the system in the positive cone will spirsl toward
this equilibrium point, that is non-existence of limit cycles.

Then, we have applied the persistence criteria as given in theorem 4.1 under refer-
ence, to obtain conditions for persistence of our system. thus our result of persis-
.tence seems to be more comprehensive than that in theorem 4.1 of Freedman and
Waltman [3].

The organization of this paper is as follows:

In section 2, we give the model. Section 3 deals with the global asymptotic stability
of the problem. Section 4 deals with persistence results and we illustrate these by
an example.

2. THE MODEL AND EQUILIBRIA

A system modelling the interaction of two. competing predator populations y(t)
and z(t) living exclusively on a common prey z(t) is given by

T = zf(z) —yp(z) — 2q(x)
y = y[~9(y) + c1p(2)]
: - A-h(z) + drg(2)) 2 1)

X0)=2z0>0, Y{0)=yy>0, Z(0)=2 >0.

where (. = %), ¢1, di are positive constants, known as food conversion rates. We
make the following assumptions, which are consistent with models of predator -
prey systems. :

(H1) : f(x) [specific growth rate of prey z|:

F(0)>0,f(z) <0forall z <0.

There exists k < 0 (the carrying capacity) such that f(z) > 0 on

0<z<k, f(k)=0and f(z) <Oon z > k.
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(H2) p(z) : the functional response of the predator y with respect to the prey z
and

p(0) =0,p'(z) > 0 for all z > 0.
(H3) g(z): the functional response of the predator z with respect to the prey z and
q(0) =0,¢'(z) > 0 for all z > 0.

(H4) : we assume ¢{z) = p(z), where is a positive constant
(H5) : g(y); density - dependent death rate of the predatory and

9(y) :==g'(y) 2 0 for all y > 0.
(H6) : h(z);density -dependent death rate of the predator 2 and
h{0) > 0,h’(2) > 0 for all z > 0.

Clearly the system (2.1) has equilibrium point Eg(0,0,0). By assumption (H1),
Eq(k,0,0) is also an equilibrium point. We assume that each-of the predators y
and z can survive on the prey z, that is there exist equilibrium points

E*(z*,y*,0) and E(&,0, 2) such that

&f(z) — yp(2) =
—g(¥) +e1p(g) =0 (2. 2)

Tf(2g - 29(2) =0
—R(2) + d1q(2) =0

where z*,y*,%,2,>0and z* < k,Z < k.

2. 3)

3. GLOBAL ASYMPTOTIC STABILITY OF EQUILIBRIA

E*(z*,y*,0) and E*(z*,y*,0) and E(&,0, 2)

Lemma 1. Assume that (H1) -(H6) hold for the system (2.1) and in a neighborhood
of (z*,y*,0) in the positive cone, the function ”ES) 1s strictly decreasing. Then the
equiltbrium point E*(z*,y*,0) is globally asymptotically stable.

Proof. Define a Lyapunov function V{(z,y, z) as [see [1]]:

V(l‘,y,Z):/f[cl(l p(( )))+d(1—q(( )))]d +/ wy dw + 2

Now E*(z*,y*,0) = 0 and due to (H2) and (H3), (z,y, z) is positive in the region:
O<z<z*<k 0<y*<y<p,0<2z<f;, where 31, B2 are positive constants.

+ala(o) - gL - B

+(y — ¥")[-9() + cp(e)] + 2[-h(2) + drg(2)]
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using (2.2), (H4) and with some algebraic manipulations we get

V) = [c1<p<x>—p<a'c>>+§d1<q<x>—q<¢>)1[””pf(§§)—ﬁ,f(i”i;)

-6 - o) + 2 (( ") —a(@))]

+z[ae1 (p(z*) - p(z)) + (R(0 ) h(z))] <0
Thus E* ( ¥ y*,0 ) is globally asymptotically stable. O

Lemma 2. Assume that (H1)-(H6) holds for the system(2.1) and in a neighbour-

hood of z(Z,0, 2) in the positive cone, the function f((ﬂg) 1s strictly decrictly decreas-

]

ing. Then the equilibrium point E'(:E, 0, 2)is globally asymptotically stable.
Proof. Define Lypunov function (z,y, 2) as

i p(#) ( ) /
Vi(z,y,2 :/ c1(1— +di(1- dw+y+ dw
Rest of the proof follows as in Lemma 1. O

Remark 3. We consider equilibrium points Fy(0,0,0) and F;(k,0,0). The eigen-
values of the variational matrix (Fy) of the system (2.1) about Ey(0,0,0) are:

A1 = £(0) > 0, = —¢(0) < 0, and A3 = —h(0) < 0.
Clearly Ey(0,0,0) is a hyperbolic point and is unstable along the z-axis. This implies

that the prey population z grows near Ey. The eigenvalues of the variational matrix
(E1) of the system (2.1) about E;(k,0,0) are:

AL =kf'(k) <0,x2 = —g(0) + c1p(k), A3 = —h(0) + d1q(k).
Thus F (k,0,0) is asymptotically stable along the x-axis.This implies that the prey
population x remains in neighbourhood of k.
Remark 4. For existence of E*(x*,y*,0) and E(%,0, 2) it is necessary that
g(0) + c1p(k) > 0 and — h(0) +di1g(k) >0

As it implies increase of predator population and predator population Z.

4. PERSISTENCE CRITERIA

In section 3, we have given necessary conditions for existence of equilibria E*(z*, y*, 0)
and E(z,0, 2) and criteria for their global asymptotic stability.
In this section we shall assume global stability of these equilibria and obtain per-
sistence criteria for the system (2.1). First,we prove the following two lemmas.

Lemma 5. The equilibrium E*(z*,y*,0) in the interior of the x — y plane is un-
stable in the positive direction orthogonal to x —y plane if
—h(0) + dig(z*) > 0 or — h(0) + drap(z*) >0

Proof. The proof is immediate upon computing the variational matrix (E) of system
(2.1) about E*(z*,y*,0). We have:

f&*) +a* 1 (z*) —y*p/ (=) —p(z*) —q(z*)
V(E") —gay*p’ (z*) (W) + eip(z*) —y*g(y™) 0
0 0 —h(0) + dig(z*)
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Thus if —A(0) + d1g(z*) > or — h(0) + d1ap(z*) > 0 we have the result. a

Lemma 6. The equilibrium E(i:, 0, 2) in the interior of the T — z plane is unstable
in the positive direction orthogonal to z — z plane if —g(0) + c1p(%) > 0.

Proof. The proof is immediate upon computing the variational matrix V(E*) of
system (2.1) about E(&,0,3). Now, to apply persistence criteria to our system
(2.1), we have to check hypotheses (B1) — (B4) of Theorem 4.1, in Freedman and
Waltman [3] and boundedness of solutions. We have:

ey = fa)-y22 42
Gi(z,y,2) = —g(¥)+cip(x)
Ga(z,y,2) = —h(z)+dig(z)

Therefore, condition (B1) is trivially satisfied due to (H1)-(H6). Also notice that
p(0) = 0 and p’(z) > 0 implies p(z) is strictly increasing positive function, similarly
g(z). Condition(B2) is true due to (H1).

F(0,0,0) = f(0) >0, F(k,0,0) = f(k) = 0

X @,0,0= 1@ <o,

satisfying (B3) there are no equilibria on y-axis or z-axis in y — z plane, for if we
suppose that.there exists an equilibrium E(0,y;,21) in y — z plane which is given
by:

g(y1) =0 and h(z;) =0,
then this contradicts (H5) and(H6), and satisfying (B4) each predator can survive
on prey, that is, there exist points E*(x*,y*,0) and E(%,0, £) such that (2.2) and
(2.3) hold. Also see Remark 4. Moreover, we require;
5) : Boundedness of solutions of system (2.1).We suppose that the functions f(z),
p(z), q(z), g(y) and h(z) are sufficiently smooth so that the solution to initial value
problem (2.1) exists, is unique and continuable for positive values of . Regarding
boundedness of solution, see Freedman and Waltman (2] and [3]. a

We state and prove the main theorem.

Theorem 7. Let (B1)-(B5) hold and Ipf(g) be strictly decreasing function and

—g(0) + ¢c1p(z) > 0 and — h(0) + drap(z) > 0.
Then the system (2.1) persists.
Proof. By (B5) solutions are bounded. By Remark 3 the equilibrium E¢(0,0, 0) is
unstable along the z-axis and unstable manifold of E,(k,0,0) is two dimensional.

Conditions (4.1) follow from Lemmas 5 and 6. Non-existence of limit cycles follows
from Lemmas 1 and 2. This completes the proof. O

Remark 8. From (H4), we have

__g(z) _ rate of prey consuon per predator z at prey density =
" p(z) ~ rate of prey consuon per predator y at prey density =
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Thus, if we consider o as parameter, the system (2.1) will persist provided

h(0)

o> ————
aydp(i)

Remark 9. We have discussed persistence criteria for a system modeling the inter-
action of two competing predator populations living exclusively on a common prey.
But in the same way, the persistence criteria can be obtained for the system mod-
eling interactions between two prey populations and one predator population, that
is, for construction of Lyapunov functions for the systems (4.2) and (4.3) see [1].
System modeling interactions between two prey populations and one predator pop-
ulation, that is,

¢ = zf(z) = zq(z)

¥ = yg(y) — zr(y) (4. 4)
z = z[-h(2) + di1g(z) + dar(y)]

Example 4.1
To illustrate the Theorem 7, consider the system with the Holling type II functional

response.

z = z(l-x) 22 zo 2z
- y1+z 1+=z
33 2z
;= yl-1(1 i
y y-10+y) + e
11 2z
z z] ( z)+ qal+z]

" Here, k=1, Iz{(g) = % Thus Ip’;g) is a strictly decreasing function for z > 0.

*( % _ x * 13
E (.’L‘ 'Y 10)=E (57570)

P =p(z) = 5
h(0) 27
dip(%) T2

Thus take a = 2
a1 2
E(.’L‘,O,Z) - E(§’07 5)
To check condition (4.4)

33 1

N 1
—g(0)+clp(z)——1+E><§—3—2>O
11 2 44 17
— d = — - - = — _— = —
h(0) + d1ap(z™) 1+9><2><3 1+27 27>0

Theorem 4.1 applies and hence the system (4.4) is persistent.
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1. INTRODUCTION AND PRELIMINARIES

In [25] Csaszar introduce the concept of a syntopogenous structure to develop
a unified approach to the three main structures of set-theoretic topology: topolo-
gies, uniformities and proximities. This enabled him to evolve a theory including
the foundations of three classic theories of topological spaces, uniform spaces and
proximity spaces. In the case of the fuzzy structures there are at least two notions
of fuzzy syntopogenous structures, the first notion worked out in [13, 10] presents
a unified approach to the theories of Chang fuzzy topological spaces [4], Hutteon
fuzzy uniform spaces [7], Katsaras fuzzy proximity spaces [9, 8] and Artico fuzzy
proximity spaces [1]. The second notion worked out in [11, 12] agree very well
with Lowen fuzzy topological spaces [18], Lowen-Héhle fuzzy uniform spaces [19]
_and Artico-Moresco fuzzy proximity spaces [1].Sostak [26] introduced the notion of
(L-)fuzzy topological spaces as a generalization of L-topological spaces( originally
called (L-)fuzzy topological spaces by Chang [4]). It is the grade of openness of
L-fuzzy set. Badard introduced the concept of smooth structure and gives some
rules and shows how such an extension can be realized [2]. In {22], Ramadan in-
troduced the similar definition of Sostak (L-)fuzzy topology [26] under the name
”smooth topology”. Also, in [21] Badard et al. introduced the concept of smooth
preuniform and preproximity spaces.
In this paper, we can obtain the stratified L-fuzzy topogenous( resp. proximity.
uniformity) from an L-fuzzy topogenous( resp. proximity. uniformity). It is called
straification. We prove that the L-fuzzy topogenous( resp. proximity) associated to
a stratified L-fuzzy uniformity U(resp. topogenous N) also are stratified. Moreover
the stratification of the L-fuzzy topology(resp.. proximity) associated to U (resp.N)
coincide with the L-fuzzy topology (resp. proximity) associated to the stratification
of U (resp.N).
Throughout this paper, let X be a nonempty set. Let a complete lattice
L = (L,<,V,A,) be a completely distributive complete lattice with an order-
reversing involution on it, and with a smallest element 0 and largest element 1
55
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(0 # 1) [27). Let X be a non-empty set LX denotes the collection of all mappings
from X into L. The elements of LX are called L-fuzzy sets on X. LX can be made
into a fuzzy lattice by including the order and involution from L = (L,<,V,A,’).
We say that the fuzzy points x, belongs to a fuzzy set X i.e., z4 € A iff a < A(z),
fora € L, a(z) = a, for all € X, and the set of all fuzzy points in LX is
" denoted by Pt (LX). Let Qx denote the family of all mapping a : LX — LX with
the following properties:

(i) a(0) =0, X < a()) for each A € LX,

(ii) a(V;er M) = Viera(Xi), for A € LX.

For « € Qx, the mapping e~ € Qx and a Ab : LX — LX are defined by
a7 (3) = A{p 2 a(u) < A} and (@ AB)() = MaGu) V b(ua) < pr V iz = .
Then (a™!)~! = a and a; < ay iff (a;)”! < (a2)”!. For any a,b € Qx and
u € L%, (a o b)(p) = a(b(p)) [16]. Notation and notion not described in this
paper are standard and usual.

Proposition 1. [3] For each a € L, define the mapping &: LX — LX by
~ sup(A) : if sup(}A) < «,
ooy = { 222 57 o)

1: ow

for each X € L*, where sup(A) = \/ . x A(z). Then

(i) aeQx (i) oa—aforeachaeL

(iii) If « < B, then & > B for each a,B € L. (iv) a <0 for each a € Qx.
Lemma 2. [3] Let ay : LX — LX be a mapping define as follows:

At < A
ax(7) ={ 1 :1{7.1.—

Then ax € 0x and ay 0 ay = ay for any A € LX

Definition 3. [6, 20] A mapping T : LX — L is called an L-fuzzy topology on
X if it satisfies the following conditions:

(O) T(Q)=TQ1) =1,

(02) TAAp) 2 T(N) AT () for any X, p € L%,

(03) T(Vier M) = Ager T(Ax) for ang {Ax}rer C L*.

The pair (X,T) is called an L-fuzzy topological space (L-fts, for short). An L-
fts (X,T) is called stratified if T(a) = 1 for each o € L [?].

Let (X,T) and (Y,n) be L-fts’s. A mapping f: (X,T) — (Y,n) is called L-fuzzy
continuous if T(f ~1()) > n(u) for all & € LY. Let T; and T be L-fuzzy topologies
on X. We say that T; is finer than T5 (T2 is coarser than T1) if To(A) < T1(N), for
all X € LX. ‘
Theorem 4. [15] Let (X T) be L-fts. Define the mapping Ty : LX — L as follows:
for each A\ € LX,

)=\ A T(Ai),
{(Vk.2) IKETIEN (), (s ,2)€{ (M2, ) KETY

where N(A) = {{(Ar,ax) | k €T} | A= Vyier(Ae Ay). Then T, the coarsest strati-
fied L-fuzzy topology on X which is finer than T. And T is called the stratification
of an L-fuzzy topology T on X.
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Definition 5. - [5] A mapping § : LX x LX — L is said to be L-fuzzy quasi-
proximity on X, which satisfied the following conditions:

(FP1) 5(0,1) = 0,

(FP2) 6(AV p, ) = 6(A, ) V 8(p, p) and (A, pV v) = 6(X, 1) V 6(A, ).

(FP3) For any A\, € LX, there exist p € LX such that

s = A\ (6N p) Voo, ).

peELX

(FP4) 6(\, p) # 1, then A < p.

The pair (X, d) is called L-fuzzy qu351-prox1m1ty space. An L-fuzzy quasi-proximity
space (X, 6) is called L-fuzzy proximity space if (FP) 6(, u) = 6(u, M) for any p, A €
LX. Let (X,6,) and (X,d2) be L-fuzzy proximity space. A mapping f: (X,d;) —
(Y,82) is L—fuzzy prox1m1ty continuous if satisfies 81 (A, p) < 82(f(A), f(u)), for any
My eLX

Theorem 6. [17] Let {(Xi,6:)}ier be a family of L-fuzzy quasi-prozimity spaces,
X = er X; a product set and, for eachi € T'. m; : X — X; a projection mapping.
Define the mapping Il;eré; : Lx x LX — L on X by for any \,u € L%,

Wierd: (A 1) = ALV N 8:(mi(0g), (i)}
j.k i€l

Where A is taken-over all finite families {\; : A = \/; A;} and {p,k_: = Vyuk}
Then ;erd; is the coarsest L-fuzzy quasi-prozimity on X which all m; is L-fuzzy
quasi-prozimity continuous. Il;erd; is called the product L-fuzzy quasi-prozimity
structure with respect to a family {m,: X — X, :i €T},

Definition 7. [23] A mapping N : LX x LX — L is said to be L-fuzzy topoge-
nous order on X. Which satisfied the following conditions:

(FN1) N(L,1) = N(0,0) =1,

(FN2) If N()p)#0,then A <p,

(FN3) If X< 21,1 < p, then N(Ar, ) < N(A, p),

(FN4) (@) N(A1, 1) ANz, p2) S N(A1V Ag, g1 V piz),
(i) N(A1, 1) A N(D2, p2) < N(A1 A g, i A p2)-

The pair (X, N) is called L-fuzzy topogenous order space. The L-fuzzy topogenous
order N is called

(i) Symmetrical iff N(\, u} = N(u, A).

(ii) Perfect iff N(V;er Ais Vier #4) = Aier N (N, i)

Let (X,N;) and (Y, N,) be L-fuzzy topogenous order spaces. A mapping f :
(X, N1) — (Y, N,) is L-fuzzy topogenous continuous if satisﬁes

Ny (F71(N), F74(w)) = Na(A, ), for any A, p € LY.

Theorem 8. [24] (i} Let N be a perfect L-fuzzy topogenous structure on X. Define
a mapping Ty : LX — L by Ty (A\) = N(X\, ). Then Ty is L-fuzzy topology on
X. . o
(ii) Let T be an L-fuzzy topology on X . Define a mapping Ny : LX x LX — L by

Np(\ ) = \{T (@) : A< v < p}.
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Then Nt is perfect L-fuzzy topogenous order on X.

(iii) Let N be a symmetrical L-fuzzy topogenous on X. Define a mapping dn :
LX x L*X — L by dn(A\, p) = (N(\, ). Then &n is L-fuzzy prozimity on X.

(iv) Let 6 be an L-fuzzy prozimity on X. Define a mapping N5 : LX x LX — L
by Ns(\, 1) = (6(A\, p)). Then Ns is a symmetrical L-fuzzy topogenous on X.
Theorem 9. [24] Let {(X;, N;) }icr be a family of L-fuzzy topogenous order spaces,
X =1L;cr X; a product set and, for eachi € I',7; : X — X; a projection mapping.
Define the mapping M;erN; : LX x LX — L on X by for any p, A € LX,

icr MM ) = VA V Nalma(hs), ()},

4,k i€l

Where \/ is taken over all finite families {\; : A = \/; \;} and {px = p = Ay pr}-
Then M;er N; is the coarsest L-fuzzy topogenous on X which all w; is L-fuzzy to-
pogenous continuous. Il;erN; is called the product L-fuzzy topogenous structure
with respect to a family {m; : X — X, :i €T} )

Definition 10. [16] A mapping U : Qx — L is said to be an L-fuzzy quasi-
uniformity on X if it satisfied the following conditions:

(FU1) for a,be Qx, Ulanb) > U(aAb),

(FU2) for a € Qx, there exists a; € Qx with a1 041 < a such that
' U(a1) 2 U(a),

(FU3)  If a>ay such that U(a) > U(ay),

(FU4) there exists a € Qx such that U(a) = 1.

The pair (X,U) is said to be an L-fuzzy quasi-uniform space. An L-fuzzy quasi-
uniform space (X, U) is called L-fuzzy uniform space if the following is satisfies:
(FU) for a € Q2x , there exists a; € Qx with a; < a~! such that U(a;) > U(a).
Theorem 11. [14] Let (X,U) be an L-fuzzy uniform space . Define Sy (A, p) =
A{(U(a)) : a(u) < A}. Then (X, by) is L-fuzzy prozimity space.

Theorem 12. [16] Let (X,U) be an L-fuzzy quasi-uniform space .For each o €
L, € LX,Cu(h0) = A{e 1)) : Ua) > a} and Iy(M,a) = V{p : a(p) <
A for some U(a) > o}. Then Iy()\, ) = (Cy(A, a)). for any A € LX.

Consider the mapping Ty : LX — L define by

Ty(A\) = \/{o: Iy(A,0) = A}
Then Ty is an L-fuzzy topology on X.

2. Stratifications of L-fuzzy topogenous order spaces

An L-fuzzy topogenous order N : L* x L® — L is said to be stratified L-fuzzy to-
pogenous order on X, iff N satisfied the following conditions: (FNS) N (a,a) =1,
for each @ € L. And the pair (X, N) is called stratified L-fuzzy topogenous order
space.
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Theorem 13. Let (X,N) be an L-fuzzy topogenous order space. We define for all
u, Ae L®,

N\ p) = V { A N, m)},

Qispi @ IENYEM (A1) Oqupns@y) €L 14,0, |[i€EN}

where
M(/\Hu‘) = {{(/\h Hiy Qz)ll €N, N finite index Set}|/\s \/ (/\1 A Qi),
ieN
p> \ (wi A @)}
iEN

Then N° is the coarsest stratified L-fuzzy topogenous order on X which finer than
N.
Proof. (FN1), (FN2) and (FN3) Obvious.
(FN4) (i) Suppose that there exist p1, 2, A1, A2 € L%, such that

N*Qq, p1) AN (Az, p2) £ N* (A1 V Az, V pz).
By the definition of N*, there are {A;, 15, o))t € N} € M{(Aq, p1) and {(X;, 15, gj)|,
J € K} € M()2, i2) such that

N°(M Vg, mVpg) # ( /\ f N(/\z,m))

(Mo ) €{ (i i, ) [iEN}

A /\ N(/\m;un)

Pnspin 2, JE{(Agop5.8 ) J €K}

om0 YE{ (g p4,2,), (A 1e5 B,) [teN.jEK}

Since {(/\,,[ll,gl)ll € N} € M(/\l,ﬁl) and {(/\j,ﬁj,gj)lj € K} € M(/\z,/lz), then
we have

{()‘inu’i?gi)’ ()‘]1/1']1é])}7’ € N1.7 € K} € M(/\l V/\Zuul V“Z)
By the definition of N* we have

N (A1 VAg, p1 V pig)> /\ N(Am, thm)-
Ovmsbim @ )E{(Aisprings) (Xgop,8 ) REN, jEK}

1t is a contradiction. Thus N*(Ay, u1) A N3(Ag, ua) <N V Ag, 1 V uz).

(ii) Similar the proof of (i) )

(FNS) since ¢ = 1 A @, then N*(a,a)>N(1,1) = 1. Thus N%(e,a) = 1, for each
a€ L.

Second since A < AAL,u > uAl, then N5(\, u) > N(\, p) for any u, A € LX. Thus
N3 is the stratified L-fuzzy topogenous order on X which finer than N.

Finally, consider N* is stratified finer than N, then N*(A,p) > N(A,p) for any
A e LX,

We will show N*(\, 1) > N*(\, ) for any pu, A € LX. Suppose there exist p, A € LX
such that

N*(\p) 2 N° (A, ).
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By the definition of N*, then there exists {(A;, s, ;)i € N} € M(A, i) such that
N*(Avu) 2 /\ N(Ahul)'

(Aosprsa ) E{ (i, pi e, ) [iEN}

On the other hand, we have

N*(A\,p)

%

N* <\/ (A Aay), \/ (1 A Qi))

ieN iEN
A\ N (i A ), (mi A )
ieEN
> AV ) AN (24, 0,))
iEN
> /\ N(Aly ,Ul)-
Onsprg) €{(Xispus,00) [iEN}

v

It is a contradiction. Thus N*® is the coarsest stratified L-fuzzy topogenous order
on X which finer than N. O

Example. Let X = {z,y}, be set, L = [0,1]. Let v,y € LX,v(z) = 0.5,v(y) =
0.5 and y(z) = 0.3,4(y) = 0.7. Then we define the L-fuzzy topogenous order N on
X as follows:
for each A\, pu € LX,

1 :A=00rpu=1,

03 :A<v<uuty,

05 :A<y<u,Ady,
A<vVy <y,

0.7 :A<vVvy<y,
:/J‘zfyv Afl’,

06 : A<vAy<u,,

L 0 : Ow.

If AMz) < o < pu(z) for 0.5 < a < 0.7 and A(y) < 8 < u(y) for each 8 > 0.7,
since A < (@A1)V(BA(vVY)=(aAl)V(BAY) < u, we have N3(A,u) =
(N(lal) /\N(UV77UV7))VN(l,l)/\N('Ya'Y) =0.7.

IfAz) La <ulx) for 0.5 < a <0.7and A(y) <8 < uly) for 0.5 < a,8 < 0.7
and @ < B, since A < (@A) V(BA(wVY) =(aAl)V(BAY) £ u, we have
N#(A, ) = 0.7. By a similar method as the above cases, we can obtain the strat-
ifcation N° as following:

N p) =

l:A=aoru=aqa,

0.7 : A(z) < a < pu(z), A(y) < B < u(y),

:for 0.5 < a,8<0.7and a < 8,

N () =4 08 1A@) Sa<ulz),My) < B < uly),
’ 1 for0.3<a<05,05<8<0.7,

0.6 : Mz) < a < p(z), My) < B < uly),

1 for 0.3<a,8<0.5 and a < B,

0 : Ow.
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Theorem 14. (i) If N be an L-fuzzy topogenous order structure which is symmet-
rical, then the stratification N*° of N also is symmetrical.

(i) If N be a perfect L-fuzzy topogenous order structure. Ty the L-fuzzy topology
associated to N, then Tys = (Tn)*.

(i4i) Let T be an L-fuzzy topology, Nt the L-fuzzy topogenous associated to T. Then
Nps = (N1)* iff (N7)*® is perfect L-fuzzy topogenous order.

Proof. (i) Left to leader.

(ii) Since T§ () = N*(e, ) = 1, for each « € L, then Ty is stratified finer than
Tn, sO Tﬁ, > (TN)S.

Conversly. suppose there exists A € L¥ such that

Twne(X) = N* (A, A) £ (Tw)*(N).

By the definition of N¥, there exists a family {(A\;, A, @)l € N} € M(A, ) such
that

(TN % A N, )
O ) e{(Aihi,2,) liEN}
= A T

(X Ana)€{(Aihi,,)|[iEN}

On the other hand, we have

(Tn)*(A) = (In)° (\/ (A A Qi))
ieN
> A@w)rire)
ieN
> A (@) ) A (Tn)* (@)
. ieN
> /\ TN(/\I)~

(e e{(hiria;)iEN}

It is a contradiction. Thus Tn= = (Tn)°.

(iii) (<) Suppose (N7)* is perfect L-fuzzy topogenous order. We will show Nps =
(N7)®. Since Nrps(g, @) > T*(a) = 1, for each o € L, then Nrs is stratified finer
than NT, S0 NTs > (NT)S.

Conversely, Suppose there exist 1, A € LX such that

NT"’ (/\,,U) < (NT)S(/\HU“)
By the definition of T, there exists a family {(v;, ;)1 € T'} € N(v), where A <
v < g such that _ .
A\ T(w) £ (N1)* (A, 1)-
(vr,2y)€{(vi,2;)[i€l'} N

Since Nr(v;,v;) 2 T(v;), for each 7 € T, then we have

. /\ A NT(IJl,IJl) f_ (NT)S(/\,;L). .

() e{(vire;)|i€l'}
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On the other hand, since (N7 )* is perfect L-fuzzy topogenous, then we have
(Nr)*(A, ) = (N7)*(v,v)

= (Nr)® (\/(w ne), \ s /\Qi))

i€l i€l

> /\(NT)S("i ANag,vi A ey)
ier

> /\((NT)S(W’ vi) A (Nr)* (e, ;)
el

> /\ . Nz{v, ).

(ve.0)€{(vi,e;)|i€T}
It is a contradiction. Thus Nps = (Nr)°.
(=) Obvious from Theorem 8(ii). O

Theorem 15. Let (X, Ny) and (Y, N3) be L-fuzzy topogenous order spaces and N}
and N3 be stratification for N1 and Ni respectively. If f : (X,N1) — (Y, Na) is
L-fuzzy topogenous continuous, then f: (X, N§) — (Y, N3) is L-fuzzy topogenous
continuous.

Proof. Suppose there exist A, u € LY such that

N (F7HO0, F7Hw) £ NS (A, ).
From the definition of N3, there exists a family {(X;, pi, @;)i € N} € M(A, p) such
that

NY(FTHO) ) 2 A\ Na(As, r)-
(Anpn,0g) €N pi,2,) [HENY

Since f : (X, N1) — (Y, N2) is an L-fuzzy topogenous continuous, then
Ni(F~1(\), F71 () = Na(Ai, g:), for each i € N. On the other hand, we have
a family {(f 7 (\), F 7 (), ;)i € N} € M(F~Y()\), f~1(u)), by the definition of
N7, we have

Y

N (FTH, M) > A Ni(AL, ).
Ao )E{(F 71 (N), f =1 (pe),2)\EN}
A No(Ni, ).
Ogsp,2) E{(Mioptin@ )\IEN}
It is a contradiction. Thus f : (X, N§) — (Y, N3) is L-fuzzy topogenous continuous.
O

Counterexample. Let X be any set, L = [0,1] and identity mapping Idx :
(X, N1) — (X, N2) define the L-fuzzy topogenous N; and Nz on X as follows:

\%

1:A=00rpu=1,
Nl(’\,“) = O:O.’LU_ a -
1:A=00rp=1,
0:0w
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From Theorem we obtain

o s 1: 2<a< or each a € L,
NiOvi) = Niown) = { o158

Clearly Idx : (X,N§) — (X, Nj) is L-fuzzy topogenous continuous. But Idx :
(X,N,) — (X N2) is not L-fuzzy topogenous continuous, where 0 = N;(0.5,0.5) <
No(0.5,0.5) =

Theorem 16. Let {(X;, N;)}ier be a family of L-fuzzy topogenous order spaces,
X =1ILier a set and, for each i € T, m; : X — X; a projecition mapping and N is
the product L-fuzzy topogenous order structure with respect to a family {m; : X —
X; : i € T}. If there exists a jo € ' such that Njo = N? and N; = N; for each
i€l —{jo}, then:

(i) HlerN is the stratified L-fuzzy topogenous structure on X which is finer than
N.

(#) MierN; = N°.

Proof. (i) By Theorem 9, II;crN; is the L-fuzzy topogenous on X which all 7; is
L-fuzzy topogenous continuous. Since II;erN;(a, ) = 1 for each @ € L ( Indeed,
by the definition of II;cr N;, there exists a family {a},

MerNi(e2) > \/ Ni(mi(a),1 - m(1 - @)
i€l
ier
> Nij(a,a)=Nj(a,0) =1,
then IT;cr N; is the stratified. But N A finer than N;,. Thus I;crN; is the stratified
L-fuzzy topogenous order on X which is finer than N. o
(ii) Since I;erN; is a stratified, then for any pu, A € L*, N*(\, p) < Iier N; (A, ).
Conversely, suppose there exist p, A € LX such that
N*(A\, 1) # IierNi(A, ) 2. 1)

From definition of II;crN;, there exist finite families {}; : A = V;As} and {py -
=N o}
N ) 2 AV Nalma(hs), (rau))-
3.k i€l
Then there exists n € I" such that
N3\, 1) # No(mn(A), (mn(1)))-
On the other hand, if n # jg, then by definition of N° we have
MO 2N 2 AV MmOy, (m()))
jik i€l

AV Fulm(h), (ms(use))

i,k i€l

Nt (), (Ta (1))

v
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It is a contradiction for eq. 2. 1. If n = jo, N, = N;. By the definition of N7,
then there exists a family {(A;, s}, ;) \ k € N} € M(mn(A), (ma (1)) such that

N\, ) # A No(Ais )
A ) e{(0g 152, ) \KEN}
Since m,, is L-fuzzy topogenous continuous, N (m;; (A}), myt(pf)) > No(Af, pr), for
each k€ N,

N\ p) # A N(A )
O, )E{(mn O ymn ()2 )\KEN}

On the other hand, since {(m;*(A;),n; (u1),ar) \ k € N} € M()\, ). By the
definition of N* we have

N\ p) > A N (A, )
Q) e{(m (O3) ma (1] )2 \KEN}

Also, it is a contradiction for eq. 2. 1. Thus N*(A, 1) > [Lep Ni(X, ) ]

Corollary 17. Let (X, N1) and (X, N3) be L-fuzzy topogenous order spaces. We
define, for any u, A € L*

(M@ N2)(\, 1) = \/ AN (g, 1) A Na g i)}
3k
where \/ is taken over all finite families {A; : X = V/; A} and {uk + p = Ay pi}-
Then '
(i) NY ® Ny and N} ® N3 are stratified L-fuzzy topogenous on X, which finer than
N; @ Ns.
(i) Nf @ No = N7 @ N5 = (N§ ® No)*.
Example.
Let X = {z,y,2}, Y = {p,q} be sets, L = [0,1] and a mapping f : X — Y defined
by f(z) = p,f(y) = f(2) = q. Let v € L, v(z) = 0.2, v(y) = 0.4, v(2) = 0.5. Then
we define the L-fuzzy topogenous order N on X as follows: for each A, € LX.

el

1:A=00rpu=1,
N =4 5:0#A<v<p#l,
0:0.w

Let f(N) is the L-fuzzy topogenous order on Y, define by
F(NY(v,v) = N(f~2(v), f~(v)) for any ~,v € LY. Then we obtain
[ l:y=00rb8=1,
e ={ 505
and from Theorem 2. we obtain
s | 1:y<ag<0=1 foreacha€ L,
R
On the other hand, we have

1:A<a<u foreachacl,

CAF VAP for0.2 < B <1,
(NP p) =3 $:A=vAB,u>vAB for02<p<1,

v #q, foreacha €L,

0:0.w.
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For A\; = v A 0.3, there exist y; € LY such that f~!(y;) = A, with v1(p) =
0.2, 71(¢g) = 0.3. Thus we have f(N*)(y1,7) = N°(f 7 {m), f*(n)) = 1, but
(f(N))*(m1,m) = 0. Hence f(N*®) # (f(N))*.

3. STRATIFICATIONS OF L-FUZZY PROXIMITY SPACES

An L-fuzzy quasi-proximity (resp. proximity) § : LX x LX — L is said to
be stratified L-fuzzy quasi-proximity (resp. proximity) on X, iff § satisfied the
following conditions: (FPS) 6(a,1 — @) =0, for each a € L. The pair (X,4) is
called stratified L-fuzzy quasi-proximity (resp. proximity) space.

Theorem 18. Let (X,8) be L-fuzzy prozimity space. We define for all p, A € L,
8\ ) = A { A 8(Aes )}
{2, \IEN)FEN (A1) (Arupringy ) €{(Nispi 2 )\IEN}

where W(A, 1) = {{(As, i, ;)\i € N, N finite index set}\X < V;ep(Mingy), p <
Nien(pi V @;)}. Then 8% is the coarsest stratified L-fuzzy prozimity on X which
finer than 4.

Proof. (FP1), (FP2), (FP4) and (FPS) are similar to the proof of Theorem 2. And
(FP) Obvious.
(FP3) Suppose there exists A, u € LX such that

S #E N o) V(o).

pelX

By the definition of §° there exists a family {(X\;, s, ;) \ 1 € N} € W(A, p), such
that

V SOum) £ N\ 6 o)V 6 (o, ).
(A0 )E{( A pi,a;)\iEN} peELX

Since ¢ is L-fuzzy proximity. §(A;, 1) > Ap;ELx (6(Mi, pi)V8{pi, 11i)). Then we have

V L) Vo, m) 2 N\ (N p) V8 (p, 1))

(Oasm,2) €L (s ps,2)\IEN} peLX

On the other hand, put p = A;cx(pi V ;). Then by the definition of §°

*(Np) < V (6(\, p),6°(p, 1)

(Ao, ) E{(Xi,p0i,0,)\iEN}

V 8(p1, )

(p1:p0,00)€{(pi, i, )\IEN}

IA

Thus we have

N GO VEpu) < 8N p)VE(o,u)

peELX

IA

\/ (6(Ai, 1) V 8(pr, ).

(A0 €{( M, p,0,)\IEN}

It is a contradiction. O
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Example Let X = {z,y}, be set, L = [0,1]. Let v,y € L%, v(z) = 0.5,
v(y) = 0.5 and y(z) = 0.4, v(y) = 0.6. Then we define the L-fuzzy proximity ¢ on
X as follows: for each A, € LX,

1 :A=00rp=1,

0.7 : A<y, ulyptdy,
05 : A< yu<7A Ly,
)=+ 03 :A<uvVy,u<(vVvy),
A€y, pta,

04 : A<UAYp<(VAY),
0 : 0w

We can obtain the stratification é° as following;:

(1 A=aor p=aq,

0.3 : A(z) < o, pu(z) < a4, A(y) < By uly) < B,
:for 0.5 < a,B < 0.6 and a < 3,

0.5 : A(z) < o, u(z) < o, A(y) < B, w(y) < B,
:for 04 < < 05,05 < 8<0.6,

0.6 : A(z) < a,p(z) <o, A(y) < B, 1(y) < B,
for04<a,8<05anda<,8,

0 :0w

NS(’\a,u) =

Theorem 19. (i) Let § be an L-fuzzy prozimity structure, N5 symmetrical L-fuzzy
topogenous order associated to §. Then Ngs = (Ns)®.

(%) Let N be a symmetrical L-fuzzy topogenous order stmcture On the L-fuzzy
prozimity associated to N. Then éns = (6n)°.

Proof. (i) Since Ng=(a, @) = (8%°(a,@)) = 1, for each o € L, then Ns- is stratified
finer than Nj, so Nss > (Nj)®.
Conversely, suppose there exist u, A € LX and t € L — {0,1} such that

Noe(Ats) = (1)) > ¢ > (Ns)* O\, ):
Since 8%(\, 1) < t, then there exists a family {(\;, pi, ;) \i € N} € W(A, p), such

that 8(\;, 1i) < t for each ¢ € N. Then Ng(\;, u;) = (6(\;, 1t5)) > ¢ for each i € N.
On the other hand, since {(A;, #;,@;) \i € N} € M(}, ), then

(Né)s(’\nu‘) > /\ Né(’\la/‘bl) >t
(A0 ) E{ (X 14,0,)\IENY
It is a contradiction. Thus Ng. = (Nj)*.
(ii) Similar (i). : O
Theorem 20. Let (X,6;) and (Y,4;) be L-fuzzy quasi-prozimity spaces, 87 and
83 be stratification for §; and 6, respectively. If f : (X,81) — (Y,682) is L-fuzzy
prozimity continuous, then f: (X, 68%) — (Y,85) is L-fuzzy prozimity continuous.

Proof. Similar of the proof of Theorem 15. : ]

Theorem 21. Let {(X;,8;)}ier be a family of L-fuzzy quasi-prozimity spaces, X =
ILerX; a set and, for each i € ', m; : X — X; a projection mapping and & is the
product L-fuzzy quasi-prozimity structure with respect to a family {m; : X — X;

i € T'}. If there ezists a jo € T such that §;, = a3 and §; = &; for eachi e I'— {]0}
then:
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(i) Tierd; is the stratified L-fuzzy quasi-prozimity structure on X which is finer
than . _
(i Merd; = 6°.
Proof. Similar of the proof of Theorem 16. O
Corollary 22. Let (X,68;) and (X,8;) be L-fuzzy quasi-prozimity spaces. We de-
fine, for any p, A € LX

(B1U&)(\ p) = /\V{&(A],uk) A 82(Nj, i)}y

3k

where N is taken over all finite families {\; : A = V;A;} and {px : p = Vepr}.
Then:

(i) 8 Wé, and §; U 635 are stmtzﬁed L-fuzzy quasi-prozimity on X, which finer than
LW (52

(’L’L) & Wo =6, W (52 = (61 U(Sg)s.

4. STRATIFICATIONS OF L-FUZZY UNIFORM SPACES

an L-fuzzy quasi-uniformity (resp. uniformity) U : Qx — L is said to be strati-
fied L-fuzzy quasi-uniformity (resp. uniformity) on X, iff U satisfied the following
conditions: (FUS) U(&@) = 1, for each & € L. The pair (X,U) is called stratified
L-fuzzy quasi-uniform (resp. uniform) space.
Proposition 23. If (X,U) is stratified L-fuzzy uniform space and dy L-fuzzy proz-
imity associated to U, then (X, 8y) is stratified L-fuzzy proximily space.
Proof. Since U is stratified L-fuzzy uniformity, then U(&) = 1, &(a) = ¢ for each
a € L. By Theorem 11. dy(a,a) = A{(U(a)) : a{a) < o} = 0 for each a € L.
That is 6y is stratified. (]

Theorem 24. Let (X,U) be an L fuzzy quasz-umform space. Define for every
ae] X,

U*(a) = { (\)/{Uo(bi a>bAG, a €L},

Then U?® is the coarsest stratified L-fuzzy quasi—unifonnit;& finer than U.
Proof. (FU1) Suppose that there exist a1, az € Qx such that
U®(a1 A ag) 2 U(ar) AU®(a2).

Form definition of U* there exist b; € Qx, a; € L with a; > b; A 04,1 = 1, 2 such
that

U?(a1 Aag) 2 U(b) AU(b2).
On the other hand, since a; A az > (b A b2) A Gy or a; Aas > (b Abz) AGa, then
we have

Us(ai Aag) > U(bi Abs)

>, U(b1) A U(bg)
Itis a oontradlcatlon Thus Us(ay A a2) > U*(a1) AU*(az)
(FU2) Let a; € Qx. Suppose that there exist a; € Qx such that

U*(a) £ U*(a1)-
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By the definition of U?, there exist b € Qx, a € L with a > b A & such that
U(b) £ U*(a1). Then there exists ¢ € Qx such that ¢ 0 ¢ < b, U(c) > U(b). By
Proposition 1(ii),

(chd)o(cha)<(coc)ha<bra<a.

- This means that there is cA & = a;, with a; 0 a1 < a, U%(a1) 2 U(c) > U(d). It is
a contradiction. Thus U*(a) < U%(a,).
(FU3) Obvious.
(FU4) There exists b € Qx such that U(b) = 1. Since b = b A 0, by Proposition
1(iv), then U*(b) = 1.
(FUS) Since @A 0 = & for each o € L, then U*(@) = 1 for each a € L. Thus U* is
stratified.
For each b € Qx, bA0 = b. Then U*(b) > U(b) for any b € Qx. Thus U* is finer
than U.
Finaly, consider U* be stratified L-fuzzy quasi-uniformity finer than U. Suppose
there exists a € Qx,

U*(a)  U*(a).
from definition of U?, there exist b € Qx, @ € L with a > b A & such that U*(a) #
U(b). Since U* is stratified, then
U*(a) > U*(bra)>U*d)AU*(@)
U*(b) 2 U(b)
It is a contradiction. Hence U*(a) > U*(a) for any a € Q2x. Thus U* is the coarsest

stratified L-fuzzy quasi-uniformity finer than U. U?® is called the stratification of
an L-fuzzy quasi-uniformity of U on X. ‘ 0O

Example. Let X be any set, L = [0,1], define the L-fuzzy quasi-uniformity U

on X as follows:
Ua) = {

where ay : LX — LX defined by Theorem 6. Since a, = & for any a € L, we
obtain

:a::ag,
tag < a < ag,

:Ow

O =t

l:a>a,foreachac L
UZ(a):{ 0: 0w d

Theorem 25. Let (X,U) be an L-fuzzy uniform space, dy the L-fuzzy prozimity
associated to U. Then (6y)® = dys.

Proof. Since U* is stratified finer than U, then 8y is stratified finer than §y. Thus
dys (A, ) < (8u)* (M, ). for any u, A € LX.
Conversely, suppose there exist y,A € LX and t € L — {0,1} such that

‘ by (A i) <t < (Bu)* (A m)-

By Theorem 11. there exists a € Qx such that dys(\, ) < (U%(a))’ < t and
a{n) < X. Then there exists b € x with a > b A & such that Us(a) > U(b) > t'
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and (bA@)(p) < N. Hence
A< A ) vam) =V dire)

p=p1Vpg €N
where (G(u2)) = a;, (b(u1)) = A for i € N = {1,2,3,...,n}. Put u; = v; for each
i€ N, then 1 < A; n(vi V (g;)) and hence b(v;) < A, for each i € N. Then we
have

Sy (i) <(UB) < t, for each i € N.
On the other hand, from definition of (§;/)* we have
(Bu)*(\p) < A du(Ai,m) < t.
(Al,thl)e{(xi"’irg.i)\ieN}

It is a contradiction. Thus 8y« (A, 1) > (6y)* (X, ). O
Theorem 26. Let (X,U) be an L-fuzzy quasi-uniform space and Ty be an L-fuzzy

topology associated to U. Then the L-fuzzy topology Ty- associated to U* coincides
with the stratification of Ty . :

Proof. We will show Tys = (Ty)®. Since U*(a) = 1, a{a) = ¢, for each a € L,
then
Ipe(@,8) = \/ {1 : alw) < X for some U%(a) > B} = o,

for each B, € L. Hence Tys(a) = 1, for each o € L i.e Ty is stratified. By
Theorem 24, U® is finer than U. Then Ty. is stratified finer than Ty.  Thus
Ty= > (Ty)*.
Conversely, Suppose there exists A € LX such that

Ty (A) £ (Tu)*(A).
Then from definition of Ty, there exists & € L, Ty=(A) > a. That is

Iye(h0) = A= \[{u: a(p) < AU%(a) > o}.
Since U*(a) > a, then there exist b€ Qx, 3 € L witha > bA B such that
U?(a) 2 U(b) > a.

On the other hand, by Proposition 1. 3(x) = 1 for each p € LX with suf).(p) £ 8.
Then b(y) < X for each p with sup(p) £ 8 and therefore -

o= \{u:b(u) AB() < \U®) > o}
< VA{w:b(w) < X sup(p) £ o, U(H) > a}
< IU(’\7a)'
Hence Iy(\,a) = A ie Ty(A) > a. Hence (Ty)®(A) > a. It is a contradiction.
Thus Ty- < (Ty)®- 0O

Theorem 27. Let (X, T) be a stratified L-fts. Define for each a € Qx,
U@ =V A{TO):a> A\ ax}
‘ ieN iEN

where \/ is taken over all finite families {\; : a > Nienax}- Then

(i) U is stratified L-fuzzy quasi-uniformity on X. (ii) Ty = T.
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Proof. (i) (FU1) Suppose there exist a,b € Qx such that
U(aAb) 2 U(a) AU(b).
Then by the definition of U, there exist two finite families {A; : @ > Aoy an},
{7 162> Ajek av;}, such that »
U@nb) 2 AT A N T(y).
iEN jeK

On the other hand, we have

Then by definition of U,

Ulanb) ( A T(A;)) A (/\ T(w)) : |
J

iEN " jeK

It is a contradiction.

(FU2) Since ay o0 a) = ay by Lemma 2, then (FU2) holed.

(FU3) Obivous.

(FU4) There exists a(say) =a; € Qx such that U(a) > T(1) =1.

(FUS) Since a, = @, then U(@) > T(a) = 1. Hence U(@) = 1 for each a € L
Thus U is stratified.

(ii) Obvious Ty < T, by definition of U.

Conversely, suppose there exist A € LX and « € L — {0,1} such that

Ty(A) < a < T()).

Since ay(A) = A, then U(ay) > T(A) > a and then Iy(ha) = V{p : a{p) <
A, for some U(a) > a} = A. Thus Ty(A) > a. It is a contradiction. Thus
Ty >T. 0

Theorem 28. Let (X,U;) and (Y,Us) be L-fuzzy quasi-uniform spaces and Uf and
U; be stratification for Uy and Us respectively. If f : (X,U1) — (Y,Uz) is L-fuzzy
uniformly continuous, then f: (X,U;) — (Y,Us) is L-fuzzy uniformly continuous.

Proof. We will show U$(f!(b)) > U§(b) for each b € Qy, If U§(b) = 0, trivial. If
U} # 0, suppose that

US (f'(b)) # Us(b)
From definition of U3, there exist c € Qy, a € L withb>cA a,
(£ (b)) # Ua(0).

Since f : (X,U;) — (Y,Us) is L-fuzzy uniformly continuous, U;(f!(c)) > Us(c).
From the definition of U}, we have

UL (£ (8)) 2 Ui (F4(9)) = Uz(c)
It is a contradiction. Hence Uf(f!(b)) > U§(b) for any b £ Qy. ' o
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Counterexample.
Let X be any set, L = [0, 1] and identity mapping Idx : (X,U;) — (Y,Us), define
the L-fuzzy quasi-uniformity U; and Uz on X as follows:

Ul(a)={ 1:a=ag,

0: 0w
Ug(a) = {

where a) : LX — LX defined by Theorem 6. Since a, = & for any « € L, then from
Theorem 2, we obtain

- a = aop,
tag5 < a < ag,
: 0w

QOwi= -

o o l:a>@,foreachacL
Ui = U3t = { gl % B¢

Clearly Idx : (X,Uf) — (X,U$), is L-fuzzy uniformly continuous. But Idx :
(X,U§) — (X,U3), is not L-fuzzy uniformly continuous, where 0 = Uy (f'(aq.5)) <
Ul(ag_é) = %

Theorem 29. Let {(X;,U;)}ier be a family of L-fuzzy uniform spaces, X a set
and, for eachi e T, f;: X — X,; a mapping. We define, for each a € Q2x
U =\ A{Uit;):a> A £ibs)},

jeN jeN
where \/ is taken over all finite index N C T'.Then
(i) U is the coarsest L-fuzzy uniformity on X for which all f;, are L-fuzzy uniformity
continuous.
(i) A mapping f : (X*,U*) — (X,U) is L-fuzzy uniformity continuous iff for
each i €T, f; o f is L-fuzzy uniformity continuous.

Proof. (i) (FU1) Suppose that there exist a,b € Qx such that
U(anb) £ U(a) AU(®).
By the definition of U there exist two finite families {a, : a > A, cn e},
{b; :b > Ajck fi(b;)} such that '
U@Ab) £ (N Un(an) AN Us07))-
nenN jeK
On the other hand, since a Ab > (A,.cn fh(an)) A (Ajek f1(b5)), then
Uanb) 2 (\ Un(an)) AN Us0:)
neN jeJ

It is a-contradiction. Thus U(a A b) > U(a) AU(b).
(FU2) Let a € Qx. Suppose that there exist b € x such that

U(a) £ U(b).

By the definition of U, there exists finite family {a, : a > A,cn fi(an)} such that

N Un(an) £U).

neN
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Since Up(an) > 0, for each n € N, then there exists b, € Qx,, b, 0 b, < a, such
that Uy, (bs) > Un(an). Put b= Anen fi(by,). Hence

bob= /\ (fa(bn) 0 fu(bn))

neN

< /\ frll(bn o bn)

neN

< /\ f’lll(a'n) <a.
. ‘nGN

Then there exists b € §2x such that bo b < a and

U®) 2 A\ Unba) 2 \ Un(an).

nenN neEN

It is a contradiction. Thus U(b) > U(a).

(FU3) Obvious.

(FU4) There exists b € Qx;,j € I' such that U;(b) = 1, put f}(b) = a.” Then
Ula) =1.

(FU) Let a € Qx. Suppose that there exist b € Qx such that

U(a) £ U

By the definition of U, there exists finite family {a, : @ > A,cn fi(an)} such that

N\ Un(an) 2U®).

neEN

Since Uy, (an) > 0, for each n € N, thén there exists b, € Qx,,,b, < a;! such that
Un(bn) > Un(an) for eachn € N. Put b = A, p fi(bn). Hence

b= (A BT A BT S A FLGRY
. meN neN neN
< /\ e,y ™ = /\ fi(an)
neEN neN
< a.

Then there exists b € Ox such that b < ¢~! and

U®) 2 N Un(bn) > )\ Un(an)

neN neEN

It is a contradiction. Thus U(b) > U(a).
Second, it is easily proved that, by the definition of U, for all 1 € T,

U(fL(b)) > Ui(b) for each b € Qx,.

Hence, for each f; : X — X, is L-fuzzy uniformity continuous.
Finally, if f; : (X,U*) — (X;, U;) is L-fuzzy uniformity continuous, then U*( f} ®) >
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U;(b) for each j € . We will show U* > U, from the following:
U@ = v A{Ub):a> A £}

JEN JEN
< VAU @E®) a2z A £
JEN JEN
< VIUR(A A®) e A £}
JEN JEN
< U*(a).

(it) Obvious.
: O

Definition 30. In a above theorem. U is called the initial L-fuzzy uniformity
structure on X with respect to a family {(X;, U;) }ier.

Corollary 81. Let {(X;,Ui)}ier be a far;zily of L-fuzzy uniform spaces, X =
I;cr X; a set and, for each i € T',w; : X — X, a projection mapping . We de-
fine, for each a € Qx

WierUi(a) =V A {U; (bj) a2 A 75}

JEN JEN
Where A is taken over all finite index N C T. Then
(i) I;erU; is the coarsest L-fuzzy uniformity on X for which all m;, are L-fuzzy
uniformity continuous.
(#t) A mapping f : (X*,U*) = (X,;erl;) is L-fuzzy uniformity continuous iff for
each i € T, m; o fis L-fuzzy uniformity continuous.
The initial L-fuzzy uniformity uniformity structure I;crUsis called the product L-
Juzzy uniformity structure of a family {(X;,U;)}ier,and (X, I;cpU;)is called prod-
uct uniform space.

Theorem 32. Let U be a product L-fuzzy uniformity structure of a family {(X;, U;) }ier
and X =1;er X;. If there exists a jo € T such that UJ0 = U} and U; = U;for each
iel — {jg} then:

(i) IL;crU; is the stratified L fuzzy quasi -uniformity on X which is ﬁner than U.

(i) MerU; =U®.

Proof. (i) From corollary 31, I;crU; is L-fuzzy quasi -uniformity on X for which
all m;,7 € T'are L-fuzzy uniformity continuous. For each « € L, we have
WierUs(@) > Uj(@) = U3 (@) = 1.

Thus I;erU; (@) = 1. Moreover, since U, nls finer than I;crU; is the stratified
L-fuzzy qu351-un1form1ty on X which is finer than U.

(ii) Since L;crUis stratified, then by Theorem 24, U® < Merl,; .

Conversely, suppose there exist a € 2x such that '

U*(a) # WierU.(a). - (4. 2)
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By the definition of ;U , there exists a finite family {a, :a > Anen w! (an)}such
that
U*(@) # N Unlan)-
neN
On the other hand, if jo ¢ N, then
U@ 2U(a) 2 A Un(an) = A Ualan).
neN neN
It is a contradiction for Eq. 4. 2. If jo € N, then Uj (a;,) = U3, (aj)-
From definition of U7, there exists b;, € Qx, with aj; > bj, A @j, such that
U; (aj,) 2 Ujy(bj,). Since mj, : X — Xj,is L-fuzzy uniformity continuous, then
U(ﬂ'}o (bjo)) 2 Ujo(bjo)' Now, ‘
@) AL N\ m(an))
n€N-~{jo}
ﬂgo (bjo A ajo) A ( A Wf-m(an))
neéN-{jo}
(T Bi) A N\ 7hlan))) AE,
n€N-{jo}

a

v

v

A

Then we have
Us(a)

v

Url (b)) AC N\ mhian))
n€N—-{jo}

Ul o)A (- N\ Ulrh(an)))
neN-—{jo}

Uju (bjo ) A ( /\ Un (an))

n€EN—{jo}
= /\ Uylay).
neN
Also, it is a contradiction for Eq. 4. 2. Thus U® > ;erUs. 0

Corollary 33. Let (X,U;) and (X,Us) be L-fuzay quasi-uniform spaces. We de-
fine, for each a € Qx

v

v

(U1 )] Uz)(a) = V{Ul(bl) A Uz(bz) ca>2b /\bz}.

Then: (i) Ui MU3 and Ui @ Usare stratified L-fuzzy quasi-uniformity on X, which
finer than Uy @ Us.

(22) UnlUi=Uml; = U, m Us)®

(i5) Tv, vz = Tup v, = T, va)e = (Tv, 1v,)°-
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